
Labelled Execution Systems

Eleftherios Matsikoudis
Edward A. Lee

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-64

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-64.html

May 7, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work was supported in part by the Center for Hybrid and Embedded
Software Systems (CHESS) at UC Berkeley, which receives support from
the National Science Foundation (NSF awards \#0720882 (CSR-EHS:
PRET), \#1035672 (CPS: PTIDES), and \#0931843 (ActionWebs)), the U.
S. Army Research Lab (ARL \#W911NF-11-2-0038), the Air Force
Research Lab (AFRL), the Multiscale Systems Center (MuSyC), one of six
research centers funded under the Focus Center Research Program, a
Semiconductor Research Corporation program, and the following
companies: Bosch, National Instruments, Thales, and Toyota.

Labelled Execution Systems∗

Eleftherios Matsikoudis Edward A. Lee

Abstract

Interleaving theories have traditionally failed to integrate a satisfactory treatment of the so-called
“finite delay property”. This is generally attributed to the expansion law of such theories, but actually,
the problem is rooted in the concept of labelled transition system. We introduce a new type of system,
in which, instead of labelled transitions, we have, essentially, sequences of labelled transitions. We call
systems of this type labelled execution systems. We use a coalgebraic representation to obtain, in a
canonical way, a suitable concept of bisimilarity among such systems, study the conditions under which
that concept agrees with the intuitive understanding of equivalence of branching structure that one has
for these systems, and examine their relationship with labelled transition systems, precisely
characterizing the difference in expressive power and branching complexity between the two kinds of
systems.

1 Introduction

The process algebra literature is dominated by the concept of labelled transition system. And to some
extent, this is understandable. For process algebra emerged from the marriage of Plotkin’s structural
operational semantics (see [53]) and Keller’s named transition systems (see [36]) (see [46, chap. 12], [13],
[54], [11]). This marriage was the work of Robin Milner, and is most clearly expounded in [46], but was
already present in [42], where the so-called “expansion law” was stated for the first time.

The expansion law has been a constant source of controversy in the theory of concurrency. In the language
of Milner’s CCS (see [43], [46]), a typical equation asserted by the law is the following:

a.0 | b.0 = a.b.0 + b.a.0. (1)

Here, ‘a’ and ‘b’ stand for arbitrary actions, ‘0’ for the inactive agent, which is incapable of performing any
action, ‘.’ for sequential composition, ‘|’ for parallel composition, and ‘+’ for alternative composition. And
the intended meaning of (1) is that the parallel execution of a and b is “equivalent”, in some sense, to the
indeterminate serialization of the two.

In order to justify the expansion law, and the blurring between causal dependence and temporal
precedence resulting from it, Milner wrote the following in [42, p. 81]:

We do not yet know how to frame a sufficiently general law without, in a sense, explicating
parallelism in terms of non-determinism. More precisely, this means that we explicate a
(parallel) composition by presenting all serializations - or interleavings - of its possible atomic
actions. This has the disadvantage that we lose distinction between causally necessary sequence,

∗ This work was supported in part by the Center for Hybrid and Embedded Software Systems (CHESS) at UC Berkeley,
which receives support from the National Science Foundation (NSF awards #0720882 (CSR-EHS: PRET), #1035672 (CPS:
PTIDES), and #0931843 (ActionWebs)), the U. S. Army Research Lab (ARL #W911NF-11-2-0038), the Air Force Research
Lab (AFRL), the Multiscale Systems Center (MuSyC), one of six research centers funded under the Focus Center Research
Program, a Semiconductor Research Corporation program, and the following companies: Bosch, National Instruments,
Thales, and Toyota.

1

and sequence which is fictitiously imposed upon causally independent actions; However, it
may be justified to ignore it if we can accept the view that, in observing (communicating with)
a composite system, we make our observations in a definite time sequence, thereby causing a
sequencing of actions which, for the system itself, are causally independent.

Effectively, what he argued for was a dichotomy between causation and observation in the theory of
concurrency. And what he proposed as an observational view to the theory was the interleaving of the
atomic actions of the various agents inside a system as would be perceived by a single, sequential observer
outside the system. But what he failed to admit was that the expansion law is in fact inconsistent with
that view.

To understand the mismatch, consider the following equation derived from the expansion law, again in the
language of CCS:

fix(X = a.X) | fix(X = b.X) = fix(X = a.X + b.X). (2)

Here, we use recursion expressions to define agents with infinite behaviour. Thus, fix(X = a.X) is an agent
that forever iterates a, fix(X = b.X) one that forever iterates b, and fix(X = a.X + b.X) one that at each
iteration does either a or b, indeterminately choosing between the two. But whereas every infinite sequence
over {a, b} is a trace of a possible execution of fix(X = a.X + b.X), not every such sequence is consistent
with what could be perceived by a sequential observer of fix(X = a.X) | fix(X = b.X). Indeed, only those
sequences that contain both an infinite number of a’s and an infinite number of b’s are. For if
fix(X = a.X) and fix(X = b.X) execute in parallel, each of them must eventually perform an infinite
number of actions, and each of these actions must eventually be perceived by any sequential observer of
fix(X = a.X) | fix(X = b.X).

All this goes unnoticed in the finite case, because interleaving the executions of two finite agents is
ultimately equivalent to indeterminately alternating between the two. But the expansion law blindly
carried that equivalence over to the infinite case. And this created confusion. Interleaving became
synonymous with bounded indeterminacy (see [24, chap. 9]), and the observational view was robbed of its
power to express properties like fairness (see [55]) or the finite delay property (see [34]) (e.g., see [50]).

Of course, it is not the expansion law per se that is to blame for this confusion. In order to develop an
observational theory of processes of some kind, one must decide what the unit of observation should be.
For a theory based on the concept of labelled transition system, this unit is effectively fixed to what can be
represented by a single transition: a single action or event. But at that scale of observation, it is only the
local properties of the behaviour of a process that carry over to the model. Non-local properties, specifically
those concerning infinite executions of the process, do not. For examples of the first kind, one may look at
safety properties, such as mutual exclusion or deadlock freedom, whereas for examples of the second kind,
one may look at liveness properties, such as termination or guaranteed service (see [38], [40], [9]).

To risk an analogy, we might think of a labelled transition system as an intuitionistic approach to a model
of a process. For an intuitionist, an infinite execution cannot possibly claim existence as a completed
totality of actions or events. It is only “a manifold of possibilities open towards infinity; it remains forever
in the status of creation, but is not a closed realm of things existing in themselves” (see [63, p. 9]). And
this rejection of the notion of actual infinity is detrimental to the expressiveness of the approach. A process
is demoted to a graph, and every path through that graph is promoted to an execution of that process.
This is what renders indeterminacy bounded, and the real reason behind the aforementioned confusion.

We prefer what we might say is a more classical approach, where we fix the unit of observation at the level
of a complete execution of a process. And for that, we need a different kind of mathematical structure. The
purpose of this work then is to introduce a new kind of system, in which, instead of labelled transitions, one
has, essentially, sequences of labelled transitions. We call systems of this kind labelled execution systems.

By changing the unit of observation, we change the kind of experiment that we may use to investigate the
behaviour of an agent (e.g., see [43, pp. 10–12]). In principle, we can adapt Milner’s argument to this new

2

kind of experiment, and weather permitting, identify the behaviour of an agent with what we would call
the branching structure of a labelled execution system modelling that agent. But although motivated by
process algebra and its observational approach to concurrency theory, this work is not about the use of
labelled execution systems as models of behaviour. Our goal here is to develop a thorough understanding
of what this so-called “branching structure” of a labelled execution system is, more or less independently of
what it might be used to model.

It is instructive to look back on how our understanding of the notion of branching structure evolved in the
case of labelled transition systems. The notion originated in Milner’s work, albeit in an indirect way: two
systems were understood to have the same branching structure just as long as they were “observationally
equivalent”. Its use as a characterization of the behaviour of a communicating agent as experienced by an
external observer experimenting on that agent generated some controversy (e.g., see [15]), but the notion
itself proved to be an important one, both in theory and practice. Soon after its inception, it was honed by
David Parks’s concept of bisimilarity (see [51]), and before long, parlayed through Peter Aczel’s work (see
[3], [6]) into an overarching theory of universal coalgebra (e.g., see [58], [28]). This produced not only a
direct formalization of the notion, in the shape of the concept of final coalgebra, but also a purely
mathematical justification for it. It was now possible to speak of the notion as part of an extensional
approach to systems, rather than an observational view of processes, and perhaps more importantly,
expand its scope to any kind of mathematical structure amenable to coalgebraic treatment.

Here, we subject our newly introduced systems to such treatment. We find that the theory of coalgebra
offers a convenient and powerful analytical framework for studying these systems and working out their
relationship with the more traditional transition-based systems.

The main contributions of this work are the following:

• we define labelled execution systems (see Definition 4.1);

• we represent labelled execution systems coalgebraically (see Definition 4.2 and Proposition 4.3), and
use that representation to obtain, in a canonical way, a suitable concept of bisimilarity among such
systems (see Proposition 4.4, Definition 4.5, and Proposition 4.6);

• we show that for the obtained concept of bisimilarity to agree with the intuitive understanding of
equivalence of branching structure that one has for labelled execution systems, two properties are
necessary: suffix closure and fusion closure (see Section 4.3);

• we truncate the executions of a labelled execution system to get a uniquely determined underlying
labelled transition system, and prove that bisimilarity among labelled execution systems implies
bisimilarity among their respective underlying labelled transition systems (see Theorem 4.13);

• we show that the converse fails if any of the following four properties fails: suffix closure, fusion
closure, limit closure, and what we call impossibility of indeterminate termination (see Section 4.5);

• we prove that essentially these four properties constitute a complete characterization of what we call
generable labelled execution systems, namely labelled executions systems that are generated from
their respective underlying labelled transition systems (see Theorem 4.24);

• we prove that bisimilarity among generable labelled execution systems is equivalent to bisimilarity
among their respective underlying labelled transition systems (see Theorem 4.32), rendering the
characterization of generable labelled execution systems a characterization of the difference in
complexity of branching structure between arbitrary labelled executions systems and labelled
transition systems (see also Theorem 4.25, Corollary 4.26 and Theorem 4.33).

The rest of this document is organized into five sections. In Section 2, we provide a brief, but rather
comprehensive, overview of the theory of universal coalgebra. In Section 3, we review the concept of
labelled transition system and Park’s concept of bisimilarity, and go over their coalgebraic representation.
The main body of this work is in Section 4, where we define labelled execution systems, work out their

3

coalgebraic representation, and use that representation to study their branching structure, and characterize
their relationship with labelled transition systems. In Section 5, we discuss related work. We conclude in
Section 6 with a few comments on the implications of our results, and some directions for future work.

We would like to finish this introduction with a few remarks.

First, throughout this work, we maintain a formal distinction between systems and their coalgebraic
representations. This is done for the benefit of the non-coalgebraist, who we think could use a more careful
exposition of the correspondence between the two, and the more application-oriented reader, who might
only be interested in results on systems.

Second, working with coalgebras, we will need to make reference to a few common concepts from category
theory, e.g., the concepts of category, functor, natural transformation, etc., and we will assume some
minimal level of familiarity with these concepts on the reader’s part. For a gentle introduction to such
concepts, and category theory in general, we refer to [52].

And third, we choose the category of all classes and all class functions between them as the underlying
category of our coalgebraic framework. This is a “surprisingly coalgebra-friendly category” (see [8, p. 3]),
which is one of the main reasons for choosing to work with it. And while it is possible to avoid such a
super-large category, by only considering endofunctors that are bounded in some suitable sense, we think
that classes provide for a cleaner, unobscured presentation of our ideas (see also discussion at end of
Section 3). Any concerns of foundational nature regarding the excessive size of this category can be
addressed in one way or another (e.g., see [41, chap. I] or [7, chap. 2]), but a thorough treatment would be
out of place here, and in any case, we will avoid impredicative constructions and comprehension principles
that test the consistency of the theory.

2 Background

In this section, we briefly overview the theory of universal coalgebra. We deliberately include here more of
the theory than is strictly needed for the purposes of this work, what we think is justified on the following
grounds: (i) we think that the exposure of the broader community to the theory is, regrettably, at best
limited, and (ii) we believe that the reader will be able to better appreciate our methods and results once
equipped with a more rounded view of the theory. For a more detailed introduction, we refer the interested
reader to [58] or [28].

2.1 Coalgebras

Assume an endofunctor F on Class.1

Definition 2.1. An F -coalgebra is an ordered pair 〈C, γ〉 such that the following are true:

(a) C is a class;

(b) γ is a class function from C to F (C).

In general, an F -coalgebra 〈C, γ〉 will represent one or several rules for decomposing things from C, as
determined by γ, into particular combinations of things from C, as encoded by F .

Assume an F -coalgebra 〈C, γ〉.
1 We write Class for the category whose objects are all the classes, and arrows all the class functions2.
2 A class function f is an ordered triple 〈D,C,G〉 such that D is a class, C is a class, G ⊆ D × C, and for every d ∈ D,

there is exactly one c such that 〈d, c〉 ∈ G. We write dom f for D, cod f for C, and graph f for G. We call dom f the domain of
f , cod f the codomain of f , and graph f the graph of f . We write f : C1 → C2 if and only if dom f = C1 and cod f = C2.

4

We call C the carrier of 〈C, γ〉, and γ the cooperation of 〈C, γ〉.

We say that 〈C, γ〉 is small if and only if C is a set.

2.2 Homomorphisms

Assume F -coalgebras 〈C1, γ1〉 and 〈C2, γ2〉.

Definition 2.2. A homomorphism from 〈C1, γ1〉 to 〈C2, γ2〉 is a class function h : C1 → C2 such that

F (h) ◦ γ1 = γ2 ◦ h,

or equivalently, the following diagram commutes:

C1 C2

F (C1) F (C2)

h

γ1 γ2

F (h)

A homomorphism from one F -coalgebra to another is a structure-preserving map that carries the
decomposition patterns of the first coalgebra to those of the second. In particular, it establishes a
similarity of structure between its domain and range (see Theorem 2.10).

We say that h is an endomorphism on 〈C, γ〉 if and only if h is a homomorphism from 〈C, γ〉 to 〈C, γ〉.

We say that 〈C1, γ1〉 is a homomorphic image of 〈C2, γ2〉 if and only if there is a surjective homomorphism
from 〈C2, γ2〉 to 〈C1, γ1〉.

We say that h is an isomorphism between 〈C1, γ1〉 and 〈C2, γ2〉 if and only if h is a bijective
homomorphism from 〈C1, γ1〉 to 〈C2, γ2〉.

Proposition 2.3. If h is an isomorphism between 〈C1, γ1〉 and 〈C2, γ2〉, then h−1 is an isomorphism
between 〈C2, γ2〉 and 〈C1, γ1〉.

Proof. See [58, prop. 2.3].3

We say that 〈C1, γ1〉 and 〈C2, γ2〉 are isomorphic if and only if there is an isomorphism between 〈C1, γ1〉
and 〈C2, γ2〉.

Isomorphic F -coalgebras are structurally identical, and for all practical purposes, may be thought of as the
same object.

We say that h is an automorphism on 〈C, γ〉 if and only if h is an isomorphism between 〈C, γ〉 and 〈C, γ〉.

The following is easy:

Proposition 2.4. The following are true:

(a) idC is an automorphism on 〈C, γ〉;
3 Quite often, we shall cite results from bibliographic references in our proofs. And in many cases, these results will have

been stated and proved in a different setting. For example, in [58], Rutten works with the category Set of all sets and all
functions between them, not Class. But in all cases, their proofs will remain valid in our setting here, unchanged or only
trivially modified.

5

(b) if h1 is a homomorphism from 〈C1, γ1〉 to 〈C, γ〉, and h2 is a homomorphism from 〈C, γ〉 to 〈C2, γ2〉,
then h2 ◦ h1 is a homomorphism from 〈C1, γ1〉 to 〈C2, γ2〉.

We write F -Coalg for the category whose objects are all the F -coalgebras, and arrows all the
homomorphisms from one F -coalgebra to another.

2.3 Bisimulations

Definition 2.5. A bisimulation between 〈C1, γ1〉 and 〈C2, γ2〉 is a binary class relation4 B : C1 ↔ C2 such
that there is an F -coalgebra 〈graphB, β〉 such that dprB is a homomorphism from 〈graphB, β〉 to 〈C1, γ1〉,
and cprB is a homomorphism from 〈graphB, β〉 to 〈C2, γ2〉,5 or equivalently, the following diagram
commutes:

C1 graphB C2

F (C1) F (graphB) F (C2)

γ1

dprB cprB

γ2

F (dprB) F (cprB)

β

We say that c1 and c2 are bisimilar among 〈C1, γ1〉 and 〈C2, γ2〉 if and only if there is a bisimulation B
between 〈C1, γ1〉 and 〈C2, γ2〉 such that c1 B c2.

By Definition 2.5, a binary class relation between two F -coalgebras is a bisimulation just as long as we can
impart its graph with the structure of an F -coalgebra that turns the projection maps from the graph to the
carriers of the two F -coalgebras into homomorphisms. But really, there is nothing particularly special
about such an F -coalgebra.

Theorem 2.6. B is a bisimulation between 〈C1, γ1〉 and 〈C2, γ2〉 if and only if there is an F -coalgebra
〈C, γ〉, a homomorphism h1 from 〈C, γ〉 to 〈C1, γ1〉, and a homomorphism h2 from 〈C, γ〉 to 〈C2, γ2〉, such
that

B = h−11 ;h2.6

Proof. See [58, lem. 5.3] and [28, thm. 5.11].

Assume F -coalgebras 〈C ′1, γ′1〉 and 〈C ′2, γ′2〉.

The following is immediate:

Corollary 2.7. If B is a bisimulation between 〈C1, γ1〉 and 〈C2, γ2〉, h1 a homomorphism from 〈C1, γ1〉 to
〈C ′1, γ′1〉, and h2 a homomorphism from 〈C2, γ2〉 to 〈C ′2, γ′2〉, then h−11 ;B ;h2 is a bisimulation between
〈C ′1, γ′1〉 and 〈C ′2, γ′2〉.

4 A binary class relation R is an ordered triple 〈D,C,G〉 such that D is a class, C is a class, and G ⊆ D × C. We write
domR for D, codR for C, and graphR for G. We call domR the domain of R, codR the codomain of R, and graphR the
graph of R. We write R : C1 ↔ C2 if and only if domR = C1 and codR = C2.

5 For every binary class relation R, we write dpr R for a class function from graphR to domR such that for any
〈c1, c2〉 ∈ graphR, (dpr R)(〈c1, c2〉) = c1, and cpr R for a class function from graphR to codR such that for any
〈c1, c2〉 ∈ graphR, (cpr R)(〈c1, c2〉) = c2. We call dpr R the domain projection map of R, and cpr R the codomain projection
map of R.

6 For every binary class relation R1 and R2 such that codR1 = domR2, we write R1 ;R2 for a binary class relation
between domR1 and codR2 such that for any c1 ∈ domR1 and any c2 ∈ codR2, c1 (R1 ;R2) c2 if and only if there is c such
that c1 R1 c and c R2 c2.

6

Theorem 2.8. For every class-indexed family {Bi}i∈I of bisimulations between 〈C1, γ1〉 and 〈C2, γ2〉, there
is a bisimulation B between 〈C1, γ1〉 and 〈C2, γ2〉 such that

graphB =
⋃
i∈I

graphBi.

Proof. See [28, thm. 5.6].

Definition 2.5 was introduced in [6] as a generalization of the concept of bisimulation between labelled
transition systems (see Proposition 3.6 and 3.7). It is supposed to capture equivalence of structure. But to
what extent does it?

A disturbing fact is that, unlike bisimilarity among labelled transition systems (see Section 3), the
coalgebraic concept of bisimilarity is not, in general, an equivalence concept.

Example 2.9. Let F be an endofunctor on Class that assigns to every class C the class

F (C) = {〈c1, c2, c3〉 | {c1, c2, c3} ⊆ C and |{c1, c2, c3}| < 3},

and to every class function f : C1 → C2 a class function

F (f) : F (C1)→ F (C2)

such that for every 〈c1, c2, c3〉 ∈ F (C1),

F (f)(〈c1, c2, c3〉) = 〈f(c1), f(c2), f(c3)〉.

Let S1 = {0, 1}, and γ1 be a function from S1 to F (S1) defined by the following mapping:

0 7→ 〈0, 0, 1〉;
1 7→ 〈0, 1, 1〉.

