
Software Synthesis for Distributed Embedded

Systems

Yang Yang

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-60

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-60.html

May 4, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Software Synthesis for Distributed Embedded Systems

by

Yang Yang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Alberto Sangiovanni-Vincentelli, Chair
Professor Sanjit Seshia

Professor Francesco Borrelli

Spring 2012

Software Synthesis for Distributed Embedded Systems

Copyright 2012
by

Yang Yang

1

Abstract

Software Synthesis for Distributed Embedded Systems

by

Yang Yang

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alberto Sangiovanni-Vincentelli, Chair

The amount and complexity of software in embedded control systems is increasing rapidly.
This factor, together with the wide use of distributed platforms and the tight design require-
ments, raises great challenges to software design and development in these systems. However,
the current design practice is largely manual and ad-hoc, especially at the system level, which
produces suboptimal and unreliable systems. In this dissertation, we propose a systematic
software synthesis flow to address some of the pressing issues in software design, in particular
the heterogenity of the design inputs, the complexity of the design space, and the semantic
difference between the functional specification and the implementation platform.

The flow consists of a front-end that translates heterogeneous input specification into a
unified representation, and a back-end that conducts automatic design space exploration and
code generation. We define an intermediate format (IF) as the unified representation, and
develop translators from input models to IF and from IF to output code. We design algo-
rithms to explore the design space during mapping from the functional specification to the
architectural platform, with respect to design metrics such as cost, latency and extensibility.
We also propose approaches to synthesize the communication interfaces between software
tasks to guarantee the semantic equivalence of the distributed implementation with respect
to the synchronous specification.

The applicability of the synthesis flow is illustrated with case studies from the building
automation and automotive domains. The results showed that the flow can be effectively
applied to widely different applications in different domains.

i

To my family.

ii

Contents

Contents ii

List of Figures iii

List of Tables iv

1 Introduction 1
1.1 A Systematic Software Synthesis Flow . 2
1.2 Application Domains . 5
1.3 Related Work . 6

2 Intermediate Format 10
2.1 IF Translation and IF library . 10
2.2 Case Study . 15

3 Mapping 21
3.1 General Mapping Flow . 21
3.2 Cost Optimization Mapping Algorithm for BAC Systems 23
3.3 Extensibility Optimization Mapping Algorithm for CAN-bus based Systems . 31

4 Code Generation and Communication Interface Synthesis 54
4.1 Code Generation . 54
4.2 Communication Interface Synthesis . 56

5 Conclusion and Future Work 81
5.1 Closing Remarks . 81
5.2 Future Work . 82

Bibliography 83

iii

List of Figures

1.1 Software synthesis flow for distributed embedded systems 3

2.1 Room temperature control system . 15
2.2 IF translation for room temperature control system 16
2.3 Comparison of heterogeneous input model in Simulink/Modelica and IF model

in MetropolisII . 17
2.4 Comparison of Simulink and LabVIEW models at PID level 18
2.5 IF translation at sub-PID level . 19

3.1 Mapping flow . 23
3.2 Mapping result after MILP . 30
3.3 Final mapping result . 31
3.4 Algorithm flow for task extensibility optimization 38
3.5 Signal forwarding by the gateways . 40
3.6 Iterative priority assignment algorithm . 45
3.7 Comparison of manual and optimized designs for the two architecture options . 50
3.8 Task extensibility over iterations . 52
3.9 Reallocation of tasks for increased computational resources 53

4.1 Mapped LabVIEW model for the temperature control system 61
4.2 A block M and its surroundings. 66
4.3 Part of an FFP generated from M and its surroundings in Figure 4.2. 67
4.4 Backward queue sending trigger information about P2 to P1. 68
4.5 Avoiding deadlocks by structuring each process in stages. 68
4.6 Potential deadlock with a static iteration order over RT (P). 71
4.7 A Triggered SBD. 76
4.8 The FFP system resulting from the Triggered SBD of Figure 4.7 after trigger

elimination [45] and distribution [69]. 76
4.9 Average communication savings with different probability of blocks not being

triggered. 79
4.10 Average communication savings with different percentage of non-source blocks

with triggers. 80

iv

List of Tables

2.1 Comparison of all room temperatures . 17
2.2 Comparison of room temperature at different abstraction levels 20
2.3 Comparison of cumulative air flow at different abstraction levels 20

3.1 Summary of symbols in MILP . 26
3.2 Characterization of a realist architecture library for BAC systems 30
3.3 Description of distributed control system . 52

4.1 Comparison of mapped and synchronous models 62

v

Acknowledgments

I would like to first thank my advisor Prof. Alberto Sangiovanni-Vincentelli for his
guidance and support throughout my PhD study. Alberto is a great mentor with incredible
knowledge and insights on many research areas and industries. During my research, he is
always a great source of new ideas and motivations. Many of the ideas in this dissertation
came from the discussions with him. His emphasis on both rigorous theoretical foundation
and potential practical applications has greatly influenced my research, and will continue to
guide me in my future work. Alberto also cares deeply for his students. Over the years, he
has been very supportive in both my study and my life. For this, I will be forever grateful.

I would like to thank Prof. Sanjit Seshia and Prof. Francesco Borrelli for taking time
to review my dissertation. I also want to thank them and Prof. Jan Rabaey for being on
my qualifying exam committee. Their acute comments and suggestions help shaping and
improving this work. I had the opportunities to work with a group of wonderful researchers
from academia and industry, and I would like to thank their help and mentorship. They
include: Alessandro Pinto, Eelco Scholte, Guido Poncia, Hugo Andrade, Marco Di Natale,
Mehdi Maasoumy, Michael Wetter, Philip Haves, Qi Zhu and Stavros Tripakis. In particular,
Stavros Tripakis, Alessandro Pinto and Qi Zhu were heavily involved in the research work
presented in this dissertation. Their contributions are instrumental and I have learned a lot
from them through the collaboration.

During my study at Berkeley, I have encountered many great professors and taken many
excellent courses. In particular, I would like to thank Prof. Kurt Keutzer for reading
my Masters report and providing valuable feedback. I would like to thank Prof. Andreas
Kuehlmann for his logic synthesis class. It was one of the hardest courses that I took and
also one of the most satisfying courses after I completed it.

I am also fortunate to interact with a group of talented colleagues and friends. They in-
clude, but not limited to: Bryan Brady, Bryan Catanzaro, Donald Chai, Satrajit Chatterjee,
Minghua Chen, Jike Chong, Abhijit Davare, Douglas Densmore, Yitao Duan, Thomas Feng,
Shanna-Shaye Forbes, Liangpeng Guo, Dan Holcomb, Dan Huang, Ling Huang, Shinjiro
Kakita, Nathan Kitchen, Yanmei Li, Wenchao Li, Chung-Wei Lin, Cong Liu, Kelvin Lwin,
Mark McKelvin, Pierluigi Nuzzo, Trevor Meyerowitz, Alberto Puggelli, Kaushik Ravindran,
Alena Samalatsar, Baruch Sterin, Jimmy Su, Xuening Sun, Guoqiang Wang, Lynn Wang,
Zile Wei, Tobias Welp, Wei Xu, Guang Yang, Jing Yang, Haibo Zeng, Wei Zheng, Feng
Zhou, Li Zhuang, and Jia Zou.

Last but not least, I would like to thank my parents, my husband and my daughter.
Without them, I would not have accomplished my goal. My parents love me with all their
hearts, and always support me unconditionally. I will forever be in their debt. My daughter
Olivia is the sweetest girl in the world and the best thing happened to me. She makes every
day exciting and bright. Even before she could speak, she was already one of my biggest
supporters. At many difficult times, she gives me the comfort and courage that I need.
My husband Qi is the most important person in my life. He is so kind, caring, loving and
generous. He is always there with me for every important decision I have made, and supports

vi

me through my ups and downs. He sits down and brainstorms with me whenever I meet
difficulties in my research and life. Now he is pursing his goals in academia, I wish him the
best.

1

Chapter 1

Introduction

Embedded systems have become ubiquitous in everyday life and are fastly growing, with
wide applications in domains such as consumer electronics, automotive, aerospace, civil in-
frastructure, medical devices and industrial automation. According to International Data
Corporation (IDC), the market for embedded systems will double in size over the next four
years, with estimately more than 4 billion units shipped and $2 trillion in revenue [32]. As
the system complexity increasing rapidly in terms of both scale and functionality, many of
the modern embedded systems are deployed on spatially-distributed and networked plat-
forms. These distributed embedded systems consist of a network of embedded processors
(ranging from tens to hundreds or even more) connected through wired buses or wireless
communication. For instance, regular modern vehicles typically employ 50 to 70 electronic
control units (ECUs, luxury cars may have up to 100 ECUs) and a number of buses.

Another major trend is the rapid growing of software in embedded systems, in terms of
both amount and complexity. Using automotive domain as an example, an average car in
2000 contains one million lines of code, with software taking 2% of the total value of the
car; while an average car in 2010 has 100 millions of code and software takes 13% of the
car value. It is predicted that more than 80% of car innovations in future will come from
computer systems, and software will become major contributor of value [66].

In addition, many complex distributed embedded systems with time and (possibly) re-
liability constraints are today the result of the integration of components or subsystems
provided by various suppliers in large quantities. For example, production quantities for
automotive subsystems are in the range of hundreds of thousands. Many avionics systems,
home automation systems (HVAC controls, fire and security), and other control systems
(for example elevators and industrial refrigeration systems) share similar characteristics and
models of supply chain. All these systems are characterized by the need of a careful design
and deployment of system-level functions, given the need to satisfy real-time constraints and
cope with tight resource requirements because of cost constraints.

The above factors – increasing software complexity, employment of highly-distributed
platform, integration of heterogeneous components or subsystems, and tight design con-
straints – propose major challenges to the design of distributed embedded systems. In cur-

CHAPTER 1. INTRODUCTION 2

rent practice, much of the design process is manual and ad-hoc, with different subsystems
designed in isolation. This leads to suboptimal and unreliable systems. In automotive do-
main, vehicle recalls related to electronic systems have tripled in past 30 years [24], and now
50% of the warranty costs are related to electronics and software [66]. In avionics domain,
software complexity and integration challenge are major contributors to the production delay
of Boeing 787 Dreamliner [23].

In this dissertation, we focus on the problem of implementing a given embedded applica-
tion on a distributed platform with respect to a set of design objectives and constraints. We
target typical embedded control systems in domains such as automotive, avionics and build-
ing automation, where the embedded applications are control algorithms representing the
system functionality and the distributed platforms consist of sensors, embedded processors,
actuators and communication buses. During the design process, the control algorithms that
are initially described by high-level modeling languages will be implemented as software
code on the distributed embedded platform. To address the design challenges mentioned
above, we propose a systematic software synthesis flow that focuses on two main aspects
– integration and automation. The flow bridges the gap between a desirable design entry
point – at a high abstraction level using model-based design tools such as Simulink [7] and
Modelica [6]– and the available back-end tools able to generate low-level code. The flow
enables the integration of heterogeneous input models from different high-level languages,
allowing the interaction between domain experts and designers of different subsystems. It
also automatically optimizes the implementation of the control algorithms on a distributed
platform by selecting computation and communication resources, and by performing code
generation while meeting the specification. This automation of design space exploration
and code synthesis makes it possible to cope with the complexity from increasing software
content, highly distributed platform and tight design requirements.

1.1 A Systematic Software Synthesis Flow

Our proposed software synthesis flow consists of a front-end and a back-end, as shown in
Figure 1.1. The front-end is used to model the system including the control algorithms and
the behavior of the environment. The back-end includes a set of tools that, given the spec-
ification of the control algorithms and a set of available computation and communication
resources, automatically refines the specification into an optimal distributed implementation.
The front-end and the back-end exchange models using an intermediate format (IF). The
introduction of this intermediate layer is essential for the integration of heterogeneous inputs,
the leverage of back-end tools, and automatic design space exploration. It enables building
a software synthesis flow that is general with respect to the user input (e.g. Simulink and
Modelica), and to the output implementation code (e.g. C and domain-specific language
such as EIKON [5] for building automation and control). Using an IF, pieces of the input
specification expressed in different languages can be composed. This feature will hopefully
foster collaboration among experts in different disciplines by allowing them exchange models

CHAPTER 1. INTRODUCTION 3

Simulink

model

Modelica

model

Simulink

Building

Library

Modelica

Building

Library

Translation to IF

(ANTLR-based)

Intermediate

Format (IF)

Domain Specific

Library

MappingArchitecture

Platform

Mapped

design

Communication interface

synthesis

(FFP-based synthesis)

Code for PnCode for P1

Translation to target

language (ANTLR-based)

Vendor-specific description

(e.g. EIKON)

Vendor-provided

code generation

Interface code

Space of data

models

Repository

Process

A B

A contains instances of B

A implements B
A B

A B

A is input to B

Legend

User input

Implementation

Step 2

Step 3

Step 1

Step 3

Design

constraints

Simulation

Front-end

Back-end

Timing constraints

Figure 1.1: Software synthesis flow for distributed embedded systems

and evaluate designs taking into account the interactions with other subsystems. The inter-
mediate level also allows targeting multiple implementation platforms. Embedded control
system vendors usually provide architecture-specific languages for programming their plat-
forms, along with tool chains for simulation, analysis, debugging and code generation. These
tools can be leveraged by translating the IF into the vendor specific language. Compared to
providing customized software synthesis flows from each high-level language to each architec-
ture specific language, using IF reduces the number of translators needed from a quadratic
number to a linear number. We define IF based on the Metropolis Meta Model (MMM) se-
mantics and the nomenclature introduced in [56]. The denotational IF representation can be
further translated into an executable model in the MetropolisII framework and simulated.

In Step 1 of our software synthesis flow, input functional models are translated into
the IF representation through automatic or manual translation. As a proof of concept, we
developed a translator based on ANTLR (ANother Tool for Language Recognition) [1] for
automatically translating Modelica models into IF. The translation process may become very
involved given the expressiveness of model-based languages. Our approach to deal with the
complexity of this step is to define domain-specific libraries of primitives at the intermediate

CHAPTER 1. INTRODUCTION 4

level designed to capture a large class of control algorithms in corresponding domain and
that can be extended by users. The domain-specific libraries are then mirrored by equivalent
libraries defined in the source languages. The set of models that can be translated into the
IF is the one obtained as composition of the library elements. This architecture simplifies
the translation process and will be described later in the context of building automation and
control systems.

Besides serving as the intermediate representation between input models and target im-
plementation, IF also provides the functional abstraction for automatic design space explo-
ration. In Step 2, the back-end automatically maps the functional model described in the
IF to the architectural model that captures the implementation platform. The part of the
functional model to be mapped is the control algorithm. The architecture platform captures
computation resources (e.g. terminal control units, embedded processors and workstations),
communication resources (e.g. wired buses and wireless links), sensors (e.g. temperature sen-
sors and CCTV video cameras) and actuators (e.g. valves and switches). During mapping,
the functional model is abstracted into the composition of functional tasks and messages
among them. There may be constraints that come with the specification such as latency,
energy, resource utilization and cost. The architecture platform is described in the form of
a library of available architectural components that are characterized by their functionality,
cost, performance, etc. The impact of the surrounding physical environment and the related
mechanical components is abstracted into a set of physical constraints imposed on the sys-
tem. There may also be other types of design constrains based on functional requirements
or architectural limitation. The mapping problem is then cast into an optimization problem
that is solved by algorithms designed to find the best mapping, with respect to a set of
objective functions, from the tasks and messages in the functional model to the components
in the architectural model, while satisfying a set of design constraints.

After mapping, code needs to be generated for final deployment. Step 3 of the software
synthesis flow conducts synthesis starting from the mapped design. The synthesis process
includes code generation for individual processors in the distributed system, and communi-
cation interface synthesis for process communication. During code generation, we translate
the functional tasks mapped onto each processor to either generic C code or a vendor spe-
cific language. As a demonstration, in our case study in building automation and control
domain, we developed a translator for translating IF into the EIKON language based on
ANTLR. The synthesis of communication interfaces is essential to ensure the correctness of
the system when the architecture platform does not directly support the semantics of the
functional model. For instance, a synchronous Simulink model is not naturally supported
by an asynchronous architecture that is common in building control systems. In this case,
we propose a communication interface synthesis approach to ensure the preservation of syn-
chronous functionality on asynchronous platforms. The approach includes two main aspects:
interface synthesis to guarantee stream equivalence on distributed electronic systems while
optimizing communication load, and adding timing constraints to preserve the semantics
with consideration of the interaction with physical environment.

CHAPTER 1. INTRODUCTION 5

1.2 Application Domains

We believe our software synthesis flow can be applied to a variety of application domains.
In this work, we choose automotive domain and building automation and control domain as
our focus. Automotive systems is an epitome of complex distributed embedded systems, and
as shown earlier, it is in great need of more formal and automatic methodologies. Advances
in automotive domain is also crucial to a successful manufacturing industry, which in turn
is a key part (and fundamental part) of the economy.

Building automation and control (BAC) is another important area that is critical to the
economy and environment. The building stock in the US accounts for 40% of total energy
consumption and 70% of electricity consumption [51]. Limits on carbon emissions are driving
new regulations that will require buildings to be energy efficient according to standards
that are likely to be more stringent than the ASHRAE 90.1 [3]. The design of low energy
buildings – zero energy in the ideal case – is challenging but not impossible. There are today
examples of zero energy buildings [67], but they are the results of ad-hoc designs that are
not easy to generalize. The design methodology used today for large buildings is top-down.
Different sub-systems (e.g., mechanical and electrical) are designed in isolation by domain
experts following design documents flown down after the bid process. This methodology is
not suitable for low energy buildings that require interaction among architects, mechanical
engineers and control engineers. Consider for instance adopting low energy solutions such
as natural ventilation and active facade. In this case, architectural design (e.g. building
orientation), the design of the mechanical equipments of the HVAC system and the design
of the control algorithms cannot be done in isolation. In this new context, the design of the
BAC system (i.e. the embedded processors and networks supporting the building operations,
and the software running on them) is non-trivial. Control algorithms become multi-input,
multi-output, hybrid and predictive, as opposed to single-input single-output controllers
coordinated by simple switching conditions as today (and mainly dictated by standards).
Moreover, several sub-systems such as HVAC, lighting, vertical transportation and fire and
security will interact through the network to allow information sharing. It is essential to
develop new design methodologies for such complex systems, and our proposed software
synthesis flow is designed to tackle these challenges.

Our case studies in automotive domain mostly focus on the mapping between functional
model and architectural platform (Step 2 in the software synthesis flow), with consideration
of two important design objectives – reducing the end-to-end latency along functional paths
and improving the system extensibility. Our case studies in BAC systems follow the entire
software synthesis flow, including the translation to IF (Step 1), the mapping between func-
tional and architectural model (Step 2, with explicit consideration of physical constraints),
and the code generation with semantic preservation (Step 3).

CHAPTER 1. INTRODUCTION 6

1.3 Related Work

The proposed software synthesis flow is based on the fundamental paradigm of platform-
based design (PBD) [41, 26, 64], where the functionality of the design (what the system
is supposed to do) and the architectural platform (how the system is implemented) are
initially captured separately, and then brought together through the mapping process. By
separating functionality and architecture and applying mapping across multiple abstraction
levels during the design process, platform-based design facilitates design reuse and reduces
design complexity. Step 1 of our synthesis process can in fact be viewed as a mapping process
from the initial heterogeneous input models to the unified IF. Step 2 solves the mapping from
the functional model in IF to an architectural model at the system level. In our work, this
is the level that we conduct most of our design space exploration, which determines the
system performance and cost. Finally, step 3 can also be viewed as a mapping process but
at lower levels of abstraction – it maps the software model on each individual processor to
the final code implementation. For the sake of brevity, the term mapping in the rest of the
dissertation refers to mapping at the step 2.

For each of the steps in our synthesis flow, there has been extensive work in the literature.
In step 1, the intermediate format is closely related to the concept of interchange formats,
which have been the backbone of the EDA industry for several years. They enable the devel-
opment of design flows that integrate foreign tools using formats with different syntax and
semantics. In the U.S. the DARPA MoBIES project had the importance of an interchange
format very clear and supported the development of HSIF [8]. However, limitations to its
semantics make the data interchange between foreign tools difficult. For example, HSIF does
not support some of the features of Simulink models. In our opinion, HSIF is an excellent
model for supporting clean design of hybrid systems but not yet a true interchange format.
Simulink internal format could be a de facto standard however it is not open, nor it has
features that favor easy import and export. Modelica has full support of hierarchy and of
general semantics that subsumes most if not all existing languages and tools. As such, it is an
excellent candidate but it is not open. In addition, all of the above solutions have not been
developed with the goal of supporting heterogeneous implementations. The intermediate
format based on the Metropolis metamodel (MMM) we plan to use was proposed in [56, 54].
It has abstract semantics and can accommodate the translation to and from various formats
of the foreign tools. Besides, due to the Metropolis metamodel, it has generality and can be
used to represent a very wide class of models of computation.

For step 2, the mapping problems have been studied in CAN-bus based systems used for
automotive and avionics applications, with latency as the main design objective. Because
of its low cost and high reliability, the CAN bus is a quite popular solution for automotive
systems, and also used in avionics systems as an auxiliary sensor and actuator bus, as well
as used in home automation, refrigeration systems and elevators. For distributed systems
with end-to-end latency deadlines, the optimization problem was partially addressed in [62],
where genetic algorithms were used for optimizing priority and period assignments with
respect to a number of constraints, including end-to-end deadlines and jitter. In [60] a design

CHAPTER 1. INTRODUCTION 7

optimization heuristics-based algorithm for mixed time-triggered and event-triggered systems
was proposed. The algorithm, however, assumed that nodes are synchronized. In [48], a
SAT-based approach for task and message placement was proposed. The method provided
optimal solutions to the placement and priority assignment. However, it did not consider
signal packing. In [33], task and message periods are explored in an algorithm based on
geometric programming to satisfy latency constraints. In [50], the trade-offs between the
purely periodic and the data-driven activation models are leveraged to meet the latency
requirements of distributed vehicle functions. In [75, 79], task allocation, signal packing
and message allocation, as well as task and message priority are explored to optimize the
end-to-end path latencies.

In our work for automotive systems, besides the traditional design objectives such as
latency and utilization, we also optimize the metric of task extensibility, which measures
how much the task execution time may be increased without violating design constraints.
The literature on extensibility is rich. Sensitivity analysis was studied for priority-based
scheduled distributed systems [62], with respect to end-to-end deadlines. The evaluation of
extensibility with respect to changes in task execution times, when the system is character-
ized by end-to-end deadlines, was studied in [74]. The notion of robustness under reduced
system load was defined and analyzed in [49], for both preemptive and non-preemptive sys-
tems. The paper highlights possible anomalies (increased response times for shorter task
execution times) that would make evaluation of extensibility quite complex. These papers
do not explicitly address system optimization. Task allocation, priorities, and message con-
figuration, are assumed as given. Also, it is worth mentioning that time anomalies such as
those in [49] and other described in several other papers on multiprocessor and distributed
scheduling do not occur for the scheduling and information propagation model we consider.
This is because we assume local scheduling by preemption, the passing of information by
periodic sampling and the periodic (not event-based) activation of each task and message.
This decouples the scheduling of each task and message from predecessors and successors as
well as from scheduling on other resources and avoids anomalies. In [15], task allocation and
priority assignment are defined with the purpose of optimizing the extensibility with respect
to changes in task computation times. The proposed solution is based on simulated anneal-
ing, and the maximum amount of change that can be tolerated in the task execution times
without missing end-to-end deadlines is computed by scaling all task times by a constant
factor. A model of event-based activation for task and messages is assumed. In [37, 39, 38],
a generalized definition of extensibility on multiple dimensions (including changes in the
execution times of tasks as in our definition, but also period speed-ups and possibly other
metrics) is presented. A randomized optimization procedure based on a genetic algorithm
is proposed to solve the optimization problem. These papers focus on the multi-parameter
Pareto optimization, and how to discriminate the set of optimal solutions. The main limi-
tation of this approach is complexity and expected running time of the genetic optimization
algorithm. In addition, randomized optimization algorithms are difficult to control and give
no guarantee on the quality of the obtained solution. Indeed, in the cited papers, the use
of genetic optimization is only demonstrated for small sample cases. In [39], the experi-

CHAPTER 1. INTRODUCTION 8

ments show the optimization of a sample system with 9 tasks and 6 messages. The search
space consists of the priority assignments on all processors and on the interconnecting bus.
Hence, task allocation (possibly the most complex step) and signal to message packing are
not subject to optimization. Yet, a complete robustness optimization takes approximately
900 and 3000 seconds for the two-dimensional and three-dimensional case, respectively. In
general, the computation time required by randomized optimization approaches for large
and complex problems may easily be an issue. In [37] a larger set of “20 tasks and message”
is considered, with only priority assignment subject to optimization. These results albeit
important in their own right, exhibit a running time that is clearly infeasible for an effective
design space exploration. This observation motivated us to develop a two-stage “determin-
istic” algorithm that has running times over an order of magnitude faster than the ones
proposed so far in the literature, as explained later in Chapter 3.

