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Abstract

Methods for Reachability-based Hybrid Controller Design

by

Jerry Ding

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Claire Tomlin, Chair

With the increasing complexity of systems found in practical applications, the problem of con-
troller design is often approached in a hierarchical fashion, with discrete abstractions and design
methods used to satisfy high level task specifications, and continuous abstractions and design tech-
niques used to satisfy low level control objectives. Although such a separation allows the applica-
tion of mature theoretical and computational tools from the realms of computer science and control
theory, the task of ensuring desired closed-loop behaviors, which results from the composition be-
tween discrete and continuous designs, often requires costly and time consuming verification and
validation. This problem becomes especially acute in safety-critical applications, in which design
specifications are often subject to rigorous industry standards and government regulations. Hybrid
systems, which feature state trajectories evolving on a combination of discrete and continuous state
spaces, have been proposed as a possible approach to reconcile the analysis and design techniques
from the discrete and continuous domains under a rigorous theoretical framework. However, de-
signing controllers for general classes of hybrid systems is a highly nontrivial task, as such a
design problem inherits both the difficulty of nonlinear control, as well as the range of theoretical
and computational issues introduced by the consideration of discrete switching.

This dissertation describes several efforts aimed towards the development of theoretical anal-
ysis tools and computational synthesis techniques to facilitate the systematic design of feedback
control policies satisfying safety and target attainability specifications with respect to subclasses
of hybrid system models. The main types of problems we consider are safety/invariance problems,
which involve keeping the closed-loop state trajectory within a safe set in the hybrid state space,
and reach-avoid problems, which involve driving the state trajectory into a target set subject to a
safety constraint. These problems are addressed within the context of continuous time switched
nonlinear systems and discrete time stochastic hybrid systems, as motivated by application scenar-
ios arising in autonomous vehicle control and air traffic management.

First, we provide several design techniques and synthesis algorithms for deterministic reacha-
bility problems formulated in the setting of switched nonlinear systems, with controlled switches
between discrete modes, and bounded continuous disturbances. For scenarios in which the mode
transitions proceed in a known sequence, a method is discussed for designing controllers to satisfy
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sequential reachability specifications, consisting of a temporally ordered sequence of invariance
and reach-avoid objectives. In particular, we use continuous time reachable sets to inform choices
of feedback control policies within each discrete mode to satisfy both individual reachability objec-
tives and compatibility conditions between successive modes. This technique is illustrated through
an example of maneuver sequence design for automated aerial refueling of unmanned aerial vehi-
cles. For scenarios in which the modes of a switched system can be freely selected, we describe
an approach for the automated synthesis of feedback control policies achieving safety and reach-
avoid objectives, under a sampled data setting. This synthesis technique proceeds by a structured
reachability computation which retains information about the choice of switching controls at each
discrete time instant, resulting in a set-valued policy represented in terms of a finite collection of
reachable sets. Experimental results from the implementation of such control policies on a quadro-
tor platform to track a moving ground target show strong robustness properties in the presence of
significant disturbances.

Second, we provide theoretical and computational results on stochastic game and partial in-
formation formulations of probabilistic reachability problems. In the setting of a discrete time
stochastic hybrid game model, zero-sum dynamic game formulations of probabilistic safety and
reach-avoid problems are considered. Under an asymmetric information pattern favoring the adver-
sary, we prove dynamic programming results for the computation of finite horizon max-min safety
and reach-avoid probabilities and synthesis of deterministic max-min control policies. The im-
plications of alternative information patterns and infinite horizon formulations are also discussed.
In particular, it is shown that under a symmetric information pattern, equilibrium solutions are in
general found within the class of randomized policies. The utility of this approach is illustrated
through an example of pairwise aircraft conflict resolution, with a probabilistic model of wind ef-
fects. In the setting of a partially observable discrete time stochastic hybrid system, we provide a
characterization of the optimal solution to partial information probabilistic safety and reach-avoid
problems, which have nonstandard multiplicative and sum-multiplicative cost structures. In par-
ticular, these problems are shown to be equivalent to terminal cost and additive cost problems, by
augmenting the hybrid state space with a binary random variable capturing the safety of past state
evolution. Using this result, we derive a sufficient statistic in terms of a set of Bayesian filter-
ing equations, along with an abstract dynamic programming algorithm for computing the optimal
safety and reach-avoid probabilities. The practical implementation of the estimation and control
algorithms, however, will depend on the existence of finite dimensional representations or approx-
imations of the hybrid probability distribution.
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Chapter 1

Introduction

1.1 The Dichotomy Between Discrete and Continuous
Abstractions

The task of controller design for modern control systems such as found in aircraft, automobiles,
and industrial machinery is a highly complex undertaking. This complexity results in part from
the large number of interacting system components, and in part from the wide range of design
specifications (e.g. comfort, safety, stability, efficiency) that must be satisfied, often with the ex-
pectation of a high degree of reliability. A common approach to controller design for such systems
is a layered control architecture in which successively coarser abstractions are employed as one
progresses from low level control objectives to high level specifications. While low level control
design is often performed using continuous state models (e.g. differential or difference equations)
and implemented using analog devices, high level control design is often performed using finite
state models (e.g. finite state machines) and implemented using embedded software and electronic
devices. In the case of the former, one can take advantage of the rich set of design and analysis
methods that has been developed in the realm of control theory, while in the case of the latter, one
can take advantage of the numerous efficient algorithms that have been proposed in the realm of
computer science. However, there is unfortunately a sparsity of formal design tools at the inter-
face between the two domains. In safety-critical control applications, this presents somewhat of a
dilemma, as safety specifications are often described in terms of the closed-loop behavior of the
overall system, and hence span the different layers of the control architecture. In particular, the
satisfaction of such specifications, which are often determined by rigorous industry standards and
government regulation, depends intimately on the interaction between the discrete and continuous
layers of control.

To be more concrete, consider the example of conflict detection and resolution in air traffic
management. Under current Federal Aviation Administration (FAA) regulations, each aircraft is
required to maintain a minimum horizontal and vertical separation distance from other aircraft in
the airspace. The problem of conflict detection is one of predicting whether a loss of separation
will occur and the problem of conflict resolution is one of executing evasive maneuvers in the event
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that a potential conflict is detected. These maneuvers are commonly composed of a discrete set of
basic aircraft motions, for example, accelerate, turn, descend, and ascend.

It can be observed that the high level decisions of when to initiate conflict resolution maneuvers
and how the maneuvers should be carried out are both intimately related to the continuous behav-
ior of the aircraft involved in the conflict scenario, in particular the kinematics of each aircraft. At
the same time, the conflict resolution problem is not a purely continuous control problem, as the
execution of conflict resolution maneuvers depends to a large degree on the design of high level
decision protocol. In particular, if the maneuvers are to be carried out according to a pre-defined
sequence, then the conflict resolution problem is one of deciding when the aircraft should switch
from one motion to the next. On the other hand, if the aircraft is allowed to select freely from a
library of basic motions, the problem then becomes one of deciding both the sequence of motions,
as well as the times at which to perform the switch. If one were to consider in addition the vari-
ous uncertainties during the execution of conflict resolution maneuvers, for example the unknown
intention of the other aircraft or disturbances to aircraft motion due to wind effects, it is then no
longer sufficient to consider open-loop choices of maneuver sequences and switching times. In this
case, the conflict resolution problem becomes one of designing a feedback policy for discrete ma-
neuver selection, such that the continuous closed-loop trajectory of the aircraft maintains minimum
separation distance at all times.

1.2 High-Confidence Controller Design as Hybrid
Reachability Problem

The main focus of this dissertation is on the development of theoretical tools and computational
techniques for the design of feedback control policies at the interface between the discrete and
continuous layers of the control architecture, with the objective of satisfying certain functional
specifications on the closed-loop system behavior. In particular, we will be interested in functional
specifications of the following types: 1) safety: keep the system state within a prescribed safe set
in the system state space over finite or infinite time horizon; 2) reach-avoid: drive the system state
into a prescribed target set in the system state space within finite time, subject to a constraint that
the state trajectory avoids an unsafe set. These specifications are often referred to in the literature
collectively as reachability specifications. Given that the controller design must be conscious of
the discrete nature of high level decision making, as well as the continuous nature of the physical
system, a natural modeling framework is that of a hybrid system.

A hybrid system is a dynamical system whose dynamics evolves on a product of discrete and
continuous state spaces. The study of such systems within a formal mathematical framework can
be traced to the seminal work of Witsenhausen (1966). By now, there is a well-developed body
of literature devoted to the modeling and analysis of hybrid systems (see for example Gollu and
Varaiya, 1989; Brockett, 1993; Alur et al., 1993; Antsaklis et al., 1993; Nerode and Kohn, 1993;
Caines and Wei, 1998; Branicky et al., 1998; Hu et al., 2000). These models have been employed in
the study of application scenarios ranging from air traffic management (Sastry et al., 1995; Tomlin
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et al., 2002), automotive control (Balluchi et al., 2000), systems biology (Ghosh and Tomlin, 2004;
Lincoln and Tiwari, 2004), to unmanned aerial vehicles (Frazzoli et al., 2000; Koo et al., 2001).
In certain cases, they are used to capture the interaction between discrete and analog components
of the physical system, for example the use of switching elements in the control of electrical and
mechanical systems (Aimer et al., 2007). In other cases, they are used to capture sharp changes in
the continuous behavior of a dynamical system, for example the operation modes of an automotive
engine (Balluchi et al., 2000), or the phases of bipedal walking (Ames et al., 2009). Finally, perhaps
most relevant for our discussions, they have been used as a mathematical formalism to integrate
discrete and continuous abstractions in a hierarchical control architecture (Gollu and Varaiya, 1989;
Lygeros, 1996; Caines and Wei, 1998; Alur et al., 2001).

For the purposes of controller design, a hybrid system model provides us with an abstraction of
the interactions between the high level and low level control layers. In particular, the mechanisms
for high level decision making can be abstracted in terms of a discrete transition system, while
continuous behaviors resulting from high level commands can be abstracted in terms of continu-
ous state models associated with each of the discrete modes. The interactions between the control
layers is then captured through the possible dependence of discrete transitions on continuous state
variables, as well as the possible dependence of continuous dynamics on discrete state variables.
The various sources of uncertainty, such as unmodelled system dynamics or environment distur-
bances, can be included as exogenous inputs or stochastic noise affecting the discrete or continuous
state evolution.

Within the context of a hybrid system model, the problem of designing control policies to
satisfy safety or reach-avoid control objectives can be elegantly posed as a reachability problem
on the hybrid state space, through proper interpretations of the specifications as constraints on the
discrete and continuous states. In the event that the relevant behaviors of the underlying control
system are accurately described in terms of the hybrid system model, it can be then expected with a
high degree of confidence that the solution to a hybrid reachability problem will satisfy the desired
control objectives on the actual system. However, given the inevitable deviations between the
complex behaviors of the actual system and the mathematical properties of an abstraction that is
tractable for analysis and control, one should not expect that this will completely eliminate the need
for formal verification and validation. Instead, what can be hoped for is that through a principled
controller design approach based upon mathematical models rather than heuristic insights, one can
reduce the prohibitive amount of time and effort that are currently expended on the verification and
validation of safety-critical control systems.

1.3 Computational Solutions to Reachability Problems
From the point of view of control theory, it has been recognized that hybrid reachability problems
are equivalent to optimal control or dynamic game problems, with real-valued cost functions de-
fined on the hybrid state space (see for example Asarin et al., 1995; Lygeros et al., 1999b; Tomlin
et al., 2000; Koutsoukos and Riley, 2006; Amin et al., 2006; Mohajerin Esfahani et al., 2011). In
fact, this equivalence is not particular to hybrid systems, but is rather a fundamental characteristic
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of reachability problems. To illustrate this point, consider a control system of the form ẋ = f (x,u),
x(0) = x0 ∈ Rn. With appropriate assumptions on the vector field f , the solution trajectory x(·) of
this system is uniquely determined by the initial condition x0, and the choice of controls u(·). Given
a safe set W ⊂ Rn, we can use the procedures described in Lygeros et al. (1999b) to define a cost
function J(x0,u), such that J = 1 if the trajectory corresponding to (x0,u) satisfies x(t) ∈W for ev-
ery t over the time horizon of interest, and J = 0 otherwise. In other words, J = 1 if and only if the
safety specification is satisfied. Now consider the optimal control problem J∗(x0) = maxu J(x0,u).
Then verifying the safety property consists of computing the value J∗ and finding the set of initial
conditions such that J∗ = 1, while controller design consists of finding a maximizer for each of
these initial conditions.

The advantage of this viewpoint is that finding computational algorithms solving hybrid reach-
ability problems becomes equivalent to finding computational algorithms solving optimal control
problems (in the case of a single control agent) and dynamic game problems (in the case of a
control and a disturbance). This allows a control engineer to tap into the wealth of knowledge
and insight that has accumulated in the respective fields of optimal control and dynamic games.
It then comes as little surprise that a significant number of computational algorithms that have
been proposed for deterministic or probabilistic reachability, especially in the context of systems
with continuous states, are based upon either the dynamic programming principle or the maximum
principle (see for example Kurzhanski and Varaiya, 2000; Crück and Saint-Pierre, 2004; Mitchell
et al., 2005; Hwang et al., 2005; Koutsoukos and Riley, 2006; Abate et al., 2007). In particular, the
computational algorithms for controller synthesis discussed in this dissertation are primarily based
upon the dynamic programming principle.

Despite the mathematical elegance of an optimal control or dynamic game formulation of the
hybrid reachability problem, solving such a problem for general hybrid systems is a significant
challenge (Branicky et al., 1998). In particular, hybrid optimal control problems feature both
the difficulties of nonlinear optimal control, as well as the range of issues introduced by discrete
switching between modes of a hybrid system (this can include discontinuities in the vector field,
reset of the continuous state, or even changes in the continuous state dimension due to algebraic
constraints). This then motivates the study of subclasses of hybrid systems for which approximate
solutions to reachability problems can be obtained.

1.4 Consideration of Subclasses of Hybrid Systems
In this dissertation, we will be specifically interested in controller design methods for the classes
of continuous time switched nonlinear systems (Part I) and discrete time stochastic hybrid systems
(Part II). The motivations for studying these subclasses of hybrid systems are discussed below.

A switched nonlinear system is a hybrid system whose continuous dynamics switches among
a finite collection of continuous vector fields according to a discrete transition rule (Liberzon and
Morse, 1999). The salient characteristics of such a system are: 1) the continuous state dimension
is the same across the discrete modes; 2) the continuous state does not reset as a discrete transition
is made. However, the vector field is in general discontinuous across a discrete transition. For
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purposes of controller synthesis, we will consider the class of switched systems with controlled
switching among the set of discrete modes. Within each discrete mode, the vector field can be non-
linear and subject to continuous disturbances with bounded magnitude. The underlying modeling
assumption is that the condition for switching between the discrete modes is a design parameter,
rather than an inherent characteristic of the physical system. This removes a number of technical
difficulties associated with the analysis and control of continuous time hybrid systems, at the cost
of restricting system dynamics to those without autonomous switches. However, a switched system
model provides a fitting abstraction of a physical system whose underlying continuous behavior
can be described in terms of a nonlinear vector field (up to bounded disturbances), but whose high
level control is performed by discrete switching among a finite set of low level controllers. Exam-
ples of such systems can be found in aircraft conflict resolution (Tomlin et al., 2002), unmanned
aerial vehicle trajectory control (Frazzoli et al., 2000), and robot formation control (Fierro et al.,
2001).

As compared with deterministic hybrid systems, which takes switched nonlinear systems as a
special case, stochastic hybrid system models allow for a probabilistic description of the uncer-
tainties affecting system dynamics (Hu et al., 2000). This description can be obtained for example
from a statistical analysis of past data on system behavior. Such models have been used to study
control problems arising in air traffic management (Glover and Lygeros, 2004), communication
networks (Hespanha, 2004), and systems biology (Hu et al., 2004). In the case of a discrete time
stochastic hybrid system, the evolution of the system state over discrete time instants is assumed
to be described by a transition probability over the hybrid state space, parameterized by the current
system state and control inputs (Abate et al., 2008). This results in a discrete time Markov process,
for which a rich body of theory has been built up in the study of stochastic optimal control (see
for example Bertsekas and Shreve, 1978; Kumar and Varaiya, 1986). Under a discrete time model,
there is no longer the notion of “continuity in time.” As a result, one can account for discrete
transitions which are dependent on the continuous state, possible changes in continuous state di-
mensions across discrete transitions, as well as resets in the continuous state, without significant
technical difficulties. However, this level of generality comes at the cost of abstracting away the
possibly rich set of hybrid system behaviors in between the discrete time instants.

As fields of study, the reachability of deterministic hybrid systems and stochastic hybrid sys-
tems are currently at two significantly different stages of development. Due to the large body of
previous work which has focused on the modeling and analysis of deterministic hybrid systems,
the former has by now a significant number of methods and algorithms for the computation of
approximate reachable sets for a wide range of hybrid systems, with well-understood theoretical
and numerical properties (see for example Asarin et al., 2000a; Kurzhanski and Varaiya, 2000; Be-
mporad et al., 2000b; Aubin et al., 2002; Chutinan and Krogh, 2003; Mitchell et al., 2005; Girard,
2005). On the other hand, the latter is still at a stage in which methods for formulating probabilis-
tic reachability problems are in the process of being proposed (Koutsoukos and Riley, 2006; Amin
et al., 2006), algorithms for computing approximations to the reachability probability are in the
process of being devised (Hu et al., 2005; Abate et al., 2008), and their theoretical and numerical
properties are in the process of being analyzed (Abate et al., 2010).

Given the gap between current understanding of deterministic and probabilistic reachability of
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hybrid systems, the discussions in Part I and Part II of this dissertation will correspondingly dif-
fer in their focus with respect to aspects of the controller design problem. More specifically, our
discussion of reachability problems for switched nonlinear systems will focus on the derivation of
concrete design procedures and synthesis algorithms for generating feedback controllers that can
be implemented in practical applications, based upon existing techniques for computing reachable
sets. In comparison, our discussion of reachability problems for stochastic hybrid systems will be
somewhat more abstract, and focus instead on the formulation of probabilistic reachability prob-
lems under various models of uncertainty, the construction of dynamic programming algorithms to
solve these problems, and a foundational understanding of the theoretical properties and practical
implications of the dynamic programming solution.

1.5 Organization
This dissertation covers several controller design methods for reachability problems that arise in
the context of switched nonlinear systems and discrete time stochastic hybrid systems. Parts of
the material presented here have appeared previously in several papers: Ding et al. (2008); Ding
and Tomlin (2010); Ding et al. (2011b,a); Kamgarpour et al. (2011); Ding et al. (2012). In the
following, we provide an overview of the main themes from each of the subsequent chapters.

In chapter 2, we consider switched nonlinear systems whose discrete states represent the se-
quential phases of a dynamic process. Within this context, a systematic procedure is proposed,
based upon a hybrid system formalism, for carrying out controller design to satisfy sequential
reachability specifications, namely specifications consisting of a sequence of safety and reach-
avoid objectives. This is motivated by maneuver sequence design problems for unmanned aerial
vehicles (UAVs) requiring robust operation guarantees. Through an appropriate choice of switch-
ing policy, the problem is posed as one of continuous control design for each discrete mode to
ensure both individual reachability objectives, as well as proper composition between successive
modes in the sequence. This design task is addressed using computational tools from nonlinear
reachability analysis. The proposed methodology is illustrated through the example of automated
aerial refueling (AAR).

In chapter 3, we shift the discussion to switched systems whose discrete states represent the
set of qualitative control choices available to a high level controller. For this class of systems,
controller synthesis algorithms are proposed for computing feedback control policies satisfying
safety and reach-avoid specifications under worst-case disturbance realizations. For practical pur-
poses, the problem is posed in a sampled-data setting in which measurements of the system state
are obtained at regular sampling instants. The controller synthesis algorithms proceed by itera-
tive reachability calculations over sampling intervals, returning as output a collection of reachable
sets representing the control policy. These reachable sets can be then stored as lookup tables for
online computation of control inputs in a sampled data setting. This methodology is applied to a
simulation example of aircraft conflict resolution, as well as an experimental example of quadrotor
hover control. The AAR example is also revisited to illustrate how the controller synthesis pro-
cedures can be applied to the design of switching controllers for individual phases of a sequential
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reachability problem.
In chapter 4, we describe a framework for analyzing probabilistic reachability problems for

discrete time stochastic hybrid systems (DTSHS) within a dynamic games setting. In particu-
lar, we consider zero-sum stochastic game formulations of the safety and reach-avoid problems,
and discuss dynamic programming algorithms for computing the optimal probability of satisfying
the reachability specifications, subject to the worst-case behavior of a rational adversary. This is
motivated by instances of hybrid system models which feature a combination of stochastic and
adversarial uncertainties. The problem is first posed in the finite horizon case, assuming an asym-
metric information pattern favoring the adversary (as motivated by robust control problems). The
implications of considering infinite horizon problems, as well as stochastic game formulations with
symmetric information patterns are discussed in subsequent sections. In particular, the existence of
a value in a symmetric stochastic game in general requires the consideration of randomized control
policies.

In chapter 5, we focus our attention on the issue of partial observability in probabilistic reach-
ability problems. We proceed by formulating the safety and reach-avoid problems for DTSHS
as stochastic optimal control problems under partial observation, and show that even though they
feature a multiplicative cost structure, they are equivalent to additive cost problems when the state
space is augmented with an auxiliary binary random variable. This allows us to derive a suffi-
cient statistic for probabilistic reachability problems as a probability distribution evolving on the
augmented state space, as well as an abstract dynamic programming algorithm for computing the
optimal probability of satisfying the reachability specifications. Issues of computation and imple-
mentation are discussed in terms of the special cases of finite state Markov decision processes and
hybrid state models with probability density descriptions. In particular, practical implementation
of the control and estimation algorithms hinges on efficient representations of the augmented prob-
ability distribution, which suggests the need for a deeper understanding of hybrid state estimation.

In chapter 6, we close with a summary of the main results presented in the dissertation, as
well as some thoughts on directions on future work. These directions include investigations into
computationally efficient methods for deterministic and probabilistic reachability, extensions of
the controller synthesis methods for switched systems to handle autonomous switching, and the
consideration of multi-objective problems and temporal objectives in reachability specifications.
Most of the technical results and proofs in this dissertation are embedded within the main text, as
they sometimes provide insight into particular aspects of the controller design procedure. However,
some of the lengthy proofs related to measurability issues in Part II of the dissertation can be found
in the appendices.
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Part I

Switched Nonlinear Systems
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Chapter 2

Design Procedure for Sequential
Reachability Specifications

2.1 Motivation and Overview of Design Methodology
This chapter discusses a controller design procedure for sequential reachability specifications in the
context of switched nonlinear systems. In particular, we consider switched systems whose discrete
mode transitions follow a predefined sequence, and within each discrete mode, the objective is
to satisfy either a safety or reach-avoid specification defined in terms of the continuous system
trajectory, possibly subject to bounded continuous disturbances. The sequential structure of the
system model provides an abstraction for dynamic processes whose flow follows a temporally-
ordered sequence of qualitative phases, for example certain manufacturing or chemical processes.
The reachability specification is then a description of the control objective in each phase of the
process flow. Our primary motivation for studying such problems comes from automation of flight
maneuver sequences for unmanned aerial vehicles (UAVs).

2.1.1 Automation of Flight Maneuver Sequences
In modern autonomous flight systems, the tasks of management and control of aircraft are fre-
quently distributed between an onboard autonomous controller and external human operators or
supervisors. In safety-critical scenarios, high level decisions on how and when flight maneuvers
should be carried out currently rest almost exclusively with trained human operators, while the task
of ensuring low level specifications such as flight envelope protection is delegated to the onboard
flight control system (Yavrucuk et al., 2009). However, as one pushes towards increased levels of
autonomy for UAV operation, it becomes important to investigate methods for incorporating some
of the high level decision making capabilities into the onboard UAV control system.

In this chapter, we will restrict our attention to high level specifications consisting of an or-
dered sequence of waypoints that the UAV must reach, while satisfying a safety constraint, for
example avoiding a collision with another aircraft. Following this specification, one can separate
the control task into a sequence of qualitative phases, with each phase corresponding to a flight ma-
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neuver in which the objective is to either reach a target waypoint in finite time while satisfying a
safety constraint (i.e. reach-avoid problem), or to loiter within a neighborhood of the waypoint (i.e.
safety/invariance problem). The transitions between maneuvers can be controlled by human oper-
ators or initiated autonomously by the UAV. This then results in a sequential reachability problem.
In the following, we discuss a practical example of such type of specifications.

The scenario is that of Automated Aerial Refueling (AAR). Currently, manned military aircraft
which undergo long range missions are routinely refueled in mid-air by tanker aircraft. As the use
of UAVs becomes increasingly prevalent, there is an ongoing effort to introduce this capability
into UAV operations, ideally with a minimal amount of supervision by human operators (see for
example Valasek et al., 2002; Nalepka and Hinchman, 2005; Jin et al., 2006; Ross et al., 2006). A
conceptual illustration of the AAR scenario is shown in Figure 2.1.

Boom Operator Tanker Pilot

UAV Operator

UAV

Figure 2.1: Conceptual illustration of automated aerial refueling scenario.

During a refueling operation, a UAV detaches from its formation, and approaches the rear of
a tanker aircraft for refueling. The boom operator onboard the tanker then lowers a fuel boom to
refuel the UAV; once the refueling is complete, the operator disconnects the boom and the UAV
breaks away from the tanker to rejoin its formation. This description naturally decomposes AAR
into several distinct phases, namely an “approach tanker” phase, a “refueling” phase, and a “re-
join formation” phase. To introduce further structure into the refueling operation, the approach
and rejoin phases can be separated into a sequence of flight maneuvers in which the objective is
to reach some target location relative to the tanker aircraft, while avoiding collisions. The AAR
scenario can be then modeled by a switched system whose discrete dynamics consist of the sequen-
tial transitions through the flight maneuvers, and the continuous dynamics consist of the relative
kinematics between the tanker and the UAV in executing the respective maneuvers. The controller
design problem for this scenario can be then posed as a sequential reachability problem in which
the objective of each maneuver is to reach a waypoint location relative to the tanker aircraft, while
avoiding a collision, namely a reach-avoid objective. If one were to consider possible environment
disturbances such as wind effects or variations in tanker speed, then this specification would need
to be satisfied subject to the worst-case realizations of the disturbances.
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The scenario described above is in large part that of an autonomous AAR procedure. Namely,
except for the initiation of the refueling operation and the actual refueling of the UAV by the
boom operator, the execution of the maneuver sequence does not require any additional human
intervention. However, there may be cases in which either the UAV operator or boom operator
would like to have an input on when the UAV is allowed to transition from one maneuver to the
next. This could arise for example from the need to interrupt the refueling sequence due to severe
wind turbulences beyond those considered for the autonomous AAR design, or to have the UAV
dwell within the vicinity of the fuel boom while the boom operator refuels the UAV. For such cases,
one can insert intermediate maneuvers into the refueling sequence with the objective of keeping
the UAV in a neighborhood of each waypoint while awaiting operator confirmation to perform the
next maneuver. The resulting reachability problem then consists of a sequence of reach-avoid and
safety/invariance objectives.

The development of the AAR scenario for this research effort was carried out in conjunction
with Boeing Research & Technology, and the Air Force Research Laboratory (AFRL), through
the Certification Technologies for Flight Critical Systems (CerTA FCS) project. The author would
like to gratefully acknowledge the contributions of Jim Barhorst, Jim Paunicka, and Doug Stuart
of Boeing Research & Technology for their valuable feedback and suggestions in formulating the
AAR scenario. Also, many of the research ideas which led to the work described in this chap-
ter were conceived in David Homan’s yearly meetings on Verification and Validation at Wright-
Patterson Air Force Base in Dayton, OH. In these meetings, our effort was influenced by the
conversations and presentations of many of the participants, and the author is grateful for their
contributions.

2.1.2 Methodology Overview
Our approach to the sequential reachability problem is to pose it as a hybrid system design problem.
Within this framework, the design parameters include the switching conditions for the sequence of
discrete modes, as well as the continuous control law within each of the discrete modes. As will be
discussed, through a judicious choice of switching condition, one can isolate the problem to one of
continuous control design for the individual discrete modes. In particular, the continuous control
law in each mode needs to satisfy

1. the reachability specification given for that mode;

2. a compatibility condition to ensure that the sequence of modes can be properly composed.

It turns out that satisfying these requirements can be formulated as a continuous time reachabil-
ity problem. As such, we can use computational reachability analysis for continuous time systems
as a design tool for the continuous control laws. This allows us to check whether a given control
law satisfies the desired reachability specifications without the need to resort to exhaustive simu-
lation studies. Due to our consideration of nonlinear continuous dynamics subject to continuous
disturbance, the reachability calculations will be carried out using a method based upon numerical
solutions of Hamilton-Jacobi partial differential equations (PDEs) (Mitchell et al., 2005).
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To discuss this in a more concrete setting, consider again the aerial refueling scenario. In
the case that the sequence of refueling maneuvers is to be performed autonomously, a reasonable
choice of switching conditions is to specify that as soon as the UAV reach a given waypoint, it
will immediately transition to the next maneuver. A computational reachability analysis can then
be performed for each flight maneuver in the refueling sequence to determine 1) the capture set:
the set of aircraft states from which a maneuver can be completed within a finite time horizon;
and 2) the collision set: the set of aircraft states from which the trajectory of a flight maneuver
passes through a collision zone centered on the tanker aircraft. At design time, the capture sets and
collision sets computed for the various maneuvers in the AAR sequence can be used to guide the
choice of maneuver control laws so as to ensure that each maneuver terminate in an aircraft state
which satisfies the reach-avoid objective of the next maneuver (thus allowing the next maneuver to
be feasibly initiated). Furthermore, through appropriate modifications of the reachability analysis,
the effects of bounded environment disturbances can also be taken into account. However, in such
cases, the resulting design of maneuver control laws is in general more conservative than the case
in which the robustness factors are not considered.

2.1.3 Organization
The organization of this chapter is as follows. Section 2.2 provides an overview of related work
in the domain of formal verification and mode sequence design. Section 2.3 discusses a hy-
brid formalism for the class of switched systems under consideration. Section 2.4 provides for-
mal statements of two types of sequential reachability problems. Section 2.5 briefly reviews the
method of Hamilton-Jacobi reachability for nonlinear continuous systems. Section 2.6 introduces
a reachability-based procedure for performing controller design to satisfy sequential reachability
specifications. Section 2.7 discusses the use of reachable sets as an aid to human decision mak-
ing in recovering from a class of fault conditions occurring during run-time, in particular that of
improper initialization. These methods are then specialized to the particular case of automated
aerial refueling, and the results of the controller design procedure along with simulated scenarios
are presented in section 2.8.

2.2 Related Work

2.2.1 Hamilton-Jacobi Reachability
The method of Hamilton-Jacobi (H-J) reachability is developed for computing reachable sets for
continuous time nonlinear system, under a dynamic games framework (Mitchell et al., 2005). In
the work by Tomlin et al. (2003), one can find a comprehensive overview of the computational
techniques underlying the H-J reachability, its use in analyzing and verifying continuous time
nonlinear systems as well as hybrid systems.

This method has seen successes in numerous aeronautical applications. In the work by Mitchell
et al. (2005), the authors present a method for detecting possible “loss of separation” between pairs
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of aircraft over a given airspace, based upon backward reachable sets computed using H-J PDEs.
Using this formulation of the collision avoidance problem, the reachable set method has been used
to verify safety of conflict resolution aircraft maneuvers (Tomlin et al., 2001), and closely spaced
parallel approaches for airport runways (Teo and Tomlin, 2003). The results of the reachability
calculations were validated in extensive simulations as well as UAV flight experiments (Jang and
Tomlin, 2005; Teo, 2005). While the focus of these previous applications lies largely in safety
verification, the work described in this chapter proposes a method for using reachability analysis
as a design tool for choosing the continuous control laws of a maneuver sequence so as to satisfy
the desired specifications.

In systems that involve human-automation interactions, H-J reachability has also been success-
fully demonstrated as a method for informing human decisions. In the work by Oishi et al. (2002),
the authors use reachability analysis to determine whether the pilot display of a civil jet aircraft
contained enough information for the pilot to safely perform a Take-off/Go-Around (TO/GA) ma-
neuver from a Flare landing maneuver. In another example, as described in Sprinkle et al. (2005),
reachable sets computed using H-J methods are used to inform decisions on the re-initiation of a
landing maneuver during TO/GA, and the results were demonstrated on a fixed-wing UAV (T-33).
Building upon these previous works, this chapter also discusses an approach for using reachable
sets as a visual tool for guiding human operator decisions in the scenario that a maneuver sequence
is improperly initialized.

2.2.2 Alternative Reachability Approaches
Aside from H-J reachability, there is a myriad of alternative approaches in the domain of reach-
able set based system verification for hybrid systems. The work considering timed automata and
linear hybrid automata includes seminal papers by Alur and Dill (1994) and Henzinger (1996).
Results have been generalized to linear and nonlinear continuous dynamics, with supporting com-
putational tools (Asarin et al., 2000a; Botchkarev and Tripakis, 2000; Kurzhanski and Varaiya,
2000; Bemporad et al., 2000b; Aubin et al., 2002; Chutinan and Krogh, 2003; Girard, 2005; Han
and Krogh, 2006). Methods that operate on system abstractions can reduce computational com-
plexity, including simulation and bisimulation relations (Alur et al., 2000; Haghverdi et al., 2005;
Girard et al., 2008), which are used to construct discrete abstractions of hybrid system dynam-
ics. In comparison, the H-J method has the advantage of being able to handle non-convex sets,
nonlinear continuous dynamics, and differential games, while providing subgrid accuracy using
implementations of the level set methods (Sethian, 1999; Osher and Fedkiw, 2002). Furthermore,
it is versatile with respect to the range of reachable set computations that can be performed. This
includes computations under forward propagation or backward propagation in time, with either
existentially quantified (i.e. reach for some input) or universally quantified inputs (i.e. reach for all
inputs). This feature becomes important when one would like to perform reachability computation
under disturbances, as capture set computation would require universally quantified disturbance in-
puts, while unsafe set computation would require existentially quantified disturbance inputs. The
benefits of the H-J method, however, comes at the cost of higher computational complexity with
respect to some of the alternative reachability methods.
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In reachability work relating to stochastic systems, Prandini and Hu (2006) discuss the use of
Markov chains to determine the reachability of some stochastic system in some lookahead time
(potentially infinite). Air traffic management as a driving example for distributed control and
stochastic analysis of safety-critical real-time systems is demonstrated in the HYBRIDGE report
(Blom and Lygeros, 2005). In many of these applications, events that jeopardize the safety of the
system are rare, and using probabilistic methods such as Monte Carlo simulations (Blom et al.,
2007), it is possible to estimate the probability of these events through stochastic reachability and
obtain some measure of confidence in the safety of a system design (Blom et al., 2009). On the
other hand, for systems with environment disturbances that are known to lie within certain bounds,
deterministic reachability can be used to provide stronger performance guarantees for relevant
disturbances such as perturbations in velocity or heading.

2.2.3 Flight Maneuver Design Approaches
State feedback is a common approach to the design and implementation of flight maneuvers. In
general, a trajectory is generated (or designed) and the vehicle tracks this trajectory based on an on-
board guidance and navigation system. Depending on the maneuver, this trajectory may be globally
fixed (for example, a glideslope for landing) or defined from a location decided at flight time (for
example, a waypoint). For certain maneuvers, additional scrutiny is given due to their proximity
to regions of stall or other vehicles. Details for optimal Go-Around and Flare maneuvers are given
in the work of Buell and Leondes (1973). Interestingly, transitions between these maneuvers can
also be discussed in the framework of reachability, as in the previously mentioned work by Oishi
et al. (2002).

Alternatively, maneuver sequence synthesis may be performed at runtime using path-planning
algorithms. In the work by Bottasso et al. (2008), the authors demonstrate smooth path planning
using motion primitives to pass through a series of waypoints constituting a track. This approach
is related to that applied by Frazzoli et al. (2005) and Koo et al. (2001), both of which are focused
on rotorcraft. Although these algorithms are computationally efficient, providing robust perfor-
mance guarantees are often complicated by the presence of model uncertainty and environment
disturbances at runtime.