Let S2 = {0}, and γ2 be the unique function from S2 to F (S2), namely a function from S2 to F (S2) defined
by the following mapping:

0 7→ 〈0, 0, 0〉.

Let h be the unique function from S1 to S2, namely a function from S1 to S2 defined by the following
mapping:

0 7→ 0;

1 7→ 0.

h is trivially a homomorphism from 〈S1, γ1〉 to 〈S2, γ2〉. Thus, by Theorem 2.6, 0 and h(0), and similarly, 1
and h(1), are bisimilar among 〈S1, γ1〉 and 〈S2, γ2〉 (see also Theorem 2.10). But whereas h(0) and h(1) are
equal, and thus, trivially bisimilar in 〈S2, γ2〉, 0 and 1 are not bisimilar in 〈S1, γ1〉, lest there be a binary
relation B on S1, and an F -coalgebra 〈graphB, β〉 such that 〈0, 1〉 ∈ graphB and

β(〈0, 1〉) = 〈〈0, 0〉, 〈0, 1〉, 〈1, 1〉〉.

7

This should cast serious doubt on the usefulness of the coalgebraic concept of bisimulation: how can one
hope to capture all of equivalence of structure using a concept, the induced similarity notion of which is
not, in general, transitive?

This discrepancy was not lost on Aczel and Mendler, who, also in [6], generalized the coalgebraic concept
of bisimulation further into that of what they called a precongruence, or in the case of an equivalence class
relation, a congruence. This is a technically more complicated concept: to determine whether a binary class
relation R on the carrier of an F -coalgebra 〈C, γ〉 is a precongruence on 〈C, γ〉, one has to invoke a quotient
of C with respect to the equivalence class relation generated by R, compose its image under F with γ, and
test whether R is contained in the equivalence kernel of the composite. But it is also an intuitively more
warranted concept, exactly formalizing the idea of a class relation that is compatible with the cooperation
of a coalgebra. Every bisimulation on an F -coalgebra is a precongruence, but not every precongruence on
an F -coalgebra is a bisimulation. In fact, the endofunctor that we used in Example 2.9 is one that was
devised in [6] for the express purpose of demonstrating this separation between the two concepts.

Here, mostly for the purpose of accessibility, we have decided to follow the approach of Rutten in [58], who
advocates the coalgebraic concepts of bisimulation and bisimulation equivalence as formal duals to the
algebraic ones of substitutive relation and congruence. His tacit preference over the more appropriate
concepts of precongruence and congruence of [6] is partly justified by the the fact that more can be proved
about bisimulations and bisimulation equivalences than precongruences and congruences. No matter: most
of the theory in [58] is developed under the assumption that the endofunctor F preserves weak pullbacks, a
technical condition under which the concepts of bisimulation and precongruence coincide. And although we
will never need to make explicit mention of it, every particular endofunctor considered here will actually
satisfy this condition, with the sole exception of that in Example 2.9.

That said, the inadequacy of the concept of bisimulation is not felt in any but the most contrived cases.
For all intents and purposes, bisimilarity is a sufficient measure of equivalence of structure. The following is
a case in point:

Theorem 2.10. h is a homomorphism from 〈C1, γ1〉 to 〈C2, γ2〉 if and only if h is a class function from
C1 to C2, and a bisimulation between 〈C1, γ1〉 and 〈C2, γ2〉.

Proof. See [58, thm. 2.5].

In a word, homomorphisms are functional bisimulations.

2.4 Subcoalgebras

Definition 2.11. A subcoalgebra of 〈C, γ〉 is an F -coalgebra 〈C ′, γ′〉 such that C ′ ⊆ C, and C ′ ↪→ C is a
homomorphism from 〈C ′, γ′〉 to 〈C, γ〉,7 or equivalently, the following diagram commutes:

C ′ C

F (C ′) F (C)

C′ ↪→ C

γ′ γ

F (C′ ↪→ C)

7 For every class C1 and C2 such that C1 ⊆ C2, we write C1 ↪→ C2 for a function from C1 fo C2 such that for any c1 ∈ C1,
(C1 ↪→ C2)(c1) = c1. We call C1 ↪→ C2 the inclusion map from C1 to C2.

8

A subcoalgebra of an F -coalgebra is a part of that F -coalgebra, that is closed, in a suitably generalized
sense, under the decomposition rules of the latter.

We write 〈C ′, γ′〉 ≤ 〈C, γ〉 if and only if 〈C ′, γ′〉 is a subcoalgebra of 〈C, γ〉.

As one might expect, the cooperation of a subcoalgebra is uniquely determined by its carrier.

Proposition 2.12. If 〈C1, γ1〉 ≤ 〈C, γ〉, 〈C2, γ2〉 ≤ 〈C, γ〉, and C1 = C2, then γ1 = γ2.

Proof. See [58, prop. 6.1].

The following can be used as criteria for choosing an eligible carrier:

Theorem 2.13. If h is a homomorphism from 〈C1, γ1〉 to 〈C2, γ2〉, then there is a class function
ρ : ranh→ F (ranh) such that 〈ranh, ρ〉 ≤ 〈C2, γ2〉.8

Proof. See [58, thm. 6.3].

Theorem 2.14. For every class-indexed family {〈Ci, γi〉}i∈I of subcoalgebras of 〈C, γ〉, there is a class
function υ :

⋃
i∈I Ci → F (

⋃
i∈I Ci) such that 〈

⋃
i∈I Ci, υ〉 ≤ 〈C, γ〉.

Proof. See [28, thm. 4.7].

Finally, every homomorphism factorizes, in a unique fashion, through every subcoalgebra of its codomain
F -coalgebra that contains its range.

Proposition 2.15. If h is a homomorphism from 〈C1, γ1〉 to 〈C2, γ2〉, and 〈C, γ〉 is a subcoalgebra of
〈C2, γ2〉 such that ranh ⊆ C, then there is exactly one homomorphism h′ from 〈C1, γ1〉 to 〈C, γ〉 such that

h = (C ↪→ C2) ◦ h′,

or equivalently, the following diagram commutes:

〈C1, γ1〉 〈C2, γ2〉

〈C, γ〉

h

C ↪→ C2h′

Proof. See [58, prop. 6.5].

Theorem 2.14 and Proposition 2.15 can be used to arrange the subcoalgebras of an F -coalgebra into a
complete lattice (see [28, cor. 4.9]).

We conclude this brief account on subcoalgebras with The Small Subcoalgebra Lemma of [6], which is in
fact equivalent to [8, thm. 2.2], namely the surprising fact that every endofunctor on Class is set-based.9

Lemma 2.16. For every subset S of C, there is a small F -coalgebra 〈C ′, γ′〉 such that S ⊆ C ′ and
〈C ′, γ′〉 ≤ 〈C, γ〉.

8 For every class function f , we write ran f for the class {y | there is x ∈ dom f such that y = f(x)}. We call ran f the
range of f .

9 An endofunctor F on Class is set-based if and only if for every class C and any c ∈ F (C), there is a subset S of C, and
s ∈ F (S), such that c = F (S ↪→ C)(s).

9

Proof. See [6, lem. 2.2] and [8, thm. 2.2].

2.5 Direct sums

Assume a class-indexed family {〈Ci, γi〉}i∈I of F -coalgebras.

Definition 2.17. The direct sum of {〈Ci, γi〉}i∈I is an F -coalgebra 〈C, γ〉 such that the following are true:

(a) C is the disjoint union10 of {Ci}i∈I ;

(b) γ is a class function from C to F (C) such that for any j ∈ I and any c ∈ Cj ,

γ((injj
∑
i∈I

Ci)(c)) = F (injj
∑
i∈I

Ci)(γj(c)).
11

The concept of direct sum lifts the concept of disjoint union from classes to F -coalgebras, allowing us to
merge different F -coalgebras into a single whole.

We write
∑
i∈I 〈Ci, γi〉 for the direct sum of {〈Ci, γi〉}i∈I .

Notice that for any j ∈ I, the canonical injection map injj
∑
i∈I Ci is by definition a homomorphism from

〈Cj , γj〉 to
∑
i∈I 〈Ci, γi〉.

The most important, and practically, defining property of the direct sum is the following:

Proposition 2.18. For every class-indexed family {hi}i∈I such that for any i ∈ I, hi is a homomorphism
from 〈Ci, γi〉 to 〈C, γ〉, there is exactly one homomorphism h from

∑
i∈I 〈Ci, γi〉 to 〈C, γ〉 such that for any

j ∈ I,

hj = h ◦ injj
∑
i∈I

Ci,

or equivalently, the following diagram commutes:

〈Cj , γj〉
∑
i∈I 〈Ci, γi〉

〈C, γ〉

injj
∑

i∈I Ci

hj

h

Proof. See [28, lem. 4.1].

2.6 Final coalgebras

We say that 〈C, γ〉 is final in F -Coalg if and only if for every F -coalgebra 〈C ′, γ′〉, there is exactly one
homomorphism from 〈C ′, γ′〉 to 〈C, γ〉.

10 For every class-indexed family {Ci}i∈I of classes, the disjoint union of {Ci}i∈I is the class {〈i, c〉 | i ∈ I and c ∈ Ci}. We
write

∑
i∈I Ci for the disjoint union of {Ci}i∈I .

11 For every class-indexed family {Ci}i∈I of classes and any j ∈ I, we write injj
∑

i∈I Ci for a function from Cj to
∑

i∈I Ci

such that for any c ∈ Cj , (injj
∑

i∈I Ci)(c) = 〈j, c〉. We call injj
∑

i∈I Ci the canonical injection map from Cj to
∑

i∈I Ci.

10

We use the word “final” here instead of the word “terminal” only to conform with common practice in the
germane literature: an F -coalgebra is final in F -Coalg if and only if it is a terminal object of F -Coalg.

Notice that all final F -coalgebras are isomorphic to one another, lest there be another endomorphism,
apart from the identity map, on any of them.

Final F -coalgebras are interesting because they are complex enough to subsume the structure of every
other F -coalgebra, but coarse enough to do so only modulo equivalence of structure.

We say that 〈C, γ〉 is complete in F -Coalg if and only if for every F -coalgebra 〈C ′, γ′〉 and any c′ ∈ C ′,
there is exactly one c ∈ C such that c′ and c are bisimilar among 〈C ′, γ′〉 and 〈C, γ〉.

Theorem 2.19. The following are equivalent:

(a) 〈C, γ〉 is final in F -Coalg;

(b) for every small F -coalgebra 〈C ′, γ′〉, there is exactly one homomorphism from 〈C ′, γ′〉 to 〈C, γ〉;

(c) 〈C, γ〉 is complete in F -Coalg;

(d) for every small F -coalgebra 〈C ′, γ′〉, and any c′ ∈ C ′, there is exactly one c ∈ C such that c′ and c are
bisimilar among 〈C ′, γ′〉 and 〈C, γ〉.

Proof. Trivially, (a) implies (b), and (c) implies (d). Therefore, it suffices to prove that (b) implies (c), and
(d) implies (a).

Suppose that for every small F -coalgebra 〈C ′, γ′〉, there is exactly one homomorphism from 〈C ′, γ′〉 to
〈C, γ〉.

Assume an F -coalgebra 〈C ′, γ′〉.

Assume c′ ∈ C ′.

By Lemma 2.16, there is a small F -coalgebra 〈C ′′, γ′′〉 such that c′ ∈ C ′′ and 〈C ′′, γ′′〉 ≤ 〈C ′, γ′〉. By
hypothesis, there is exactly one homomorphism h from 〈C ′′, γ′′〉 to 〈C, γ〉.

Let R = (C ′′ ↪→ C ′)−1 ;h.

Then, by Theorem 2.6, R is a bisimulation between 〈C ′, γ′〉 and 〈C, γ〉. And clearly, c′ R h(c′). Thus, there
is c ∈ C, namely h(c′), such that c′ and c are bisimilar among 〈C ′, γ′〉 and 〈C, γ〉.

Suppose, toward contradiction, that there are c1, c2 ∈ C such that c′ and c1 are bisimilar among 〈C ′, γ′〉
and 〈C, γ〉, c′ and c2 are bisimilar among 〈C ′, γ′〉 and 〈C, γ〉, and c1 6= c2. Then there are bisimulations B1

and B2 between 〈C ′, γ′〉 and 〈C, γ〉 such that c′ B1 c1 and c′ B2 c2. By Theorem 2.8, there is a bisimulation
B between 〈C ′, γ′〉 and 〈C, γ〉 such that

graphB = graphB1 ∪ graphB2.

Let 〈graphB, β〉 be an F -coalgebra such that dprB is a homomorphism from 〈graphB, β〉 to 〈C ′, γ′〉, and
cprB one from 〈graphB, β〉 to 〈C, γ〉.

By Lemma 2.16, there is a small F -coalgebra 〈G, β′〉 such that {〈c′, c1〉, 〈c′, c2〉} ⊆ G and
〈G, β′〉 ≤ 〈graphB, β〉.

Let B′ be a binary class relation between C ′ and C such that

graphB′ = G.

Clearly, B′ is a bisimulation between 〈C ′, γ′〉 and 〈C, γ〉.

11

By Theorem 2.13, there is a class function ρ : ran dprB′ → F (ran dprB′) such that

〈ran dprB′, ρ〉 ≤ 〈C ′, γ′〉.

And by Proposition 2.15, there is exactly one homomorphism π from 〈graphB′, β〉 to 〈ran dprB′, ρ〉 such
that

dprB′ = (ran dprB′ ↪→ C ′) ◦ π.

Since 〈graphB′, β′〉 is small, 〈ran dprB′, ρ〉 is small. Thus, by hypothesis, there is exactly one
homomorphism h′ from 〈ran dprB′, ρ〉 to 〈C, γ〉. Then both h′ ◦ π and cprB′ are homomorphisms from
〈graphB′, β′〉 to 〈C, γ〉. However,

(h′ ◦ π)(〈c′, c1〉) = h′(c′) = (h′ ◦ π)(〈c′, c2〉)

and

(cprB′)(〈c′, c1〉) = c1 6= c2 = (cprB′)(〈c′, c2〉),

and thus,

h′ ◦ π 6= cprB′,

contrary to our hypothesis.

Therefore, there is at most one c ∈ C such that c′ and c are bisimilar among 〈C ′, γ′〉 and 〈C, γ〉.

Thus, there is exactly one c ∈ C, namely h(c′), such that c′ and c are bisimilar among 〈C ′, γ′〉 and 〈C, γ〉.

Thus, by generalization, 〈C, γ〉 is complete in F -Coalg.

We have thereby proved that (b) implies (c). It remains to prove that (d) implies (a).

Suppose that for every for every small F -coalgebra 〈C ′, γ′〉, and any c′ ∈ C ′, there is exactly one c ∈ C
such that c′ and c are bisimilar among 〈C ′, γ′〉 and 〈C, γ〉.

Assume an F -coalgebra 〈C ′′, γ′′〉.

For every small subcoalgebra 〈C ′, γ′〉 of 〈C ′′, γ′′〉, let h〈C′,γ′〉 be a class function from 〈C ′, γ′〉 to 〈C, γ〉 such
that for any c′ ∈ C ′, h〈C′,γ′〉(c

′) is the unique c ∈ C such that c′ and c are bisimilar among 〈C ′, γ′〉 and
〈C, γ〉.

Let h be a binary class relation between 〈C ′′, γ′′〉 and 〈C, γ〉 such that

graphh =
⋃
{graphh〈C′,γ′〉 | 〈C ′, γ′〉 is a small subcoalgebra of 〈C ′′, γ′′〉}.

We claim that h is a homomorphism from 〈C ′′, γ′′〉 to 〈C, γ〉.

We first need to prove that h is a class function.

Assume c′′ ∈ C ′′.

By Lemma 2.16, there is a small F -coalgebra 〈C ′, γ′〉 such that c′′ ∈ C ′′ and 〈C ′, γ′〉 ≤ 〈C ′′, γ′′〉. Thus,
〈c′′, h〈C′,γ′〉(c

′′)〉 ∈ graphh.

Thus, by generalization, domh = C ′′.

Suppose, toward contradiction, that there are 〈c′′, c1〉, 〈c′′, c2〉 ∈ graphh such that c1 6= c2. Then there is a
small subcoalgebra 〈C ′1, γ′1〉 of 〈C ′′, γ′′〉 such that

h〈C′
1,γ

′
1〉(c
′′) = c1,

12

and a small subcoalgebra 〈C ′2, γ′2〉 of 〈C ′′, γ′′〉 such that

h〈C′
2,γ

′
2〉(c
′′) = c2.

Thus, there is a bisimulation B1 between 〈C ′1, γ′1〉 and 〈C, γ〉 such that c′′ B1 c1, and a bisimulation B2

between 〈C ′2, γ′2〉 and 〈C, γ〉 such that c′′ B2 c2. Now, by Theorem 2.14, there is a function
υ : C ′1 ∪ C ′2 → F (C ′1 ∪ C ′2) such that

〈C ′1 ∪ C ′2, υ〉 ≤ 〈C ′′, γ′′〉.

And by Proposition 2.15, C ′1 ↪→ (C ′1 ∪ C ′2) is a homomorphism from 〈C ′1, γ′1〉 to 〈C ′1 ∪ C ′2, υ〉, and
C ′2 ↪→ (C ′1 ∪ C ′2) one from 〈C ′2, γ′2〉 to 〈C ′1 ∪ C ′2, υ〉.

Let R1 = (C ′1 ↪→ (C ′1 ∪ C ′2))−1 ;B1.

Let R2 = (C ′2 ↪→ (C ′1 ∪ C ′2))−1 ;B2.

Then, by Corollary 2.7, both R1 and R2 are bisimulations between 〈C ′1 ∪ C ′2, υ〉 and 〈C, γ〉. And clearly,
c′′ R1 c1 and c′′ R2 c2, contrary to our hypothesis.

Therefore, for every 〈c′′, c1〉, 〈c′′, c2〉 ∈ graphh, c1 = c2.

Thus, h is a class function from C ′′ to C.

We move on to prove that h is a homomorphism from 〈C ′′, γ′′〉 to 〈C, γ〉.

Assume c′′ ∈ C ′′.

By Lemma 2.16, there is a small F -coalgebra 〈C ′, γ′〉 such that c′′ ∈ C ′ and 〈C ′, γ′〉 ≤ 〈C, γ〉.

Let B be a bisimulation between 〈C ′, γ′〉 and 〈C, γ〉 such that c′′ B h〈C′,γ′〉(c
′′).

Let 〈graphB, β〉 be an F -coalgebra such that dprB is a homomorphism from 〈graphB, β〉 to 〈C ′, γ′〉, and
cprB one from 〈graphB, β〉 to 〈C, γ〉.

Suppose, toward contradiction, that

h ◦ (C ′ ↪→ C ′′) ◦ dprB 6= cprB.

Then there is 〈c′′, c〉 ∈ graphB such that

(h ◦ (C ′ ↪→ C ′′) ◦ dprB)(〈c′′, c〉) 6= (cprB)(〈c′′, c〉).

Thus, h(c′′) 6= c. However, h(c′′) = h〈C′,γ′〉(c
′′), and thus, h〈C′,γ′〉(c

′′) 6= c, contrary to our hypothesis.

Therefore,

h ◦ (C ′ ↪→ C ′′) ◦ dprB = cprB.

Then

F (h)(γ′′(c′′)) = F (h)(F (C ′ ↪→ C ′′)(γ′(c′′)))

= F (h)(F (C ′ ↪→ C ′′)(γ′((dprB)(〈c′′, h〈C′,γ′〉(c
′′)〉))))

= F (h)(F (C ′ ↪→ C ′′)(F (dprB)(β(〈c′′, h〈C′,γ′〉(c
′′)〉))))

= F (h ◦ (C ′ ↪→ C ′′) ◦ dprB)(β(〈c′′, h〈C′,γ′〉(c
′′)〉))

= F (cprB)(β(〈c′′, h〈C′,γ′〉(c
′′)〉))

= γ((cprB)(〈c′′, h〈C′,γ′〉(c
′′)〉))

= γ(h〈C′,γ′〉(c
′′))

= γ(h(c′′)).

13

Thus, by generalization, h is a homomorphism from 〈C ′′, γ′′〉 to 〈C, f〉.

Suppose, toward contradiction, that there are homomorphisms h1 and h2 from 〈C ′′, γ′′〉 to 〈C, γ〉 such that
h1 6= h2. Then there is c′′ ∈ C ′′ such that

h1(c′′) 6= h2(c′′).