For step 3, the main challenge is to preserve the semantics during code generation with
minimal cost. There is a large body of research on distribution of synchronous models,
and in particular synchronous languages [20]. For instance, a dynamic buffering protocol is
proposed in [65] for preservation of semantics when distributing a synchronous model to mul-
tiple tasks running under preemptive scheduling. The buffering protocol can be used for inter
task communication inside a processor. A mechanism to distribute a synchronous model to
Loosely Time Triggered Architecture(LTTA) is proposed and proved to guarantee semantics
preservation in [69]. Other than synchronous programs, there has also been research on code
generation for other models of computation. Software synthesis method proposed in [13]
focuses on distributing a global asynchronous local synchronous (GALS) network of CFSMs
and proposes a method to generate RTOS for communication among CFSMs. In [80], a gen-
eral execution strategy is defined for executing discrete event (DE) semantics on distributed
platform, by ensuring each actor processes input events in time-stamp order.

In our work, we focus on code generation for synchronous models. We leverage the work
from [69], which defines an intermediate layer called Finite FIFO Platform (FFP) to facilitate
the distribution of synchronous models on LTTA platforms. The FFP platform makes no
assumptions on clock synchronization. This has the advantage of providing implementations
that are robust to various types of timing uncertainties such as clock drifts and network
delays. Similar techniques are used in the design of digital circuits, in particular, latency-
insensitive or elastic circuits [27, 28]. On the other hand, knowledge about the timing
characteristics of the execution platform may sometimes be available, e.g. bounds on clock
drifts and network delays. Implementation techniques that leverage such type of knowledge
can be found in [63, 29, 17]. There are also studies that target synchronous distributed
execution platforms such as the Time-Triggered Architecture [43]. In that case, one of the
main challenges is to synthesize time-triggered communication schedules so that semantics
is preserved [30]. We further develop an approach to optimize the communication load
while conducting code generation for a particular set of synchronous models – the Triggered
Synchronous Block Diagrams (SBDs). The model of Triggered SBDs is directly inspired by
tools such as Simulink and SCADE. SCADE can be seen as a subclass of Lustre [31]. Since
we only target a restricted class of synchronous models, we avoid many of the difficulties

CHAPTER 1. INTRODUCTION 9

encountered when considering more general models, such as the full Lustre, Signal or Esterel
synchronous languages, for which there exists a wealth of techniques [36, 18, 63, 61, 16].
Furthermore, for this communication optimization work, we assume a one-to-one mapping
between blocks of the synchronous model and processes of the distributed architecture. This
simplifies the problem and allows focusing on semantical preservation. How to allocate
functional blocks to processes is an important and difficult problem in embedded control
systems, that often involves multi-criteria optimization and tradeoffs, e.g. see [68, 59, 58, 75].

Compared to the above related work, this dissertation makes novel contributions in the
following areas.

• We propose a complete software synthesis flow for distributed embedded systems, and
apply it to the building automation and control systems. Starting from a high level
model-based input specification, our flow generates a unified IF representation for facil-
itating the following synthesis steps, conducts design space exploration through map-
ping algorithm, and performs code generation on distributed platforms with semantic
preservation and communication optimization. As far as we know, this is the first
attempt in developing a synthesis flow from model-based specification to embedded
implementation for building control systems.

• We develop an automatic translator from Modelica input model to IF at the front-end
and an automatic translator from IF to EIKON embedded language at the back-end.
Both translators are implemented using the ANTLR framework. The mapping step
and the code generation step are automated by algorithms. Together they demonstrate,
as a proof-of-concept, an automated flow from input to implementation.

• In the mapping step, we extend the traditional concept of mapping a given functional
model to a given architectural platform to include the exploration of the architectural
platform. This in principle provides more optimization opportunities. We also define
a novel metric and algorithm for optimizing the system extensibility in mapping.

• In the code generation step, we extend the previous work on semantic-preserving syn-
thesis for LTTA to include the consideration of physical environment (therefore addi-
tional timing constraints) and the optimization of communication load for Triggered
SBDs.

• We leverage the MetropolisII framework as an executable IF for simulation-based
analysis and validation, in particular we apply it to a heterogeneous input model for
building control systems.

In rest of the dissertation, the three steps in the software synthesis flow will be introduced
in Chapter 2, Chapter 3 and Chapter 4, respectively. Case studies are presented in each of
the chapters, including temperature control systems in building automation and control as
well as automotive safety and control systems . Chapter 5 concludes our current work and
discusses the future directions.

10

Chapter 2

Intermediate Format

In Step 1 of our software synthesis flow, models capturing the specification of the control
algorithms and of the environment are translated into an intermediate format (IF) that
is defined to facilitate the other steps in the synthesis flow, namely mapping and code
generation. Because the type of specifications that we are interested in are in general hybrid
systems [46] with multiple semantics, the IF representation may become very complex [56,
54], and thus not directly usable in the mapping and code generation steps. In the envisioned
final form of our design method, IF will be manipulated and partitioned to make the mapping
and code generation steps effective. In our work that is a first step towards the ideal scenario,
we restrict the IF to dataflow semantics [44] which is amenable to efficient mapping and code
generation. We base our IF definition on the Metropolis Meta Model (MMM) semantics
and retain the nomenclature introduced in [56] as we plan to extend this work to more
general intermediate representations. In particular, processes (also called actors) are the
basic entities for specification. They are categorized into continuous processes and discrete
processes. Each process is defined by a set of parameters, ports and equations. Parameters are
set for configuring the process. Ports constitute the communication interface of the process
and can be either input or output port. Equations capture the behavior of the process in the
form of an input-output function. Multiple processes may be connected through channels to
form a netlist at the higher level and eventually build the entire system. During execution,
the equations in the processes are executed according to an order determined by an equation
manager (EM) that is local to the process. The set of processes in the system is scheduled
by an equation resolve manager (ERM).

2.1 IF Translation and IF library

The translation process may be done manually or through automatic translators. We devel-
oped a translator for Modelica based on the ANTLR framework, a parser generator that uses
LL(*) parsing. We chose ANTLR because it provides comprehensive support and consistent
syntax for specifying lexers, parsers and tree parsers, and supports generating code in com-

CHAPTER 2. INTERMEDIATE FORMAT 11

mon languages such as C, Java, Ada and Objective-C. The translator we developed includes
a lexer and a parser for parsing the Modelica language (currently without full support of
inheritance and algorithm), and a code generator for generating IF. The following sample
code snippet shows part of the ANTLR input for generating the lexer, parser and generator
for the process entity.

class_specifier

: id=IDENT

{

if(classKind.equals("class") || classKind.equals("model")) {

if(ifAtomic) {

/// transform to a process in IF

System.out.println("process " + $id.text + " {");

} else {

/// transform to a netlist in IF

System.out.println("netlist " + $id.text + " {");

}

$class_definition::mdl = new Model();

modelLib.put($id.text, $class_definition::mdl);

$class_definition::connectionlist_lib

= new HashMap<String, Set<ConnectionTriple>>();

$class_definition::connectionlist_lib_keytodelete

= new ArrayList<String>();

}

if(classKind.equals("connector")) {

/// transform to a class in IF

System.out.println("class " + $id.text + " {");

$class_definition::con = new Connector();

$class_definition::con.id = $id.text;

$class_definition::con.hasMember = true;

connectorLib.put($id.text, $class_definition::con);

}

}

composition

’end’

{

if($class_definition::connectionlist_lib_keytodelete != null) {

Iterator<String> itr1

= $class_definition::connectionlist_lib_keytodelete.iterator();

while(itr1.hasNext()) {

String element = itr1.next();

$class_definition::connectionlist_lib.put(element, null);

$class_definition::connectionlist_lib.remove(element);

CHAPTER 2. INTERMEDIATE FORMAT 12

}

}

/// generate equations for flow memebers from the connection lists

if($class_definition::connectionlist_lib!= null) {

System.out.println("equations{ ");

Iterator iter

= $class_definition::connectionlist_lib.keySet().iterator();

while (iter.hasNext()) {

String key = iter.next().toString();

Set<ConnectionTriple> connectionlist

= $class_definition::connectionlist_lib.get(key);

Iterator iter_cl;

if(connectionlist.size() == 1) {

iter_cl = connectionlist.iterator();

if(iter_cl.hasNext()) {

ConnectionTriple ctl = (ConnectionTriple)iter_cl.next();

if(ctl.ifInside == false) {

continue;

}

}

}

iter_cl = connectionlist.iterator();

List<String> flow_member_list = null;

if(iter_cl.hasNext()) {

ConnectionTriple ctl = (ConnectionTriple)iter_cl.next();

flow_member_list = ctl.coj.con.flow_members;

}

if(flow_member_list != null) {

Iterator iter_fml = flow_member_list.iterator();

while(iter_fml.hasNext()) {

String flow_member = (String)iter_fml.next();

iter_cl = connectionlist.iterator();

if(iter_cl.hasNext()) {

ConnectionTriple ctl = (ConnectionTriple)iter_cl.next();

System.out.print(ctl.coj.obj + "." + flow_member);

}

while(iter_cl.hasNext()) {

ConnectionTriple ctl = (ConnectionTriple)iter_cl.next();

System.out.print(" + " + ctl.coj.obj + "." + flow_member);

}

System.out.println(" = 0;");

}

}

CHAPTER 2. INTERMEDIATE FORMAT 13

}

System.out.println("}");

}

System.out.println("}");

System.out.println();

}

IDENT

| IDENT ’=’ base_prefix name (array_subscripts)?

(class_modification)?

{

if(classKind.equals("type")) {

Type t = new Type();

t.prefix = $base_prefix.text;

t.specifier = $name.text;

typeLib.put($IDENT.text, t);

}

if(classKind.equals("connector")) {

System.out.println("class " + $IDENT.text + " extend "

+ $base_prefix.text + " " + $name.text +" { }");

$class_definition::con = new Connector();

$class_definition::con.id = $id.text;

$class_definition::con.hasMember = false;

if($base_prefix.text.equals("flow")) {

$class_definition::con.ifFlow = true;

} else {

$class_definition::con.ifFlow = false;

}

connectorLib.put($id.text, $class_definition::con);

}

}

;

Domain specific libraries can be used to enable fast translations to (and from) IF. As an
example, we define a domain specific IF library for HVAC control systems in buildings, and
we export the library to different specification languages. We reviewed 71 HVAC-related
component models in the GPL language from Johnson Controls [9], 70 in Automated Logic
EIKON language [10], 42 in Honeywell Spyder [11], and 59 in the HVAC library defined by
the Lawrence Berkeley National Laboratory [70]. Based on these information, we defined a
set of basic components used in HVAC control systems and the corresponding processes in
the IF, including:

• Mathematical functions : ADD, SUB, MUL, DIV, ABS, SQRT, MIN, MAX, SUM,
AVG, INTEGRATOR, DERIVATIVE, GAIN.

• Logic functions : INV, AND, OR, XOR.

CHAPTER 2. INTERMEDIATE FORMAT 14

• Signal processing functions : SWITCH, LIMIT, SPAN, COMP, PID.

• Time functions : TIME, DATE, DELAY, TIMER, OCCUPENCYSCHEDULE.

• Psychrometric functions 1: ENRH, WBTRH, DPTRH, ENW, WBTW, DPTW.

As an example, the PID component in our IF library is described as follows:

process PID extends CTProcess{

parameter real kp, ki, kd, kc;

parameter real lb, ub;

parameter real eps;

input port CTInterface real uset, u;

output port CTInterface real out;

equations{

err = uset - u;

sum = kp*err + ki*(intg(err))

+ kc*(out-sum)) + kd*deri(err);

out = (sum>=lb+eps && sum<=ub-eps)*sum

+ (sum<lb+eps)*lb

+ (sum>ub-eps)*ub;

}

}

The PID component uses anti-windup to avoid integrator windup when the actuator
saturates because of its physical limitations (e.g. a control valve cannot go beyond fully
open or fully closed). It contains three equations that are scheduled in the order in which
they appear. The input ports u and uset indicate process variable and the desired setpoint,
and the output port out is the controller output. The tuning parameters kp, ki, kd, kc
indicate the proportional gain, integral gain, derivative gain, and anti-windup compensation
respectively. The parameters lb and ub are the lower and upper bounds of the controller
output.

A component may have slightly different implementations in different languages. For
instance, there are many different algorithms for PID controllers besides the one defined
above. We chose a few common cases in our component definitions as a proof of concept.
Additional components may be added to the library by designers. Also note that the library
contains components at different abstraction levels. A PID controller is at a higher level
of abstraction than the mathematical functions and can be constructed from them. This
enables translations at different abstraction levels and provides a trade-off between accuracy
and complexity, as demonstrated later in the case study.

The above IF representation is denotational. We may further translate it to an exe-
cutable IF for simulation-based model validation and exploration. In particular, we choose

1The psychrometric functions describe the thermodynamic properties of moist air that are important
for the comfort level of human. The IF library includes enthalpy calculators ENRH and ENW, wet-bulb
temperature calculators WBTRH and WBTW, and dew point temperature calculators DPTRH and DPTW.

CHAPTER 2. INTERMEDIATE FORMAT 15

the MetropolisII framework [14] for modeling and simulating the executable IF, because
its semantics also derives from the Metropolis Meta Model (same as the denotational IF)
and it provides strong support on modeling heterogeneous systems. The translation from
denotational IF to MetropolisII model is straightforward because of the similarity of their
semantics. Processes in IF are translated to components in MetropolisII, with equations
translated to constraints. The ERM and EMs in IF are translated to constraint solvers
and schedulers, which govern the resolution and scheduling of constraints in a three-phase
execution semantics.

2.2 Case Study

We conducted a case study on a room temperature control system example to illustrate the
application of our software synthesis flow in building automation and control systems. This
example will be used throughout the dissertation for each of the three steps in the flow. In
this chapter, we will first show how the design input, a heterogeneous functional model of
the temperature control system, is translated into an IF representation.

The functional model captures a two-level control algorithm as shown in Figure 2.1. The
higher level LQR (linear-quadratic regulator) controller determines the set points for lower
level PID controllers. The LQR coordinates among multiple rooms (three rooms in the
example) to optimize the total energy consumption while maintain a certain comfort level.
The PIDs track the set points and interact with the physical environment. The inputs to
the plant model include the air mass flow into each thermal zone, and the outputs are the
temperature of each thermal zone and the temperature of walls. More details on the model
and control can be found in [47]. As a heterogeneous design input, the controller (including
PIDs and LQR) is modeled in Simulink, while the plant is modeled in Modelica.

Figure 2.1: Room temperature control system

2.2.1 Translation to Executable IF and IF Simulation

In the first step of our software synthesis flow, the heterogeneous input model is translated
into a uniformed IF representation, as shown in Figure 2.2. The Simulink controller model

CHAPTER 2. INTERMEDIATE FORMAT 16

is translated into IF manually, with one-to-one correspondence between the components in
Simulink and the processes in the IF representation. The resulted IF includes one LQR
process and three PID processes. The scheduling in Simulink is based on the causality
relation between components, which is translated to the ERM scheduling in the IF. The
Runge-Kutta ODE solver used in Simulink employs a fixed time step and is translated to the
scheduling in ERM and EMs in IF. The Modelica plant model is translated into IF through
the automatic ANTLR-based translator. Basic models (classes) in Modelica are translated
into corresponding processes in IF, with their equations translated to IF equations.

Modelica plant model

Simulink control model

temperatures of
rooms and walls

air flow setting
levels for fans

Denotational IF

Executable IF
…

…

…

PID

PID

PID

LQR

constraint(…)
constraint(…)
constraint(…)

…
 Contsr.

solver

Figure 2.2: IF translation for room temperature control system

In order to validate the accuracy of our IF translation, we further translate the de-
notational IF to an executable model in the MetropolisII framework, and compare the
simulation in MetropolisII versus the simulation of original input model. The translation
from denotational IF to MetropolisII model was explained in Section 2.1.

For the simulation of original heterogeneous input model, first the Modelica plant model
is imported into Simulink through the Dymola-Simulink interface (Dymola [4] is a modeling
and simulation environment for Modelica language). In this case, the entire plant is imported
into Simulink as a DymolaBlock, which wraps an S-function MEX block that contains the
C-code generated by Dymola for the Modelica model. The DymolaBlock may be configured
by setting parameters and start values of the block. Once the DymolaBlock is imported, the
heterogeneous input model can be simulated in Simulink.

The comparison of MetropolisII simulation versus the heterogeneous input model is
shown in Figure 2.3 and Table 2.1. Figure 2.3 shows the temperature of Room 1 from the
simulation of two models over an entire day. The other rooms have similar plots. Table 2.1
summarizes the average and maximum temperature differences for all three rooms. Overall,
the simulation results of two models are close, which shows the accuracy of our IF translation.

CHAPTER 2. INTERMEDIATE FORMAT 17

We believe the remaining differences are mostly caused by the difference in implementing
ODE solvers.

15

16

17

18

19

20

21

0 2 4 6 8 10 12 14 16 18 20 22

Heterogeneous input model IF model

Ro
om

 T
em

pe
ra

tu
re

 (o C
)

Time (hour)

Figure 2.3: Comparison of heterogeneous input model in Simulink/Modelica and IF model
in MetropolisII

Table 2.1: Comparison of all room temperatures

Room1 Room2 Room3

Avg. differences (oC) 0.033 0.034 0.125
Max. differences (oC) 0.56 0.60 1.13

2.2.2 IF Translation at Different Abstraction Levels

As we mentioned earlier in Section 2.1, one important aspect of IF translation is that it can
be conducted at different abstraction levels. In this part of the case study, we demonstrate
this feature by translating the Simulink controller in the input model to an output language
through IF at two different levels of abstraction. We choose the G language from National
Instruments (NI) as the output as NI provides a comprehensive tool chain assocaited with
G in the LabVIEW environment, including both simulation and code generation tools. The
plant model is imported to LabVIEW and is the same for both abstraction levels.

We first translate the Simulink controller through IF to G in LabVIEW at the PID level.
The translation from Simulink to IF is the same as shown earlier in Figure 2.2. The one LQR
and three PID components in the Simulink model are translated one-to-one into processes
in IF. The translation from IF to G in LabVIEW is similarly based on the correspondence

CHAPTER 2. INTERMEDIATE FORMAT 18

at the component level. As mentioned before, the scheduling in Simulink for the dataflow
type semantics is based on the causality relation between components. This is translated to
ERM scheduling in IF, and further translated to the component scheduling in LabVIEW,
which is also based on causality relations. The Runge-Kutta ODE solver used in Simulink is
translated to ERM and EM scheduling in IF, and then translated to the Runge-Kutta solver
available in LabVIEW.

In order to validate the accuracy of our translations, we directly compared the simulation
results of the Simulink model and the LabVIEW model. The plant model is imported to
LabVIEW to provide a fair comparison of the control system part. In Figure 2.4, the room
temperature and the air flow level of Room 1 from the simulations of the two models are
shown. The other rooms have similar plots. The length of the simulation is one day. As
shown in figure, the results from the two models are fairly close to each other.

Ro
om

 T
em

pe
ra

tu
re

 (o C
)

A
ir

Fl
ow

 L
ev

el

Time (hour)

15

16

17

18

19

20

21

0 2 4 6 8 10 12 14 16 18 20 22

Simulink LabVIEW

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10 12 14 16 18 20 22

Figure 2.4: Comparison of Simulink and LabVIEW models at PID level

We observed that the differences between the simulations mainly came from the different
implementations of the PID controllers. The PID component in the IF library faithfully
implements the PID controller in Simulink. However, in the translation from IF to G in
LabVIEW, we could not find a PID controller implementing the same control algorithm.
We had to choose a similar PID in LabVIEW that also uses anti-windup but with different
algorithm flow. Generally speaking, this difference is a result of translating at higher level
of abstraction, where higher level components are viewed as basic units. To reduce the

CHAPTER 2. INTERMEDIATE FORMAT 19

difference, we can break down those components to lower level of abstraction, where more
information about the components is exposed and can be potentially maintained. In this
case, instead of translating at the PID level, we can break down the PID to lower level
components, and translate them from Simulink through IF to G in LabVIEW at this sub-
PID level. We then assemble those lower level LabVIEW components to construct a PID in
LabVIEW. This process is shown in Figure 2.5.

Simulink Model

IF Model

ERM

EM … …

SUB GAIN GAIN

GAIN

INT

DEV

ADD ADD

GAIN SUB

LIMIT

eqn(…)

UNIT
DELAY

PID in Simulink PID in LabVIEW

PID in IF

LabVIEW Model

Figure 2.5: IF translation at sub-PID level

The comparison of the translations at different abstraction levels is shown below. Ta-
ble 2.2 shows the absolute differences of the room temperatures between Simulink and Lab-
VIEW simulations at two different abstraction levels. Table 2.3 shows the relative differences
of the cumulative air flow levels. From these two tables, we can see that the differences are
reduced by 101 to 103 times when using the lower level of abstraction. Of course this is at
the expense of more modeling complexity and translation effort.

CHAPTER 2. INTERMEDIATE FORMAT 20

Table 2.2: Comparison of room temperature at different abstraction levels

Level Room1 Room2 Room3

Avg. PID 0.0538 0.0538 0.0744
differences (oC) sub-PID 0.00202 0.00202 0.00415

Max. PID 0.741 0.741 0.797
differences (oC) sub-PID 0.0555 0.0555 0.0880

Table 2.3: Comparison of cumulative air flow at different abstraction levels

Level Room1 Room2 Room3

Cumulative air flow PID 1.29 1.29 1.55
level differences (%) sub-PID 6.26 ×10−3 6.26 ×10−3 8.15 ×10−4

21

Chapter 3

Mapping

In Step 2 of the software synthesis flow, mapping is conducted to explore the design space,
including the selection of computation resources, the allocation of control functions onto pro-
cessors, and the synthesis of communication network. Note that traditionally, the mapping
step focuses on bridging a given functional model and a given architectural model. In this
work, we extend its scope to include the exploration of the architecture platform (including
selection of the computation and communication resources). We propose a general mapping
flow as shown in Figure 3.1. The inputs include a functional model that is derived from the
IF, an architecture platform that captures the computation and communication resources
for realizing the functional specification, and a set of design constraints and objectives.