To address safety concerns, safe maneuvers with real-time trajectory generation were shown
by Waydo et al. (2007) for the case of formation flight with an autonomous vehicle, where several
control modes are used depending on loss of communication with a manned vehicle. This approach
was proved safe using runtime predictive control, requiring a solution to the stationary Riccati
equation over (essentially) infinite time. It is interesting to compare this approach to backward
reachability, as it can be essentially thought of as a forward reachability calculation to validate a
specific trajectory (rather than validate all potential trajectories using backward reachability).

As an alternative, Lyapunov functions can be also used to provide robust guarantees on the
closed-loop performance of the system under a given controller design. Relevant to the work in this
chapter is a Lyapunov-based method proposed by Burridge et al. (1999), in the context of motion
planning applications, for composing sequences of local feedback controllers to achieve a desired
final configuration. Under this method, the authors construct local controllers whose domains of
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attraction are estimated from the level sets of Lyapunov functions. Sequential composition is then
performed by ensuring that the goal set of a given controller is contained within the domain of
attraction of the next controller in the sequence.

For applications with nonlinear continuous dynamics, constructing appropriate Lyapunov func-
tions satisfying the desired stability objectives can be a non-trivial task. Depending on the choice
of Lyapunov functions, estimates of the domain of attraction can be also quite conservative, es-
pecially when system dynamics are perturbed by disturbances. By using H-J methods to generate
the relevant reachable sets, the methodology proposed in this chapter avoids the need for selecting
Lyapunov functions, while reducing the conservatism in estimating the domain of attraction. Also,
it is worth noting that local controllers produced through Lyapunov methods can be evaluated us-
ing Hamilton-Jacobi reachability for satisfaction of target attainability and safety objectives. Thus,
the presented approach is not meant to supplant existing methods for robust nonlinear controller
design, but to augment them.

2.3 Hybrid Model of Sequential Transition Systems
In this section, we will introduce the necessary modeling formalism for the controller design prob-
lem. In particular, the focus will be on sequential transition systems, which are switched nonlinear
systems whose discrete mode transitions follows a pre-defined sequence. As preliminaries, we
will first review a general hybrid system model, based upon the formalism described in Lygeros
et al. (1999b) and Tomlin et al. (2000). Sequential transition systems will be then discussed as
instantiations of this general model.

2.3.1 General Hybrid Automaton
Over the several decades of research on hybrid systems, numerous modeling frameworks have
been introduced in literature. For our purposes, the formalisms proposed in Lygeros et al. (1999b)
and Tomlin et al. (2000) provides a sufficiently rich class of models to describe the behavior of
sequential transition systems. The description given below is correspondingly adapted from these
previous works.

Definition 2.1 (Hybrid Automaton). A hybrid automaton is a tuple

H = (Q,X ,Σ,V, Init, f ,Dom,Reset),

defined as follows.

• Discrete state space Q := {q1,q2, ...,qm}, m ∈ N.

• Continuous state space X := Rn, , n ∈ N.

• Discrete input space Σ := Σ1×Σ2, where Σ1 is the set of discrete control inputs and Σ2 is the
set of discrete disturbance inputs.
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• Continuous input space In :=U ×D, where U is the set of continuous control inputs and D
is the set of continuous disturbance inputs.

• Admissible initial conditions Init ⊆ Q×X .

• Vector field f : Q×X× In→ X , describing the continuous state evolution.

• Domain Dom⊆ Q×X×Σ× In, describing the domain on which continuous state evolution
is permitted.

• Reset relation Reset : Q×X×Σ× In→ 2Q×X , describing the subset of the hybrid state space
that the system state is permitted to transition to in the event of a discrete jump.

In order to ensure the existence and uniqueness of continuous trajectory under the vector field
f , we will need f to satisfy certain regularity assumptions.

Assumption 2.1. The vector field f is continuous and bounded, and that for fixed q∈Q, (u,d)∈ In,
the function x→ f (q,x,u,d) is Lipschitz continuous.

Roughly speaking, an execution of the hybrid automaton proceeds as follows. From an initial
condition (q0,x0) ∈ Init, the continuous trajectory x(·) evolves according to the ordinary differ-
ential equation ẋ = f (q0,x,u,d),x(0) = x0, while the discrete state remains constant, as long as
(q0,x(t),σ1(t),σ2(t),u(t),d(t)) ∈ Dom. At the first time instant t1 when this condition no longer
holds, the system state takes a discrete jump to

(q′,x′) ∈ Reset(q0,x(t1),σ1(t1),σ2(t1),u(t1),d(t1)),

and the cycle repeats. To define this more formally, we will need the notion of a hybrid time
trajectory.

Definition 2.2 (Hybrid Time Trajectory (Lygeros et al., 1999b; Tomlin et al., 2000)). A hybrid
time trajectory τ = {Li}N

i=1 is a finite (N < ∞) or infinite (N = ∞) sequence of intervals of the real
line satisfying:

• Lk = [τk,τ ′k], k < N, and if N < ∞, either LN = [τN ,τ ′N ] or LN = [τN ,τ ′N);

• ∀k = 1, ...,N, τk ≤ τ ′k = τk+1.

As in Lygeros et al. (1999b) and Tomlin et al. (2000), for a given t ∈ R and a hybrid time
trajectory τ , we will use t ∈ τ to refer to t ∈ Lk for some k = 1, ...,N. Informally, a hybrid time
trajectory is a sequence of time intervals on which continuous evolution takes place. However,
there may be cases in which another discrete jump takes place immediately after a discrete jump.
In such cases, there could be time intervals Lk with measure zero. We can now give a definition for
the execution of a hybrid system.
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Definition 2.3 (Execution of Hybrid Automaton (Lygeros et al., 1999b; Tomlin et al., 2000)). An
execution of a hybrid automaton H is a collection χ = (τ,q,x,σ ,u,d) with (q,x) : τ→Q×X and
(σ ,u,d) : τ → Σ× In satisfying:

• (q(τ0),x(τ0)) ∈ Init;

• ∀i = 1, ...,N, (q(τk+1),x(τk+1)) ∈ Reset(q(τ ′k),x(τ
′
k),σ(τ ′k),u(τ

′
k),d(τ

′
k));

• On every interval Lk = [τk,τ ′k] such that τk < τ ′k, q(·) and σ(·) are constant, v(·) is piecewise
continuous, x(·) is the solution to ẋ = f (q,x,u,d), and (q(t),x(t),σ(t),u(t),d(t)) ∈ Dom,
∀t ∈ Lk.

An execution χ = (τ,q,x,σ ,u,d) is said to be finite if τ is a finite sequence of time intervals
with the last interval being closed. An execution χ = (τ,q,x,σ ,u,d) is said to be infinite if either
τ is an infinite sequence of time intervals, or if ∑

N
k=1(τ

′
k− τk) = ∞.

From Definition 2.3, it can be seen that the reset relation Reset specifies conditions under which
discrete jumps are enabled. Namely, for a given state (q,x)∈Q×X and an input (σ ,u,d)∈ Σ× In,
if the set Reset(q,x,σ ,u,d) is nonempty, then a discrete jump is permitted and the jump can be
taken to any state in Reset(q,x,σ ,u,d). However, one may also choose not to take the jump, as
long as (q,x,σ ,u,d) ∈ Dom is satisfied, namely the state and input lies in the domain on which
continuous evolution is allowed. Thus, it can be seen that there is a degree of nondeterminism in the
executions of a hybrid automaton. In particular, for a given hybrid automaton H , initial condition
(q0,x0)∈ Init, and inputs σ(·), u(·), d(·), there may not exist, in general, an infinite execution, and
if one exists, it may not be unique. A complete discussion of the issue of existence and uniqueness
is somewhat involved for a general hybrid automaton. The interested reader is referred to the work
of Lygeros et al. (1999a), in which some sufficient conditions for the existence and uniqueness of
infinite executions are given.

2.3.2 Automated Sequential Transition Systems
We first develop a model for sequential transition systems in which there are no external discrete
inputs, namely Σ2 = /0. Through an interpretation of Σ2 as the set of commands issued by an
external human operator, this corresponds to a system operating under automated selections of
control inputs σ1 ∈ Σ1 and u ∈ U . In other words, once the system has been initialized within
the initial set Init, the system would proceed through the sequence of operating modes without
further intervention from the human operator. However, in the execution of this mode sequence,
the continuous trajectory may still be perturbed by environment disturbances, which are modeled
as continuous disturbance inputs. We will refer to this class of systems as automated sequential
transition systems.

Definition 2.4 (Automated Sequential Transition System). An automated sequential transition sys-
tem is a hybrid automaton H with

• Switching control space: Σ = Σ1 = {σ1,σ2, ...,σm};
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• Initial conditions: Init = q1×X0, with X0 ⊆ X ;

• Mode domains: Dom =
⋃m

i=1 qi×X×Σi× In, where Σi = Σ\{σi+1} for i = 1, ...,m−1 and
Σm = Σ;

• Automated switches: For every i = 1, ...,m−1, x ∈ X , and (u,d) ∈ In, Reset(qi,x,σ ,u,d) =
(qi+1,x) if σ = σi+1, and Reset(qi,x,σ ,u,d) = /0 otherwise; for i=m, Reset(qm,x,σ ,u,d) =
/0, ∀x ∈ X , σ ∈ Σ, (u,d) ∈ In.

The above definition describes a hybrid system in which the set of discrete inputs are the
switching controls for transitions between the successive discrete modes. It can be verified using
the conditions given in Lygeros et al. (1999a) that for any initial condition (q0,x0) ∈ Init and any
measurable realizations of the input signals σ(·), u(·), d(·), there exists a unique infinite execution
for this system. This execution proceeds as follows. The system state is initialized in the first
discrete mode q1 within a set X0. The continuous trajectory evolves according to the continuous
dynamics in q1 until a switching input σ2 to transition to q2 is applied. A discrete jump is then
taken to q2 and the continuous trajectory evolves according to the continuous dynamics in q2. This
proceeds until the discrete trajectory reaches mode qm, upon which time the trajectory evolves
according to the dynamics in qm without any further discrete transitions.

Due to the presence of continuous disturbances, controller design for this class of systems will
be carried out in terms of feedback control policies. In particular, we will consider switching
control policies of the form F : Q×X → Σ1 such that σ(t) = F(q(t),x(t)), ∀t ≥ 0, and continuous
control policies of the form K : Q×X →U such that u(t) = K(q(t),x(t)), ∀t ≥ 0. Taken together,
a control policy (F,K) is said to be admissible if for any measurable realizations of the disturbance
d, there exists a unique infinite execution for the closed-loop system.

2.3.3 Semi-Automated Sequential Transition Systems
Instead of a fully automated system, there may be cases in which one would want to allow for
a degree of human intervention in order to guard against contingencies during system operation.
Here we will consider interventions in the form of commands determining if and when the system
should proceed to the next task in the mode sequence. This is a simple example of a mixed-
initiative system, in which the system is subject to both human and automated decisions. Such a
type of system is a subject of ongoing research on human-UAV interactions (Lam et al. (2008);
Cummings and Mitchell (2008)).

Our approach to modeling this interaction is to interpret the discrete control space Σ2 as the set
of human operator commands which provides confirmation that the system can proceed to the next
phase of operation. Intermediate operating modes are then introduced into the mode sequence,
with outgoing transitions that are specifically controlled by these commands. We refer to this as a
semi-automated sequential transition system.

Definition 2.5 (Semi-Automated Sequential Transition System). A semi-automated sequential
transition system is a hybrid automaton H with
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• Discrete state space: Q = {q1, q̂1,q2, q̂2, ...,qm, q̂m};

• Switching control space: Σ= Σ1×Σ2, where Σ1 = {σ1,σ2, ...,σm} and Σ2 = {σ̂1, σ̂2, ..., σ̂m};

• Initial conditions: Init = q1×X0, with X0 ⊆ X ;

• Mode domains: Dom =
⋃m

i=1
(
qi×X×Σi× In

)
∪
(
q̂i×X× Σ̂i× In

)
,

where Σi = (Σ1 \{σi+1})×Σ2 for i = 1, ...,m, and Σ̂i = Σ1×(Σ2 \{σ̂i+1}) for i = 1, ...,m−1
and Σ̂m = Σ;

• Automated Switches: For every i = 1, ...,m, x ∈ X , and (u,d) ∈ In, Reset(qi,x,σ ,u,d) =
(q̂i,x) if σ = (σi+1, σ̂) for some σ̂ ∈ Σ2, and Reset(qi,x,σ ,u,d) = /0 otherwise;

• Externally Controlled Switches: For every i = 1, ...,m−1, x ∈ X , and (u,d) ∈ In,
Reset(q̂i,x,σ ,u,d) = (qi+1,x) if σ = (σ , σ̂i+1) for some σ ∈ Σ1, and Reset(q̂i,x,σ ,u,d) = /0
otherwise; for i = m, Reset(q̂m,x,σ ,u,d) = /0, ∀x ∈ X , σ ∈ Σ, (u,d) ∈ In.

In the above definition, the discrete states {qi}m
i=1 can be interpreted as the modes in which

the task specifications of the sequential transition system are carried out. We refer to them as
transition states. On the other hand, the discrete states {q̂i}m

i=1 can be interpreted as the modes in
which the system awaits confirmation by the operator to proceed to the next task. We refer to them
as stationary states. From the point of view of the operator, the operation of a semi-autonomous
system involves a sequence of phases in which the automation carries out a task in a transition state
and then pauses for further instruction in a stationary state.

Similarly as in the automated case, one can verify using the conditions given in Lygeros et al.
(1999a) that for any initial condition (q0,x0) ∈ Init and any measurable realizations of the input
signals σ(·), u(·), d(·), there exists a unique infinite execution for the semi-automated system.
A more formal description of the system execution can be given as follows. The system state is
initialized in the first discrete mode q1 within a set X0. The continuous trajectory evolves according
to the continuous dynamics in q1 until a switching input σ2 is applied. At this time, a discrete jump
is taken to q̂1 to wait for an external command. When the command σ̂2 is received to proceed to q2,
the system trajectory takes a discrete jump to q2, and the continuous trajectory evolves in q2 until
a command σ3 is received to transition to q̂2. This proceeds until the discrete trajectory reaches
q̂m, upon which time the trajectory evolves according to the dynamics in q̂m without any further
discrete transitions.

Controller design for this class of systems also consists of a choice of switching policy F :
Q×X → Σ1, as well as a choice of continuous control policy K : Q×X →U . However, it should
be noted that the choice of switching policy in the stationary states is largely irrelevant, as the
outgoing transitions are controlled by external commands. A control policy (F,K) is said to be
admissible if for any measurable realizations of the disturbance d, there exists a unique infinite
execution for the closed-loop system.
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2.4 Sequential Reachability Problems

2.4.1 Specification with Reach-avoid Objectives
First, consider the case of an automated sequential transition system and a problem specification
in which the objective in each mode qi is to drive the continuous state x into a desired target set
Ri ⊂ X within finite time, while avoiding a set Ai ⊂ X . Here the sets Ri could for example represent
a sequence of waypoints, while the sets Ai could for example represent unsafe operating conditions
or obstacles in the environment.

Problem 2.1 (Sequential Reachability Problem for Automated Transition System). Given an au-
tomated sequential transition system H , target sets Ri ⊂ X , i = 1, ...,m, and avoid sets Ai ⊂ X ,
i = 1, ...,m, choose an admissible control policy (F,K) such that for any measurable realization of
the disturbance d satisfying d(t) ∈ D, ∀t ≥ 0, the unique infinite execution of H satisfies

1. (q(ti),x(ti)) ∈ qi×Ri for some sequence of times t0 = 0≤ t1 ≤ ·· · ≤ tm < ∞;

2. On any time interval [τk,τ ′k] ∈ τ such that q(·)≡ qi, x(t) /∈ Ai, ∀t ∈ [τk,τ ′k].

2.4.2 Specification with Reach-avoid and Invariance Objectives
Now we consider the case of a semi-automated sequential transition system. It is assumed that the
objectives of the sequence of transition modes are still reach-avoid objectives. However, within
the stationary modes, the objectives are of the invariance type, namely stay within a neighborhood
of a target set, until a command is given to perform the next task in the sequence.

Problem 2.2 (Sequential Reachability Problem for Semi-Automated Transition System). Given a
semi-automated sequential transition system H , target sets Ri ⊂ X , i = 1, ...,m, avoid sets Ai ⊂ X ,
i= 1, ...,m, and target neighborhoods Wi⊂X satisfying Ri⊆Wi⊂AC

i , choose an admissible control
policy (F,K) such that for any measurable realization of the disturbance d satisfying d(t) ∈ D,
∀t ≥ 0, and any measurable realization of the external switching command σ2 satisfying σ2(t)∈Σ2,
∀t ≥ 0, the unique infinite execution of H satisfies

1. If q(t) = qi for some t ∈ τ , then there exists ti < ∞ such that (q(ti),x(ti)) ∈ qi×Ri; further-
more, on any time interval [τk,τ ′k] ∈ τ such that q(·)≡ qi, x(t) /∈ Ai, ∀t ∈ [τk,τ ′k];

2. On any time interval [τk,τ ′k] ∈ τ such that q(·)≡ q̂i, x(t) ∈Wi, ∀t ∈ [τk,τ ′k].

In other words, if the discrete trajectory reaches a transition state qi, then the target set Ri is to
be attained within finite time while staying away from the avoid set Ai. Moreover, whenever the
discrete trajectory reaches a stationary state q̂i, the continuous trajectory remains within the target
neighborhood Wi until the discrete trajectory jumps away from q̂i. However, there may be cases
in which a command to switch to qi+1 is never received, and the state trajectory remains within
q̂i×Wi indefinitely.
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2.4.3 Formulation in Terms of Continuous Reachability Problems
As discussed in section 2.1, our approach to problems 2.1 and 2.2 is to choose an appropriate
switching policy so as to reduce these problems to a sequence of continuous control design prob-
lems. In particular, given the sequential nature of these problems, as well as the fact that the
objective of the system in each transition mode is to reach a target set in finite time, there is no rea-
son for the system to dwell in a given transition mode once the reach-avoid objective is attained.
Thus, a reasonable choice of switching policy is to transition to the next mode in the sequence
once a target set in a transition mode is reached. Specifically, we consider a switching policy F
satisfying

F(qi,x) =

{
σi+1, x ∈ Ri

σi, otherwise.
(2.1)

for every transition mode qi, i = 1, ...,m− 1. It turns out that this choice of switching policy is
sufficient for Problem 2.1. However, a slight modification of the switching region will be needed
to ensure the invariance objectives for Problem 2.2.

Now consider the problem of designing the continuous control policy K. From the problem
descriptions, one can deduce certain requirements for the continuous control design. In particular,
for the case of the automated sequential transition system, the continuous trajectories resulting
from a control law in transition mode qi should satisfy a reach-avoid objective, namely x(t) ∈ Ri
for some t < ∞, and x(t ′) /∈ Ai for every t ′ ≤ t, over a subset of initial conditions in Rn which
ensures proper composition with the continuous trajectories of the previous mode qi−1. Given the
choice of switching policy F , this set is simply given by the previous target set Ri−1. By solving
this sequence of reach-avoid problems, we obtain a control policy K satisfying the specifications
of problem 2.1.

In the case of the semi-automated sequential transition system, the specification also requires
that the continuous trajectories in each stationary mode q̂i satisfy an invariance objective, namely
remain within a target neighborhood Wi for all time. The control law design then needs to account
for the composition between transition and stationary modes. In particular, the control design
for a transition mode qi should ensure that the reach-avoid objective is achieved for every initial
condition in the previous target neighborhood Wi−1, while the control design for a stationary mode
q̂i should ensure that the invariance objective is achieved for a subset of the target set Ri (which
replaces the switching region in (2.1)). By solving this sequence of reach-avoid and invariance
problems, we obtain a control policy K satisfying the specifications of problem 2.2.

2.5 Overview of Hamilton-Jacobi Reachability
By treating a sequential reachability problem as a sequence of continuous reachability problems,
our controller design procedures for problems 2.1 and 2.2 will involve the use of continuous time
reachability analysis as a design tool for the continuous control laws. In this section, we will review
some basic forms of reachable sets, as well as a method for computing an approximation of these
sets for nonlinear continuous time systems, based upon the numerical solution of an appropriate
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Hamilton-Jacobi PDE (Mitchell et al., 2005). For the rest of this section, we will assume the
following system dynamics.

ẋ = f (x,u,d), x(0) = x0, (2.2)

where x ∈ Rn is the continuous state, u ∈ U is the control input, and d ∈ D is the disturbance
input. Here we assume that the sets U and D are compact. In order to the apply the computational
procedure described in Mitchell et al. (2005) to our problem, the regularity assumptions on the
vector field f needs to be slightly strengthened as compared with Assumption 2.1.

Assumption 2.2. The vector field f is uniformly continuous and bounded, and that for fixed d ∈D,
the function (x,u)→ f (x,u,d) is Lipschitz continuous.

2.5.1 Capture Set
For a given target set R ⊂ Rn, and time horizon T ≥ 0, the capture set of (2.2) is the set of initial
conditions x0 for which there exists a choice of control strategy such that, regardless of the choice
of disturbance strategy, there exists a time instant t ∈ [0,T ] such that x(t) ∈ R. If one were to view
this as a zero-sum differential game (see for example Isaacs, 1967; Evans and Souganidis, 1984;
Başar and Olsder, 1999) in which the objective of the control is to reach the set R within [0,T ], then
this is the set of winning initial conditions for the control. A formal definition for this set requires
some amount of notation and concepts from differential games (Mitchell et al., 2005). For our
purposes, however, it is sufficient to consider a definition for the case in which the control strategy
is fixed. As a notational convenience, we define the set of admissible disturbance realizations over
a time interval [0,T ] as

DT = {d : [0,T ]→ D|d(·) is measurable} .

Definition 2.6 (Capture Set). Given a target set R, a time horizon T , and a Lipschitz continuous
feedback law K : Rn→U , the capture set R(R,K,T ) of (2.2) is given by

R(R,K,T ) ={x0 ∈ X : ∀d(·) ∈DT ,∃t ∈ [0,T ], x(t) ∈ R} ,

where x(·) is the solution of ẋ(t) = f (x(t),K(x(t)),d(t)), x(0) = x0 on the interval [0,T ].

By fixing the continuous feedback law K, the problem of computing a capture set R(R,K,T )
becomes an optimal control problem, namely one in which the objective of the disturbance is
to ensure that x(t) /∈ R, ∀t ∈ [0,T ]. It then comes as little surprise that, under certain technical
conditions, this set can be computed from the solution of an appropriate Hamilton-Jacobi-Bellman
(HJB) equation (Bardi and Capuzzo-Dolcetta, 1997).

More specifically, we assume that the target set R is closed can be represented as the zero
sublevel set of a bounded Lipschitz continuous function φR : Rn→ R such that

R = {x ∈ Rn : φR(x)≤ 0} .

22



The function φR is sometimes referred to as the level set representation of R (Sethian, 1999; Osher
and Fedkiw, 2002). Now consider the HJB equation

∂φ
∂ t

+min
[

0,H
(

x,
∂φ
∂x

)]
= 0, φ(x,0) = φR(x) (2.3)

with the optimal Hamiltonian

H (x, p) = max
d∈D

pT f (x,K(x),d). (2.4)

Let φ : Rn× [−T,0]→ R be the unique viscosity solution (Crandall and Lions, 1983) to (2.3) and
(2.4). Then by a special case of the argument presented in Mitchell et al. (2005),

R(R,K,T ) = {x ∈ Rn : φ(x,−T )≤ 0} .

On a computational note, numerical solutions of H-J equations can be calculated on a grid of
the continuous state space Rn using the MATLAB Toolbox for Level Set Methods developed by
Mitchell (2007a). It is based upon an implementation of the level set theory and computational
methodologies described extensively in the texts by Osher and Fedkiw (2002) and Sethian (1999).
The numerical solutions provide convergent approximations of the true solutions of (2.3) as the grid
size is refined. However, in order to obtain accurate approximations, the computational complexity
scales exponentially in the number of continuous dimensions. This currently limits the application
of this method to continuous models with n≤ 5.

2.5.2 Unsafe Set
For a given avoid set A ⊂ Rn, and time horizon T ≥ 0, the unsafe set of (2.2) is the set of initial
conditions x0 for which regardless of the choice of control strategy, there exists a choice of distur-
bance strategy and a time instant t ∈ [0,T ] such that x(t)∈ A. If one were to view this as a zero-sum
differential game in which the objective of the control is to avoid the set A over [0,T ], then this is
the set of winning initial conditions for the disturbance. As before, we will consider a definition
for this set in the case that the control strategy is fixed.

Definition 2.7 (Unsafe Set). Given an avoid set A, a time horizon T , and a Lipschitz continuous
feedback law K : Rn→U , the unsafe set A (A,K,T ) of (2.2) is given by

A (A,K,T ) ={x0 ∈ X : ∃d(·) ∈DT ,∃t ∈ [0,T ], x(t) ∈ A} ,

where x(·) is the solution of ẋ(t) = f (x(t),K(x(t)),d(t)), x(0) = x0 on the interval [0,T ].

From this definition, it can be observed that the only difference between a capture set and an
unsafe set lies in the objective of the control. Namely, in the former case, the control tries to reach
some terminal set R, while in the latter case, it tries to avoid some terminal set A. Correspondingly,
computation of the unsafe set proceeds by minor modification of the method given for the capture
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set. In particular, we assume as before that there exists a bounded Lipschitz continuous function
φA : Rn→ R such that

A = {x ∈ Rn : φA(x)≤ 0} .
Consider the HJB equation as given in (2.3) with the optimal Hamiltonian

H (x, p) = min
d∈D

pT f (x,K(x),d). (2.5)

Let φ : Rn× [−T,0]→ R be the unique viscosity solution to (2.3) and (2.5). Then by another
application of the argument presented in Mitchell et al. (2005),

A (A,K,T ) = {x ∈ Rn : φ(x,−T )≤ 0} .
For the discussions on controller design, it is important to note that the complement of the

unsafe set, denoted as A C(A,K,T ) :=Rn \A (A,K,T ), is the set of initial conditions x0 for which
the trajectory of (2.2) under control law K avoids the set A over [0,T ], regardless of any admissible
disturbance realization d(·) ∈DT .

2.5.3 Invariant Set
For a given set W ⊂ Rn, an invariant subset of W under (2.2) is a set of initial conditions x0 for
which there exists a choice of control strategy such that, regardless of the choice of disturbance
strategy, the trajectory of (2.2) satisfies x(t) ∈W , ∀t ≥ 0. The union of all such sets is called a
maximal invariant set. A definition of this set is given below for the case in which the control
strategy is fixed.

Definition 2.8 (Maximal Invariant Set). Given a set W ⊂ Rn and a Lipschitz continuous feedback
law K : Rn→U , then the maximal invariant set Inv(W,K) of (2.2) is given by

Inv(W,K) ={x0 ∈ X : ∀d(·) ∈DT ,∀t ≥ 0, x(t) ∈W} ,
where x(·) is the solution of ẋ(t) = f (x(t),K(x(t)),d(t)), x(0) = x0 on the interval [0,T ].

As discussed in Tomlin et al. (2000), this set can be computed as an extension of the finite hori-
zon unsafe set computation to the infinite horizon case. In particular, the problem can be viewed
as a zero-sum differential game in which the objective of the control is to avoid the complement of
W at all times.

Over any finite time horizon [0,T ], the set of winning initial conditions for the control in this
differential game can be computed as A C(Rn \W,K,T ), using the procedures described in Section
2.5.2. Let φT : Rn → R be a level set representation of this set. Then if φT converges to some
function φ∗ as T → ∞, namely if the dynamic programming procedure as described by the HJB
equation (2.3) and (2.5) converges to a fixed point, then φ∗ provides a level set representation of
the maximal invariant set

Inv(W,K) = {x ∈ Rn : φ∗(x)≤ 0} .
Furthermore, it can be verified that this set is invariant with respect to itself, namely for every initial
condition x0 ∈ Inv(W,K), the trajectory of (2.2) under control law K satisfies x(t) ∈ Inv(W,K),
∀t ≥ 0, regardless of the disturbance realization.
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2.6 Controller Design Procedures
As discussed in section 2.4.3, through an appropriate choice of switching policy as per equation
(2.1), the task of controller design for problems 2.1 and 2.2 can be formulated in terms of a collec-
tion of continuous reachability problems. The continuous control design, however, needs to ensure
both the reachability specification for each discrete state, as well as compatibility conditions be-
tween successive discrete states. In this section, we describe procedures for performing this control
design, using reachability analysis as a design tool.

For notational convenience, the subscript q will be used to denote capture sets, unsafe sets,
and invariant sets computed for a particular mode in the mode sequence. In particular, for a given
target set R ⊂ Rn, time horizon T ≥ 0, and feedback law K : Rn →U , the capture set under the
continuous dynamics in mode qi ∈ Q is denoted as Rqi(R,K,T ).

2.6.1 Automated Sequential Transition Systems with Reach-avoid
Specifications

We first present a design procedure for Problem 2.1. In particular, during each phase of the design
procedure, we design a control law for mode qi to ensure that the target set Ri can be attained.
Reachability calculations are then performed to check whether a compatibility condition is met,
namely whether the set of initial conditions satisfying the reach-avoid objectives under this control
law contains the target set of the previous discrete state qi−1. The control law is then adjusted as
necessary to satisfy this condition. This is described more precisely below.

Let H be an automated sequential transition system H , such that the vector field f of H
satisfies Assumption 2.2 for each discrete state q ∈ Q. Then given target sets Ri ⊂ X , i = 1, ...,m,
and avoid sets Ai ⊂ X , i = 1, ...,m, a control policy (F,K) can be designed using the following
procedure, starting with mode qm.

1. Design a continuous control law K(qi, ·) which regulates initial conditions in Ri−1 to the
target set Ri, under the continuous dynamics ẋ = f (qi,x,K(qi,x),d).

2. Compute the capture set under this control law to the first time instant τi, such that Ri−1 ⊂
Rqi(Ri,K(qi, ·),τi).

3. Compute over the time interval [0,τi] the corresponding unsafe set Aqi(Ai,K(qi, ·),τi).

4. Check if the condition Ri−1 ⊂ A C
qi
(Ai,K(qi, ·),τi) holds. If this condition does not hold,

return to step 1 to modify the design of K(qi, ·). Otherwise, the control design for mode qi is
complete.

5. Repeat steps 1-4 for qi−1 until q1. For q1, set R0 = X0.

6. Choose a switching policy F according to (2.1).
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It can be verified using the conditions given in Lygeros et al. (1999a) that under the choice
of control policy (F,K) as designed above, the automated sequential transition system H has a
unique infinite execution. Furthermore, using the definition of capture sets and unsafe sets as given
in section 2.5, it can be verified that this execution satisfies the specifications of Problem 2.1. In
particular, by steps 1-4 of the design procedure, the feedback law K satisfies

Ri−1 ⊂Rqi(Ri,K(qi, ·),τi)∩A C
qi
(Ai,K(qi, ·),τi), (2.6)

for every i = 1, ...,m, with R0 = X0. This ensures that, for each mode qi, any continuous trajectory
initialized from within Ri−1 will reach Ri within τi time units while avoiding Ai, regardless of the
realization of the disturbance d. Furthermore, given the choice of switching policy F , continuous
state evolution in each mode qi is assured to be only initialized from within Ri−1. The desired
properties then follow.

Remark 2.1. The control design in step 1 can be viewed as a reference tracking problem, for
which a number of design methods have been proposed in the nonlinear control literature (see for
example Sastry, 1999). In particular, one can choose a point x̄ ∈ Ri as a constant reference and
design a controller in the relative coordinates x̃ := x− x̄. However, the difficulty lies in the need to
satisfy a safety constraint on x, an input constraint on u, possibly in the presence of a disturbance
d. In chapter 3, we discuss a reachability-based approach to this problem in terms of switching
control policies.

Remark 2.2. The choice of compatibility condition (2.6) is somewhat conservative due to the fact
there may exist initial conditions in the unsafe set Aqi(Ai,K(qi, ·),τi) which reaches Ri before Ai,
but is nonetheless precluded and conservatively labeled unsafe. To reduce this conservatism, a
modified reachability calculation combining target attainability and safety objectives can be per-
formed, by solving a constrained H-J PDE (Mitchell, 2002). This would then replace the capture
sets and unsafe sets in the control design procedure. The method given here is chosen for simplicity
of presentation and ease of computation.

2.6.2 Semi-Automated Sequential Transition Systems with Reach-avoid
and Invariance Specifications

Next, we present a design procedure for Problem 2.2. In this case, the reach-avoid objectives for
the transition states qi can still be satisfied by following a similar procedure as described in the
preceding section. However, some additional design steps are necessary in order to ensure that
the invariance objectives are met, and that the stationary states are properly composed with the
transition states. The precise sequence of steps is given below.

Let H be a semi-automated sequential transition system H , such that the vector field f of H
satisfies Assumption 2.2 for each discrete state q ∈ Q. Then given target sets Ri ⊂ X , i = 1, ...,m,
avoid sets Ai ⊂ X , i = 1, ...,m, and target neighborhoods Wi ⊂ X satisfying Ri ⊆Wi ⊂ AC

i , a control
policy (F,K) can be designed using the following procedure, starting with mode q̂m.
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1. Design a continuous control law K(q̂i, ·) which ensures that trajectory initialized from within
Ri (or a subset thereof) stays within Wi, under the dynamics ẋ = f (q̂i,x,K(q̂i,x),d).

2. Compute the maximal invariant set Inv(Wi,K(q̂i, ·)) under this control law.

3. If Inv(Wi,K(q̂i, ·))∩Ri 6= /0, choose a target set R̃i ⊆ Inv(Wi,K(q̂i, ·))∩Ri. Otherwise, return
to step 1 to modify the design of K(q̂i, ·).

4. Design a continuous control law K(qi, ·) which regulates initial conditions in Wi−1 to the
target set R̃i, under the continuous dynamics ẋ = f (qi,x,K(qi,x),d).

5. Compute the capture set under this control law to the first time instant ti, such that Wi−1 ⊂
Rqi(R̃i,K(qi, ·),τi).

6. Compute over the time interval [0,τi] the corresponding unsafe set Aqi(Ai,K(qi, ·),τi).

7. Check if the condition Wi−1 ⊂ A C
qi
(Ai,K(qi, ·),τi) holds. If this condition does not hold,

return to step 4 to modify the design of K(qi, ·). Otherwise, the control design for mode qi is
complete.

8. Repeat steps 1-7 for qi−1 and q̂i−1 until q1. For q1, set W0 = X0.

9. Choose a switching policy F according to (2.1), but replacing the switching region Ri by R̃i.

It can be verified using the conditions given in Lygeros et al. (1999a) that under the choice
of control policy (F,K) as designed above, the semi-automated sequential transition system H
has a unique infinite execution. Furthermore, using the definition of capture sets, unsafe sets, and
invariant sets as given in section 2.5, it can be verified that this execution satisfies the specifications
of Problem 2.2. In particular, by steps 1-3 of the design procedure, the feedback law K ensures
that, for each mode q̂i, trajectories initialized from R̃i ⊆ Ri stays within Wi, for every i = 1, ...,m
and admissible disturbance realization. Furthermore, by steps 4-7 of the design procedure, the
feedback law K satisfies

Wi−1 ⊂Rqi(R̃i,K(qi, ·),τi)∩A C
qi
(Ai,K(qi, ·),τi), (2.7)

for every i = 1, ...,m, with W0 = X0. This ensures that, for each mode qi, any continuous trajectory
initialized from within Wi−1 will reach R̃i ⊆ Ri within τi time units while avoiding Ai, regardless
of the realization of the disturbance d. Given the choice of switching policy F , continuous state
evolution in each mode q̂i is assured to be only initialized from within R̃i. On the other hand, due
to the invariance property of K in the stationary modes, continuous state evolution in each mode qi
is assured to be only initialized from within Wi−1. The desired properties then follow.