And by Lemma 2.16, there is a small F -coalgebra 〈C ′, γ′〉 such that c′′ ∈ C ′ and 〈C ′, γ′〉 ≤ 〈C, γ〉. By
Theorem 2.10, both h1 ◦ (C ′ ↪→ C ′′) and h2 ◦ (C ′ ↪→ C ′′) are bisimulations between 〈C ′, γ′〉 to 〈C, γ〉. Thus,
c′′ and h1(c′′) are bisimilar among 〈C ′, γ′〉 and 〈C, γ〉, and c′′ and h2(c′′) are bisimilar among 〈C ′, γ′〉 and
〈C, γ〉, contrary to our hypothesis.

Therefore, there is at most one homomorphism from 〈C ′′, γ′′〉 to 〈C, γ〉.

Thus, there is exactly one homomorphism from 〈C ′′, γ′′〉 to 〈C, γ〉.

Thus, by generalization, 〈C, γ〉 is final in F -Coalg.

The equivalence of (a) and (b) was already sketched by Aczel in [3], whereas the implication from (a) to (c)
can be found in [28, thm. 6.4]. But the one in the reverse direction is, to our knowledge, a new result.
Altogether, Theorem 2.19 is a powerful characterization of final coalgebras, justifying their prominent role
as semantic models of behaviour.

By Theorem 2.19, any final F -coalgebra 〈C, γ〉 is strongly extensional, or equivalently, satisfies what is now
known as the coinduction proof principle, whereby for every c1, c2 ∈ C, in order to prove that c1 = c2, one
need only find a bisimulation B on 〈C, γ〉 such that c1 B c2 (see [58, thm. 9.2]).

Theorem 2.20. There is an F -coalgebra that is final in F -Coalg.

Proof. See [6, thm. 2.1] and [8, thm. 2.2].

By now, there have been several different proofs of Theorem 2.20 (see [8] and references therein). Assuming
[8, thm. 2.2], or equivalently, Lemma 2.16, the proof in [6] is perhaps the most elementary, and surely the
most natural from the non-category-theorist point of view. It amounts to forming a direct sum of all small
F -coalgebras, and constructing a quotient of it with respect to the largest congruence on it, or equivalently
in this case, the equivalence class relation generated by the largest bisimulation on it.

Proposition 2.21. If 〈C, γ〉 is final in F -Coalg, then γ is bijective.

Proof. See [37, lem. 2.2].

Proposition 2.21 is known as Lambek’s Lemma, and for many interesting endofunctors, including those
considered in Section 3 and 4, it implies that the carrier of the final coalgebra is a proper class.

2.7 Covarieties

Assume a full12 subcategory S of F -Coalg.

We say that S is closed under the formation of homomorphic images if and only if for every F -coalgebra
〈C, γ〉, if 〈C, γ〉 is in S, and 〈C ′, γ′〉 is a homomorphic image of 〈C, γ〉, then 〈C ′, γ′〉 is in S.

12 A subcategory S of a category C is full if and only if the arrows between any two objects in S are all the arrows between
the two objects in C.

14

We say that S is closed under the formation of subcoalgebras if and only if for every F -coalgebra 〈C, γ〉, if
〈C, γ〉 is in S, and 〈C ′, γ′〉 is a subcoalgebra of 〈C, γ〉, then 〈C ′, γ′〉 is in S.

We say that S is closed under the formation of direct sums if and only if for every class-indexed family
{〈Ci, γi〉}i∈I of F -coalgebras, if for every i ∈ I, 〈Ci, γi〉 is in S, then

∑
i∈I 〈Ci, γi〉 is in S.

Definition 2.22. An F -covariety is a full subcategory C of F -Coalg such that the following are true:

(a) C is closed under the formation of homomorphic images;

(b) C is closed under the formation of subcoalgebras;

(c) C is closed under the formation of direct sums.

The concept of F -covariety is the coalgebraic counterpart of a generalization of the concept of Σ-variety,
what Birkhoff called a family of algebras when he introduced the concept in [14]. Here, it is of interest
because it allows us to generalize the results of Section 2.6 to cases where certain kinds of structure have
been systematically ruled out (e.g., see Section 4.3).

We say that 〈C, γ〉 is final in S if and only if 〈C, γ〉 is in S, and for every F -coalgebra 〈C ′, γ′〉 in S, there is
exactly one homomorphism from 〈C ′, γ′〉 to 〈C, γ〉.

Just as in F -Coalg, all final F -coalgebras are isomorphic to one another.

We say that 〈C, γ〉 is complete in S if and only if 〈C, γ〉 is in S, and for every F -coalgebra 〈C ′, γ′〉 in S and
any c′ ∈ C ′, there is exactly one c ∈ C such that c′ and c are bisimilar among 〈C ′, γ′〉 and 〈C, γ〉.

The following is a generalization of Theorem 2.19:

Theorem 2.23. For every F -covariety C, the following are true:

(a) 〈C, γ〉 is final in C;

(b) for every small F -coalgebra 〈C ′, γ′〉 in C, there is exactly one homomorphism from 〈C ′, γ′〉 to 〈C, γ〉;

(c) 〈C, γ〉 is complete in C;

(d) for every small F -coalgebra 〈C ′, γ′〉 in C, and any c′ ∈ C ′, there is exactly one c ∈ C such that c′ and
c are bisimilar among 〈C ′, γ′〉 and 〈C, γ〉.

Proof. See proof of Theorem 2.19.

The reason that we are able to reuse the proof of Theorem 2.19 here without any modification or
adjustment is that, because of the closure properties of an F -covariety, all relevant constructions in that
proof can be carried out inside C. The only structures in that proof that are not necessarily in C are the
bisimulations, which are not supposed to either.

By Theorem 2.23, every F -coalgebra that is final in an F -covariety satisfies the coinduction proof principle.

The following is a generalization of Theorem 2.20:

Theorem 2.24. For every F -covariety C, there is an F -coalgebra that is final in C.

Proof. Assume an F -covariety C.

Let 〈C, γ〉 be an F -coalgebra that is final in F -Coalg.

Let 〈C ′, γ′〉 be a direct sum of all small F -coalgebras in C.

Let h be the unique homomorphism from 〈C ′, γ′〉 to 〈C, γ〉.

15

Then, by Theorem 2.13, there is a class function ρ : ranh→ F (ranh) such that

〈ranh, ρ〉 ≤ 〈C, γ〉.

And by Proposition 2.15, there is exactly one homomorphism h′ from 〈C ′, f ′〉 to 〈ranh, ρ〉 such that

h = (ranh ↪→ C) ◦ h′.

Clearly, h′ is surjective, and thus, 〈ranh, ρ〉 is a homomorphic image of 〈C ′, f ′〉. And since C is an
F -covariety, 〈ranh, ρ〉 is an F -coalgebra in C.

We claim that 〈ranh, ρ〉 is final in C.

Assume a small F -coalgebra 〈C ′′, γ′′〉 in C.

Let ι be the canonical injection map from C ′′ to C ′.

Then h′ ◦ ι is a homomorphism from 〈C ′′, γ′′〉 to 〈ranh, ρ〉.

Suppose, toward contradiction, that there are homomorphisms h1 and h2 from 〈C ′′, γ′′〉 to 〈ranh, ρ〉 such
that

h1 6= h2.

Then both (ranh ↪→ C) ◦ h1 and (ranh ↪→ C) ◦ h2 are homomorphisms from 〈C ′′, γ′′〉 to 〈C, γ〉. And since
(ranh ↪→ C) is injective,

(ranh ↪→ C) ◦ h1 6= (ranh ↪→ C) ◦ h2,

contrary to 〈C, γ〉 being final in F -Coalg.

Therefore, there is at most one homomorphism from 〈C ′′, γ′′〉 to 〈ranh, ρ〉.

Thus, there is exactly one homomorphism, namely h′ ◦ ι, from 〈C ′′, γ′′〉 to 〈ranh, ρ〉.

Thus, by generalization and Theorem 2.23, 〈ranh, ρ〉 is final in C.

Theorem 2.24 is easy enough to be already known. But being unable to trace it in the literature, we have
taken care to prove it here (but see [4, thm 2.2]).

The following is a generalization of Proposition 2.21:

Proposition 2.25. For every F -covariety C, if 〈C, γ〉 is final in C, then γ is bijective.

Proof. See proof of Proposition 2.21.

As with Theorem 2.23, the reason that we are able to reuse the proof of Proposition 2.21 here is that,
because of the closure properties of an F -covariety, all relevant constructions in that proof can be carried
out inside C.

3 Labelled transition systems and coalgebras

The concept of labelled transition system is the paradigmatic example of a coalgebra. Indeed, the theory of
coalgebra was largely inspired by that concept (e.g., see [6]). Here, we formalize it in a somewhat
nonstandard way, namely using a binary relation rather than a ternary one, and go over its coalgebraic
treatment anew, with the intent of drawing the reader’s attention to the unity of formal treatment between
this section and the next.

16

s0

s1

s2 s3

l0

l1 l2

s4

s5 s6

s7
s8 s9

s10

l0 l0

l1
l2 l1

l2

s11

s12 s13

s14 s15

l0 l0

l1 l2

Figure 1. s0 and s4 are bisimilar; neither of them is bisimilar to s11.

3.1 Labelled transition systems

Assume a non-empty set L of labels.

Definition 3.1. An L-labelled transition system is an ordered pair 〈S, T 〉 such that the following are true:

(a) S is a set;

(b) T is a binary relation between S and L× S.

Assume an L-labelled transition system 〈S, T 〉.

We write s
l−−→T s

′ if and only if s T 〈l, s′〉.

We call any s ∈ S a state of 〈S, T 〉, and any 〈s, 〈l, s′〉〉 ∈ graphT a transition of 〈S, T 〉.

Labelled transition systems have been around at least since Moore’s work on finite automata in [48], where
they appeared in tabular as well as pictorial form. In their present form, they seem to have been
introduced by Keller in [36], where they were called named transition systems. And although Keller used
them to model parallel computation, it was apparently Milner who first saw labels as shared vehicles of
interaction, and labelled transition systems as models of communicating behaviour, paving the way for [43]
and the advent of process algebra.

In fact, considering how easy it is to “cook up yet another variant process calculus or algebra” (see [2,
p. 39]), it is not unreasonable to suggest that a process algebra is no more than an algebra of labelled
transition systems. For in the absence of a “hard and obdurate” kind of external reality, it is the model
that gives meaning to form, and that model is hardly ever anything other than a labelled transition system.
And really, the only, seemingly tacit constraint on the latter is that equivalence of branching structure be a
congruence relation. This is the notion of equivalence corresponding to the branching end of the spectrum
of [62], and “the real fruit” of process algebra as a whole.

Assume L-labelled transition systems 〈S1, T1〉 and 〈S2, T2〉.

Definition 3.2. A bisimulation between 〈S1, T1〉 and 〈S2, T2〉 is a binary relation B : S1 ↔ S2 such that
for any s1 and s2 such that s1 B s2, the following are true:

(a) if s1
l−−→T1 s

′
1, then there is s′2 such that s2

l−−→T2 s
′
2 and s′1 B s′2;

(b) if s2
l−−→T2 s

′
2, then there is s′1 such that s1

l−−→T1 s
′
1 and s′1 B s′2.

We say that s1 and s2 are bisimilar among 〈S1, T1〉 and 〈S2, T2〉 if and only if there is a bisimulation B
between 〈S1, T1〉 and 〈S2, T2〉 such that s1 B s2.

17

For example, consider the three diagrams of Figure 1, which are of course pictures of labelled transition
systems: s0 and s4 are bisimilar; neither of them is bisimilar to s11.

The idea of bisimilarity is that for any path branching out of either one of the two states, there is a path
branching out of the other one, that carries the same labels in the same order, and goes through states that
are again related to the corresponding states of the first path in the same way. This last piece of recursion
is what separates bisimilarity from trace equivalence, making the former sensitive to the branching
potential of each state.

The concept of bisimulation is due to David Park (see [51]), and is without doubt the most significant
contribution of the theory of concurrency to the broader arena of computer science and mathematics at
large.13 After learning about Milner’s work in [45], where bisimulation was worked out in the context of a
calculus for the first time, and prompted by the perception of an analogy between the mathematical notion
of a set and that of a process with just one kind of action, Peter Aczel used transition systems to model a
theory of sets that need not be well founded, and the concept of bisimulation to strengthen, in a sensible
and pleasing way, the Axiom of Extensionality therein (see [3]).14 But then he went further. He noticed
that transition systems could be viewed as coalgebras for a certain endofunctor, and models of his axiom as
final objects in a suitable category of such coalgebras. Work on a generalization of this result culminated in
[6] to bear a final coalgebra theorem and a categorical definition of bisimulation, eventually leading to the
general theory of universal coalgebra glimpsed in Section 2.

3.2 Labelled transition coalgebras

Consider once more the concept of labelled transition system. We have formalized this as an ordered pair
of a set and a binary relation. But there is another way: to look at the binary relation as a set-valued
function.

Assume a binary relation R : S1 ↔ S2.

We write funR for a function from S1 to P S2 such that for any s1 ∈ S1,15

(funR)(s1) = {s2 | s1 R s2}.

Assume a function f : S1 →P S2.

We write rel f for a binary relation between S1 and S2 such that for any s1 ∈ S1 and any s2 ∈ S2,

s1 (rel f) s2 ⇐⇒ s2 ∈ f(s1).

The following is immediate:

Proposition 3.3. The following are true:

(a) rel(funR) = R;

(b) fun(rel f) = f .

Proposition 3.3 suggests an alternative, coalgebraic formalization of the concept of L-labelled transition
system.

13 To be fair, the concept of bisimulation has been independently discovered in the fields of modal logic and set theory as
well. See [60] for a comprehensive historical account.

14 Forti and Honsell had already discovered and used the concept of bisimulation to that effect in [27].
15 For every set S, we write P S for the power set of S, namely the set of all subsets of S.

18

We write Pow for the power-set endofunctor on Class, namely an endofunctor on Class that assigns to
every class C the class

PowC = {S | S is a set, and S ⊆ C},

and to every class function f : C1 → C2 a class function

Pow f : PowC1 → PowC2

such that for every S ∈ PowC1,

(Pow f)(S) = {f(s) | s ∈ S}.

Notice that if the class C is actually a set, then

PowC = P C.

We now compose Pow with the left product endofunctor L× Id on Class to obtain the endofunctor
Pow ◦ (L× Id) on Class, which assigns to every class C the class

Pow(L× C) = {S | S is a set, and S ⊆ L× C},

and to every class function f : C1 → C2 a class function

Pow(L× f) : Pow(L× C1)→ Pow(L× C2)

such that for every S ∈ Pow(L× C1),

Pow(L× f)(S) = {〈l, f(s)〉 | 〈l, s〉 ∈ S}.

An L-labelled transition system 〈S, T 〉 can then be represented as a (Pow ◦ (L× Id))-coalgebra, namely as
〈S, funT 〉, and conversely, a (Pow ◦ (L× Id))-coalgebra 〈C, τ〉 as an L-labelled transition system, namely as
〈C, rel τ〉, with the caveat, of course, that C be a set. But this is only an arbitrary constraint on the size of
a system. There is no fundamental reason why we should disqualify a system for being too large.

Definition 3.4. An L-labelled transition coalgebra is a (Pow ◦ (L× Id))-coalgebra.

We write L-LTC for the category whose objects are all the L-labelled transition coalgebras, and arrows all
the homomorphisms from one L-labelled transition coalgebra to another.

Formally, we will treat L-labelled transition systems and L-labelled transition coalgebras as distinct
concepts. But informally, we shall think of an L-labelled transition coalgebra as an L-labelled transition
system, no matter how large the carrier of the coalgebra is.

Assume an L-labelled transition coalgebra 〈C, τ〉.

We write c
l−−→τ c

′ if and only if 〈l, c′〉 ∈ τ(c).

The following is immediate:

Proposition 3.5. The following are true:

(a) s
l−−→T s

′ if and only if s
l−−→funT s

′;

(b) if 〈C, τ〉 is small, then c
l−−→τ c

′ if and only if c
l−−→rel τ c

′.

19

Assume L-labelled transition coalgebras 〈C1, τ1〉 and 〈C2, τ2〉.

Proposition 3.6. B is a bisimulation between 〈C1, τ1〉 and 〈C2, τ2〉 if and only if B is a binary class
relation between C1 and C2, and for any c1 and c2 such that c1 B c2, the following are true:

(a) if c1
l−−→τ1 c

′
1, then there is c′2 such that c2

l−−→τ2 c
′
2 and c′1 B c′2;

(b) if c2
l−−→τ2 c

′
2, then there is c′1 such that c1

l−−→τ1 c
′
1 and c′1 B c′2.

Proof. Suppose that B is a bisimulation between 〈C1, τ1〉 and 〈C2, τ2〉.

Let 〈graphB, β〉 be an L-labelled transition coalgebra such that dprB is a homomorphism from
〈graphB, β〉 to 〈C1, τ1〉, and cprB one from 〈graphB, β〉 to 〈C2, τ2〉.

Assume c1 and c2 such that c1 B c2.

Then

Pow(L× dprB)(β(〈c1, c2〉)) = τ1((dprB)(〈c1, c2〉)),

and hence, by definition of Pow ◦ (L× Id) and dprB,

{〈l, c′1〉 | 〈l, 〈c′1, c′2〉〉 ∈ β(〈c1, c2〉)} = τ1(c1).

By extensionality, this is equivalent to the following being true:

(i) if 〈c1, c2〉
l−−→β 〈c′1, c′2〉, then c1

l−−→τ1 c
′
1;

(ii) if c1
l−−→τ1 c

′
1, then there is c′2 such that 〈c1, c2〉

l−−→β 〈c′1, c′2〉.

And by symmetry, the following are true:

(iii) if 〈c1, c2〉
l−−→β 〈c′1, c′2〉, then c2

l−−→τ2 c
′
2;

(iv) if c2
l−−→τ2 c

′
2, then there is c′1 such that 〈c1, c2〉

l−−→β 〈c′1, c′2〉.

By (ii) and (iii), (a) is true, and by (iv) and (i), (b) is true.

Thus, by generalization, for any c1 and c2 such that c1 B c2, (a) and (b) are true.

Conversely, suppose that B is a binary class relation between C1 and C2, and for any c1 and c2 such that
c1 B c2, (a) and (b) are true.

Let β be a class function from graphB to Pow(L× graphB) such that for any 〈c1, c2〉 ∈ graphB,

β(〈c1, c2〉) = {〈l, 〈c′1, c′2〉〉 | c1
l−−→τ1 c

′
1, c2

l−−→τ2 c
′
2, and 〈c′1, c′2〉 ∈ graphB}.

Assume 〈c1, c2〉 ∈ graphB.

Then the following is immediately true:

(v) if 〈c1, c2〉
l−−→β 〈c′1, c′2〉, then c1

l−−→τ1 c
′
1.

Also, by (a) and (b), the following is true:

(vi) if c1
l−−→τ1 c

′
1, then there is c′2 such that 〈c1, c2〉

l−−→β 〈c′1, c′2〉.

20

By (v), (vi), and extensionality,

{〈l, c′1〉 | 〈l, 〈c′1, c′2〉〉 ∈ β(〈c1, c2〉)} = τ1(c1),

and hence, by definition of Pow ◦ (L× Id) and dprB,

Pow(L× dprB)(β(〈c1, c2〉)) = τ1((dprB)(〈c1, c2〉)).

And by symmetry,

Pow(L× cprB)(β(〈c1, c2〉)) = τ2((cprB)(〈c1, c2〉)).

Thus, by generalization, B is a bisimulation between 〈C1, τ1〉 and 〈C2, τ2〉.

The following is immediate from Proposition 3.5(a), 3.6, and the definition of bisimulation between labelled
transition systems:

Proposition 3.7. B is a bisimulation between 〈S1, T1〉 and 〈S2, T2〉 if and only if B is a bisimulation
between the L-labelled transition coalgebras 〈S1, funT1〉 and 〈S2, funT2〉.

Now, suppose that we wanted to use L-labelled transition systems to model the behaviour of processes of
some kind. What we would wish for then is that there be a system complex enough to model the behaviour
of every process, but coarse enough not to distinguish between processes of equivalent behaviour. Is there
such a system?

