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Abstract

Optimal Camera Placement

by

Avital Avigad Steinitz

Master of Science in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Ruzena Bajcsy, Chair

Optimal Camera Placement is a task shared by applications such as Next Best View
planning and Camera Network planning, and it is used in exploration of unknown environ-
ments, surveillance cameras placement and scene reconstruction. More specifically, Optimal
Camera Placement consists of evaluating a visibility objective that depends on the scene
and the camera placement and optimizing it with respect to to the camera variable, where
different applications give rise to different visibility objectives.

Despite its wide applicability, many of the application listed above are limited in scale,
efficiency and the complexity of the scene and sensor model they can handle. This limitation
stems primarily from the common practice to discretize the space of camera configurations,
thus viewing the problem as a combinatorial optimization problem whose size grows expo-
nentially with the number of cameras and which is known to be NP-hard. Another drawback
of the “early-discretization” approach is its inherent inaccuracy with respect to objectives
that are continuous by nature, such as visible surface area.

In this work we propose an expressive formalization of the visibility objective which is
amenable to continuous optimization techniques. The formalism we propose is generic and
may be used for many of the existing applications; it is inherently more accurate than the
discrete approaches as it views both the objects’ and the cameras’ configuration spaces as
continuous and it can handle complex scenes with occlusions and camera placement con-
straints as well as sophisticated camera models. We describe an algorithm for evaluating the
proposed objective and its gradient, and present simulation results showing the quality of
the obtained camera placements and their efficient computation.
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Chapter 1

Introduction

Optimal Camera Placement is a task shared by many applications involving sensor place-
ment. We begin our discussion of Optimal Camera Placement by describing compelling
motivating examples from the existing literature.

Next Best View is a sequential planning task, where in each step a new measurement of
the environment is obtained and the location of the next measurement is determined based
on all previous measurements. Normally, the location of the next measurement is chosen
to maximize an objective that represents the visibility of the scene, often in the form of
the (negative) uncertainty about the objects in the scene. In a recent work, Nüchter et al.
[2003] leverage planar techniques for inferring an Optimal Camera Placement from analyzing
planar slices of the three dimensional space.

Camera Network Control refers to simultaneous placement of multiple cameras. In an-
other recent work, Schwager et al. [2011a] place cameras mounted on quad-rotors to obtain
optimal coverage of a planar polygonal shape. As in the Next Best View setting, the cameras
location are chosen to maximize an objective that intuitively captures how well the target
polygon is being viewed by the cameras.

Lee [1991] discusses placement of fire-towers to monitor and prevent fire. Bodor et al.
[2007] consider optimal camera placement specifically for surveillance tasks by finding an
optimal camera placement for observing a set of well trodden paths taken by pedestrians.
Olague and Mohr [2002] show how to place multiple cameras in order to minimize scene
reconstruction error. Last, in a technical and insightful application, Cowan and Modayur
[1993] show how to place a camera and an illumination source in order to enhance edge
detectability.

All the aforementioned applications share a common step in which a known scene S is
associated with a visibility objective

QS : C→ R (1.1)
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that quantifies how well the scene S is viewed from a camera placement C ∈ C, which is
then optimized with respect to C

max
C∈C

QS(C) . (1.2)

This step is the Optimal Camera Placement step, and in this work we propose accurate,
efficient and generic means for its solution.

It is important to emphasize that also exploratory tasks, where the scene and the observed
targets are unknowns, utilize this formulation of finding Optimal Camera Placement in a
known environment (that is precisely the setting in the Next Best View task). The reason
being that in every step in the exploratory process the location of the next measurement is
chosen based on the previously collected measurements, that is, based on the current model of
the scene. Therefore, by restricting our focus to finding optimal camera placement in known
environments we do not make unreasonable assumptions.

We now give a high-level description of the common visibility objective found in exist-
ing literature. Most works begin by specifying their scene modeling, usually consisting of
polygonal objects, and by specifying a local visibility objective

q : (x,C) 7→ R (1.3)

that quantifies how well a single feature, x, is viewed from a camera placement C. The
feature x may be a point, an edge, a facet or the like, and the camera placement C may
specify the camera configuration, possibly consisting of location, orientation, focal length,
etc. In fact, C may consist of the camera specification for multiple cameras as well as the
locations and orientations of the sources of illumination. For ease of terminology, we refer
to C by the term camera placement also when there is more than one camera and when its
configuration consists also of other parameters besides its geometric location (such as focal
length).

The local visibility objective evaluates how well a feature is viewed, possibly taking
into account any properties of the sensor model as well as the application at hand. An
example for encapsulating the sensor model in the local visibility objective would be assigning
poor visibility to features residing outside the camera’s field of view, and an example for
encapsulating the specific application in the local visibility objective would be assigning
high visibility only to features that are viewed by more than one camera (which is necessary
for scene reconstruction). In many of the previous works about Optimal Camera Placement
a feature x is a single point, the camera placement C consists of specifying the location (and
perhaps also the orientation) of a single camera, and the local visibility objective q is the
foreshortened length of the feature on the image plane, given by 1 − cos(α) where α is the
angle between the line of sight from C to x and the normal to the object surface at x.

Next the global visibility objective is formalized as

QS(C) =
∑
i

χ(xi, C) · q(xi, C) (1.4)

where x1, . . . , xn is a finite set of features, and χ is a visibility indicator which specifies
whether a feature x is visible from C:
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χ(x,C) =

{
1 x is visible from C

0 x is occluded
(1.5)

Most often, the values of the visibility indicator for all features and for a finite selection of
possible camera placements are computed and stored in a matrix called the viewability matrix.
Then based on the information stored in the viewability matrix, a combinatorial optimization
algorithm is used to pick the optimal camera placement (see Tarbox and Gottschlich [1995]
and Pito [1999] for a discussion about the computation of the viewability matrix).

This approach has three major limitations:

1. A discrete set of features is inherently inaccurate in capturing continuous objectives
such as visible surface area.

2. The computation of the viewability matrix is time consuming and its complexity grows
quickly with the granularity of the discretization of the camera placement space and
with the number of features.