Remark 2.3. For certain specifications of the target set Ri, target neighborhood Wi, continuous
dynamics f , and input bounds U and D, there may not exist a subset R̃i of Ri such that every tra-
jectory initiated from R̃i remains inside Wi at all times. To check the feasibility of an invariance
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objective, one may consider performing an invariant set calculation using a differential game for-
mulation of the problem as described in Tomlin et al. (2000), and verify the condition given in step
3. In the case that an invariance objective is found to be infeasible, one may consider modifying
the specification of the target set Ri or the target neighborhood Wi.

Remark 2.4. The control design in step 1 can be viewed as a stabilization problem, by choosing
some point x̄∈ Ri and designing a stabilizing controller in the relative coordinate system x̃ := x− x̄.
For nonlinear systems, this design can be performed for example using Lyapunov-based techniques
(Sastry, 1999). However, the difficulty again lies in finding control designs which satisfies the state
constraint Wi and the input constraint U , while accounting for continuous disturbances. In chapter
3, a reachability-based approach to this problem will be discussed.

2.7 Recovery from Improper Initialization
The design procedures described in the preceding section provides assurances that under operating
conditions which satisfies the assumptions of the system model, the desired specifications will
be achieved. However, given the myriad of contingency scenarios which can arise during actual
system operation, a system designer also needs to account for run-time fault conditions which
causes the assumptions of the system model to be violated. For certain classes of faults, appropriate
design choices can be made to enable recovery from the fault condition in an automatic fashion,
for example through built-in redundancies. Nonetheless, due to the fact that not every contingency
scenario can be anticipated at design time, some level of human supervision may be inevitable in
the event of a fault condition.

In this section, we will discuss a possible use for reachable sets as a visual aid to guide human
decision-making in the case of improper system initialization. Specifically, this is a scenario in
which the state of the sequential transition system is initialized outside of the designated set Init,
namely (q0,x0) /∈ Init. Within the context of the aerial refueling example, this corresponds to a
scenario in which the refueling sequence is initiated from a position outside the first waypoint set
X0. Such a scenario could arise for example due to operator mistakes, miscommunication between
the UAV operator and the tanker pilot, or complex missions with multiple aircraft operating in
proximity of each other. Using reachable sets as visual guidance can be helpful for motion planning
applications in which the sets are computed in the planning space and hence provides the operator
with a sense of the reachable space of the underlying continuous system.

To address this fault condition, the system designer can consider adding a finite number of
general purpose recovery modes {q̃1, q̃2, ..., q̃M}, corresponding to dynamics ẋ = f (q̃i,x,u,d), with
choices of feedback laws K(q̃i, ·). In the case of AAR, this could for example be a set of escape
maneuvers. The problem of recovering from the fault condition then becomes one of constructing a
recovery sequence from the library of recovery modes at run-time, in order to drive the continuous
state of the system into the feasible set of a mode q∈Q of the original sequential transition system.
This feasible set can be for example derived from the compatibility condition given in (2.6).

First, for each recovery mode q̃i, an unsafe set computation can be performed at design time to
determine the set of unsafe initial conditions Aq̃i(A,K(q̃i, ·), τ̃i), over some appropriate choice of
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time horizon τ̃i. The time horizon should be long enough so that the unsafe set does not provide
misleading information to the human operator, but also not so long that the resulting decisions are
rendered excessively conservative. Thus, appropriate choices of time horizons should be tailored
to the particular application.

At run-time, a human operator can consult these sets to determine the choice of recovery modes
that can be safely initiated. In particular, as long as the system is initialized at a state outside the
intersection of unsafe sets over all recovery modes, namely x0 /∈

⋂
q̃i

Aq̃i(A,K(q̃i, ·), τ̃i), at least one
safe recovery mode q̃i is available. From the set of safe recovery modes, a particular mode can be
then selected so as to make progress towards the feasible set of a transition state or stationary state
in the sequential transition system. During the execution of this maneuver over time interval [0, τ̃i],
the operator can consult the computed unsafe sets and plan the next recovery mode q̃ j in the fault
recovery sequence. At a time when it is safe to perform maneuver q̃ j, a command can be issued
to transition, and the procedure repeats until the system state recovers in a mode of the sequential
transition system (not necessarily q1).

2.8 Aerial Refueling Example
This section describes an application of the controller design methodology developed in this chap-
ter to the specific example of Automated Aerial Refueling (AAR). The discussion will primarily
focus on the case in which AAR is to be performed autonomously without human supervision
(Problem 2.1) in order to illustrate the basic mechanics of the design procedures introduced in sec-
tion 2.6. However, later on in the section, we will also briefly touch on the extension to invariance
objectives, the use of reachable sets for fault recovery, and the effects of disturbances.

2.8.1 Overview of Automated Aerial Refueling (AAR) Process
In an aerial refueling process, a formation of unmanned aerial vehicles (UAVs) approaches a human
piloted tanker aircraft. One by one, the UAVs perform a sequence of maneuvers to dock with
a human operated fuel boom and then return to formation. A graphical top down view of the
refueling process is shown in Fig. 2.2.

The tanker aircraft is shown in the center, with the refueling UAV flying in formation to be
refueled. In the actual refueling process, the UAV typically approaches from a fixed position in
the formation. For modeling purposes, the aircraft to be refueled is assumed to approach from
a position behind and to the right of the tanker aircraft. From this position, the UAV initiates a
sequence of maneuvers through the numbered waypoints, under a combination of human operator
commands and autonomous decisions. The sequence of maneuvers in the AAR process are shown
in Table 2.1. The model described here utilize the separation of waypoints found in the work of
Ross et al. (2006).
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Human-Piloted Tanker

Human-Operated Boom

Target Set for Refueling

0.1.

2. 3.
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5. 6.
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21 m

33.5 m
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Figure 2.2: Diagram of waypoint locations in aerial refueling process, as labeled 1 through 6. Each
flight maneuver corresponds to a transition between waypoints.

Event Maneuver Man.# Description
σ12 Detach 1 1 a single UAV detaches from a formation of UAVs in flight

to a position slightly behind and to the right of a tanker
aircraft.

σ23 Precontact 2 the UAV banks left towards a position directly behind the
tanker aircraft.

σ34 Contact 3 the UAV approaches the tanker aircraft from behind to al-
low the boom operator on board the tanker to lower the fuel
boom and catch the UAV.

σ45 Postcontact 4 the UAV slows down and moves away from the tanker air-
craft after the boom operator detaches the fuel boom.

σ56 Detach 2 5 the UAV banks right towards a position directly behind the
UAV formation.

σ67 Rejoin 6 the UAV speeds up and rejoins the formation to complete
the refuel sequence.

Table 2.1: Descriptions of flight maneuvers in the aerial refueling process.
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2.8.2 Aircraft Model
Under the assumption that refueling occurs one vehicle at a time, we will focus our attention on the
interaction between a single UAV and the tanker aircraft. The kinematics model as described here
for the relative dynamics between the two aircraft leverages previous work Tomlin et al. (2001)
in the modeling of aircraft conflict resolution scenarios in air traffic management. The model
assumes that the two aircraft do not change altitude significantly in performing the aerial refueling
maneuvers, and this is justified in the state of the practice for human-piloted maneuvers of this kind.
In fact, using a change in altitude might jeopardize the success of the mission, as a boom operator
might suspend the mission if loss of line of sight occurs; thus, there is motivation to preserve a
2D solution. Recent work by Williamson et al. (2009) provides promise that autonomous vehicles
will be capable of sufficiently accurate onboard sensing to utilize the selected coordinate system.
Placing the two aircraft in a 2D plane, the relative motion of the two aircraft in the UAV reference
frame can be modeled as:

ẋ = f (x,u,d) =
d
dt

 x1
x2
x3

=

 −u1 +d1 cosx3 +u2x2
d1 sinx3−u2x1

−u2

 (2.8)

where x1,x2,x3 are the longitudinal, lateral, and heading coordinates of the tanker aircraft in the
UAV reference frame, u1,u2 are the translational and angular velocities of the UAV as indicated
in Fig. 2.3, and d1 is the translational velocity of the tanker aircraft. Here it is assumed that the
tanker is in straight and level flight, and hence its angular velocity is set to zero. For most of
our reachability and simulation results, it is assumed that the tanker aircraft maintains a nominal
forward velocity v0. However, as discussed in section 2.5, the reachability computation can be
modified in a straightforward manner to account for fluctuations in the tanker velocity within a
bounded range, and this case is covered in section 2.8.10, which demonstrates the corresponding
changes to the reachable set calculations.

With regards to parameter values, the nominal velocity of the tanker aircraft is chosen to be
v0 = 84.8 m/s (75% of the maximum allowable velocity of the UAV); the velocity input u1 for the
UAV has the saturation limits [40,113] m/s, and the angular velocity input u2 has the saturation
limits [−π/6,π/6] s−1. The maximum UAV velocity value is based on published specifications
for the MQ-9 Predator B; other values are chosen based on realistic constraints.

For completeness, it should be noted that the relative coordinates in the UAV reference frame
and the tanker reference frame are related by a nonlinear coordinate transformation. Specifi-
cally, suppose x = (x1,x2,x3) is the coordinates of the tanker in the UAV reference frame, and
x̃ = (x̃1, x̃2, x̃3) is the coordinates of the UAV in the tanker reference frame, then x̃ = ρ(x), where
ρ : R3→ R3 is given by

ρ

 x1
x2
x3

=

 −x1 cosx3− x2 sinx3
x1 sinx3− x2 cosx3

−x3

 (2.9)
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This transformation will be used in transforming target sets and avoid sets specified in tanker
coordinates into UAV coordinates. Specifically, suppose a set S̃ is represented by a function φ̃ in
the tanker reference frame (namely φ̃(x̃) ≤ 0, ∀x̃ ∈ S̃), then the corresponding set S in the UAV
reference frame is represented by the function φ = φ̃ ◦ρ .

u1
u2

x2

x3O

x1

Figure 2.3: Relative-coordinate system, kinematic model. The origin of the coordinate system is
centered on the UAV.

2.8.3 Hybrid System Abstraction of AAR
The sequence of flight maneuvers as described in Table 2.1, along with the kinematics model
of aircraft dynamics as given in (2.8) provides us with an abstraction of aerial refueling process
in terms of a sequential transition system, as shown in Fig. 2.4. In this model, the transition
states consists of the sequence of flight maneuvers as listed in Table 2.1, while the stationary
states consists of intermediate maneuvers in which the UAV is to wait in a neighborhood of each
waypoint while waiting for operator command. In addition, there are four general purpose escape
maneuvers, labeled q̃1 to q̃4 to handle the case of improper initialization as discussed in section 2.7.
The continuous dynamics within each flight maneuver is identical and given by (2.8). The various
maneuvers differ only by the choice of continuous control laws K(qi, ·), K(q̂i, ·), and K(q̃i, ·),
corresponding to transition maneuvers, stationary maneuvers, and escape maneuvers, respectively.

We first consider the case in which the flight maneuvers are to be performed autonomously. By
choosing a neighborhood of states around each waypoint in Fig. 2.2 as a target set, and by choosing
a protected zone around the tanker aircraft to be an avoid set, the task of designing AAR can be
formulated as an instance of Problem 2.1. As described in section 2.4 and section 2.6, through an
appropriate choice of switching policy, the design parameters become the continuous control laws
within the respective flight maneuvers. In the following, we will discuss the specification of the
target sets and avoid sets, as well as the form of the continuous control laws.

2.8.4 Specification of Target Sets and Avoid Sets
The target set Ri for each maneuver qi is chosen to be a disc shaped neighborhood around each
desired waypoint (see Fig. 2.5), with bounds on the relative heading error. This choice is consistent
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Figure 2.4: Discrete states and transitions in hybrid system abstraction of AAR process.

with the objective of controlling the aircraft to within some Euclidean distance of a given waypoint.
For waypoint i, this set can be specified in tanker coordinates as R̃i = B([−x1 f (qi), −x2 f (qi)],r0)×
[−∆θ ,∆θ ] where B(x0,r) denotes a ball of radius r, centered at x0 in R2. In this case, the radius and
heading tolerance are chosen to be r0 = 4 m and ∆θ = π/16 rad, respectively. The corresponding
set in the UAV coordinate frame is obtained from the transformation ρ in (2.9).

X0 = R6

R1 = R5

R2 = R4 R3

2a0

V

Figure 2.5: Target sets and avoid sets for transition maneuvers in AAR process.

33



Each flight maneuver uses an identical avoid set A, namely the set of continuous states cor-
responding to minimum separation infringement (MSI) violation between the tanker aircraft and
UAV. This set consists of a disc in the x1-x2 plane, with a small neighborhood of states around
the fuel boom removed to allow approach by the UAV. In the tanker reference frame, this is
given by Ã = (B([15, 0],a0)× [−π,π])\ V,∀qi ∈ Q, where a0 = 30m is the protected radius
(chosen based upon published data of the wingspan of a Boeing KC-135 Stratotanker), the ori-
gin of the tanker’s coordinate system is 15 m from the centroid of the tanker, and V is a small
hyper-rectangle of states around the boom location, defined in the tanker reference frame as V ={

x̃ ∈ R3 :−15m≤ x̃1 ≤ 10m,−8m≤ x̃2 ≤ 8m,−π ≤ x̃3 ≤ π
}

. The corresponding avoid set A in
the UAV coordinate frame can be obtained from the coordinate transformation ρ .

2.8.5 Structure of Continuous Controllers
The feedback control laws to perform the various maneuvers are applied through the inputs u1 and
u2. To emulate high-level waypoint following algorithms, proportional control laws are used to
steer the UAV to the various desired waypoints. For transition maneuvers q1 to q6, the feedback
laws K(qi, ·) are of the form

u1 = k1(x1− x1 f )+ v0 (2.10)
u2 = k2(x2− x2 f ) (2.11)

where k1 and k2 are proportional gain constants, and x1 f , x2 f are the desired waypoint locations in
the UAV reference frame. To take into account actuator limitations, the control laws are saturated
to within the input ranges given in section 2.8.2. The control law K(q̂i, ·) for each stationary
maneuver q̂i, i = 1, ...,6 is chosen to be identical as that of the preceding transition maneuver qi.

The waypoint locations for the transition and stationary maneuvers are specified in Table 2.8.5.
During the control design procedure, the proportional gain constants will be selected so as to ensure
the reachability objective of each flight maneuver.

Maneuver Mode Label x1 f x2 f
Detach 1, Stationary 1 q1, q̂1 25.5 33.5

Precontact, Stationary 2 q2, q̂2 25.5 0
Contact, Stationary 3 q3, q̂3 8.0 0

Postcontact, Stationary 4 q4, q̂4 25.5 0
Detach 2, Stationary 5 q5, q̂5 25.5 33.5
Rejoin, Stationary 6 q6, q̂6 4.5 33.5

Table 2.2: Desired waypoint locations for continuous control laws (x1 f ,x2 f , in meters).

Finally, the control laws K(q̃i, ·) for the four escape maneuvers q̃i, i = 1, ...,4 are chosen as
follows:
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1. Escape 1 (steer left at max speed): u1 = u1max , u2 = u2max;

2. Escape 2 (steer right at max speed): u1 = u1max , u2 =−u2max;

3. Escape 3 (slow down): u1 = u1min , u2 = 0;

4. Escape 4 (speed up): u1 = u1max , u2 = 0.

2.8.6 Control Design Using Capture Sets and Collision Sets
We now describe the design the maneuver control laws, using the procedures given in section 2.6.1.
For the rest of our discussions in this section, unsafe sets will be referred to interchangeably as
collision sets, due to the fact that these sets correspond to initial conditions that could result in a
collision with the tanker aircraft.

For a given flight maneuver qi, we first fix a set of control gains and compute the capture set
with respect to a target set Ri until a time instant τi such that Ri−1 ⊂Rqi(Ri,K(qi, ·),τi). An unsafe
set computation is then performed to check the safety condition Ri−1 ⊂ A C

qi
(A,K(qi, ·),τi). For

mode q1, the set R0 is specified to be the set of permissible initial states X0, as shown in Fig. 2.5.
The control gains for each flight maneuver are then adjusted as necessary to ensure the target
attainability and safety objectives are met. The set of control gains and maneuver timings obtained
from this design procedure is summarized in Table 2.8.6.

Maneuver k1 k2 Time τi (s) Elapsed time (s)
Detach 1 3 1 1.25 1.25

Precontact 0.5 5 3.00 4.25
Contact 2.5 1 1.00 5.25

Postcontact 2.5 1 1.00 6.25
Detach 2 1 5 3.50 9.75
Rejoin 3 1 1.25 11.0

Table 2.3: Proportional gain constants (k1, k2) and timings (τi in seconds) for transition maneuvers.

Example capture sets are shown in Fig. 2.6a and Fig. 2.6b for the Contact (q3) and Rejoin (q6)
maneuvers. It can be seen that the control laws for the two maneuvers are designed so as to ensure
that the target set of the preceding maneuver is contained within the capture set of the current
maneuver and has empty intersection with the collision set of the current maneuver, thus ensuring
proper composition between continuous trajectories of successive flight maneuvers in the refueling
sequence.

2.8.7 Refueling Sequence Simulation
A complete simulation of the refueling sequence is constructed to check the satisfaction of the
safety and target attainability objectives. In this simulation, the UAV does not spend any time in
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(a) Capture (light, green) and collision (dark, red) sets for
Precontact.

(b) Capture (light, green) and collision (dark, red) sets for
Rejoin.
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(c) Slice of Precontact capture (dashed) and col-
lision (dotted) sets at x3 = 0
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(dotted) sets at x3 = 0

Figure 2.6: Capture sets and collision sets for Precontact and Rejoin maneuvers. In each figure,
x1 and x2 represent longitudinal and lateral offset (respectively), and x3 represents the offset in
heading between the UAV and tanker.
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the stationary modes, namely a forced transition is taken to the next maneuver in the sequence as
the state of the UAV enters a target set.

Some snapshots of the simulation are shown in Fig. 2.7, where the capture sets and collision sets
for each flight maneuver are superimposed on the trajectory of the UAV. As guaranteed by the mode
switching conditions, each maneuver is completed within the transition timing given in Table 2.8.6,
without entering the avoid set A corresponding to MSI. Furthermore, it is verified that whenever the
system state x enters a target set Ri in mode qi, the conditions x ∈Rqi+1(Ri+1,K(qi+1, ·),τi+1) and
x 6∈Aqi+1(A,K(qi+1, ·),τi+1) are satisfied, thus ensuring the feasibility of the next flight maneuver.

2.8.8 Extension to Invariance Objectives
Here we consider an extension of the controller design to the case in which the specifications
requires the UAV to remain in a neighborhood of certain waypoints while waiting for operator
commands to proceed to the next flight maneuver. This falls within the framework of a semi-
automonomous sequential transition system. In particular, we will focus on the controller design
for Stationary 3 (q̂3), corresponding to when the UAV is expected to be refueling. In this case, it
is necessary that the UAV maintains itself within a neighborhood of the fueling boom while the
boom operator performs the refueling operation.

We specify a target neighborhood for this stationary maneuver in tanker coordinates as W3 =
B([−x1 f (q3), −x2 f (q3)],r1)× [−∆θ ,∆θ ], where the waypoint location (x1 f ,x2 f ) is as given in Ta-
ble 2.8.5 for the Contact maneuver, the neighborhood radius is set to r1 = 6 m, and the heading
tolerance is set to ∆θ = π/16 rad. The controller for this maneuver is chosen to be the same as that
designed for the contact maneuver and an invariant set calculation is performed according to the
procedure described in section 2.5.3. The result is shown in Fig. 2.8. In these plots, the invariant set
satisfies Inv(W3,K(q̂3, ·)) ⊂ Rq4(R4,K(q4, ·),τ4) and Inv(W3,K(q̂3, ·))∩Aq4(A,K(q4, ·),τ4) = /0,
namely it lies within the feasible set of the next maneuver Postcontact (q4) in the refueling se-
quence. In order to ensure that the contact maneuver ends in a state satisfying the invariance
objective, the target set for the contact maneuver can be chosen according to the procedures of
section 2.6.2 as R̃3 = B([−x1 f (q3), −x2 f (q3)],r0)× [−π/18,π/18], where r0 is as given in sec-
tion 2.8.4.

2.8.9 Scenario of Improper Initialization
In this section, we formulate a simulation scenario in which the system state is initialized outside
the set X0. This provides an example of improper initialization as discussed in section 2.6.2 and
will be used to illustrate the use of reachable sets as a tool for guiding human decision making.

The goal in this case is to construct a sequence of escape maneuvers to arrive at the target
set R2 of the Precontact (q2) maneuver, using the collision sets A f̃i(A, K̃i, τ̃i) computed for escape
maneuvers 1-4, as well as the capture and collision sets for the Precontact maneuver. In practice,
this task would be carried out by a trained UAV operator. For this simulation scenario, however,
the maneuver selection is performed by heuristic examination of the generated sets. The results
are shown in Fig. 2.9.
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Figure 2.7: Refueling sequence simulation with capture sets (dashed lines), avoid and collision
sets (dotted lines).
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(a) Postcontact capture set (light, green) and Stationary
3 invariant set (dark, blue).

(b) Postcontact collision set (light, red) and Stationary
3 invariant set (dark, blue).

Figure 2.8: Results of an invariant set calculation for Stationary 3 maneuver, showing that the
Postcontact maneuver can be safely initiated following refueling.

From the first plot, the UAV is initialized at a location outside the capture set of the Precontact
maneuver (x0 6∈Rq2(R2,K(q2, ·),τ2)). In fact, this initial condition lies inside the collision set of
the Precontact maneuver (x0 ∈Aq2(A,K(q2, ·),τ2)). In examining the collision sets computed for
the escape maneuvers, it is found that x0 6∈Aq̃4(A,K(q̃4, ·), τ̃4). The recovery maneuver Escape 4
(q̃4) corresponding to “speed up” is then selected as a safe flight maneuver. After performing this
maneuver for some time, while consulting the collision sets, it is found that both Escape 2 (q̃2)
and Escape 1 (q̃1) become available, corresponding to “turn right” and “turn left”, respectively.
Maneuver Escape 2 is chosen first, followed by maneuver Escape 1 to return the heading to that
of the tanker vehicle. Finally, maneuver Escape 3 is selected, corresponding to “slow down.”
While reducing speed, the state of the UAV enters the capture set of the Precontact maneuver
(x ∈ R f2(R2,K2,τ2)), and the UAV mode transitions to the Precontact maneuver, and the fault
recovery sequence completes.

2.8.10 Effects of Disturbance on Reachable Set Computation
In the previous results, capture sets and collision sets are generated assuming a nominal tanker ve-
locity of v0 = 84.8m/s. However, during execution time, there may be some degree of uncertainty
associated with the velocity of the tanker, due to unmodeled dynamics and various environment
disturbances (for example wind effects). This uncertainty may not be significant for maneuvers
far enough from the tanker aircraft. However, for the Contact maneuver in which the UAV needs
to come within close proximity of the tanker aircraft, even slight variations in the tanker aircraft
speeds may compromise the safety of the maneuver.

As discussed in section 2.5, the Hamilton-Jacobi method for reachability analysis offers the
flexibility to account for this uncertainty in the tanker aircraft velocity. In this case, the tanker
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(a) Escape Mode 4 (Speed Up) initiated at t = 0s
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(b) Escape Mode 2 (Steer Right at Max Speed)
was initiated at t = 0.5s, shown here at t = 1.0s
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(c) Escape Mode 1 (Steer Left at Max Speed)
initiated just before t = 1.25s
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(d) Escape Mode 3 (Slow down), shown at t = 3s
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(e) Performing Precontact, shown here at t = 5s
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(f) Precontact completed, shown here at t = 8s

Figure 2.9: Fault recovery sequence simulation with capture set for Precontact (dashed lines), and
collision sets for Precontact (dotted lines) and escape maneuvers (dash-dotted lines).
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velocity d1 is allowed to fluctuate in the bounded range [79.14,90.45] m/s (70-80% of the maxi-
mum allowable velocity of the UAV). The capture set and collision set for the Contact maneuver
under the effects of this disturbance are shown in Fig. 2.10 (a) and (b), along with the same sets
calculated under the nominal tanker velocity.
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(a) Contact maneuver capture set without uncertainty
(outer line), with uncertainty (inner line).
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(b) Contact maneuver collision set with uncertainty
(outer line), collision set without uncertainty (middle
line), and the MSI (innermost line).

Figure 2.10: Capture set and collision set for Contact maneuver under worst-case tanker speed.

As expected, the capture set with added uncertainty is smaller than that without uncertainty,
shown in Fig. 2.10a. This is due to the fact that under worst case tanker aircraft speed input,
the tanker is effectively trying to prevent the UAV from entering the refueling zone. Similarly,
the worst case collision set under uncertainty, shown in Fig. 2.10b, is larger than that without
uncertainty. This results from the worst case tanker speed input which effectively tries to force a
collision with the UAV.
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Chapter 3

Controller Synthesis Algorithms for Safety
and Reach-avoid Problems

3.1 Overview and Related Work
This chapter presents several computational algorithms for the synthesis of feedback control poli-
cies to satisfy safety and reach-avoid objectives for switched nonlinear systems. In particular,
we consider an abstraction for high level control of a physical system as described in terms of a
discrete decision process selecting amongst a finite set of continuous behaviors (e.g. maneuvers
of an aircraft, motions of a robot, gears of an automobile), where the continuous behaviors are
characterized by a nonlinear vector field, up to some bounded continuous disturbances. Using this
abstraction, controller synthesis techniques are formulated to satisfy two types of specifications:

• safety: keep the system state within a prescribed safe set in the hybrid state space over finite
or infinite time horizon;

• reach-avoid: drive the system state into a prescribed target set in the hybrid state space
within finite time, subject to a constraint that the state trajectory avoids an unsafe set.

A control policy resulting from the controller synthesis algorithms consists of a set of feasible
initial conditions, as well as a set-valued feedback law defined on the feasible set.

It is important to note that the switched system model employed in this chapter has a very
different interpretation from the switched system model of the preceding chapter. Whereas the
discrete states of a sequential transition system is used to represent the phases of a dynamic process,
the discrete states here are used to represent the set of continuous behaviors that a high level
controller can select from at any given time. In other words, the model of the preceding chapter
represents a discretization or aggregation over the temporal space, while the model of the current
chapter represents a discretization or aggregation over the control space. From this perspective,
one can view the controller synthesis algorithms described here as a method for performing control
design in each phase of the sequential reachability specification.
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Safety and reach-avoid problems for switched nonlinear systems as considered in this chap-
ter are special cases of hybrid reachability problems. As alluded to in the introduction and the
preceding chapter, numerous theoretical and computational tools have been developed to address
such problems over the past two decades, under varying assumptions on the hybrid system dy-
namics. Early efforts focused on timed automata and linear hybrid automata (Alur and Dill, 1994;
Maler et al., 1995; Henzinger et al., 1997; Larsen et al., 1997; Yovine, 1997; Henzinger et al.,
1998; Alur et al., 2000), in which case the simplicity of continuous dynamics allows an exact dis-
crete abstraction of the hybrid system and the adaptation of discrete synthesis techniques to hybrid
reachability problems. Although exact solutions to these problems are still possible for certain
classes of hybrid systems with linear and nonlinear dynamics (Lafferriere et al., 1999; Shaker-
nia et al., 2001; Del Vecchio, 2009), the consideration of general forms of continuous dynamics
often requires approximation techniques. This has led to considerable research into methods for
computing approximate continuous reachable sets.

One class of methods propagates explicit set representations such as polyhedra (Asarin et al.,
2000a; Bemporad et al., 2000b; Chutinan and Krogh, 2003; Hwang et al., 2005; Han and Krogh,
2006), ellipsoids (Kurzhanski and Varaiya, 2000; Botchkarev and Tripakis, 2000), or zonotopes
(Girard, 2005; Girard and Le Guernic, 2008) directly under flows of the system. Methods in this
class typically consider linear systems or feedback linearizable nonlinear systems. Another class
of methods approximates sets using representations defined on a discretized grid of the continuous
state space, including approaches based upon viability theory (Cardaliaguet et al., 1999; Aubin et
al., 2002; Saint-Pierre, 2002; Gao et al., 2007) and viscosity solutions of Hamilton-Jacobi equa-
tions (Mitchell et al., 2005; Mitchell, 2011). These approaches tend to be more general in the
types of reachability computation and system dynamics that can be handled, but are often more
computationally intensive.

Parallel to these efforts, which compute sets directly in the continuous state space, techniques
have been proposed for computing approximate discrete abstractions of hybrid systems which al-
lows the application of existing methods in discrete verification and supervisory control (Tiwari
and Khanna, 2002, 2004; Kloetzer and Belta, 2006; Tabuada, 2008; Girard et al., 2010). Although
computationally efficient for classes of systems with polynomial or affine dynamics, current in-
stantiations of these techniques feature a similar type of growth in complexity as the viability and
Hamilton-Jacobi approaches when general nonlinear systems are considered. Finally, for purposes
of verifying safety, a computational technique based upon Lyapunov type analysis has also been
proposed in Prajna et al. (2007) for systems with polynomial dynamics.

The reachable set computation and controller synthesis techniques described in this chapter are
based upon the game theoretic framework for hybrid controller design as outlined in Lygeros et
al. (1999b) and Tomlin et al. (2000), which formulates hybrid reachability problems as zero-sum
dynamic games between the control and rational disturbances. The strength of this framework
lies in its consideration of general forms of nonlinear continuous dynamics, as well as dynamic
uncertainty modeled by bounded disturbance terms. The development of level set techniques for
computing approximate solutions to Hamilton-Jacobi-Isaacs (HJI) equations (Mitchell et al., 2005)
also promises accurate numerical computation of reachable sets, although restricted to systems of
up to five continuous state dimensions due to a grid-based approximation. However, with the diffi-
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culties inherited from analyzing nonlinear systems, continuous feedback policies in general cannot
be derived in closed form. Furthermore, due to the interdependence of discrete and continuous
dynamics, the problem of designing discrete controls also does not yield readily to automated syn-
thesis algorithms. Thus, applications of this framework to practical problems such as automated
highway platooning (Lygeros et al., 1998), flight envelope protection (Bayen et al., 2007), and
aircraft conflict resolution (Tomlin et al., 2001) are often performed on a case by case basis with
considerable insight from the control designer.

There has been an ongoing effort to develop computational algorithms for the synthesis of deci-
sion policies using Hamilton-Jacobi reachable sets. In Teo and Tomlin (2003), the authors describe
a method for selecting evasive maneuvers for closely-spaced runway approaches, by checking the
aircraft state information against unsafe sets computed for the evasive maneuvers. Due to the
needs for fast online computation of reachable sets, the computation method is tailored to the par-
ticular application and assumes an open-loop selection of inputs. Another method is discussed in
Hwang et al. (2005) for extracting control inputs from polytopic approximations of reachable sets
for certain classes of nonlinear systems. An optimal selection of input, however, can be only deter-
mined along the boundaries of the approximating polytope, and may lead to chattering effects. The
work described in Oishi et al. (2006) proposes an approach for selecting feedback linearizing con-
trol laws to achieve stabilization under safety constraints, based upon the results of a reachability
calculation. However, issues of implementation and guarantees of safety and target attainability in
applications with sampled state measurements and piecewise constant controls were not addressed.

The main contributions of our proposed methodology are as follows. First, we provide sys-
tematic procedures for the numerical computation of feedback control policies to satisfy hybrid
reachability specifications for switched nonlinear systems. In particular, several reachability algo-
rithms are proposed such that the output of each algorithm include both a set of initial conditions on
which a given reachability objective is feasible, as well as a set-valued control law represented in
terms of a collection of reachable sets. Second, we carry out analysis and synthesis tasks within the
framework of a sampled-data system model. This ensures that the controllers computed through
our algorithms will preserve the desired reachability specifications in continuous time even as state
measurements and applications of control actions may be constrained to take place at sampling
instants. Finally, we give detailed algorithms for the online selection of control inputs using the
results of the offline reachability computations. These algorithms represent possible approaches
to practically implement reachability-based controllers, by storing numerical representations of
reachable sets and accessing them in an online setting as lookup tables.

The organization of this chapter is as follows. In section 3.2, we give a formal description of
the sampled-data switched system model. In section 2.4, we formulate the safety and reach-avoid
control problems within the context of this switched system model. In section 3.4, we provide
a controller synthesis algorithm for the safety control problem, along with a numerical example
of aircraft collision avoidance. In section 3.5, we propose a solution for the finite horizon reach-
avoid problem, and illustrate the methodology through an experimental application on a quadrotor
platform in section 3.6. Finally, we revisit the AAR example in section 3.7, in order to discuss the
application of the proposed computational algorithms to switching controller design in sequential
reachability problems.
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3.2 Sampled-Data Switched System Model
We model a sampled-data switched system as a special case of the hybrid automaton discussed in
section 2.3.1.

Definition 3.1 (Sampled-Data Switched System). A sampled-data switched system is a tuple
Hsw = (Q,X ,Σ,U,D,δ , f ,T ), defined as follows.

• Discrete state space Q := {q1,q2, ...,qm}, m ∈ N.

• Continuous state space X := Rn.

• Discrete input space Σ := {σ1,σ2, ...,σnσ}.

• Continuous input space U , a compact subset of Rnu .

• Disturbance input space D, a compact subset of Rnd .

• Discrete transition function δ : Q×Σ→ Q, describing the discrete state evolution.

• Vector field f : Q×X×U×D→Rn, describing the continuous state evolution. It is assumed
that f is uniformly continuous and bounded, and that for fixed q ∈ Q, u ∈U , and d ∈ D, the
function x→ f (q,x,u,d) is Lipschitz continuous.

• Sampling interval T > 0.

As noted previously, the discrete states of this model have a different interpretation from the
discrete states of the sequential transition system models given in sections 2.3.2 and 2.3.3. Specifi-
cally, the discrete state space Q of Hsw can be viewed as a set of operation modes that are provided
as control choices to a high level controller, while the discrete state space of a sequential transition
system can be viewed as a set of temporal phases in a dynamic process.

Informally, the executions of a sampled-data switched system proceeds as follows. At each
sampling instant kT , we receive measurements of the system state (q(kT ),x(kT )), and select based
upon this information a discrete input σ(kT ) ∈ Σ and a continuous input u(kT ) ∈U , which are
held constant on the sampling interval [kT,(k+ 1)T ). In response, the disturbance is allowed to
select a realization d : [kT,(k+1)T )→D. Given the switching command σ(kT ), the discrete state
transitions to δ (q(kT ),σ(kT ))∈Q. The continuous state then evolves according to the vector field
in the updated discrete state:

ẋ(t) = f (δ (q(kT ),σ(kT )),x(t),u(kT ),d(t)), (3.1)

for t ∈ [kT,(k + 1)T ]. Under the assumptions placed upon the vector field f , the existence and
uniqueness of solutions to (3.1) is assured on each sampling interval. At the next time step, the
discrete state is then given by q((k+1)T ) = δ (q(kT ),σ(kT )), while the continuous state is given
by x((k+1)T ) as obtained from the solution to (3.1), and the same process repeats.

More precisely, we allow control inputs to be chosen according to a set-valued feedback law
defined as follows.
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Definition 3.2 (Control Policy). A control policy for Hsw is a sequence µ = (µ0,µ1, ...) of maps
µk : Q×X → 2Σ×U\ /0. We denote the set of such admissible control policies by M .

In particular, the feedback map µk provides a set of possible control inputs given a sampled
state measurement (q(kT ),x(kT )).

Under the worst-case assumption that the disturbance may be a rational adversary, we model a
disturbance strategy for Hsw as a sequence of maps from the state and control input space to the
set of admissible disturbance realizations. More specifically, consider the set of functions

DT = {d : [0,T ]→ D|d(·) is measurable} .

Definition 3.3 (Disturbance Strategy). A disturbance strategy for Hsw is a sequence γ = (γ0,γ1, ...)
of maps γk : Q×X ×Σ×U →DT . We denote the set of such admissible disturbance strategies by
Γ.

We can now give a formal definition for the executions of a sampled-data switched system
under fixed choices of control policy and disturbance strategy.