The way to use an L-labelled transition system to model the behaviour of a process is to map the process
to a state of the system, and let the branching structure emanating from that state represent the behaviour
of the process. Equivalence of behaviour then amounts to similarity of branching structure of some kind,
and indeed, determines the actual association between behaviour and branching structure. If we let
bisimilarity be that concept of similarity, and assume for simplicity that any state of every L-labelled
transition system models the behaviour of some process, then our question becomes an enquiry over the
existence of an L-labelled transition system 〈S, T 〉 such that the following are true:

(i) for every L-labelled transition system 〈S′, T ′〉 and any s′ ∈ S′, there is s ∈ S such that s′ and s are
bisimilar among 〈S′, T ′〉 and 〈S, T 〉;

(ii) for any s1, s2 ∈ S, s1 and s2 are bisimilar in 〈S, T 〉 if and only if s1 = s2.

By an easy corollary to Proposition 3.6, bisimilarity among L-labelled transition coalgebras is a transitive
concept, and thus, by Theorem 2.19 and Proposition 3.7, a system will satisfy conditions (i) and (ii) of our
enquiry if and only if it has a coalgebraic representation that is final in L-LTC. And by Theorem 2.20,
there is indeed a final coalgebra in L-LTC. But by Proposition 2.21, the carrier of every such coalgebra is,
for obvious cardinality reasons, a proper class.

This should not come as a surprise. Having left the cardinality of the branching degree of a state in a
system unchecked, it is only reasonable to expect that the different types of branching structure be too
many to collect inside a set. One could bound, in a suitable sense, the endofunctor to ensure that a final
coalgebra be small (e.g., see [35, cor. 3.3]). In the case of Pow ◦ (L× Id), this would correspond to bounding
that branching degree cardinality, and for a model of process behaviour, one could even argue that this is a
natural thing to do. But here, we will feel comfortable working with large coalgebras, and refrain from
imposing additional constraints just for the sake of size. Indeed, the very reason that we have decided to
work within a theory of classes in the first place was not having to worry about size at all. If we want to
understand behaviour in terms of branching structure, then it seems inappropriate to constrain that
structure by means that only reflect our own preconceptions about how that behaviour may come about.
And a bound on the branching degree of that structure seems to do just that: reflect our own bias toward a
kind of process that, in one way or another, “computes” its own evolution using a fixed set of predefined
resources.

21

4 Labelled execution systems and coalgebras

This section contains the main body of this work, where we introduce and study our newly proposed
systems. For the most part, we treat these systems in the guise of coalgebras. But for the benefit of the
non-coalgebraist, as well as the more application-oriented reader, we make sure to translate all our findings
back into the language of systems.

4.1 Labelled execution systems

Definition 4.1. An L-labelled execution system is an ordered pair 〈S,E〉 such that the following are true:

(a) S is a set;

(b) E is a binary relation between S and S (L× S).16

Assume an L-labelled execution system 〈S,E〉.

We write sBE e if and only if s E e.

We call any s ∈ S a state of 〈S,E〉, and any 〈s, e〉 ∈ graphE an execution of 〈S,E〉.

Notice that an execution is an ordered pair of a state and a sequence of ordered pairs of labels and states,
rather than a single odd-length alternating sequence of states and labels, what might have seemed a more
natural option. And while we do think that there is a certain clarity in distinguishing the starting state of
an execution from any subsequent step, this was mainly a choice of mathematical convenience. Its merit
will soon become apparent.

The general idea of an execution system, if only unlabelled, has been around at least since the early days of
temporal logic in computer science, in the form of a semantic structure called a path structure in [57] (e.g.,
see [56], [1], and [39]). The states of a system would represent the various memory configurations and
control locations traversed in the course of a computation of a possibly concurrent program, and the
executions those computations permitted by the assumed implementation, and over which the modalities of
the logic were to be interpreted. But despite the rich cross-fertilization of ideas between temporal logic and
process algebra, and the obvious parallel between semantic structures and labelled systems in the two
fields, path structures were never really assimilated for use as models of process theories. In fact, the
concept of labelled execution system is almost absent from the literature. Looking back to it, we could only
find a handful of sporadic instances of the general notion. We discuss them in Section 5.

4.2 Labelled execution coalgebras

As our choice of formalization should have made obvious, the concept of labelled execution system is a
direct generalization of that of labelled transition system. The idea of a single step from one state to
another is replaced by that of an “admissible” path through the system over which a sequence of steps can
be taken. The result is a more elaborate notion of branching structure. And if we are to associate this
notion with behaviour of some kind, we need to understand what constitutes similarity and dissimilarity of
it. In other words, we need a concept of branching equivalence suited to labelled execution systems. What
should that concept be?

In [59], Rutten and Turi propose a simple approach to this type of problem: all we have to do is find a
suitable endofunctor to represent our systems coalgebraically. We can then use that endofunctor to
instantiate the “parametric” concept of bisimulation of Definition 2.5, and obtain not only the equivalence

16 For every set S, we write S S for the sequence set of S, namely the set of all finite and infinite sequences over S.

22

concept that we seek, but a model too that is fully abstract with respect to that concept (see Theorem 2.19
and 2.20).17 This is straightforward here.

We write Seq for the sequence-set endofunctor on Class, namely an endofunctor on Class that assigns to
every class C the class

SeqC = {s | there is S such that S ⊆ C and s ∈ S S},

and to every class function f : C1 → C2 a class function

Seq f : SeqC1 → SeqC2

such that for every s ∈ SeqC1,

(Seq f)(s) =

{
〈 〉 if s = 〈 〉;
〈f(head s)〉 · (Seq f)(tail s) otherwise.

Notice that if the class C is actually a set, then

SeqC = S C.

At this point, the reader may protest against the seeming circularity in the way we have specified the
action of Seq on class functions; what may look like a harmless definition by recursion is really a
descending argument over a possibly infinite deduction sequence: there is no base case. A little thought,
however, will suffice to convince oneself that there is nothing ambiguous about it. Seq f is a simple lift of f
to sequences over dom f . Informally, if 〈c0, c1, . . .〉 is a sequence over dom f , then (Seq f)(〈c0, c1, . . .〉) is the
result of replacing each ci in that sequence with its own image under f , namely the sequence
〈f(c0), f(c1), . . .〉. We are thus entitled to use this contentious form of specification as a definition. The
question is how do we justify it formally.

In principle, we could use induction on the index of a sequence to prove that each point in that sequence is
uniquely determined. But we can do better.

First, notice that SeqC2 can be given the structure of a ({〈 〉}+ (C2 × Id))-coalgebra, where
{〈 〉}+ (C2 × Id) is the composite of the left sum endofunctor {〈 〉}+ Id on Class with the left product
endofunctor C2 × Id on Class: simply let σ2 be a class function from SeqC2 to {〈 〉}+ (C2 × SeqC2) such
that for every s ∈ SeqC2,

σ2(s) =

{
(inj1({〈 〉}+ (C2 × SeqC2)))(〈 〉) if s = 〈 〉;
(inj2({〈 〉}+ (C2 × SeqC2)))(〈head s, tail s〉) otherwise.

Now, we can use f to give SeqC1 the structure of a ({〈 〉}+ (C2 × Id))-coalgebra as well: just let σ1 be a
class function from SeqC1 to {〈 〉}+ (C2 × SeqC1) such that for every s ∈ SeqC1,

σ1(s) =

{
(inj1({〈 〉}+ (C2 × SeqC1)))(〈 〉) if s = 〈 〉;
(inj2({〈 〉}+ (C2 × SeqC1)))(〈f(head s), tail s〉) otherwise.

All our definition says then is that Seq f is a homomorphism from 〈SeqC1, σ1〉 to 〈SeqC2, σ2〉. And the
existence and uniqueness of this homomorphism follows from the fact that 〈SeqC2, σ2〉 is actually final in
({〈 〉}+ (C2 × Id))-Coalg, as the reader may wish to prove.

17 The tacit assumption here is that the instantiated concept of bisimulation does indeed induce an equivalence concept.
See Example 2.9 for a case where it does not.

23

With experience, all this can be inferred immediately by simple inspection of the form of the defining
equations. More importantly, the same type of argument can be applied to the case of any endofunctor,
even if there is no readily available representation of a final coalgebra amenable to inductive reasoning (see
[49]). A definition that relies in this way on the finality of the implicit target coalgebra is what we call a
definition by corecursion. This particular use of the term appears to have originated with [12], and is
justified by the duality to the more familiar notion of definition by recursion, which, in similar fashion,
relies on the initiality of the implicit source algebra (see [33]).

We now compose Seq with the left product endofunctor L× Id on Class to obtain the endofunctor
Seq ◦ (L× Id) on Class, which assigns to every class C the class

Seq(L× C) = {s | there is S such that S ⊆ L× C and s ∈ S S},

and to every class function f : C1 → C2 a class function

Seq(L× f) : Seq(L× C1)→ Seq(L× C2)

such that for every s ∈ Seq(L× C1),

(Seq(L× f))(s) =

{
〈 〉 if s = 〈 〉;
〈〈first head s, f(sec head s)〉〉 · (Seq(L× f))(tail s) otherwise.18

This is another instance of a definition by corecursion. Informally, if 〈〈l0, c0〉, 〈l1, c1〉, . . .〉 is a sequence over
dom f , then

Seq(L× f)(〈〈l0, c0〉, 〈l1, c1〉, . . .〉) = 〈〈l0, f(c0)〉, 〈l1, f(c1)〉, . . .〉.

Finally, we compose Pow with Seq ◦(L× Id) to obtain the endofunctor Pow ◦ Seq ◦ (L× Id) on Class, which
assigns to every class C the class

Pow Seq(L× C) = {S | S is a set, and S ⊆ Seq(L× C)},

and to every class function f : C1 → C2 a class function

Pow Seq(L× f) : Pow Seq(L× C1)→ Pow Seq(L× C2)

such that for every S ∈ Pow Seq(L× C1),

(Pow Seq(L× f))(S) = {(Seq(L× f))(s) | s ∈ S}.

Just as we did with labelled transition systems, we can now take advantage of the formal analogy between
the concepts of binary relation and set-valued function, and use Proposition 3.3 to obtain our coalgebraic
representation. This unity of treatment is the reward of our aforementioned formalization choice.

An L-labelled execution system 〈S,E〉 can then be represented as a (Pow ◦ Seq ◦ (L× Id))-coalgebra,
namely as 〈S, funE〉, and conversely, a (Pow ◦ Seq ◦ (L× Id))-coalgebra 〈C, ε〉 as an L-labelled execution
system, namely as 〈C, rel ε〉, again with the caveat that C be a set.

Definition 4.2. An L-labelled execution coalgebra is a (Pow ◦ Seq ◦ (L× Id))-coalgebra.

18 For every ordered pair 〈x, y〉, we write first 〈x, y〉 for x, and sec 〈x, y〉 for y.

24

We write L-LEC for the category whose objects are all the L-labelled execution coalgebras, and arrows all
the homomorphisms from one L-labelled execution coalgebra to another.

Once more, we will formally treat L-labelled execution systems and L-labelled execution coalgebras as
distinct concepts, but we shall informally think of an L-labelled execution coalgebra as an L-labelled
execution system, no matter how large the carrier of the coalgebra is.

Assume an L-labelled execution coalgebra 〈C, ε〉.

We write cBε e if and only if e ∈ ε(c).

The following is immediate:

Proposition 4.3. The following are true:

(a) sBT e if and only if sBfunT e;

(b) if 〈C, ε〉 is small, then cBε e if and only if cBrel ε e.

At this stage, we could already use Proposition 4.6 below as our definition of bisimulation between labelled
execution systems. But we prefer a different, more operational one that will help us develop some insight
into the concept. And for this, we need some more preparation.

Assume a binary class relation R : C1 ↔ C2.

We write Seq(L×R) for a binary class relation between Seq(L× C1) and Seq(L× C2) such that for every
e1 ∈ Seq(L× C1) and every e2 ∈ Seq(L× C2),

e1 Seq(L×R) e2 ⇐⇒ there is e ∈ Seq(L× graphR)
such that e1 = Seq(L× dprR)(e) and e2 = Seq(L× cprR)(e).

Seq(L×R) is a simple lift of R to pairs of sequences over L× domR and L× codR. Informally, if
〈〈l0, c0〉, 〈l1, c1〉, . . .〉 is a sequence over domR, and 〈〈l′0, c′0〉, 〈l′1, c′1〉, . . .〉 a sequence over codR, then

〈〈l0, c0〉, 〈l1, c1〉, . . .〉 Seq(L×R) 〈〈l′0, c′0〉, 〈l′1, c′1〉, . . .〉

if and only if l0 = l′0 and c0 R c′0, l1 = l′1 and c1 R c′1, etc. Our choice of notation may be justified by the
fact that

Seq(L×R) = Seq(L× ((dprR)−1 ; cprR))

= (Seq(L× dprR))−1 ; Seq(L× cprR).

Assume L-labelled execution coalgebras 〈C1, ε1〉 and 〈C2, ε2〉.

Proposition 4.4. B is a bisimulation between 〈C1, ε1〉 and 〈C2, ε2〉 if and only if B is a binary class
relation between 〈C1, ε1〉 and 〈C2, ε2〉, and for any c1 and c2 such that c1 B c2, the following are true:

(a) if c1 Bε1 e1, then there is e2 such that c2 Bε2 e2 and e1 Seq(L×B) e2;

(b) if c2 Bε2 e2, then there is e1 such that c1 Bε1 e1 and e1 Seq(L×B) e2.

Proof. Suppose that B is a bisimulation between 〈C1, ε1〉 and 〈C2, ε2〉.

Let 〈graphB, β〉 be an L-labelled execution coalgebra such that dprB is a homomorphism from 〈graphB, β〉
to 〈C1, ε1〉, and cprB one from 〈graphB, β〉 to 〈C2, ε2〉.

Assume c1 and c2 such that c1 B c2.

25

Then

Pow Seq(L× dprB)(β(〈c1, c2〉)) = ε1((dprB)(〈c1, c2〉)),

and hence, by definition of Pow ◦ Seq ◦ (L× Id) and dprB,

{Seq(L× dprB)(e) | e ∈ β(〈c1, c2〉)} = ε1(c1).

By extensionality, this is equivalent to the following being true:

(i) if 〈c1, c2〉Bβ e, then c1 Bε1 Seq(L× dprB)(e);

(ii) if c1 Bε1 e1, then there is e such that Seq(L× dprB)(e) = e1 and 〈c1, c2〉Bβ e.

And by symmetry, the following are true:

(iii) if 〈c1, c2〉Bβ e, then c2 Bε2 Seq(L× cprB)(e);

(iv) if c2 Bε2 e2, then there is e such that Seq(L× cprB)(e) = e2 and 〈c1, c2〉Bβ e.

By (ii), (iii), and definition of Seq(L×B), (a) is true, and by (i), (iv), and definition of Seq(L×B), (b) is
true.

Thus, by generalization, for any c1 and c2 such that c1 B c2, (a) and (b) are true.

Conversely, suppose that B is a binary class relation between C1 and C2, and for any c1 and c2 such that
c1 B c2, (a) and (b) are true.

Let β be a class function from graphB to Pow Seq(L× graphB) such that for any 〈c1, c2〉 ∈ graphB,

β(〈c1, c2〉) = {e | c1 BE Seq(L× dprB)(e), c2 BE Seq(L× cprB)(e), and e ∈ Seq(L× graphB)}.

Assume 〈c1, c2〉 ∈ graphB.

Then the following is immediately true:

(v) if 〈c1, c2〉Bβ e, then c1 Bε1 Seq(L× dprB)(e).

Also, by (a), (b), and the definition of Seq(L×B), the following is true:

(vi) if c1 Bε1 e1, then there is e such that Seq(L× dprB)(e) = e1 and 〈c1, c2〉Bβ e.

By (v), (vi), and extensionality,

{Seq(L× dprB)(e) | e ∈ β(〈c1, c2〉)} = ε1(c1).

and hence, by definition of Pow ◦ Seq ◦ (L× Id) and dprB,

Pow Seq(L× dprB)(β(〈c1, c2〉)) = ε1((dprB)(〈c1, c2〉)).

And by symmetry,

Pow Seq(L× cprB)(β(〈c1, c2〉)) = ε2((cprB)(〈c1, c2〉)).

Thus, by generalization, B is a bisimulation between 〈C1, ε1〉 and 〈C2, ε2〉.

Proposition 4.4 is similar to Proposition 3.6. The difference is that the local check of correspondence of
transitions has been replaced by a non-local test of agreement along entire executions. This is conceptually
in tune with our intended change in scale of observation from one type of system to the other.

Assume L-labelled execution systems 〈S1, E1〉 and 〈S2, E2〉.

26

s0

s1

l0

s2

s3

s3

s4

l0 l1

Figure 2. s0 and s2 are not bisimilar, even though the only execution starting from s0 is in perfect agreement
with the only execution starting from s2.

Definition 4.5. A bisimulation between 〈S1, E1〉 and 〈S2, E2〉 is a binary relation B : S1 ↔ S2 such that
for any s1 and s2 such that s1 B s2, the following are true:

(a) if s1 BE1 e1, then there is e2 such that s2 BE2 e2 and e1 Seq(L×B) e2;

(b) if s2 BE2
e2, then there is e1 such that s1 BE1

e1 and e1 Seq(L×B) e2.

We say that s1 and s2 are bisimilar among 〈S1, E1〉 and 〈S2, E2〉 if and only if there is a bisimulation B
between 〈S1, E1〉 and 〈S2, E2〉 such that s1 B s2.

The following is of course immediate:

Proposition 4.6. B is a bisimulation between 〈S1, E1〉 and 〈S2, E2〉 if and only if B is a bisimulation
between the L-labelled execution coalgebras 〈S1, funE1〉 and 〈S2, funE2〉.

4.3 Abrahamson systems and coalgebras

Informally, we can explain bisimilarity of states of labelled execution systems in the same way as we did in
the case of labelled transition systems. Only now, paths are not implicitly inferred from a transition
relation, but explicitly stipulated as part of the system structure. And this can have some peculiar side
effects.

For example, consider two {l0, l1}-labelled execution systems, whose executions are as depicted in the left
and right frames respectively of Figure 2. s0 and s2 are not bisimilar, simply because there is an execution
starting from s3, and no execution starting from s1. But why should we care if there is? The only
execution starting from s2 has only one step, labelled l0, and is in perfect agreement with the only
execution starting from s0, which also has only one step, also labelled l0. So, intuitively, there is no
difference in branching potential between the two states. We must therefore conclude that bisimilarity is,
in this case, inconsistent with our informal sense of equivalence of branching structure.

A plausible remedy for this would, informally, be the following: for any path beginning at a given state,
discount any branch off that path that is not a suffix of another path beginning at that same state. And
indeed, this would work for this particular case. But there are more problems.

Consider two {l0, l1, l2}-labelled execution systems, whose executions are as depicted in the left and right
frames respectively of Figure 3. s0 and s5 are bisimilar, but intuitively, there is difference in branching
potential between the two states: the two executions starting from s0 diverge right away at s0, with steps
that carry identical labels, whereas those starting from s5 diverge after the first step, at s6, with steps that
carry different labels. Of course, the explanation here is that there is no execution starting from s6, and so,
conceptually, the choice between the diverging steps is already made at s5. But then, what is the point of
having the two executions share the state s6?

27

s0

s1

s3

s0

s2

s4

l0 l0

l1 l2

s5

s6

s7

s5

s6

s8

l0 l0

l1 l2

Figure 3. s0 and s5 are bisimilar, even though the two executions starting from s0 diverge right away at s0,
whereas those starting from s5 diverge after the first step at s6.

By now, the reader should begin to suspect what the source of our problems is: what we have called
“state” in our systems does not really behave as such. In a type of system that is supposed to serve as a
modelling device for processes of some kind, it is essential that “the future behavior depends only upon the
current state, and not upon how that state was reached”. And this is not always the case here. What we
need to do is constrain the structure of our systems so that it is.

Of course, this idea is not new. The quote above is from [39, p. 176], where Lamport required that the set
of paths in a path structure be suffix closed, in the sense that for any path in the set, any suffix of that
path is again a path in the set. It was later observed in [25] that this is not enough: one must also require
that the set of paths be fusion closed, in the sense that for any prefix of a path in the set, and any suffix of
another path in the set, if the former ends at the state at which the latter begins, then their fusion at that
state is again a path in the set (see [56]). And apparently, it was Abrahamson, in [1], that first considered
path structures that satisfied both requirements (see [19]).

We now adapt these requirements to our own setting.