3. This formalism discards the spatial relationships among the features and is oblivious
to which features are near each other and which are distant. This conceptual loss of
information manifests itself by casting the problem into a combinatorial optimization
form, namely the Art-Gallery problem. The Art-Gallery problem has been studied
extensively and shown to be NP-hard to solve and in some cases even to approximate
(see O’Rourke [1987] and Eidenbenz et al. [1998]). Roughly speaking, being NP-hard
implies that the Art-Gallery problem scales exponentially with the size of the problem.
In our case the size of the problem is the size of the sensor model times the number of
cameras (also the accuracy parameter, which determines the number of possible camera
placements and the number of features, influences the complexity of the problem, only
through the base of the exponent). Therefore, the NP-hardness implies that large
problems, problems that require high accuracy or multiple cameras placement, would
be practically infeasible. In view of this latter discovery, we can revisit the applications
listed above and observe that, indeed, all of them involved only a small number of
cameras and a relatively small model.

In this work we propose an alternative generic formalism for evaluating visibility. More
technically, we substitute the sum over a finite set of features by an integral over the entire
scene. Formally, we consider the visibility objective of the form

Q(C) =

∫
||ẋ(t)|| · χ(x(t), C) · q(x(t), C)∂t (1.6)

where x : [0, 1]→ R3 is a smooth parametrization of the target object in the scene and χ and
q are the same as before. Before we proceed by describing the advantages of the proposed
formulation, we wish to note that we do not view the assumption that the parametrization of
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the scene is smooth as a limitation because of a few reasons: Primarily, the parametrization
of compact and opaque real world shapes are in fact smooth, closed and continuous. Addi-
tionally, a twice differentiable model is no less realistic then a piecewise linear model or any
other parametrized model. Furthermore, the family of twice-differential paths is dense in
the space of continuous paths and therefore any two dimensional object (including piecewise
linear objects) can be approximated using a twice differentiable path to any arbitrary preci-
sion. Last, from a more applicative perspective, the scene models are often generated from
a set of discrete measurements through curve fitting, and requiring that the fitted model be
smooth poses no procedural limitation.

The primary motivation for proposing this objective is the observation that the local vis-
ibility of a single feature (or a finite set of features) is a discontinuous and non-differentiable
function of the camera placement, whereas the global visibility of the entire object (roughly
corresponding to the visible surface area) is a continuous and differentiable function of the
camera placement. Therefore, being differentiable our objective lends itself to continuous
optimization techniques, thus it can be optimized efficiently and is scalable, yielding an
efficient optimal camera placement algorithm.

To summarize, the main contributions of this work are:

• The Optimal Camera Placement formalism we propose is generic in the sense that it
allows for constrains on the camera placement and for other shapes besides polygons.

• The Optimal Camera Placement formalism we propose enables optimizing over the
visibility rather than considering it as a constraint.

• The objective of the Optimal Camera Placement formalism we propose is almost ev-
erywhere differentiable and can be optimized efficiently on each one of its domains.

We briefly elaborate on the last item, namely the domains of the gradient of the objective.
In general, the gradient of the objective is not well-defined everywhere. To see this consider
for example the piecewise linear object illustrated in Figure 1.1 and the surface-area global
visibility objective (corresponding to a constant local visibility objective). In this case the
global visibility objective would be a piecewise constant function and its gradient would be
defined on the domains A, B, C, D, E and F . In this work we show how to optimize
the global visibility objective within each one of its domains. Furthermore, we discuss in
detail a special case of great interest, the commonly used foreshortened length local visibility
objective, for which the global visibility objective is always differentiable.

There are three limitations of our work that require clarification:

1. Optimal Camera Placement problem is inherently non-convex, as can be easily seen
from observing symmetric scenes (and see Schwager et al. [2011b] for a rigorous dis-
cussion). Therefore, gradient based approaches for finding optimal camera placement
are bound to end up finding local and not necessarily global optima. However dis-
couraging, an interesting property of our objective is that also its local optima seem
reasonable to a human observer, even if not globally optimal.
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Figure 1.1. A piecewise linear object (x1) and the domains of the gradient of the surface-area
global visibility objective (A, B, C, D, E, F ).

2. Currently, a stable evaluation of the objective and its gradient requires assuming some
knowledge about the scene, namely a bound on the number of inflection points in the
parametrization of the scene. In Chapter 6 we propose an alternative formulation that
would be free of this assumption and that seems to be a promising area for future
research.

3. In this work we handle simple camera placement space. In particular, we only consider
the geometric placement of the camera, and we do not discuss illumination and other
optical parameters. However, our findings remain valid for any local visibility objective
that is sufficiently smooth with respect to its arguments, therefore our results extend
to more expressive cameras configurations optimization.

We conclude this chapter by briefly reviewing possible extensions and augmentations of
our model. As we mentioned in the previous paragraph, we wish to consider a variant of
our objective that would be differentiable everywhere and would therefore enable more effi-
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cient optimization. We discuss one such variant in Chapter 6. Another interesting research
problem would be studying how well our model captures human experts’ notion of Opti-
mal Camera placement. To this end a local visibility objective could be learned from and
compared to experts’ Optimal Camera Placement. We would also be interested in consid-
ering our approach in various more demanding contexts. Specifically, when implemented as
a part of an exploratory Next Best View system one has to study the overall stability and
convergence properties of our model, a task which becomes even more interesting when the
observed scene is dynamic. Additionally, an implementation for a cameras network should
take into account communication considerations (as discussed in Schwager et al. [2011a]),
which brings up the question how our Optimal Camera Placement algorithm would operate
under communication uncertainties. Last, a more long term goal would be to extend these
ideas to other sensors and perhaps develop a theory of optimal sensor placement for multiple
sensor types.
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Chapter 2

Assumptions and Notations

We start by describing our model for objects, scenes and cameras. The current model is
two dimensional but it could be naturally generalized to the three dimensional case.

A scene is a finite collection of objects x1, x2, . . . , xm and a camera placement constraint
given by the level-set of a differentiable function g. We now give a detailed formal description
of the objects and constraints we consider.

2.1 Modeling Scenes

We consider objects that are parametrized as twice-differentiable closed paths in R2.
Formally, an object x is a function

x : S1 → R2 . (2.1)

We use Newton’s dot notation for the first and second derivatives with respect to the
parametrization variable t:

ẋ(t) =
∂x

∂t
(t), ẍ(t) =

∂2x

∂t2
(t) . (2.2)

We find it natural to refer to the parametrization variable in temporal terms and to say
x at time t to refer to x(t).

Also, relying on geometric intuition, we say the tangent to x at time t to refer to ẋ(t).

We denote the normal to the surface of the object by n. The normal at time t is obtained
by a simple rotation of the tangent at time t:

n(t) =

[
0 −1
1 0

]
· ẋ(t) (2.3)
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Figure 2.1. An illustration of a scene and its components.