3.1 General Mapping Flow

The functional model represented in IF includes processes and channels. Through automatic
extraction based on ANTLR, processes and channels are abstracted to tasks and signals,
by hiding their internal implementation while computing cost and performance metrics of
interest. For example, the equations inside a process are used to estimate the execution time
of its corresponding task on various processors. However the real computation sequence
is abstracted away. The schedulers in the IF model are not explicitly represented in the
mapping, but the causality relations that must be taken into consideration when performing
scheduling are reflected in the connections between tasks through messages.

Formally, the functional model is represented as a directed graph F = (T ,S). T =
{τ1, τ2, ..., τn} is the set of tasks that perform the computations. S = {s1, s2, ..., sm} is the
set of signals that are exchanged between task pairs.

The architecture platform is defined as a library of architectural components A = {Ak =
(Pk,Lk) : Pk ⊆ P , Lk ⊆ L}, where a component Ak is the composition of a set of basic
computation components Pk through a set of basic communication components Lk. The
set P contains all available basic computation components such as sensors, actuators and
processors. Similarly, the set L contains all basic communication components such as wired

CHAPTER 3. MAPPING 22

or wireless communication links, routers and repeaters. Labeling functions are defined to
associate components in P and L with parameters, representing certain characteristics of
the components such as cost, bandwidth and latency. Note that P and L can contain
virtual components, which are place holders that can be refined to real components in later
design stages. The parameters associated with the virtual components represent design
requirements rather than implementation.

The constraints and objective functions of the mapping problem may include the cost of
the electronic system, extensibility, data acquisition frequencies, real-time constraints such as
end-to-end latencies from sensors through controllers to actuators, utilization constraints on
computation and communication resources, and constraints from the physical environment
and resources (for example, in BAC systems, the building floorplan and geometry impose
constraints on the locations of sensors, actuators and processing units, and wire layout).

Conceptually, there are three steps in the general mapping flow. In the first step, a set
of computation components PU is selected from the architecture platform and connected by
virtual communication components LU . This constitutes an architectural model AU onto
which the functional model can be mapped. In the second step, the tasks in the functional
model are allocated to the computation components in the architectural model, and if needed,
the priorities of the tasks are assigned. Besides, the signals between tasks are packed into
messages, and the messages are temporarily allocated to the virtual communication compo-
nents. The output is the mapped model GC = (VC , EC), where VC denotes the computation
components with tasks allocated onto them and EC denotes the message-allocated virtual
communication components. Finally, in the third step, the virtual communication compo-
nents are synthesized to a communication network, in which the communication between
two computation components may flow through multiple links, routers and repeaters, and
each link may be shared across multiple end-to-end communications. The output GI is the
eventual implementation of the functional model on the architecture platform. In this flow,
we optimize the computation first because the complexity of optimizing computation and
communication together is prohibitive for typical industrial size systems, and a fixed set of
computation components greatly reduces the complexity of communication optimization. If
needed, these steps can be iterated to improve the quality of the solution.

The mapping flow above is generic: when given specific design requirements and plat-
forms, each of the three steps in the flow can be formulated accordingly and solved by
customized algorithms. In the following part of this chapter, we present two mapping al-
gorithms: one is to optimize the total cost of a BAC system while satisfying the real-time
constraints and the constraints imposed by building floorplan and geometry; the other is to
optimize the extensibility of a CAN-bus based system while satisfying the hard end-to-end
latency constraints.

CHAPTER 3. MAPPING 23

Task Allocation and Priority Assignment

Communication Network Synthesis

AU = (PU, LU)

Computation Components Selection

Functional Model

F = (T, S)

Architecture Platform

A = { Ak=(Pk, Lk) }

Design Constraints

and Objectives

GC = (VC, EC)

GI = (VI, EI)

Intermediate Format

Automatic Extraction

Figure 3.1: Mapping flow

3.2 Cost Optimization Mapping Algorithm for BAC

Systems

In this section, we target a typical building design case: given the functional model F , the
architecture platform A, and a set of design constraints including building floorplan, can-
didate locations of sensors, actuators, embedded processors and routers, end-to-end latency
deadlines on selected paths, utilization and memory constraints on embedded processors,
we explore the design space that consists of the selection of computation components, al-
location of tasks to embedded processors, assignment of task priorities, and communication
network, to minimize the system cost, which includes the prices of the components and the
installation cost.

CHAPTER 3. MAPPING 24

For this specific problem, we combine the first and second step of the general mapping
flow in Figure 3.1 to explore the selection of computation components together with the
allocation and priority assignment of the tasks. We then perform communication network
synthesis as in the third step of the mapping flow. The details are explained in below.

3.2.1 Computation Components Selection, Task Allocation and
Priority Assignment

The set of candidate computation components is denoted as P = {p1, p2, ..., pn}, which in-
cludes sensors, actuators and embedded processors. In our use case, we assume for each
sensing or actuating task in the functional model, one sensor or actuator is selected man-
ually from the library by the designer, depending on the physical environment and design
requirements. For the selection of processors, there are usually various options on how many
and what type should be used. As an example, for the functional model shown in Figure 2.1,
we can either select a single powerful processor for running all PID and LQR tasks, or select
multiple less powerful but cheaper processors (in the extreme case, one processor can be used
for each PID or LQR block). We denote the set of candidate processors as P ′, a subset of P .
For each processor pi ∈ P ′, Vpi denotes its cost including both price and installation cost,
Rpi denotes its maximum available instruction memory, and Upi denotes its utilization upper
bound, which represents the maximum fraction of time the processor can be busy running
functional tasks.

The set of tasks in F is denoted as T = {τ1, τ2, ..., τm}. Each task τi is periodically
activated with period Tτi . Strictly speaking, since the architecture we consider is loosely
time-triggered, the periodical tasks are following the local clocks that may have drifts and
jitters. To reduce the problem complexity, we assume a fixed period for each task in mapping,
and leave the consideration of clock drifts and jitters to the code generation step, as shown
later in Chapter 4.

Tasks are scheduled with preemption according to their priorities, and a total order exists
among the task priorities on each node. We use oτi,τj to denote the priority relation between
task τi and τj, i.e. oτi,τj is 1 if τj has a higher priority than τi, 0 otherwise. Computational
nodes can be heterogeneous, and tasks can have different execution times on different nodes.
We use Cτi,pj to denote the worst case execution time of task τi on computation component
pj, which can be obtained via either static analysis or dynamic profiling. Mτi,pj denotes the
required instruction memory for τi on pj. We denote the set of tasks that must be mapped
onto processors as T ′, which is a subset of T excluding sensing and actuating tasks (as
explained above, they are one-to-one mapped to manually chosen sensors and actuators).

We use Boolean variable aτi,pj to represent whether task τi is mapped onto computation
component pj (1 if mapped, 0 otherwise). Pτi denotes the set of candidate computation
components that τi can be mapped to. If τi is a sensing or actuating task, value of aτi,pj is
decided by the manual selection and Pτi is set to the chosen sensor or actuator. Boolean
variable hτi,τj denotes whether τi and τj are mapped onto the same computation component.

CHAPTER 3. MAPPING 25

Boolean variable spj denotes whether processor pj ∈ P ′ is selected.
For a signal si, srcsi and {dstsi,j} denote the source task and the set of destination

tasks of signal si, respectively (communication may be of multicast type). The computa-
tional nodes to which the source task srcsi and the destination task dstsi,j are allocated
are called source and destination nodes, respectively. If the source node is the same as
all the destination nodes, the signal is local. Otherwise, it is global and must be packed
into a message transmitted on the network between the source node and all its destination
nodes. In this mapping problem, we assume each signal si is packed into its own message,
denoted by mi (in Section 3.3, we will explore signal packing for CAN-bus based systems).
M = {m1,m2, ...,ml} denotes the set of messages communicated between tasks. Similarly
as for signals, srcmi and dstmi denote the source task and destination task of message mi.
Boolean variable gmi is 1 if mi is a global message, i.e. srcmi and dstmi are mapped to differ-
ent components, otherwise gmi is 0. Variable lmi denotes the worst case transmission delay of
mi, which represents the largest time interval from srcmi sending mi to dstmi receiving mi.
The value of lmi depends on which computation components srcmi and dstmi are mapped
to, and the communication latency between the components. We use Lpi,pj to denote the
communication latency from computation component pi to pj, which can be estimated based
on the given physical locations of sensors, actuators and candidate processors. Note that this
is only a high level estimation of the latency without the details of communication network.
In the case that pi = pj, Lpi,pj represents the local communication latency between two tasks
on the same computation component.

3.2.1.1 End-to-End Latency

A path ρ on the application graph G is an ordered interleaving sequence of tasks and signals,
defined as ρ = [τr1 , sr1 , τr2 , sr2 , ..., srk−1

, τrk]. src(ρ) = τr1 is the path’s source task and
snk(ρ) = τrk is its sink task. Source tasks are activated by external events, while sink tasks
activate actuators. A typical path for BAC systems would start from a sensing task, pass
through tasks running control algorithms, and end at an actuating task. Multiple paths
may exist between each source-sink pair. The worst case end-to-end latency incurred when
traveling a path ρ is denoted as lρ. The path deadline for ρ, denoted by dρ, is an application
requirement that may be imposed on selected paths.

Let rτi denote the worst case response time of a task τi, which is the largest time interval
from the activation of the task to its completion. Let lsi denote the worst case transmission
time of a signal si. In this problem, si is mapped to its own message mi, therefore lsi = lmi ,
and mi ∈ ρ if and only if si ∈ ρ. The worst case end-to-end latency of a path can be
computed as follows.

lρ =
∑
τi∈ρ

rτi +
∑
mi∈ρ

lmi +
∑

mi∈ρ∧mi∈GS

Tdstmi (3.1)

where GS is the set of all global messages. The periods of the destination tasks of global
messages are included in the latency because of the asynchronous nature of the communica-

CHAPTER 3. MAPPING 26

tion. In the worst case, the input global message of a periodical task may arrive immediately
after the task was just activated and has to wait for an activation period of the task before
it can be read. The formula is similar to one in [33, 78], except that here message latencies
are more abstract since we do not have the details of the communication network at this
stage of the design.

3.2.1.2 Task Response Time Analysis

The computation of worst case task response time rτi depends on the scheduling policy of the
processor to which the task is mapped. In our case study, we assume the processors employ
a preemptive scheduling based on pre-assigned priorities. Under this assumption and in the
case of rτi ≤ Tτi , rτi can be computed as follows, based on the analysis from [33, 50].

rτi = Cτi +
∑

τj∈hp(τi)

⌈
rτi
Tτj

⌉
Cτj (3.2)

where hp(τi) refers to the set of higher priority tasks on the same processor.

3.2.1.3 MILP Formulation of the Optimization Problem

A mixed-integer linear programming (MILP) formulation of the optimization problem is in
below, with a summary of symbols in the following table.

aτi,pj binary variable, whether task τi is allocated on component pj
spj binary variable, whether pj is selected

Cτi,pj , Mτi,pj parameters, WCET and memory consumption of τi on pj
Upj , Rpj parameters, utilization and memory uppder bound of pj
hτi,τj binary variable, whether τi and τj are on the same component
gmi binary variable, whether message mi is a global message
lmi real variable, latency of message mi

fτi,pk,τj ,pq auxiliary variable for message latency computation
xτi,τj ,pk , yτi,τj ,pk , zτi,τj ,pk auxiliary variables for task response time

oτi,τj binary variable, whether τi has higher priority than τj

Table 3.1: Summary of symbols in MILP

Allocation constraints:

∀τi ∈ T ,
∑
pj∈Pτi

aτi,pj = 1 (3.3)

∀τi ∈ T , pj /∈ Pτi , aτi,pj = 0 (3.4)

CHAPTER 3. MAPPING 27

Equation (3.3) and (3.4) enforce that each task should be mapped to one computation
component.

Selection constraints:

∀pj ∈ P ′,
∑
τi∈T ′

aτi,pj ≥ spj (3.5)

∀τi ∈ T ′, pj ∈ P ′, aτi,pj ≤ spj (3.6)

Equation (3.5) and (3.6) define the selection of processors.
Resource constraints:

∀pj ∈ P ′,
∑
τi∈T ′

aτi,pj ∗ Cτi,pj/Tτi ≤ Upj (3.7)

∀pj ∈ P ′,
∑
τi∈T ′

aτi,pj ∗Mτi,pj ≤ Rpj (3.8)

Equation (3.7) and (3.8) set utilization and memory constraints on processors. There might
be other types of resource constraints on the processors, for instance, power consumption
or input/output number constraints. With proper abstraction, they can be similarly repre-
sented.

Global message:

∀pk ∈ P , aτi,pk + aτj ,pk − 1 ≤ hτi,τj (3.9)

∀pk, pq ∈ P , 2− aτi,pk − aτj ,pq ≥ hτi,τj (3.10)

∀mi ∈M, 1− hsrcmi ,dstmi = gmi (3.11)

Equations (3.9) to (3.11) define whether a message is a global message.
Message latency: ∑

pk,pq∈P

fsrcmi ,pk,dstmi ,pq ∗ Lpk,pq = lmi (3.12)

aτi,pk + aτj ,pq − 1 ≤ fτi,pk,τj ,pq (3.13)

aτi,pk ≥ fτi,pk,τj ,pq (3.14)

aτj ,pq ≥ fτi,pk,τj ,pq (3.15)

Equations (3.12) to (3.15) compute the message latency.

CHAPTER 3. MAPPING 28

Task response time: ∑
τj∈T

∑
pk∈P

zτi,τj ,pk ∗ Cτj ,pk

+
∑
pj∈P

aτi,pj ∗ Cτi,pj = rτi (3.16)

yτi,τj ,pk −M ∗ (1− oτi,τj) ≤ zτi,τj ,pk ≤ yτi,τj ,pk (3.17)

zτi,τj ,pk ≤M ∗ oτi,τj (3.18)

xτi,τj ,pk −M ∗ (1− aτi,pk) ≤ yτi,τj ,pk ≤ xτi,τj ,pk (3.19)

yτi,τj ,pk ≤M ∗ aτi,pk (3.20)

uτi,τj −M ∗ (1− aτj ,pk) ≤ xτi,τj ,pk ≤ uτi,τj (3.21)

xτi,τj ,pk ≤M ∗ aτj ,pk (3.22)

0 ≤ uτi,τj − rτi/Tτj < 1 (3.23)

rτi ≤ Tτi (3.24)

Equations (3.16) to (3.24) compute the worst case task response time. The typical “big M”
formulation in MILP programming is used to linearize the representation (by introducing a
large constant M , conditional constraints can be linearized, e.g. either (3.17) or (3.18) will
take effect depending on the value of oτi,τj being 1 or 0). uτi,τj is an integer variable. Note
that if τi is a sensing or actuating task, the computation of rτi becomes trivial since there is
only one task on the computation node (sensor or actuator). Similarly, the computation of
gmi and lmi are simple if the source or destination task of mi is either a sensing or actuating
task.

End-to-end latency:

∀ρk, lρk ≤ dρk (3.25)∑
τi∈ρk

rτi +
∑
mi∈ρk

(lmi + gmi ∗ Tdstmi) = lρk (3.26)

Equations (3.25) and (3.26) set up the end-to-end latency constraints on paths.
Priorty constraints:

∀τi, τj ∈ T ′, oτi,τj + oτj ,τi = 1 (3.27)

∀τi, τj, τk ∈ T ′, oτi,τj + oτj ,τk − 1 ≤ oτi,τk (3.28)

Equations (3.27) and (3.28) assure the correct assignment of priorities. We only explore the
priorities for tasks mapped onto processors since sensing and actuating tasks are mapped
one-to-one to sensors or actuators.

Objective function:

min
∑
pj∈P ′

spj ∗ Vpj (3.29)

CHAPTER 3. MAPPING 29

Finally, Equation (3.29) is the objective function. It does not include the costs of sensors,
actuators and communication network. Since we assume sensors and actuators are chosen
manually, their costs are not in the objective function. The communication network will
be optimized later in the mapping flow, and we do not have an accurate way to estimate
its cost at this stage yet. In our future work, we plan to extract high level information
of the communication networks and include an abstract model of their cost in the MILP
formulation.

By solving the MILP above, we select processors, allocation of tasks and priority assign-
ment of tasks. These will be used for constructing a mapped model, which serves as the
input of communication network synthesis.

3.2.2 Communication Network Synthesis

As shown in Figure 3.1, the communication network synthesis step takes a mapped model
GC = (VC , EC) as input, and refines its virtual communication components EC to a specific
network of communication links, routers and repeaters.

We use COSI (Communication Synthesis Infrastructure) [57]1 for our communication
network synthesis. The MILP introduced above provides the inputs to COSI. Specifically,
the selected computation components and allocated tasks define VC in graph GC . Each
computation component is labeled with parameters for representing certain characteristics
such as cost, physical location, etc. The virtual communication components EC on which
the messages are allocated can be deduced from the MILP results. For two computation
components, if there are tasks on them exchanging global messages, a virtual communication
component is needed to connect them, and those global messages are naturally allocated to
this virtual communication component. The traffic load and latency requirement on each
virtual communication component can then be deduced.

3.2.3 Case Study

We applied our mapping formulation and algorithm to the room temperature control example
shown in Figure 2.1. To test the scalability of the algorithm, we extended the number of
rooms from 3 to more than 40, while keeping the same structure. The building floorplan
and physical constraints are from a real office building. The functional model consists of 61
sensing tasks, 1 LQR task, 61 PID tasks and 61 actuating tasks. There are 61 paths from
sensing task to LQR to PID then to actuating task. The total number of messages is 183.
The architecture platform is characterized in Table 3.2, part of which is the same as in [53].
We use ARCNET [2] daisy chain buses as communication library.

The MILP problem is solved using CPLEX 11.0 on a 3.06GHz machine with 3G RAM.
The timeout limit is set to 1000 seconds. After the MILP solving, two Processor1 and
one Processor2 are selected, as shown in Figure 3.2. The LQR task is mapped to the only

1For more details of COSI formulation and algorithms, please refer to [57, 53, 55].

CHAPTER 3. MAPPING 30

Table 3.2: Characterization of a realist architecture library for BAC systems

Component Performance Cost

Sensor Delay: 12.6µs Price: $110
Inst: $50

Actuator Delay: 12.6µs Price: $200
Inst: $50

Processor1 Speed: 16MHz Price: $600
Memory: 512KByte Inst: $300

Processor2 Speed: 40MHz Price: $1400
Memory: 3MByte Inst: $500

Bus(twisted-pair) Delay: 5.5ns/m Price: $0.6/m
Bandwidth: 156Kbps Inst: $7/m

Router Delay: 320ns Price: $500
Inst: $240

Processor2 which is in the middle of the building floor. All sensors are connected to it since
the sensing tasks communicate with LQR task through global messages. The PID tasks are
distributed over the three processors, and are connected to actuating tasks, correspondingly.
Figure 3.3 shows the final result after communication network synthesis.

Figure 3.2: Mapping result after MILP

The cost of the final solution breaks down as follows: $3700 for the processors, $25010
for sensors and actuators, $18076.31 for the communication network including wires and
routers. As a comparison, if we restrict our selection of processors to type Processor2, the
cost of processors in the final solution will increase to $3800 (two Processor2 are selected),
and the cost of the communication network will increase to $20196.22 (the final layout

CHAPTER 3. MAPPING 31

Figure 3.3: Final mapping result

is not shown here due to page limit). In this particular example, different selections of
computation components result in similar cost of processors, however lead to quite different
cost of the communication network. This aspect demonstrates the importance of optimizing
both computation and communication of the system together.

3.3 Extensibility Optimization Mapping Algorithm

for CAN-bus based Systems

We proposed another mapping algorithm that optimizes extensibility of hard real-time dis-
tributed systems. Extensibility is defined as the amount by which the execution time of
tasks can be increased without changing the system configuration while meeting the design
constraints. Optimizing extensibility is particularly important for systems with large pro-
duction quantities and long lifetime, such as automotive systems, avionics systems and BAC
systems. These systems must accommodate function updates or additions for new features
and error fixes over a multi-year product lifetime. Any major change in the software or
hardware architecture that requires the replacement of one or more subsystems means huge
losses because of the large quantities involved and the backlogs in the production of these
units. Being able to upgrade or adjust the software design incrementally, without undergoing
a major re-design cycle is imperative for competitive advantage. Extensibility optimization
addresses this problem by finding the design that is as robust as possible with respect to
modifying the existing tasks. With this definition, a design that is optimized for extensibility
not only allows adding future functionality with minimum changes, but is also more robust
with respect to errors in the estimation of task execution times.

The hard real-time systems we consider collect data from a set of sensors, perform com-
putations in a distributed fashion and based on the results, send commands to a set of

CHAPTER 3. MAPPING 32

actuators. We focus on systems that are based on priority-based scheduling of periodic tasks
and messages. Each input data (generated by a sensor, for instance) is available at one of the
system’s computational nodes. A periodically activated task on this node reads the input
data, computes intermediate results, and writes them to the output buffer from where they
can be read by another task or used for assembling the data content of a message. Messages
- also periodically activated - transmit the data from the output buffer on the current node
over the bus to an input buffer on a remote node. Local clocks on different nodes are not
synchronized. Tasks may have multiple fan-ins and messages can be multi-cast. Eventually,
task outputs are sent to the system’s output devices or actuators.

The architecture platform is given in this case, which consists of a set of ECUs connected
by CAN buses. The design space includes task allocation and priority assignment, signal
packing and message priority assignment. Following the idea of the general mapping flow
discussed in Section 3.1, we designed a two-stage algorithm for the mapping problem. The
first stage of the algorithm is based on mixed integer linear programming (MILP), where
task allocation (the most important variable with respect to extensibility) is optimized within
deadline and utilization constraints. The second stage features three heuristic steps, which
iteratively pack signals to messages, assign priorities to tasks and messages, and explore task
re-allocation. This algorithm runs much faster than randomized optimization approaches (a
20x reduction with respect to simulated annealing as shown in [77]). Hence, it is applicable to
industrial-size systems as shown by the experimental case studies in Section 3.3.3, addressing
the typical case of the deployment of additional functionalities in a commercial car. The
shorter running time of the proposed algorithm allows using the method not only for the
optimization of a given system configuration, but also for architecture exploration, where the
number of system configurations to be evaluated and subject to optimization can be large.

A further advantage of an MILP formulation (even if used only for the first stage) with
respect to randomized optimization, is the possibility of leveraging mature technology in
solvers, the capability of detecting the actual optimum (when found in reasonable time), or,
when the running time is excessive, to compute at any time a lower bound on the cost of
the optimum solution, which allows to evaluate the quality of the best solution obtained up
to that point.

3.3.1 Representation

The problem representation has some similarities with the mapping problem introduced in
Section 3.2, but also has its uniqueness due to the consideration of gateways, signal packing
and most importantly the extensibility metric.

The application is represented as a directed graph G = (T ,S) as discussed in Section 3.1.
The application is mapped onto an architecture that consists of a set of computational nodes,
denoted as E = {e1, e2, ..., ep}, connected through a set of CAN buses B = {b1, b2, ..., bq}.

τi is periodically activated with period tτi , and executed with priority pτi . The periods of
communicating tasks are assumed to be harmonic, which is almost always true in practical
designs. Tasks are scheduled with preemption according to their priorities, and a total order

CHAPTER 3. MAPPING 33

exists among the task priorities on the same node. Tasks can have different execution times
on different nodes. We use cτi,e to denote the execution time of task τi on node e. In the
following, the e subscript is dropped whenever the formula refers to tasks on a given node,
and e is implicitly defined, or when the task allocation is (at least temporarily) defined, and
the node to which the computation time (or its extensibility ∆c) refers, is known. Finally,
rτi denotes the worst case response time.