We say that 〈S,E〉 is Abrahamson if and only if the following are true:

(i) for every s, l, s′, and e′, if sBE 〈〈l, s′〉〉 · e′, then s′ BE e′;

(ii) for every s, l, s′, e′1, and e′2, if sBE 〈〈l, s′〉〉 · e′1 and s′ BE e′2, then sBE 〈〈l, s′〉〉 · e′2.

We say that 〈C, ε〉 is Abrahamson if and only if the following are true:

(iii) for every c, l, c′, and e′, if cBε 〈〈l, c′〉〉 · e′, then c′ Bε e′;

(iv) for every c, l, c′, e′1, and e′2, if cBε 〈〈l, c′〉〉 · e′1 and c′ Bε e′2, then cBε 〈〈l, c′〉〉 · e′2.

Here, (i) and (iii) correspond to suffix closure, and (ii) and (iv), assuming (i) and (iii) respectively, to
fusion closure.

The following is immediate from 4.3(a):

Proposition 4.7. 〈S,E〉 is Abrahamson if and only if the L-labelled execution coalgebra 〈S, funE〉 is
Abrahamson.

We write L-LECAbr for the category whose objects are all the Abrahamson L-labelled execution
coalgebras, and arrows all the homomorphisms from one Abrahamson L-labelled execution coalgebra to
another.

L-LECAbr is clearly a full subcategory of L-LEC, and a good example of a case where certain kinds of
structure have been systematically ruled out. If we are to use an L-labelled execution system to model the
behaviour of processes of some kind, then we must rule non-Abrahamson systems out. And in that case, a
final L-labelled execution coalgebra is no longer the right choice of model; it is simply to big, containing

28

nonsensical pieces of structure that are neither needed nor wanted. The following allows us to cut any such
coalgebra down to size:

Theorem 4.8. L-LECAbr is a (Pow ◦ Seq ◦ (L× Id))-covariety.

Proof. Assume an Abrahamson L-labelled execution coalgebra 〈C, ε〉.

Suppose that 〈Chi, εhi〉 is a homomorphic image of 〈C, ε〉.

Then there is a surjective homomorphism h from 〈C, ε〉 to 〈Chi, εhi〉.

Assume chi, l, c
′
hi, and e′hi such that chi Bεhi 〈〈l, c′hi〉〉 · e′hi.

Since h is a surjective function from C to Chi, there is c ∈ C such that chi = h(c). And since h is a
homomorphism from 〈C, ε〉 to 〈Chi, εhi〉, there is c′ and e′ such that cBε 〈〈l, c′〉〉 · e′ and

〈〈l, c′hi〉〉 · e′hi = 〈〈l, h(c′)〉〉 · Seq(L× h)(e′).

Since 〈C, ε〉 is Abrahamson, c′ Bε e′, and thus, since h is a homomorphism from 〈C, ε〉 to 〈Chi, εhi〉,
c′hi Bεhi

e′hi.

Assume chi, l, c
′
hi, e

′
hi1 and e′hi2 such that chi Bεhi 〈〈l, c′hi〉〉 · e′hi1 and c′hi Bεhi e

′
hi2.

Since h is a surjective function from C to Chi, there is c ∈ C such that chi = h(c). And since h is a
homomorphism from 〈C, ε〉 to 〈Chi, εhi〉, there is c′, e′1, and e′2 such that cBε 〈〈l, c′〉〉 · e′1,

〈〈l, c′hi〉〉 · e′hi1 = 〈〈l, h(c′)〉〉 · Seq(L× h)(e′1),

c′ Bε e′2, and

e′hi2 = Seq(L× h)(e′2).

Since 〈C, ε〉 is Abrahamson, cBε 〈〈l, c′〉〉 · e′2, and thus, since h is a homomorphism from 〈C, ε〉 to 〈Chi, εhi〉,
chi Bεhi

〈〈l, c′hi〉〉 · e′hi2.

Thus, by generalization, 〈Chi, εhi〉 is Abrahamson.

Thus, by generalization, L-LECAbr is closed under the formation of homomorphic images.

Assume an Abrahamson L-labelled execution coalgebra 〈C, ε〉.

Suppose that 〈Csub, εsub〉 is a subcoalgebra of 〈C, ε〉.

Then Csub ⊆ C and Csub ↪→ C is a homomorphism from 〈Csub, εsub〉 to 〈C, ε〉.

Assume c, l, c′, and e′ such that cBεsub
〈〈l, c′〉〉 · e′.

Since Csub ⊆ C, c, c′ ∈ C. And since Csub ↪→ C is a homomorphism from 〈Csub, εsub〉 to 〈C, ε〉,
cBε 〈〈l, c′〉〉 · e′. Since 〈C, ε〉 is Abrahamson, c′ Bε e′, and thus, since Csub ↪→ C is a homomorphism from
〈Csub, εsub〉 to 〈C, ε〉, c′ Bεsub

e′.

Assume c, l, c′, e′1 and e′2 such that cBεsub
〈〈l, c′〉〉 · e′1 and c′ Bεsub e

′
2.

Since Csub ⊆ C, c, c′ ∈ C. And since Csub ↪→ C is a homomorphism from 〈Csub, εsub〉 to 〈C, ε〉,
cBε 〈〈l, c′〉〉 · e′1 and c′ Bε e′2. Since 〈C, ε〉 is Abrahamson, cBε 〈〈l, c′〉〉 · e′2 and thus, since Csub ↪→ C is a
homomorphism from 〈Csub, εsub〉 to 〈C, ε〉, cBεsub 〈〈l, c′〉〉 · e′2.

Thus, by generalization, 〈Csub, εsub〉 is Abrahamson.

Thus, by generalization, L-LECAbr is closed under the formation of subcoalgebras.

Assume a class-indexed family {〈Ci, γi〉}i∈I of Abrahamson L-labelled execution coalgebras.

29

Let 〈C, ε〉 =
∑
i∈I 〈Ci, γi〉.

Assume c, l, c′, and e′ such that cBε 〈〈l, c′〉〉 · e′.

Since 〈C, ε〉 =
∑
i∈I 〈Ci, γi〉, there is j ∈ I and cj ∈ Cj such that c = (injj

∑
i∈I Ci)(cj). And since

injj
∑
i∈I Ci is a homomorphism from 〈Cj , εj〉 to 〈C, ε〉, there is c′j and e′j such that cj Bεj 〈〈l, c′j〉〉 · e′j and

〈〈l, c′〉〉 · e′ = 〈〈l, (injj
∑
i∈I

Ci)(c
′
j)〉〉 · Seq(L× injj

∑
i∈I

Ci)(e
′
j).

Since 〈Cj , εj〉 is Abrahamson, c′j Bεj e
′
j , and thus, since injj

∑
i∈I Ci is a homomorphism from 〈Cj , εj〉 to

〈C, ε〉, c′ Bε e′.

Assume c, l, c′, e′1 and e′2 such that cBε 〈〈l, c′〉〉 · e′1 and c′ Bε e′2.

Since 〈C, ε〉 =
∑
i∈I 〈Ci, γi〉, there is j ∈ I and cj ∈ Cj such that c = (injj

∑
i∈I Ci)(cj). And since

injj
∑
i∈I Ci is a homomorphism from 〈Cj , εj〉 to 〈C, ε〉, there is c′j , e

′
j1

and e′j2 such that cj Bεj 〈〈l, c′j〉〉 · e′j1,

〈〈l, c′〉〉 · e′1 = 〈〈l, (injj
∑
i∈I

Ci)(c
′
j)〉〉 · Seq(L× injj

∑
i∈I

Ci)(e
′
j1

),

c′j Bεj e
′
j2

, and

e′2 = Seq(L× injj
∑
i∈I

Ci)(e
′
j2

).

Since 〈Cj , εj〉 is Abrahamson, cj Bεj 〈〈l, c′j〉〉 · e′2j and thus, since injj
∑
i∈I Ci is a homomorphism from

〈Cj , εj〉 to 〈C, ε〉, cBε 〈〈l, c′〉〉 · e′2.

Thus, by generalization, 〈C, ε〉, or equivalently,
∑
i∈I 〈Ci, γi〉, is Abrahamson.

Thus, by generalization, L-LECAbr is closed under the formation of direct sums.

Thus, L-LECAbr is a (Pow ◦ Seq ◦ (L× Id))-covariety.

The following is immediate from Theorem 2.24:

Corollary 4.9. There is an L-labelled execution coalgebra that is final in L-LECAbr.

Thus, by Theorem 2.23, there is a strongly extensional Abrahamson L-labelled execution coalgebra that
subsumes the structure of every other Abrahamson L-labelled execution coalgebra.

4.4 Underlying labelled transition systems and coalgebras

In an Abrahamson system, there is a clear notion of a “possible next step” relation, which induces the
construction of an associated, or better, underlying labelled transition system. From a mathematical
standpoint, this construction makes sense for a non-Abrahamson system as well, and is most conveniently
carried out on the coalgebra side of the theory.

Assume a class C.

We write η(C) for a class function from Pow Seq(L× C) to Pow(L× C) such that for every
S ∈ Pow Seq(L× C),

η(C)(S) = {head s | s ∈ S and s 6= 〈 〉}.

30

Our choice of notation here is not arbitrary. We think of η as an operator that assigns to every class C a
class function from its image under Pow ◦ Seq ◦ (L× Id) to its image under Pow ◦ (L× Id). And what is
interesting about this operator is that for every class function f : C1 → C2,

η(C2) ◦ Pow Seq(L× f) = Pow(L× f) ◦ η(C1),

or equivalently, the following diagram commutes:

Pow Seq(L× C1) Pow(L× C1)

Pow Seq(L× C2) Pow(L× C2)

η(C1)

Pow Seq(L× f) Pow(L× f)

η(C2)

In the language of category theory, this makes η a natural transformation from Pow ◦ Seq ◦ (L× Id) to
Pow ◦ (L× Id).

The reason why it is of interest to us here that η is a natural transformation is a theorem by Rutten,
according to which, every natural transformation ν from an endofunctor F1 on Class to an endofunctor F2

on Class induces a functor from F1-Coalg to F2-Coalg that assigns to every F1-coalgebra 〈C, γ〉 the
F2-coalgebra 〈C,η(C) ◦ γ〉, and to every homomorphism h from an F1-coalgebra 〈C1, γ1〉 to an
F1-coalgebra 〈C2, γ2〉 that same class function h, which is now a homomorphism from the F2-coalgebra
〈C1,η(C1) ◦ γ1〉 to the F2-coalgebra 〈C2,η(C2) ◦ γ2〉 (see [58, thm. 15.1]). In other words, the induced
functor preserves homomorphisms, and thus, by Theorem 2.6, bisimulations too.

In our case, the functor induced by η is a forgetful functor, which, informally, keeps only the first step, if
any, from any execution starting from any state, and discards the rest.

The following is immediate from Rutten’s theorem, but a more direct proof would require only little extra
work:

Theorem 4.10. If h is a homomorphism from 〈C1, ε1〉 to 〈C2, ε2〉, then h is a homomorphism from the
L-labelled transition coalgebra 〈C1,η(C1) ◦ ε1〉 to the L-labelled transition coalgebra 〈C2,η(C2) ◦ ε2〉.

The following is now immediate from Theorem 2.6 and 4.10:

Corollary 4.11. If B is a bisimulation between 〈C1, ε1〉 and 〈C2, ε2〉, then B is a bisimulation between the
L-labelled transition coalgebras 〈C1,η(C1) ◦ ε1〉 and 〈C2,η(C2) ◦ ε2〉.

Of course, we can translate all this back to the system side of the theory.

Assume a binary relation E : S ↔ S (L× S).

We write transE for a binary relation between S and L× S such that for any s ∈ S and any 〈l, s′〉 ∈ L× S,

s (transE) 〈l, s′〉 ⇐⇒ there is e such that s E e, e 6= 〈 〉, and head e = 〈l, s′〉.

The following is trivial:

Proposition 4.12. transE = rel(η(S) ◦ funE).

The following is now immediate from Proposition 3.3(b), 3.7, and 4.6, Corollary 4.11, and Proposition 4.12:

Theorem 4.13. If B is a bisimulation between 〈S1, E1〉 and 〈S2, E2〉, then B is a bisimulation between the
L-labelled transition systems 〈S1, transE1〉 and 〈S2, transE2〉.

31

s0

s1

l

s2

s3

s4

l

l

Figure 4. s0 and s2 are bisimilar among the two underlying {l}-labelled transition systems, which are
identical, but not among the two {l}-labelled execution systems.

s0

s1

s2

s1

s2

s1

s3

l0 l1 l2

l1

s4

s5

s7

s5

s6

s5

s7

l0 l1 l2

l2

Figure 5. s0 and s4 are bisimilar among the two underlying {l0, l1, l2}-labelled transition systems, which are
identical, but not among the two {l0, l1, l2}-labelled execution systems.

4.5 Generable systems and coalgebras

The converse of Theorem 4.13 is of course false, as is that of Theorem 4.10 and Corollary 4.11. But it is
instructive to see exactly where it fails. We go over it through a series of simple examples.

First, suppose that 〈S1, E1〉 and 〈S2, E2〉 are two {l}-labelled execution systems, whose executions are as
depicted in the left and right frames respectively of Figure 4. Then s0 and s2 are bisimilar among the
{l}-labelled transition systems 〈S1, transE1〉 and 〈S2, transE2〉, but not among 〈S1, E1〉 and 〈S2, E2〉.

The problem is easy to spot here. The two systems have one execution each. But whereas the execution of
the first system has only one step, the execution of the second has two. And that second step, which is the
cause for s0 and s2 not being bisimilar among the two systems, is dropped during the underlying labelled
transition system construction.

Now suppose that 〈S1, E1〉 and 〈S2, E2〉 are two {l0, l1, l2}-labelled execution systems, whose executions are
as depicted in the left and right frames respectively of Figure 5. Then s0 and s4 are bisimilar among the
{l0, l1, l2}-labelled transition systems 〈S1, transE1〉 and 〈S2, transE2〉, but not among 〈S1, E1〉 and 〈S2, E2〉.

Here the problem is of a different nature. Every step of every execution is accounted for in the underlying
labelled transition systems. However, the two longer executions, starting from s0 and s4 respectively,
disagree on their second step, and that disagreement is masked by the agreement of executions starting
from s1 and s5 respectively.

These two examples were specially chosen to target the two defining clauses of the Abrahamson property.
Specifically, and informally, the systems in the first example are not suffix closed, thus violating clause (i)
of the property, whereas those in the second are not fusion closed, thus violating clause (ii). Overall, none
of them is Abrahamson. And since our construction was based on the idea of a “possible next step”
relation, which, in the case of a non-Abrahamson system, is a conceptually ambiguous notion, it is no
surprise that non-bisimilar states can turn bisimilar in the underlying systems.

32

s
l0 l1

Figure 6. s is not bisimilar with itself among the overlying {l0, l1}-labelled execution system whose
executions correspond to all infinite paths in the diagram, and that whose executions correspond to the infinite
paths that go through each of the two loops infinitely often.

With Abrahamson systems, things get much more interesting. In the rest of our examples, we shall focus
on such systems. And as afforded with such systems, we shall communicate their structure more casually,
simply drawing a diagram of the underlying labelled transition system, and describing the set of paths in
that diagram that correspond to their executions.

Consider then the {l0, l1}-labelled transition system, with l0 6= l1, portrayed in Figure 6. One
{l0, l1}-labelled execution system lying over this labelled transition system is the one whose executions
correspond to all infinite paths in the diagram. Another is the one whose executions correspond to those
infinite paths that go through each of the two loops infinitely often. And of course, s is not bisimilar with
itself among the two.

Notice that if we let l0 = a and l1 = b, then the two {l0, l1}-labelled execution systems in this example
become models of the right and left side agents respectively of (2). Accordingly, we may think of each of
these two systems as a specification of a scheduling policy between two processes, forever iterating over l0
and l1 respectively, on a single processing unit. Under the first policy, the scheduler is only required to
guarantee progress of execution, simply picking at random one process at a time. Under the second, it is
further required to be fair, taking care that there is no point in time after which a process is forever
neglected. But whereas its behaviour in the first case is completely specified by the underlying
{l0, l1}-labelled transition system, in the second case, it cannot be specified by any {l0, l1}-labelled
transition system alone.

Besides demonstrating the failure of the converse of Theorem 4.13 for Abrahamson systems, this example
attempts to display the increase in expressive power and branching complexity that moving from a labelled
transition to a labelled execution system can bring. But it does so inadequately. For one need not really
move to a labelled execution system to specify the behaviour of the scheduler under that second policy.
One can just augment the given labelled transition system with the set of all infinite sequences over {l0, l1}
corresponding to a fair interleaving of the two processes. And in fact, the concept of bisimulation between
labelled transition systems can be generalized to account for this kind of augmentation by simply adding a
third clause to Definition 3.2 that tests for inclusion between the sets of “admissible” sequences of labels
associated with each state. This gives rise to the less known concept of fortification equivalence, one of the
alternative approaches to the semantics of finite delay considered by Milner in [44], and a perfectly adequate
approach to the specification of the two scheduling policies in our example. What we want is another
example that will expose the shortcomings of this type of approach, and vindicate our present venture.

Consider then the {l0, l1}-labelled transition system, with l0 6= l1, portrayed in Figure 7. The first
{l0, l1}-labelled execution system that we wish to consider here is the unique Abrahamson system whose
executions starting from s0 correspond to all maximal paths in this diagram. The second is the one whose
executions are all the executions of the first except the single infinite execution stuttering around s0. And
because of this exception, s0 is not bisimilar with itself among the two systems.

This beautiful example is from [5], where it was used to attack precisely the type of approach discussed
above. Here, it is perhaps convenient to think of the two systems as modelling the behaviour of two
distinct processes, both initialized at s0. The first process will either loop around s0 forever, or iterate
through it for a finite, indeterminate number of times before progressing to s1. From there on, a single
indeterminate choice will decide its fate. The second process, on the other hand, is not allowed to loop

33

s0

s1

s2 s3

l0

l0 l1

l0

l0

Figure 7. s0 is not bisimilar with itself among the overlying Abrahamson {l0, l1}-labelled execution system
whose executions starting from s0 correspond to all maximal paths in the diagram, and that whose executions
are all the executions of the first system except the infinite execution stuttering around s0.

s

l

Figure 8. s is not bisimilar with itself among the overlying {l}-labelled execution system whose single
execution corresponds to the only infinite path in the diagram, and that whose executions correspond to all
finite paths and the only infinite path.

around s0 forever. It must eventually advance to s1, from where on it behaves just like the first one. What
sets the behaviour of the two processes apart is, of course, the infinite stuttering around s0, permitted for
the first process, but not the second. However, this is something that cannot be determined by the
sequences of actions that the two processes perform in the course of their executions, for the trace of that
infinite stuttering is matched by that of every infinite execution that eventually loops around s2. And yet
the two processes ought to be distinguished. For during that infinite stuttering, the first process may
always choose to branch off to a state from which it can perform l1, whereas, in every execution having
that trace, the second must eventually reach a state from which it cannot ever do so.

With respect to the failure of the converse of Theorem 4.13, both this and the previous example point at
the same problem: the existence of an infinite path in the diagram that does not correspond to any
execution of a system, but whose every finite prefix is a prefix of another path that does.

This too is something that has already come up in the investigation of path structures in temporal logic. In
[25], Emerson called a set of paths limit closed provided that for every infinite, strictly increasing chain of
finite prefixes of paths in that set, the limit of that chain, in the standard topology of sequences, is again a
path in the set. This is essentially a continuity property implying that a set of paths be determined by the
finite prefixes of paths in that set, and was apparently also first considered in [1]. But it was Emerson in
[25] who proved the independence of all three closure properties, and the equivalence of their conjunction
to the existence of a transition relation generating the given set of paths. Apart from the absence of labels,
which has no bearing in this particular discussion, Emerson’s setup was different in that paths were always
infinite. But this too is of no importance in our examples, which, in light of Emerson’s result, appear to
implicate violation of limit closure in the failure of the underlying labelled transition system to subsume all
the branching information relevant to a given Abrahamson system.

Our next example is perhaps the most curious one.

Consider the simple {l}-labelled transition system portrayed in Figure 8. There are exactly three
Abrahamson {l}-labelled execution systems that one can lay over this labelled transition system. The first
is the one whose only execution corresponds to the only infinite path in the diagram. The second is the one
whose executions correspond to all finite paths in the diagram. And of course, the third is the one whose

34

s

Figure 9. s is not bisimilar with itself among the overlying {l}-labelled execution system that has no
execution, and that whose only execution is the empty execution.

executions are all executions of the first and second system. But s is not bisimilar with itself among any
two of the three.