Definition 3.4 (Switched System Execution). For a given initial condition (q0,x0)∈Q×X , control
policy µ ∈M , disturbance strategy γ ∈ Γ, and time horizon N > 0, the execution of a sampled-data
switched system Hsw on [0,NT ] is a function (q,x) : [0,NT ]→Q×X as returned by the following
algorithm.

Algorithm 3.2.1 Switched System Execution
Require: Initial condition (q0,x0)∈Q×X , control policy µ ∈M , and disturbance strategy γ ∈ Γ.

Set q(0)⇐ q0, x(0)⇐ x0;
for k = 0 to N do

Choose (σ(kT ),u(kT )) ∈ µk(q(kT ),x(kT ));
Set d = γk(q(kT ),x(kT ),σ(kT ),u(kT ));
Set q(t) = δ (q(kT ),σ(kT )) for t ∈ (kT,(k+1)T ];
Set x(t), t ∈ [kT,(k+1)T ] as the solution of

ẋ(t) = f (δ (q(kT ),σ(kT )),x(t),u(kT ),d(t− kT ));

end for
return (q(t),x(t)), t ∈ [0,NT ].

By the above definition, the discrete state trajectory q(·) is piecewise constant with jumps oc-
curing at sampling instants, while x(·) is a continuous function of time. Furthermore, it should
be emphasized that although the control values are to be held constant on sampling intervals (as
consistent with a sampled-data setting), the disturbance is allowed to choose a time-varying real-
ization on each sampling interval, possibly in response to the control input selection. This allows
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us to treat a range of robust control problems and differential game problems in which the noise or
disturbance entering into the continuous dynamics may be adversarial under worst-case assump-
tions.

3.2.1 Example - Pairwise Aircraft Conflict Resolution
In the following, we will illustrate this modeling framework through an example of aircraft conflict
resolution, as adapted from Tomlin et al. (2000); Mitchell et al. (2005); Hwang et al. (2005), in
which it is used as a benchmark for hybrid and nonlinear reachability analysis. A similar model as
presented here has been employed in Teo and Tomlin (2003) for an experimentally demonstrated
conflict detection and resolution algorithm for closely-spaced parallel runway approaches.

The conflict scenario involves two aircraft moving in the plane, one of which is controlled
(referred to as aircraft 1), while the other is uncontrolled (referred to as aircraft 2). The task is to
synthesize the controls for aircraft 1 so as to avoid a collision with aircraft 2, subject to the worst-
case controls of aircraft 2. The relative motion of aircraft 2 with respect to aircraft 1 is modeled
using the following kinematic equations.

ẋ =

 ẋ1
ẋ2
ẋ3

 −u1 +d1 cosx3 +u2x2
d1 sinx3−u2x1

d2−u2,

= f̃ (x,u1,u2,d1,d2)

where x1, x2 is the relative position of aircraft 2 in the aircraft 1 reference frame; x3 is the relative
heading of aircraft 2 in the aircraft 1 reference frame; u1,d1 are the linear velocities of aircraft 1
and 2, respectivley; u2,d2 are the angular velocities of aircraft 1 and 2, respectively. Now consider
a simplified model for the control system of aircraft 1 as represented by the state transition diagram
shown in Figure 3.1.

Figure 3.1: Two mode control system for aircraft conflict resolution.

For this particular example, the discrete state space is Q = {q1,q2}, where q1 is a straight and
level flight maneuver in which aircraft 1 modifies its linear velocity, while q2 is a turning maneuver
in which aircraft 1 modifies its angular velocity. The continuous state space within each discrete
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state is X = R3. The set of discrete inputs is given by Σ = {σ1,σ2}, where σi corresponds to a
switch to mode qi. This gives rise to the discrete transition function

δ (q,σ) =

{
q1, σ = σ1

q2, σ = σ2.

In mode q1, the linear velocity input u1 takes on a range U1 = [v,v]⊂R, while the angular velocity
is held constant at some value u2 = ω0. In mode q2, the angular velocity input u2 takes on a
range U2 = [ω,ω] ⊂ R, while the linear velocity is held constant at some value u1 = v0. This
results in the continuous input space U = U1×U2 ⊂ R2. Similarly, the inputs d1, d2 of aircraft 2
are assumed to be chosen from compact sets D1,D2 ⊂ R, resulting in the disturbance input space
D = D1×D2 ⊂ R2. The corresponding vector fields in modes q1 and q2 are given by

f (q,x,u,d) =

{
f̃ (x,u1,ω0,d1,d2), q = q1

f̃ (x,v0,u2,d1,d2), q = q2.

3.3 Problem Formulations
Within the framework of sampled-data switched systems, we will consider two controller synthe-
sis problems which commonly arise in safety-critical control applications. In the safety control
problem, the objective is to synthesize a control policy µ , such that the closed-loop system tra-
jectory (q(·),x(·)) remains within a prescribed safe set at all times. This could be, for example, a
flight envelope protection problem for an aircraft. On the other hand, in the reach-avoid control
problem, the objective is to synthesize a control policy, such that the closed-loop trajectory enters
a target set within finite time while remaining outside an unsafe set. This could be, for example,
an autonomous navigation problem, in which the target set is a goal region, while the unsafe set is
comprised of the obstacles in the environment.

To be more precise, suppose we are given a sampled-data switched system Hsw and a collection
of sets Wi ⊆ Rn which specifies the safe set within each mode qi ∈ Q. Then the set of safe states
for Hsw is given by W H =

⋃m
i=1 {qi}×Wi. A formal statement of the safety control problem is as

follows.

Problem 3.1. Given a sampled-data switched system Hsw, time horizon N > 0, and safe set W H :

1. Compute a set of states GN
Sa f e ⊂ Q×X such that there exists an admissible control policy

µ ∈M so that for any initial condition (q0,x0) ∈ GN
Sa f e and disturbance strategy γ ∈ Γ, the

closed-loop state trajectory (q(·),x(·)), as defined by Algorithm 3.2.1, satisfies (q(t),x(t)) ∈
W H for all t ∈ [0,NT ];

2. Synthesize a control policy µ ∈M such that the above conditions are satisfied for each
initial condition in GN

Sa f e.
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For the rest of this paper, we will refer to GN
Sa f e as a horizon-N safe set, and a control policy

which satisfies the safety specification on GN
Sa f e as a horizon-N safe control policy with respect to

GN
Sa f e. By letting N→ ∞, we can consider an infinite horizon version of this problem in which the

objective is to keep the system state within a set W H for every t ≥ 0. This may be of interest, for
example, in a robust stabilization application with specifications of maintaining the closed-loop
trajectory within a region around the origin.

Now suppose instead that we are given a target set RH =
⋃m

i=1 {qi}×Ri that the system state
is required to reach within some finite time horizon [0,NT ], and an avoid set AH =

⋃m
i=1 {qi}×Ai

that the system state is required to stay away from at all times. Then the reach-avoid problem can
be formulated as follows.

Problem 3.2. Given a sampled-data switched system Hsw, time horizon N, target set RH and avoid
set AH :

1. Compute a set of states GN
RA ⊂Q×X such that there exists an admissible control policy µ ∈

M so that for any initial condition (q0,x0)∈GN
RA and disturbance strategy γ ∈ Γ, the closed-

loop state trajectory (q(·),x(·)), as defined by Algorithm 3.2.1, satisfies (q(kT ),x(kT ))∈ RH

for some k ∈ {0,1, . . . ,N}, and (q(t),x(t)) /∈ AH for all t ∈ [0,kT ];

2. Synthesize a control policy µ ∈M such that the above conditions are satisfied for each
initial condition in GN

RA.

As before, we will refer to GN
RA as a horizon-N reach-avoid set, and a control policy which sat-

isfies the reach-avoid specification on GN
RA as a horizon-N reach-avoid control policy with respect

to GN
RA.

Our approach to the safety and reach-avoid problems consists of first computing an approxi-
mate representation of the set GN

Sa f e or GN
RA through an iterative reachability algorithm, and then

deriving a feedback control policy µ in terms of the collections of reachable sets returned by the
reachability computation. In order to facilitate the computation of continuous reachable sets, as
well as to ensure a finite representation of the feedback policy, we will impose the following set of
assumptions.

Assumption 3.1.

1. The continuous input space U is discretized into a finite set Ũ ⊂U , called a quantized input
set.

2. For each mode qi, the unsafe set WC
i ⊂ X is closed and can be represented by a bounded and

Lipschitz continuous function φWC
i

: X → R such that

WC
i =

{
x ∈ X ,φWC

i
(x)≤ 0

}
.
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3. For each mode qi, the target set Ri and the avoid set Ai are closed and can be represented by
bounded and Lipschitz continuous functions φRi : X → R and φAi : X → R such that

Ri = {x ∈ X ,φRi(x)≤ 0} ,
Ai = {x ∈ X ,φAi(x)≤ 0} .

In Assumption 3.1, a quantized input set is specified in order to obtain a finite representation
of the control policy, in the form of a finite collection of reachable sets. In certain application
scenarios, this may also have a practical significance in that, due to digital implementation or
high level abstractions, the range of control choices may be quantized. Furthermore, when the
continuous dynamics (3.1) is affine in the control input, the optimal controls for time-optimal
steering problems, which have close relationships to reachability problems, can be sometimes
chosen from within a finite set on the boundary of the input set (known as the bang-bang principle).
In particular examples of nonlinear systems, it may also be possible to prove such properties using
an optimal control argument Bayen et al. (2007). For problems of this type, the quantization levels
can be chosen according to the set of optimal inputs.

On the other hand, the assumptions on the unsafe set, target set, and avoid set are necessary for
the numerical computation of reachable sets through level set methods (Mitchell et al., 2005). The
functions φWC

i
, φRi , and φAi are commonly referred to as the level set representation of the sets WC

i ,
Ri, and Ai, respectively. As an example, consider the pairwise aircraft conflict resolution scenario
described in the previous section, and suppose that the collision zone is specified as a disc of radius
r0 centered on aircraft 1, then a level set representaion of the unsafe set WC

i is simply given by

φWC
i
(x) =

√
x2

1 + x2
2− r0, i = 1,2.

3.4 Safety Controller Synthesis
In this section, we discuss a solution approach to the safety control problem under Assumption
3.1. First, an algorithm is constructed for computing, in an offline setting, a set of feasible initial
conditions for the safety problem using a restricted class of control policies whose range lies within
the quantized input set. Second, it is shown that the result of this reachability computation gives
a representation for a control policy satisfying the safety objective, and an algorithm is given for
implementing this policy in an online setting. Towards the end of the section, we also discuss
extensions of this methodology to the infinite horizon case.

For notational conveniences, we denote by M̃ ⊂M the subset of control policies which selects
continuous control inputs from the quantized input set Ũ .

3.4.1 Safe Set Computation
Let Hsw = (Q,X ,Σ,U,D,δ , f ,T ) be a sampled-data switched system defined as in section 3.2. For
a fixed qi ∈Q and ũ ∈ Ũ ⊂U , consider a continuous state reachability operator A qi,ũ

T , which takes
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as its argument a set G⊆ X and produces as its output the set of states that can be forced inside G
within [0,T ] by some realization of the disturbance.

A qi,ũ
T (G) ={x0 ∈ X : ∃d(·) ∈DT ,∃t ∈ [0,T ], x(t) ∈ G} , (3.2)

where x(·) is the solution of the ODE

ẋ(t) = f (qi,x(t), ũ,d(t)), x(0) = x0

on the interval [0,T ].
The computation of this set can be viewed within either an optimal control or a differential

game framework. Under an optimal control interpretation, the disturbance is assumed to select
a worst-case choice of realization d(·) ∈ DT , in response to a fixed choice of control u(t) = ũ,
∀t ∈ [0,T ], so as to to drive the system state into G. On the other hand, this can be also viewed as a
special case of a differential game on [0,T ] in which the control choice is restricted to the singleton
ũ. Using either interpretation, one can characterize the evolution of the unsafe set through an
appropriate Hamilton-Jacobi equation (Evans and Souganidis, 1984; Bardi and Capuzzo-Dolcetta,
1997; Mitchell et al., 2005).

In particular, suppose that the set G has a level set representation φG : X → R. Let φ : X ×
[−T,0]→ R be the unique viscosity solution (Crandall and Lions, 1983) to the following HJB
equation

∂φ
∂ t

+min
[

0,H
(

x,
∂φ
∂x

)]
= 0, φ(x,0) = φG(x), (3.3)

where the optimal Hamiltonian is given by

H (x, p) = min
d∈D

pT f (qi,x, ũ,d). (3.4)

Then by a special case of the arguments presented in Evans and Souganidis (1984) and Mitchell et
al. (2005), we have

A qi,ũ
T (G) = {x ∈ X ,φ(x,−T )≤ 0} .

Several remarks are in order. First, the minimization with respect to d in equation (3.4) gives
the disturbance a slight advantage, as the disturbance has knowledge of the control input ũ on
[0,T ]. Second, the Hamiltonian in equation (3.4) can be calculated analytically for systems in
which the disturbance enters affinely in the model, namely when the vector field in each mode qi
can be written in the form f (qi,x,u,d) = f̃i(x,u)+gi(x)d, and the disturbance input space takes the
form D = ∏

nd
i=1[di,di]. Note, however, that f̃i is not required to be affine in u. Third, the min[0,H]

formulation in equation (3.3) constrains the reachable set to grow over time, which results in the
property that G⊆A qi,ũ

T (G).
On the computational side, a numerical toolbox (Mitchell, 2007a) is available to compute a

convergent approximation of the viscosity solution to (3.3) on a discrete grid of the continuous
state space X = Rn, based upon an implementation of level set methods (Sethian, 1999; Osher
and Fedkiw, 2002). However, due to the fact that this grid is chosen to be uniform for numerical
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convergence, the computational cost scales exponentially with the continuous state dimension,
which currently limits the application of this method to problems with n≤ 5.

Now consider a discrete reachability operator Reach, taking as its argument a discrete state
q ∈ Q and producing as its output the subset of Q reachable from q in one step:

Reach(q) :=
{

q′ ∈ Q : ∃σ ∈ Σ, δ (q,σ) = q′
}
.

It can be inferred in a straightforward manner that this operator can be computed as Reach(q) =⋃
σ∈Σ δ (q,σ). By the definition of Σ, this union is finite.

Given a set GH =
⋃m

i=1 {qi}×Gi ⊂ Q×X , we define the one-step unsafe set with respect to
GH as follows.

A H
T (GH) =

{
(q,x) ∈ Q×X : ∀(σ , ũ) ∈ Σ×Ũ ,∃d ∈DT , (3.5)

∃t ∈ [0,T ], (q(t),x(t)) ∈ GH} ,
In other words, this is the set of initial conditions which can reach GH within one time step under
an admissible disturbance realization, regardless of the choice of control inputs. The following
result provides a representation for A H

T in terms of the continuous reachability operator A qi,ũ
T and

the discrete reachability operator Reach.

Lemma 3.1. Let GH =
⋃m

i=1 {qi}×Gi ⊂ Q×X. Then

A H
T (GH) =

⋃
qi∈Q

{qi}×Gi∪

 ⋂
q j∈Reach(qi)

⋂
ũ∈Ũ

A
q j,ũ

T (G j)

 . (3.6)

Proof. For notational conveniences, we define V H =
⋃m

i=1 {qi}×Gi∪Vi, where

Vi =
⋂

q j∈Reach(qi)

⋂
ũ∈Ũ

A
q j,ũ

T (G j).

Let (qi,x) ∈ (A H
T (GH))C. By the definition in (3.5), there exists a choice of controls (σ , ũ) ∈

Σ×Ũ such that for every choice of disturbance realization d ∈DT , the one step trajectory of Hsw
initialized at (qi,x) satisfies (q(t),x(t)) /∈ GH , ∀t ∈ [0,T ]. Let q j = δ (qi,σ), then this implies
that x /∈ Gi and x /∈ A

q j,ũ
T (G j), and hence x /∈ Gi ∪Vi. Thus, we have (A H

T (GH))C ⊆ (V H)C, or
equivalently, V H ⊆A H

T (GH).
In order to prove the reverse inclusion, consider a state (qi,x) ∈ (V H)C. Then by the definition

of V H , x /∈ Gi and there exists q j ∈ Reach(qi) and ũ ∈ Ũ such that x /∈A
q j,ũ

T (G j). Let σ ∈ Σ be a
discrete command such that q j = δ (qi,σ). Then under the choice of controls (σ , ũ), the trajectory
of Hsw starting from (qi,x) satisfies (q(t),x(t)) /∈ GH , ∀t ∈ [0,T ], regardless of any admissible
disturbance realization. Thus, (qi,x) /∈ AH

T (G
H), from which it follows that (V H)C ⊆ (A H

T (GH))C,
or equivalently, A H

T (GH)⊆V H .
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We note briefly that under level set representations, computing the union or intersection of sets
reduces to computing the pointwise minimum or maximum of level set functions. Specifically,
suppose φA and φB are level set representations of sets A and B, respectively, then the set A∪B is
represented by min{φA,φB}.

Now consider Algorithm 3.4.1 for computing a horizon-N unsafe set under the policy class M̃ .

Algorithm 3.4.1 Computation of horizon-N Unsafe Set
Require: W H ⊂ Q×X and N ≥ 1

1: V H
0 ⇐ (W H)C

2: for j = 0 to N−1 do
3: V H

j+1⇐A H
T (V H

j )
4: end for
5: return V H

1 , V H
2 ,..., V H

N

Proposition 3.1. Given a sampled-data switched system Hsw and a safe set W H ⊂ Q×X, let V H
N

be the output of Algorithm 3.4.1. Then (V H
N )C is a horizon-N safe set.

Proof. Given µ̃ ∈ M̃ and γ ∈ Γ, we denote by µ̃k→N the sequence (µ̃k, µ̃k+1, ..., µ̃N−1), and by
γk→N the sequence (γk,γk+1, ...,γN−1). The corresponding truncated control policy space and dis-
turbance strategy space are denoted by M̃k→N and Γk→N , respectively. We will prove the following
statement by backward induction on k: there exists a control policy µ̃k→N ∈ M̃k→N such that for
every initial condition (qk,xk) ∈ (V H

N−k)
C and disturbance strategy γk→N ∈ Γk→N , the closed-loop

trajectory of Hsw satisfies (q(t),x(t)) ∈W H , ∀t ∈ [kT,NT ]. Clearly, the statement of the proposi-
tion follows from the case of k = 0.

First, for the case of k = N−1, we have V H
1 = A H

T ((W H)C). By the definition of A H
T in (3.5),

for every (q,x) ∈ (V H
1 )C, there exists a choice of control input (σ , ũ)(q,x) ∈ Σ× Ũ such that for

every disturbance realization d ∈DT , the one step state trajectory satisfies (q(t),x(t)) ∈W H , ∀t ∈
[(N− 1)T,NT ]. Let µ̃∗N−1(q,x) = (σ , ũ)(q,x), ∀(q,x) ∈ (V H

1 )C, then µ̃∗N−1 is a safe control policy
with respect to (V H

1 )C. Second, for the inductive step, we assume that for some j∈{1,2, ...,N−1},
there exists a safe control policy µ̃ j→N ∈ M̃ j→N with respect to (V H

N− j)
C. On the set (V H

N− j+1)
C =

(A H
T (V H

N− j))
C, choose a one step control policy µ̃∗j−1 such that the trajectory of Hsw over [( j−

1)T, jT ] avoids the set V H
N− j (the existence of such a policy is again implied by (3.5)). Then

µ̃ j−1→N = (µ̃∗j−1, µ̃ j→N) is a safe control policy with respect to (V H
N− j+1)

C. The result then follows
by induction.

3.4.2 Safe Control Policies
In the proof of Proposition 3.1, we showed the existence a safe control policy with respect to (V H

N )C

within the restricted policy class M̃ . The question then becomes whether an explicit representation
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for such a policy can be derived. It turns out that the reachable sets generated by Algorithm 3.4.1
provide us with such a representation.

Motivated by the expression for the reachability operator A H
T in (3.6), we construct the follow-

ing set-valued feedback maps for the choice of safe control inputs:

FSa f e
k (q,x) =

{
(σ , ũ) ∈ Σ×Ũ : x /∈A

δ (q,σ),ũ
T (V H

N−k−1(δ (q,σ)))
}
, (3.7)

for (q,x) ∈ (V H
N−k)

C and k = 0,1, ...,N− 1. In the above, we denote by V H
j (qi) the component of

V H
j in mode qi. The following result provides us with a formal proof that these set-valued maps

indeed constitute a finite horizon safe control policy on (V H
N )C.

Proposition 3.2. Let V H
j , j = 1, ...,N be the j-step unsafe sets, as computed using Algorithm 3.4.1.

If (V H
N )C 6= /0, then any control policy µ̃ ∈ M̃ which satisfies

µ̃k(q,x) = FSa f e
k (q,x), ∀(q,x) ∈ (V H

N−k)
C, (3.8)

for k = 0,1, ...,N−1 is a horizon-N safe control policy with respect to (V H
N )C.

Proof. By the representation of the reachability operator A H
T in (3.6), it can be inferred that the

sets V H
j satisfy

V H
0 ⊆V H

1 ⊆ ·· · ⊆V H
N .

Thus, (V H
N )C 6= /0 implies (V H

j )C 6= /0, ∀ j = 0,1, ...,N. Furthermore, given that V H
0 = (W H)C, we

also have (V H
j )C ⊆W H , ∀ j = 0,1, ...,N.

Let µ̃ ∈ M̃ be any control policy which satisfies (3.8). We prove the following statement by
forward induction on k: for any initial condition (q(0),x(0)) ∈ (V H

N )C and disturbance strategy
γ ∈ Γ, the trajectory of Hsw satisfies (q(t),x(t)) ∈W H , ∀t ∈ [0,kT ] and (q(kT ),x(kT )) ∈ (V H

N−k)
C.

The proposition follows from the case of k = N.
For k = 0, it is clear that (q(0),x(0)) ∈ (V H

N )C ⊆W H . For the inductive step, we assume that
for some j ∈ {0,1, ...,N−1}, the system trajectory satisfies (q(t),x(t)) ∈W H , ∀t ∈ [0, jT ] and
(q( jT ),x( jT )) ∈ (V H

N− j)
C, regardless of the disturbance strategy γ ∈ Γ. With the assumption on

µ̃ , we have µ̃ j(q( jT ),x( jT )) = FS
j (q( jT ),x( jT )). From (3.2) and (3.7), it can be then inferred

that for any control input (σ , ũ) ∈ µ̃ j(q( jT ),x( jT )), the one-step trajectory satisfies (q(t),x(t)) ∈
(V H

N− j−1)
C ⊆W H , ∀t ∈ [ jT,( j + 1)T ], regardless of the disturbance realization. The result then

follows by induction.

Using this result, we can compute using Algorithm 3.4.1 the collections of level set functions
representing the sets V H

j in an offline setting, and then use these functions as lookup tables to
extract safe control inputs as state measurements are received. A possible implementation of this
procedure is given in Algorithm 3.4.2.

It should be remarked that given level set representations φ q′,ũ
k of the sets A q′,ũ

T (V H
N−k−1(q

′)),

checking the condition x(kT ) /∈A q′,ũ
T (V H

N−k−1(q
′)) is equivalent to checking the condition

φ q′,ũ
k (x(kT ))> 0.
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Algorithm 3.4.2 Online Implementation of Finite Horizon Safe Control Policy
Require: V H

j , j = 1, ...,N, (q(0),x(0)) ∈ (V H
N )C

1: for k = 0 to N−1 do
2: FSa f e

k ⇐ /0;
3: Measure state (q(kT ),x(kT ));
4: for all (σ , ũ) ∈ Σ×Ũ do
5: q′⇐ δ (q(kT ),σ);
6: if x(kT ) /∈A q′,ũ

T (V H
N−k−1(q

′)) then
7: Add (σ , ũ) to FSa f e

k ;
8: end if
9: end for

10: Apply input (σk, ũk) ∈ FSa f e
k

11: end for

3.4.3 Infinite Horizon Safety Problem
Now consider an extension of the finite horizon safety control problem as discussed in the preced-
ing sections to the case in which the control objective is to keep the system trajectory within a safe
set W H for all times. Specifically, we are interested in computing a set G∞

Sa f e ⊂ Q×X such that
there exists an admissible control policy µ ∈M so that for any initial condition (q0,x0) ∈ G∞

Sa f e
and disturbance strategy γ ∈ Γ, the closed-loop state trajectory (q(·),x(·)) satisfies (q(t),x(t)) ∈
W H for all t ≥ 0. Furthermore, we would like to derive an infinite horizon safe control policy from
the result of such a computation.

As observed in the proof of Proposition 3.2, the sequence of unsafe sets V H
j , j = 0,1, · · · , as

computed by Algorithm 3.4.1 satisfies the following monotonicity condition:

V H
0 ⊆V H

1 ⊆V H
2 ⊆ ·· · .

It is then intuitive that if V H
j gradually stops growing with successive iterations of the algorithm

and converges to a maximal unsafe set V H
∞ , the set of all states which lie outside V H

∞ is an infinite
horizon safe set.

More precisely, suppose that Algorithm 3.4.1 converges to a fixed point of the operator A H
T

within a finite number of iterations, namely

V H
N0+1 = A H

T (V H
N0
) =V H

N0
, for some N0 < ∞. (3.9)

Then by induction, it can be inferred that V H
N = V H

N0
, ∀N ≥ N0. Applying Proposition 3.1, it then

follows that (V H
N0
)C is a horizon-N safe set for every N ≥ N0, and hence an infinite horizon safe set.

In the case that this set is nonempty, we can also derive an infinite horizon safe control policy from
the representation of V H

N0
. Specifically, consider the set of safe control inputs defined by

FSa f e(q,x) =
{
(σ , ũ) ∈ Σ×Ũ : x /∈A

δ (q,σ),ũ
T (V H

N0
(δ (q,σ)))

}
. (3.10)
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Then by a similar argument as in the proof of Proposition 3.2, any stationary policy µ̃ =(µ̃, µ̃, ...)∈
M̃ which satisfies

µ̃(q,x) = FSa f e(q,x), ∀(q,x) ∈ (V H
N0
)C

is an infinite horizon safe control policy with respect to (V H
N0
)C. An algorithm for implementing

such a control policy can be constructed similarly as Algorithm 3.4.2.
In the literature, conditions under which (3.9) holds have been studied in terms of the concept

of decidability, which in this case concerns whether an infinite horizon reachability question can
be answered by a finite computation. To the best of our knowledge, currently known decidability
results for hybrid systems reachability are restricted to the class of timed automata, linear hybrid
automata, and linear continuous dynamics with special structures (Henzinger et al., 1998; Alur
et al., 2000). Nonetheless, for certain classes of problems in nonlinear differential games, it has
been shown that a maximal unsafe set exists (Isaacs, 1967; Merz, 1972), and that a numerical
reachability computation indeed converges to such a set (Mitchell et al., 2005). In such cases, one
may check (3.9) in terms of the convergence of the level set functions representing V H

j .
Revisiting the aircraft conflict resolution example from Section 3.2, consider a safety control

problem where we would like to keep the relative aircraft states away from a collision zone as
defined by

WC
i =

{
x ∈ R3 :

√
x2

1 + x2
2 ≤ r0

}
, i = 1,2

for some positive radius r0 > 0. For the reachability computation, we select the input bounds
for aircraft 1 and aircraft 2 as follows: in mode 1, the velocity range of aircraft 1 is chosen
to be U1 = [400 kts,500 kts], with a constant heading input ω0 = 0; in mode 2, the velocity
of aircraft 1 is fixed at v0 = 450 kts, while the angular velocity is allowed to vary within the
range U2 = [−2 deg/s,2 deg/s]; in both modes, the aircraft 2 input ranges are chosen to be D1 =
[400 kts,500 kts] and D2 = [−1 deg/s,1 deg/s]. The collision zone radius is set as r0 = 5 nmi, while
the sampling interval is set as T = 10 sec.

With a uniform discretization of U1 and U2 into 11 input levels, we perform an unsafe set
computation using Algorithm 3.4.1. In this case, it was found that this computation converges to
within numerical accuracy of a fixed point after about 7 time steps. The resulting infinite horizon
unsafe set (G∞

Sa f e)
C is shown in Figure 3.2 along with the collision zone (W H)C. To illustrate

the set-valued control policy obtained from this computation, we take a slice of the unsafe sets
A q1,500

T ((G∞
Sa f e(q1))

C) and A q2,2
T ((G∞

Sa f e(q2))
C) at a relative heading angle of π radians (a sce-

nario in which the two aircraft are directly facing each other). According to (3.10), in the comple-
ment of the set A q1,500

T ((G∞
Sa f e(q1))

C), one can choose the straight maneuver (σ1,500 kts) as the

safe input, while in the complement of A q2,2
T ((G∞

Sa f e(q2))
C), one can choose the turn maneuver

(σ2,2 deg/s).
From the result of this reachability computation, the infinite horizon safety controller is syn-

thesized and implemented in simulation using Algorithm 3.4.2, with aircraft 2 applying random
inputs chosen from within its input ranges D1 and D2. A sample run of this simulation is given in
Figure 3.3, in which aircraft 1 successfully avoids a collision with aircraft 2 over a 4 minute time
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Figure 3.2: Results of infinite horizon reachability calculations for two aircraft conflict resolution
example: (a) Infinite horizon unsafe set; (b) Slice of unsafe set at relative angle of π radians.

horizon. In this case, we ran a MATLAB implementation of Algorithm 3.4.2 on a 2 GHz Intel
Xeon processor with 4 GB of memory, and the average computation time for each iteration of the
algorithm was found to be approximately 0.1 seconds.

3.5 Reach-avoid Controller Synthesis
Using a similar approach as in the safety problem, we now discuss a solution to the finite horizon
reach-avoid problem under Assumption 3.1. In particular, a reachability algorithm is given for
computing the set of states reachable to a target set RH while avoiding an unsafe set AH , under the
quantized policy space M̃ , along with a procedure for synthesizing a reach-avoid control policy
from the result of this computation.

3.5.1 Reach-avoid Set Computation
For the objective of reaching a target set, we introduce a continuous state reachability operator
Rqi,ũ, taking as its argument a set G ⊆ X and producing as its output the set of states that can be
controlled inside G at time T , regardless of the disturbance realization:

Rqi,ũ
T (G) ={x0 ∈ X : ∀d(·) ∈DT , x(T ) ∈ G} ,

where x(·) is the solution of the ODE ẋ(t) = f (qi,x(t), ũ,d(t)), x(0) = x0 on the interval [0,T ].
The computation of Rqi,ũ

T (G) can be also viewed from a differential game perspective, in which
the control chooses an input u(t) = ũ, ∀t ∈ [0,T ] so as to achieve x(T ) ∈ G, while the disturbance
selects, in response, a realization d(·) ∈ DT so as to prevent the control from doing so. An HJB
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Figure 3.3: Sample simulation run of two aircraft conflict resolution example.

equation encoding this terminal cost problem is given by

∂φ
∂ t

+H
(

x,
∂φ
∂x

)
= 0, φ(x,0) = φG(x), (3.11)

with the optimal Hamiltonian

H (x, p) = max
d∈D

pT f (qi,x, ũ,d). (3.12)

Let φ be the unique viscosity solution to (3.11), then by an application of the results in Evans and
Souganidis (1984), it follows that

Rqi,ũ
T (G) = {x ∈ X ,φ(x,−T )≤ 0} .

Given a target set G1 ⊂ X and an avoid set G2 ⊂ X , consider a one step reach-avoid operator
for mode qi under input ũ as defined by

RA qi,ũ
T (G1,G2) = {x0 ∈ X : ∀d(·) ∈DT ,(x(T ) ∈ G1)∧ (x(t) /∈ G2, ∀t ∈ [0,T ])} .
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From the definitions of the operators A qi,ũ
T and Rqi,ũ

T , it can be inferred in a straightforward
manner that

RA qi,ũ
T (G1,G2) = Rqi,ũ

T (G1)∩ (A qi,ũ
T (G2))

C.

Now consider a one step reach-avoid operator for the switched system Hsw as defined by

RA H
T (G

H
1 ,G

H
2 ) =

{
(q,x) : ∃(σ , ũ) ∈ Σ×Ũ ,∀d ∈DT , (3.13)

((q(T ),x(T )) ∈ GH
1 )∧ ((q(t),x(t)) /∈ GH

2 , ∀t ∈ [0,T ])
}
,

where GH
1 =

⋃m
i=1 {qi}×G1,i and GH

2 =
⋃m

i=1 {qi}×G2,i are subsets of Q×X . In other words, this
is the set of states reachable to GH

1 at the end of a sampling interval, while avoiding GH
2 throughout.

The following result provides a charaterization of this operator in terms of a combination of discrete
and continuous reachability computations.

Lemma 3.2. Let GH
1 =

⋃m
i=1 {qi}×G1,i ⊂ Q×X and GH

2 =
⋃m

i=1 {qi}×G2,i ⊂ Q×X. Then

RA H
T (G

H
1 ,G

H
2 ) =

⋃
qi∈Q

{qi}× (G2,i)
C∩

 ⋃
q j∈Reach(qi)

⋃
ũ∈Ũ

RA
q j,ũ
T (G1, j,G2, j)

 . (3.14)

Proof. For notational conveniences, we define V H =
⋃m

i=1 {qi}× (G2,i)
C∩Vi, where

Vi =
⋃

q j∈Reach(qi)

⋃
ũ∈Ũ

RA
q j,ũ
T (G1, j,G2, j).

Let (qi,x) ∈RA H
T (G

H
1 ,G

H
2 ). By the definition in (3.13), there exists a choice of controls (σ , ũ) ∈

Σ×Ũ such that for every choice of disturbance realization d ∈DT , the one step trajectory of Hsw
initialized at (qi,x) satisfies (q(T ),x(T ))∈GH

1 and (q(t),x(t)) /∈GH
2 , ∀t ∈ [0,T ]. Let q j = δ (qi,σ),

then this implies that x /∈ G2,i and x ∈RA
q j,ũ
T (G1, j,G2, j), and hence x ∈ (G2,i)

C ∩Vi. Thus, we
have RA H

T (G
H
1 ,G

H
2 )⊆V H .

In order to prove the reverse inclusion, consider a state (qi,x) ∈ V H . Then by the definition
of V H , x /∈ G2,i and there exists q j ∈ Reach(qi) and ũ ∈ Ũ such that x ∈RA

q j,ũ
T (G1, j,G2, j). Let

σ ∈ Σ be a discrete command such that q j = δ (qi,σ). Then under the choice of controls (σ , ũ), the
trajectory of Hsw starting from (qi,x) satisfies (q(T ),x(T ))∈GH

1 and (q(t),x(t)) /∈GH
2 , ∀t ∈ [0,T ],

regardless of any admissible disturbance realization. Thus, (qi,x) ∈RA H
T (G

H
1 ,G

H
2 ), from which

it follows that V H ⊆RA H
T (G

H
1 ,G

H
2 ).

Now consider Algorithm 3.5.1 for computing a horizon-N reach-avoid set under quantized
control policies.

Proposition 3.3. Given a sampled-data switched system Hsw, a target set RH ⊂ Q×X and an
avoid set AH ⊂ Q×X, let SH

N be the output of Algorithm 3.5.1. Then SH
N is a horizon-N reach-

avoid set.
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Algorithm 3.5.1 Computation of Finite Horizon Reach-avoid Set
Require: RH ,AH ⊂ Q×X

1: SH
0 ⇐ RH \AH

2: for j = 0 to N−1 do
3: SH

j+1⇐RA H
T (S

H
j ,A

H)∪SH
j ;

4: end for
5: return SH

1 , SH
2 , ..., SH

N

Proof. Similarly as in the proof of Proposition 3.1, we will prove the following statement by
backwards induction on k: there exists µ̃k→N ∈ M̃k→N such that for every initial condition (q,x) ∈
SH

N−k \RH and γk→N ∈ Γk→N , the trajectory of Hsw satisfies (q((k+ 1)T ),x((k+ 1)T )) ∈ SH
N−k,

(q( jT ),x( jT ))∈ RH for some j ∈ {k+1, ...,N} and (q(t),x(t)) /∈ AH , ∀t ∈ [kT, jT ]. The statement
of the proposition again follows from the case of k = 0.