A global signal si, whose source node is different than the destination node, must be
packed into a message transmitted on the buses between the source node and all its destina-
tion nodes. Only signals with the same period, same source node and same communication
bus can be packed into the same message. For message mi, tmi denotes its period, pmi denotes
its priority, and cmi denotes its worst case transmission time on a bus with unit speed. The
worst transmission time on bus bj is cmi/speedbj , where speedbj is the transmission speed of
bj. rmi is the worst case response time on a bus with unit speed.

In addition, in complex systems the source and destination tasks may not reside on
computation nodes that share the same bus. In this case, a signal exchanged among them
will have to go through a gateway node and be forwarded by a gateway task. We include
the gateway concept in our model with a number of restrictive (but hopefully realistic)
assumptions.

• any communication between two computation nodes is never going to need more than
one gateway hop (every bus is connected to all the others through one gateway compu-
tation node). This assumption, realistic for small systems, could probably be removed
at the price of additional complexity.

• a single gateway node connects any two buses.

• a single task is responsible for signal forwarding on each gateway node. This task is
fully determined (there might be other tasks running on the gateway node.)

A path p on the application graph G is an ordered interleaving sequence of tasks and
signals, defined as p = [τr1 , sr1 , τr2 , sr2 , ..., srk−1

, τrk], where src(p) = τr1 is the path’s source
and snk(p) = τrk is its sink. Multiple paths may exist between each source-sink pair. The
worst case end-to-end latency of path p is denoted as lp, and the path deadline of p is denoted
by dp.

It may be argued that today, it is industrial practice (at least in the automotive domain)
to allocate resources between suppliers before implementation parameters (such as worst-
case execution times) are known. This is however only partly true. A major architecture
and functional redesign is often characterized by a significant reuse (or carry-over) of pre-
existing functionality (60% to 70% are typical figures), for which these estimates could be
available. In addition, rapid prototyping techniques and the increased use of automatic code
generation tools should ease the availability of these implementation related parameters (or
at least estimates) even for newly-designed functions.

CHAPTER 3. MAPPING 34

3.3.1.1 Design Space and Extensibility Metric

The design problem can be defined as follows. Given a set of design constraints including:
• end-to-end deadlines on selected paths
• utilization bounds on nodes and buses
• maximum message sizes

explore the design space that includes:
• allocation of tasks to computational nodes
• packing of signals and allocation of messages to buses
• assignment of priorities to tasks and messages

to maximize task extensibility.
Different definitions can be provided for task extensibility. The main definition used in

this work is as the weighted sum of each task’s execution time slack over its period:

max. S =
∑
τi∈T

wτi
∆cτi
tτi

(3.30)

where a task’s execution time slack ∆cτi is defined as the maximum possible increase of its
execution time cτi without violating the design constraints, assuming the execution times of
other tasks are not changed.

wτi is a preassigned weight that indicates how likely and how much the task’s execution
time will be increased in future functionality extensions. In practice, however, because of
functional dependencies, execution time increases in tasks belonging to a set might need
to be considered jointly. This can be done in several ways. One possible way is in the
assignment of the wτi weights as follows.

1. Identify a set of update scenarios u1, u2, ...un. Each scenario uk includes a group of
tasks Tk to be extended, and is assigned a likelihood probability pk.

2. For each update scenario uk and τi ∈ Tk, assign a weight wik to represent how much
the task’s execution time will be increased in this scenario.

3. The final weight wτi of a task is computed as wτi =
∑

k:τi∈Tk pk ∗ wik .

A more explicit way is to identify groups of tasks that are functionally related so that their
execution times increases are related (in a way expressed by a simple linear formulation).

We identify a set of task groups TG = {Tg1 , Tg2 , ...Tgn} (each gi ∈ G representing an
update scenario). Execution times of tasks belonging to the same group are bound to
increase together in each update scenario. For each task τj ∈ Tgi , we model the possible
additional execution time as

∆cτj ,gi = Aτj ,gi ∗∆cgi (3.31)

CHAPTER 3. MAPPING 35

where Aτj ,gi is a constant. Equation (3.31) represents a simple extensibility dependency
among tasks belonging to a functional group (more complex relationships can be represented
at the price of higher complexity.)

Based on Equation (3.31), we define this alternative extensibility metric as follows.

max. S =
∑
gi∈G

wgi ∗∆cgi (3.32)

Finally, another formulation is to use execution time slack over original execution time,
i.e. ∆cτi/cτi , instead of using execution time slack over period in Equation (3.30).

The metric function (3.30) is used in the following discussion of the optimization algo-
rithm. The required changes for the adoption of the metric in (3.32) are discussed further
in Section 3.3.2.6. The comparison of the metric function (3.30) with the metric that uses
slack times relative to the original execution time can be found in [77].

3.3.1.2 End-to-End Latency

After tasks are allocated, some signals are local, and their transmission time is assumed to
be zero. Others are global, and need to be transmitted on the buses through messages. The
time needed to transmit a global signal is equal to the transmission time of the corresponding
message. Let rsi denote the worst case response time of a global signal si, and assume its
corresponding message is mj, then rsi = rmj .

The worst case end-to-end latency can be computed for each path by adding the worst
case response times of all the tasks and global signals on the path, as well as the periods of
all the global signals and their destination tasks on the path.

lp =
∑
τi∈p

rτi +
∑

si∈p∧si∈GS

(rsi + tsi + tdstsi) (3.33)

where GS is the set of all global signals. Of course, in the case that gateways are used across
buses, the signals to and from possible gateway tasks, as well as the response time of the
gateway task itself and the associated sampling delays must be included in the analysis.

We need to include periods of global signals and their destination tasks because of the
asynchronous sampling of communication data. In the worst case, the input global signal
arrives immediately after the completion of the first instance of task τi. The event data will
be read by the task on its next instance and the result will be produced after its worst case
response time, that is, tτi + rτi time units after the arrival of the input signal. The same
reasoning applies to the execution of all tasks that are the destinations of global signals,
and applies to global signals themselves. However, for local signals, the destination task can
be activated with a phase (offset) equal to the worst-case response time of the source task,
under our assumption that their periods are harmonic. In this case, we only need to add the

CHAPTER 3. MAPPING 36

response time of the destination task. When a task has more than one local predecessor on
a time-critical path, its activation phase (offset) will have to be set to the largest among the
completion times of its predecessors. This case could be dealt with in the previous Equation
(3.33) and in the following formulations, by replacing the response time contribution of local
sender tasks with the maximum among the response times of all the senders for a given task
in the path. Similarly, it is sometimes possible to synchronize the queuing of a message for
transmission with the execution of the source tasks of the signals present in that message.
This would reduce the worst case sampling period for the message transmission and decrease
the latency in Equation (3.33). In this work, we do not consider these possible optimizations
and leave them to future extensions.

Task Response Times
The analysis and calculation of task response times is the same as in the previous mapping

problem for BAC systems (Equation (3.2)).

rτi = Cτi +
∑

τj∈hp(τi)

⌈
rτi
Tτj

⌉
Cτj (3.34)

Message Response Times
Worst case message response times are calculated similarly to task response times. The

main difference is that message transmissions on the CAN bus are not preemptable. There-
fore, a message mi may have to wait for a blocking time Bmax, which is the longest transmis-
sion time of any frame in the system. Likewise, the message itself is not subject to preemption
from higher priority messages during its own transmission time cmi . The response time can
therefore be calculated with the following recurrence relation, in the case of rmi ≤ tmi :

rmi = cmi +Bmax +
∑

mj∈hp(mi)

⌈
rmi − cmi

tmj

⌉
cmj (3.35)

3.3.1.3 Formulation

Based on the formulas for computing end-to-end latencies and response times, we construct
a mathematical formulation that contains all the design variables. Part of the formulation is
similar to the one in [76]: both explore the same set of design variables - task allocation, signal
packing and message allocation, as well as task and message priorities. In [76], the problem
was formulated as mixed integer linear programming (MILP). To reduce the complexity, the
problem was divided into sub-problems and solved by a two-step approach.

However, in [76], the objective is to minimize end-to-end latencies, while in this work,
we optimize task extensibility. The formulation of task extensibility with respect to end-
to-end deadline constraints is a quite challenging task. In general, inverting the function

CHAPTER 3. MAPPING 37

that computes response times as a function of the task execution times is of exponential
complexity in the simple case of single-CPU scheduling [22]. When dealing with end-to-end
constraints, the problem is definitely more complex. A possible approach consists of a very
simple (but possibly time-expensive) bisection algorithm that finds the sensitivity of end-
to-end response times with respect to increases in task execution times (this is the solution
used for performing sensitivity analysis in [62]).

Formally, if ∆rij denotes the increase of task τj’s response time rτj when task τi’s com-
putation time cτi is increased by ∆cτi , the end-to-end latency constraints and utilization
constraints are expressed as follows:∑

τj∈p∧τj∈(lp(τi)∪{τi})

∆rij ≤ dp − lp ∀p, ∀τi ∈ T (3.36)

∆cτi
tτi

+
∑

τj∈T (e)

(
cτj
tτj

) ≤ ue ∀e, ∀τi ∈ T (e) (3.37)

where lp(τi) refers to the set of tasks with priority lower than pτi and executed on the same
node as τi, T (e) denotes the set of the tasks on computational node e, and ue denotes the
maximum utilization allowed on e.

The relation between ∆rij and ∆cτi can be derived from Equation (3.2), as follows.

∆rij =
∑

τk∈hp(τj)

(

⌈
rτj + ∆rij

tτk

⌉
−
⌈
rτj
tτk

⌉
)cτk

+

⌈
rτj + ∆rij

tτi

⌉
∆cτi ∀τj ∈ lp(τi) (3.38)

∆rii = ∆cτi +
∑

τk∈hp(τi)

(

⌈
rτi + ∆rii

tτk

⌉
−
⌈
rτi
tτk

⌉
)cτk (3.39)

For brevity, above formulas do not model task allocation and priority assignment as
variables. In the complete formulation, they were expanded to include those variables.

Contrary to the problem in [76], in our case the formulation cannot be linearized because
of the second term in Equation (3.38). It could be solved by nonlinear solvers but the
complexity is in general too high for industrial size applications. Therefore, we propose an
algorithm that defines two stages to decompose the complexity: one in which mathematical
programming (MILP) is used, and one refinement stage that consists of several steps based
on heuristics.

3.3.2 Optimization Algorithm

The flow of our algorithm is shown in Figure 3.4. First, we decide the allocation of tasks,
since the choices of other design variables are restricted by task allocation. In the initial
allocation stage, the problem is formulated as MILP and solved by an MILP solver. Then

CHAPTER 3. MAPPING 38

Initial Task Allocation
(MILP in Section 3.3.2.1)

Signal Packing and
Message Allocation

(Section 3.3.2.2)

Task and Message
Priority Assignment

(Section 3.3.2.3)

Task Re-allocation
(Algorithm 2 in
 Section 3.3.2.4)

Reach Stop
Condition?

Yes

End

No

Figure 3.4: Algorithm flow for task extensibility optimization

a series of heuristics is used in the refinement stage: in the signal packing and message
allocation step, a heuristic is used to decide signal-to-message packing and message-to-bus
allocation. In the task and message priority assignment step, an iterative method is designed
to assign the priorities of tasks and messages. After these steps are completed, if the design
constraints cannot be satisfied or if we want to further improve extensibility, the tasks can be
re-allocated and the process repeated. Because of the complexity of the MILP formulation,
we designed a heuristic for task re-allocation, based on the extensibility and end-to-end
latency values obtained in the previous steps.

3.3.2.1 Initial Task Allocation

In the initial task allocation stage, tasks are mapped onto nodes while meeting the utilization
and end-to-end latency constraints. Utilization constraints are considered in place of the true
extensibility metric to allow a linear formulation. In this stage, we also allocate signals to
messages and buses assuming each message contains one signal only. The initial tasks and

CHAPTER 3. MAPPING 39

message priority assignment is assumed as given. In case the procedure is used to optimize
an existing configuration, priorities are already defined. In case of new designs, any suitable
policy, such as Rate Monotonic, can be used.

The MILP problem formulation includes the following variables and constraints:

Allocation constraints ∑
e∈E(τi)

aτi,e = 1 (3.40)

aτi,e + aτj ,e − 1 ≤ hτi,τj ,e (3.41)

hτi,τj ,e ≤ aτi,e (3.42)

hτi,τj ,e ≤ aτj ,e (3.43)

∀br ∈ B(em), em 6= ep aτsi ,em + aτj ,ep − 1 ≤ asi,j,0,br (3.44)

∀B(em) ∩B(ep) = ∅ aτsi ,em + aτj ,ep − 1 ≤ asi,j,k,br (3.45)

∀br gsi,j,0 ≥ asi,j,0,br (3.46)

gsi,j,0 ≤
∑
br

asi,j,0,br (3.47)

∀br gsi,j,k ≥ asi,j,k,br (3.48)

gsi,j,k ≤
∑
br

asi,j,k,br (3.49)

∀si,j,k gsi,j,k ≤ gsi,j,0 (3.50)

∀τj, k asi,j,k,br ≤ asi,br (3.51)

∀τj asi,j,0,br ≤ asi,br (3.52)

asi,br ≤
∑
j,k∪0

asi,j,k,br (3.53)

asi,j,0,br + asm,br − 1 ≤ hsi,j,0,sm,br (3.54)

hsi,j,0,sm,br ≤ asi,j,0,br (3.55)

hsi,j,0,sm,br ≤ asm,br (3.56)

asi,j,k,br + asm,br − 1 ≤ hsi,j,k,sm,br (3.57)

hsi,j,k,sm,br ≤ asi,j,k,br (3.58)

hsi,j,k,sm,br ≤ asm,br (3.59)

Gatewaying of signals requires additional definitions and a modification of the signal set
to accommodate replicated signals that are sent by the gateway tasks. Gateway tasks are
preallocated, with known period and priority subject to optimization.

For each signal si in the task communication model we use si,j,0 to represent the signal
originating from the source task and directed to the destination τj or (if needed) to the

CHAPTER 3. MAPPING 40

i

i,n,k
s i,m,k

s i,j,k

s i,j,0 s i,n,0s i,m,0
! si

!

! n!

!

s

m j

b b

b 1

2 3

k!

e 1 e 2 e 3

e 4 e 5 e 6 e 7 e 8

e
9 e 10

! l

! ! !m

! kl!

j n

s

Figure 3.5: Signal forwarding by the gateways

gateway task with final destination τj. In addition, for each possible gateway τk, there is an
additional possible signal, labeled si,j,k representing the signal from the gateway task τk to
the destination τj (allocated on a computation node that can be reached with gateway τk,
Figure 3.5).

In case the source task and the destination task τj are on the same node, the signal
si,j,0 and all the si,j,k may be disregarded since they do not contribute to the latency and
they will not need a message to be transmitted. In case the source and destination task are
connected by a single bus, si,j,0 represents the signal between them and all the si,j,k should
be disregarded (accomplished by treating them as local signals).

For each si there is one set si,j,0 with as many signals as the number of receivers and one
set si,j,k with cardinality equal to the product of the number of possible gateways by the
number of receivers. All gateway signals have the same period and data length of the signals
from which they originate.

E(τi) is the set of nodes that τi can be allocated to. B(e) represents the set of buses to
which e is connected.

The Boolean variable aτi,e indicates whether task τi is mapped onto node e, and hτi,τj ,e
defines whether τi and τj are on the same node e. Constraint (3.40) ensures that each task
is mapped to one node and only one, and the set of constraints (3.41, 3.42 , 3.43) ensures
the consistency of the definitions of the h and a variables.

The Boolean variable asi,j,k,br is 1 if signal si,j,k is mapped onto bus br and 0 otherwise,
similarly for the definition of asi,j,0,br . To define these set of variables, we need to consider
all computation node pairs for each signal from its source to all its destinations τj. In the
following, for simplicity, we will label as τsi the source task for signal si. The set of constraints
defined by (3.44) for all possible sets (source τsi , destination τj, source node em that is on
bus br, destination node ep that communicates with em through br) forces asi,j,0,br to 1 for the
bus br from em to ep, or from em to the destination of the gateway task τk between em and

CHAPTER 3. MAPPING 41

ep. The following set (3.45) sets asi,j,k,br to 1 (if necessary) for the bus br from the gateway
to the destination node ep when gatewaying is needed (in this set of constraints, ep is on
br while em is not). The variables asi,j,k,br have a positive contribution to the cost function,
hence they will be set to 0 by the optimization engine, unless forced at 1 by the constraints.

To give an example of these constraints, in Figure 3.5 the condition for the outgoing
signal si,j,0 from τsi to τj to be on bus b1, expressed as

aτsi ,em + aτj ,ep − 1 ≤ asi,j,0,b1

needs to be defined for each computation node pair (m, p) where m ∈ {1, 2, 3} and p 6= m,
or m ∈ {9} and p ∈ {1, 2, 3, 10}, or m ∈ {10} and p ∈ {1, 2, 3, 9}. Similar sets of conditions
will then need to be defined for b2 and b3.

As an example of gatewaying, the condition for the mapping on b2 of the (possible) signal
forwarded by gateway τk as part of the communication from τsi to τj in the figure is expressed
by the set.

aτsi ,em + aτj ,ep − 1 ≤ asi,j,m,b2

defined for all the computation node pairs (m, p) where m ∈ {1, 2, 3, 10} and p ∈ {4, 5}.
The value of the Boolean variable gsi,j,0 is 1 if si,j,0 is a global signal (i.e., being transferred

on bus), and 0 otherwise. Similarly, gsi,j,k is 1 if the signal si,j,k (si forwarded by gateway
τk) is global. The definition of gsi,j,0 and gsi,j,k is provided by constraints (3.46-3.47) and
(3.48-3.49), respectively. Finally, gsi,j,0 must be 1 if at least one gsi,j,k is 1, as in constraint
(3.50).

The Boolean variable asi,br is 1 if signal si needs to be transmitted on bus br (needs a
message on br) and 0 otherwise. constraints (3.51-3.53) encode these conditions.

The Boolean variables hsi,j,0,sm,br and hsi,j,k,sm,brdefine whether si,j,0 and si,j,k share the
same bus br with sm, respectively. Constraints (3.54-3.59) enforce consistency in the defini-
tion of the hsi,j,0,sm,br and hsi,j,k,sm,br with respect to the signal-to-bus allocation variables.

Utilization constraints

zτi,e +
∑
τj∈T

aτj ,e ∗ cτj ,e/tτj ≤ ue (3.60)

∆cτi/tτi −M ∗ (1− aτi,e) ≤ zτi,e (3.61)

zτi,e ≤ ∆cτi/tτi (3.62)

zτi,e ≤M ∗ aτi,e (3.63)∑
si∈S

asi,b ∗ csi/tsi/speedb ≤ ub (3.64)

The above constraints enforce the utilization bounds on all nodes and buses considering
the load of the current tasks (summation on the left-hand side of Equation (3.60) and the

CHAPTER 3. MAPPING 42

additional load caused by extensions of the execution times (zτi,e, on the left-hand side of
the equation). ue and ub are the utilization bounds on computational node e and bus b,
respectively. The additional load caused by the extension ∆cτi must be considered only if
the task is allocated to the node for which the bound is computed. This is represented
by using an additional variable zτi,e, and the typical “big M” formulation in use in MILP
programming for conditional constraints, where M is a large constant.

In our formulation, tasks can have different execution times depending on their allocation,
and cτi,e denotes the worst-case execution time of task τi on node e. Also, buses can have
different speeds. csi denotes the transmission time of the message that carries signal si on
a bus with unit speed. At this stage, we assume each message will only contain one signal.
The transmission time of that message on a bus with speed speedb is csi/speedb.

End-to-end latency constraints

lp ≤ dp (3.65)∑
τi∈p

rτi +
∑
si∈p

(rsi,j,0 + tsi ∗ gsi,j,0 + tτj ∗ gsi,j,0

+
∑
k

(rsi,j,k + tτk ∗ gsi,j,k + cτk ∗ gsi,j,k

+tsi ∗ gsi,j,k)) = lp (3.66)∑
e∈E

aτi,e ∗ cτi,e +
∑
τj∈T

∑
e∈E

cτj ,e ∗ pτi,τj ∗ yτi,τj ,e = rτi (3.67)

xτi,τj −M ∗ (1− hτi,τj ,e) ≤ yτi,τj ,e (3.68)

yτi,τj ,e ≤ xτi,τj (3.69)

yτi,τj ,e ≤M ∗ hτi,τj ,e (3.70)

0 ≤ xτi,τj − rτi/tτj < 1 (3.71)

rτi ≤ tτi (3.72)∑
b∈B

(csi +Bmax) ∗ asi,j,0,b/speedb

+
∑
sl∈S

∑
b∈B

csl ∗ psi,sl ∗ ysi,j,0,sl,b/speedb = rsi,j,0 (3.73)

xsi,j,0,sl −M ∗ (1− hsi,j,0,sl,b) ≤ ysi,j,0,sl,b (3.74)

ysi,j,0,sl,b ≤ xsi,j,0,sl (3.75)

ysi,j,0,sl,b ≤M ∗ hsi,j,0,sl,b (3.76)

0 ≤ xsi,j,0,sl − (rsi,j,0

−
∑
b∈B

csi ∗ asi,j,0,b/speedb)/tsl < 1 (3.77)

rsi,j,0 ≤ tsi (3.78)

CHAPTER 3. MAPPING 43

∑
b∈B

(csi +Bmax) ∗ asi,j,k,b/speedb

+
∑
sl∈S

∑
b∈B

csl ∗ psi,sl ∗ ysi,j,k,sl,b/speedb = rsi,j,k (3.79)

xsi,j,k,sl −M ∗ (1− hsi,j,k,sl,b) ≤ ysi,j,k,sl,b (3.80)

ysi,j,k,sl,b ≤ xsi,j,k,sl (3.81)

ysi,j,k,sl,b ≤M ∗ hsi,j,k,sl,b (3.82)

0 ≤ xsi,j,k,sl − (rsi,j,k

−
∑
b∈B

csi ∗ asi,j,k,b/speedb)/tsl < 1 (3.83)

rsi,j,k ≤ tsi (3.84)

Latency constraints are derived from Equations (3.33), (3.2) and (3.35). Equation (3.33)
shows the calculation of end-to-end latency for path p. For each signal si on path p, we know
its destination task and denote it as τj. If two tasks are on computation nodes connected
to different buses, they will communicate through a gateway task and the corresponding
additional latencies need to be considered. The calculation of end-to-end latency is shown
in constraint (3.66). We assume the response time for gateway task τk is cτk (i.e. a gateway
task has the highest priority on its node).

rτi is the response time of task τi, defined by constraints (3.67-3.72), xτi,τj represents the
number of possible interference from τj to τi and pτi,τj is a parameter that denotes whether
task τj has higher priority than task τj. A large constant M is used to linearize the relation
yτi,τj ,e = xτi,τj ∗ hτi,τj ,e, which defines the number y of actual interferences by higher priority
tasks, similarly as in the utilization constraints. Constraint (3.72) is used to enforce the
task’s response time is no larger than its period, which is the assumption for our response
time calculation in Equation (3.2).

rsi,j,0 and rsi,j,k represent the response times of the messages that carry signals si,j,0 and
si,j,k, respectively. Their definitions are in constraints (3.73-3.84). If signals are local, the
corresponding response times will be 0. psi,sj , ysi,j,0,sj ,b and ysi,j,k,sj ,b are similarly defined as
in the definition of task response time. Constraints (3.78) and (3.84) enforce the assumption
that message response times should not exceed their periods.

Objective function

max.
∑
τi∈T

wτi ∗∆cτi/tτi (3.85)

We recall here the objective function in (3.30), which represents the task extensibility.
An alternative objective function can also include the optimization of latency, as shown in
(3.86). K is the parameter used to explore the trade-off between task extensibility and
latencies. The special case K = 0 is the original objective function (3.85).