Figure 2.1 illustrates a scene and its components. The scene in the figure consists of
two objects, x1 and x2, marked in blue. The thicker green arrows mark the tangents to the
objects, ẋ1 and ẋ2, and the thinner double red arrows mark the second derivatives of the
paths parametrizations, ẍ1 and ẍ2. It is interesting to note that the second derivatives of
x1, which is non-convex, shift from pointing inwards to pointing outwards, and that there
are times where the second derivative is aligned with the first derivative, those times are the
inflexion times, which will later play a significant role with respect to the evaluation of the
gradient of our visibility objective.

8



2.2 Modeling Cameras Placement

A camera placement C may specify the full camera configuration, possibly consisting of
location, orientation, focal length, etc. Tarabanis et al. [1995] give a comprehensive list of
camera configuration parameters. In this work, however, we handle very simple an intuitive
camera placement space, consisting only of location.

Formally, we denote the space of cameras configurations C, and a camera placement is
an element

C ∈ C . (2.4)

In our case, C is R2 for a single camera placement, and R2k for k cameras placement.

We enable constraining the the camera placement space to the 0 level-set of a differen-
tiable constraint function

g : C→ R . (2.5)

Figure 2.1 also illustrates a camera placement constraint marked as a black rectangle.
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Chapter 3

Problem Statement

In this chapter we formally define the global visibility objective that captures the notion
of how well a scene is viewed given a specific camera placement. We begin by discussing the
simple case of a single camera placement in a scene consisting of a single object and proceed
with the more general case of multiple objects and multiple cameras.

Intuitively, we quantify the visibility of an object x from a camera location C in a sense
that generalizes the notion of visible surface area. The visible surface area of an object
can be computed as the length of the visible portions of the object, or equivalently, the
integral over the norm of the gradient. We generalize this notion by allowing for more
general integrands, where different integrands correspond to different features of interest
and different applications.

3.1 The Visibility Indicator

3.1.1 Single Object Scenes

Consider a scene S consisting of a single object x. We say that x is occluded from C
at time t if “there is something in the way between x(t) and C”. In other words, x(t) is
occluded from C if there is a point x(t′), for some t′ 6= t, which is occluding (or “hiding”)
the point x(t) from C.

Formally, let fcloser(t
′, t) be an indicator that x(t′) is closer to C than x(t)

fcloser(t
′, t) =

{
1 ||x(t)− C|| > ||x(t′)− C||
0 else

(3.1)

10



40 20 0 20 40 60 80

40

20

0

20

40

x1

x2

g(C) = 0

CC

Figure 3.1. The visible portions of in a two objects scene.

and faligned(t′, t) = 1 be an indicator that x(t′), x(t) and C are co-linear

faligned(t′, t) =

{
1 (x(t)− C)ᵀ · (x(t′)− C) = ||x(t)− C|| · ||x(t′)− C||
0 else

(3.2)

where ᵀ is the notation we use for transpose. Next, we say that the point x(t) is occluded
from C by x(t′) (or equivalently x(t′) occludes x(t) from C) if

fcloser(t
′, t) · faligned(t′, t) = 1 . (3.3)

Equivalently, we write 1condition to denote the condition’s indicator function that evaluates
to 1 whenever condition holds true, and write the expression in Equation 3.3 as

1||x(t)−C||−||x(t′)−C||>0 · 1(x(t)−C)ᵀ·(x(t′)−C)=||x(t)−C||·||x(t′)−C|| = 1 . (3.4)
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Given the single object scene S, we define the visibility indicator

χS : [0, 1]×C→ {0, 1} (3.5)

χS(t, C) =

{
0 The point x(t) is occluded from C by some x(t′)

1 else
. (3.6)

Formally, we have

χS(t, C) = 1− max
t′∈S1\t

{
1||x(t)−C||>||x(t′)−C|| · 1(x(t)−C)ᵀ·(x(t′)−C)=||x(t)−C||·||x(t′)−C||

}
. (3.7)

3.1.2 Multiple Objects Scene

We extend our definition of visibility indicator to scenes with multiple objects in the
natural way, taking into account inter-objects occlusions. Consider a scene S consisting of
the objects x1, x2, . . . , xm.

We say that xi(t) is occluded from C by xj(t
′) (or equivalently xj(t

′) occludes xi(t) from
C) if

1||xi(t)−C||−||xj(t′)−C||>0 · 1(xi(t)−C)ᵀ·(xj(t′)−C)=||xi(t)−C||·||xj(t′)−C|| = 1 . (3.8)

We define the i’th visibility indicator as

χiS(t, C) = 1−max

{
max
t′∈S1\t

{
1||xi(t)−C||>||xi(t′)−C|| · 1〈xi(t)−C,xi(t′)−C〉=||xi(t)−C||·||xi(t′)−C||

}
,

max
j∈[m]\i

{
max
t′∈S1

{
1||xi(t)−C||>||xj(t′)−C|| · 1〈xi(t)−C,xj(t′)−C〉=||xi(t)−C||·||xj(t′)−C||

}}}
.

(3.9)

Figure 3.1 illustrates a two-objects scene and the visible portions with respect to a single
camera placement.

3.2 Local Visibility Objective

We now discuss the notions of local and global visibility objectives which generalize the
notion of visible surface area. Intuitively, the local visibility objective quantifies how well a
point x(t) is viewed from a cameras placement C, and the global visibility objective is the
integral of the local visibility objective over the visible portions of the scene.
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Consider a scene S consisting of the objects x1, x2, . . . , xm. We associate a continuous
differentiable function with every object in the scene S

qiS : (t, C1, . . . , Cl) 7→ R (3.10)

where qiS(t, C1, . . . , Cl) quantifies how well the point xi(t) is viewed from C1, . . . , Cl (regard-
less of whether or not it is visible or occluded). Depending on the application, the local
visibility objective may depend on the placement of single or multiple cameras. For exam-
ple, in the context of accurate scene reconstruction the local visibility objective may take
as input the configurations of two or more camera placements, whereas in the context of
standard robotics tasks, where the foreshortened length is a popular measure for quality of
feature visibility, the local visibility objective may take as input the placement of a single
camera. Additionally, as mentioned in the introduction, the local visibility objective may
also encapsulate parts of the sensor model such as the field of view specification.

We proceed by offering three examples of useful local visibility objectives.

3.2.1 Visible Surface Area

In the case where the application is to maximize the visible surface or scene reconstruc-
tion, any visible point is viewed equally well and therefore the local visibility objective is a
constant

qiS(t, C) = 1 (3.11)

and its gradient is 0.