First, for k = N− 1, we have SH
1 = RA H

T (S
H
0 ,A

H)∪ SH
0 , where SH

0 = RH \AH . By the def-
inition of RA H

T in (3.13), for every (q,x) ∈ RA H
T (S

H
0 ,A

H), there exists a choice of controls
(σ , ũ)(q,x) ∈ Σ× Ũ such that for every disturbance realization d ∈ DT , the closed-loop trajectory
satisfies (q(NT ),x(NT )) ∈ RH and (q(t),x(t)) /∈ AH , ∀t ∈ [(N− 1)T,NT ]. Let µ̃∗N−1 be any one
step policy which satisfies µ̃∗N−1(q,x) = (σ , ũ)(q,x), ∀(q,x) ∈ RA H

T (S
H
0 ,A

H), then µ∗N−1 has the
required properties.

Next, suppose that the induction hypothesis holds for some j ∈ {1,2, ...,N−1}. Then there
exists a reach-avoid control policy µ̃ j→N = (µ̃ j, µ̃ j+1, ..., µ̃N−1) with respect to SH

N− j. Further-
more, under the one step policy µ̃ j, the closed-loop trajectory starting from any initial condi-
tion in SH

N− j \RH satisfies (q(( j + 1)T ),x(( j + 1)T )) ∈ SH
N− j. Now consider an initial condition

(q,x) ∈RA H
T (S

H
N− j,A

H). By (3.13), there exists a choice of controls (σ , ũ)(q,x) ∈ Σ×Ũ such that
the one step trajectory of Hsw satisfies (q(( j + 1)T ),x(( j + 1)T )) ∈ SH

N− j and (q(t),x(t)) /∈ AH ,
∀t ∈ [ jT,( j+1)T ]. Choose a one step policy µ̃∗j−1 as follows:

µ̃∗j−1(q,x) =

{
µ̃ j(q,x), (q,x) ∈ SH

N− j

(σ , ũ)(q,x), (q,x) ∈ SH
N− j+1 \SH

N− j.

Then µ̃ j−1→N = (µ̃∗j−1, µ̃ j→N) is a control policy with the required properties. The desired result
then follows by induction.

3.5.2 Reach-avoid Control Policy
As in the case of the safety control problem, one can derive an explicit representation of the reach-
avoid control policy from the reachability computation in Algorithm 3.5.1. In particular, suppose
that SH

0 = RH \AH 6= /0, we define a function kmin : SH
N →{0,1, ...,N} by

kmin(q,x) = min
{

j ∈ {0,1, ...,N} : (q,x) ∈ SH
j
}
.
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This can be interpreted as the minimum time to reach at a feasible initial condition (q,x) ∈ SH
N ,

with respect to the quantized control policy space M̃ .
At a state (q,x)∈ SH

N \SH
0 , consider the set of feasible control inputs for the reach-avoid problem

as defined by

FRA(q,x) =
{
(σ , ũ) ∈ Σ×Ũ : (3.15)

x ∈RA
δ (q,σ),ũ
T (SH

kmin(q,x)−1(δ (q,σ)),AH(δ (q,σ)))
}

It can be checked in a straightforward manner that this set is nonempty for every (q,x) ∈ SH
N \SH

0 .
For (q,x) ∈ SH

0 , we define FRA(q,x) = Σ×Ũ .

Proposition 3.4. Let SH
j , j = 1, ...,N be the j-step reach-avoid sets, as computed through Algo-

rithm 3.5.1. If RH \AH 6= /0, then any control policy µ̃ ∈ M̃ which satisfies

µ̃k(q,x) = FRA(q,x), ∀(q,x) ∈ SH
N , (3.16)

for k = 0,1, ...,N−1, is a horizon-N reach-avoid control policy with respect to SH
N .

Proof. Let µ̃ ∈ M̃ be any control policy which satisfies (3.16). We prove the following statement
by forward induction on k: for any initial condition (q(0),x(0)) ∈ SH

N and disturbance strategy
γ ∈ Γ, the trajectory of Hsw on [0,kT ] satisfies at least one of the following conditions:

1. ∃l ≤ k, (q(lT ),x(lT )) ∈ SH
0 and (q(t),x(t)) /∈ AH , ∀t ∈ [0, lT ];

2. (q(kT ),x(kT )) ∈ SH
N−k and (q(t),x(t)) /∈ AH , ∀t ∈ [0,kT ].

The proposition then follows from the case of k = N.
Let (q(0),x(0)) ∈ SH

N and γ ∈ Γ. For k = 0, we have by the definition of the operator RA H
T

in (3.13) and the set SH
0 in Algorithm 3.5.1 that SH

N ⊆ (AH)C. For the inductive step, we as-
sume that either condition 1 or condition 2 holds for some j ∈ {0,1, ...,N−1}. If condition
1 holds for the trajectory on [0, jT ], then clearly this condition also holds for the trajectory on
[0,( j + 1)T ]. Otherwise, condition 2 holds, which implies that (q( jT ),x( jT )) ∈ SH

N− j \ SH
0 . Let

k0 = kmin(q( jT ),x( jT )). From the definition of kmin, we can infer that 0 < k0 ≤ N− j and that
(q( jT ),x( jT ))∈ SH

k0
\SH

k0−1. Thus, (q( jT ),x( jT ))∈RA H
T (S

H
k0−1,A

H), and for any choice of con-
trol (σ j,u j) ∈ FRA(q( jT ),x( jT )), the resulting one step trajectory satisfies (q(( j + 1)T ),x(( j +
1)T )) ∈ SH

k0−1 and (q(t),x(t)) /∈ AH , ∀t ∈ [ jT,( j+1)T ]. By the assumption on the control policy
µ̃ and the observation that SH

k0−1 ⊆ SH
N− j−1, it then follows that condition 2 holds on [0,( j+1)T ].

The result then follows by induction.

Similarly as in the safety problem, we can compute the collections of level set functions rep-
resenting SH

j using Algorithm 3.5.1. These functions can be then stored as lookup tables for the
online extraction of control inputs, for example, according to Algorithm 3.5.2.

Similarly as in the implementation of the safe control policy, checking the set-membership
conditions in Algorithm 3.5.2 is equivalent to checking inequality conditions with respect to level
set representations of the sets SH

j and RA q′,ũ
T (SH

j−1(q
′),AH(q′)).

61



Algorithm 3.5.2 Online Implementation of Finite Horizon Reach-avoid Control Policy
Require: SH

j , j = 1, ...,N, (q(0),x(0)) ∈ SH
N

1: for k = 0 to N−1 do
2: Measure state (q(kT ),x(kT ))
3: if (q(kT ),x(kT )) ∈ RH \AH then
4: Terminate algorithm;
5: else
6: FRA⇐ /0
7: Find minimum j such that (q(kT ),x(kT )) ∈ SH

j ;
8: for all (σ , ũ) ∈ Σ×Ũ do
9: q′⇐ δ (q(kT ),σ);

10: if x(kT ) ∈RA q′,ũ
T (SH

j−1(q
′),AH(q′)) then

11: Add (σ , ũ) to FRA;
12: end if
13: end for
14: Apply input (σk, ũk) ∈ FRA;
15: end if
16: end for

3.6 Experimental Results
In this section, we will discuss an experimental application of the proposed controller synthesis
algorithms to a quadrotor helicopter platform – the Stanford Testbed of Autonomous Rotorcraft
for Multi-Agent Control (STARMAC). For a comprehensive overview of the development of this
platform and its aerodynamic modeling, the interested reader may refer to Hoffmann et al. (2007).
In our experiments, a hover control problem is considered, with the objective of controlling a
quadrotor helicopter to reach a hover region over a stationary or moving ground target, while
satisfying a velocity constraint, and then remain within the hover region, regardless of possible
movements by the ground target (see Figure 3.4).

Given a previously designed inner attitude control loop, the hover control problem involves
the selection of pitch and roll angles in order to effect changes in the position and velocity of
the quadrotor. In particular, the pitch and roll commands are selected from a discrete set, thus
resulting in a switching control problem. Under these commands, the relative dynamics between
the quadrotor and the ground target can be modeled as follows.

ẋ1
ẋ2
ẏ1
ẏ2

=


x2 +d1

gsin(φ)+d2
y2 +d3

gsin(−θ)+d4

 (3.17)

Here, the state variables x1, x2 and y1, y2 denote the relative position and velocity between the
quadrotor and the ground target, in the x and y directions, respectively; φ and θ are the roll and
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Figure 3.4: Setup of hover control experiments. Here the ground target is a radio-controlled car.

pitch angles of the quadrotor; g denotes the gravitational constant; d = (d1,d2,d3,d4) is a set of
disturbance parameters. In particular, d1 and d3 are used to capture the effects of unmodelled
dynamics, while d2 and d4 represent motor noise and also the acceleration of the ground target.

In the experiment scenario, the hover region can be encoded as a set W H ⊂R4 centered around
the origin in the relative position-velocity space. Similarly, the velocity constraint can be encoded
as an avoid region AH ⊂ R4. A brief summary of the problem parameters is given below.

• Hover Region (W H): |x1|, |y1| ≤ 0.3 m, |x2|, |y2| ≤ 0.5 m/s

• Avoid Region (AH): |x2|, |y2|> 1 m/s

• Time Step (T ): 0.1 seconds

• Time Horizon for Reaching W H (N): 25 time steps

• Range of Attitude Commands (φ ,θ ): -10, -7.5, -5, -2.5, 0, 2.5, 5, 7.5, 10 degrees

• Disturbance Bounds: |d1|, |d3| ≤ 0.1 m/s, |d2|, |d4| ≤ 0.5 m/s2

It is important to note that the choice of disturbance bounds is a trade-off between the level of
robustness and the feasibility of the control problem. Although a larger disturbance bound may
account for a wider range of uncertainties, the feasible set for the controller would in general also
be smaller (possibly empty if the bound is sufficiently large). The bounds given here for d1,d3
represent about ±10% of the maximum allowed velocity, while the bounds on d2,d4 represent
about ±30% of the maximum allowed acceleration.

We observe that the hover control problem as defined above is a particular instantiation of
Problem 2.2 given in section 2.4.2 for a semiautomated sequential transition system. In particular,
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the problem can be separated into two stages. During the first stage, the objective is to reach the
hover region W H in finite time while avoiding AH (a reach-avoid problem). During the second
stage, the objective is to remain inside the hover region W H (an invariance problem). Thus, we can
employ a design procedure that is specialized from the one given in section 2.6.2.

1. Use the method in section 3.4.3 to compute an infinite horizon safe set G∞
Sa f e with respect to

W H and an infinite horizon safe control policy FSa f e with respect to G∞
Sa f e.

2. If G∞
Sa f e 6= /0, choose a target set RH ⊆ G∞

Sa f e.

3. Use the method in section 3.5 to compute a horizon-N reach-avoid set GN
RA with respect to

RH and AH , as well as a horizon-N reach-avoid control policy FRA with respect to GN
RA.

4. Choose a switching policy as follows. In stage 1, select control inputs according to FRA until
(q(kT ),x(kT )) ∈ RH for some k ∈ {0,1, ...,N}, then switch to FSa f e.

Following this procedure, we first compute an infinite horizon safe set G∞
Sa f e ⊂W H for which

the hover objective is feasible. This set is plotted in Figure 3.5. For the finite horizon reach-avoid
problem, we select the target set as RH = {(x1,x2,y1,y2) : |x1|, |y1| ≤ 0.2m, |x2|, |y2| ≤ 0.2m/s} ⊂
G∞

Sa f e.

Figure 3.5: Infinite horizon safe set (dashed line) computed for hover objective. Inner rectangle is
the target region chosen for reach-avoid problem.

Using the procedures given in section 3.5, we then compute the set of initial conditions which
can reach the target set RH within the time horizon of interest, while satisfying the velocity con-
straint AH . Some examples of the sets SH

j , j = 1,2, ...,25, as generated by Algorithm 3.5.1, are
plotted in Figure 3.6.
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(a) (b)

Figure 3.6: Finite horizon reach-avoid sets (dashed lines): (a) sets SH
1 (inner-most line) through

SH
10 (outer-most line); (b) sets SH

21 (inner-most line) through SH
25 (outer-most line).

The level set representations of the safe sets and reach-avoid sets, as computed in an offline
setting, are stored in lookup table form in the on-board computer. During the experiments, the
online selection of control inputs are carried out through an implementation of Algorithms 3.4.2
and 3.5.2. In particular, we obtain sampled measurements of the quadrotor and ground target
positions from a VICON camera system. The position measurements are used to estimate the
velocity through a first order finite difference scheme. These state values are then used to compute
the relative states and select the appropriate pitch and roll commands by checking containment of
the current state in particular safe sets or reach-avoid sets. As discussed in sections 3.4.2 and 3.5.2,
this check can be performed by checking inequalities with respect to level set representations of
stored reachable sets. Given that the VICON system resolves positions to the order of 10−3m, the
assumption on precise state measurements is reasonably accurate for these experiments.

The results of an experimental trial in which the ground target is stationary is shown in Figure
3.7. Here the quadrotor is initialized at a state (x1,x2,y1,y2) = (1,0,1.1,0) m, inside the reach-
avoid set SH

25, with the ground target placed at the origin. In the first stage of the experiment, the
reach-avoid controller is shown to drive the system trajectory inside the target set RH within about
1.8 seconds (the allowed time horizon is 2.5 seconds), without exceeding the admissible velocity
bounds of ±1 m/s. For the second stage of the experiment, the safety controller is shown to keep
the system state within the hover region W H for almost the entire remaining 33 seconds of the
experiment, except for a brief violation of about 0.2 seconds in duration. The violation can be in
part attributed to an observed lag in system response under attitude control commands, which can
be accounted for either through a higher order system model or by enlarging the disturbance bound
estimates reported here.

From a plot of the attitude commands issued during the first 5 seconds of this experiment
(see Figure 3.8), it can be observed that the reach-avoid controller has the characteristics of a
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minimum-time-to-reach controller. Namely, an aggressive acceleration action is applied until the
state trajectory approaches the velocity constraint, after which an aggressive deceleration action is
applied as the quadrotor nears the origin. On the other hand, during the hover phase, the safety
controller has the characteristics of a least restrictive controller. Namely, it intervenes only when
there is a possibility that the state trajectory will exit the hover region.

(a) (b)

Figure 3.7: Results from hover control experiment over 35 Seconds: (a) x-position (m) and
x-velocity (m/s) trajectory of STARMAC; (b) y-position (m) and y-velocity (m/s) trajectory of
STARMAC.

The trajectory plot from an experimental trial with a moving ground vehicle is shown in Fig-
ure 3.9. In this case, the quadrotor first reaches the hover region over the ground vehicle within
2.1 seconds and then proceeds to track the unplanned movements of the ground vehicle over the
course of approximately 44 seconds. The results show that the quadrotor vehicle indeed remains
within the hover region, except for two brief violations due to occasional bursts of acceleration
by the ground vehicle not accounted for in the disturbance bound estimates. As in the previous
experiment, the hover region is quickly recovered within 0.1s and 0.6s, respectively, using the
reach-avoid control law (3.16).

3.7 Application to Sequential Reachability Problems
In order to illustrate how the controller synthesis procedure described in this chapter can be applied
to problems with sequential reachability objectives, we will revisit in this section the example
of automated aerial refueling (AAR) as introduced in Section 2.8. In particular, we consider the
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Figure 3.8: Control input plots for hover control experiment over 5 second interval.

(a) (b)

Figure 3.9: Results from car following experiment: (a) x-Position (m) and y-Position (m) trajecto-
ries of STARMAC and ground vehicle over 44 second; (b) Snapshot of trajectories at t = 19.5.

problem of synthesizing the control law for each maneuver in the refueling sequence as a switching
control policy between a finite set of flight modes.

More specifically, we assume the system dynamics and the specifications of target sets and
avoid sets as given in Section 2.8 of the preceding chapter. For each maneuver in the refueling
sequence, we will use the two-mode flight control system from section 3.2 for the synthesis of
UAV controls (see Figure 3.1) to satisfy the reach-avoid objective. In the straight mode, the linear
velocity bounds are given by [u1,u1] = [40,113] m/s, with three quantization levels; while in
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the turn mode, the angular velocity bounds are given by [u2,u2] = [−π/6,π/6] rad/s, with two
quantization levels.

Now consider the sequential reachability problem with reach-avoid objectives (Problem 2.1),
within the context of AAR. The control design can be carried out as a specialization of the proce-
dure outlined in section 2.6.1, starting with the Rejoin maneuver ( j = 6).

1. Use the method in section 3.5 to compute a reach-avoid set GN j
RA with respect to R j and A j,

until the first integer N j such that R j−1 ⊂ GN j
RA.

2. Use equation (3.16) to synthesize a reach-avoid control policy FRA
j with respect to GN j

RA.

3. Repeat the above steps for maneuver j−1 until the Detach 1 maneuver ( j = 1). For Detach
1, set R0 = X0.

4. Choose a switching policy as follows. In maneuvers j = 0,1, ...,5, select control inputs
according to FRA

j until (q(kT ),x(kT )) ∈ R j for some k ∈
{

0,1, ...,N j
}

, then reset k to zero
and switch to FRA

j+1.

A reach-avoid set calculation is performed using Algorithm 3.5.1, with sampling interval T =
0.1 seconds, for each of the refueling maneuvers. The reach-avoid set for the Contact maneuver
is shown in Figure 3.10, computed over a time horizon of 2.1 seconds. Note that for convenience,
we translated the target set to the origin in these computations.

Figure 3.10: Finite horizon reach-avoid set for Contact maneuver: (a) surface plot in relative
coordinate space; (b) cross-section at relative angle x3 = 0 degrees.

To validate the resulting reach-avoid sets, a trajectory simulation is performed of the entire
aerial refueling sequence. At the beginning of each sampling interval, the UAV receives a state
measurement of the relative position and velocity and selects a control input according to the
feedback law (3.16). The tanker aircraft then selects a random velocity input from within its input
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bounds. The system dynamics is then integrated forward in time according to equation (2.8).
The simulation results are given in Figure 3.11, and the plot of the state trajectory in the relative
coordinate space is shown in Figure 3.12.

Figure 3.11: Automated aerial refueling sequence simulation sample run.

As can be seen, the UAV successfully avoids a collision with the tanker aircraft, regardless of
the random fluctuations of tanker velocity, and completes the entire refueling sequence (excluding
the time spent refueling) within 7 seconds. Although not investigated here, extensions to invariance
objectives can be carried out by designing infinite horizon safety controllers with respect to the
target neighborhoods Wj, and ensuring compatibility between the stationary and transition modes
through a specialization of the procedure given in section 2.6.2.
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Figure 3.12: Refueling sequence trajectory simulation in relative coordinate space: (a) side view;
(b) top-down view.
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Part II

Discrete Time Stochastic Hybrid Systems
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Chapter 4

Stochastic Game Formulation of
Probabilistic Reachability

4.1 Overview and Related Work
In the second part of the dissertation, we will shift our focus to probabilistic reachability problems
for stochastic hybrid systems (SHS). The primary difference between a stochastic hybrid system
as compared with a deterministic hybrid automaton lies in the model of uncertainty. In the case
of a deterministic hybrid system model, such as the one discussed in section 2.3.1, uncertainty in
system dynamics is captured through the notion of sets. In particular, the set of admissible distur-
bance inputs as specified by the disturbance input spaces, along with the set of admissible discrete
transitions as specified by the reset relation, implicitly define a set of admissible system trajectories
under a particular choice of initial condition and control input. In the case of a stochastic hybrid
system model, such as proposed in Altman and Gaitsgory (1997); Hu et al. (2000); Bujorianu and
Lygeros (2004); Amin et al. (2006), uncertainty in state evolution is captured through the notion
of probability distributions. Speaking somewhat informally, through the introduction of transition
probabilities, stochastic differential/difference equations, or transition rates, one implicitly defines
a probability distribution over the set of possible executions of a hybrid system.

From a theoretical standpoint, probabilistic models can be viewed as a generalization of deter-
ministic models. Namely, the support of a probability distribution can be interpreted as the set of
possible outcomes, while the distribution itself can be interpreted as a quantitative measure of the
likelihood of possible outcomes. It is then tempting to conclude that deterministic systems can be
studied as special cases of stochastic systems. In practice, however, analysis and computational
tools developed for stochastic systems often does not specialize directly to deterministic systems,
due to the fact that deterministic dynamics result in degenerate transition probabilities (i.e. proba-
bility distributions with mass concentrated at a single point). Furthermore, even if it were possible
in certain instances to adapt stochastic techniques to deterministic systems, the process of doing so
may overcomplicate the analysis and obscure the intuition behind deterministic problems. Thus,
the methods that will be presented for addressing probabilistic reachability problems should not be
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interpreted as a generalization of methods addressing deterministic reachability problems. Rather,
they should be viewed as an adaptation of reachability analysis to different application scenarios.

Within an application context, there are several possible reasons for employing a probabilistic
model as compared with a deterministic model. For cases in which the possible variations in
system behavior is not known a priori or cannot be conservatively estimated, it may be necessary
to model the uncertainties through statistical analysis of empirical data, collected from multiple
runs of the system. The resulting model would then have a probabilistic interpretation, namely
the probability distribution over the set of possible executions is a quantitative measure of the
likelihood that subsets of trajectory, referred to as events, will occur. There are also cases in which
the disturbances affecting system dynamics are known to fluctuate within a large range (e.g. wind
effects on aircraft trajectory). For such cases, if one were to design controllers with respect to the
worst-case realizations of the disturbances, the resulting controllers may be overly conservative.
To reduce the conservatism, one may consider adopting a probabilistic disturbance model, which
provides an estimate for the likelihood of possible disturbance events. Controller design can be
then carried out with respect to probabilistic measures of performance. Finally, if one’s objective
is to model the aggregate behavior of a large scale system, for example the behavior of economic
indices, then a natural modeling framework would be that of a stochastic system. In such cases,
the quantitative values of the state variables are generated by the outcomes of a large number of
concurrent dynamic processes (e.g. economic activities). As a complete deterministic description
of such processes would be intractable for analysis and decision making, a statistical model is often
employed instead. In particular, when a variable of interest corresponds to a sum or an average of
quantities generated by the underlying processes, then a Gaussian model is a reasonable first order
approximation by the Central Limit Theorem.

In the hybrid systems literature, stochastic models have been proposed for application scenar-
ios ranging from air traffic management (Glover and Lygeros, 2004), communication networks
(Hespanha, 2004), to systems biology (Hu et al., 2004). For a controlled SHS, the performance of
the closed-loop system can be measured in terms of the probability that the system trajectory obeys
certain desired specifications. Of interest to safety-critical applications are probabilistic safety and
reachability problems in which the control objective is to maximize the probability of remaining
within a certain safe set or of reaching a desired target set. In the continuous-time case, a theo-
retical upper bound on the reachability probability is derived in Bujorianu (2004) using Dirichlet
forms. The temporal evolution of the probability density function of the hybrid state has been
characterized through generalized Fokker-Planck equations (Bect et al., 2006). Optimal control of
stochastic hybrid systems is considered in Bensoussan and Menaldi (2000) and quasi-variational
inequalities based on dynamic programming are derived for the optimal trajectory. An optimal
control approach towards reachability analysis is discussed in Koutsoukos and Riley (2006) and
Mohajerin Esfahani et al. (2011), in which the solutions of probabilistic safety and reachability
problems are derived in terms of the viscosity solutions of appropriate Hamiltion-Jacobi-Bellman
equations. To address the computational issues associated with probabilistic reachability analysis,
the authors in Hu et al. (2005) propose a Markov chain approximation of the SHS using methods
from Kushner and Dupuis (1992), while in Prajna et al. (2007), the authors discuss an approach
for computing an upper bound on the safety probability using barrier certificates. For discrete-time
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stochastic hybrid systems (DTSHS), a theoretical framework for the study of probabilistic safety
problems is established in Abate et al. (2008). These results are generalized in Summers and
Lygeros (2010) to address the reach-avoid problem, in which the control objective is to reach a de-
sired target set, while remaining within a safe set. Considerations for time-varying and stochastic
sets are discussed in Abate et al. (2006) and Summers et al. (2011) respectively.

Recently, we extended the probabilistic safety and reachability of DTSHS, as studied in Abate
et al. (2008) and Summers and Lygeros (2010), to a zero-sum stochastic game setting (Kamgarpour
et al., 2011). In particular, we considered a scenario in which the evolution of the system state
is affected not only by the actions of the control (as in previous work), but also by the actions
of a rational adversary, whose objectives are opposed to that of the control. This is motivated by
practical applications such as conflict resolution in air traffic management (Tomlin et al., 2002) and
control of networked systems subject to external attacks (Amin et al., 2009), in which the intent
of certain rational agents may be uncertain. In addition, the framework is applicable to robust
control applications, in which there may be unmodeled dynamics whose probability distribution is
not known a priori. For such cases, a dynamic programming result was stated, without proof, for
determining the maximal probability of satisfying the reach-avoid objective, subject to the worst-
case adversary behavior, referred to as the max-min reach-avoid probability.

The discussions of this chapter is a significant expansion upon the basic problem formulation
and the statement of the dynamic programming result given in Kamgarpour et al. (2011). In terms
of problem formulation, a formal interpretation is given for the max-min probability as the value
of a zero-sum Stackelberg stochastic game with the control as the leader. We then provide a
detailed proof of the dynamic programming result for the existence and computation of this value.
In the process of the proof, sufficient conditions of optimality are derived for both the control
and the adversary. Furthermore, it is briefly discussed how this result, shown for the case of the
reach-avoid problem, can be specialized to address the safety problem. For applications with less
conservative assumptions on the disturbance, we also investigate the implications of considering
alternative information patterns in the problem formulation. In particular, it is shown that the
existence of value under symmetric information patterns in general requires randomized player
policies. Finally, we discuss in detail the infinite horizon properties of the dynamic programming
algorithms, and provide some results on the computation of the infinite horizon value and the
existence of infinite horizon optimal policies.

In comparison with existing results in literature, our main contributions are summarized as
follows. First, by introducing adversarial inputs into the system model, we formulate a modeling
framework which allows analysis of hybrid systems with both stochastic and bounded uncertain-
ties. Second, through our dynamic programming result, we establish a basis for computational
algorithms addressing probabilistic safety and reachability problems posed under this modeling
framework. Third, the proof of our main result presents a generalization of the stochastic optimal
control arguments employed in Abate et al. (2008) and Summers and Lygeros (2010) for single-
player probabilistic safety and reachability problems. In particular, measurability properties, which
are vital for ensuring that the probabilities of interest can be computed by a recursive procedure,
are more difficult to establish in a stochastic game setting as compared with a single-player set-
ting (Nowak, 1985). Thus, our dynamic programming arguments require the use of results from
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the analysis of zero-sum stochastic games (Shapley, 1953; Maitra and Parthasarathy, 1970; Kumar
and Shiau, 1981; Nowak, 1985; Rieder, 1991; Maitra and Sudderth, 1998; Gonzalez-Trejo et al.,
2002), with adjustments to account for the sum-multiplicative form of our utility function and the
asymmetric information pattern in a max-min control problem.

This chapter is organized as follows. In section 4.2, we discuss the model for a discrete-time
stochastic hybrid game (DTSHG). In section 4.3, we give a formal stochastic game formulation
of the probabilistic reach-avoid problem. In section 4.4, we state and prove our main result for
computing the max-min reach-avoid probability, and give sufficient conditions of optimality for
both the control and the adversary. This is followed by the specialization of this result to the safety
problem. In section 4.5, we consider the implications of alternative information patterns on the
existence of value and optimal policies. In section 4.6, we discuss the extension of the results
to infinite horizon reachability problems. In section 4.7, the proposed methodology is applied to
stochastic formulations of the target tracking and aircraft conflict resolution problems as considered
in chapter 3. The examples are used to illustrate the utility of stochastic models, the computation
of max-min probabilities and control policies, and the interpretation of the dynamic programming
results within an application context.

4.2 Discrete-Time Stochastic Hybrid Game Model
The model for a discrete-time stochastic hybrid game (DTSHG) as described in this section is an
extension of the discrete-time stochastic hybrid systems (DTSHS) model proposed in Abate et al.
(2008); Summers and Lygeros (2010) to a two-player stochastic game setting. As in previous work,
we require the stochastic transition kernels to be Borel-measurable and denote by B(·) the Borel
σ−algebra. This condition ensures that the probabilities of interest can be computed by integration
of the transition kernels over a hybrid state space. Following standard conventions in two-player
games, we refer to the control as player I and the adversary as player II.

Definition 4.1 (DTSHG). A discrete-time stochastic hybrid game between two players is a tuple
H = (Q,n,Ca,Cb,νx,νq,νr), defined as follows.

• Discrete state space Q := {q1,q2, ...,qm}, m ∈ N;

• Dimension of continuous state space n : Q→ N: a map which assigns to each discrete state
q ∈ Q the dimension of the continuous state space. The hybrid state space is given by S :=⋃

q∈Q{q}×Rn(q);

• Player I controls Ca: a nonempty, compact Borel space;

• Player II controls Cb: a nonempty, compact Borel space;

• Continuous state transition kernel νx : B(Rn(·))×S×Ca×Cb→ [0,1]: a Borel-measurable
stochastic kernel on Rn(·) given S×Ca×Cb which assigns to each s = (q,x) ∈ S, a ∈Ca and
b ∈Cb a probability measure νx(·|s,a,b) on the Borel space (Rn(q),B(Rn(q)));
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• Discrete state transition kernel νq : Q× S×Ca×Cb → [0,1]: a Borel-measurable discrete
stochastic kernel on Q given S×Ca×Cb which assigns to each s ∈ S and a ∈Ca, b ∈Cb a
probability distribution νq(·|s,a,b) over Q;

• Reset transition kernel νr : B(Rn(·))×S×Ca×Cb×Q→ [0,1]: a Borel-measurable stochas-
tic kernel on Rn(·) given S×Ca×Cb×Q which assigns to each s ∈ S, a ∈ Ca, b ∈ Cb and
q′ ∈ Q a probability measure νr(·|s,a,b,q′) on the Borel space (Rn(q′),B(Rn(q′))).

In contrast with the single-player case, the stochastic transition kernels in a DTSHG are affected
by the inputs of two agents with possibly differing objectives. In particular, we assume that player
I and player II are non-cooperative and consider a conservative decision model in which the actions
of player II may be chosen in a rational fashion based upon the actions of player I.

Definition 4.2. A Markov policy for player I is a sequence µ = (µ0,µ1, ...,µN−1) of Borel mea-
surable maps µk : S→Ca, k = 0,1, ...,N−1. The set of all admissible Markov policies for player
I is denoted by Ma.

Definition 4.3. A Markov strategy for player II is a sequence γ = (γ0,γ1, ...,γN−1) of Borel mea-
surable maps γk : S×Ca→Cb, k = 0,1, ...,N−1. The set of all admissible Markov strategies for
player II is denoted by Γb.

The scenario described here is a common setting in robust control problems in which the control
selects inputs in anticipation of the worst-case response by an adversary or a disturbance. More
formally, this can be interpreted as a zero-sum Stackelberg game in which player I is the leader.
Due to the asymmetry in information in a Stackelberg game, equilibrium strategies of a zero-sum
game can be typically chosen to be deterministic rather than randomized (Breton et al., 1988).
We note, however, that in a zero-sum stochastic game with symmetric information (the actions of
player I are not revealed to player II), the existence of a non-cooperative equilibrium in general
requires randomized strategies (see for example Shapley, 1953; Maitra and Parthasarathy, 1970).
This case is discussed in section 4.5. Furthermore, if one were to consider transition probabilities
and utility functions which depend on the entire history of the game, it may also be necessary to
broaden the class of player strategies to encompass non-Markov policies (Rieder, 1991; Maitra
and Sudderth, 1998). However, as shown in Rieder (1991), when the time horizon is finite, the
transition probabilities are Markovian, and the utility function is sum-multiplicative, it is sufficient
to consider the class of Markov control policies. The consideration of infinite horizon problems,
on the other hand, in general requires semi-Markov control policies, which depend on the initial
condition. This case is discussed in section 4.6.

For a given initial condition s(0) = (q0,x0) ∈ S, player I policy µ ∈Ma, and player II strategy
γ ∈ Γb, the semantics of a DTSHG can be described as follows. At time step k, each player obtains
a measurement of the current system state s(k) = (q(0),x(0)) ∈ S. Using this information, player
I selects a control input a(k) = µk(s(k)), following which player II selects a disturbance input
b(k) = γk(s(k),a(k)). The discrete state is then updated according to the discrete transition kernel
as q(k+1)∼ νq(·|s(k),a(k),b(k)). If the discrete state remains the same, namely q(k+1) = q(k),
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then the continuous state is updated according to the continuous state transition kernel as x(k+1)∼
νx(·|s(k),a(k),b(k)). On the other hand, if there is a discrete jump, the continuous state is instead
updated according to the reset transition kernel as x(k+1)∼ νr(·|s(k),a(k),b(k),q(k+1)).

Following this description, we can compose the transition kernels νx, νq, and νr to form a
hybrid state transition kernel ν : B(S)×S×Ca×Cb→ [0,1] which describes the evolution of the
hybrid state under the influence of player I and player II inputs:

ν
(
(q′,dx′)|(q,x),a,b,q′

)
=

{
νx(dx′|(q,x),a,b)νq(q|(q,x),a,b), if q′ = q
νr(dx′|(q,x),a,b,q′)νq(q′|(q,x),a,b), if q′ 6= q.

Using the transition kernel ν , we can now give a formal definition for the executions of a DTSHG.

Definition 4.4. Let H be a DTSHG and N ∈ N be a finite time horizon. For a given µ ∈Ma,
γ ∈ Γb, and s0 = (q0,x0) ∈ S, a stochastic process {s(k), k = 0, ...,N} with values in S is an
execution of H if its sample paths are generated according to Algorithm 4.2.1.

Algorithm 4.2.1 DTSHG Execution
Require: Initial condition s0 = (q0,x0) ∈ S, player I policy µ ∈Ma, player II strategy γ ∈ Γb;

Set s(0) = s0;
for k = 0 to N−1 do

Set a(k) = µk(s(k));
Set b(k) = γk(s(k),a(k));
Extract from S a value sk+1 for s(k+1) according to ν(·|s(k),a(k),b(k));

end for
return Sample Path {sk,k = 0, ...,N}.

By this definition, the execution of a DTSHG is a time inhomogeneous stochastic process on
the sample space Ω = SN+1, endowed with the canonical product topology B(Ω) := ∏

N+1
k=1 B(S).

The evolution of the closed-loop hybrid state trajectory can be described in terms of the transition
kernels νµk,γk(·|s) := ν(·|s,µk(s),γk(s,µk(s))), k = 0, . . . ,N. By Proposition 7.28 of Bertsekas and
Shreve (1978), for a given initial condition s ∈ S, player I policy µ ∈Ma, and player II strategy
γ ∈ Γb, these stochastic kernels induce a unique probability measure Pµ,γ

s on the sample space Ω:

Pµ,γ
s (S0×S1×·· ·×SN) =

∫
S0

∫
S1

· · ·
∫

SN

N−1

∏
k=0

νµk,γk(dsk+1|sk)δs(ds0), (4.1)

where S0,S1, . . . ,SN ∈ B(S) are Borel sets and δs denotes the probability measure on S which
assigns unit mass to the point s ∈ S.

4.2.1 Example - 2-mode Jump Markov System
Consider a simple jump Markov system with two modes of operation Q = {q1,q2}. The transitions
between the discrete modes are modeled probabilistically, with the probability of dwelling in mode
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qi given by pi, i= 1,2. While in mode qi, a continuous state x∈R evolves according to a stochastic
difference equation x(k+1) = fi(x(k),a(k),b(k),w(k)), defined as follows:

fi(x(k),a(k),b(k),w(k)) =

{
2x(k)+a(k)+b(k)+w(k), i = 1
1
2x(k)+a(k)+b(k)+w(k), i = 2

(4.2)

where a and b are player I and player II inputs, and w is a random variable. It is assumed that
the players have identical capabilities, with a,b ∈ [−1,1]. The noise is modeled by a uniform
distribution w∼U [−1,+1].