CHAPTER 3. MAPPING 44

max.
∑
τi∈T

wτi ∗∆cτi/tτi −K ∗
∑
p∈P

lp/dp (3.86)

In Section 3.3.3, we will report the experimental results with various values of K, to show
the relationship between task extensibility and path latencies.

An alternative to the MILP optimization for initial task allocation is to use heuristics.
We designed a greedy heuristic algorithm as shown in [77] and compared it with the MILP
optimization. Although the heuristic algorithm is more efficient, the results are much worse.
Of course, in principle it is possible to design a better heuristic, but this task is expected to be
quite difficult considering the need to balance trade-offs between feasibility and extensibility
and the need to cope with gatewaying (for which the MILP formulation provides intuitive
solutions). For more details, please refer to [77].

3.3.2.2 Signal Packing and Message Allocation

After the allocation of tasks is chosen, we use a simple heuristic to determine the signal
packing and message allocation. The steps are shown below.

1. Group the signals with the same source node and period as packing candidates.

2. Within each group, order the signals based on their priorities, then pack them ac-
cording to the message size constraints (priorities are assumed given from an existing
configuration or some suitable policy, as in the initial task allocation). The priority of
a message is set to the highest priority of the signals that are mapped into it.

3. Assign a weight wmi to each message mi based on its priority, transmission time and
period. In our algorithm, we set wmi = k1/pmi + k2 ∗ cmi/tmi , where pmi , cmi and
tmi are priority, transmission time on bus with unit speed and period of the message.
k1 and k2 are constants, whose values are tuned in case studies (both set to 1 in our
experiments). When multiple buses are available between the source and destination
nodes, we allocate messages to buses according to their weights. Messages with larger
weights are assigned first to faster buses.

Other more sophisticated heuristics or mathematical programming solutions have been
considered. For instance, signal packing can be formulated as MILP as in [76]. However,
from preliminary experiments, there is no significant improvement that can outweigh the
speed of this simple strategy.

3.3.2.3 Priority Assignment

In this step, we assign priorities to tasks and messages, given the task allocation, signal
packing and message allocation obtained from previous steps.

CHAPTER 3. MAPPING 45

This priority assignment problem is proven to be NP-complete [25]. Finding an optimal
solution is generally not feasible for industrial-sized problems. Therefore, we propose an
iterative heuristic to solve the problem.

The flow of this heuristic is shown in Figure 3.6. The basic idea is to define the local
deadlines of tasks and messages over iteration steps, then assign priorities based on the
deadlines. Intuitively, shorter deadlines require higher priorities and longer local deadlines
can afford lower priorities.

Initialize Local Deadlines

Reach Stop Condition?

Finish Priority Assignment

Assign Priorities
(deadline-monotonic)

Update Local Deadlines

Yes

No

Calculate criticality of
every task and message

Update local deadline of every task
and message based on its criticality

Update Local Deadlines
(Algorithm 1)

Figure 3.6: Iterative priority assignment algorithm

Initially, the deadlines of tasks and messages are the same as their periods. Then, dead-
lines are modified, and priorities are assigned using the deadline-monotonic (DM) approach
[12]. Of course, there is no guarantee that the DM policy is optimal in this case as for any
system with non-preemptable resources (the CAN bus), but there is no optimal counterpart
that can be used here, and DM is a sensible choice in the context of our heuristics.

During the iterations, deadlines are changed based on task and message criticality, as
shown in Algorithm 1 and explained below.

The criticality of a task or message, reflects how much the response times along the paths
to which it belongs are affected by extensions in the execution times of other tasks. Tasks
and messages with higher criticality are assigned higher priorities. To define the criticality
ε of a task or a message, we increase the execution time of each task τi, by UB(∆cτi), the
maximum amount allowed by utilization constraints and an upper bound of task execution
time slack, as shown in line 3 and 4 in Algorithm 1. Then, the response time of τi and of

CHAPTER 3. MAPPING 46

Algorithm 1 Update Local Deadline (K1)
1: Initialize the criticality ε of every task and message to 0
2: for all task τi do
3: UB(∆cτi) = tτi ∗ (ue −

∑
τj∈T (e) cτj/tτj)

4: cτi = cτi + UB(∆cτi)
5: for all task τj ∈ (lp(τi) ∪ {τi}) do
6: update rτj
7: for all path p whose latency is changed do
8: if lp > dp then
9: for all tasks and messages oj on p do

10: εoj = εoj + wτi ∗ (lp − dp)/toj
11: reset all cτi , rτi , lp to the values before the iteration
12: for all task τi do
13: εNτi = ετi/maxτi∈T {ετi}
14: dτi = dτi ∗ (1−K1 ∗ εNτi)
15: for all message mi do
16: εNmi = εmi/maxmi∈M{εmi}
17: dmi = dmi ∗ (1−K1 ∗ εNmi)

lower priority tasks on the same node as τi is recomputed (line 5 and 6). The criticality of the
affected task τj or message mj (both generically denoted as object oj) is defined by adding
up a term wτi ∗ (lp − dp)/toj for each path p whose end-to-end latency exceeds the deadline
after the increase UB(∆cτi), where wτi is the weight of τi (line 7 to 10). After repeating this
operation for every task, the criticality of all tasks and messages is computed, denoted by
εoj . Criticality values are normalized, obtaining a value εN for each task and message and
finally, local deadlines are computed as d = d ∗ (1−K1 ∗ εN) (line 11 to 16). The procedure
is shown in Algorithm 1. The parameter K1 is initially set to 1, then adjusted in the later
iteration steps using a strategy that takes into account the number of iteration steps, the
number of times the current best solution is found, and the number of times the priority
assignment remains unchanged.

As shown in Figure 3.6, after local deadlines are updated, the stop condition for priority
assignment is checked. If the number of iterations reaches its limit, or the upper bound of
task extensibility is reached, the priority assignment will finish, otherwise we keep iterating.

The strategy of changing priorities based on local deadlines can also be found in [35].
Different from our algorithm, the goal is only to meet end-to-end latency constraints, there-
fore deadlines are updated based on the slack time of tasks or messages which indicate how
much the local deadlines can be increased without violating latency constraints.

3.3.2.4 Task Re-allocation

As shown in Figure 3.4, after all the design variables are decided, we calculate the value of the
objective function in Formula 3.30, and check the stop condition for our entire algorithm. If

CHAPTER 3. MAPPING 47

the results are not good enough and the iteration limit has not been exceeded, we re-allocate
the tasks and repeat the signal packing, message allocation and priority assignment.

We could use the same MILP based method for re-allocating tasks, with additional
constraints to exclude the allocations that have been considered. However, solving the MILP
is time consuming. To speed up the algorithm, we designed a local optimization heuristic
that leverages the results of previous iterations for the task re-allocation step in Figure 3.4.
The details of this heuristic are shown in Algorithm 2.

Algorithm 2 Task Re-allocation (K2)

Let Φ(M) =
∑

τi∈T wτi ∗UB(∆cτi)/tτi −K2 ∗
∑

p∈P lp/dp for a mapping M

1: if current solution does not satisfy latency constraints then
2: K2+ = KC

3: ∆best = MIN
4: for all task τi and node e that τi is not on e do
5: ∆τi,e = Φ(M ′) − Φ(M) {where M is the original mapping, M ′ is the new mapping after

moving τi to e}
6: if ∆τi,e > ∆best then
7: best move = τi moves to e
8: ∆best = ∆τi,e

9: for all task τi, τj that are not on the same node do
10: ∆τi,τj = Φ(M ′)− Φ(M) {M , M ′ similarly defined as above}
11: if ∆τi,τj > ∆best then
12: best move = switch τi and τj
13: ∆best = ∆τi,τj

14: Execute best move

Two operators are considered for generating new configurations: moving one task to a
different node, or switching two tasks on different nodes. For each possible application of
the operators on each task or task pair, that satisfies the utilization constraints, we compute
the corresponding change of the performance function Φ of Equation (3.86), which includes
the consideration of task extensibility and end-to-end latencies. In the case of multiple
buses, the changes might lead to signal forwarding through gateway tasks, and this is taken
into account in the calculation. Finally the change that provides the largest increase of the
performance function is selected.

Parameter K2 in cost function Φ provides the trade-off between task extensibility and
end-to-end latencies. Initially, it is set to the same value as parameter K in Equation (3.86),
which is used in the initial task allocation. If the current solution does not satisfy the end-to-
end deadlines, we increase K2 by a constant KC to emphasize the optimization of latencies
(KC was tuned to 0.05 in our experiments).

CHAPTER 3. MAPPING 48

3.3.2.5 Algorithm Complexity

The algorithm shown in Figure 3.4 is polynomial except for the MILP based initial task
allocation, which can be regarded as a preprocessing stage since we use heuristics for task
re-allocation in following iterations.

Finding the optimal initial task allocation by MILP is a NP-hard problem. In practice,
we set a timeout and use the best feasible solution. For the following steps, let NS denote the
number of signals, NT denote the number of tasks, NE denote the number of computational
nodes, NB denote the number of buses, and NP denote the number of paths. The complexity
of the signal packing and message allocation stage is O(NS ∗ log(NS) + NS ∗ NB). The
complexity of the priority assignment is O(NT ∗NP ∗(NT +NS)+NS∗log(NS)+NT ∗log(NT))
assuming the number of iterations in Figure 3.6 is within a constant (as stated in Section
3.3.2.3, there is a preset limit of number of iterations when checking the end condition). And
the complexity of heuristic task re-allocation stage is O(NE ∗NT ∗NP ∗ (NT + NS) + NT ∗
NT ∗NP ∗ (NT +NS)). This is the dominant stage.

If we assume NS ∈ O(N2
T), NT ∈ O(NS) and NB ∈ O(NE), which is usually the case in

practice, we can simplify the complexity of the entire algorithm (excluding the MILP based
preprocessing stage) as O(NE ∗NT ∗NP ∗NS +NT ∗NT ∗NP ∗NS), assuming the number
of iterations in Figure 3.4 is within a constant.

3.3.2.6 Extensibility Metric for Multiple Tasks

When using the extensibility metric for task groups defined in Formula (3.32), the optimiza-
tion algorithm introduced in the previous sections needs to be modified as follows.

In the MILP formulation, the utilization constraints from formula (3.60) to (3.61) should
be modified to: ∑

τj∈Tgi

zτj ,gi,e +
∑
τj∈T

aτj ,e ∗ cτj ,e/tτj ≤ ue (3.87)

∆cτj ,gi/tτj −M ∗ (1− aτj ,e) ≤ zτj ,gi,e (3.88)

zτj ,gi,e ≤ ∆cτj ,gi/tτj (3.89)

zτj ,gi,e ≤M ∗ aτj ,e (3.90)

Equation (3.31) needs to be added to the MILP formulation. Objective function (3.85)
should be replaced with the new objective (3.32), and objective (3.86) should be replaced
with

max.
∑
gi∈G

wgi ∗∆cgi −K ∗
∑
p∈P

lp/dp (3.91)

The allocation and the end-to-end latency constraints in the MILP formulation do not change
since they are only related to the original execution times.

In Algorithm 1, the criticality calculation from line 2 to 11 needs to be adjusted as follows.

CHAPTER 3. MAPPING 49

1: for all task groups gi do

2: UB(∆cgi) = mine{
ue−

∑
τj∈T (e) cτj /tτj∑

τj∈T (e)∧Tgi
Aτj ,gi/tτj

}
3: for all task τj ∈ Tgi do
4: cτj = cτj +Aτj ,gi ∗UB(∆cgi)
5: for all task τi ∈

⋃
τj∈Tgi

(lp(τj) ∪ {τj}) do

6: update rτi
7: for all path p whose latency is changed do
8: if lp > dp then
9: for all tasks and messages oj on p do

10: εoj = εoj + wgi ∗ (lp − dp)/toj
11: reset all cτi , rτi , lp to the values before the iteration

where UB(∆cgi) is an upper bound of ∆cgi considering only the utilization constraints.
For each gi, we compute UB(∆cgi) (line 2), and increase the execution times of all the tasks
in gi (line 3 and 4). Then, the response times of all the tasks being affected are updated
(line 5 and 6), and the criticality of each task or message is updated (line 7 to 10).

Also, in Algorithm 2, the definition of Φ(M) needs to be changed to Φ(M) =
∑

gi∈G wgi ∗
UB(∆cui)−K2 ∗

∑
p∈P lp/dp to reflect the change of the objective function.

Finally, in the calculation of eventual objective value, both utilization and end-to-end
latency constraints need to be considered to calculate ∆cgi . A bisection algorithm is used
for approximating ∆cgi considering all tasks in gi (a bisection algorithm is also used for
approximating ∆cτi in the original objective function).

The experimental results for this metric based on task groups are shown in [77].

3.3.3 Case Studies

The effectiveness of the methodology and algorithm is validated in this section with three
industrial case studies. The first two cases focus on improving the extensibility for two
automotive architecture options, whereas the third case study investigates the impact of
additional resources on the optimality of the design of a truck control system.

3.3.3.1 Active Safety Vehicle

In the following two case studies, we apply our algorithm to an experimental vehicle that
incorporates advanced active safety functions. This is the same example studied in [76].

We considered two architecture platform options with different number of buses. Both
options consist of 9 ECUs (computational nodes). In the first configuration, they are con-
nected through a single CAN bus; in the second by two CAN buses, with one ECU func-
tioning as gateway between the two buses. The transmission speed is 500kb/s. The vehicle
supports advanced distributed functions with end-to-end computations collecting data from
360◦ sensors to the actuators, consisting of the throttle, brake and steering subsystems and
of advanced HMI (Human-Machine Interface) devices.

CHAPTER 3. MAPPING 50

The subsystem that we considered consists of a total of 41 tasks executed on the ECUs,
and 83 signals exchanged between them. Worst-case execution time (WCET) estimates have
been obtained for all tasks. In our formulation shown before, the WCET of a task on each
ECU is distinguished (denoted by cτi,e). For the purpose of our algorithm evaluation, we
assumed that all ECUs have the same computational power, so that the worst case execution
time of tasks does not depend on their allocation. This simplification does not affect the
complexity or the running time of the optimization algorithm and is only motivated by the
lack of WCET data for the tasks on all possible ECUs. The bit length of the signals is
between 1 (for binary information) and 64 (full CAN message). The utilization upper bound
of each ECU and bus has been set to 70%. The task weights wτi in Equation (3.30) are set
to 1 for all tasks.

End-to-end deadlines are placed over 10 pairs of source-sink tasks in the system. Most
of the intermediate stages on the paths are shared among the tasks. Therefore, despite the
small number of source-sink pairs, there are 171 unique paths among them. The deadline is
set at 300ms for 8 source-sink pairs and 100ms for the other two.

The experiments are run on a 1.7-GHz processor with 1GB RAM. CPLEX [52] is used
as the MILP solver for the initial task allocation. The timeout limit is set to 1000 seconds.
The parameter K in the MILP formulation is used to explore the trade-off between task
extensibility and end-to-end latencies during initial task allocation. We test our algorithm
with several different K values, and compare them with a system configuration produced
manually. Results are shown in Figure 3.7.

Task Extensibility

10000

0

To
ta

l l
at

en
cy

 (m
s)

30000

1 bus case
manual

k=0.5 k=0.2

k=0
k=0.1 k=0

k=0.1k=0.2k=0.5
15000

25000

20000

16

5000

17 252019 242218 2321

1 bus case2 buses case

Figure 3.7: Comparison of manual and optimized designs for the two architecture options

A manual design is available for the single-bus configuration and consists of the configu-
ration of the tasks and messages provided by its designers. This initial configuration is not
optimized. The total latencies of all paths is 24528.1ms and the task extensibility is 16.9113.

CHAPTER 3. MAPPING 51

For the single-bus case, in any of the four automatically optimized designs, all paths
meet their deadlines. Different K values provide the trade-off between task extensibility
and end-to-end latencies. When K = 0, we have the largest task extensibility at 23.8038,
which is a 41% improvement over manual design. When K = 0.5, we have the shortest total
end-to-end latency at 9075.46ms, which is 63% less than manual design. If a balanced design
between extensibility and end-to-end latency is needed, intermediate values may be used.
For K = 0.1, we obtain 37% improvement on task extensibility and 31% improvement on
end-to-end latencies.

For the two-buses case, again all optimized designs satisfy the end-to-end latency con-
straints. When K = 0, the largest task extensibility obtained after optimization is 23.1347.
When K = 0.5, we have the shortest total end-to-end latency at 16948.1ms. If a balanced
design is needed, intermediate values may be used, with the results shown in Figure 3.7.

Comparing single-bus and two-buses case, the results of two-buses case have longer la-
tencies in general. This is because of the additional time taken on gateway tasks and signals.
Also, the two-buses results span across a smaller range of extensibility and latency than the
single-bus results. This is because the configurations for two-buses case are less flexible due
to the constraints from allocation and gatewaying.

For both configurations, after the initial task allocation, each outer iteration of the signal
packing and message allocation, priority assignment and task re-allocation takes less than
30 seconds, and the optimization converges within 30 iterations for the K values we tested.
Figure 3.8 shows the current best task extensibility over 30 iterations for K = 0 for the two
architecture options. Iteration 0 is the task extensibility after initial task allocation. The
running time is 732 seconds for 30 iterations in the case of single bus, and 545 seconds for
30 iterations in the case of two buses.

To evaluate the quality of above results, we compared our algorithm performance with
a simulated annealing algorithm as shown in [77]. The maximum task extensibility values
obtained from the optimization algorithm (when K = 0), and from the simulated annealing
algorithm are extremely close. This fact, together with the way both algorithms converge
to their final result, suggests that the obtained values and configurations are very close
to the true optimum (although final proof cannot be obtained unless all combinations are
evaluated, which is clearly impossible in a feasible time). Furthermore, as mentioned earlier,
our algorithm is much faster than the simulated annealing algorithm. More detalis can be
found in [77].

3.3.3.2 Distributed Control System

In addition to the active safety vehicle application, another example is presented: a safety-
critical distributed control system deployed within a small truck. This is a CAN based
system that implements a distributed closed-loop control. The key features of this system
are the integration of slow and very fast (power electronics) control loops using the same
communication network. In this example, we are interested in redesigning an existing sys-

CHAPTER 3. MAPPING 52

Ta
sk

 E
xt

en
si

bi
lit

y

10 16 181412 204 6 8 22 2824 26 3020

22

20

18

16

24
1 bus case

2 buses case

Number of iterations (K=0)

Figure 3.8: Task extensibility over iterations

tem to understand the effects of adding communication and computational resources to the
system.

The system implements several control loops, such as the power electronics control, and
diagnostic features. To protect sensitive confidential data obtained by a major automobile
manufacturer, the system is abstracted as a set of tasks with aggregate information. Table
3.3 summarizes information about the test case. Task periods range from 10 to 1000 ms.

of tasks # of signals # of paths # of nodes # of buses
43 68 15 7 - 8 1

Table 3.3: Description of distributed control system

The example system is evaluated for an initial system configuration consisting of 7 nodes,
and a derived system where one additional node is provided for additional flexibility. The
optimization algorithm must define a new allocation of tasks to maximize extensibility on
the new architecture. The average task utilization is 0.05. In the initial configuration with
7 nodes, the average CPU utilization is 0.307, with a maximum of 0.45 and a minimum of
0.25. Results are shown in Figure 3.9. Solid lines indicate the mapping of tasks (indicated
by T#) to the 7 nodes in the initial configuration, whereas dotted lines indicate the mapping
computed by the algorithm for the extended configuration. In the optimized configuration
with 8 nodes, utilization is 0.269, with a maximum of 0.30 and a minimum of 0.20. The task
extensibility values for the two systems are 12.15 and 13.97, respectively. The timeout limits
of the MILP for initial task allocation in the two cases are both set to 1000 seconds. The

CHAPTER 3. MAPPING 53

running time of the rest of flow shown in Figure 3.4, which includes 30 iterations of signal
packing and message allocation, priority assignment and task-reallocation, is 298 seconds for
the first case (7 nodes) and 346 seconds for the second case (8 nodes).

T31

T30

T32

T33

T35

T34

T37
Node6 T39

T40

T38

T41

T42

T43

Node7

Node8

T36

T7

Node1

T1
T2

T3

T6

T5

T4

Node2

Node3

T8T9

T10

T11

T12

T18

T16

T13

T15

T14
T17

T19

Node4T22

T23

T24

T25

T20

T21

T26
T27

Node5

T28

T29

Figure 3.9: Reallocation of tasks for increased computational resources

54

Chapter 4

Code Generation and Communication
Interface Synthesis

After the functional model is mapped onto the architecture platform, the Step 3 in our soft-
ware synthesis flow includes code generation for individual functional tasks and the synthesis
of communication interfaces between tasks.

4.1 Code Generation

Code generation translates the processes (corresponding to functional tasks) in IF repre-
sentation to code in target languages. Based on the allocation result from mapping, the
target language may be generic C code or vendor specific representation for the mapped
embedded processor. Translating into vendor specific languages enables leveraging vendor
tools for analysis, debugging and simulation. As a proof of concept, we developed a trans-
lator in ANTLR for translating IF to EIKON, a language for modeling BAC systems. The
translator includes a lexer, a parser and a code generator. The lexer and parser parse the
designs described in IF to an abstract syntax tree (AST), from which the code generator
generates the target EIKON description. EIKON provides a library of microblocks (control
functions) for developing various control sequences. A process will be translated into the
microblock that implements the same functionality. In the case that a process does not have
corresponding microblock in the EIKON library, the translator implements its functional-
ity in OCL (Operator’s Control Language) defined in EIKON. OCL provides a number of
mathematical and logical functions in the syntax. For the set of equations in a process, the
translator constructs an OCL block by mapping the equations to a set of functions provided
in OCL.

As an example, the following code snippet shows part of the ANTLR input for generating
lexer, parser and generator for translating the process entity in IF into EIKON.

proc

: ’process’ ID ’extends’ proc_type ’{’ proc_body ’}’

CHAPTER 4. CODE GENERATION AND COMMUNICATION INTERFACE
SYNTHESIS 55

-> ^(PROCDEF ID proc_type proc_body)

;

proc_type

: ’DTProcess’ | ’CTProcess’

;

proc_body

: input_decl* output_decl*

para_decl*

local_var_decl*

para_var_assign*

init* eqn*

;

......

proc

@init{

proc_inLib = false;

in_proc = true;

}

@after{

proc_inLib = false;

in_proc = false;

System.out.println();

}

: ^(PROCDEF ID

{

if (eikonLib.get($ID.text) != null) {

System.out.println("Choose microblock \""

+ eikonLib.get($ID.text) + "\" from EIKON library");

proc_inLib = true;

}

else {

System.out.println("No microblock can be directly used for "

+ $ID.text + ". build OCL:");

System.out.println("TITLE " + $ID.text);

......

proc_inLib = false;

}

}

proc_type proc_body)

;

CHAPTER 4. CODE GENERATION AND COMMUNICATION INTERFACE
SYNTHESIS 56

input_decl

: ^(INPUTDECL intf_type intf_data_type ID)

{

if (in_proc == true){

if (proc_inLib == true) {

if ($intf_type.text.equals("DTInterface")) {

System.out.print("digital input");

System.out.print(" " + $ID.text);

System.out.println(";");

}

else if ($intf_type.text.equals("CTInterface")) {

System.out.print("analog input");

System.out.print(" " + $ID.text);

System.out.println(";");

}

else

System.out.println("unrecognized type");

}

else {

if ($intf_type.text.equals("DTInterface")) {

System.out.print("DINPUT ");

System.out.println($ID.text);

}

else if ($intf_type.text.equals("CTInterface")) {

System.out.print("AINPUT ");

System.out.println($ID.text);

}

else

System.out.println("unrecognized type");

}

}

}

;

4.2 Communication Interface Synthesis

Communication interface synthesis focuses on the communication mechanism between tasks.
The goal is to preserve the semantics of the input functional model when the architecture
platform does not directly support it. A typical case is that the functional model is syn-
chronous, which eases the design by orthogonalizing functionality and timing, while the
architecture platform is distributed and asynchronous.