Informally, the second system is not limit closed, and this is one part of the problem. But the first and
third are, and so there must be something more going on here. The answer is in the difference between
Emerson’s setup and ours mentioned earlier. Here, executions are not always infinite. In a system that is,
informally, suffix closed, if there is a finite execution, then there is an empty execution. And an empty
execution creates a type of branching that is impossible to mimic in a labelled transition system.

In an Abrahamson system that is used to model the behaviour of a process, an empty execution can be
used to model termination. But if there is another, non-empty execution starting from the same state, then
termination becomes a branching choice, one that does not show up in the “possible next step” relation of
the system. This feature of indeterminate termination, as we might call it, can seem a little odd at first, but
is really a highly versatile mechanism, particularly useful in modelling idling in absence of input stimuli.

Finally, consider the trivial labelled transition system portrayed in Figure 9. There are exactly two labelled
execution systems that one can lay over this labelled transition system: one that has one execution, the
empty execution, and one that has no execution. And of course, s is not bisimilar with itself among the two.

This degenerate case deserves little comment. We only remark that in a suffix closed system, if a state has
no execution starting from it, then it has no execution going through it.

At this point, we have found five possible causes of failure for the converse of Theorem 4.13. We have
chosen our examples carefully, to examine each of the five separately and independently from one another.
And we have observed how each of the first three connects to violation of one of the three closure
properties that have been shown to collectively characterize sets of infinite paths generable by a transition
relation. But finite paths add another dimension to the problem, rendering Emerson’s characterization
result obsolete. What we will show next is that impossibility of indeterminate termination, along with a
non-triviality condition guarding against the occurrence of an isolated state, can be added to the conditions
of suffix, fusion, and limit closure, to produce a complete characterization of system generability, insensitive
to the length of the executions.

First, we need to make the notion of generability precise. For generality, we transfer ourselves again to the
coalgebra side of the theory.

Assume a class function τ : C → Pow(L× C).

Assume c ∈ C.

Assume e ∈ Seq(L× C).

We say that e is a τ -orbit of c if and only if the following are true:

(i) one of the following is true:

(1) τ(c) = ∅ and e = 〈 〉;

(2) there is l, c′, and e′ such that 〈l, c′〉 ∈ τ(c) and e = 〈〈l, c′〉〉 · e′;

(ii) for every n ∈ ω, if tailn e 6= 〈 〉, then one of the following is true:

(1) there is l and c′ such that τ(c′) = ∅ and tailn e = 〈〈l, c′〉〉;

35

(2) there is l, c′, l′, c′′, and e′′ such that 〈l′, c′′〉 ∈ τ(c′) and tailn e = 〈〈l, c′〉〉 · 〈〈l′, c′′〉〉 · e′′.

Here again, it is the computational interpretation that is most helpful. If we think of τ as a representation
of the control flow graph of a possibly indeterminate sequential program, then a τ -orbit of c corresponds to
a total execution of that program starting from the node represented by c.

Now, we would like to say that a class function from C to Pow Seq(L× C)) is generated by τ just as long
as it assigns to any c ∈ C the set of all τ -orbits of c. But first, we need to make sure that this really is a
set, and not a proper class.

We write Wτ (c) for a class function from ω to Pow(L× C) such that

Wτ (c)(0) = τ(c),

and for every n ∈ ω,

Wτ (c)(n+ 1) =
⋃
{τ(c′) | there is l such that 〈l, c′〉 ∈Wτ (c)(n)}.

We think of Wτ (c) as a wave emitted by c, and propagating through L× C according to τ , and Wτ (c)(n)
as the wavefront at the nth time instance.

Proposition 4.14. If e is a τ -orbit of c, then for every n ∈ ω, if tailn e 6= 〈 〉, then head tailn e ∈Wτ (c)(n).

Proof. We use induction.

If n = 0, then tailn e = e. Thus, if tailn e 6= 〈 〉, then there is l, c′, and e′ such that 〈l, c′〉 ∈ τ(c) and

tailn e = 〈〈l, c′〉〉 · e′.

Hence, head tailn e ∈Wτ (c)(n).

Otherwise, there is m ∈ ω such that n = m+ 1. Then, if tailn e 6= 〈 〉, then tailm e 6= 〈 〉. Thus, there is l,
c′, l′, c′′, and e′′ such that 〈l′, c′′〉 ∈ τ(c′)

tailm e = 〈〈l, c′〉〉 · 〈〈l′, c′′〉〉 · e′′.

By the induction hypothesis, head tailm e ∈Wτ (c)(m), and so, 〈l, c′〉 ∈Wτ (c)(m). Thus,
〈l′, c′′〉 ∈Wτ (c)(m+ 1), and since

head tailn e = head tailm+1 e = 〈l′, c′′〉,

head tailn e ∈Wτ (c)(n).

Therefore, for every n ∈ ω, if tailn e 6= 〈 〉, then head tailn e ∈Wτ (c)(n).

Proposition 4.15. For every n ∈ ω, Wτ (c)(n) is a set.

Proof. We use induction.

If n = 0, then Wτ (c)(n) = τ(c), which, by definition of Pow, is a set.

Otherwise, there is m ∈ ω such that n = m+ 1. By the induction hypothesis, Wτ (c)(m) is a set. Then
clearly, Wτ (c)(m+ 1) is a set, and so Wτ (c)(n) is a set.

Therefore, for every n ∈ ω, Wτ (c)(n) is a set.

Proposition 4.16. {e | e ∈ Seq(L× C) and e is a τ -orbit of c} is a set.

36

Proof. By Proposition 4.14, for every e ∈ Seq(L× C), if e is a τ -orbit of c, then

graph e ⊆
⋃
{{n} ×Wτ (c)(n) | n ∈ ω}.

Thus,

{graph e | e ∈ Seq(L× C) and e is a τ -orbit of c}

is a set, and by replacement,

{e | e ∈ Seq(L× C) and e is a τ -orbit of c}

is a set.

Proposition 4.15 and 4.16 will be taken for granted in the sequel.

We write gen τ for a class function from C to Pow Seq(L× C) such that for any c ∈ C,

(gen τ)(c) = {e | e ∈ Seq(L× C) and e is a τ -orbit of c}.

Assume a class function ε : C → Pow Seq(L× C).

We say that τ generates ε if and only if gen τ = ε.

We say that ε is generable if and only if there is a class function from C to Pow(L× C) that generates ε.

Now, suppose that ε is indeed generable. Can there be more than one class function from C to Pow(L×C)
that generates ε?

We could perhaps use the following tentative argument to convince ourselves that this cannot be the case:
if τ1 and τ2 are two different class functions from C to Pow(L× C), then there must be c ∈ C and
〈l, c′〉 ∈ L× C such that either 〈l, c′〉 ∈ τ1(c) and 〈l, c′〉 6∈ τ2(c), or 〈l, c′〉 6∈ τ1(c) and 〈l, c′〉 ∈ τ2(c); and
assuming, without any loss of generality, the former, we can prefix any τ1-orbit of c′ with 〈l, c′〉 to get a
τ1-orbit of c that cannot be a τ2-orbit of c. But how do we know if there is a τ1-orbit of c′ to prefix with
〈l, c′〉?

If τ1(c′) = ∅, then 〈 〉 is a τ1-orbit of c′. If τ1(c′) 6= ∅, then we would again expect that there is at least one
τ1-orbit of c′. For we could imagine constructing one by first choosing a pair 〈l′, c′′〉 in τ1(c′), then a pair
〈l′′, c′′′〉 in τ1(c′′), then a pair 〈l′′′, c′′′′〉 in τ1(c′′′), and so on forever, or until we reach a point where there is
no pair to choose. If we never reach such a point, then this construction will involve an infinite number of
choices. This suggests that the Axiom of Choice, or some other, weaker form of it, might be necessary to
prove the statement that for every suitable τ and c, there is a τ -orbit of c. And indeed, this statement is
equivalent to the Axiom of Dependent Choice.

We will need the following lemma:

Lemma 4.17. For every n ∈ ω, if there is 〈l, c′〉 ∈Wτ (c)(n) and e′ ∈ Seq(L× C) such that e′ is a τ -orbit
of c′, then there is e ∈ Seq(L× C) such that e is a τ -orbit of c.

Proof. We use induction.

If n = 0, then 〈l, c′〉 ∈ τ(c), and 〈〈l, c′〉〉 · e′ is a τ -orbit of c.

Otherwise, there is m ∈ ω such that n = m+ 1. By definition of Wτ (c), there is 〈l′, c′′〉 ∈Wτ (c)(m) such
that 〈l, c′〉 ∈ τ(c′′), and 〈〈l, c′〉〉 · e′ is a τ -orbit of c′′. Thus, by the induction hypothesis, there is
e ∈ Seq(L× C) such that e is a τ -orbit of c.

Therefore, for every n ∈ ω, if there is 〈l, c′〉 ∈Wτ (c)(n) and e′ ∈ Seq(L× C) such that e′ is a τ -orbit of c′,
then there is e ∈ Seq(L× C) such that e is a τ -orbit of c.

37

Theorem 4.18. The following are equivalent:

(a) for every class C, every class function τ : C → Pow(L× C), and any c ∈ C, there is e ∈ Seq(L× C)
such that e is a τ -orbit of c;

(b) for every non-empty set S and every binary relation R on S, if for every s ∈ S, there is s′ such that
s R s′, then there is an infinite sequence d over S such that for every n ∈ ω,
head tailn d R head tailn+1 d.

Proof. Suppose that (a) is true.

Assume a non-empty set S.

Let l be a label in L.

Let τ be a class function from S to Pow(L× S) such that for every s ∈ S,

τ(s) = {〈l, s′〉 | s R s′}.

Let s be a member of S.

Since (a) is true, there is e ∈ Seq(L× S) such that e is a τ -orbit of s. And by an easy induction, for every
n ∈ ω, tailn e 6= 〈 〉.

Let d be an infinite sequence over S such that for every n ∈ ω,

head tailn d = sec head tailn e.

Then, by an easy induction, for every n ∈ ω, head tailn d R head tailn+1 d.

Thus, by generalization, (b) is true.

Conversely, suppose that (b) is true.

Assume a class C, a class function τ : C → Pow(L× C), and c ∈ C.

If τ(c) = ∅, then 〈 〉 is a τ -orbit of c.

Otherwise, Wτ (c)(0) 6= ∅.

If there is n ∈ ω and c′ ∈Wτ (c)(n) such that τ(c′) = ∅, then 〈 〉 is a τ -orbit of c′. Thus, by Lemma 4.17,
there is e ∈ Seq(L× C) such that e is a τ -orbit of c.

Otherwise, for every n ∈ ω and every c′ ∈Wτ (c)(n), τ(c′) 6= ∅.

Let S =
⋃
{Wτ (c)(n) | n ∈ ω}.

Then, since Wτ (c)(0) 6= ∅, S 6= ∅.

Let R be a binary relation on S such that for every 〈l, c′〉, 〈l′, c′′〉 ∈ S,

〈l, c′〉 R 〈l′, c′′〉 ⇐⇒ 〈l′, c′′〉 ∈ τ(c′).

Then for every 〈l, c′〉 ∈ S, there is 〈l′, c′′〉 such that 〈l, c′〉 R 〈l′, c′′〉, and thus, since (b) is true, there is an
infinite sequence d over S such that for every n ∈ ω, head tailn d R head tailn+1 d. And clearly, there is
n ∈ ω and 〈l, c′〉 ∈Wτ (c)(n) such that

head d = 〈l, c′〉

and tail d is a τ -orbit of c′. Thus, by Lemma 4.17, there is e ∈ Seq(L× C) such that e is a τ -orbit of c.

Thus, by generalization, (a) is true.

38

Here, we accept the Axiom of Dependent Choice, and so we will take Theorem 4.18(a) for granted.

We can now make our tentative argument formal.

Assume class functions τ1, τ2 : C → Pow(L× C).

Proposition 4.19. If τ1 6= τ2, then gen τ1 6= gen τ2.

Proof. Suppose that τ1 6= τ2.

Then there is c, l, and c′ such that either 〈l, c′〉 ∈ τ1(c) and 〈l, c′〉 6∈ τ2(c), or 〈l, c′〉 6∈ τ1(c) and 〈l, c′〉 ∈ τ2(c).

Without any loss of generality, assume the former.

Let e′ be a sequence in Seq(L× C) that is a τ1-orbit of c′.

Let e = 〈〈l, c′〉〉 · e′.

Then e ∈ (gen τ1)(c), but e 6∈ (gen τ2)(c). Thus, gen τ1 6= gen τ2.

If we think of gen as an operator from cooperations of L-labelled transition coalgebras to cooperations of
L-labelled execution coalgebras, then we can read Proposition 4.19 as saying that that operator is injective.
So it must have a left inverse. The following shows that that left inverse is the composition on the left with
the image of the carrier of the corresponding L-labelled execution coalgebra under η:

Proposition 4.20. The following are true:

(a) η(C) ◦ gen τ = τ ;

(b) if ε is generable, then ε = gen(η(C) ◦ ε).

Proof. Assume c ∈ C.

Assume 〈l, c′〉 ∈ L× C.

Suppose that 〈l, c′〉 ∈ (η(C) ◦ gen τ)(c).

Then there is e ∈ (gen τ)(c) such that head e = 〈l, c′〉, and thus, 〈l, c′〉 ∈ τ(c).

Conversely, suppose that 〈l, c′〉 ∈ τ(c).

Let e′ be a sequence in Seq(L× C) that is a τ -orbit of c′.

Then 〈〈l, c′〉〉 · e′ ∈ (gen τ)(c), and thus, 〈l, c′〉 ∈ (η(C) ◦ gen τ)(c).

Thus, 〈l, c′〉 ∈ (η(C) ◦ gen τ)(c) if and only if 〈l, c′〉 ∈ τ(c).

Thus, by generalization, (a) is true.

We will now use (a) to prove (b).

Suppose that ε is generable.

Then there is a class function τ ′ : C → Pow(L× C) such that

gen τ ′ = ε.

Thus,

η(C) ◦ gen τ ′ = η(C) ◦ ε,

39

and hence, by (a),

τ ′ = η(C) ◦ ε.

Thus, (b) is true.

Before we move on to our characterization theorem, we have one last stop to make. We have built our
notion of generability around the idea of a τ -orbit. And we have tried to formalize the latter in the most
conceptually direct way. But as effective as that formalization has been, there is still reason to consider
another one. First, it is ugly. And second, there is a very simple but powerful proof rule that it is entirely
oblivious to.

We say that ε is consistent with τ if and only if for any c ∈ C and any e ∈ ε(c), one of the following is true:

(i) τ(c) = ∅ and e = 〈 〉;

(ii) there is l, c′, and e′ such that 〈l, c′〉 ∈ τ(c), e′ ∈ ε(c′), and e = 〈〈l, c′〉〉 · e′.

Theorem 4.21. The following are equivalent:

(a) e is a τ -orbit of c;

(b) there is a class function ε : C → Pow Seq(L× C) such that ε is consistent with τ , and e ∈ ε(c).

Proof. Suppose that (a) is true.

Let ε be a class function from C to Pow Seq(L× C) such that for every c′ and e′, e′ ∈ ε(c′) if and only if
one of the following is true:

(i) c′ = c and e′ = e;

(ii) there is n ∈ ω and l such that tailn e = 〈〈l, c′〉〉 · e′.

Assume c′ ∈ C and e′ ∈ ε(c′).

Suppose that c′ = c and e′ = e.

If τ(c′) = ∅ and e′ = 〈 〉, then clause (i) of the consistency property is true.

Otherwise, there is l′, c′′, and e′′ such that 〈l′, c′′〉 ∈ τ(c′) and

e′ = 〈〈l′, c′′〉〉 · e′′.

Then, by (ii), e′′ ∈ ε(c′′). Thus, clause (ii) of the consistency property is true.

Otherwise, there is n ∈ ω and l such that tailn e = 〈〈l, c′〉〉 · e′.

If e′ = 〈 〉, then τ(c′) = ∅, and thus, clause (i) of the consistency property is true.

Otherwise, there is l′, c′′, and e′′ such that 〈l′, c′′〉 ∈ τ(c′) and

e′ = 〈〈l′, c′′〉〉 · e′′.

Then, by (ii), e′′ ∈ ε(c′′). Thus, clause (ii) of the consistency property is true.

Therefore, ε is consistent with τ .

Thus, (b) is true.

Conversely, suppose (b) is true,

Then clause (i) of the property of being a τ -orbit of c is true.

40

By an easy induction, for every n ∈ ω, if tailn e 6= 〈 〉, then there is l and c′ such that

head tailn e = 〈l, c′〉

and tailn+1 e ∈ ε(c′).

Assume n ∈ ω.

Suppose that tailn e 6= 〈 〉.

Then there is l and c′ such that

head tailn e = 〈l, c′〉

and tailn+1 e ∈ ε(c′).

If tailn+1 e = 〈 〉, then τ(c′) = ∅.

Otherwise, there is l′, c′′, and e′′ such that 〈l′, c′′〉 ∈ τ(c′), e′′ ∈ ε(c′′), and

tailn+1 e = 〈〈l′, c′′〉〉 · e′′.

Thus, by generalization, clause (ii) of the property of being a τ -orbit of c is true.

Therefore, (a) is true.

The following is immediate:

Corollary 4.22. If ε is consistent with τ , then for any c ∈ C,

ε(c) ⊆ (gen τ)(c).

The following is now straightforward:

Corollary 4.23. gen τ is consistent with τ .

Proof. Assume c ∈ C and e ∈ (gen τ)(c).

By Theorem 4.21, there is a class function ε : C → Pow Seq(L× C) such that ε is consistent with τ , and
e ∈ ε(c).

If τ(c) = ∅ and e = 〈 〉, then there is nothing to prove.

Otherwise, there is l, c′, and e′ such that 〈l, c′〉 ∈ τ(c), e′ ∈ ε(c′), and

e = 〈〈l, c′〉〉 · e′.

And by Corollary 4.22, e′ ∈ (gen τ)(c′).

Thus, by generalization, gen τ is consistent with τ .

Corollary 4.22 is the proof rule that we referred to earlier, which is basically an instance of the coinduction
proof technique described in [47]. This deserves a brief digression.

We write Gτ (ε) for a class function from C to Pow Seq(L× C) such that for any c ∈ C,

Gτ (ε)(c) =

{
{〈 〉} if τ(c) = ∅;
{〈〈l, c′〉〉 · e′ | 〈l, c′〉 ∈ τ(c) and e′ ∈ ε(c′)} otherwise.

41

Here again, our notation is not arbitrary. We think of Gτ as an operator on class functions from C to
Pow Seq(L×C). And the interesting thing about this operator is that it preserves the pointwise ordering of
class functions from C to Pow Seq(L× C) induced by the inclusion class relation on Pow Seq(L× C): for
every class function ε1, ε2 : C → Pow Seq(L× C), if for any c ∈ C,

ε1(c) ⊆ ε2(c),

then for any c ∈ C,

Gτ (ε1)(c) ⊆ Gτ (ε2)(c).

What is more, ε is consistent with τ if and only if ε is a post-fixed point of Gτ , or equivalently, for any c ∈ C,

ε(c) ⊆ Gτ (ε)(c).

And it is not hard to see that gen τ is the greatest fixed point of Gτ , with respect to the aforementioned
pointwise ordering. Therefore, we can read Corollary 4.22 as saying that every post-fixed point of Gτ is
below the greatest fixed point of Gτ in that ordering, which is precisely what the coinduction proof
technique of [47] mandates. Unlike the latter, we could not have used Tarski’s Lattice-theoretical Fixpoint
Theorem (see [61, thm. 1]) to deduce our proof rule here. For if C is a proper class, then Pow Seq(L× C) is
not a complete lattice under inclusion, and so neither is the induced ordering of class functions from C to
Pow Seq(L× C). Nevertheless, the principle is the same.

Note that an ordered set can be viewed as a category, an order-preserving function on that set as a functor
on that category, and a post-fixed point of that function as a coalgebra for that functor. And if that
ordered set is a complete lattice, then, by Tarski’s fixed-point theorem, there is a final coalgebra for that
functor. And so the coinduction proof technique of [47] is just another variation of the general finality
theme of Section 2.6. The same, of course, is true for the more ad hoc proof rule of Corollary 4.22.

For a historical account on the emergence of coinduction in computer science, we refer to [60].