Under the DTSHG modeling framework, the hybrid state space is S = {q1,q2} ×R, and
the players’ input spaces are Ca = Cb = [−1,1]. The discrete transition kernel νq is derived as
νq(q j|(qi,x),a,b) = pi if qi = q j, and νq(q j|(qi,x),a,b) = 1− pi, otherwise. The continuous tran-
sition kernel νx can be derived from the continuous state dynamics (4.2) as

νx(dx′|(q1,x),a,b)∼U [2x+a+b−1,2x+a+b+1],

νx(dx′|(q2,x),a,b)∼U [
1
2

x+a+b−1,
1
2

x+a+b+1].

Finally, the reset transition kernel is given by νr(dx′|(q,x),a,b,q′) = νx(dx′|(q,x),a,b).

4.3 Problem Formulation
Within the context of a DTSHG model, we consider stochastic game formulations of the proba-
bilistic safety and reach-avoid problems. In particular, it is assumed from a robust control stand-
point that the objective of player I is to maximize the probability of achieving a given reachability
specification, while the objective of player II is to minimize this probability. Thus, the safety and
reach-avoid problems for a DTSHG become zero-sum stochastic games. Moreover, due to the fact
that player II is allowed to select inputs in response to the actions of player I, they fall within the
class of zero-sum Stackelberg games (Breton et al., 1988; Başar and Olsder, 1999). A more precise
description of these problems is given below.

First, consider the probabilistic safety problem. Assume that a Borel set W ∈B(S) is given as
a safe set. The probability that the sample path (s0,s1, ...,sN) remains in W under fixed choices of
µ ∈Ma and γ ∈ Γb is given by

pµ,γ
s0 (W ) := Pµ,γ

s0 ({(s0, ...,sN) : sk ∈W, ∀k ∈ [0,N]}) = Pµ,γ
s0 (W N+1), (4.3)

where we use [0,N] as a shorthand for {0,1, ...,N}.
By Proposition 7.45 of Bertsekas and Shreve (1978), the safety probability in (4.3) can be

computed as

pµ,γ
s0 (W ) = 1W (s0)

∫
W N

N−1

∏
k=0

νµk,γk(dsk+1|sk) = Eµ,γ
s0

[
N

∏
k=0

1W (sk)

]
, (4.4)
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where Eµ,γ
s0 denotes the expectation with respect to the probability measure Pµ,γ

s0 on the sample
space Ω. This is analogous the multiplicative payoff given in Abate et al. (2008) for the single-
player safety problem.

Now consider the probabilistic reach-avoid problem. Assume that Borel sets R,W ′ ∈B(S) are
given as target set and safe set, respectively, with R ⊆W ′. The probability that the sample path
(s0,s1, ...,sN) reaches R while staying inside W under fixed choices of µ ∈Ma and γ ∈ Γb is given
by

rµ,γ
s0 (R,W ′) := Pµ,γ

s0 (
{
(s0, ...,sN) : ∃k ∈ [0,N],(sk ∈ R)∧ (s j ∈W ′, ∀ j ∈ [0,k])

}
)

= Pµ,γ
s0

(
N⋃

k=0

(W ′ \R)k×R

)
=

N

∑
k=0

Pµ,γ
s0 ((W ′ \R)k×R), (4.5)

where the last equality in (4.5) follows by the fact that the union is disjoint. Again by Proposition
7.45 of Bertsekas and Shreve (1978), this probability can be computed as

rµ,γ
s0 (R,W ′) = 1R(s0)+1W ′\R(s0)

∫
SN

N

∑
k=1

k−1

∏
j=1

1W ′\R(s j)1R(sk)
N−1

∏
k=0

νµk,γk(dsk+1|sk)

= Eµ,γ
s0

[
N

∑
k=0

(
k−1

∏
j=0

1W ′\R(s j)

)
1R(sk)

]
, (4.6)

where Eµ,γ
s0 denotes the expectation with respect to the probability measure Pµ,γ

s0 on the sample
space Ω. This is analogous to the sum-multiplicative payoff given in Summers and Lygeros (2010)
for the single-player reach-avoid problem.

The connection between the safety problem and reach-avoid problem is established by the
observation that the hybrid state remains inside a safe set W for all k = 0,1, ...,N if and only if it
does not reach the unsafe set S\W for any k = 0,1, ...,N. Mathematically speaking, for any µ ∈Ma
and γ ∈ Γb,

pµ,γ
s0 (W ) = 1− rµ,γ

s0 (S\W,S). (4.7)

Through this relation, the computation of the safety probability can be viewed as a special case
of the computation of the reach-avoid probability. As such, we will now focus on the reach-avoid
problem, with the understanding that any results for the reach-avoid problem can be specialized to
the safety problem via equation (4.7).

In a zero-sum Stackelberg, or equivalently a max-min, formulation of the probabilistic reach-
avoid problem, the control selects a choice of feedback control policy µ ∈Ma to maximize (4.6),
in anticipation of the worst-case response by the adversary in the selection of the feedback strategy
γ ∈ Γb. More specifically, we define the worst-case reach-avoid probability under a player I policy
µ ∈Ma as

rµ
s0(R,W

′) = inf
γ∈Γb

rµ,γ
s0 (R,W ′), s0 ∈ S. (4.8)

The Stackelberg or max-min pay-off for player I is then given by

r∗s0
(R,W ′) := sup

µ∈Ma

rµ
s0(R,W

′), s0 ∈ S. (4.9)
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The optimal policy of player I and the optimal strategy of player II are interpreted in terms of
Stackelberg equilibrium strategies. In particular, by the definitions given in Breton et al. (1988)
and Başar and Olsder (1999), a policy µ∗ ∈Ma is a Stackelberg equilibrium policy for player I if
it satisfies

rµ∗
s0 (R,W

′) = r∗s0
(R,W ′), ∀s0 ∈ S. (4.10)

For a given choice of equilibrium policy µ∗ ∈Ma for player I, a strategy γ∗ ∈ Γb is a Stackelberg
equilibrium strategy for player II if it satisfies

rµ∗,γ∗
s0 (R,W ′)≤ rµ∗,γ

s0 (R,W ′), ∀s0 ∈ S,γ ∈ Γb, (4.11)

Any strategy pair (µ∗,γ∗) satisfying (4.10) and (4.11) is referred to as a Stackelberg solution to
(4.8) and (4.9). Relating these notions to the probabilistic reachability problem of interest, we will
call the Stackelberg payoff the max-min reach-avoid probability, an equilibrium policy for player I
a max-min control policy, and an equilibrium strategy for player II a worst-case adversary strategy.

We can now give a precise statement of the probabilistic reach-avoid problem for a DTSHG.

Problem 4.1. Given a DTSHG H , target set R ∈B(S), and safe set W ′ ∈B(S) such that R⊆W ′:

(I) Compute the max-min reach-avoid probability r∗s0
(R,W ′), ∀s0 ∈ S;

(II) Find a max-min control policy µ∗ ∈Ma, whenever it exists;

(III) Find a worst-case adversary strategy γ∗ ∈ Γb, whenever it exists.

4.4 Max-min Probability Computation
In this section, we provide a detailed proof of the main result from Kamgarpour et al. (2011), as the
solution to Problem 4.1. In particular, it will be shown that under certain regularity assumptions,
the max-min probability r∗s0

(R,W ′) can be computed using an appropriate dynamic programming
algorithm, and that there exists a max-min Markov policy µ∗ ∈Ma for player I which achieves
this probability under the worst-case player II strategy. Following the proof, we will discuss some
practical implications of the theorem and specialize the results to a stochastic game formulation
of the probabilistic safety problem. Finally, a concrete example will be provided to illustrate the
procedure for computing r∗s0

(R,W ′), as well as the max-min policy µ∗ ∈Ma for player I and the
worst-case strategy γ∗ ∈ Γb for player II.

4.4.1 Main Theorem
For our theoretical derivations, we impose the following regularity assumptions.

Assumption 4.1.

(a) For each s = (q,x) ∈ S and E1 ∈B(Rn(q)), the function (a,b)→ νx(E1|s,a,b) is continuous;
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(b) For each s = (q,x) ∈ S and q′ ∈ Q, the function (a,b)→ νq(q′|s,a,b) is continuous;

(c) For each s = (q,x) ∈ S, q′ ∈ Q, and E2 ∈B(Rn(q′)), the function (a,b)→ νr(E2|s,a,b,q′) is
continuous.

The need for continuity assumptions on the stochastic kernel commonly arise in the stochastic
game literature (see for example Kumar and Shiau, 1981; Maitra and Parthasarathy, 1970; Nowak,
1985; Gonzalez-Trejo et al., 2002), due to the difficulties in ensuring the measurability of value
functions under max-min dynamic programming operations. Following the approach in Nowak
(1985) and Rieder (1991), we only assume continuity of the stochastic kernels in the actions of
Player I and Player II, but not necessarily in the system state. This allows for stochastic hybrid
systems in which transition probabilities change abruptly with changes in the system state. Fur-
thermore, if the action spaces Ca and Cb are finite or countable, then the assumptions are satisfied
under the discrete topology on Ca and Cb. Also, the assumptions on νv and νr are satisfied if these
kernels admit density functions that are continuous in the player inputs.

For the construction of a dynamic programming solution to Problem 4.1, we define a max-
min dynamic programming operator T which takes as its argument a Borel measurable function
J : X → [0,1] and produces another real-valued function on X :

T (J)(s) := 1R(s)+ sup
a∈Ca

inf
b∈Cb

1W ′\R(s)H(s,a,b,J), (4.12)

where H(s,a,b,J) =
∫

S
J(s′)ν(ds′|s,a,b).

We now proceed to show that the max-min reach-avoid probability, along with the max-min
control policy and worst-case disturbance strategy, can be derived from a dynamic programming
algorithm using the operator T .

Theorem 4.1. Let H be a DTSHG satisfying Assumption 4.1. Let R,W ′ ∈B(S) be Borel sets
such that R ⊆W ′. Let the operator T be defined as in (4.12). Then the composition T N =
T ◦T ◦ · · · ◦T (N times) is well-defined and

(a) r∗s0
(R,W ′) = T N(1R)(s0),∀s0 ∈ S;

(b) There exists a player I policy µ∗ ∈Ma and a player II strategy γ∗ ∈ Γb satisfying

rµ,γ∗
s0 (R,W ′)≤ r∗s0

(R,W ′) = rµ∗,γ∗
s0 (R,W ′)≤ rµ∗,γ

s0 (R,W ′), (4.13)

∀s0 ∈ S, µ ∈Ma, and γ ∈ Γb. In particular, µ∗ is a max-min control policy, and γ∗ is a
worst-case adversary strategy.

(c) Let J∗N = 1R, J∗k =T N−k(1R), k = 0,1, ...,N−1. If µ∗ ∈Ma is a player I policy which satisfies

µ∗k (s) ∈ arg sup
a∈Ca

inf
b∈Cb

H(s,a,b,J∗k+1), (4.14)
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∀s ∈W ′ \R, k = 0,1, . . . ,N−1, then µ∗ is a max-min control policy. If γ∗ ∈ Γb is a player II
strategy which satisfies

γ∗k (s,a) ∈ arg inf
b∈Cb

H(s,a,b,J∗k+1), (4.15)

∀s ∈W ′ \R, a ∈Ca, k = 0,1, . . . ,N−1, then γ∗ is a worst-case adversary strategy.

First, we will present a recursive procedure for computing the reach-avoid probability
rµ,γ

s0 (R,W ′) under fixed choices of player I policy µ ∈Ma and player II strategy γ ∈ Γb. Consider
the payoff functions Jµ,γ

k : S→ [0,1], k = 0, . . . ,N, defined as

Jµ,γ
N (sN) = 1K(sN), (4.16)

Jµ,γ
k (sk) = Eµ,γ

sk

[
1K(sk)+

N

∑
j=k+1

(
j−1

∏
i=k+1

1W ′\R(si)

)
1R(s j)

]
, k = 0,1, ...,N−1.

From this definition we can infer that rµ,γ
s0 (R,W ′) = Jµ,γ

0 (s0), ∀s0 ∈ S. Now consider a recursion
operator T f ,g, parameterized by an one-stage player I policy f : X →Ca and an one-stage player
II strategy g : S×Ca→Cb:

T f ,g(J)(s) = 1R(s)+1W ′\R(s)H(s, f (s),g(s, f (s)),J), s ∈ S, (4.17)

where H is defined in (4.12). It can be checked in a straightforward manner that the operator T f ,g
satisfies a monotonicity property: for any Borel measurable functions J,J′ from S to [0,1] such that
J ≤ J′, T f ,g(J)(s)≤T f ,g(J′)(s),∀s ∈ S. This property will become useful later on in the dynamic
programming arguments.

The following result provides a recursive algorithm for computing the functions Jµ,γ
k .

Lemma 4.1. Let µ ∈Ma, γ ∈ Γb. Then the payoff functions Jµ,γ
k , k = 0,1, ...,N satisfies

Jµ,γ
k (s) = Tµk,γk(J

µ,γ
k+1)(s), ∀s ∈ S, k = 0,1, ...,N−1. (4.18)

Proof. For the case of k = N−1, Jµ,γ
N = 1R implies that for any s ∈ S,

Jµ,γ
N−1(s) = 1R(s)+1W ′\R(s)

∫
S

1R(sN)νµN−1,γN−1(dsN |s)

= TµN−1,γN−1(J
µ,γ
N ).

For the case of k < N−1, the expression for Jµ,γ
k in (4.16) implies that for any s ∈ S,

Jµ,γ
k (s) =1R(s)+1W ′\R(s)

∫
S

1R(sk+1)+1W ′\R(sk+1)(∫
SN−k−1

N

∑
j=k+2

j−1

∏
i=k+2

1W ′\R(si)1R(s j)

)
N−1

∏
j=k+1

νµ j,γ j(ds j+1|s j)νµk,γk(dsk+1|s)

=1R(s)+1W ′\R(s)
∫

S
Jµ,γ

k+1(sk+1)νµk,γk(dsk+1|s).
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It follows from definition of T f ,g that the last expression above is Tµk,γk(J
µ,γ
k+1), thus concluding

the proof.

Next, we will show that under Assumption 4.1, the operator T defined in (4.12) preserves suit-
able measurability properties (thus allowing recursive dynamic programming calculations) and that
there exists one-stage player I policy and player II strategy achieving the supremum and infimum
in (4.12).

In the following, we state a special case of Corollary 1 given in Brown and Purves (1973). This
result allows us to show that the operator T preserves Borel measurability and that it is sufficient
to consider Borel measurable selectors.

Lemma 4.2. Let X, Y be complete separable metric spaces such that Y is compact, and f be a
real-valued Borel measurable function defined on X ×Y such that f (x, ·) is lower semicontinuous
with respect to the topology on Y . Define f ∗ : X → R∪{±∞} by

f ∗(x) = inf
y∈Y

f (x,y).

(a) The set

I = {x ∈ X : for some y ∈ Y, f (x,y) = f ∗(x)} ,

is Borel measurable.

(b) For every ε > 0, there exists a Borel measurable function φ : X → Y , satisfying, for all x ∈ X,

f (x,φ(x)) = f ∗(x), if x ∈ I,

f (x,φ(x))≤
{

f ∗(x)+ ε, if x /∈ I, f ∗(x)>−∞,
−1/ε, if x /∈ I, f ∗(x) =−∞.

For the purpose of showing that the supremum and infimum in the expression for T is achieved,
we will also need the following technical result.

Lemma 4.3. Let f be a bounded real-valued Borel measurable function on a Borel space Y , and
t be a Borel measurable transition probability from a Borel space X into Y such that t(B|·) is
continuous on X for each B ∈B(Y ). Then the function x→

∫
f (y)t(dy|x) is continuous on X.

This was stated as Fact 3.9 in Nowak (1985). Since neither a proof nor relevant references are
provided in Nowak (1985), and also given that this result is the primary use for Assumption 4.1, a
detailed proof is given in appendix A.

We now prove a selection result for the max-min operator T . For notational conveniences, we
denote by F the set of Borel measurable functions from S to [0,1].

Proposition 4.1. If Assumption 4.1 holds, then

(a) ∀J ∈F , T (J) ∈F ;
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(b) For any J ∈F , there exists a Borel measurable function g∗ : S×Ca → Cb such that, for all
(s,a) ∈ S×Ca,

g∗(s,a) ∈ arg inf
b∈Cb

H(s,a,b,J);

(c) For any J ∈F , there exists a Borel measurable function f ∗ : S→Ca, such that for all s ∈ S,

f ∗(s) ∈ arg sup
a∈Ca

inf
b∈Cb

H(s,a,b,J).

Proof. Let J ∈ F . Define a function FJ : S×Ca×Cb → R as FJ(s,a,b) = H(s,a,b,J). From
the definition of H, the range of FJ is contained in [0,1]. By the Borel measurability of J and ν ,
Proposition 7.29 of Bertsekas and Shreve (1978) implies that FJ is Borel measurable. Furthermore,
by Assumption 4.1 and Lemma 4.3, FJ(s,a,b) is continuous in a and b, for each s ∈ S. Now
consider a function F̃J(s,a) = infb∈Cb FJ(s,a,b). By the compactness of Cb and continuity of FJ
in b, this infimum is achieved for each fixed (s,a) (see for example Rudin, 1976). Thus, applying
Lemma 4.2, we have that there exists a Borel measurable function g∗ : S×Ca→Cb for which part
(b) holds. Furthermore, by Proposition 7.32 of Bertsekas and Shreve (1978), F̃J is continuous in a.
Let F∗J (s) = supa∈Ca

F̃J(s,a) =− infa∈Ca−F̃J(s,a). Then, by a repeated application of Lemma 4.2,
there exists a Borel measurable function f ∗ : S→Ca such that part (c) holds. By the composition
of Borel measurable functions, this also implies that F∗J is Borel measurable.

Finally, it can be observed that T (J)(s) = 1R(s)+ 1W ′\R(s)F∗J (s), ∀s ∈ S. Given that Borel
measurability is preserved under summation and multiplication (see for example Folland, 1999,
Proposition 2.6), T (J) is Borel measurable. It is also clear that 0 ≤ T (J) ≤ 1. Part (a) then
follows.

In the following two propositions, we show by a dynamic programming argument that T N(1R)
both upper bounds and lower bounds the max-min reach-avoid probability.

Proposition 4.2.

(a) ∀s0 ∈ S, T N(1R)(s0)≤ r∗s0
(R,W ′);

(b) There exists µ∗ ∈Ma such that, for any γ ∈ Γb, T N(1R)(s0)≤ rµ∗,γ
s0 (R,W ′),∀s0 ∈ S.

Proof. For notational convenience, we define J∗k := T N−k(1R), k = 0,1, ...,N. First, we prove the
following claim by backwards induction on k: there exists µ∗k→N = (µ∗k ,µ

∗
k+1, ...,µ

∗
N−1)∈Ma such

that, for any γk→N = (γk,γk+1, ...,γN−1) ∈ Γb, J∗k ≤ J
µ∗k→N ,γk→N
k .

Let γk→N ∈ Γb be arbitrary. The case of k = N is trivial. Now assume that this holds for k = h.
Let µ∗h→N ∈Ma be a player I policy satisfying the induction hypothesis. By Proposition 4.1(c),
there exists a Borel measurable function f ∗ : X →Ca such that

f ∗(s) ∈ arg sup
a∈Ca

inf
b∈Cb

H(s,a,b,Jh), ∀s ∈ S.
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Choose a policy µ∗h−1→N = ( f ∗,µ∗h→N). Then by the monotonicity of the operator T f ,g and
Lemma 4.1, we have for each s ∈ S:

J
µ∗h−1→N ,γh−1→N
h−1 (s) = T f ∗,γh−1(J

µ∗h→N ,γh→N
h )(s)≥T f ∗,γh−1(J

∗
h)(s)

= 1R(s)+1W ′\R(s)H(s, f ∗(s),γh−1(s, f ∗(s)),J∗h)

≥ 1R(s)+ inf
b∈Cb

1W ′\R(s)H(s, f ∗(s),b,J∗h)

= T (J∗h)(s) = J∗h−1(s).

The claim then follows by induction. From this, we obtain µ∗0→N ∈Ma satisfying T N(1R)(s0) =

J∗0(s0) ≤ Jµ∗0→N ,γ0→N
0 (s0) = rµ∗0→N ,γ0→N

s0 (R,W ′), ∀s0 ∈ S, γ0→N ∈ Γb, and hence satisfying statement

(b). Furthermore, since γ0→N is arbitrary, T N(1R)(s0)≤ infγ∈Γb rµ∗0→N ,γ
s0 (R,W ′), ∀s0 ∈ S. Statement

(a) then follows.

Proposition 4.3.

(a) ∀s0 ∈ S, r∗s0
(R,W ′)≤T N(1R)(s0);

(b) There exists γ∗ ∈ Γb such that, for any µ ∈Ma, rµ,γ∗
s0 (R,W ′)≤T N(1R)(s0),∀s0 ∈ S.

Proof. As in the proof of Proposition 4.2, we define J∗k := T N−k(1R), k = 0,1, ...,N. First, we
prove the following claim by backwards induction on k: there exists γ∗k→N = (γ∗k ,γ

∗
k+1, ...,γ

∗
N−1) ∈

Γd such that, for any µk→N = (µk,µk+1, ...,µN−1) ∈Ma, J
µ,γ∗k→N
k ≤ J∗k .

Let µk→N ∈Ma be arbitrary. The case of k = N is trivial. Now assume that this holds for k = h.
Let γ∗h→N ∈ Γb be a player II strategy satisfying the induction hypothesis. By Proposition 4.1(b),
there exists a Borel measurable function g∗ : S×Ca→Cb such that

g∗(s,a) ∈ arg inf
b∈Cb

H(s,a,b,Jh), ∀s ∈ S,a ∈Ca.

Choose a strategy γ∗h−1→N = (g∗,γ∗h→N). Then we have for each s ∈ S:

J
µh−1→N ,γ∗h−1→N
h−1 (s) = Tµh−1,g∗(J

µh→N ,γ∗h→N
h )(s)≤Tµh−1,g∗(J

∗
h)(x)

= 1R(s)+1W ′\R(s)H(s,µh−1(s),g∗(s,µh−1(s)),J∗h)

= 1R(s)+ inf
b∈Cb

1W ′\R(s)H(s,µh−1(s),b,J∗h)

≤T (J∗h)(s) = J∗h−1(s).

The claim then follows by induction. From this, we obtain γ∗0→N ∈ Γd satisfying rµ,γ∗0→N
s0 (R,W ′) =

Jµ,γ∗0→N
0 (s0) ≤ J∗0(s0) = T N(1R)(s0), ∀s0 ∈ S, µ ∈Ma, and hence statement (b). This in turn

implies that rµ
s0(R,W

′) = infγ∈Γb rµ,γ
s0 (R,W ′) ≤ T N(1R)(s0), ∀s0 ∈ S, µ ∈Ma, proving statement

(a).
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Combining the results of Proposition 4.2 and 4.2, we can now prove Theorem 4.1.

Proof. Statement (a) of Theorem 4.1 follows directly from Proposition 4.2(a) and 4.3(a). The
player I policy µ∗ and player II strategy γ∗ satisfying statement (b) is provided by Proposi-
tion 4.2(b) and 4.3(b), respectively. Finally, it can be inferred from the proof of Proposition 4.2
and 4.3 that any player I policy µ∗ and player II strategy γ∗ satisfying the conditions in statement
(c) is a max-min policy or worst-case strategy, respectively.

4.4.2 Implications of the Main Theorem
1) Probabilistic reachability computation: By statement (a) of Theorem 4.1, the max-min reach-
avoid probability can be computed using a sup-inf dynamic programming procedure. This can
be viewed as the counterpart to the HJI equation for discrete time stochastic system. Namely,
instead of solving a terminal value PDE backwards in time, the probabilistic reachability computa-
tion for a DTSHG involves solving an integro-difference equation backwards in time, as described
by the dynamic programming operator T . As in the case of the HJI equation, the solution to the
integro-difference equation in general does not have a closed-form expression, and as such requires
numerical approximation. However, whereas the approximation of the PDE solution involves ap-
proximation of the spatial derivatives and an integral in time, the approximation of the solution to
the integro-difference equation requires approximation of spatial integrals. To illustrate this, sup-
pose that we have computed the optimal cost-to-go function J∗k+1 := T N−k−1(1R) at time k+ 1,
then the optimal cost-to-go function J∗k at time k is computed as

J∗k (s) = T (J∗k+1)(s) = 1R(s)+ sup
a∈Ca

inf
b∈Cb

1W ′\R(s)H(s,a,b,J∗k+1), ∀s ∈ S. (4.19)

For a fixed s = (q,x) ∈ S, and inputs a ∈ Ca, b ∈ Cb, the explicit form of H(s,a,b,J∗k+1) in the
above expression is given by

H((q,x),a,b,J∗k+1) =
∫

S
J∗k+1(s

′)ν(ds′|(q,x),a,b) (4.20)

=νq(q|(q,x),a,b)
∫
Rn(q)

J∗k+1(q,x
′)νx(dx′|(q,x),a,b)+

∑
q′ 6=q

νq(q′|(q,x),a,b)
∫
Rn(q′)

J∗k+1(q
′,x′)νr(dx′|(q,x),a,b,q′).

Thus, the approximation of T is tantamount to the approximation of the integral in (4.20) for
discretized values of the hybrid state and player inputs. Assuming that the stochastic kernels νq
and νr are described in terms of probability density functions, this approximation can be performed
using Riemann or Lebesgue integrals. For the single player case, a numerical scheme of such type
is proposed in Abate et al. (2007) for the computation of the safety probability. In particular, it
is shown that piecewise constant approximations of the value function on a grid of the continuous
state space converge uniformly to the optimal value function, at a rate that is linear in the grid size
parameter. We anticipate that a similar result can be shown for the case of a DTSHG. However,
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it can be observed that the computational cost of such an approach scales exponentially with the
dimension of the continuous state space, which currently limits the application of our approach to
problems with continuous state dimensions of n≤ 4. The reduction in computation time is a topic
of ongoing research (Esmaeil Zadeh Soudjani and Abate, 2011).

2) Controller synthesis: Equations (4.14) and (4.15) provide us with sufficient conditions
for optimality of the players’ policies and strategies. In particular, this can be used to synthesize
a max-min control policy for player I from the value functions computed through the dynamic
programming recursion. To illustrate, suppose that the input ranges Ca and Cb along with the
state space S has been appropriately discretized into Cd

a , Cd
b , and Sd . Then we can numerically

approximate the optimal cost-to-go functions J∗k , k = 0,1, ...,N, with the functions Jd
k computed on

Sd , for example according to the method suggested in Abate et al. (2007). At the k-th iteration of
this dynamic programming procedure, we can store the optimal control inputs

µ∗k (s
d) ∈ arg sup

a∈Cd
a

inf
b∈Cd

b

Hd(sd,a,b,Jd
k+1), sd ∈ (W ′ \R)∩Sd,

where Hd is an appropriate discrete approximation of the operator H. This provides us with a dis-
crete representation for an approximate max-min control policy µ∗ = (µ∗0 ,µ

∗
1 , ...,µ

∗
N). In particu-

lar, at time step k, µ∗k (s
d) represent the optimal input selection over the grid volume corresponding

to the grid node sd . For the single-player case, it has also been shown in Abate et al. (2007) that
the approximate control policy synthesized in such a manner provides a performance level that
converges to the optimal, as the size of each grid volume is reduced.

3) Robustness and optimality: By statement (b) of Theorem 4.1, if the control were to choose
the max-min policy µ∗ and the adversary were to deviate from the worst-case strategy γ∗, then
the reach-avoid probability will be at least r∗s0

(R,W ′). On the other hand, if the control were to
deviate from the max-min policy and the adversary were to choose the worst-case strategy, then
the reach-avoid probability will be at most r∗s0

(R,W ′). Thus, µ∗ can be interpreted as a robust
control policy in the sense that by choosing µ∗, the reach-avoid probability will be no less than
r∗s0

(R,W ′), regardless of any variations in adversary strategy within the class Γb. It can be also
interpreted as an optimal policy in the sense that it optimizes a worst-case performance index,
namely the worst-case reach-avoid probability with respect to fixed choices of control policies
within the class Ma.

4) Probabilistic reach-avoid set: Consider the case in which the design specifications requires
the controller to guarantee a reach-avoid probability of at least (1− ε), for some small ε ∈ [0,1).
The set of initial conditions Sε for which this specification is feasible can be derived from the
max-min reach-avoid probability as:

Sε
0 = {s0 ∈ S : r∗s0

(R,W ′)≥ (1− ε)}.

In other words, Sε
0 is the (1− ε)-superlevel set of the function s0 → r∗s0

(R,W ′). This set can be
then used to provide guidance on where the system state should be initialized. In particular, if
the control were to select inputs according to the max-min policy, then the system state should be
initialize inside Sε

0 in order to ensure that the desired specifications will be met.
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4.4.3 Specialization to Stochastic Game Formulation of Safety Problem
As discussed in section 4.3, the solution to the probabilistic safety problem can be obtained from
a complementary reach-avoid problem. In particular, for a given safe set W ∈B(S), consider a
reach-avoid problem with the value function

r̄∗s0
(S\W,S) := inf

µ∈Ma
sup
γ∈Γb

rµ,γ
s0 (S\W,S), s0 ∈ S.

Then the max-min probability of safety is given by

p∗s0
(W ) = sup

µ∈Ma

inf
γ∈Γb

pµ,γ
s0 (W ) = 1− r̄∗s0

(S\W,S), s0 ∈ S. (4.21)

By minor modifications of the proof for Theorem 4.1, it can be shown that r̄∗s0
(S \W,S) is

computed by the dynamic programming recursion

r̄∗s0
(S\W,S) = T N

W (1S\W )(s0), s0 ∈ S,

where the operator TW is defined as

TW (J)(s) = inf
a∈Ca

sup
b∈Cb

1S\W (s)+1W (s)H(s,a,b,J), s ∈ S. (4.22)

Combining this with (4.21), we then arrive at the following result for the computation of the max-
min safety probability.

Theorem 4.2. Let H be a DTSHG satisfying Assumption 4.1. Let W ∈B(S) be a Borel safe set.
Then

p∗s0
(W ) = 1−T N

W (1S\W )(s0), ∀s0 ∈ S.

For completeness, we note that there exists an equivalent dynamic programming recursion to
compute the max-min safety probability, analogous to the one given in Abate et al. (2008) for the
single player case. Specifically, consider an operator T̃W defined as

T̃W (J)(s) = sup
a∈Ca

inf
b∈Cb

1W (s)H(s,a,b,J), s ∈ S. (4.23)

The relation between T̃W and TW is established through the following lemma.

Lemma 4.4. For every s ∈ S and k = 0,1, ...,N,

T̃ k
W (1W )(s) = 1−T k

W (1S\W )(s).
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Proof. We prove this result by induction on k. The case of k = 0 is established by the fact that
1W = 1−1S\W . Now suppose the identity holds for k = h, then we have for every s ∈ S,

T̃ h+1
W (1W )(s) = T̃W (T̃ h

W (1W ))(s) = T̃W (1−T h
W (1S\W ))(s)

= sup
a∈Ca

inf
b∈Cb

1W (s)H(s,a,b,1−T h
W (1S\W ))

= sup
a∈Ca

inf
b∈Cb

1W (s)(1−H(s,a,b,T h
W (1S\W )))

= 1W (s)+ sup
a∈Ca

inf
b∈Cb
−1W (s)H(s,a,b,T h

W (1S\W )).

It then follows that for every s ∈ S

1− T̃ h+1
W (1W )(s) = 1−1W (s)− sup

a∈Ca

inf
b∈Cb
−1W (x)H(s,a,b,T h

W (1S\W ))

= 1S\W (s)+ inf
a∈Ca

sup
b∈Cb

1W (x)H(s,a,b,T h
W (1S\W ))

= TW (T h
W (1S\W ))(s) = T h+1

W (1S\W )(s),

which completes the proof.

Thus, an equivalent dynamic programming recursion for computing the max-min safety prob-
ability is given by

p∗s0
(W ) = T̃ N

W (1W )(s0), s0 ∈ S. (4.24)

Using either the operator TW or the operator T̃W , we can also derive sufficient conditions of
optimality for player I and II, analogous to those given in (4.14) and (4.15).

4.4.4 Analytic Reach-Avoid Example
We illustrate the sequence of steps associated with a probabilistic reachability calculation in the
context of the jump Markov system example in section 4.2.1. In particular, consider a regulation
problem in which the objective of player I is to drive the continuous state into a neighborhood of
the origin, while staying within some safe operating region. In this case, the target set and safe set
are chosen to be R = {q1,q2}× [−1

4 ,
1
4 ] and W ′= {q1,q2}× [−2,2]. In the following, we will solve

for the max-min reach-avoid probability and player I policy over a single stage of the stochastic
game (N = 1).

Given the DTSHG model, the operator H(s,a,b,J) for a hybrid state s = (q1,x) can be derived
as follows:

H((q1,x),a,b,J) =
∫

S
J(s′)ν(ds′|(q1,x),a,b) (4.25)

=p1

∫ 1

−1
J(q1,2x+a+d +w)dw +

(1− p1)
∫ 1

−1
J(q2,2x+a+d +w)dw.
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For an initial condition s0 = (q1,x0), the max-min reach-avoid probability can be then computed
as

r∗(q1,x0)
(R,W ′) = T (1R)(q1,x0) (4.26)

1, |x0| ≤ 1
4 ,

0, |x0|> 2,
supa∈Ca

infb∈Cb H((q1,x0),a,b,1R),
1
4 < |x0| ≤ 2.

From equations (4.25) and (4.26), the analytic expression for the max-min reach-avoid probability
in mode q1 is:

r∗(q1,x0)
(R,W ′) =


1, |x0| ≤ 1

4
1
8 ,

1
4 < |x0| ≤ 1

2
5
8 −|x0|, 1

2 < |x0| ≤ 5
8

0, |x0|> 5
8 .

In the process of performing the dynamic programming step in (4.26), we also obtain a max-
min player I policy µ∗0 and a worst-case player II strategy γ∗0 in mode q1 satisfying the sufficient
conditions for optimality in (4.14) and (4.15):

µ∗0 (q1,x0) =

{
−sgn(x0), |x0|> 1

2
−2x0, |x0| ≤ 1

2 ,
γ∗0 ((q1,x0),a) =

{
−1, 2x0 +a < 0
1, 2x0 +a≥ 0.

Using a similar procedure, we can compute the max-min reach-avoid probability for an initial
condition s0 = (q2,x0) as

r∗x0
(R,W ′) = T (1R)(q2,x0) =


1, |x0| ≤ 1

4
1
8 ,

1
4 ≤ |x0| ≤ 2

0, |x0|> 2.

Furthermore, a max-min player I policy and a worst-case player II strategy satisfying the sufficient
conditions for optimality in mode q2 can be derived as follows:

µ∗0 (q2,x0) =

{
−sgn(x0), |x0|> 2
−1

2x0, |x0| ≤ 2,
γ∗0 ((q2,x0),a) =

{
−1, 1

2x0 +a < 0
1, 1

2x0 +a≥ 0.

As one consider more complicated system models, there may no longer be a closed-form ex-
pression for the operator T . This would then require a numerical approximation of the dynamic
programming procedure, as discussed previously in section 4.4.2.
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4.5 Alternative Information Patterns
In the discussions so far, we have considered Stackelberg formulations of the probabilistic safety
and reach-avoid problems, with an asymmetric information pattern which gives an advantage to
Player II. As noted previously, this selection of information pattern is based upon a conservative
assumption, commonly made within the context of robust control, that the intent of Player I might
be available to Player II, and that player II might use this information to his/her advantage. While
it is often the case that disturbances or adversaries found in practical applications will not be able
to observe the actual inputs selected by the control, a control policy constructed under such an
assumption is nonetheless robust to the worst-case behavior of the adversary. We will refer to
problem formulations of such type as Scenario I.