3.2.2 Foreshortened Length

In many robotics and vision applications, a point is considered to be viewed well if the
line of sight is perpendicular to the tangent to the surface. Figure 3.2 illustrates the angle
between the line of sight and the surface normal.

This notion of local visibility objective is formalized by

qiS(t, C) = 1− ni(t)
ᵀ · (xi(t)− C)

||ni(t)|| · ||xi(t)− C||
(3.12)

In practice, to make this objective differentiable, we consider a slight variant of it

qiS(t, C) = 1− (ni(t)
ᵀ · (xi(t)− C))2

||ni(t)||2 · ||xi(t)− C||2
(3.13)
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Figure 3.2. The angle between the line of sight and the surface normal.

3.2.3 Reconstruction Error

We propose another interesting local visibility objective that quantifies the reconstruction
error. Assuming a sensor model with finite angular accuracy δ, a feature that is determined
by two cameras may reside in any point inside a polygon that is bounded by the rays
surrounding the lines of site with angle δ.

Figure 3.3 illustrates the reconstruction error polygon.

3.3 Global Visibility Objective

The global visibility objective that corresponds to the scene S and to the local visibility
objective q is the integral over the product of the local visibility objective and the visibility
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Figure 3.3. The reconstruction error.

indicator. Formally, for the case of a single camera and a scene consisting of a single object,
we have

QS(C) =

∫ 1

0

||ẋ(t)|| · χ(t, C)q(t, C)∂t . (3.14)

This formalism naturally extends to scenes consisting of multiple objects by summation
over the objects in the scene, and to multiple cameras by maximization of the integrand
with respect to the cameras. Formally, given a scene S consisting of m objects and their
corresponding local visibility objectives, the global visibility objective is defined as

QS(~C) =
m∑
i=1

∫ 1

0

max
j1,...,jl

[
qiS(t, Cj1 , . . . , Cjl)

l∏
p=1

χiS(t, Cjp)

]
∂t . (3.15)
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3.4 The Optimization Problem

Given a scene S and its corresponding global visibility objective and a camera placement
constraint q, the Optimal Camera Placement problem is the optimization problem

max
~C

QS(~C)

subject to: g(~C) = 0 (3.16)

We note that whenever there is no ambiguity we shall simplify the notation and suppress
the super and sub indexing.
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Chapter 4

Previous Work

There are numerous works about Optimal Camera Placement dating back to the late
eighties. In this chapter we present the various approaches to solving the problem by dis-
cussing a selection of representative works. There is more than one way to lay down the
taxonomy of the works in the field. Traditionally, the works are surveyed by the vision task
they aim to solve or the a priori knowledge about the task they assume (see for example
Maver and Bajcsy [1993]), and then by their procedural approach and by the specific features
and constraints they consider (see for example the survey by Tarabanis et al. [1995]).

To capture best the contribution of this work we review the objectives used in those
previous works, as well as their evaluation and optimization. More specifically, we focus on
the evaluation of the visibility of a single point, the form of the global visibility objective
and the scene model.

The evaluation of visibility of a single point is done manually, algorithmically or analyti-
cally, where by algorithmically we mean that the visibility is determined by a procedure that
does not necessarily correspond to an analytic expression. We make the distinction between
the analytic and the algorithmic approach because only the analytic approach would later
fit into the optimization framework.

The form of the global visibility objective is most often a sum over the local visibility
values corresponding to a finite set of features. We make the distinction between the finite
sum approach and the integration approach because in the presence of occlusions only the
latter could fit into the continuous optimization framework. Furthermore, as discussed in
the introduction, we find the integration approach also more accurate and appropriate for
many applications.

Last, in most works the scene models are limited to piecewise linear shapes (polyhedra)
whereas in our work we merely require that the shapes be sufficiently smooth.
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4.1 The Finite Sum Approach

4.1.1 Manual Visibility

In Bodor et al. [2007] the authors consider surveillance tasks. The objects they consider
consist of a single straight line each, and the occlusion relations between them are assumed
to be known.

Olague and Mohr [2002] consider scene reconstruction error minimization. They mention
that not all feature points are visible from all camera placements, but they do not discuss
the process of determining which points ar visible and which aren’t.

4.1.2 Algorithmic Visibility

Tarbox and Gottschlich [1995] give a detailed description of an algorithm for determining
the visibility of a set of points from a set of possible camera placements. Then, they use
the foreshortened local visibility objective to construct a so called viewability matrix, whose
rows correspond to a single camera placement and whose columns correspond to a feature
point. They reduce the problem of finding the optimal camera placement to the problem
of finding a subset of the rows that would give the optimal visibility of all the features. To
this end, they experiment with three combinatorial optimization schemes and report their
results.

Bouyagoub et al. [2010] follow a similar path of work, and they too construct the viewa-
bility matrix (though without specifying exactly how) and experiment with various combi-
natorial optimization schemes for finding the optimal set of rows.

Chen and Davis [2008] also relate to determining static occlusions by checking whether
something stands “in the way” between the camera and the feature of interest.

Pito [1999] uses ray tracing techniques to scan and model objects “on the fly”, and
using a combinatorial optimization heuristic to pick a next best views sequence that would
eventually cover the entire surface of the target object. He also discusses in detail the pros
and the cons of discretizing the camera placement space.

4.1.3 Analytic Visibility

Maver and Bajcsy [1993] consider the equations for the straight line between a feature
and a camera and check whether it intersects the scene model. Next, they pick the next
best view as the point that is exposed to as much of the occluded region as possible. To
this end, they associate every camera placement with a histogram representing the currently
occluded regions that it observes and the next best view is the location with the highest
scoring histogram.
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Another two lines of work using the analytic synthesis approach are Cowan and Kovesi
[1988], Cowan [1988] and Cowan and Bergman [1989], and Tarabanis and Tsai [1991], Tara-
banis et al. [1996] and Tarabanis et al. [1991]. These works demonstrate use of analytic
methods for finding sensor and light source configurations that guarantee meeting multiple
features detection constraints: visibility, focus, field of view, resolution and illumination.
These works model analytically the regions that would be occluded by a convex polygon or
polyhedron (non-convex bodies must be broken down to convex components for this method
to be applicable) which enables them to solve a system of linear equations in order to find
a point in space from which no feature is occluded. We note that this work is suitable for
finding perfect visibility of all the features, but it is not suitable for optimizing over the vis-
ibility itself. Furthermore, this work relies heavily on modeling the scene using polyhedra,
which hinges on the accuracy of the model.

On a side note, an original instance of their ideas, still within the same analytic scope, is
the work of Cowan and Modayur [1993] in which the illumination source is located to enable
edge detection by shading.