We have now finally reached our generability characterization theorem.

Theorem 4.24. ε is generable if and only if the following are true:

(a) for every c, l, c′, and e′, if 〈〈l, c′〉〉 · e′ ∈ ε(c), then e′ ∈ ε(c′);

(b) for every c, l, c′, e′1, and e′2, if 〈〈l, c′〉〉 · e′1 ∈ ε(c) and e′2 ∈ ε(c′), then 〈〈l, c′〉〉 · e′2 ∈ ε(c);

(c) for any c ∈ C and every infinite sequence s, if for every n ∈ ω, there is e ∈ ε(c) such that for every
k < n+ 1, tailk e 6= 〈 〉 and

head tailk s = head tailk e,

then s ∈ ε(c);

(d) for every c and e, if e ∈ ε(c) and 〈 〉 ∈ ε(c), then e = 〈 〉;

(e) for any c ∈ C, ε(c) 6= ∅.

Proof. Suppose that ε is generable.

Then there is a class function τ : C → Pow(L× C) such that ε = gen τ .

For every c, l, c′, and e′, if 〈〈l, c′〉〉 · e′ ∈ (gen τ)(c), then, by Corollary 4.23, e′ ∈ (gen τ)(c), and thus, (a) is
true.

For every c, l, c′, e′1, and e′2, if 〈〈l, c′〉〉 · e′1 ∈ (gen τ)(c) and e′2 ∈ (gen τ)(c′), then, by Corollary 4.23,
〈〈l, c′〉〉 · e′2 ∈ (gen τ)(c), and thus, (b) is true.

42

Assume c ∈ C and an infinite sequence s.

Suppose that for every n ∈ ω, there is e ∈ (gen τ)(c) such that for every k < n+ 1, tailk e 6= 〈 〉 and

head tailk s = head tailk e.

Assume n ∈ ω.

If n = 0, then there is e ∈ (gen τ)(c) such that e 6= 〈 〉 and

head s = head e.

Thus, there is l, c′, and e′ such that 〈l, c′〉 ∈ τ(c) and

s = 〈〈l, c′〉〉 · e′.

Otherwise, there is m ∈ ω such that n = m+ 1. Then there is e ∈ (gen τ)(c) such that tailm e 6= 〈 〉 and

head tailm s = head tailm e,

and tailm+1 e 6= 〈 〉 and

head tailm+1 s = head tailm+1 e.

Thus, there is l, c′, l′, c′′, and e′′ such that 〈l′, c′′〉 ∈ τ(c′) and

tailm s = 〈〈l, c′〉〉 · 〈〈l′, c′′〉〉 · e′′.

Thus, by generalization, s is a τ -orbit of c, and hence, s ∈ (gen τ)(c).

Thus, by generalization, (c) is true.

For every c and e, if e ∈ (gen τ)(c) and 〈 〉 ∈ (gen τ)(c), then, by Corollary 4.23, τ(c) = ∅, and hence,
e = 〈 〉. Thus, (d) is true.

By Theorem 4.18 and the Axiom of Dependent Choice, (e) is true.

Conversely, suppose that (a), (b), (c), (d), and (e) are true.

We prove that ε = gen(η(C) ◦ ε).

Assume c ∈ C and e ∈ ε(c).

If e = 〈 〉, then, by (d), ε(c) = {〈 〉}, and thus, η(C)(ε(c)) = ∅.

Otherwise, there is l, c′, and e′ such that

e = 〈〈l, c′〉〉 · e′.

Thus, by definition of η, 〈l, c′〉 ∈ η(C)(ε(c)), and by (a), e′ ∈ ε(c′).

Thus, by generalization, ε is consistent with η(C) ◦ ε, and by Corollary 4.22, for any c ∈ C,

ε(c) ⊆ (gen(η(C) ◦ ε))(c).

Assume c ∈ C and e ∈ (gen(η(C) ◦ ε))(c).

If e = 〈 〉, then η(C)(ε(c)) = ∅. Thus, by (e), e ∈ ε(c).

43

Otherwise, there is l, c′, and e′2 such that 〈l, c′〉 ∈ η(C)(ε(c)) and

e = 〈〈l, c′〉〉 · e′2.

Suppose that there is n ∈ ω such that tailn+1 e = 〈 〉.

Let n be the least member of ω such that tailn+1 e = 〈 〉.

Then there is l′ and c′′ such that η(C)(ε(c′′)) = ∅ and

tailn e = 〈〈l′, c′′〉〉.

We use induction to prove that for every j < n+ 1, there is l′′ and c′′′ such that

head tailj e = 〈l′′, c′′′〉

and tailj+1 e ∈ ε(c′′′).

If j = n, then

head tailj e = 〈l′, c′′〉

and

tailj+1 e = 〈 〉.

And since η(C)(ε(c′′)) = ∅, by (e), tailj+1 e ∈ ε(c′′).

Otherwise, there is k < n+ 1 such that j + 1 = k. Then there is l′′, c′′′, l′′′, c′′′′, and e′′′′2 such that
〈l′′′, c′′′′〉 ∈ η(C)(ε(c′′′)) and

head tailj e = 〈l′′, c′′′〉.

and

tailj+1 e = tailk e = 〈〈l′′′, c′′′′〉〉 · e′′′′2 .

By the induction hypothesis, e′′′′2 ∈ ε(c′′′′). Since 〈l′′′, c′′′′〉 ∈ η(C)(ε(c′′′)), there is e′′′′1 such that
〈〈l′′′, c′′′′〉〉 · e′′′′1 ∈ ε(c′′′). Thus, by (b), tailj+1 e ∈ ε(c′′′).

Therefore, e′2 ∈ ε(c′). And since 〈l, c′〉 ∈ η(C)(ε(c)), there is e′1 such that 〈〈l, c′〉〉 · e′1 ∈ ε(c). Thus, by (b),
e ∈ ε(c).

Otherwise, for every n ∈ ω, tailn+1 e 6= 〈 〉.

We use induction to prove that for every n, k ∈ ω, there is l′, c′′, and e′′ such that

head tailn e = 〈l′, c′′〉,

e′′ ∈ ε(c′′), and for every i < k + 1, taili e′′ 6= 〈 〉 and

head tailn+1+i e = head taili e′′.

Suppose that k = 0.

Then there is l′, c′′, l′′, c′′′, and e′′′ such that 〈l′′, c′′′〉 ∈ η(C)(ε(c′′)) and

tailn e = 〈〈l′, c′′〉〉 · 〈〈l′′, c′′′〉〉 · e′′′.

44

And since 〈l′′, c′′′〉 ∈ η(C)(ε(c′′)), there is e′′ such that e′′ ∈ ε(c′′) and

head e′′ = 〈l′′, c′′′〉.

Otherwise, there is j ∈ ω such that k = j + 1.

Then there is l′, c′′, l′′, c′′′, and e′′′ such that 〈l′′, c′′′〉 ∈ η(C)(ε(c′′)) and

tailn e = 〈〈l′, c′′〉〉 · 〈〈l′′, c′′′〉〉 · e′′′.

By the induction hypothesis, there is e′′′2 such that e′′′2 ∈ ε(c′′′) and for every i < j + 1, taili e′′′2 6= 〈 〉 and

head tailn+2+i e = head taili e′′′2 .

Since 〈l′′, c′′′〉 ∈ η(C)(ε(c′′)), there is e′′′1 such that 〈〈l′′, c′′′〉〉 · e′′′1 ∈ ε(c′′). Thus, by (b),
〈〈l′′, c′′′〉〉 · e′′′2 ∈ ε(c′′). And clearly, for every i < k + 1, taili(〈〈l′′, c′′′〉〉 · e′′′2) 6= 〈 〉 and

head tailn+1+i e = head taili(〈〈l′′, c′′′〉〉 · e′′′2).

Therefore, for every n ∈ ω, there is e′ ∈ ε(c′) such that for every k < n+ 1, tailk e′ 6= 〈 〉 and

head tailk e′2 = head tailm e′.

Thus, by (c), e′2 ∈ ε(c′). And since 〈l, c′〉 ∈ η(C)(ε(c)), there is e′1 such that 〈〈l, c′〉〉 · e′1 ∈ ε(c). Thus, by
(b), 〈〈l, c′〉〉 · e′2 ∈ ε(c), and hence, e ∈ ε(c).

Thus, by generalization, for any c ∈ C,

ε(c) ⊇ (gen(h(C) ◦ ε))(c).

Thus, ε = gen(h(C) ◦ ε), and hence, ε is generable.

Clause (a) of Theorem 4.24 corresponds to suffix closure, clause (b), conditioned on (a), to fusion closure,
and clause (c) to limit closure. Clause (d) asserts the impossibility of indeterminate termination. Finally,
clause (e) is the non-triviality condition discussed earlier, and essentially replaces Emerson’s left totality
condition on the generating transition relation (see [25]).

Each of these five properties has come about in connection with a different cause of failure of the converse
of Theorem 4.13, and hence of Theorem 4.10 and Corollary 4.11. And if we have been thorough enough, we
should expect that the conjunction of all five properties be sufficient a condition for eliminating that failure
altogether. This turns out to be the case.

We say that 〈C, ε〉 is generable if and only if ε is generable.

Theorem 4.25. If 〈C1, ε1〉 and 〈C2, ε2〉 are generable, then h is a homomorphism from 〈C1, ε1〉 to 〈C2, ε2〉
if and only if h is a homomorphism from the L-labelled transition coalgebra 〈C1,η(C1) ◦ ε1〉 to the
L-labelled transition coalgebra 〈C2,η(C2) ◦ ε2〉.

Proof. Suppose that 〈C1, ε1〉 and 〈C2, ε2〉 are generable.

Suppose that h is a homomorphism from 〈C1, ε1〉 to 〈C2, ε2〉.

Then, by Theorem 4.10, h is a homomorphism from the L-labelled transition coalgebra 〈C1,η(C1) ◦ ε1〉 to
the L-labelled transition coalgebra 〈C2,η(C2) ◦ ε2〉.

Conversely, suppose that h is a homomorphism from 〈C1,η(C1) ◦ ε1〉 to 〈C2,η(C2) ◦ ε2〉.

45

Let ε′2 be a class function from C2 to Pow Seq(L× C2) such that for any c2 ∈ C2,

ε′2(c2) = {e2 | there is c1 ∈ C1 and e1 ∈ ε1(c1)
such that h(c1) = c2 and (Seq(L× h))(e1) = e2}.

Assume c2 ∈ C2 and e2 ∈ ε′2(c2).

Then there is c1 ∈ C1 and e1 ∈ ε1(c1) such that

h(c1) = c2

and

(Seq(L× h))(e1) = e2.

Suppose that e1 = 〈 〉.

Then e2 = 〈 〉. Also, (η(C1) ◦ ε1)(c1) = ∅, and since h is a homomorphism from 〈C1,η(C1) ◦ ε1〉 to
〈C2,η(C2) ◦ ε2〉, (η(C2) ◦ ε2)(c2) = ∅.

Otherwise, by Corollary 4.23, there is l, c′1, and e′1 such that 〈l, c′1〉 ∈ (η(C1) ◦ ε1)(c1), e′1 ∈ ε1(c′1), and

e1 = 〈〈l, c′1〉〉 · e′1.

Then (Seq(L× h))(e′1) ∈ ε′2(h(c′1)) and

e2 = 〈〈l, h(c′1)〉〉 · (Seq(L× h))(e′1).

And since h is a homomorphism from 〈C1,η(C1) ◦ ε1〉 to 〈C2,η(C2) ◦ ε2〉, 〈l, h(c′1)〉 ∈ (η(C2) ◦ ε2)(c2).

Thus, by generalization, ε′2 is consistent with η(C2) ◦ ε2. Then, by Corollary 4.22, for any c2 ∈ C2,

ε′2(c2) ⊆ ε2(c2).

And clearly, for any c1 ∈ C1,

(Pow Seq(L× h))(ε1(c1)) ⊆ ε′2(h(c1)).

Therefore, for any c1 ∈ C1,

(Pow Seq(L× h))(ε1(c1)) ⊆ ε2(h(c1)).

We use induction to prove that for any c1 ∈ C1 and any finite e2 ∈ ε2(h(c1)), there is e1 ∈ ε1(c1) such that

(Seq(L× h))(e1) = e2.

If e2 = 〈 〉, then (η(C2) ◦ ε2)(h(c1)) = ∅, and since h is a homomorphism from 〈C1,η(C1) ◦ ε1〉 to
〈C2,η(C2) ◦ ε2〉, (η(C1) ◦ ε1)(c1) = ∅. Thus, 〈 〉 ∈ ε1(c1).

Otherwise, by Corollary 4.23, there is l, c′2, and e′2 such that 〈l, c′2〉 ∈ (η(C2) ◦ ε2)(h(c1)), e′2 ∈ ε2(h(c′1)), and

e2 = 〈〈l, c′2〉〉 · e′2.

And since h is a homomorphism from 〈C1,η(C1) ◦ ε1〉 to 〈C2,η(C2) ◦ ε2〉, there is c′1 such that
〈l, c′1〉 ∈ (η(C1) ◦ ε1)(c1) and

h(c′1) = c′2.

46

Thus, by the induction hypothesis, there is e′1 ∈ ε1(c′1) such that

(Seq(L× h))(e′1) = e′2,

and hence, 〈〈l, c′1〉〉 · e′1 ∈ ε1(c1). And clearly,

(Seq(L× h))(〈〈l, c′1〉〉 · e′1) = e2.

We now prove that for any c1 ∈ C1 and any infinite e2 ∈ ε2(h(c1)), there is e1 ∈ ε1(c1) such that

(Seq(L× h))(e1) = e2.

Assume c1 ∈ C1 and an infinite e2 ∈ ε2(h(c1)).

By Corollary 4.23 and an easy induction, for every n ∈ ω, there is l and c′2 such that

head tailn e2 = 〈l, c′2〉

and tailn+1 e2 ∈ ε2(c′2).

Let W be a function from ω to (L× C1)× ω such that

W (0) = {〈〈l, c′1〉, 0〉 | 〈l, c′1〉 ∈ (η(C1) ◦ ε1)(c1) and head e2 = 〈l, h(c′1)〉},

and for every n ∈ ω,

W (n+ 1) = {〈〈l′, c′′1〉, n+ 1〉 | there is 〈〈l, c′1〉, n〉 ∈W (n)
such that 〈l′, c′′1〉 ∈ (η(C1) ◦ ε1)(c′1) and head tailn+1 e2 = 〈l′, h(c′′1)〉}.

Since e2 is non-empty, there is l and c′2 such that

head e2 = 〈l, c′2〉.

And since h is a homomorphism from 〈C1,η(C1) ◦ ε1〉 to 〈C2,η(C2) ◦ ε2〉, there is c′1 such that
〈l, c′1〉 ∈ (η(C1) ◦ ε1)(c1) and

h(c′1) = c′2.

Thus, W (0) 6= ∅.

Let S =
⋃
{W (n) | n ∈ ω}.

Then, since W (0) 6= ∅, S 6= ∅.

Let R be a binary relation on S such that for every 〈〈l, c′1〉,m〉, 〈〈l′, c′′1〉, n〉 ∈ S,

〈〈l, c′1〉,m〉 R 〈〈l′, c′′1〉, n〉 ⇐⇒ 〈l′, c′′1〉 ∈ (η(C1) ◦ ε1)(c′1) and n = m+ 1.

Assume 〈〈l, c′1〉, n〉 ∈ S.

Then

head tailn e2 = 〈l, h(c′1)〉

and tailn+1 e2 ∈ ε2(h(c′1)). Thus, by Corollary 4.23, there is l′, c′′2 , and e′′2 such that
〈l′, c′′2〉 ∈ (η(C2) ◦ ε2)(h(c′1)), e′′2 ∈ ε2(c′′2), and

tailn+1 e2 = 〈〈l′, c′′2〉〉 · e′′2 .

47

And since h is a homomorphism from 〈C1,η(C1) ◦ ε1〉 to 〈C2,η(C2) ◦ ε2〉, there is c′′1 such that
〈l′, c′′1〉 ∈ (η(C1) ◦ ε1)(c′1) and

h(c′′1) = c′′2 .

Thus, 〈〈l′, c′′1〉, n+ 1〉 ∈ S and 〈〈l, c′1〉, n〉 R 〈〈l′, c′′1〉, n+ 1〉.

Thus, by generalization, for every s ∈ S, there is s′ such that s R s′. Then, by the Axiom of Dependent
Choice, there is an infinite sequence d over S such that for every n ∈ ω, head tailn d R head tailn+1 d.

Let n = sec head d.

We use induction to prove that for every j < n+ 1, there is l, c′1, and e′1 such that 〈〈l, c′1〉, j〉 ∈W (j),
e′1 ∈ ε1(c′1), and

(Seq(L× h))(〈〈l, c′1〉〉 · e′1) = tailj e2.

If j = n, then there is l and c′1 such that

head d = 〈〈l, c′1〉, j〉.

And clearly, 〈〈l, c′1〉, j〉 ∈W (j), (Seq(proj1((L× C1)× ω)))(tail d) ∈ ε1(c′1) and

(Seq(L× h))(〈l, c′1〉 · (Seq(proj1((L× C1)× ω)))(tail d)) = tailj e2.

Otherwise, there is k < n+ 1 such that j + 1 = k. By the induction hypothesis, there is l′, c′′1 , and e′′1 such
that 〈〈l′, c′′1〉, k〉 ∈W (k), e′′1 ∈ ε1(c′′1), and

(Seq(L× h))(〈〈l′, c′′1〉〉 · e′′1) = tailk e2.

Since 〈〈l′, c′′1〉, k〉 ∈W (k), there is 〈〈l, c′1〉, j〉 ∈W (j) such that 〈l′, c′′1〉 ∈ (η(C1) ◦ ε1)(c′1) and
head tailk e2 = 〈l′, h(c′′1)〉. And clearly, 〈〈l′, c′′1〉〉 · e′′1 ∈ ε1(c′1) and

(Seq(L× h))(〈〈l, c′1〉〉 · e′1) = tailj e2.

Therefore, there is l, c′1, and e′1 such that 〈〈l, c′1〉, e′1〉 ∈W (0), e′1 ∈ ε1(c′1), and

(Seq(L× h))(〈〈l, c′1〉〉 · e′1) = e2.

And by definition of W , 〈l, c′1〉 ∈ (η(C1) ◦ ε1)(c1). Thus, 〈l, c′1〉 · e′1 ∈ ε1(c1).

Thus, by generalization, for any c1 ∈ C1,

(Pow Seq(L× h))(ε1(c1)) ⊇ ε2(h(c1)).

Thus,

(Pow Seq(L× h)) ◦ ε1 = ε2 ◦ h,

and hence, h is a homomorphism from 〈C1, ε1〉 to 〈C2, ε2〉.

The following is immediate from Theorem 2.6 and 4.25:

Corollary 4.26. If 〈C1, ε1〉 and 〈C2, ε2〉 are generable, then B is a bisimulation between 〈C1, ε1〉 and
〈C2, ε2〉 if and only if B is a bisimulation between the L-labelled transition coalgebra 〈C1,η(C1) ◦ ε1〉 and
the L-labelled transition coalgebra 〈C2,η(C2) ◦ ε2〉.

48

Once more, we can translate all this back to the system side of the theory.

Assume a binary relation T : S ↔ L× S.

We write ET (E) for a binary relation between S and S (L× S) such that for any s ∈ S and every
e ∈ S (L× S),

s ET (E) e ⇐⇒ either there is no 〈l, s′〉 such that s T 〈l, s′〉, and e = 〈 〉,
or there is 〈l, s′〉 such that s T 〈l, s′〉, head e = 〈l, s′〉, and s′ E tail e.

The following is trivial:

Proposition 4.27. ET (E) = relGfunT (funE).

We think of ET as a function on binary relations between S and S (L× S). And the reason that we are
interested in this function is that it preserves the ordering of binary relations between S and S (L× S)
induced by the inclusion relation on their graphs: for every binary relation E1, E2 : S ↔ S (L× S), if

graphE1 ⊆ graphE2,

then

graph ET (E1) ⊆ graph ET (E2).

This ordering is of course a complete lattice, and hence, by Tarski’s Lattice-theoretical Fixpoint Theorem,
so is the set of all fixed points of ET .

We write execT for the greatest fixed point of ET .

Notice that here, the coinduction proof technique of [47] is directly applicable.

The following follows from Proposition 4.27 and the fact that gen funT is the greatest fixed point of GfunT :

Proposition 4.28. execT = rel gen funT .