A method is proposed in [69] to implement synchronous functional models on a Loosely

CHAPTER 4. CODE GENERATION AND COMMUNICATION INTERFACE
SYNTHESIS 57

Time Triggered Architecture (LTTA) [19] while preserving stream equivalence. In LTTA, the
computation components execute and access the communication medium in a quasi-periodic
fashion, i.e. they are triggered periodically by local clocks that are not synchronized but
deviate from each other by bounded drift and jitter. The semantic preservation distribution
method in [69] guarantees the data value stream on any communication link in LTTA is
the same as in the synchronous model. To do so, first the synchronous model is mapped
onto an intermediate layer called Finite FIFO Platform (FFP), which consists of a set of
sequential processes communicating via bounded FIFO queues. Both reads and writes are
non-blocking in an FFP and the processes have the responsibility for checking that the queue
is non-empty before doing a read, and that the queue is non-full before doing a write. A
process skips a round when any of its input queues is empty or any of its output queues is
full. By enforcing this, it is guaranteed that there is no data repetition or data loss on the
communication flows between processes, and stream equivalence is preserved. Then the FFP
model is mapped onto the LTTA platform. Specifically, the FFP queues are implemented
as CbS (Communication by Sampling) channels with FFP APIs mapped to CbS APIs. The
FFP processes are directly translated to the processes (tasks) on LTTA nodes, only by
replacing the APIs of accessing FFP queues with the APIs of CbS.

Note that the method proposed in [69] only applies to close systems. For open systems,
which take into account the physical environment, more constraints are needed to guarantee
stream equivalence. For example, a room temperature control system that interacting with
the environment as shown in Figure 2.1 is an open system, and only applying the method
proposed in [69] cannot guarantee stream equivalence. To cope with open systems, we
extend the method by enforcing additional timing constraints. The detail is discussed in
Section 4.2.1.

The second extension focuses on optimizing communication for Triggered Synchronous
Block Diagrams (Triggered SBDs). The semantics-preserving distribution method proposed
in [69] applies to “pure” SBDs, where all blocks fire at every synchronous step. The method
can be adapted to Triggered SBDs by using trigger elimination [45], where triggers are
transformed to standard inputs, however this often results in unnecessary communication
overhead. In our work discussed in Section 4.2.2, we present a distribution method that elim-
inates this overhead by exploring trigger information, and therefore minimize the message
load while still preserving the semantics. We consider both general Triggered SBDs where
the values of triggers are dynamically computed and are thus not known a-priori, as well as
Timed SBDs where triggers are statically known, usually specified by (period, initial phase)
pairs.

4.2.1 Communication Interface Synthesis for Open Systems

We observed that the assumption that every process (or task after mapped to LTTA) can
freely skip a round does not hold if we want to preserve stream equivalence for open systems
that interact with physical environment. Specifically, the sensing tasks in the BAC systems
periodically sample inputs from the constantly-changing physical environment. Skipping a

CHAPTER 4. CODE GENERATION AND COMMUNICATION INTERFACE
SYNTHESIS 58

round on these tasks means the “old” environment inputs will be overwritten by the “new”
inputs, and the data stream is no longer equivalent to the synchronous model. To preserve the
synchronous specification, we set the following requirements on the system implementation:

1. A sensing task never skips a round. We assume the sensing tasks are activated peri-
odically according to the local clocks, and send the sampled data in a non-blocking
fashion.

2. There is no data loss or repetition on any communication link in the system.

3. An actuating task can skip a round when it is activated if the input is not ready. How-
ever, it has to fire exactly once between any two consecutive fires of its corresponding
sensing task to ensure the physical environment is consistent with the synchronous
specification, assuming the sensing and actuating task have the same period in the
synchronous model (the cases that they have different periods are discussed later).
Here we ignore the impact of the exact time point at which the actuation happens
between the two firings of the sensing task.

To satisfy requirement 2, we first add the control mechanism from [69] in the implementa-
tion of non-sensing tasks to allow them skip rounds when their input is not ready or output
is full. We assume the CbS channels are implementable on our architecture platform so the
tasks can check the availability of inputs/outputs. For discussion on how to implement the
CbS primitives, please refer to [72, 71]. In addition, since the sensing tasks cannot skip
rounds, we set timing constraints on communication links affected by them to avoid data
loss, based on the analysis from [34]. We then further extend the analysis and set additional
timing constraints on path latencies for completing the conditions of satisfying requirement
2, and for satisfying requirement 3.

Next we explain how timing constraints are set on communication links and path latencies
for meeting the requirements.

4.2.1.1 Timing Constraints for Preserving Synchronous Semantics

After mapping, the functional tasks are allocated onto the computation components, which
are connected by a communication network that includes communication links, routers and
repeaters. For the analysis in this section, we regard computation components, routers and
repeaters all as nodes that communicate to each other through communication links.

In a loosely time trigged distributed system, each node has a local clock that triggers all
the periodic tasks on that node. For a task τi, the n-th tick of interest for the task, denoted
by tτi(n), is affected by clock drifts and jitters and can be characterized in Formula (4.2)
and (4.1), similarly as in [34].

tτi(n) ∈ [t̂τi(n), t̂τi(n) + Jτi] (4.1)

t̂τi(n+ 1)− t̂τi(n) ∈ [Tmτi , T
M
τi

],

Tmτi = Tτi(1− δmτi), T
M
τi

= Tτi(1 + δMτi) (4.2)

CHAPTER 4. CODE GENERATION AND COMMUNICATION INTERFACE
SYNTHESIS 59

where Tτi is the reference period of the task, and t̂τi(n) is an auxiliary sequence satisfying
the second equation. δmτi ∈ [0, 1) and δMτi ∈ [0, 1) are the relative bounds of the clock drift.
We assume all the tasks located at the same node have the same bounds of the clock drift.
We use Jmτi and JMτi to denote the best and worst case of the clock jitter respectively.

To preserve the synchronous semantics, we first set timing constraint on communication
links to guarantee there is no data loss (i.e. message being overwritten) when the source
task cannot skip rounds, based on the analysis from [21, 34]. Specifically, for a pair of source
task τw and destination task τr communicating through global messages on a communication
link, Formula (4.3) guarantees that any message mg from τw is read by τr during its valid
interval, i.e., from mg arriving at τr to it being overwritten by the next message from τw.

TMτr + JMτr < Tmτw + (Jmτw + lmmg)− (JMτw + lMmg) (4.3)

lmmg and lMmg are the best and worst case latency of message mg, which can be estimated
based on the communication protocol and media. The right hand side is the lower bound
of the valid interval. The formula ensures that there is at least one activation of τr during
the valid interval. No buffer is assumed and extension can be made for the cases with fixed
number of buffers.

In our systems, timing constraint (4.3) first has to be set on all communication links
between sensing tasks and their successors since the sensing tasks cannot skip rounds. Fur-
thermore, as the successors need to consume the messages from the sensing tasks in time,
they cannot skip freely themselves. This reasoning can be applied to their successors as well.
Therefore, a conservative approach is to set constraint (4.3) on all communication links that
are in the “fan out” of the sensing tasks, which can be deduced from the functional model
graph. Note that some of the messages between tasks are local messages, for which (4.3)
becomes trivial.

The control mechanism from [69] and timing constraint (4.3) are not sufficient for pre-
serving the synchronous semantics in our systems. To satisfy requirement 2 and 3, we set
additional constraints on path latencies with respect to the local clocks of sensing tasks.
First, an actuation decision may require inputs from multiple sensors. In this case, paths
from different sensing tasks will converge at a certain task, which reads data from multiple
input queues before it can fire. To ensure that the data on one input queue will not be
overwritten because of the delay on another input queue, we set the following constraint:
For any two sensing tasks τi and τj whose data is needed at a common task τk,

∀n, lτi→τk < tτj(n+ 1)− tτi(n) (4.4)

where lτi→τk is the latency for any path from τi to τk, tτi(n) is the n-th tick of the local clock
for τi, and tτj(n + 1) is the (n + 1)-th tick of the local clock for τj. Note that if τi is not a
sensing task but τj is, the constraint is still needed (not vice versa since non-sensing tasks
can skip rounds).

In addition to avoiding data loss on communication links, we need to ensure that the
actuators can fire in time to impact the physical environment as defined in requirement 3.

CHAPTER 4. CODE GENERATION AND COMMUNICATION INTERFACE
SYNTHESIS 60

For this, we set end-to-end latency constraints on paths from sensing tasks to actuating
tasks, to make sure the actuators can fire before the next activation of its corresponding
sensing tasks. Specifically, for a path ρ in the functional model that contains kρ unit-delay
tasks (each delays one sampling period of the source sensing task), the end-to-end latency
from the sensing task to the actuating task should be bounded as shown in Formula (4.5),
where srcρ is the source sensing task of the path. The worst case end-to-end latency lρ can
be computed as in Equation (3.26). Since communication interface synthesis is done after
mapping, we will be able to have an accurate estimation of all the parts in Equation (3.26),
including message latencies.

lρ < (kρ + 1) ∗ Tmsrcρ (4.5)

In the case of no unit delay task, we have a simple constraint that lρ < Tmsrcρ , and it can be
deduced that if this is satisfied, all communication links on ρ satisfy Equation (4.3).

We have assumed all sensing and actuating tasks have the same period in the functional
model. If this is not the case, constraint (4.5) need to be modified. Assuming on a path,
TA/TS = N , where TA is the period of the actuating task and TS is the period of the sensing
task (N is an integer), the actuator has to fire exactly once within N fires of the sensing
task, i.e., lρ < (kρ + 1) ∗N ∗ Tmsrcρ .

Given a mapped system, to satisfy constraint (4.3), (4.4) and (4.5), we may need to
adjust task periods and the drifts of local clocks. For instance, constraint (4.4) sets a bound
on how much the local clocks of sensors can drift with respect to each other, which can be
controlled through the use of synchronization mechanisms between local clocks.

Note that in the mapping step, we carried out the optimization using the task periods
specified in the synchronous model, and the preset end-to-end latency constrains without
consideration of semantic preservation. If the changes of task periods in communication
interface synthesis are significant, the mapping step may be suboptimal. In this case, we can
either iterate between these two steps, or add the timing constraints to the mapping formu-
lation and solve everything together (with a trade-off between optimality and complexity).
However in real systems, it is common that the clock drifts, jitters and message latencies are
all considerably smaller than the sampling periods, therefore the changes on periods in this
step will not be too significant.

4.2.1.2 Case Study

We conducted experiments to demonstrate the impact of timing constraints on semantic
preservation for the room temperature control system shown in Figure 2.1, which is an open
system interacting with the physical environment constantly. We chose LabVIEW from
National Instruments (NI) as the target platform, and generate code in NI’s G language, for
which both simulation and C code generation are provided by LabVIEW. We first model a
mapped system in LabVIEW with the synthesized communication interfaces, then compare
it through simulation to the functional specification in LabVIEW, which is obtained from
IF translation as shown in Figure 2.5.

CHAPTER 4. CODE GENERATION AND COMMUNICATION INTERFACE
SYNTHESIS 61

Specifically, the mapped model in LabVIEW is shown in Figure 4.1. Each of the PIDs and
LQR is mapped to a different processor, abstracted in LabVIEW as a simulation loop that
has its own local clock. Each actuating task is also mapped to a separate simulation loop.
For simplicity, all sensing tasks are captured in the same simulation loop and assumed to
have the same clock. The plant model is also described in this simulation loop and provides
data to the sensing tasks. Control mechanism for skipping rounds as in [69] is added to all
tasks except the sensing tasks.

LQR

PID1

PID2

PID3

Proc1

Proc2

Proc3

Proc4

Plant&
Sensors

Actuator1

Actuator2

Actuator3

Figure 4.1: Mapped LabVIEW model for the temperature control system

The local clocks are set to have no clock drifts. In this case, the constraint described in
Equation (4.3) for avoiding data loss can be simplified to Equation (4.6), given the fact that
lmmg ≥ 0, and for any task τi, J

m
τi
≥ 0 and JMτi = rτi .

Tτr + rτr < Tτw − rτw − lMmg (4.6)

The communication between processors are through shared variables, therefore lMmg = 0.
The response time rτw and rτr are randomized but smaller than 0.05 second. When we set
the periods of sensing tasks, LQR, PIDs and actuating tasks to be 1, 0.5, 0.2, 0.1 second
respectively, constraint (4.6) and (4.5) hold, and the simulation result of the mapped model
is the same as the functional specification. When we gradually reduce all the periods by

CHAPTER 4. CODE GENERATION AND COMMUNICATION INTERFACE
SYNTHESIS 62

the same factor, constraint (4.6) does not always hold, and the simulation results of the
two models become different as shown in Table 4.1. The difference is acceptable though for
temperature control system. This shows that for some applications, stream equivalence can
be relaxed.

Table 4.1: Comparison of mapped and synchronous models

Sensing Period (s) 1.0 0.5 0.2 0.1

Avg. Differences of 0 2.28 6.83 8.14
Temperature (oC) ×10−4 ×10−4 ×10−4

4.2.2 Communication Interface Synthesis for Triggered and
Timed Synchronous Block Diagrams

The other problem we address is semantics-preserving and communication-efficient distribu-
tion of Triggered SBDs on asynchronous execution platforms. In particular, given a design
specification described as a Triggered SBD, how to map it to a distributed, asynchronous
execution platform, so that the semantics of the Triggered SBD is stream-equivalent to the
semantics of the distributed implementation, and the communication overhead between the
distributed processes is reduced.

The semantics-preserving distribution problem has been studied in [69], but only for a
“pure” SBD model, where all blocks fire at every synchronous step. In this work we generalize
these results to the case of Triggered SBDs. We also study distribution of Timed SBDs as a
special case, for which more efficient implementations can be obtained.

At the heart of many synchronous languages such as Simulink, SBDs are usually chosen
as the model of computation, because they facilitate formal analysis of the system behavior
and verification of the design correctness. The fundamental component in an SBD is a block,
which can be modeled as a (not necessarily finite) state machine with inputs and outputs à
la Mealy. Outputs of blocks can be connected to inputs of other blocks to form a diagram.
The semantics of such diagrams are synchronous in the sense that all blocks proceed in lock-
step. Provided the diagram has no cyclic dependencies (within a step), all blocks “fire” in
a certain order within a synchronous step, so that the external outputs of the diagram are
computed by propagating the external inputs throughout the diagram. The firing of a block
corresponds to a local reaction step of the corresponding state machine: the machine reads
its local inputs, computes its local outputs and updates its local state.

Triggered SBDs are an extension of SBDs where the firing of a block may be controlled
by a Boolean signal called a trigger. At a given synchronous step, if the trigger is true, the
block fires normally; otherwise, the block stutters, that is, keeps its local state and local
outputs unchanged, until the next step. Triggered SBDs are useful for modeling multi-rate
systems, where different parts of the system operate at different time scales. Notice that the
triggering patterns need not be periodic. A trigger signal for a block A may be produced by

CHAPTER 4. CODE GENERATION AND COMMUNICATION INTERFACE
SYNTHESIS 63

another block B, or it may even be an external input of the diagram. The point is that the
behavior of the triggers (i.e., at which steps they are true or false) is generally unknown.
An exception is Timed SBDs, a special case of Triggered SBDs, where triggering patterns
are known statically (“at compile time”).

We follow the problem formulation of [69] where “distributed asynchronous execution
platforms” are captured by so-called finite FIFO platforms (FFPs). An FFP is similar to
a Kahn Process Network (KPN) [40], with the difference that while in a KPN queues are
unbounded, in an FFP they are of fixed, finite size. Although FFPs model a specific kind
of distributed systems and in particular network communication, they can themselves be
mapped in a semantics-preserving way to a variety of underlying networks, such as onto
the loosely time triggered architecture (LTTA) [69]. Therefore, FFPs represent a useful
intermediate layer that can serve as a first step in distributing a model onto many different
execution platforms (all platforms upon which FIFO queues can be implemented, e.g. using
the TCP protocol). This can be done because FFPs make no assumption about the relative
speeds of the local clocks of distributed processes, hence the characterization asynchronous.

There is a simple way to solve the distribution problem for Triggered SBDs: first, apply
trigger elimination to translate the Triggered SBD into a pure SBD; then, use the mechanisms
in [69] for distribution of pure SBDs. Unfortunately, this simple method often results in
unnecessary communication overhead: a block always sends output messages even when its
trigger is false. The block does not fire in this case, so the outputs have the same values
as in the previous step, but they are still transmitted to downstream blocks. We present
an implementation method that eliminates this overhead. This is especially critical in CPS
where communication is expensive, for example, in wireless applications where the channel
capacity is limited, or where energy savings are essential.

In particular, our implementation method optimizes communication along the following
two directions: first, data messages are not sent to processes that are not triggered; second, a
process which is not triggered need not send a full data message to its successor processes, but
only a flag indicating that the data are the same as in the previous step. In addition to these
optimizations that apply to general Triggered SBDs, we also present further optimizations
for the case of Timed SBDs.

4.2.2.1 Triggered SBDs and Timed SBDs

A Triggered SBD consists of a set of blocks connected to form a diagram. Each block has
a number of input ports (possibly zero) and a number of output ports (possibly zero).
Diagrams are formed by adding connections. There are two types of connections: a data
connection connects some output port of a block M to some input port of another block M ′;
a trigger connection connects some output port of a block M directly to another block M ′

(in this case we say that M ′ has a trigger). A block can have zero or one incoming trigger.
An output port can be connected to more than one input ports. However an input port can
only be connected to a single output.

CHAPTER 4. CODE GENERATION AND COMMUNICATION INTERFACE
SYNTHESIS 64

Semantically, each block corresponds to a state machine, generally of type Mealy [42].
We say that a block is “Moore” if its output function only depends on its state, but not on
the inputs. Every connection in the diagram corresponds semantically to a stream, that is,
a function s : N→ U , where N = {0, 1, 2, ...} is the set of natural numbers, U is the universe
of all possible data values that streams in the diagram can take, and s(n) represents the
value of s at the n-th synchronous step. For simplicity, we ignore typing issues, which in
practice would only allow connections between ports of compatible types. However, we use
terms such as “Boolean signal” for streams that only take values in a restricted subset of U ,
e.g., {true, false} for Boolean signals.

The semantics of a diagram can be given as a composite state machine, obtained by syn-
chronous composition of all machines corresponding to blocks in the diagram. To define the
composite state machine, we assume that the diagram is acyclic, that is, every dependency
cycle visits at least one Moore block. We also assume that there are no “self-loops”: this
is not a restrictive assumption since blocks can have internal state. The state space of the
composite machine is the product of the state spaces of all its component machines, plus
all outputs of blocks that have triggers. These outputs become states because when a block
is not triggered, its outputs maintain their previous value. The outputs of the composite
machine can be defined to be all outputs in the system (including those connected to inputs).

The state of the composite machine is updated by updating the states of all individual
components. The output function of the composite machine is defined by defining the value
s(n) of every stream s in the diagram, for a given n ∈ N. Suppose s is the output of machine
M . If M has no trigger, s(n) is defined by the output function of M . This requires the
local inputs of M to be already known. Since the diagram is acyclic, there always exists
a well-defined order in which to evaluate all streams in the diagram at every step n. If M
has trigger t and t(n) = true, again s(n) is defined by the output function of M . If M has
trigger t and t(n) = false, s(n) = s(n− 1) (if this happens when n = 0, some default value
is used for s(0)). Notice that M having no trigger is equivalent to M having a trigger which
is true at every step.

A Timed SBD is a special case of a Triggered SBD where every trigger is generated by a
(period, initial phase) pair (PPP) (τ, θ) ∈ N×N, where τ represents a period and θ represents
an initial phase.1 For example, the pair (2, 1) generates the stream false true false true · · · .
Clearly, every PPP can be defined by a finite state machine, so Timed SBDs are a subclass
of Triggered SBDs. The important thing about Timed SBDs is that the triggering pattern
is known “at compile time”. This is not the case for general Triggered SBDs. Note that the
implementation methods that we present here, as well as those proposed in [69], are agnostic
of the internals of blocks, that is, blocks are treated as black boxes whose internal state
machines are not known.

1 More generally, triggers in timed SBDs could be specified by firing time automata (FTA) [45]. Our
implementation method can be directly extended to FTA, but for simplicity, we limit our discussion to PPPs.

CHAPTER 4. CODE GENERATION AND COMMUNICATION INTERFACE
SYNTHESIS 65

4.2.2.2 The Distribution Problem

The distribution problem is to automatically generate from a given Triggered SBD, an FFP
that is stream-equivalent to the Triggered SBD. Generating an FFP means synthesizing the
topology of the FFP (processes and FIFO queues) and the code that each FFP process
executes. The topology synthesis is straightforward, since we assume a one-to-one mapping
of blocks to processes, as in [69]. In an FFP, a stream is essentially the sequence of values that
are written in a given queue. In the naive implementation, stream equivalence requires that
every stream s∗ produced in the FFP be identical to the corresponding stream s defined by
the Triggered SBD. This requirement is too strict for the optimized implementation, where
redundant messages are omitted from s∗. Instead, we require only that s∗ be identical to s
sampled at the points in time when the consumer of s is triggered.

Note that, contrary to Triggered SBDs, streams of FFPs are not guaranteed to be infinite.
This is because some processes in an FFP may “deadlock”, waiting forever for messages in an
input queue or space in an output queue. A proof of semantical preservation must therefore
show that the resulting FFPs are deadlock-free [69].

4.2.2.3 Distribution of General Triggered SBDs

We first introduce some notations and terminology. Figure 4.2 shows the general configura-
tion of a block M and its surroundings, as a part of a Triggered SBD.

• If M has a trigger t, T (M) denotes the block that produces t. If M has no trigger,
T (M) is undefined: we examine this as a special case below.

• The set of blocks that have data connections to M is denoted as W (M). 2

• B(M) denotes the set of blocks triggered by M .

• R(M) denotes the set of blocks that have data connections from M , except for those
blocks that are already in B(M). R(M) is partitioned into two disjoint subsets:
RR(M), containing all blocks in R(M) that either have no trigger or have a trig-
ger but are already in W (B(M)); and RT (M), containing all the remaining blocks of
R(M).

Note that W (M), R(M), B(M) are pairwise disjoint. Also, absence of self-loops ensures that
M cannot be a member of any of these three sets. Finally, T (M) cannot be an element of
either R(M) or B(M) (this would result in cyclic diagrams), but it may be an element of
W (M).

2For a set W , |W | denotes its cardinality. We use W1, W2, etc. to enumerate and denote its elements,
so that W (M) = {W (M)1, ...,W (M)|W (M)|}. Also, we define W (X) =

⋃
Q∈X W (Q), for a set of processes

X.

CHAPTER 4. CODE GENERATION AND COMMUNICATION INTERFACE
SYNTHESIS 66

…

…

…
€

W (M)W (M)

€

W (M)1
€

T(M)

€

M

€

B(M)1

€

B(M) B(M)

€

R(M) R(M)

€

R(M)1

Figure 4.2: A block M and its surroundings.