4.2 The Integration Approach

Perhaps the most similar work to ours is Schwager et al. [2011b]. There, the visibility is
evaluated as the integral of a local “information per pixel” objective over the entire scene,
and it is optimized using gradient descent. Notably, their objective extends naturally and
efficiently to multiple cameras.

The three major factors in which this work differs from ours are that we consider the
visibility as a part of the optimization objective rather than as a constraint, thus we can
handle cases where the entire scene cannot possibly be observed. We also allow for more
flexible scenes with occlusions and for constraints on the camera placement space.

In Fleishman et al. [2000] the objective captures a discretized version of the visible surface
area of multiple polygonal objects. Furthermore, occlusions are taken into account, as well
as constraints on the possible camera placement and multiple cameras configurations. The
means for determining which points are visible from where are analytic. However, Fleishman
et al. [2000] consider only a very limited discrete setting, with discrete local visibility objec-
tive, discrete shapes (polygons) and discrete space of possible cameras placements. Then,
they solve the resulting discrete optimization problem using a greedy algorithm.

We restate that we allow for more general scene modeling and the local visibility objective,
and that our optimization techniques are more efficient and scalable.
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4.3 Non-Geometric and Approaches and Sub-Modular

Optimization

Krause and Guestrin [2007] discusses optimal sensor placement in a probabilistic set-
ting, for which sub-modular optimization is used. Their work differs from our in many
respects. First, our work would be applicable also for optimization over functions that are
not sub-modular (for example, visibility by multiple cameras for reconstruction). Second
our modeling of visibility is deterministic and geometric property rather than a probabilistic
property, which is a more appropriate model for many phenomena. Last, the sub-modular
optimization algorithm is generally less accurate and efficient than continuous optimization.
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Chapter 5

Optimal Camera Placement

In this chapter we present our algorithm as well as some simulation results. We present
the algorithm through an example, which naturally leads to the full specification of the
algorithm as well as its underlying assumptions.

5.1 Example

Recall that our goal is to solve the optimization problem

max
~C

Q(~C)

subject to: g(~C) = 0 (5.1)

where

Q(C) =

∫ 1

0

||ẋ(t)|| · χ(t, C)q(t, C)∂t . (5.2)

for a given scene S, camera placement constraint g and local visibility objective q. To
simplify notation, we assume throughout this chapter that the the “speed” factor, ||ẋ(t)||, is
embedded within the local visibility objective. This gives the simpler formulation

Q(C) =

∫ 1

0

χ(t, C)q(t, C)∂t . (5.3)

We begin by specifying the input to the problem, namely S, q, and g:
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5.1.1 Example - Input

We consider a scene consisting of a single object, as illustrated in Figure 3.2. The single
object in the scene is a non-convex Bezier curve

x(t) =
n∑
i=0

(
n
i

)
· (1− t)n−i · ti · Pi , (5.4)

whose first and second derivatives are

ẋ(t) = n ·
n−1∑
i=0

(
n− 1
i

)
· (1− t)n−i · ti · (Pi+1 − Pi) (5.5)

ẍ(t) = (n− 1) · n ·
n−2∑
i=0

(
n− 2
i

)
· (1− t)n−i · ti · (Pi+2 + 2 · Pi+1 − Pi) . (5.6)

We chose this special form of curves simply because of its smoothness and non-convexity.
To obtain the interesting “banana” shaped curve while maintaining twice differentiability
we chose a curve of degree 18 (marked in blue).

We wish to constrain the camera placement to the 100× 80 rectangle centered at [0, 20]
(marked in Figure 3.2 in black). To this end we use a standard approximate rectangular
two-dimensional differentiable function whose 0 level-set is the desired constrained camera
placement space.

Last, the local visibility objective is the foreshortened length described in equation 3.13.

5.1.2 Example - The Global Visibility Objective

Näıvely, we would proceed by taking the derivative of the objective

∂Q

∂C
(C) =

∫ 1

0

[
∂χ

∂C
(t, C) · q(t, C) + χ(t, C) · ∂q

∂C

]
∂t . (5.7)

Unfortunately, that route is blocked because ∂χ
∂C

(t, C) does not always exist (and when it
does exist, it equals 0). We therefore proceed by presenting a reformulation of the global
visibility objective.

Consider the camera placement C = [70, 0], and note that the times where x is visible
form two contiguous intervals, marked in red in Figure 5.1.

We use the term occlusion boundaries to refer to the endpoints of the visibility intervals,
x(t1), x(t2), x(t3) and x(t4). We use the term occlusion times to refer to their corresponding
times, t1, t2, t3 and t4. Viewing the occlusion times as functions of C enables us to write

Q(C) =

∫ t1(C)

t0(C)

q(t, C)∂t+

∫ t3(C)

t2(C)

q(t, C)∂t . (5.8)
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Figure 5.1. The visible intervals corresponding to single camera placement.

Assuming that the occlusion boundaries are continuous functions of the camera placement
C we can take the derivative of Q with respect to C using Leibniz rule:

∂Q

∂C
(C) =

(
−∂t0
∂C

(C) · q(t0, C) +
∂t1
∂C

(C) · q(t1, C) +

∫ t1(C)

t0(C)

∂q

∂C
(t, C)dt

)
+(

−∂t2
∂C

(C) · q(t2, C) +
∂t3
∂C

(C) · q(t3, C) +

∫ t3(C)

t2(C)

∂q

∂C
(t, C)dt

)
(5.9)

Note that the specific local visibility objective we chose vanishes at t0(C), t1(C) and at
t3(C), and therefore we have the simpler expression

∂Q

∂C
(C) =

(∫ t1(C)

t0(C)

∂q

∂C
(t, C)dt

)
+

(
−∂t2
∂C

(C) · q(t2, C) +

∫ t3(C)

t2(C)

∂q

∂C
(t, C)dt

)
(5.10)
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We proceed by discussing the derivatives of the occlusion boundary functions with respect
to C. We write the occlusion boundary as implicit functions of C and take their implicit
derivates. We make a distinction between occlusion boundaries where the line of sight is
tangent to the surface of the object (such as t0, t1 and t3) and others. We refer to the former
occlusion boundaries as tangency times and to the latter occlusion boundaries as intersection
times. The two sets can be written as

T||(C) = {t : the line going through C and x(t) is tangent to x at t} (5.11)

T∦(C) = {t : the line going through C and x(t1), for some t1 ∈ T1(C), intersects x at t}

(5.12)

where T|| is the set of tangency times and T∦ is the set of interesection times.