The focus of this section is to explore several alternative information patterns that are less
conservative in the assumption on player input selections. Reachability problems formulated under
such settings may be of interest in application scenarios beyond those traditionally considered in
robust control. In particular, they correspond to competitive or adversarial scenarios in which
the control has equal or better access to information as compared with the adversary. The main
results of this section are as follows. Under an asymmetric information pattern favoring player
I, the Stackelberg solutions to the probabilistic safety and reach-avoid problems can be computed
using a slight modification of the dynamic programming procedure from Scenario I. On the other
hand, under a symmetric information pattern, the existence of Nash equilibria for the safety and
reach-avoid problems in general requires randomization in the selection of player I and player II
controls.

4.5.1 Stackelberg Formulation Favoring Player I
First, we consider an information pattern in which the control is allowed to select controls in
response to the actions of the adversary at each stage of the dynamic process. Such a situation
could for example arise in a patrol and surveillance application in which the actions of an intruder
is captured by a surveillance system. Reachability problems formulated under this information
pattern can be then interpreted as zero-sum Stackelberg games giving an advantage to player I
in the optimization of the safety or reach-avoid probability. We refer to this type of problem
formulation as Scenario II.

To give a more precise definition for the reachability problems in Scenario II, it is necessary to
introduce the class of Markov strategies for Player I and the class of Markov policies for Player II.

Definition 4.5. A Markov strategy γa for Player I is a sequence γa = (γa
0 ,γ

a
1 , ...,γ

a
N−1) of universally

measurable maps γa
k : S×Cb→Ca, k = 0,1, ...,N−1. The set of such strategies is denoted by Γa.

Definition 4.6. A Markov policy µb for Player II is a sequence µb = (µb
0 ,µ

b
1 ,µ

b
2 , ...) of universally

measurable maps µb
k : S→Cb, k = 0,1, ...,N−1. The set of such policies is denoted by Mb.
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We briefly note that Markov policies are a subclass of Markov strategies, namely they consist
of the set of Markov strategies which do not explicitly depend on the input of the other player.
More specifically, Ma ⊂ Γa and Mb ⊂ Γb.

Using a similar construction as in section 4.2, we can define for a given Markov strategy γa ∈Γa
and a given Markov policy µb ∈Mb a stochastic kernel describing the closed-loop hybrid state
evolution at time step k:

ν̃γa
k ,µ

b
k (·|sk) := ν̃(·|sk,γa

k (sk,µb
k (sk)),µb

k (sk)).

As before, this induces a probability measure, denoted by P̃γa,µb
s0 , on the sample space Ω. Note

that if both players select Markov policies rather than Markov strategies, namely µa ∈Ma and
µb ∈Mb, then the probability measures in Scenario I and II are equivalent: P̃µa,µb

s0 ≡ Pµa,µb
s0 .

Through the connection between the safety and reach-avoid problems as discussed in section
4.3, we will focus on the formulation of the probabilistic reach-avoid problem. Under Scenario II,
the payoff function for the reach-avoid problem becomes

r̃γa,µb
s0 (R,W ′) = Ẽγa,µb

s0

[
N

∑
k=0

(
k−1

∏
j=0

1W ′\R(s j)

)
1K(sk)

]
(4.27)

where Ẽγa,µb
s0 denotes the expectation with respect to the probability measure P̃γa,µb

s0 on the sample
space Ω.

Under a zero-sum Stackelberg formulation of the reach-avoid problem, the worst-case reach-
avoid probability in Scenario II under a player I strategy γb ∈ Γa is defined as

r̃γa
s0 (R,W

′) = inf
µb∈Mb

r̃γa,µb
s0 (R,W ′), s0 ∈ S. (4.28)

The Stackelberg or max-min pay-off for player I in Scenario II is then given by

r̃∗s0
(R,W ′) := sup

γa∈Γa

r̃γa
s0 (R,W

′), s0 ∈ S. (4.29)

The optimal strategy of player I and the optimal policy of player II are interpreted in terms of the
Stackelberg solutions to (4.28) and (4.29), in an analogous fashion as described for the problem
in Scenario I. The Stackelberg payoff in this case will be referred to as the max-min reach-avoid
probability for Scenario II, while a Stackelberg solution (γ∗a ,µ∗b ) will be referred to as a max-min
control strategy and a worst-case adversary policy, respectively.

A precise statement of the probabilistic reach-avoid problem in Scenario II is as follows.

Problem 4.2. Given a DTSHG H , target set R ∈B(S), and safe set W ′ ∈B(S) such that R⊆W ′:

(I) Compute the max-min reach-avoid probability for Scenario II: r̃∗s0
(R,W ′), ∀s0 ∈ S;

(II) Find a max-min control strategy γ∗a ∈ Γa, whenever it exists;

(III) Find a worst-case adversary policy µ∗b ∈Mb, whenever it exists.
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Within a game theoretic context, this problem formulation can be interpreted in two different
ways. From the point of view of a static optimization problem, namely the selection of a player I
strategy γa ∈ Γa and the selection of player II policy µb ∈Mb with respect to the payoff function
r̃γa,µb

s0 (R,W ′), then it is a static Stackelberg game with player I as the leader. On the other hand,
from the point of view of a multi-stage dynamic game, the information structure in each stage of
the dynamic game involves player I selecting inputs in response to the actions of player II. Thus,
it can be also interpreted as a sequential or feedback Stackelberg game with player II as the leader.
For further details, the interested reader is referred to the discussions in Breton et al. (1988) and
Başar and Olsder (1999).

The problem formulations in Scenario I and Scenario II, as interpreted in terms of feedback
Stackelberg games, differ only in the order of play in each stage of the dynamic game. In particular,
player I goes first in Scenario I, but second in Scenario II. Thus, a dynamic programming solution
to Problem 4.2 can be constructed in much the same way as described in section 4.4, except for an
exchange in the order of optimization in each step of the dynamic programming procedure. More
precisely, consider a dynamic programming operator T̃ operating on Borel measurable functions
from S to [0,1]:

T̃ (J)(s) = inf
b∈Cb

sup
a∈Ca

1R(s)+1W ′\R(s)H(s,a,b,J),s ∈ S. (4.30)

In the following, we state a dynamic programming result for Scenario II. The proof is analogous
to the one given in section 4.4.1 for Scenario I and is hence omitted.

Theorem 4.3. Let H be a DTSHG satisfying Assumption 4.1. Let R,W ′ ∈B(S) be Borel sets
such that R ⊆W ′. Let the operator T̃ be defined as in (4.30). Then the composition T̃ N =
T̃ ◦ T̃ ◦ · · · ◦ T̃ (N times) is well-defined and

(a) r̃∗s0
(R,W ′) = T̃ N(1R)(s0),∀s0 ∈ S;

(b) There exists a player I strategy γ∗a ∈ Γa and a player II policy µ∗b ∈Mb satisfying

r̃
γa,µ∗b
s0 (R,W ′)≤ r̃∗s0

(R,W ′) = r̃
γ∗a ,µ∗b
s0 (R,W ′)≤ r̃γ∗a ,µb

s0 (R,W ′), (4.31)

∀s0 ∈ S, γa ∈ Γa, and µb ∈Mb. In particular, γ∗a is a max-min control strategy, and µ∗b is a
worst-case adversary policy.

(c) Let J∗N = 1R, J∗k =T N−k(1R), k = 0,1, ...,N−1. If γ∗a ∈ Γa is a player I strategy which satisfies

γa,∗
k (s,b) ∈ arg sup

a∈Ca

H(s,a,b,J∗k+1), (4.32)

∀s ∈W ′ \R, b ∈Cb, k = 0,1, . . . ,N−1, then γ∗a is a max-min control strategy. If µ∗b ∈Mb is
a player II policy which satisfies

µb,∗
k (s) ∈ arg inf

b∈Cb
sup
a∈Ca

H(s,a,b,J∗k+1), (4.33)

∀s ∈W ′ \R, k = 0,1, . . . ,N−1, then µ∗b is a worst-case adversary policy.
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The corresponding result for the safety problem can be derived in a similar manner as described
in section 4.4.3 for Scenario I.

Given the differing interpretations of the problem formulation in Scenario II, there are corre-
spondingly two different interpretations of the Stackelberg solution. In particular, from the point
of view of a static optimization problem, the max-min control strategy γ∗a is a selection of control
strategy which optimizes the worst-case probability of achieving the reach-avoid specification over
the strategy class Γa. This is analogous to the robustness and optimality properties of the max-min
control policy in Scenario I, as discussed in section 4.4.2. On the other hand, from the perspective
of a multi-stage dynamic game, one can infer from (4.32) that each component γa,∗

k of the max-min
control strategy γ∗a is a best response function with respect to selections of inputs by player II in
each stage of the dynamic game.

It is intuitive that with an asymmetry in the information pattern favoring player II, the max-min
reach-avoid probability in Scenario II should be equal to or higher than the max-min reach-avoid
probability in Scenario I. This is confirmed by the form of the dynamic programming recursion in
statement (a) of Theorem 4.3. In particular, due to the exchange in the order of optimization, we
have

T N(1R)≤ T̃ N(1R),

which implies that r∗s0
(R,W ′) ≤ r̃∗s0

(R,W ′), ∀s0 ∈ S. Moreover, as will become apparent in the
discussions of the following subsection, this inequality is in general strict.

4.5.2 Nash Formulation
In many practical application scenarios, it is often reasonable to assume a symmetric information
pattern in which both Player I and Player II make decisions based only upon the state of the system
at each time step. This is in fact the typical assumption in many competitive economic models.
More generally, it is applicable within the context of a control problem in which the control and
the adversary can be modeled as acting simultaneously, and hence unaware of each other’s intent
(de Alfaro et al., 2007). This could be for example an aircraft conflict resolution problem in which
the aircraft involved only broadcast their position and heading information, but not their future
intent. We will refer to reachability problem formulations with this type of information pattern as
Scenario III.

While a symmetric information pattern may be attractive from a modeling standpoint, the ex-
istence of equilibrium player strategies, in the sense of a Nash or saddle point equilibrium (Nash,
1951), typically requires the consideration of randomized strategies. Computationally, such strate-
gies are often significantly more difficult to synthesize as compared with non-randomized strate-
gies, due to their large representation size. Moreover, the practical implementation of such strate-
gies can be questionable in certain applications. For example, within the context of air traffic
management, it is of interest to system operators to devise conflict resolution strategies which
result in predictable aircraft behaviors.

As will be shown in this subsection, when we only consider non-randomized Markov policies
in Scenario III, there does not exist in general a Nash equilibrium solution to the probabilistic safety
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or reach-avoid problem. However, for such cases, the Stackelberg payoff as computed in Scenario I
correspond to the lower value of the symmetric dynamic game, and hence a conservative estimate
of the payoff for player I. On the other hand, if randomized Markov policies are considered, a
Nash equilibrium is shown to exist, under the same set of assumptions on the DTSHG model
as in Scenario I and II. In such cases, however, the problem becomes one of computation and
implementation of randomized policies, as discussed above.

In order to define the problem formally, we will first specify the information structure in Sce-
nario III. As consistent with the assumption of symmetric access to information, Player I is con-
strained to choose Markov policies µa within the class Ma, while Player II is constrained to choose
Markov policies µb within the class Mb. By the discussions of the preceding subsection, under
fixed choices of policies µa ∈Ma and µb ∈Mb, the probability measures Pµa,µb

s0 and P̃µa,µb
s0 are

well-defined and equivalent, for every s0 ∈ S. It then follows that under a fixed pair of policies
(µa,µb), we have rµa,µb

s0 (R,W ′) = r̃µa,µb
s0 (R,W ′), ∀s0 ∈ S.

As consistent with the typical analysis procedure of symmetric zero-sum games (see for exam-
ple Başar and Olsder, 1999), we now define the lower value and upper value of the reach-avoid
problem in Scenario III.

Definition 4.7. The lower value of the probabilistic reach-avoid problem in Scenario III is defined
as

rl
s0
(R,W ′) := sup

µa∈Ma

inf
µb∈Mb

rµa,µb
s0 (R,W ′), s0 ∈ S. (4.34)

Definition 4.8. The upper value of the probabilistic reach-avoid problem in Scenario III is defined
as

ru
s0
(R,W ′) := inf

µb∈Mb
sup

µa∈Ma

rµa,µb
s0 (R,W ′), s0 ∈ S. (4.35)

The lower value corresponds to the case in which Player I declares his/her policy to Player II,
while the upper value corresponds to the case in which Player II declares his/her policy to Player
I. It can be checked that the following inequality always holds:

rl
s0
(R,W ′)≤ ru

s0
(R,W ′), s0 ∈ S,

which agrees with the intuition that the player who declares his/her policy first is at a disadvantage.
Clearly, in a symmetric dynamic game, neither player would reveal his/her policy to the other ahead
of time. Thus, equation (4.34) should be interpreted as a conservative calculation of the payoff
from the point of view of Player I, while equation (4.35) should be interpreted as a conservative
calculation of the cost from the point of view of Player II.

In the case that the upper and lower values are equal, then it may be possible to construct Nash
equilibrium strategies for both players. Specifically, consider the case in which

rl
s0
(R,W ′) = ru

s0
(R,W ′), ∀s0 ∈ S. (4.36)

Suppose for now that the outer supremum in (4.34) is achieved by some Markov policy µ∗a ∈Ma
and that the outer infimum in (4.35) is achieved by some Markov policy µ∗b ∈Mb. Then it can be
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checked that r
µ∗a ,µ∗b
s0 (R,W ′) = rl

s0
(R,W ′) = ru

s0
(R,W ′),∀s0 ∈ S, and for any µa ∈Ma, µb ∈Mb we

have that

r
µa,µ∗b
s0 (R,W ′)≤ r

µ∗a ,µ∗b
s0 (R,W ′)≤ rµ∗a ,µb

s0 (R,W ′), ∀s0 ∈ S. (4.37)

Thus, µ∗a can be interpreted as an optimal policy for Player I in the sense that if Player II chooses
µ∗b , then the payoff for Player I can be no greater than r

µ∗a ,µ∗b
s0 (R,W ′). In a similar manner, µ∗b can be

interpreted as an optimal policy for Player II. Using terminology from noncooperative game theory
(Başar and Olsder, 1999), for any R,W ′ such that (4.36) holds, we say that the probabilistic reach-
avoid problem in Scenario III has value, and any pair (µ∗a ,µ∗b ) which satisfies (4.37) is referred to
as a saddle point or Nash equilibrium solution to the reach-avoid problem.

With these preliminaries, a precise statement of the probabilistic reach-avoid problem in Sce-
nario III can be given as follows.

Problem 4.3. Given a DTSHG H , target set R ∈B(S), and safe set W ′ ∈B(S) such that R⊆W ′:

(I) Compute rl
s0
(R,W ′) and ru

s0
(R,W ′), ∀s0 ∈ S;

(II) If the probabilistic reach-avoid problem has a value, find a saddle point solution (µ∗a ,µ∗b ).

As it turns out, there is a correspondence relation between the upper and lower value of Sce-
nario III and the Stackelberg payoffs in Scenario I and II. This is established through the following
proposition.

Proposition 4.4. Let H be a DTSHG satisfying Assumption 4.1. Let R,W ′ ∈B(S) be Borel sets
such that R⊆W ′. Then under the information pattern of Scenario III, the following identities hold:

(a) rl
s0
(R,W ′) = r∗s0

(R,W ′), ∀s0 ∈ S.

(b) ru
s0
(R,W ′) = r̃∗s0

(R,W ′), ∀s0 ∈ S.

Proof. We will prove the result for the lower value (part (a) above), the proof for the upper value
is analogous. First, for each µa ∈Ma, we have by the definition of the worst-case reach-avoid
probability in Scenario I that

rµa
s0 (R,W

′) = inf
γb∈Γb

rµa,γb
s0 (R,W ′)≤ inf

µb∈Mb
rµa,µb

s0 (R,W ′), ∀s0 ∈ S.

Then it follows by the definition of the lower value in Scenario III that

r∗s0
(R,W ′)≤ rl

s0
(R,W ′), ∀s0 ∈ S.

Second, by Proposition 4.3(b), there exists a Player II strategy γ∗b ∈ Γb such that for any Player
I policy µa ∈Ma, we have

r
µa,γ∗b
s0 (R,W ′)≤T N(1R)(s0), ∀s0 ∈ S.
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For each µa ∈Ma, consider a choice of Player II policy µ̄b ∈Mb defined by

µ̄b
k (s) = γb,∗

k (s,µa
k (s)), s ∈ S, k = 0,1, ...,N−1.

Then it follows that

νµa
k ,µ̄

b
k (·|s)≡ νµa

k ,γ
b,∗
k (·|s), ∀s ∈ S, k = 0,1, ...,N−1,

From this we can deduce that for each µa ∈Ma, there exists µ̄b ∈Mb such that, for any s0 ∈ S,
the following inequality holds

rµa,µ̄b
s0 (R,W ′) = r

µa,γ∗b
s0 (R,W ′)≤T N(1R)(s0).

Then by the result of Theorem 4.1, we have, for each µa ∈Ma and s0 ∈ S,

inf
µb∈Mb

rµa,µb
s0 (R,W ′)≤ r∗s0

(R,W ′),

and hence rl
s0
(R,W ′)≤ r∗s0

(R,W ′), ∀s0 ∈ S, which completes the proof.

In other words, the Stackelberg payoff of Scenario I can be interpreted as the lower value of
Scenario III, while the Stackelberg payoff of Scenario II can be interpreted as the upper value of
Scenario III. A sufficient condition for the existence of value and saddle point solution in Scenario
III can be then given in terms of the dynamic programming operators in Scenario I and II.

Proposition 4.5. Let H be a DTSHG satisfying Assumption 4.1. Let R,W ′ ∈B(S) be Borel sets
such that R⊆W ′. If the operator H, as defined in (4.12), satisfies

sup
a∈Ca

inf
b∈Cb

H(s,a,b,J) = inf
b∈Cb

sup
a∈Ca

H(s,a,b,J) (4.38)

for every s ∈ S and J ∈F , then

(a) The probabilistic reach-avoid problem in Scenario III has a value;

(b) There exists a player I policy µ∗a ∈Ma and a player II policy µ∗b ∈Mb such that (µ∗a ,µ∗b )
forms a saddle-point solution to the reach-avoid problem;

(c) Let J∗N = 1R, J∗k =T N−k(1R), k = 0,1, ...,N−1. If µ∗a ∈Ma is a player I policy which satisfies

µa,∗
k (s) ∈ arg sup

a∈Ca

inf
b∈Cb

H(s,a,b,J∗k+1), (4.39)

∀s ∈W ′ \R, k = 0,1, . . . ,N−1, and if µ∗b ∈Mb is a player II policy which satisfies

µb,∗
k (s) ∈ arg inf

b∈Cb
sup
a∈Ca

H(s,a,b,J∗k+1), (4.40)

∀s ∈W ′ \R, k = 0,1, . . . ,N−1, then (µ∗a ,µ∗b ) is a saddle-point solution.
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Proof. Suppose (4.38) holds, then we have T (J) = T̃ (J), ∀J ∈F . This in turn implies that

r∗s0
(R,W ′) = T N(1R)(s0) = T̃ N(1R)(s0) = r̃∗s0

(R,W ′), ∀s0 ∈ S.

Combining this with Proposition 4.4, statement (a) follows.
In such a case, we have by Theorem 4.1(b) that there exists a max-min control policy µ∗a ∈Ma

for Scenario I satisfying

r∗s0
(R,W ′)≤ rµ∗a ,γb

s0 (R,W ′), ∀s0 ∈ S, γb ∈ Γb.

Moreover, we have by Theorem 4.3(b) that there exists a worst-case adversary policy µ∗b ∈Mb for
Scenario II satisfying

r̃
γa,µ∗b
s0 (R,W ′)≤ r̃∗s0

(R,W ′), ∀s0 ∈ S, γa ∈ Γa.

With another application of Proposition 4.4, the pair (µ∗a ,µ∗b ) can be shown to be a saddle point
solution to the reach-avoid problem.

Finally, if µ∗a ∈Ma is a player I policy satisfying (4.39), then µ∗a is a max-min control policy
satisfying the conditions of Theorem 4.1(b). Moreover, if µ∗b ∈Mb is a player II policy satisfy-
ing (4.40), then µ∗b is a worst-case adversary policy satisfying the conditions of Theorem 4.3(b).
Statement (c) then follows.

Equations of the form (4.38) are often referred to in literature as a minimax condition. Efforts to
establish conditions for when such equations hold can be traced back to von Neumann’s minimax
theorem (von Neumann and Morgenstern, 1944), which has since been generalized by several
authors (see for example Fan, 1953; Sion, 1958). The following set of conditions are due to Fan
(1953):

Assumption 4.2.

• Cb is a compact Hausdorff space;

• For every s ∈ S, a ∈Ca, and J ∈F , the function b→ H(s,a,b,J) is lower semicontinuous
and convexlike, namely for any b1,b2 ∈ Cb and λ ∈ [0,1], there exists b0 ∈ Cb such that
H(s,a,b0,J)≤ λH(s,a,b1,J)+(1−λ )H(s,a,b2,J).

• For every s ∈ S, b ∈Cb, and J ∈F , the function a→H(s,a,b,J) is concavelike, namely for
any a1,a2 ∈Ca and λ ∈ [0,1], there exists a0 ∈Ca such that H(s,a0,b,J)≥ λH(s,a1,b,J)+
(1−λ )H(s,a2,b,J).

Under Assumption 4.2, we have by Theorem 2 of Fan (1953) that (4.38) holds, and hence
a saddle point solution exists. Intuitively speaking, this assumption requires that the function
(a,b)→H(s,a,b,J) be “saddle-like” for each fixed s and J. If one were to restrict one’s attention to
non-randomized control policies, as in the discussions so far, this condition can be rather restrictive.
In particular, it is well-known that there exists finite state games in which these conditions do not
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hold and a pure strategy equilibrium does not exist. One such example, as adapted from de Alfaro
et al. (2007), is given below.

Consider a two-state system with the state space S = {q1,q2}, and action spaces Ca = {1,2},
Cb = {1,2}. The transitions between the discrete states are described in terms of a discrete transi-
tion relation δ : S×Ca×Cb→ S defined as follows: δ (q1,a,b) = q1, if a 6= b, and δ (q1,a,b) = q2,
otherwise; δ (q2,a,b) = q2, ∀a,b. This is illustrated in Figure 4.1. The corresponding transition
kernel for the DTSHG model can be derived in a straightforward manner from this diagram.

Figure 4.1: Two-state example to illustrate equilibrium strategies in symmetric dynamic games.

Now suppose that q1 is a safe state and q2 is an unsafe state, so that W = {q1}. In the case
that input selections are deterministic, it is intuitive that if player II were allowed to observe the
inputs of player I, as in Scenario I, then player II can always select a choice of input to drive the
system state into q2 in one step. On the other hand, if player I is allowed to observe the inputs of
player II, as in Scenario II, then player I can always select a choice of input at each time step to
keep the system state in q1. In particular, one can verify that if only non-randomized strategies are
considered, the safety probability in Scenario I is zero, while the safety probability in Scenario II
is one, over any time horizon N ≥ 1.

On the other hand, if the players are allowed to randomize their selection of inputs, namely
player I is allowed to select a = 1 with probability pa and player II is allowed to select b = 1 with
probability pb, then one can view this as a dynamic game in which the player inputs are pa ∈ [0,1]
and pb ∈ [0,1]. The operator H with respect to these randomized strategies then takes on the
following form:

H(q, pa, pb,J) =

{
J(q1)(pa + pb−2pa pb)+ J(q2)(1− pa− pb +2pa pb), q = q1

J(q2), q = q2.

Clearly, H is concave in pa and convex in pb, and hence satisfies the minimax condition (4.38).
In particular, over one stage of the dynamic game, the value is 0.5 in state q1, and the equilibrium
strategies are given by pa = pb = 0.5.

In this simple example, it can be observed that randomized strategies induce a natural convexity
structure in the dynamic programming operator. This is one of the primary reasons that Nash equi-
libria often exists only in mixed or randomized strategies, rather than in pure or non-randomized
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strategies. In the following, we will proceed to show that this observation in fact holds for the
probabilistic reachability problems under consideration.

Specifically, we associate with each DTSHG model H = (Q,n,Ca,Cb,νx,νq,νr) a randomized
input DTSHG model H ′ = (Q,n,C′a,C

′
b,ν
′
x,ν ′q,ν ′r), defined as follows:

• C′a = P(Ca), C′b = P(Cb);

• For every s ∈ S, Pa ∈P(Ca), and Pb ∈P(Cb),

ν ′x(·|s,Pa,Pb) :=
∫

Cb

∫
Ca

ν ′x(·|s,a,b)Pa(da)Pb(db);

• For every s ∈ S, Pa ∈P(Ca), and Pb ∈P(Cb),

ν ′q(·|s,Pa,Pb) :=
∫

Cb

∫
Ca

ν ′q(·|s,a,b)Pa(da)Pb(db);

• For every s ∈ S, Pa ∈P(Ca), Pb ∈P(Cb), and q′ ∈ Q,

ν ′r(·|s,Pa,Pb,q′) :=
∫

Cb

∫
Ca

νr(·|s,a,b,q′)Pa(da)Pb(db).

In the above, P(Ca) (resp. P(Cb)) denote the space of probability measures on Ca (resp. Cb).
Since Ca and Cb are compact Borel spaces, P(Ca) and P(Cb) are also compact Borel spaces (see
for example Bertsekas and Shreve, 1978, section 7.4). Furthermore, if a DTSHG model H satisfies
Assumption 4.1, then one can verify using Proposition 7.21 of Bertsekas and Shreve (1978) that
the associated randomized input model H ′ also satisfies Assumption 4.1.

The probabilistic safety and reach-avoid problems defined in terms of the model H ′ allows
player policies which select inputs from randomized input spaces. In particular, player I (resp.
player II) is allowed to select policies from the Markov policy space M ′

a (resp. M ′
b) defined in

terms of the input space P(Ca) (resp. P(Cb)).
For a given DTSHG model H , we say that the probabilistic reach-avoid problem in Scenario

III has a value with respect to randomized policies if the reach-avoid problem defined in terms of
H ′ has a value. Moreover, we call a saddle point solution (µ ′a,µ ′b) to the reach-avoid problem
defined in terms of H ′ a randomized saddle point solution. In the following, we will show that
under the same set of assumptions as in Scenario I and II, the reach-avoid problem in Scenario III
has a randomized saddle point solution.

Proposition 4.6. Let H be a DTSHG satisfying Assumption 4.1. Let R,W ′ ∈B(S) be Borel sets
such that R⊆W ′. Then

(a) The probabilistic reach-avoid problem in Scenario III has a value with respect to randomized
policies;

(b) There exists a randomized saddle point solution to the reach-avoid problem.
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Proof. Let H ′ be the randomized input DTSHG model associated with H . Then for a given
s ∈ S, Pa ∈C′a, Pb ∈C′b, and J ∈F , the operator H can be written as

H(s,Pa,Pb,J) =
∫

Cb

∫
Ca

∫
S

J(s′)ν(ds′|s,a,b)Pa(da)Pb(db).

It can be verified that H defined as above satisfies Assumption 4.2. Specifically, given that C′b =
P(Cb) is a compact Borel space, the first condition is satisfied. Furthermore, since H ′ satisfies
Assumption 4.1, the function (Pa,Pb)→ H(s,Pa,Pb,J) is continuous by the proof of Proposition
4.1. Finally, for any Pa, P̃a ∈C′a and λ ∈ [0,1], we have P̂a := λPa +(1−λ )P̃a ∈C′a and

λH(s,Pa,Pb,J)+(1−λ )H(s, P̃a,Pb,J) = H(s, P̂a,Pb,J).

This implies that H is concavelike on C′a. In a similar manner, one can show that H is convexlike
on C′b. Thus, the conditions of Assumption 4.2 are verified.

By Theorem 2 of Fan (1953), we have that the minimax condition (4.38) holds. The statements
of the proposition then follows by an application of Proposition 4.5.

4.6 Infinite Horizon Properties
In this section, we will consider infinite horizon formulations of probabilistic reachability prob-
lems. This type of formulation is particularly relevant within the context of safety problems, in
which case the specifications for many practical applications are to enforce the safety property
for all time (i.e. an invariance specification), rather than over some given finite time horizon.
Moreover, the investigation of infinite horizon problems opens the possibility for stationary con-
trol policies. As compared with the time-varying policies generated by finite horizon reachability
computations, stationary policies in general have a smaller representation size, and are easier to
implement in practice.

From a theoretical perspective, there are several issues at hand when considering infinite hori-
zon optimal control or dynamic game problems:

• The mathematical characterization of the infinite horizon payoff as the solution to an appro-
priate fixed-point equation;

• The convergence of the finite horizon payoffs to the infinite horizon payoff;

• The existence of optimal infinite horizon contol policies, stationary or otherwise.

In the case that the convergence property above holds, one can approximate the infinite horizon
payoff through a finite horizon computation. However, as discussed in chapter 5 of Bertsekas
and Shreve (1978), such a property is not always assured, and simple counterexamples can be
constructed in the deterministic case. Moreover, the existence of optimal policies in infinite horizon
zero-sum games can be a rather subtle and non-trivial issue when the payoff is not discounted (see
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for example Kumar and Shiau, 1981; Nowak, 1985), as in the case of probabilistic safety and
reach-avoid problems.

We will address these questions within the context of the probabilistic reach-avoid problem,
with the understanding that results for the safety problem can be specialized from the particular
case of the reach-avoid problem in which the objective is to minimize the probability of reaching
a target or unsafe set. It will be shown that the infinite horizon reach-avoid probability is a fixed
point of the dynamic programming operator T defined in section 4.4. Furthermore, this infinite
horizon payoff can be approximated by the finite horizon dynamic programming procedure. In the
case that the objective of the control is to maximize the reach-avoid probability, it is also shown
that there exists a stationary worst-case adversary strategy. However, as consistent with results
in literature (Kumar and Shiau, 1981; Nowak, 1985), the corresponding result for the control is
comparatively weaker. In particular, it is shown that there exists a time-varying ε-optimal semi-
Markov control policy. In the reverse case that the objective of the control is to minimize the reach-
avoid probability, as in the case of the safety problem, the results are correspondingly reversed.
Namely, in such a case, there exists a stationary max-min control policy.

For a precise statement of the infinite horizon reach-avoid problem, let µ = (µ0,µ1, . . .) ∈
Ma be an infinite horizon Markov policy for player I and let γ = (γ0,γ1, . . .) ∈ Γb be an infinite
horizon Markov strategy for player II. Then by Proposition 7.28 of Bertsekas and Shreve (1978),
the stochastic kernels τµk,γk , k = 0,1, ... induce a unique probability measure Pµ,γ

s0 on the sample
space Ω = ∏

∞
k=0 S. Under a given µ ∈Ma and γ ∈ Γb, the infinite horizon reach-avoid probability

is defined as

rµ,γ
s0 (R,W ′) := Pµ,γ

s0 (
{
(s0,s1, ...) : ∃k ≥ 0,(sk ∈ R)∧ (s j ∈W ′, ∀ j ∈ [0,k])

}
). (4.41)

The above expression can be equivalently written as

rµ,γ
s0 (R,W ′) := Pµ,γ

s0

(
∞⋃

k=0

(W ′ \R)k×R

)
=

∞

∑
k=0

Pµ,γ
s0 ((W ′ \R)k×R)

= lim
N→∞

N

∑
k=0

Eµ,γ
s0

[(
k−1

∏
j=0

1W ′\R(x j)

)
1R(xk)

]
= lim

N→∞
rµ0→N ,γ0→N

s0 (R,W ′). (4.42)

where µ0→N = (µ0, . . . ,µN−1) and γ0→N = (γ0, . . . ,γN−1) denote the player I policy and player II
strategy, respectively, over time horizon [0,N]. In other words, under a fixed infinite horizon policy
µ and a fixed infinite horizon strategy γ , the infinite horizon reach-avoid probability is the limit of
the finite horizon reach-avoid probability as N→ ∞.

As in section 4.3, we define the infinite horizon worst-case reach-avoid probability under an
infinite horizon player I policy µ ∈Ma as

rµ
s0(R,W

′) = inf
γ∈Γb

rµ,γ
s0 (R,W ′), s0 ∈ S. (4.43)
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The infinite horizon max-min pay-off for player I is then given by

r∞
s0
(R,W ′) := sup

µ∈Ma

rµ
s0(R,W

′), s0 ∈ S. (4.44)

The max-min control policy and the worst-case adversary strategy are then interpreted as the Stack-
elberg solution to (4.43) and (4.44). Given that an optimal policy for player I may not exist in the
infinite horizon case (Kumar and Shiau, 1981), we will widen the notion of optimality to ε-optimal
policies. In particular, a control policy µ̄a ∈Ma is said to be an ε-optimal max-min control policy
if

rµ̄a
s0 (R,W

′)≥ r∞
s0
(R,W ′)− ε, ∀s0 ∈ S.

Clearly, a max-min control policy is optimal if it is 0-optimal. The definition for the worst-case
adversary strategy remains the same as in the finite horizon case.

The infinite horizon reach-avoid problem for a DTSHG is stated as follows.

Problem 4.4. Given a DTSHG H , target set R ∈B(S), and safe set W ′ ∈B(S) such that R⊆W ′:

(I) Compute the infinite horizon max-min reach-avoid probability r∞
s0
(R,W ′), ∀s0 ∈ S;

(II) For a choice of ε > 0 such that an ε-optimal max-min control policy µ̄a ∈Ma exists, find
such a policy.

(III) Find a worst-case adversary strategy γ∗ ∈ Γb, whenever it exists.

In the following, it will be shown that the infinite horizon max-min reach-avoid probability is
in fact a fixed-point of the dynamic programming operator T , and that it can be approximated by
the finite horizon reachability computation as described in section 4.4.1. In particular, defining the
function V ∗ : S→ [0,1] as V ∗(s0) := r∞

s0
(R,W ′), s0 ∈ S, we will show that

V ∗ = T (V ∗). (4.45)

Moreover, defining the finite horizon max-min reach-avoid probability over [0,N] as

rN
s0
(R,W ′) := sup

µ0→N∈Ma

inf
γ0→N∈Γb

rµ0→N ,γ0→N
s0 (R,W ′),

we will show that

r∞
s0
(R,W ′) = lim

N→∞
rN

s0
(R,W ′), ∀s0 ∈ S. (4.46)

By (4.42), and the definitions of r∞
s0
(R,W ′) and rN

s0
(R,W ′), this is equivalent to showing

sup
µ∈Ma

inf
γ∈Γb

lim
N→∞

rµ0→N ,γ0→N
s0 (R,W ′) = lim

N→∞
sup

µ0→N∈Ma

inf
γ0→N∈Γb

rµ0→N ,γ0→N
s0 (R,W ′).

In other words, the limit can be exchanged with the supremum and infimum.
We begin by proving that the limit in (4.46) in fact exists.
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Lemma 4.5. For each s0 ∈ S, the sequence
{

rN
s0
(R,W ′)

}∞

N=1 converges.

Proof. For each N ≥ 1, rN
s0
(R,W ′) is the finite horizon max-min reach-avoid probability over [0,N].

Thus, for every s0 ∈ S and N ≥ 1, rN
s0
(R,W ′) ∈ [0,1].

By Theorem 4.1, we have that for each N ≥ 1 and s0 ∈ S, rN
s0
(R,W ′) = T N(1R)(s0). From the

definition of T in equation (4.12), it is clear that 1R ≤ T (1R). Furthermore, by the properties
of integrals, it follows directly that the operator T satisfies a monotonicity property: if J,J′ ∈F
are value functions such that J ≤ J′, then T (J) ≤ T (J′). Given these properties of T , it can be
verified that T k(1R)≤T k+1(1R) for every k ≥ 0.

From this, we conclude that for each s0 ∈ S, the sequence
{

rN
s0
(R,W ′)

}∞

N=1 is bounded and
monotonically increasing, and hence converges (see for example Rudin, 1976, Theorem 3.14).

For notational conveniences, we define a function V∞ : X → [0,1] as

V∞(s0) = lim
N→∞

rN
s0
(R,W ′), ∀s0 ∈ S. (4.47)

By Proposition 4.1, it follows that V∞ is the limit of a sequence of Borel-measurable functions, and
hence is also Borel-measurable (see for example Folland, 1999, Proposition 2.7). The following
result shows that V∞ is a fixed point of the operator T .