Mapping Triggered SBDs on FFPs
A Triggered SBD is mapped onto an FFP in the following way. Every block M in the

Triggered SBD is mapped to an FFP process P . Every link from a block M to another
block M ′ in the Triggered SBD is mapped to a FIFO queue between the corresponding FFP
processes, from P to P ′. The sizes of the queues are as in [69]. In particular, if M is not
Moore, a queue of size 1 is sufficient; otherwise a queue of size 2 is sufficient (this queue is
initialized with a message carrying the initial output of M). Schematically, the Triggered
SBD part shown in Figure 4.2 results in the FFP part shown in Figure 4.3.

Similarly to the notation T (M),W (M), etc. for blocks, we introduce notation T (P),W (P),
etc. for processes. If block M is mapped to process P , T (P) denotes the process correspond-
ing to T (M), W (P) denotes the set of all processes P ′ such that P ′ corresponds to some
block M ′ ∈ W (M), etc.

As can be seen from Figure 4.3, P may have more inputs and outputs (shown in blue) than
its corresponding block M . In particular, P receives additional input signals from processes
in T (RT (P)). This is done in order to minimize data traffic: if a process P ′ ∈ RT (P) is not
triggered in a given step, P need not send a message to P ′ for that step. To know whether
P ′ is triggered or not, P needs to receive a message from the process triggering P ′, that
is, from T (P ′). These additional signals are called backward signals and the corresponding
queues are called backward queues. They are illustrated in Figure 4.4. Backward signals are
sent to backward queues at every step.

Symmetrically, P itself may trigger other processes (those in B(P)). Therefore, P needs
to notify potential writers of processes in B(P) about whether the latter are triggered or

CHAPTER 4. CODE GENERATION AND COMMUNICATION INTERFACE
SYNTHESIS 67

…

€

W (P)W (P)

€

T(P)

€

B(P)1

€

B(P) B(P)

€

RT(P) RT (P)
€

RT(P)1

€

T(RT(P))1

…

…

€

W (P)1

€

W (B(P))1

€

W (B(P))W (B (P))

€

RR(P) RR(P)
€

RR(P)1…

…

€

T(RT(P))|T (RT (P))|
…

€

P

Figure 4.3: Part of an FFP generated from M and its surroundings in Figure 4.2.

not. This explains the additional output queues of P , namely, queues to the processes in
W (B(P)).

We should note that additional queues are introduced by the optimized implementation,
only if they do not exist after mapping links in the Triggered SBD to FIFO queues in the
FFP. For example, the process T (P) may also be in T (RT (P)). This is the case in Figure 4.8,
where T (P11) = T (P12) = P0. Since there is already a queue from P0 to P11, no additional
queue is needed.

Additional backward queues may create apparent dependency cycles in the FFP, as il-
lustrated in Figure 4.5. If M1 already has a forward link to M3, adding a backward queue
from P3 to P1 in the FFP creates a cycle. To ensure that such cycles are not problematic,
i.e. do not result in deadlocks, a process P is designed in a way such that its execution is
structured in stages. The stages are ordered so that dependency cycles are not introduced.
In the example of Figure 4.5, P1 will transmit to P3 without waiting for messages from the
backward queue. These messages are necessary only in order for P1 to decide whether to
send a message to P2 or not, but are not needed for P1 to compute its outputs.

The code that each FFP process P executes is shown below. It follows the same general
scheme as the implementation described in [69]: initialization of state variables, followed by
execution of an infinite loop. Every iteration of the loop proceeds in a number of stages. First
(Stage 0), P determines if it is triggered in the current iteration. If T (P) is undefined, P is
implicitly always triggered, therefore trigger is set to true. Otherwise, P needs to consume
a message from the input queue trigger coming from process T (P) and containing the value
of the trigger. If the queue is empty, P needs to wait until a message arrives. At Stage 1, P

CHAPTER 4. CODE GENERATION AND COMMUNICATION INTERFACE
SYNTHESIS 68

€

M1
€

M3

€

M2

€

P1
€

P3

€

P2

Figure 4.4: Backward queue sending trigger information about P2 to P1.

€

P3

€

P2
€

M3

€

M2
€

P1
exec.; write to

€

P3

; write to

€

P2

€

M1 read from

€

P3

Figure 4.5: Avoiding deadlocks by structuring each process in stages.

fires if and only if the trigger is true, and sends messages to RR(P)∪B(P)∪W (B(P)) (the
union of the sets is denoted as RB(P) in the code). These messages are sent at every step,
even when P is not triggered. At Stage 2, P sends messages to the processes in RT (P) that
are triggered: the rest need not receive data messages. This is part of the traffic optimizations
that our method achieves.

FFP process for a general Triggered SBD

P (inputs: ins, trigger; outputs: outs)

{

initialize state, outs, ins’ and outs’;

for all i, outs’[i].fresh := true;

while (true) {

for all i in T(RT(P)), known[i] := false;

// Stage 0: determine trigger

if (T(P) is defined) {

wait until trigger queue is not empty;

get_inputs(trigger);

if(trigger.fresh = true)

ins’[T(P)] := trigger;

if (T(P) in T(RT(P))) known[T(P)] := true;

}

else

CHAPTER 4. CODE GENERATION AND COMMUNICATION INTERFACE
SYNTHESIS 69

trigger := true;

// Stage 1: fire and send to RB(P), where

// RB(P) := RR(P) union B(P) union W(B(P))

wait until no queue to RB(P) is full;

if (trigger) {

wait until no queue from W(P) is empty;

get_inputs(ins[W(P)\T(P)]);

for (every i in W(P)\T(P) s.t.

ins[i].fresh = true)

ins’[i] := ins[i];

for (every i in W(P)\T(P) s.t. i in T(RT(P)))

known[i] := true;

(state, outs) := M.step(state, ins’[W(P)]);

for all i in (RB(P)) {

outs’[i].fresh := true;

outs’[i].data := outs[i];

}

}

put_outputs(outs’[RB(P)]);

for all i in (RB(P))

outs’[i].fresh := false;

// Stage 2: selectively send to RT(P)

RTunproc := RT(P);

while (RTunproc != empty) {

pick a process rt in RTunproc;

if (T(rt) = P) {

known[T(rt)] := true;

ins’[T(rt)] := outs’[rt];

}

if (known[T(rt)] = false and the

queue from T(rt) is not empty) {

get_inputs(ins[T(rt)]);

if (ins[T(rt)].fresh = true)

ins’[T(rt)] := ins[T(rt)];

known[T(rt)] := true;

}

if (known[T(rt)] = true)

if (ins’[T(rt)] = false)

remove rt from RTunproc;

else if (the queue to rt is not full) {

put_outputs(outs’[rt]);

outs’[rt].fresh = false;

remove rt from RTunproc;

}

CHAPTER 4. CODE GENERATION AND COMMUNICATION INTERFACE
SYNTHESIS 70

}

}

}

Returning to the example in Figure 4.5, P1 will send a message to P3 at Stage 1, since
P3 ∈ RR(P1). Then, P3 can execute and send back to P1 the trigger information about P2

via the backward queue. Once P1 has this information, it can decide whether a message
needs to be sent to P2. If so, this will happen at Stage 2 of P1. One can see how this careful
ordering avoids dependency cycles and deadlocks in this example. More complicated cases
exist, for instance, where P3 has a trigger and belongs not to RR(P1) but to RT (P1). The
proof of semantical preservation described in Section 4.2.2.3 argues how these cases are also
handled correctly by our method.

We now further explain the code of P . trigger denotes the trigger input queue of P , ins
denotes the set of all the other input queues, and outs denotes the set of all output queues.
We use notation such as ins[i] to denote the queue from a given process i. Similarly, if X
is a set of processes, ins[X] denotes the set of the corresponding queues.

P maintains state variables ins’ and outs’. For each input queue from a process i,
ins’[i] memorizes the last data message received from the queue. This is used when
a process has no “fresh” message for P (i.e. no new message since the last time P was
triggered), in which case it only sends a flag to P indicating that the last data message
should be used. Symmetrically, for each output queue, outs’ memorizes the latest message
that P produced for that queue. Note that get inputs() and put outputs() use only ins

and outs and do not affect ins’ and outs’.
Messages in outs’ contain an extra Boolean flag fresh, indicating that the corresponding

output is newly produced, as opposed to the one that has already been sent. Initially all
output data are fresh: this is because the initial data may need to be sent before the first
time P is triggered. When put outputs() takes outs’ as argument, it first checks the
fresh flag of each message: if it is true, the whole message is sent; otherwise, only the flag
is sent, indicating that the data is the same as in the last transmitted message. This reduces
communication load, since data messages typically have a larger payload. Note that each
message sent by put outputs() contains all the information that must be transmitted from
one process to another within a synchronous step. Such a message may therefore include,
for example, both a trigger and a data part.

For each process i in T (RT (P)), P also maintains a Boolean flag known[i]. These flags
are used to indicate whether the value of certain triggers is known at a given iteration. All
flags are reset to false at the beginning of each iteration. Once messages are received, the
corresponding flags are set to true.

RTunproc represents the set of all processes in RT (P) that P needs to consider in Stage
2. For each rt ∈ RT (P), P needs to determine if rt is triggered: if so, P sends a message to
rt, otherwise not. P iterates over all processes in RT (P) until all of them are handled. A
process rt is selected randomly, and P checks whether the triggering status for rt is known.
If not, P attempts to find out by checking whether the backward queue from T(rt) contains

CHAPTER 4. CODE GENERATION AND COMMUNICATION INTERFACE
SYNTHESIS 71

a message. If the trigger value for rt is known and it is false, P need not send a message to
it. If the trigger is true, P sends a message if space is available in the corresponding queue.
In those cases, rt is removed from RTunproc, marking the fact that rt has been handled.

Stage 2 may appear unnecessarily complicated: why not simply iterate over all processes
rt ∈ RT (P), wait for a message from T (rt), proceed to decide whether rt is triggered or not,
and send a message to rt if it is triggered? The reason is that a fixed order of iterating over
processes in RT (P) may result in deadlocks. For example, assuming P1, P2 ∈ RT (P) and
we decide to wait first for a message from T (P1) and then a message from T (P2), there will
be a deadlock if P1 is itself triggered by P2, i.e. T (P1) = P2. This situation is illustrated
in Figure 4.6 (the Triggered SBD is shown to the left and the corresponding FFP to the
right). Links from P3 to P and from P2 to P are backward links. The deadlock happens
because: P2 waits at Stage 1 for a message from P ; while at the same time, given the above
fixed iteration order, P at Stage 2 first waits for a message from T (P1), i.e. from P2. This
happens before P can wait for a message from T (P2) to decide whether to send a message
to P2.

This deadlock is avoided in our method. Assuming P1 is selected first in Stage 2 of P ,
P attempts to read the trigger signal from T (P1) = P2, but finds the backward queue from
P2 to P empty, so another process in RT (P) is selected. In this way, no extra dependencies
are added among processes, and P eventually handles P2 before P1.

€

P3

€

P2€

M3

€

M2

€

P

€

M

€

M1

€

P1

Figure 4.6: Potential deadlock with a static iteration order over RT (P).

Note that the deadlock could be avoided with a static iteration order, where P handles P2

before P1. However, such a static order generally depends on the topology of the diagram. In
this work, we opted for a method that guarantees absence of deadlocks while being modular,
that is, where the code for P does not depend at all on the diagram.

Semantical Preservation

CHAPTER 4. CODE GENERATION AND COMMUNICATION INTERFACE
SYNTHESIS 72

Stream equivalence between a Triggered SBD G and the FFP generated by our method,
denoted as F ∗, can be proven in four steps. Due to space limitation, we present only a sketch
of these steps here. The full proof is shown in our technical report [73].

S tep 1 and 2: G is transformed to an equivalent pure SBDGs using the trigger elimination
method from [45]. Gs is then mapped to an FFP Fs, using the method proposed in [69],
which guarantees stream equivalence between Fs and Gs, and therefore also between Fs and
G.

S tep 3: We transform Fs to a new FFP, denoted as F ′s, by adding backward signals (and
queues if needed), and restructuring every process in Fs into three stages, as with processes
in F ∗. The difference between F ′s and F ∗ is the following: although a process in F ′s reads
the backward signals, it does not use the information; instead, it always sends messages to
all the output queues at every step.

We next show that F ′s is stream-equivalent to Fs. For this, it suffices to prove that no
process in F ′s ever deadlocks. This is because every process P in F ′s behaves identically to
the corresponding process in Fs, except that P consumes a set of additional messages that
it never uses. To prove that no process in F ′s deadlocks, we use the careful structuring of
the code into stages, which ensures that the additional backward queues do not create any
dependency cycles.

S tep 4: We prove that F ∗ is stream-equivalent to F ′s. These two FFPs have the same
structure, i.e., there is a one-to-one mapping between the processes and the FIFO queues in
the two FFPs. Consider a pair of corresponding processes in the two FFPs, P ∗ in F ∗ and
P in F ′s. Because the structure of the two FFPs is the same, P ∗ has a trigger if and only
if P has a trigger. Also, trigger messages are transmitted at every step and never omitted.
Based on this, we use induction to show that the trigger signals of P ∗ and P have the same
value at every step, and that the input data that are read by P ∗ and P are the same at
every step when the trigger signals are true. The following facts are used in this proof: (1)
state variables ins’ and outs’ of P ∗ memorize the latest inputs and outputs; (2) for every
process W ∗ ∈ W (P ∗), W ∗ sends a message to P ∗ at a given step if and only if P ∗ reads the
message from W ∗ at the same step. From (1) and (2) we can derive that P ∗ always gets the
up-to-date inputs, either from a message from W ∗, or from its state variable ins’ when W ∗

sends a message with fresh-bit being false.

Communication Savings Analysis
Compared to the naive method, the communication savings achieved by the optimized

method are, on the average (in bits per step), at least as follows.∑
l:(W,R)∈L

PWLD +BRT
W,RP

∗
W,RLD −

(
BRT
W,R (1− PR) +

(
1−BRT

W,R

)
+BRT

W,R

)
LT (4.7)

where L is the set of links in the Triggered SBD; W and R are the writer and reader blocks
of a link l; PW and PR are the probabilities of W and R not being triggered at any given
step; BRT

W,R is a Boolean variable indicating whether R is in RT (W) or not; and LT and LD

CHAPTER 4. CODE GENERATION AND COMMUNICATION INTERFACE
SYNTHESIS 73

are the lengths of trigger and data messages, respectively. The size of a control message is
approximately the same a trigger message.

The first term of savings, PWLD, comes from the fact that, in the FFP, W only sends
to R the new data which is produced when W is triggered. The second term is due to the
fact that if R ∈ RT (W), W only sends a message to R when R is triggered. Specifically, let
P ∗W,R(k) be the probability of savings due to the non-triggering of the reader R at step k.
The savings are realized when the following two conditions are met: (1) R is not triggered
while W is triggered at step k (the case where W is not triggered is already included in
the first term of savings); (2) W is triggered at least once no later than the next time R is
triggered. In this case, the output of W produced at step k need not be sent to R. P ∗W,R(k)
can be calculated as

P ∗W,R(k) = PR (1− PW) ·

(
PN−k
R +

N−k−1∑
i=0

(1− PR)P i
R

(
1− P i+1

W

))
(4.8)

where N is the number of total steps a system runs. As N goes to infinity, P ∗W,R becomes
independent of k and is equal to

P ∗W,R =
PR (1− PW)2

1− PRPW
(4.9)

Returning to Equation (4.7), LT bits must be deducted (in the worst case) from the savings
with probability (1− PR) if R ∈ RT (W), due to the fact that an additional fresh-bit is sent
from W to R at any step when R is triggered; and with probability 1 if R 6∈ RT (W), since
the fresh-bit needs to be sent at every step in this case. Finally, if R ∈ RT (W), there is an
additional backward signal sent from T (R) to W at every step. Note that in most systems,
LD is much larger than LT , therefore our savings could be significant. Moreover, some of
the messages are often merged in the optimized method (e.g. a fresh-bit whose value is
true is always merged with the data), which will produce even more savings than what was
represented in Equation (4.7).

4.2.2.4 Distribution of Timed SBDs

Since Timed SBDs is a special case of Triggered SBDs, we could simply use the method de-
scribed in Section 4.2.2.3. However, we can do better than that if we exploit the information
about triggering patterns which is statically known in Timed SBDs. In particular, let P be
the FFP process corresponding to a block M with (period,initial phase) pair (τM , θM). Let
τP = τM and θP = θM .

Let R be a process receiving data from P . To save communication load, P only need
to send a message to R when P is triggered and the message will be read by R, i.e. R
will be triggered at least once before the next time P is triggered. More precisely, at its
k-th triggered instant, P needs to send a message to R if and only if R is triggered at least

CHAPTER 4. CODE GENERATION AND COMMUNICATION INTERFACE
SYNTHESIS 74

once within the interval between the k-th and (k + 1)-th triggered instants of P . This is
represented by the predicate put?(P,R, k), defined as follows:

put?(P,R, k)

=̂∃j : kτP + θP ≤ jτR + θR < (k + 1) τP + θP (4.10)

≡
⌈
kτP + θP − θR

τR

⌉
τR + θR < (k + 1) τP + θP

Similarly, let W be a process sending data to P . At its k-th triggered instant, P must
expect a new message from W if and only if W has been triggered between the (k − 1)-th
and k-th triggered instants of P . This is represented by the predicate get?(W,P, k), defined
as follows:

get?(W,P, k)

=̂ ∃j : (k − 1)τP + θP < jτW + θW ≤ kτP + θP (4.11)

≡
⌊
kτP + θP − θW

τW

⌋
τW + θW > (k − 1) τP + θP

The above predicates are used in the code of a process P generated from a Timed SBD,
as shown below.

FFP process for a Timed SBD

P (inputs: ins; outputs: outs)

{

initialize state, outs, and ins’;

k := 0;

for (every R in R(P))

if (theta_R < theta_P)

put_outputs(outs[R]);

while (true) {

Wset, Rset := empty sets;

for (every W in W(P))

if (get?(W, P, k))

add W to Wset;

for (every R in R(P))

if (put?(P, R, k))

add R to Rset;

wait until no queue from Wset is empty

and no queue to Rset is full;

get_inputs(ins[Wset]);

for all i in Wset, ins’[i] := ins[i];

(state, outs) := M.step(state, ins’);

CHAPTER 4. CODE GENERATION AND COMMUNICATION INTERFACE
SYNTHESIS 75

put_outputs(outs[Rset]);

k := k + 1;

}

}

At every iteration, P computes the sets Wset (Rset) of processes that P needs to receive
from (send to). Then P waits for messages (slots) to become available on the corresponding
queues before it fires. To compute Wset and Rset, P maintains a local counter k: notice that
k does not count synchronous steps, but rather the times that P has fired. P has period τP
and therefore fires every τP steps. P also maintains a state variable ins’ which, similar to
the code of FFP process for general Triggered SBDs, memorizes the last messages received
at the inputs.

The distribution method guarantees stream equivalence while mapping a Timed SBD to
an FFP. The proof is shown in our technical report [73].

Communication Savings Analysis
In our method for Timed SBDs, the communication load for a link l is max{τW , τR}−1·LD.

Therefore, compared to the naive method, the savings achieved by our method are∑
l:(W,R)∈L

(
1− 1

max{τW , τR}

)
LD (4.12)

4.2.2.5 Case Studies

We demonstrate the communication savings achieved by our proposed method for Triggered
SBDs in the following case studies. We first analyzed the savings for multi-mode systems,
a special case of Triggered SBDs. Furthermore, we conducted experiments with randomly
generated Triggered SBDs to show the effectiveness of our method in general case.

Multi-Mode Systems
Figure 4.7 shows a Triggered SBD. This diagram models a two-mode system, consisting

of two separate sets of communicating blocks, plus a mode control block that triggers only
one of the sets at any given time. The output of the control block is a Boolean signal: when
it is true, the blocks of Mode 1 are triggered, and when it is false, the blocks of Mode 2 are
triggered. Notation-wise, we use different types of arrow heads to distinguish trigger signals
from standard inter-block communication signals, and we usually draw triggering signals as
incoming to the top of a block.

First, we apply the “naive” method to distribute the model. After applying the trigger
elimination method of [45], followed by the distribution method of [69], we get the FFP
diagram shown in Figure 4.8. Each block M0,M11,M12, etc. of the original diagram gives
rise to a process P0, P11, P12, etc. in the FFP. The triggers of the original diagram have now

CHAPTER 4. CODE GENERATION AND COMMUNICATION INTERFACE
SYNTHESIS 76

Mode Ctrl

Mode 1 Mode 2

€

M11

€

M12

€

M23

€

M22€

M0

€

M13

€

M21

Figure 4.7: A Triggered SBD.

€

P11

€

P12

€

P13

€

P21

€

P22

€

P23
€

P0

Figure 4.8: The FFP system resulting from the Triggered SBD of Figure 4.7 after trigger
elimination [45] and distribution [69].

become standard inputs to the FFP processes. Each FFP process P executes the following
pseudo-code:

P(inputs: ins, trigger; outputs: outs)

{

initialize state and outs;

while (true) {

wait until all input/output queues

are non-empty/non-full;

get_inputs(ins, trigger);

if (trigger) then

(state, outs) := M.step(state, ins);

put_outputs(outs);

}

}

where state denotes the internal state of M that P inherits. In addition, output variables
outs are also state variables in P .

CHAPTER 4. CODE GENERATION AND COMMUNICATION INTERFACE
SYNTHESIS 77

Process P behaves as follows. It starts by initializing its state variables (including outs –
the reason for this will become clear below). It then enters an infinite loop. At each iteration,
P waits until all its input queues are non-empty (i.e., contain at least one message) and all
its output queues are non-full (i.e., have room for at least one message). Then, P “fires”,
that is, it performs a synchronous step: one input message is read from each input queue
(including the trigger) and one output message is written to each output queue, using the
functions get inputs() and put outputs() (we assume that these functions are “smart
enough” to know which variable corresponds to which queue). When the trigger is true, P
uses the output function of M , M.step(), to update the outputs and the state. When the
trigger is false, no updates are made and the values written at the outputs are the same as
in the previous step (i.e., the process “stutters”).

All processes in the FFP of Figure 4.8 execute concurrently, following the above pattern
P . Although the processes are not synchronized, some loose form of synchronization is still
imposed because of the queues: a process cannot fire when it is waiting for an input from
another process, or for a downstream process to free up space in an output queue. This
distributed concurrent system completes a logical step when all messages corresponding to
the same synchronous step in the original SBD have been processed.

We use this notion to estimate the communication load in this FFP implementation. We
can see that 6 trigger messages plus 7 data messages are transmitted at every logical step.
The 6 trigger messages correspond to the messages sent from the control process P0 to each
of the other processes (the negation block is not implemented as a separate process, but as
part of the control process). The data messages are sent by the processes among themselves:
two messages from P11 to P12 and P13, one from P12 to P13, one from P13 to P21, and so
on. Let LT and LD denote the message lengths for trigger and data messages, respectively.
Then, the communication load of the naive implementation is 6LT + 7LD, measured in bits
per logical step.

In the optimized implementation method that we present in Section 4.2.2.3, a producer
process only sends a message to a consumer process when the consumer is triggered. In our
running example, P11 only sends messages to P12 and P13 when the latter are triggered. In
this example all processes in the set {P11, P12, P13} are triggered simultaneously, and similarly
for {P21, P22, P23}. Moreover, only one of the two sets is triggered at any given logical step.
Therefore, in the optimized implementation, at most 4 data messages are transmitted in
each logical step: 3 messages among processes of the same mode, plus 1 message from P13 to
P21. Moreover, the message from P13 to P21 is only transmitted at the beginning of a mode
switch. After that, while the system remains in the same mode, only a control message
is transmitted indicating that the data is the same as in the last step. The savings are
significant and can be close to 4/7 ≈ 57%, considering that the data messages are usually
much longer than trigger/control messages (whose payload is only a few bits).