We now proceed to compute the derivative of T∦ though its implicit characterization.
Recall that two points u, v ∈ R2 define the single line connecting them, denoted L(u, v),
which is given by the equation

L(u, v)
.
=

{
w :

〈
v − w,

[
0 1
−1 0

]
(v − u)

〉
= 0

}
. (5.13)

Plugging in x(T||(C)), x(T∦(C)) and C we write T∦ implicitly as(
C − x(T||(C))

)ᵀ
·
[

0 1
−1 0

]
·
(
C − x(T∦(C))

)
= 0, (5.14)

and taking its implicit derivative we have(
I − ẋ(T||(C)) ·

∂T||
∂C

(C)

)ᵀ

·
[

0 1
−1 0

](
C − x(T∦(C))

)
+

+

(
I − ẋ(T∦(C)) ·

∂T∦
∂C

(C)

)ᵀ

·
[

0 1
−1 0

]ᵀ
·
(
C − x(T||(C))

)
= 0 . (5.15)

By rearranging we obtain[
0 1
−1 0

](
x(T||(C))− x(T∦(C))

)
=

(
∂T

∂C
(C)

)ᵀ

· ẋ(T (C))ᵀ ·
[

0 1
−1 0

](
C − x(T∦(C))

)
︸ ︷︷ ︸

=0

−

(
∂T∦
∂C

(C)

)ᵀ

· ẋ(T∦(C))ᵀ ·
[

0 1
−1 0

]
·
(
C − x(T||(C))

)
(5.16)

and finally

∂T∦
∂C

(C) =
1

ẋ(T∦(C))ᵀ ·
[

0 1
−1 0

]
·
(
C − x(T||(C))

) · (x(T∦(C))− x(T||(C))
)ᵀ
·
[

0 1
−1 0

]
.

(5.17)
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Even though the computation of the derivative is complete, we make a couple of technical
substitutions that would make the expression of the gradient more interpretable. Specifically
we make the substitutions

x(T||(C))− C 7→ ẋ(t)

||ẋ(t)||
· ||x(T||(C))− C|| (5.18)

x(T∦(C))− x(T||(C)) 7→ ẋ(t)

||ẋ(t)||
· ||x(T∦(C))− x(T||(C))|| (5.19)

and write

∂T∦
∂C

(C) =
||x(T∦(C))− x(T||(C))||
||C − x(T||(C))||

· 1

ẋ(T∦(C))ᵀ ·
[

0 1
−1 0

]
· ẋ(T||(C))

· ẋ(T||(C))ᵀ ·
[

0 1
−1 0

]
.

(5.20)

We now interpret the expression for the gradient of T∦ by making four observation about
how we would expect T∦(C) to change as we slightly move C in various directions.

• We expect no change in T∦(C) as we move C in the direction of ẋ(T||(C)).

• The larger the distance between C and x(T||(C)) the smaller should be the change in
T∦(C).

• The larger the distance between x(T∦(C)) and x(T||(C)) the larger should be the change
in T∦(C).

• The more aligned are ẋ(T||(C)) and ẋ(T∦(C)) the larger should be the change in T∦(C).

These observations account for the terms in equation 5.20.

It is important to note that
∂T∦
∂C

(C) is not defined whenever ẋ(T||(C)) and ẋ(T∦(C)) are
perfectly aligned. In general, this implies that the global visibility objective is not always
differentiable (as in the case of the visible surface area and a scene consisting of polygons).
However, in the special case of the foreshortened local visibility objective, the global objective
remains differentiable because the local objective vanishes exactly where the gradient of the
occlusion times explodes.

We have practically computed all the components in the expression for the gradient of
the global visibility objective from Equation 5.10. It remains to use an off-the-shelf non-
linear optimization package to find a solution for the optimization problem. We proceed
by describing the details of the actual computation of the gradient which is the core of our
algorithm.

5.1.3 Example - The Algorithm

In this sub-section we describe the details of our algorithm for the special case described in
the example. Our algorithm uses a non-linear optimization tool for solving the optimization
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problem 3.16. The crux of the algorithm is in the computation of the objective and its
gradient, which we now describe in detail.

In general, the input to the algorithm is a parametrized scene S, a camera placement
constraint g and an initial camera placement C0. In what follows we describe the run of
algorithm for the scene, camera placement constraint and initial camera placement described
earlier in this section and visualized in Figure 5.1.

Given the scene S, the local visibility objective q and a camera placement C, we evaluate
the gradient ∂Q(C) (or the objective Q(C)) as follows:

1. We compute T||(C) and T∦(C) and their gradients (when necessary):

(a) We compute T||(C) by finding the roots of the function

fT||(t) = n(t)ᵀ · (x(t)− C) (5.21)

In the case depicted in Figure 5.1 the computation in this step would yield the
occlusion times t0, t1 and t3.

(b) We then compute T∦(C) using a “ray-tracing” procedure. More specifically, for
every tangency time T1 ∈ T||(C) we find the zeros of the function

fT∦(t) = d(x(t), l(C, x(T1))) (5.22)

where l(pt1, pt2) is the straight line going through the points pt1 and pt2, and
d(pt, line) is the distance between the point and the line.

In the case depicted in Figure 5.1 the computation in this step would yield the
occlusion time t2.

(c) Compute the gradients of the intersection time according to Equation 5.20, where
T∦(C) = T2 for every T2 ∈ T∦(C) and T||(C) being its corresponding tangency
time.

In the case depicted in Figure 5.1 the computation in this step would consist of

computing
∂T∦
∂C

(C) where T∦(C) = t2 and T||(C) = t1.

2. We now construct our continuous variant of the viewability matrix. Consider the sorted
set T of all occlusion times.

In the case depicted in Figure 5.1 we would have

T = 〈t0, t1, t2, t3〉 , (5.23)

We construct a table V whose i’th entry is 1 if and only if the camera placement C
views (without occlusions) x(t) for every t ∈ [Ti, Ti+1].

In the case depicted in Figure 5.1, where the marked camera placement views x(t) in
the intervals [t0, t1] and [t2, t3] and does not view x(t) in the intervals [t1, t2] and [t3, t0],
we would have

V =


1
0
1
0

 (5.24)
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3. We compute the gradient the objective according to equation 5.10.

We recompute the gradient as many times as necessary according to the non-linear op-
timizer until convergence to a local optimum.

5.2 The Algorithm

We now proceed to describe the algorithm in the general case of an arbitrary local
visibility objective, arbitrary scene and multiple cameras. The general case is only slightly
more complicated than the case described in the example, requiring two modification:

• To handle general local visibility objectives we need to compute the gradient of T||(C).