We say that T generates E if and only if execT = E.

We say that E is generable if and only if there is a binary relation between S and L× S that generates E.

The following is immediate from Proposition 3.3 and 4.28:

Proposition 4.29. E is generable if and only if funE is generable.

The following is immediate from Proposition 3.3, 4.12, 4.28, and 4.29:

Proposition 4.30. The following are true:

(a) trans execT = T ;

(b) if E is generable, then exec transE = E.

We say that 〈S,E〉 is generable if and only if E is generable.

The following is immediate from Proposition 4.29:

Proposition 4.31. 〈S,E〉 is generable if and only if the L-labelled execution coalgebra 〈S, funE〉 is
generable.

49

The following is immediate from Proposition 3.3(b), 3.7, 4.6, and 4.12, and Corollary 4.26:

Theorem 4.32. If 〈S1, E1〉 and 〈S2, E2〉 are generable, then B is a bisimulation between 〈S1, E1〉 and
〈S2, E2〉 if and only if B is a bisimulation between the L-labelled transition systems 〈S1, transE1〉 and
〈S2, transE2〉.

Proposition 4.30 and Theorem 4.32 confirm what has been implicit throughout this section: generable
labelled execution systems are just another representation of labelled transition systems. This is even more
evident in the coalgebra side of the theory.

We write L-LECgen for the category whose objects are all the generable L-labelled execution systems, and
arrows all the homomorphisms from one generable L-labelled execution system to another.

The following is immediate from Proposition 4.20 and Theorem 4.25:

Theorem 4.33. L-LECgen and L-LTC are isomorphic.

Thus, for all practical purposes, generable labelled execution coalgebras are equivalent to labelled
transition coalgebras.

In light of this equivalence, Theorem 4.24 does not just characterize generable labelled execution
coalgebras. It marks the boundary between the expressive power of labelled transition coalgebras and
labelled execution coalgebras. And what it implies is that there is no sense in choosing the latter over the
former unless we are willing to give up one or more of the five properties listed in the respective clauses of
Theorem 4.24.

5 Related work

As already argued in the introduction, what Milner advocated was a dichotomy between causation and
observation in the theory of concurrency. But the expansion law, and its reckless use with agents with
infinite behaviours, skewed that dichotomy into a controversy between so-called “true concurrency” and
interleaving semantics. And in the midst of that controversy, interleaving came to be thought of as no more
than bounded indeterminacy. However, the real cause of this was not the expansion law per se, but the use
of labelled transition systems as models of agent behaviour. After all, interleaving is an operation on
executions, not transitions.

Rather than generalizing transition systems into executions ones, and obtain a modelling structure that
can do justice to the notion of interleaving, and ultimately to the observational view, efforts were steered
toward decorating the former with all kinds of different pieces of information that would alleviate the
various deficiencies of that misrepresented notion of interleaving (e.g., see [16, 23, 21, 17, 18]). And more
often that not, the result was a kind of modelling structure that could no longer claim adherence to the
observational view. The few attempts that did use executions directly, at least those that we are aware of
(see [22], [20]), were not concerned with organizing them into structures and looking at their branching
properties, and anyway, seem to have received only scant attention.

The first place where we do see executions organized into structures is not process algebra, but temporal
logic. These so-called “path structures” (see Section 4.1) are quite popular in the beginning. We do not see
a formal concept of bisimulation for them, but there is definitely interest in their branching properties. The
notions of suffix, fusion, and limit closure are all defined in connection with path structures. Eventually,
they give way to Kripke structures, inherited from modal logic, and claimed to provide “a setting more
appropriate to concurrency” (see [26, p. 152]). They do not, we think. But despite the voiced arguments for

50

a separation between implementation and correctness issues in reasoning about concurrent programs (e.g.,
see [19]), transitions remain in the lead role.

In [31], Hennessy and Stirling introduce what appears to be the first type of labelled execution system in
the literature. They call systems of that type general transition systems, and in their definition, demand
not only suffix and fusion closure, but prefix closure as well, with the justification that it “also appears to
be natural” (see [31, p. 27]). They also define a concept of extended bisimulation for such systems, which is
basically the same as our canonically derived concept of bisimulation between labelled executions systems
(see Definition 4.5). The focus in [31] is in logic, and specifically, in a generalization of Hennessy-Milner
Logic (see [30]) to general transition systems. But what is surprising is that no attempt is later made to
apply the ideas of general transition systems and extended bisimulations to the semantics of processes.

More than ten years later, these ideas pop up in a “very rough and incomplete draft” of Aczel (see [5]),
who is aware of Hennessy’s work in [29], a precursor of [31], but apparently, unaware of the work in [31]
(see footnote in [5, p. 3]). Aczel’s intention is to apply the final universe approach of [4] to the semantics of
Milner’s SCCS with finite delay (see [44]). The proposed type of structure is a generalized type of labelled
transition system, where each state is equipped with the set of all infinite sequences of transitions
“admissible” from that state. An added condition of “stability” makes structures of that type ultimately
equivalent to the general transition systems of [31], but only because the latter are prefix closed.
Eventually, these structures are represented as coalgebras over Class, and [4, thm. 2.2] is used to prove the
existence of a final coalgebra in the full subcategory of all such coalgebras that are “stable”.

The only other place where we find these ideas applied to the semantics of processes is [32]. The starting
point is again Milner’s SCCS with finite delay, and the structures used are practically the same as in [5].
But the approach is purely categorical. Indeed, the main goal in [32] is showing how much can be done
within category theory alone.

Comparing [31], [5], and [32] with our work here, there are two things that we think stand out and would
like to mention. First, regarding the general idea underlying the concept of labelled execution system, we
find that in all three of [31], [5], and [32], the notion of indeterminate termination, and its use in modelling
the behaviour of reactive systems, has been completely overlooked. This is easy to put right in [31], where
prefix closure is an added feature, but not so in [5] and [32], where the property is practically built into the
structure of a system. And second, regarding the formalization of the idea, we believe that the present
approach represents a great simplification, both conceptually and notationally, over what was done in all
three of [31], [5], and [32].

It should be emphasized that the precedence of [31], [5], and [32] over our work here is not causal, only
temporal. Our ideas were developed, and for the most part, worked out before any acquaintance with these
studies. The above review was mainly driven by our curiosity to understand why ideas that in retrospect
seem so natural have not found their way into the household of the average concurrency theorist. In the
end, one can only speculate. One thing is certain though: if matters of pedagogy have played any role in
this, transition semantics have definitely profited from it; for people like pictures, and execution systems
are impossible to draw.

6 Conclusion

The purpose of this work was to introduce the concept of labelled execution system, a generalization of
that of labelled transition system that we believe can better accommodate the needs of an observational
approach to concurrency theory. And as we saw in Section 4.5, in order for the use of labelled execution
systems over labelled transition systems to be justified, one or more of the five properties listed in the
respective clauses of Theorem 4.24 must be given up. But as we saw in Section 4.3, if we want our systems
to be “well behaved”, the first two of them must be hold on to. Therefore, if we ignore the rather

51

uninteresting non-triviality condition, we are left with having to give up limit closure, impossibility of
indeterminate termination, or both.

In fact, giving up any of these two properties has its own merit. For example, giving up limit closure
enables us to faithfully model the finite delay property, so intrinsically bound to the notion of asynchronous
parallelism. And possibility of indeterminate termination provides us with the means of simulating the
behaviour of a capricious environment that may at any time cease to produce input stimuli.

Returning to the discussion in our introduction, it is not hard to see how one could use Abrahamson
systems to provide a model for Milner’s CCS that avoided “explicating parallelism in terms of
non-determinism”, at least in the stronger sense of the expansion law, and to be sure, distinguished between
the two sides of (2). The critical step is of course in the treatment of parallel composition as a fair merge
operation over the executions of the individual systems under composition, which, however, does not seem
to present any particular difficulty (e.g., see [50]), and can be fitted to different notions of fairness, such as,
for example, weak and strong fairness (see [10]). But if one is really serious about this endeavour, one must
also allow for abstraction, whereby certain actions of an agent become unobservable. And this calls for a
suitably weakened version of bisimilarity among labelled execution systems. An interesting question then is
whether such a weaker version can be canonically obtained by the coalgebraic methods used here. If
possible, this could lead, through Theorem 4.33, to a coalgebraic characterization of weaker versions of
bisimilarity among labelled transition systems as well, a goal that has heretofore remained elusive.

Finally, another interesting direction for future work is the stratification of the concept of bisimilarity
among labelled execution systems, which can be obtained in a manner completely analogous to the case of
labelled transition systems (e.g., see [46, chap. 10.4]). In the latter case, each iteration of the stratification
process is associated with a notion of depth down to which certain differences in branching structure can
be observed. This is most starkly evident in the classical example used to demonstrate that, in the case of
infinitely branching systems, a transfinite number of iterations is needed for the stratification process to
converge (e.g., see [60, exam. 2.6]). In the case of labelled execution systems, however, there is no such
notion of depth, and that particular example is defused. This is not to say that, in that case, the
stratification process does not need a transfinite number of iterations to converge, what can be shown to
fail by appropriately embedding the labelled transition systems of [46, prop. 10.5] in the executions of
certain suitably constructed labelled execution systems. But the proposed stratification of bisimilarity can
be seen as a stratification of the linear-time/branching-time spectrum (e.g., see [62]), offering a natural
formal framework for the classification of different semantic notions within that spectrum.

References

[1] Karl Abrahamson. Decidability and Expressiveness of Logics of Programs. PhD thesis, University of
Washington at Seattle, 1980.

[2] Samson Abramsky. What are the fundamental structures of concurrency? We still don’t know!
Electronic Notes in Theoretical Computer Science, 162:37–41, 2006. Proceedings of the Workshop
“Essays on Algebraic Process Calculi” (APC 25).

[3] Peter Aczel. Non-well-founded Sets. Number 14 in Lecture Notes. CLSI, 1988.

[4] Peter Aczel. Final universes of processes. In Proceedings of the 9th International Conference on
Mathematical Foundations of Programming Semantics, pages 1–28, London, UK, 1994.
Springer-Verlag.

[5] Peter Aczel. A semantic universe for the study of fairness. VERY ROUGH AND INCOMPLETE
DRAFT, October 1996.

52

[6] Peter Aczel and Nax Paul Mendler. A final coalgebra theorem. In Category Theory and Computer
Science, pages 357–365, London, UK, 1989. Springer-Verlag.

[7] Jǐŕı Adámek, Horst Herrlich, and George Strecker. Abstract and Concrete Categories: The Joy of
Cats. New York, NY, USA, 2004.

[8] Jǐŕı Adámek, Stefan Milius, and Jǐŕı Velebil. On coalgebra based on classes. Theoretical Computer
Science, 316(1-3):3–23, 2004. Recent Developments in Domain Theory: A collection of papers in
honour of Dana S. Scott.

[9] Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing Letters,
21(4):181–185, 1985.

[10] Krzysztof R. Apt and Ernst-Rüiger Olderog. Proof rules and transformations dealing with fairness.
Science of Computer Programming, 3(1):65–100, 1983.

[11] Jos C. M. Baeten. A brief history of process algebra. Theoretical Computer Science, 335(2-3):131–146,
2005.

[12] Jon Barwise and Lawrence Moss. Vicious Circles. Number 60 in Lecture Notes. CLSI, 1996.

[13] Martin Berger. An interview with Robin Milner.
http://www.informatics.sussex.ac.uk/users/mfb21/interviews/milner/, September 2003.

[14] Garrett Birkhoff. On the structure of abstract algebras. Mathematical Proceedings of the Cambridge
Philosophical Society, 31(04):433–454, 1935.

[15] Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation can’t be traced. J. ACM,
42(1):232–268, 1995.

[16] Gérard Boudol and Ilaria Castellani. Permutation of transitions: An event structure semantics for
CCS and SCCS. In J. de Bakker, W. de Roever, and G. Rozenberg, editors, Linear Time, Branching
Time and Partial Order in Logics and Models for Concurrency, volume 354 of Lecture Notes in
Computer Science, pages 411–427. Springer Berlin / Heidelberg, 1989.

[17] Gérard Boudol, Ilaria Castellani, Matthew Hennessy, and Astrid Kiehn. Observing localities.
Theoretical Computer Science, 114(1):31–61, 1993.

[18] Rosvelter João Coelho da Costa and Jean-Pierre Courtiat. A causality-based semantics for CCS. In
Proceedings of the First North American Process Algebra Workshop, NAPAW ’92, pages 200–215,
London, UK, 1993. Springer-Verlag.

[19] Constantin Courcoubetis, Moshe Y. Vardi, and Pierre Wolper. Reasoning about fair concurrent
programs. In Proceedings of the eighteenth annual ACM symposium on Theory of computing, STOC
’86, pages 283–294, New York, NY, USA, 1986. ACM.

[20] Philippe Darondeau. About fair asynchrony. Theoretical Computer Science, 37:305–336, 1985.

[21] Philippe Darondeau and Pierpaolo Degano. Causal trees: Interleaving + causality. In Irène
Guessarian, editor, Semantics of Systems of Concurrent Processes, volume 469 of Lecture Notes in
Computer Science, pages 239–255. Springer Berlin / Heidelberg, 1990.

[22] Philippe Darondeau and Laurent Kott. On the observational semantics of fair parallelism. In Josep
Diaz, editor, Automata, Languages and Programming, volume 154 of Lecture Notes in Computer
Science, pages 147–159. Springer Berlin / Heidelberg, 1983.

[23] Pierpaolo Degano, Rocco De Nicola, and Ugo Montanari. A partial ordering semantics for CCS.
Theoretical Computer Science, 75(3):223–262, 1990.

[24] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

53

http://www.informatics.sussex.ac.uk/users/mfb21/interviews/milner/

[25] E. Allen Emerson. Alternative semantics for temporal logics. Theoretical Computer Science,
26(1-2):121–130, 1983.

[26] E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and “not never” revisited: On branching
versus linear time temporal logic. J. ACM, 33(1):151–178, January 1986.

[27] Marco Forti and Furio Honsell. Set theory with free construction principles. Annali della Scuola
Normale Superiore di Pisa, Classe di Scienze, 4e série, 10(3):493–522, 1983.

[28] H. Peter Gumm. Elements of the general theory of coalgebras. Lecture Notes for LUATCS’99 at Rand
Afrikaans University, Johannesburg, South Africa, 1999.

[29] Matthew Hennessy. Axiomatising finite delay operators. Acta Informatica, 21(1):61–88, 1984.

[30] Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and concurrency. J. ACM,
32(1):137–161, January 1985.

[31] Matthew Hennessy and Colin Stirling. The power of the future perfect in program logics. Information
and Control, 67(1-3):23–52, 1985.

[32] Thomas T. Hildebrandt. A fully abstract presheaf semantics of SCCS with finite delay. Electronic
Notes in Theoretical Computer Science, 29:102–126, 1999. CTCS ’99, Conference on Category Theory
and Computer Science.

[33] Bart Jacobs and Jan J. M. M. Rutten. A Tutorial on (Co)Algebras and (Co)Induction. EATCS
Bulletin, 62:62–222, 1997.

[34] Richard M. Karp and Raymond E. Miller. Parallel program schemata. Journal of Computer and
System Sciences, 3(2):147–195, 1969.

[35] Yasuo Kawahara and Masao Mori. A small final coalgebra theorem. Theoretical Computer Science,
233(1-2):129–145, 2000.

[36] Robert M. Keller. Formal verification of parallel programs. Commun. ACM, 19(7):371–384, 1976.

[37] Joachim Lambek. A fixpoint theorem for complete categories. Mathematische Zeitschrift,
103(2):151–161, 1968.

[38] Leslie Lamport. Proving the correctness of multiprocess programs. Software Engineering, IEEE
Transactions on, SE-3(2):125–143, March 1977.

[39] Leslie Lamport. “Sometime” is sometimes “not never”: On the temporal logic of programs. In
Proceedings of the 7th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
POPL ’80, pages 174–185, New York, NY, USA, 1980. ACM.

[40] Leslie Lamport and Fred B. Schneider. Formal foundation for specification and verification. In
M. Paul, H. Siegert, M. Alford, J. Ansart, G. Hommel, L. Lamport, B. Liskov, G. Mullery, and
F. Schneider, editors, Distributed Systems, volume 190 of Lecture Notes in Computer Science, pages
203–285. Springer Berlin / Heidelberg, 1985.

[41] Saunders Mac Lane. Categories for the Working Mathematician. Number 5 in Graduate Texts in
Mathematics. Springer, 2nd edition, 1998.

[42] Robin Milner. Synthesis of communicating behaviour. In 7th MFCS: Mathematical Foundations of
Computer Science, volume 64 of Lecture Notes in Computer Science, pages 71–83. Springer, 1978.

[43] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 1980.

[44] Robin Milner. A finite delay operator in synchronous CCS. Technical Report CSR-116-82, University
of Edinburgh, 1982.

54

[45] Robin Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science, 25(3):267–310,
1983.

[46] Robin Milner. Communication and Concurrency. Prentice Hall International Series in Computer
Science. Prentice-Hall, Upper Saddle River, NJ, USA, 1989.

[47] Robin Milner and Mads Tofte. Co-induction in relational semantics. Theoretical Computer Science,
87(1):209–220, 1991.

[48] Edward F. Moore. Gedanken-experiments on sequential machines. Automata Studies, 34:129–153,
1956.

[49] Lawrence S. Moss and Norman Danner. On the foundations of corecursion. Logic Journal of IGPL,
5(2):231–257, 1997.

[50] David Park. On the semantics of fair parallelism. In Dines Bjoorner, editor, Abstract Software
Specifications, volume 86 of Lecture Notes in Computer Science, pages 504–526. Springer Berlin /
Heidelberg, 1980.

[51] David Park. Concurrency and automata on infinite sequences. In Peter Deussen, editor, Theoretical
Computer Science, volume 104 of Lecture Notes in Computer Science, pages 167–183. Springer Berlin
/ Heidelberg, 1981.

[52] Benjamin C. Pierce. Basic Category Theory for Computer Scientists. Foundations of Computing
Series. The MIT Press, 1991.

[53] Gordon D. Plotkin. A structural approach to operational semantics (Aarhus notes). Technical Report
DAIMI FN–19, Computer Science Department, Aarhus University, September 1981.

[54] Gordon D. Plotkin. The origins of structural operational semantics. Journal of Logic and Algebraic
Programming, 60-61:3–15, 2004.

[55] Amir Pnueli. The temporal semantics of concurrent programs. In Gilles Kahn, editor, Semantics of
Concurrent Computation, volume 70 of Lecture Notes in Computer Science, pages 1–20. Springer
Berlin / Heidelberg, 1979.

[56] Vaughan R. Pratt. Process logic: Preliminary report. In Proceedings of the 6th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, POPL ’79, pages 93–100,
New York, NY, USA, 1979. ACM.

[57] Mark Reynolds. An axiomatization of full computation tree logic. The Journal of Symbolic Logic,
66(3):1011–1057, 2001.

[58] Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comput. Sci., 249(1):3–80,
2000.

[59] Jan J. M. M. Rutten and Daniele Turi. On the foundations of final semantics: Non-standard sets,
metric spaces, partial orders. In Proceedings of the REX Workshop on Sematics: Foundations and
Applications, pages 477–530, London, UK, 1993. Springer-Verlag.

[60] Davide Sangiorgi. On the origins of bisimulation and coinduction. ACM Trans. Program. Lang. Syst.,
31(4):1–41, 2009.

[61] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific J. of Math.,
5(2):285–309, 1955.

[62] Rob J. van Glabbeek. The linear time - branching time spectrum. In J. Baeten and J. Klop, editors,
CONCUR ’90 Theories of Concurrency: Unification and Extension, volume 458 of Lecture Notes in
Computer Science, pages 278–297. Springer Berlin / Heidelberg, 1990.

55

[63] Hermann Weyl. Mathematics and logic. The American Mathematical Monthly, 53(1):2–13, 1946.

56

	Introduction
	Background
	Coalgebras
	Homomorphisms
	Bisimulations
	Subcoalgebras
	Direct sums
	Final coalgebras
	Covarieties

	Labelled transition systems and coalgebras
	Labelled transition systems
	Labelled transition coalgebras

	Labelled execution systems and coalgebras
	Labelled execution systems
	Labelled execution coalgebras
	Abrahamson systems and coalgebras
	Underlying labelled transition systems and coalgebras
	Generable systems and coalgebras

	Related work
	Conclusion