The two-mode model can be extended to a more general multi-mode model. Specifically,
a k-mode model is a special type of Triggered SBDs. It consists of k sets of communicating
blocks denoted as sets M1 to Mk, and a set of blocks for mode control (denoted as M0) that
triggers only one of the k sets at any given time. Note that there might be communications

CHAPTER 4. CODE GENERATION AND COMMUNICATION INTERFACE
SYNTHESIS 78

between different sets of blocks.
Let LT and LD denote the message lengths for trigger/control messages and data mes-

sages, respectively. When distributing the model by the trigger elimination based distribu-
tion method, the average message load per synchronous step is as follows:

k · LT +
k∑
i=0

CMi
LD +

k∑
i=1

k∑
j=1

CMiMj
LD (4.13)

where CMi
denotes the number of messages between the blocks in the set Mi at a synchronous

step, and CMiMj
denotes the number of messages between the blocks in Mi and Mj.

On the other hand, when applying our distribution method, the average message load
per synchronous step is as follows:

(k + k′) · LT + CM0LD +
k∑
i=1

PMi
CMi

LD

+
k∑
i=1

k∑
j=1

PMi
CMjMi

LT +
k∑
i=1

k∑
j=1

PMiMj
CMiMj

LD (4.14)

where PMi
denotes the probability of the set Mi being triggered, and PMiMj

denotes the
probability that Mj is triggered at a synchronous step and Mi is triggered at the step before
(i.e. mode switch from Mi to Mj). k

′ is the number of additional backward trigger messages.
In the case that the data messages are much longer than trigger/control messages, and

that the mode switch happens sporadically, the communication saving ratio accomplished
by our method can be approximated to∑k

i=1CMi
−
∑k

i=1 PMi
CMi∑k

i=0CMi

≥
∑k

i=1CMi
−maxki=1{CMi

}∑k
i=0CMi

(4.15)

In the case that the number of messages in each set is close to each other, the communication
saving ratio approximates to

k − 1

k + 1
(4.16)

Intuitively, the savings are due to the fact that only the data messages in set M0 and the
set that is triggered by M0 are transmitted at a synchronous step in our approach.

Randomly Generated Triggered SBDs
Furthermore, to show the effectiveness of our distribution method for Triggered SBDs in

general case, we conducted experiments computing the communication savings on randomly

CHAPTER 4. CODE GENERATION AND COMMUNICATION INTERFACE
SYNTHESIS 79

generated Triggered SBDs. We use TGFF3 to generate random directed acyclic graphs
consisted of blocks and links, and randomly pick some of the links as trigger links. We then
assign a probability of not being triggered to every block that has a trigger. Specifically,
the probability is assigned as a uniformly distributed random number in the range [0, 2x],
where x is the expectation of the random number and should be no larger than 0.5. The
communication savings of the randomly generated Triggered SBDs can be calculated using
Equation (4.7).

We generated Triggered SBDs with the number of blocks ranging from 100 to 1000. The
experiment result in Figure 4.9 shows the average communication savings for those Triggered
SBDs when the average probability of blocks not being triggered goes from 0.1 to 0.5. We
picked four communication protocols, CAN bus, ZigBee, Wi-Fi and TTP/C, which have
different message overheads and maximum data payloads (and therefore result in different
LD and LT). The communication saving ratios achieved by our distribution method increase
approximately in a linear relation with the probability of blocks not being triggered, and the
saving ratios for the protocols Wi-Fi and TTP/C are larger than CAN bus and ZigBee due
to the fact that the former two groups can have bigger ratio of LD to LT than the latter two.

‐5% 

0% 

5% 

10% 

15% 

20% 

25% 

30% 

35% 

0.1  0.2  0.3  0.4  0.5 

av
er
ag
e 
sa
vi
ng
 p
er
ce
nt
ag
e 

average probability of blocks not being triggered  

Communica7on Savings 

CAN 

ZigBee 

Wi‐Fi 

TTP/C 

Figure 4.9: Average communication savings with different probability of blocks not being
triggered.

We also conducted another experiment to show the impact on communication savings
when the numbers of trigger links in Triggered SBDs are different. After a random graph is

3 http://ziyang.eecs.umich.edu/ dickrp/tgff/

http://ziyang.eecs.umich.edu/~dickrp/tgff/

CHAPTER 4. CODE GENERATION AND COMMUNICATION INTERFACE
SYNTHESIS 80

generated by TGFF, we randomly pick some of the non-source blocks to be ones with trigger
inputs. Specifically, a non-source block is picked with a probability of p, and if a block is
picked, one of its input links is randomly chosen as the trigger link. Therefore, the expected
percentage of non-source blocks that have triggers is p. We generated such Triggered SBDs
with the number of blocks ranging from 100 to 1000, and p ranging from 0.1 to 1. The
probability of not being triggered is assigned to every block that has a trigger as a uniformly
distributed random number in the range [0, 1] . The experiment result in Figure 4.10 shows
the average communication saving ratios increase approximately linearly with the percentage
of non-source blocks that have triggers.

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1 

av
er
ag
e 
sa
vi
ng
 p
er
ce
nt
ag
e 

percentage of non‐source blocks with triggers 

Communica8on Savings 

CAN 

ZigBee 

Wi‐Fi 

TTP/C 

Figure 4.10: Average communication savings with different percentage of non-source blocks
with triggers.

81

Chapter 5

Conclusion and Future Work

5.1 Closing Remarks

We propose a systematic software synthesis flow for distributed embedded systems. It enables
integrating heterogeneous input models, conducts automatic design space exploration, and
performs code generation while guaranteeing semantic correctness. In closing, we wish to
outline the following characteristics of our approach:

Integration
The introduction of IF as a unified representation and an intermediate layer enables the

integration of heterogeneous input models, as well as the integration of a modeling front-end
and a synthesis back-end. The integration of heterogeneous inputs is particularly important,
as with the increasing complexity of the distributed embedded systems, it is common to have
different parts of the systems modeled in different languages or semantics, and by different
teams. The usage of IF provides a unified environment to tackle the heterogeneity and apply
optimization and synthesis tools. This feature is demonstrated in the room temperature
control system case study presented in Section 2.2. The input model consists of a control
algorithm modeled in Simulink and a plant modeled in Modelica. After translating both
of them to a unified representation in IF, simulation can be applied to study the system
behavior, as well as the following steps in the flow to optimize and synthesize the system,
including mapping, code generation and communication interface synthesis.

Optimality
The mapping process in our synthesis flow focuses on automatically exploring the design

space to optimize various design metrics such as performance, cost and extensibility. With
the scale of the modern embedded systems (especially on the software side) rapidly increasing,
such automation is essential to achieve optimal and reliable design. We propose a general
mapping flow, as well as customized algorithms to optimally solve the mapping problems in
two different application domains. For building automation and control systems, the focus is

CHAPTER 5. CONCLUSION AND FUTURE WORK 82

to minimize the cost of the control system by exploring mapping and architectural exploration
together. One interesting aspect is the explicit consideration of the physical aspects such as
building layout as well as sensor and actuator locations. For CAN-bus based systems, the
focus is to maximize the extensibility of system, a metric that is very important for large-
volume and long life-time products. We design an algorithm that combines mathematical
programming with heuristics, which we believe offers the best trade-off among optimality,
efficiency and flexibility.

Behavior Preservation
Another important aspect in our synthesis flow is to preserve the behavior of the in-

put specification. This is extremely important for distributed embedded systems, many of
which are safety critical. In many cases, this is also very challenging, as it is common for
such systems to employ an asynchronous distributed architecture for cost concern, while the
input specification is synchronous to facilitate verification. To bridge the gap between a
synchronous specification and an asynchronous architectural platform, we propose a code
generation back-end with communication interface synthesis to guarantee semantic equiva-
lence. We extend the distribution method proposed in [69] to open systems that interact
with the physical environment, and also propose a method for Triggered synchronous models,
which guarantees behavior preservation while optimizing communication load.

5.2 Future Work

In the future, we expect the problem of software synthesis to have increasing importance in
the design of distributed embedded systems. Some of the biggest challenges will include inte-
grating software from multiple sources and verifying the system level properties, co-designing
the software with the embedded hardware platform, analyzing the software behavior under
the impact of uncertain physical environment, etc. Our proposed software synthesis flow may
serve as an initial step for building a solid foundation of design methodologies and tools to
address these challenges. Various synthesis, simulation, optimization and verification tools
can be built around the IF and integrated to the flow.

One possible extension to the software synthesis flow is to co-design the control algorithms
and the architectural platform. In our case study of mapping the room temperature control
system, we tried exploring the architectural platform with a given control algorithm. We
believe the other direction is also valuable – the control algorithm may be optimized by
leveraging the characteristics of the potential architectural platform.

Other extensions may include considering emerging architectures in design space explo-
ration such as multicore processors and wireless platforms, co-designing multiple subsystems
such as the HVAC system and the lighting system in building automation and control, ex-
ploring other design metrics during the synthesis such as reliability and security.

83

Bibliography

[1] ANTLR. http://www.antlr.org/.

[2] ARCNET. http://www.arcnet.com.

[3] ASHRAE. http://www.ashrae.org.

[4] Dymola. http://www.3ds.com/products/catia/portfolio/dymola.

[5] EIKON-LogicBuilder for WebCTRL. http://www.automatedlogic.com.

[6] Modelica. http://www.modelica.org.

[7] Simulink. http://www.mathworks.com.

[8] The Hybrid System Interchange Format. http://www.isis.vanderbilt.edu/

Projects/mobies/downloads.asp.

[9] Metasys GPL Programmer’s Mannual, 2004.

[10] User’s Guide EIKON for WebCTRL, 2005.

[11] Honeywell Spyder User’s Guide, 2007.

[12] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard real-time schedul-
ing: The deadline monotonic approach. In Proceedings 8th IEEE Workshop on Real-
Time Operating Systems and Software, Atalanta, 1991.

[13] F. Balarin, M. Chiodo, P. Giusto, et al. Synthesis of software programs for embedded
control applications. IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 18(6):834–849, 1999.

[14] F. Balarin, M. D’Angelo, A. Davare, et al. Platform-Based Design and Frameworks:
Metropolis and Metro II. In Gabriela Nicolescu and Pieter J. Mosterman, editors,
Model-Based Design for Embedded Systems. CRC Press, 2009.

[15] I. Bate and P. Emberson. Incorporating scenarios and heuristics to improve flexibility
in real-time embedded systems. In 12th IEEE RTAS Conference, pages 221–230, April
2006.

http://www.antlr.org/
http://www.arcnet.com
http://www.ashrae.org
http://www.3ds.com/products/catia/portfolio/dymola
http://www.automatedlogic.com
http://www.modelica.org
http://www.mathworks.com
http://www.isis.vanderbilt.edu/Projects/mobies/downloads.asp
http://www.isis.vanderbilt.edu/Projects/mobies/downloads.asp

BIBLIOGRAPHY 84

[16] D. Baudisch, J. Brandt, and K. Schneider. Dependency-driven distribution of syn-
chronous programs. In DIPES/BICC, 2010.

[17] A. Benveniste, A. Bouillard, and P. Caspi. A unifying view of loosely time-triggered
architectures. In L. P. Carloni and S. Tripakis, editors, EMSOFT, pages 189–198. ACM,
2010.

[18] A. Benveniste, B. Caillaud, and P. Le Guernic. Compositionality in dataflow syn-
chronous languages: specification and distributed code generation. Information and
Computation, 163:125–171, 2000.

[19] A. Benveniste, P. Caspi, M. di Natale, et al. Loosely time-triggered architectures based
on communication-by-sampling. In Proc. of the 7th international conference on embed-
ded software, pages 231–239, 2007.

[20] A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone.
The synchronous languages 12 years later. Proc. IEEE, 91(1):64–83, January 2003.

[21] A. Benveniste, P. Caspi, P. Guernic, et al. A Protocol for Loosely Time-Triggered
Architectures. In Proc. of the 2nd international conference on embedded software, pages
252–265, 2002.

[22] E. Bini, M. Di Natale, and G. Buttazzo. Sensitivity analysis for fixed-priority real-time
systems. In Euromicro Conference on Real-Time Systems, Dresden, Germany, June
2006.

[23] Bloomberg. Boeing Delays 787’s First Flight to November-December, September 2007.

[24] Bloomberg. Recalls Triple as Electronics Run Cars, Swamp U.S. Regulators, March
2010.

[25] A. Burns. Scheduling hard real-time systems: a review. Software Engineering Journal,
6(3):116–128, 1991.

[26] L. Carloni, F. De Bernardinis, C. Pinello, A. Sangiovanni-Vincentelli, and M. Sgroi.
Platform-Based Design for Embedded Systems. In The Embedded Systems Handbook.
CRC Press, 2005.

[27] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli. Theory of latency-insensitive
design. IEEE Trans. on CAD of Integrated Circuits and Systems, 20(9), 2001.

[28] J. Carmona, J. Cortadella, M. Kishinevsky, and A. Taubin. Elastic circuits. Trans.
Comp.-Aided Des. Integ. Cir. Sys., 28:1437–1455, October 2009.

[29] P. Caspi and A. Benveniste. Time-robust discrete control over networked loosely time-
triggered architectures. In CDC, pages 3595–3600. IEEE, 2008.

BIBLIOGRAPHY 85

[30] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, and P. Niebert. From Simulink
to SCADE/Lustre to TTA: a Layered Approach for Distributed Embedded Applications.
In LCTES’03, 2003.

[31] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: a declarative language for
programming synchronous systems. In 14th ACM Symp. POPL. ACM, 1987.

[32] International Data Corporation. Intelligent Systems Transforming the Embedded In-
dustry, According to IDC, September 2011.

[33] A. Davare, Q. Zhu, M. Di Natale, et al. Period optimization for hard real-time dis-
tributed automotive systems. In Proc. of the 44th Design Automation Conference,
pages 278–283, June 2007.

[34] M. Di Natale, A. Benveniste, P. Caspi, et al. Applying LTTA to guarantee flow of
data requirements in distributed systems using Controller Area Networks. Proc. of the
Design, Automation and Test in Europe Workshop Dependable Software Systems, 2008.

[35] J.J.G. Garcia and M. G. Harbour. Optimized priority assignment for tasks and messages
in distributed hard real-time systems. In 3rd Workshop on Parallel and Distributed
Real-Time Systems, 1995.

[36] T. Gautier and P. Le Guernic. Code generation in the SACRES project. In Safety-
critical Systems Symposium, SSS’99, pages 127–149. Springer, 1999.

[37] A. Hamann, R. Racu, and R Ernst. A formal approach to robustness maximization of
complex heterogeneous embedded systems. In Proc. of the CODES/ISSS Conference,
October 2006.

[38] A. Hamann, R. Racu, and R Ernst. Methods for multi-dimensional robustness opti-
mization in complex embedded systems. In Proc. of the ACM EMSOFT Conference,
September 2007.

[39] A. Hamann, R. Racu, and R Ernst. Multi-dimensional robustness optimization in het-
erogeneous distributed embedded systems. In Proc. of the 13th IEEE RTAS Conference,
April 2007.

[40] G. Kahn. The semantics of a simple language for parallel programming. In Information
Processing 74, Proceedings of IFIP Congress 74. North-Holland, 1974.

[41] K. Keutzer, S. Malik, A. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli. Sys-
tem Level Design: Orthogonolization of Concerns and Platform-Based Design. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 19(12),
December 2000.

[42] Z. Kohavi. Switching and finite automata theory, 2nd ed. McGraw-Hill, 1978.

BIBLIOGRAPHY 86

[43] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings of the IEEE,
91(1):112–126, 2003.

[44] E. A. Lee and T. Parks. Dataflow process networks. In Proc. of the IEEE, pages
773–799, 1995.

[45] R. Lublinerman and S. Tripakis. Modular code generation from triggered and timed
block diagrams. In RTAS, 2008.

[46] J. Lygeros, C. Tomlin, and S. Sastry. Controllers for reachability specifications for
hybrid systems. Automatica, 35:349–370, 1999.

[47] M. Maasoumy, A. Pinto, and A. Sangiovanni-Vincenteli. Model-based hierarchical opti-
mal control design for HVAC systems. In Dynamic System Control Conference (DSCC),
2011. ASME, 2011.

[48] A. Metzner and C. Herde. RTSAT– an optimal and efficient approach to the task
allocation problem in distributed architectures. In Proc. of the IEEE RTSS Conference,
2006.

[49] A. K. Mok and W.-C. Poon. Non-preemptive robustness under reduced system load. In
RTSS ’05: Proceedings of the 26th IEEE International Real-Time Systems Symposium,
pages 200–209, Washington, DC, USA, 2005. IEEE Computer Society.

[50] M. Di Natale, W. Zheng, C. Pinello, et al. Optimizing end-to-end latencies by adaptation
of the activation events in distributed automotive systems. In Proc. of the 13th Real
Time and Embedded Technology and Applications Symposium, pages 293–302, April
2007.

[51] National Science and Technology Council, Committee on Technology. Federal research
and development agenda for net-zero energy, high-performance green buildings. 2008.

[52] ILOG CPLEX Optimizer. http://www.ilog.com/products/cplex/.

[53] A. Pinto, L. Carloni, and A. Sangiovanni-Vincentelli. A Communication Synthesis
Infrastructure for Heterogeneous Networked Control Systems and Its Application to
Building Automation and Control. In Proc. of the 7th international conference on
embedded software, 2007.

[54] A. Pinto, L. P. Carloni, R. Passerone, et al. Interchange Format for hybrid systems:
Abstract semantics. In Proc. of Hybrid Systems: Computation and Control, 9th Inter-
national Workshop, pages 491–506, 2006.

[55] A. Pinto, M. D’Angelo, C. Fischione, et al. Synthesis of embedded networks for building
automation and control. In Proc. of American Control Conference, 2008.

BIBLIOGRAPHY 87

[56] A. Pinto, A. Sangiovanni-Vincentelli, L. P. Carloni, et al. Interchange Formats for
hybrid systems: Review and proposal. In Proc. of Hybrid Systems: Computation and
Control, 8th International Workshop, pages 526–541, 2005.

[57] Alessandro Pinto, Luca P. Carloni, and Alberto L. Sangiovanni Vincentelli. COSI:
A Framework for the Design of Interconnection Networks. IEEE Design and Test of
Computers, 25(5), 2008.

[58] P. Pop, P. Eles, and Z. Peng. Schedulability-driven frame packing for multicluster
distributed embedded systems. Trans. on Embedded Computing Sys., 4(1):112–140,
2005.

[59] P. Pop, P. Eles, Z. Peng, and T. Pop. Scheduling and mapping in an incremental design
methodology for distributed real-time embedded systems. IEEE Trans. VLSI Syst.,
12(8):793–811, 2004.

[60] T. Pop, P. Eles, and Z. Peng. Design optimization of mixed time/event-triggered dis-
tributed embedded systems. In Proc. of the CODES+ISSS Conference, New York, NY,
USA, 2003. ACM Press.

[61] D. Potop-Butucaru, B. Caillaud, and A. Benveniste. Concurrency in synchronous sys-
tems. Formal Methods in System Design, 28(2):111–130, 2006.

[62] R. Racu, M. Jersak, and R. Ernst. Applying sensitivity analysis in real-time distributed
systems. In Proc. of the RTAS Conference, San Francisco (CA), U.S.A., March 2005.

[63] J. Romberg and A. Bauer. Loose synchronization of event-triggered networks for dis-
tribution of synchronous programs. In EMSOFT’04, pages 193–202. ACM, 2004.

[64] A. Sangiovanni-Vincentelli. Quo Vadis, SLD? Reasoning About the Trends and Chal-
lenges of System Level Design. Proceedings of the IEEE, 95(3):467–506, March 2007.

[65] C. Sofronis, S. Tripakis, and P. Caspi. A memory-optimal buffering protocol for preser-
vation of synchronous semantics under preemptive scheduling. In Proc. of the 6th in-
ternational conference on embedded software, pages 21–33, 2006.

[66] IEEE Spectrum. This Car Runs on Code, February 2009.

[67] P. Torcellini, S. Pless, and M. Deru. Zero Energy Buildings: A Critical Look at the
Definition. ACEEE Summer Study on Energy Efficiency in Buildings, June 2006.

[68] M. Törngren. Fundamentals of implementing real-time control applications in dis-
tributed computer systems. Real-Time Systems, 14(3):219–250, 1998.

[69] S. Tripakis, C. Pinello, A. Benveniste, A. Sangiovanni-Vincent, P. Caspi, and M. Di Na-
tale. Implementing synchronous models on loosely time triggered architectures. IEEE
Trans. Comput., 57(10):1300–1314, 2008.

BIBLIOGRAPHY 88

[70] M. Wetter and P. Haves. Modelica library for building hvac and control systems.
https://gaia.lbl.gov/bir.

[71] F. Xia, F. Hao, I. Clark, et al. Buffered asynchronous communication mechanisms.
Fundam. Inf., 70(1):155–170, 2005.

[72] F. Xia, A. Yakovlev, I. Clark, et al. Data communication in systems with heterogeneous
timing. IEEE Micro, 22(6):58–69, 2002.

[73] Y. Yang, S. Tripakis, and A. Sangiovanni-Vincentelli. Efficient distribution of triggered
synchronous block diagrams. (UCB/EECS-2011-115), Oct 2011. http://www.eecs.

berkeley.edu/Pubs/TechRpts/2011/EECS-2011-115.html.

[74] R. Yerraballi and R. Mukkamalla. Scalability in real-time systems with end-to-end
requirements. In Journal of Systems Architecture, volume 42, pages 409–429, 1996.

[75] W. Zheng, Q. Zhu, M. Di Natale, and A. Sangiovanni-Vincentelli. Definition of task
allocation and priority assignment in hard real-time distributed systems. In RTSS, pages
161 –170, 2007.

[76] W. Zheng, Q. Zhu, M. Di Natale, and A. Sangiovanni-Vincentelli. Definition of task
allocation and priority assignment in hard real-time distributed systems. In Proc. of
the IEEE RTSS Conference, 2007.

[77] Q. Zhu, Y. Yang, M. Di Natale, E. Scholte, and A. Sangiovanni-Vincentelli. Optimizing
the Software Architecture for Extensibility in Hard Real-Time Distributed Systems. the
IEEE Transactions on Industrial Informatics, 6(4):621–636, 2010.

[78] Q. Zhu, Y. Yang, E. Scholte, et al. Optimizing extensibility in hard real-time distributed
systems. In Proc. of the 15th Real-Time and Embedded Technology and Applications
Symposium, pages 275–284, 2009.

[79] Q. Zhu, H. Zeng, W. Zheng, M. Di Natale, and A. Sangiovanni-Vincentelli. Optimization
of Task Allocation and Priority Assignment in Hard Real-Time Distributed Systems.
accepted by the ACM Transactions on Embedded Computing Systems, special issue on
the synthesis of cyber-physical systems, 2012.

[80] J. Zou, S. Matic, E. A. Lee, et al. Execution strategies for ptides, a programming
model for distributed embedded systems. In Proc. of the 15th Real-Time and Embedded
Technology and Applications Symposium, pages 77–86. IEEE Computer Society, 2009.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-115.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-115.html

	Contents
	List of Figures
	List of Tables
	Introduction
	A Systematic Software Synthesis Flow
	Application Domains
	Related Work

	Intermediate Format
	IF Translation and IF library
	Case Study

	Mapping
	General Mapping Flow
	Cost Optimization Mapping Algorithm for BAC Systems
	Extensibility Optimization Mapping Algorithm for CAN-bus based Systems

	Code Generation and Communication Interface Synthesis
	Code Generation
	Communication Interface Synthesis

	Conclusion and Future Work
	Closing Remarks
	Future Work

	Bibliography