• We handle multiple cameras by augmenting the number of columns of the viewability
matrix V .

We proceed by computing the expression for the gradient of the tangency time, following
the same lines as in the computation of T∦(C). We write an implicit formulation of T||(C)
and take its derivative:

(x(T||(C))− C)ᵀ · n(T||(C)) = 0 (5.25)

because of the tangency property. Taking implicit derivatives of both sides we have(
ẋ(T||(C)) ·

∂T||
∂C

(C)− I
)ᵀ

· n(T||(C))+

+

(
ṅ(T||(C)) ·

∂T||
∂C

(C)

)ᵀ

·
(
x(T||(C))− C

)
= 0 (5.26)

and by rearranging we have(
∂T||
∂C

(C)

)ᵀ

· ẋ(T||(C))ᵀ · n(T||(C))︸ ︷︷ ︸
=0

+

+

(
∂T||
∂C

(C)

)ᵀ

· ṅ(T||(C))ᵀ ·
(
x(T||(C))− C

)
= n(T||(C)) . (5.27)

Therefore

∂T||
∂C

(C) =
1

ṅ(T||(C))ᵀ ·
(
x(T||(C))− C

) · n(T||(C))ᵀ . (5.28)
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The raw computation of the gradient is done, though we wish to make a couple of
technical substitutions that would make the expression for the gradient more interpretable.
Specifically we make the substitutions

n(t) 7→
[

0 1
−1 0

]
· ẋ(t) (5.29)

ṅ(t) 7→
[

0 1
−1 0

]
· ẍ(t) (5.30)

x(T||(C))− C 7→ ẋ(t)

||ẋ(t)||
· ||x(T||(C))− C|| (5.31)

and write

∂T||
∂C

(C) =
||ẋ(t)||

||x(T||(C))− C||
· 1

ẍ(T||(C)) ·
[

0 1
−1 0

]
· ẋ(T||(C))

· ẋ(T||(C))ᵀ
[

0 1
−1 0

]
. (5.32)

We now interpret the expression for the gradient of T|| by making three observation about
how we would expect T|| to change as we slightly move C in various directions.

• We expect no change in T||(C) as we move C in the direction of ẋ(T||(C)).

• The distant C is from x(T||(C)) the smaller should be the change in T||(C).

• The more aligned ẋ(T||(C)) and ẍ(T||(C)), the larger should be the change in T||(C).

These observations account for the terms in equation 5.32.

We now describe the general case Optimal Camera Placement algorithm. Still, the algo-
rithm calls an off-the-shelf non-linear optimization tool for solving the optimization problem
3.16. The crux of the algorithm is in the computation of the objective and its gradient,
which we now describe in detail.

Given a scene S, a local visibility objective q and a camera placement ~C = 〈C1, . . . , Ck〉,
we evaluate the gradient ∂Q(~C) (or the objective Q(~C)) as follows:

1. For every Cj we compute T||(Cj), T∦(Cj) and their gradients:

(a) We compute T||(Cj) by finding the roots of the functions

f iT||(t) = ni(t)
ᵀ · (xi(t)− C) (5.33)

(b) We then compute T∦(Cj) using a “ray-tracing” procedure. More specifically, for
every tangency time T1 ∈ T||(Cj) (computed in the previous step) we find the
zeros of the functions

f iT∦(t) = d(xi(t), l(Cj, x(T1))) (5.34)

where x(T1) is the occlusion boundary corresponding to the occlusion time T1 and
l(pt1, pt2) and d(pt, line) are defined as before.
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(c) Compute the gradients of the tangency time according to Equation 5.32, where
T||(C) = T1 for every T1 ∈ T||(C).

(d) Compute the gradients of the intersection time according to Equation 5.20, where
T∦(C) = T2 for every T2 ∈ T∦(C) and T||(C) being its corresponding tangency
time.

2. We now construct our continuous variant of the viewability matrix. Consider the sorted
set

T = ∪jT∦(Cj)
⋃
∪jT||(Cj) = 〈t1, t2, . . . , tr〉 . (5.35)

We construct a table V whose i, j’th entry is 1 if and only if the camera placement Cj
views (without occlusions) x(t) for every t ∈ [Ti, Ti+1].

3. We compute the gradient the objective according to equation 5.9.

5.3 Implementation and Limitations

In this section we relate to implementation of our algorithm and to its limitations. Specif-
ically, we discuss integrals evaluation, roots finding and the domain of the gradient.

We evaluate specific integrals using a fixed step size approximation. This technique is
guaranteed to converge to the true value of the specific integral. We note that this may seem
to resemble the finite-sum formulation of the global visibility objective. However, the step
size in our case only appears in the integral evaluation and therefore it only adds linear cost
to the price of solving the Optimal Camera Placement problem (that is, linear in the number
of gradient and objective evaluations). In contrast, in the finite-sum approach the step size
is part of the problem formulation and it adds a polynomial price of solving the Optimal
Camera Placement problem (where the exponent is the problem size, i.e., the sensor model
times the number of cameras).

Finding the zeros of a function appears in the computations of the tangency times and
the intersection times, and is a more complicated task. The way we currently compute the
roots of a function f is through fitting it to a polynomial. This can be done if we know in
advance the number of roots we should find, which corresponds to knowing the number of
tangency times and the number of corresponding intersection times.

Perhaps the most significant limitation of the algorithm is that also the integral form of
the global visibility objective is not everywhere differentiable. Recall that we did not need
to address the issue of the domains of the gradients of T||(C) and T∦(C) only because of the
specific form of the foreshortened local visibility objective. This issue cannot be overlooked
in the case of a generic local visibility objective. We now discuss in detail the domains of
∂T||
∂C

and
∂T∦
∂C

. The gradients of T|| and T∦ break if either

ẋ(T||(C)) ·
[

0 1
−1 0

]
· ẋ(T∦(C)) = 0 , (5.36)
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or

ẍ(T||(C)) ·
[

0 1
−1 0

]
· ẋ(T||(C)) = 0 . (5.37)

Figure 5.2 illustrates the domains of the gradient of the global visibility objective in the scene
from the example discussed earlier this chapter. It is insightful to note that these are exact
characterizations of the conditions under which the occlusion boundaries are discontinuous
with respect to the camera placement. More specifically, both conditions refer to cases
where the line of sight is tangent to the object (or objects) in multiple (possibly an interval
of) points. A natural way around this issue would be to solve the optimization problem
within each one of the domains of the gradient. Unfortunately, the computation of the
domain boundaries that correspond to satisfying Equation 5.36 require finding the roots of
a two variable function. In practice we did not solve this issue, but instead we added to the
computation of the gradient a validation clause to guarantee the validity of the computation.
In general this approach may not be stable, however our simulations seem to suggest that
the optimization still succeeds, perhaps due to the nature of the objectives.

5.4 Simulations

We ran a few simulations of our algorithm on the setting from the example described
earlier this chapter. In the simulations we used a python implementation of the SLSQP
algorithm. We compare the performance of our gradient based approach to a standard
combinatorial greedy optimization approach. The greedy optimization approach consists of
discretizing the camera placement space, breaking it down to 128 points on each edge of
the rectangle. Then, the optimal placement of a single camera is chosen by evaluating the
visibility objective at each one of the possible camera placements and picking the one with
the optimal value. The optimal placement for two cameras is chosen by fixing one camera
to the previously found optimal placement for a single camera and evaluating again the
visibility objective for every possible placement of the second camera. The summary of the
simulation results is presented in Table 5.1.

The results presented in the rows corresponding to the gradient based approach were
obtained by choosing arbitrary initialization near the corners of the camera placement con-
straint rectangle.

The results presented in Table 5.1 clearly show that the gradient based approach finds
competitive solutions to the optimization problem while requiring way less computational
resources.

It is interesting to examine the measurements collected during the run of the greedy
optimization algorithm. Figures 5.3 illustrates the optimal single camera placement accord-
ing to the greedy algorithm, and Figures 5.4 illustrates the optimal two cameras placement
according to the greedy algorithm. Figure 5.5 illustrates all the evaluations of the visibility
objective made throughout the run of the greedy algorithm, where the lower curve corre-
sponds to the measurements of the singe camera objective and the upper curve corresponds
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Figure 5.2. The domains on which the gradient of the occluding boundaries exist.

to the measurements of the two-cameras objective. It is interesting to notice the sharp kink
in the curve in Figure 5.5, which corresponds to the camera placement illustrated in Figure
5.6.

The plot clearly shows the non-convexity of the objective, which may result with conver-
gence to a sub-optimal solution. In practice, many of the initializations we tried converged to
the true optimum, suggesting that finding the true optimum does not require an extremely
high number of initializations.
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Algorithm # of Cameras # of Objective Evaluations Result
Greedy 1 128× 4 = 512 87.45
Greedy 2 2× 128× 4 + 128× 4 = 1536 128.48

Gradient 1 10 87.74
Gradient 2 16 121.87

Table 5.1. Comparing Gradient Based Approach to the Combinatorial Greedy Approach.
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Figure 5.3. The optimal single-camera placement according to greedy algorithm.
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Figure 5.4. The optimal two-cameras placement according to the greedy algorithm.
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Figure 5.5. All the measurements of the objective collected throughout the run of the greedy
algorithm. The lower curve corresponds to the measurements of the singe camera objective
and the upper curve corresponds to the measurements of the two-cameras objective.

34



40 20 0 20 40 60 80

40

20

0

20

40

x1

g(C) = 0

C

Figure 5.6. The single camera placement corresponding to the “kink” in the single-camera
objective curve.
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Chapter 6

Future Work

The work we presented here could develop in multiple promising research directions. In
Chapter 1 we listed some possible extensions to our work, and in this chapter we shall elab-
orate on one specific direction, namely an alternative formulation for the visibility objective.

We think that the evaluation of the alternative objective we are about to propose, as
well as the evaluation of its gradient, does not require the assumptions we made regarding
the geometry of the target objects (in the form of knowing the number of inflection points
of the object’s parametrization)and that it would differentiable everywhere.

For simplicity of notation we shall discuss only the case of a single camera placement.
Recall the formulation we used for the visibility indicator from Equation 3.7:

χS(t, C) = 1− max
t′∈S1\t

{
1||x(t)−C||>||x(t′)−C|| · 1(x(t)−C)ᵀ·(x(t′)−C)=||x(t)−C||·||x(t′)−C||

}
. (6.1)

We note that the computation of χS(t) requires searching for the single occluding point
x(t′). However, in any realistic sensor model occlusions do not arise from a single occluding
point but from an occluding neighborhood. This observation gives rise to a “smoothened”
formulation, where the computation of χS(t, C) would consist of finding a point x(t′) that
is δ-occluding in a sense that would become clear immediately. The smoothed formulation
is obtained by substituting the sharp indicator functions by smooth threshold functions (for
example, the sigmoid function would be applicable), which we denoted here f . Additionally,
the maximum over the continuous interval is substituted by a threshold over an integral.
More specifically, we make the substitutions (a substitution that is valid because the values
the maximization objective are either 0 or 1):

1x>y 7→ f(x− y) (6.2)

1x=y 7→ f(x− y + δ) (6.3)

max
τ

{
F (τ)

}
7→ f

(∫
τ

F (τ)

)
(6.4)
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and obtain the expression

χS(t, C) = 1− f

(∫
t′∈S1\t

f
(
||x(t)− C|| − ||x(t′)− C||

)
·

f
(

(x(t)− C)ᵀ · (x(t′)− C)− ||x(t)− C|| · ||x(t′)− C||+ δ
)
∂t′

)
.

(6.5)

The expression in Equation 6.5 requires another last modification. In its current form
only a single point in every object would not be considered occluded. To see this, note that
every point is surrounded by a small neighborhood of points that are all δ co-aligned with
it. We call these false δ-occlusion relations trivial occlusions, as they are caused merely by
the integral formulation we chose. To eliminate the trivial occlusions we restrict the limits
of the integration as follows

χS(t, C) = 1−max
εl,εr

f

(∫
t′∈S1\(t−εl,t+εr)

f
(
||x(t)− C|| − ||x(t′)− C||

)
·

f
(

(x(t)− C)ᵀ · (x(t′)− C)− ||x(t)− C|| · ||x(t′)− C||+ δ
)
∂t′

)
(6.6)

subject to

max
t′∈[t−epsilonl,t]

(x(t)− C)ᵀ · (x(t′)− C)− ||x(t)− C|| · ||x(t′)− C|| ≥ −δ (6.7)

max
t′∈[t,t+epsilonr]

(x(t)− C)ᵀ · (x(t′)− C)− ||x(t)− C|| · ||x(t′)− C|| ≥ −δ . (6.8)

We think that this alternative objective, though less intuitive, may capture accurately the
notion of neighborhood occlusion and that it would circumvent the need to compute the
occlusion boundaries, thus removing the necessity of the geometric assumptions.
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