Proposition 4.7. Let V∞ be defined as in (4.47) and T be defined as in (4.12). Then V∞ satisfies
the fixed-point equation

V∞ = T (V∞).

The proof is somewhat technical and can be found in appendix B. The line of argument is
adapted from that found in Kumar and Shiau (1981) for additive cost problems. In the following,
we use this result to prove (4.46).

Proposition 4.8. Let V∞ be defined as in (4.47). Then

r∞
s0
(R,W ′) =V∞(s0), ∀s0 ∈ S.

Furthermore, the function V ∗ : S→ [0,1] defined as V ∗(s0) := r∞
s0
(R,W ′), s0 ∈ S satisfies the fixed-

point equation (4.45).

Proof. It can be observed from equation (4.42) that, for any fixed infinite horizon policy µ =
(µ0,µ1, ...) ∈Ma and γ = (γ0,γ1, ...) ∈ Γb, the following inequality holds:

rµ,γ
s0 (R,W ′)≥ rµ0→N ,γ0→N

s0 , ∀s0 ∈ S, N ∈ N.

This implies that, for every s0 ∈ S and N ≥ 1, we have

r∞
s0
(R,W ′) = sup

µ∈Ma

inf
γ∈Γb

rµ,γ
s0 (R,W ′)

≥ sup
µ0→N∈Ma

inf
γ0→N∈Γb

rµ0→N ,γ0→N
s0 (R,W ′)

= rN
s0
(R,W ′).
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It then follows that

r∞
s0
(R,W ′)≥ lim

N→∞
rN

s0
(R,W ′) =V∞(s0), ∀s0 ∈ S.

In order to prove the reverse inequality, we define the functions Jµ,γ
k→N : S→ [0,1] by

Jµ,γ
k→N(sk) := rµk→N ,γk→N

sk (R,W ′), sk ∈ S,

for µ ∈Ma, γ ∈ Γb, and k = 0,1, ...,N−1.
For fixed choices of Borel-measurable functions f : S→Ca and g : S×Ca→Cb, let the operator

T f ,g be defined as in (4.17). Then by Lemma 4.1, for any finite horizon [0,N], µ ∈Ma, γ ∈ Γb,
the functions Jµ,γ

k→N can be computed through the backwards recursion

Jµ,γ
k→N(sk) = Tµk,γk(J

µ,γ
k+1→N)(sk), k = 0,1, ...,N−1,

initialized with Jµ,γ
N→N = 1R.

Furthermore, by Proposition 4.1, there exists a Borel-measurable function g∗ : S×Ca → Cb
which satisfies for every s ∈ S and a ∈Ca the following identity:

g∗(s,a) ∈ arg inf
b∈Cb

H(s,a,b,V∞);

Thus, for any Borel-measurable function f : S→Ca and s ∈ S, we have

T f ,g∗(V∞)(s) = 1R(s)+1W ′\R(s)H(s, f (s),g∗(s, f (s)),V∞)

= inf
b∈Cb

1R(s)+1W ′\R(s)H(s, f (s),b,V∞)

≤T (V∞)(s).

Consider a stationary Markov strategy γ∗ := (g∗,g∗, ...). We prove the following claim by
backwards induction on k: for any µ = (µ0,µ1, ...) ∈Ma and N ≥ 1,

Jµ,γ∗
k→N ≤V∞, k = 0,1, ...,N.

For k = N, it can be observed that Jµ,γ∗
N→N = 1R ≤ V∞. For the inductive step, we assume the

identity holds for some k = l ∈ {1, ...,N}. Then for any µ ∈Ma, we have

Jµ,γ∗
l−1→N = Tµl−1,g∗(J

µ,γ∗
l→N)≤Tµl−1,g∗(V∞)≤T (V∞).

By Proposition 4.7, it follows that Jµ,γ∗
l−1→N ≤V∞, which concludes the proof of the claim.

This result implies that for every s0 ∈ S, µ ∈Ma, and N ≥ 1,

rµ0→N ,γ∗0→N
s0 (R,W ′) = Jµ,γ∗

0→N(s0)≤V∞(s0).
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Taking the limit as N→ ∞, it follows that

lim
N→∞

rµ0→N ,γ∗0→N
s0 (R,W ′) = rµ,γ∗

s0 (R,W ′)≤V∞(s0),

for every s0 ∈ S and µ ∈Ma. Thus,

r∞
s0
(R,W ′) = sup

µ∈Ma

inf
γ∈Γb

rµ,γ
s0 (R,W ′)≤V∞(s0), ∀s0 ∈ S.

Combining this with the previous inequality, we conclude that

r∞
s0
(R,W ′) =V∞(s0), ∀s0 ∈ S,

and hence V ∗ =V∞. By another application of Proposition 4.7, we have that V ∗ is a fixed-point of
the operator T .

In the course of proving Proposition 4.8, we have also shown the following.

Corollary 4.1. There exists a stationary worst-case adversary strategy. In particular, if γ∗ =
(g∗,g∗, ...) ∈ Γb satisfies

g∗(s,a) ∈ arg inf
b∈Cb

H(s,a,b,V∞), ∀s ∈W ′ \R,a ∈Ca,

then γ∗ is a worst-case adversary strategy.

In contrast with the finite horizon case, the existence of an optimal max-min control policy
is not assured, due to the positive non-discounted payoff structure. The following example, as
adapted from Example 1 of Kumar and Shiau (1981) provides an illustration of this fact.

Consider a Markov decision process with the state space S = {q1,q2,q3}, and action spaces
Ca = [0,1], Cb = 1,2. The states q1 and q2 are absorbing, namely τ(q1|q1,a,b) = τ(q2|q2,a,b) = 1,
∀a ∈ Ca,b ∈ Cb. In state q3, if player I chooses a ∈ [0,1], and player II chooses b = 1, then the
system transitions to q1 with probability a and q2 with probability 1− a; on the other hand, if
player II chooses b = 2, then the system transitions to q1 with probability 1−a and remains in q2
with probability a. This is illustrated in Figure 4.2.

Suppose q1 is a target state and q2 is an unsafe state, so that R= {q1}, W ′= {q1,q3}. By Propo-
sition 4.8, the infinite horizon max-min reach-avoid probability is the fixed point of the equation
V ∗ = T (V ∗):

V ∗(q) =1{q1}(q)+ max
a∈[0,1]

min
b∈{1,2}

1{q3}(q) ∑
q′∈X

V ∗(q′)τ(q′|q,a,b).

Clearly, V ∗(q1) = 1 and V ∗(q2) = 0. In the case of q3, the above can be rewritten as

V ∗(q3) = max
a∈[0,1]

min
b∈{1,2}

τ(q1|q3,a,b)+V ∗(q3)τ(q3|q3,a,b).
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Figure 4.2: Markov chain example to illustrate infinite horizon policies.

It can be verified that the righthand side of the above equation is given by 1
2−V ∗(q3)

, which results
in the fixed point V ∗(q3) = 1. However, there does not exist a Markov policy for player I which
ensures that the objective of reaching q1 from q3 while avoiding q2 can be achieved with probability
one. Specifically, applying Corollary 4.1, we have that a worst-case adversary strategy at state q3 is
given by γ∗(q3,a)= 2, if a= 1, and γ∗(q3,a)= 1, otherwise. Under this choice of player II strategy,
suppose that player I were to choose µk(q3) = 1, ∀k≥ 0, then rµ,γ∗

q3 (R,W ′) = 0. On the other hand,
suppose that player I were to choose µl(q3) = 1− ε , for some l ≥ 0 and ε > 0, then at time l, the
system state can transition from q3 to q2 with probability ε , and hence rµ,γ∗

q3 (K,K′) ≤ 1− ε . This
shows that there does not exist an optimal max-min control policy. In particular, observe that the
policy µ∗(q3) = 1 satisfies

µ∗(q3) ∈ arg max
a∈[0,1]

min
b∈{1,2}

∑
q′∈S

V ∗(q′)τ(q′|q3,a,b).

However, as shown above, choosing this as a stationary policy results in a reach-avoid probability
strictly less than V ∗(q3) (in fact, zero). There does exist, however, a stationary ε-optimal policy,
namely µk(q3) = 1− ε , ∀k ≥ 0.

The above example motivates the search for conditions under which there exists ε-optimal
policies for player I. For this, we enlarge the set of control policies to those of the form µ =
(µ0(s0),µ1(s0,s1),µ2(s0,s2), ...), where µk depends upon both the current state sk and also the
initial condition s0. These policies are sometimes referred to in literature as semi-Markov policies.
The following result is an extension of Proposition 9.20 in Bertsekas and Shreve (1978) from the
single-player case to the zero-sum game case.

Proposition 4.9. For every ε > 0, there exists an ε-optimal semi-Markov max-min control policy.

Proof. By Proposition 4.8, we have r∞
s0
(R,W ′) = limN→∞ rN

s0
(R,W ′), ∀s0 ∈ S. For a given ε > 0,

define the Borel sets Sε
N ⊆ S by

Sε
N =

{
s ∈ S : rN

s0
(R,W ′)≥ r∞

s0
(R,W ′)− ε

}
.
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From Lemma 4.5, it can be inferred that Sε
1 ⊆ Sε

2 ⊆ ·· · , and that ∪N≥1Sε
N = S. By Theorem 4.1,

there exists a Markov policy µN ∈Ma for player I which satisfies

rN
s0
(R,W ′)≤ rµN ,γ

s0 (R,W ′), ∀s0 ∈ S,γ ∈ Γb.

Then for any initial condition s0 ∈ Sε
N , we have that

rµN ,γ
s0 (R,W ′)≥ r∞

s0
(R,W ′)− ε, ∀γ ∈ Γb.

Now consider a policy µ̂N = (µN , µ̄, µ̄, ...), where µ̄ : S→Ca is arbitrary, then µ̂N is an ε-optimal
policy on Sε

N . Defining a semi-Markov policy µ̃ by µ̃ = µ̂1 on Sε
1 and µ̃ = µ̂ j on Sε

j \Sε
j−1, j ≥ 2.

Then µ̃ is the required policy.

In practice, one can implement the semi-Markov policy as follows. Suppose that one would like
to ensure a reach-avoid probability of at least 1−ε over some set of initial conditions S0 ⊂ S. Then
one can perform a finite horizon reach-avoid calculation until a time instant N such that S0 ⊆ Sε

N ,
and apply the finite horizon optimal control policy µN on S0. In the previous example, let VN(s0) :=
rN

s0
(R,W ′), ∀s0 ∈ S, then it can be verified that V1(q3) =

1
2 and Vk+1(q3) =

1
2−Vk(q3)

for k ≥ 1.
Furthermore, the finite horizon optimal policy for player I takes the form µN = (µN

0 ,µ
N
1 , ...,µ

N
N−1),

where µN
k (q3) =VN−k(q3). For a given ε > 0, one could then choose an integer N sufficiently large

such that VN(q3)≥ 1− ε and implement the policy µN on q3.
By the relation between the probabilistic safety and reach-avoid problems as observed in sec-

tion 4.3, the infinite horizon dynamic programming results for the safety problem can be derived in
an analogous fashion as in Proposition 4.7 and 4.8, except replacing the sup-inf dynamic program-
ming operator T by an inf-sup dynamic programming operator. More specifically, let W ∈B(S)
be a safe set, then the infinite horizon safety probability under fixed choices of µ ∈Ma and γ ∈ Γb
is given by

pµ,γ
s0 (W ) := Pµ,γ

s0 ({(s0,s1, ...) : sk ∈W, ∀k ≥ 0}) (4.48)

= 1−Pµ,γ
s0 ({(s0,s1, ...) : ∃k ≥ 0,(sk ∈ S\W )})

= 1− rµ,γ
s0 (S\W,S),

where rµ,γ
s0 is as defined in (4.41). The infinite horizon max-min safety probability is then given by

p∗s0
(W ) := sup

µ∈Ma

inf
γ∈Γb

pµ,γ
s0 (W ) = 1− r̄∗s0

(S\W,S), s0 ∈ S. (4.49)

where
r̄∗s0

(R,W ′) := inf
µ∈Ma

sup
γ∈Γb

rµ,γ
s0 (R,W ′), s0 ∈ S, R,W ′ ∈B(S). (4.50)

The safety problem then becomes one of computing the infinite horizon minimal reach-avoid prob-
ability r̄∗s0

(R,W ′) with R = S \W and W ′ = S, and finding an optimal control policy µ∗a ∈Ma as
interpreted in terms of a Stackelberg solution to (4.49).
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Now consider the finite horizon minimal reach-avoid probability defined as

r̄N
s0
(R,W ′) := inf

µ0→N∈Ma
sup

γ0→N∈Γb

rµ0→N ,γ0→N
s0 (R,W ′),

and an inf-sup dynamic programming operator defined as

T̄ (J)(s) = inf
a∈Ca

sup
b∈Cb

1R(s)+1W ′\R(s)H(s,a,b,J), s ∈ S, J ∈F .

The following results can be then shown using an analogous procedure as given in the proofs
of Proposition 4.7 and 4.8.

Proposition 4.10. Let V̄∞ : S→ [0,1] be defined as V̄∞(s0) = limN→∞ r̄N
s0
(R,W ′) and V̄ ∗ : S→ [0,1]

be defined as V̄ ∗(s0) := r̄∗s0
(R,W ′). Then

(a) V̄ ∗ = T̄ (V̄ ∗);

(b) V̄ ∗ = V̄∞;

(c) There exists a stationary optimal control policy. In particular, if µ∗ = ( f ∗, f ∗, ...) ∈Ma satis-
fies

f ∗(s) ∈ arg inf
a∈Ca

sup
b∈Cb

H(s,a,b,V̄∞), ∀s ∈W ′ \R,

then µ∗ is an optimal control policy.

The infinite horizon safety probability can be then derived from this proposition by setting
R = S \W and W ′ = S. It should be noted, however, that if the noise distribution in the DTSHG
model has infinite support, this probability will be in general zero everywhere. Namely, given
enough time, the system trajectory will eventually become unsafe. On the other hand, if one were
to consider noise distributions with bounded support or alternative interpretations of the safety
problem as the probability of reaching a safe set before reaching the unsafe set, for example by
choosing W ′ in (4.50) as a strict subset of S (Hu et al., 2005), then it may be the case that the infinite
horizon safety probability would no longer be identically zero and as such would be meaningful to
compute.

4.7 Computational Examples
In this section, we will illustrate probabilistic reachability computation for DTSHG models through
two application examples. In particular, the examples are stochastic game formulations of the
aircraft conflict resolution and quadrotor target tracking examples considered previously in chapter
3 within the context of deterministic hybrid system models. The discussion here will focus on the
motivations for stochastic models, the computation of the max-min probability and control policy,
as well as the interpretation of the dynamic programming solutions in terms of the application of
interest.
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4.7.1 Aircraft Conflict Detection and Resolution
First consider the problem of two aircraft conflict resolution. As described previously in section
3.2, the relative position and heading dynamics between the two aircraft in the conflict scenario
can be abstracted in terms of a deterministic, nonlinear kinematics model, with the input of aircraft
1 as the control and the input of aircraft 2 as the disturbance. A source of uncertainty which is
not captured in this model, however, is the effects of wind, which can cause significant trajectory
tracking errors. Such effects are difficult to model deterministically as they tend to exhibit large
fluctuations from one scenario to another. Thus, they are often characterized empirically through
statistical analysis of aircraft trajectory data compiled over a large number of flights (Ballin and
Erzberger, 1996). This motivates the consideration of a probabilistic model of wind to augment
the aircraft kinematics model.

The field of conflict detection and resolution in air traffic management features a large number
of formulations and computational methods. For a comprehensive survey, the interested reader
is referred to Kuchar and Yang (2000). Our approach to this problem lies at the intersection of
worst-case (Tomlin et al., 2002) and probabilistic methods (Paielli and Erzberger, 1997), namely
the intent of one of the aircraft is assumed to be unknown and possibly adversarial, while the wind
effects on aircraft trajectory is modelled as stochastic noise. In this context, conflict detection and
resolution becomes a probabilistic safety problem in which the control task is to maximize the
probability of avoiding a collision between two aircraft.

We will briefly review some previous work in probabilistic conflict detection and resolution.
One of the seminal works in this area is that of Paielli and Erzberger (1997), in which a model
for aircraft trajectory perturbation as Gaussian noise was proposed, based upon the statistical anal-
ysis described in Ballin and Erzberger (1996). This is accompanied with an analytic method for
computing the conflict probability. This formed the basis of several probabilistic conflict detection
methods which followed (Prandini et al., 2000; Hwang and Seah, 2008). As more detailed trajec-
tory models are considered, with variations to aircraft intent (Yang and Kuchar, 1997) and spatial
correlation in wind effects (Hu et al., 2005), closed-form expressions for the conflict probability
is often no longer available, requiring the use of numerical estimation algorithms. In comparison
with these previous methods, our approach has the flexibility of being able to treat uncertainty in
intent as an adversarial input rather than as a stochastic process, thus offering an interpretation of
the conflict probability we compute as the probability of collision under the worst-case behavior
of one of the aircraft.

To formulate the problem more precisely, let x = (xr,yr,θr) ∈ S = R2× [0,2π] denote, respec-
tively, the x-position, y-position, and heading of aircraft 2 in the reference frame of aircraft 1. By
performing an Euler discretization of the kinematics equations given in section 3.2 and augmenting
the resulting dynamics with a stochastic wind model as described in Hu et al. (2005), we obtain
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the following model for the relative motion between two aircraft:

x(k+1) = f (x(k),ω1(k),ω2(k))+w(k)

=

 xr(k)+∆t(−v1 + v2 cos(θr(k))+ω1(k)yr(k))
yr(k)+∆t(v2 sin(θr(k))−ω1(k)xr(k))
θr(k)+∆t(ω2(k)−ω1(k))

+
 w1(k)

w2(k)
w3(k)

 , (4.51)

where ∆t is the discretization step, vi is the speed of aircraft i (assumed to be constant), ωi is the
angular turning rate of aircraft i, taken to be the inputs to the system. The random variables (w1,w2)
models spatially correlated wind effects, with a Gaussian distribution (w1,w2)∼N

(
0,Σ(xr,yr)

)
,

as per the wind model proposed in Hu et al. (2005). In particular, at each planar position (xr,yr) ∈
R2, the stochastic wind component in the stochastic differential equation (SDE) model described
in Hu et al. (2005) has the distribution σhdB(xr,yr, t) in which B is a position-dependent Brownian
motion and σh is a positive constant. It is shown that the wind in relative coordinates has the
distribution

w1(t) = σh
√

2(1−h(‖(xr,yr)‖))W1(t)

w2(t) = σh
√

2(1−h(‖(xr,yr)‖))W2(t)

where h : R→ R is a continuous decreasing function with h(0) = 1 and limc→∞ h(c) = 0 and
W (t) = (W1(t),W2(t)) is a standard Brownian motion. The function h is referred to as the spatial
correlation function and is chosen to be h(c) = exp(−βc), where β is a positive constant. The
distribution of (w1,w2) in (4.51) is then obtained through an approximation of this distribution
over one discretization step ∆t. Finally, the random variable w3 models process noise acting on the
turning rate of either aircraft. It is assumed to have a Gaussian distribution w3 ∼N (0,(σω∆t)2).

As consistent with common flight maneuvers, we consider a scenario in which each aircraft is
allowed to select from among one of three operation modes: straight flight, right turn, or left turn,
corresponding to the angular turning rates ωi = 0, ωi =−ω , and ωi =ω , respectively. Here, ω ∈R
is assumed to be a constant. The control objective of aircraft 1 is to avoid a disc D of radius Rc
centered on the origin in the (xr,yr) plane (corresponding to a loss of minimum separation), subject
to the worst-case inputs of aircraft 2. This can be then viewed as a probabilistic safety problem with
the safe set given as W = DC× [0,2π]. By the results of section 4.4.3, the solution to this problem
can be obtained from a complementary reach-avoid problem in which the objective of aircraft 1
is to minimize the worst-case probability of entering the collision set S \W , corresponding to the
minimal reach-avoid probability r̄∗s0

(S\W,S).
For our numerical results, we choose a sampling time of ∆t = 15 seconds, with a time horizon

of 2.5 minutes. The radius of the protected zone is set to Rc = 5 nmi; the aircraft speed is set to
v1 = v2 = 6 nmi per minute; and the angular turning rate is set to ω = 1 degree per second. The
parameters of the probability distributions are chosen as σh = 0.5, σw = 0.35, and β = 0.1. The
value function is computed using a numerical discretization approach, similar to the one discussed
in Abate et al. (2007), on the domain [−10,20]× [−10,10]× [0,2π], with a grid size of 121×81×
73.
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(a) Set of s0 with conflict probability ≥ 1%
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(b) Contours of r̄∗s0
(S\W,S) at θr = π/2 radians

Figure 4.3: Probability of conflict for stochastic game formulation of pairwise aircraft conflict
resolution example.

The set of initial conditions s0 for which the conflict probability is at least 1% (namely, where
r̄∗s0

(S \W,S) ≥ 0.01) is shown in Fig. 4.3a. Outside of this set, we have a confidence level of
at least 99% of avoiding a collision over a 2.5 minute time interval. A slice of the worst-case
conflict probability r̄∗s0

(S \W,S) at a relative heading of θr = π/2 rad is shown in Fig. 4.3b. In
a conflict detection and resolution algorithm, one can use this probability map to determine the
set of states at which to initiate a conflict resolution maneuver (for example where r̄∗s0

exceeds a
certain threshold), upon which time the max-min policy µ∗ provides a feedback map for selecting
flight maneuvers to minimize the conflict probability. A plot of this policy at a relative heading of
θr = π/2 rad is shown in Fig. 4.4. As can be observed, when the two aircraft are far apart, one
can choose to fly straight on the intended course. However, as aircraft 2 approaches the boundary
of the set shown in Fig. 4.3a, it becomes necessary for aircraft 1 to perform an evasive maneuver
(turn right for the upper boundary, turn left for the lower boundary).

4.7.2 Target Tracking
Now consider the target tracking problem in which the task specification is to drive an autonomous
quadrotor helicopter into a neighborhood of planar positions over a moving ground vehicle, with-
out exceeding certain velocity limits. This problem was previously discussed in section 3.6 within
a continuous time robust control framework. We describe here a stochastic formulation of the
problem in which the uncertainties within the system are characterized through a mixture of deter-
ministic bounds and stochastic noise. The motivation for this is that in an aerial robotics platform
such as STARMAC, the effects of higher order dynamics and actuator noise can often be difficult
to characterize through a deterministic model (Huang et al., 2009). As discussed in section 3.6,
the choice of the disturbance bounds in a deterministic setting is a trade-off between robustness
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Figure 4.4: Max-min control policy at a relative heading of θr = π/2 rad. The color scale is as
follows: Black = collision set, dark gray = straight, medium gray = right turn, light gray = left turn,
white = either left or right turn.

and feasibility. In a robust control approach, one tends to put conservative bounds on the effects
of these disturbances, thus resulting in conservative control laws or sometimes even the lack of
a control law which satisfies the desired motion planning specifications. To alleviate this conser-
vatism, one may resort to disturbance bounds which captures the “majority” of the disturbance
behaviors observed in practice. This, however, introduces the risk that the desired specifications
may be violated, such as found in the experimental trials performed on the quadrotor platform. A
probabilistic approach on the one hand provides a method for quantifying this risk, using a prob-
abilistic model of the noise, while on the other hand allows for a relaxation of the deterministic
reachability specifications.

The model of the system dynamics is obtained through a discretization of the continuous time
dynamics described in section 3.6. Specifically, let x1, x2, y1, y2 denote the position and velocity
of the quadrotor relative to the ground vehicle in the x−axis and y−axis, respectively. Then from
the point of view of a high-level controller, the position-velocity dynamics of the quadrotor in
the planar x and y directions can be modeled as decoupled double integrator, controlled in the x-
direction by the roll angle φ and in the y-direction by the pitch angle θ angle. The corresponding
equations of motion in discrete time is given by

x1(k+1) =x1(k)+∆tx2(k)+
∆t2

2
(gsin(φ(k))+dx(k))+w1(k) (4.52)

x2(k+1) =x2(k)+∆t(gsin(φ(k))+dx(k))+w2(k)

y1(k+1) =y1(k)+∆ty2(k)+
∆t2

2
(gsin(−θ(k))+dy(k))+w3(k)

y2(k+1) =y2(k)+∆t(gsin(−θ(k))+dy(k))+w4(k),

In the above, ∆t is the discretization step, g is the gravitational acceleration constant, and dx and
dy are bounded uncertainty terms corresponding to the acceleration of the ground vehicle. The
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variables wi, for i = 1, . . . ,4 are stochastic uncertainty terms arising from unmodeled dynamics
and actuator noise. The noise variables are modeled using a Gaussian distribution, with wi ∼
N (0,(σi∆t)2). This is based upon a simplifying modeling assumption that the noise acting on the
quadrotor dynamics is generated by the sum of a large number of independent variables, in which
case the Central Limit Theorem applies.

Based upon experimental trials, the bounds for the acceleration dx and dy of the ground ve-
hicle are chosen to be [−0.4,0.4] m/s2 corresponding to about 25% of the maximum allowable
acceleration of the quadrotor. For this example the roll and pitch commands φ and θ are selected
from a quantized input range due to digital implementation. Specifically, they are selected from
the input range [−10◦,10◦] at a 2.5◦ quantization step. These quantization levels can be viewed as
the discrete states of the system, similar to the discrete flight maneuvers of the previous example.

For the specification of the reach-avoid problem, the target set is chosen to be a square-shaped
hover region centered on the ground vehicle, specified in (x1,x2) coordinates as

Rx = [−0.2,0.2]m× [−0.2,0.2]m/s.

The safe set in this case is chosen to be the set of all states within the domain of interest for which
the relative position remains within a desired bound and a desired velocity bound is satisfied,
specified in (x1,x2) coordinates as

W ′x = [−1.2,1.2]m× [−1,1]m/s.

The corresponding sets in Ry and W ′y in (y1,y2) coordinates are chosen identically as above. The
target and safe sets in two dimensions are then defined as R = Rx×Ry and W ′ =W ′x ×W ′y respec-
tively. Under a stochastic game formulation of the motion planning problem, the objective of the
quadrotor (player I) is to reach the hover region R within finite time, while staying within the safe
set W ′, subject to the worst-case acceleration inputs of the ground vehicle (player II).

Given that the dynamics, target set, and safe set in the x and y directions are decoupled and
identical, the problem reduces to a two dimensional probabilistic reach-avoid calculation in the
position-velocity space. For the numerical results to be shown here, we set the noise variance
to σi = 0.4, the sampling time to ∆t = 0.1s, and the time horizon to one second (N = 10). The
disturbance input was discretized at 0.1m/s2 intervals for numerical computation. The numerical
computation is performed over the safe set W ′x , on a grid size of 61×41, using a similar method as
in the preceding example.

The max-min probability r∗s0
(R,W ′) of satisfying the desired motion planning objectives is

shown in Fig. 4.5a over the safe set W ′x . The corresponding contours of this probability map
are shown in Fig. 4.5b, with the target set Rx in the center. As a comparison, we also plot in
the same figure the result of a deterministic reachability calculation from Figure 3.6 of section 3.6,
characterizing the set of feasible initial conditions under the assumption that the noise obeys certain
deterministic bounds. One observation is that the deterministic reach-avoid set as computed using
the Hamilton-Jacobi methods described in chapter 3 bears striking resemblance to the contours
of the probability map computed using the integro-difference equations described in section 4.4,
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Figure 4.5: Max-min reach-avoid probability r∗s0
(R,W ′) for quadrotor target tracking example with

N = 10.

despite the relative large noise variance. In particular, the horizon-10 reach-avoid set correspond
roughly to the 0.8-superlevel set of the probability map r∗s0

(R,W ′).
One interpretation of the results shown here is that the max-min probability is a quantification

of the risk of violating the reach-avoid specification, if the unmodeled dynamics and disturbances
behave statistically according to some noise distribution. Specifically, under the given stochastic
noise model and the the probabilistic max-min control policy, system trajectories initiated from
within the deterministic reach-avoid set will not always satisfy the reach-avoid specification, but
rather with a probability of 80%. Another interpretation is that the probabilistic formulation is
a relaxation of the deterministic reachability specification. Namely, under the unbounded noise
distribution of a Gaussian model, it is impossible to synthesize, using the deterministic methods
described in section 3.6, a control policy that satisfies the reach-avoid specification with probability
one. On the other hand, if one were to allow the specification to be satisfied with a certain level of
confidence, for example with a probability of 80%, then the max-min control policy as synthesized
through the probabilistic reachability computation provides us with the feedback maps needed to
enforce such a probabilistic specification.

In order to illustrate the form of the max-min control policy, as well as to investigate the infinite
horizon properties of the reachability computation for this particular example, we lengthen the time
horizon to N = 40. The resulting max-min probability r40

s0
(R,W ′), along with the feedback map

µ40
0 synthesized from this computation is shown in Figure 4.6. In this case, it was found that

the reachability computation indeed exhibits a convergence behavior. In fact, over the entire safe
set W ′, the difference between successive applications of the dynamic operator T at N = 40 was
found to be no more than 4.9×10−5 (about 0.005%). The probability map r40

s0
(R,W ′) can be then

interpreted as an approximation to the infinite horizon reach-avoid probability. As described in
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Figure 4.6: Max-min reach-avoid probability and control policy for quadrotor target tracking ex-
ample with N = 40.

section 4.6, the value functions produces through this dynamic programming procedure can be also
used to synthesize a max-min control policy over W ′ that is approximately optimal with respect to
the infinite horizon payoff. Specifically, µ40

0 as shown in Figure 4.6 is the first feedback map in
this control policy, to be applied at the first time instant k = 0. It is interesting to observe that this
control policy has the form of a switching control policy. Namely, over large portions of W ′, the
optimal control choice is bang-bang. On the other hand, nearing the safety constraints of W ′, the
control law chooses an input of zero in order to prevent constraint violation. This correlates with
the intuition that the control policy for a reach-avoid problem has the characteristics of a minimum
time to reach control law, which was also observed experimentally in the results of section 3.6.
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Chapter 5

Partial Information in Probabilistic
Reachability Problems

5.1 Overview and Related Work
The controller design methods as presented in the preceding chapters are based upon an important
assumption that the discrete and continuous states of the hybrid system model can be directly mea-
sured or observed. This is in fact a common assumption which appears in much of the literature on
hybrid reachability problems (see for example Maler et al., 1995; Lygeros et al., 1999b; Asarin et
al., 2000b; Shakernia et al., 2001; Aubin et al., 2002; Hwang et al., 2005; Koutsoukos and Riley,
2006; Gao et al., 2007; Abate et al., 2008; Tabuada, 2008; Girard et al., 2010; Mohajerin Esfahani
et al., 2011), and can be reasonable as long as the state measurements or state estimates are suffi-
ciently accurate with respect to the reachability specifications of interest. However, in the case that
the measurements or estimates exhibit significant uncertainties, for example, due to limitations of
what sensors can measure, imprecision in the sensor output, or measurement noise induced by the
operating environment, then the reachability computation, as well as the controller synthesis pro-
cedure would need to account for the effects of decisions made under an imperfect representation
of the true system state.

In this chapter, we will study probabilistic safety and reach-avoid problems within the context
of a Partially Observable Discrete Time Stochastic Hybrid System (POdtSHS), which augments
the perfect information DTSHS model proposed in Amin et al. (2006) and Abate et al. (2008) with
a probabilistic observation model. In particular, the possible outcomes of qualitative observations
and quantitative measurements are encapsulated in an abstract observation space, while the uncer-
tainties in the observed information are modeled in terms of a conditional probability distribution
of the observations given the hybrid state. This distribution can be derived either from statistical
analysis of empirical data or from statistical assumptions upon the underlying noise or disturbance,
in a similar manner as the modeling of transition probabilities. Comparing with the DTSHG model
of the preceding chapter, we neglect the game theoretic aspect of the reachability problem in order
to focus the discussion on issues related to partial observability.
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The consideration of an imperfect observation model inevitably brings up the problem of state
estimation. With insight gained from classical analysis of linear and nonlinear systems (see for
example Callier and Desoer, 1991; Sastry, 1999), it can be inferred that the problem of hybrid
estimation is dual to the problem of hybrid control. In fact, hybrid estimation suffers from much
of the same difficulties as hybrid control, for example nonlinear filtering, estimation of switching
times, and estimation of continuous state under switching dynamics. In the realm of discrete state
or discrete event systems, partial observability can be modeled as an output map from either the
discrete state space or the discrete event space to an observation space (Ramadge, 1986; Caines et
al., 1988; Ozveren and Willsky, 1990). Concepts of observability are then formulated in terms of
the distinguishability of the initial condition or the current state, given the sequence of observa-
tions, much in the same way as continuous state observability. Algorithms for estimating discrete
states, such as given in Caines et al. (1988) and Ozveren and Willsky (1990), typically involve
maintaining a set of discrete states that are compatible with the sequence of observations. Clearly,
if this set converges to a singleton, then this singleton corresponds to the exact system state.

With respect to deterministic hybrid systems, the study of observability and state estimation
has largely focused on the class of linear systems with switching dynamics. When the switching
behavior is assumed to be known ahead of time, then the system under analysis becomes a spe-
cial class of linear time-varying systems. Observability conditions for such class of systems can
be formulated through appropriate specialization of results from the study of linear time-varying
systems (Ezzine and Haddad, 1988; Szigeti, 1992). In the case that the switching input is con-
trolled, then the estimation problem can be considered dual to the switching control problem, and
some conditions are given in Sun et al. (2002) for the existence of a switching input to render the
system observable. The work by Vidal et al. (2003) considers a scenario in which the switching
input is assumed to be an unknown piecewise constant function, and gives necessary and sufficient
conditions for observability, expressed in terms of matrix rank conditions. When the switching be-
havior is autonomous, and the switching boundaries are assumed to be described by hyper-planes,
then the system is classified as a piecewise linear or piecewise affine system. In the early work
of Sontag (1981), a sufficient condition is given for the existence of a observer which uniquely
determines the state of a discrete time piecewise linear system after a finite number of time steps.
From a computational perspective, an algorithm is provided in Bemporad et al. (2000a) for check-
ing the observability of a discrete time piecewise affine systems using the solution a mixed-integer
linear program. Within a continuous time setting, the model of piecewise affine hybrid systems is
considered in Collins and van Schuppen (2004), and sufficient observability conditions are given,
along with procedures for constructing observers.

In the case of a stochastic hybrid system, the output trajectory corresponding to a given ini-
tial condition can vary from one execution to another, either due to process noise or measurement
noise. Thus, the concept of observability does not generalize in a straightforward manner from the
analysis of deterministic systems. Some efforts towards probabilistic notions of observability, how-
ever, can be found in Hwang et al. (2003) and Costa and do Val (2003), within the context of linear
systems with Markov discrete transitions. The investigation into hybrid estimators for stochastic
systems has its origins in deriving optimal estimators for linear Gaussian systems with a constant
parameter vector taking values within a finite set (see for example Magill, 1965; Lainiotis, 1971;
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Maybeck, 1982), as motivated by applications in fault detection, target tracking, and adaptive con-
trol. In generalizing this scenario to time-varying parameters, Ackerson and Fu (1970) proposed a
class of linear Gaussian models in which the noise parameters are allowed to make discrete transi-
tions according to a finite state Markov chain. This definition later evolved to encompass variations
in the system matrices, and became known as Jump Linear Systems (JLS). As noted in Ackerson
and Fu (1970), the optimal estimator, with respect to minimum mean square error (MMSE), is in
fact a weighted sum over an exponentially growing set of Kalman filters, corresponding to the set
of all possible switching sequences. Various suboptimal filtering schemes have been since pro-
posed (a thorough review of work prior to 1982 can be found in Tugnait (1982)). Most notably, the
Interacting Multiple Model (IMM) algorithm, as proposed in Blom and Bar-Shalom (1988), has
found significant successes in target tracking applications (Bar-Shalom and Li., 1993). Extensions
of JLS estimation algorithms to semi-Markov models with probabilistic sojourn times are dis-
cussed in Campo et al. (1991) and Petrov and Zubov (1996). Within the hybrid systems literature,
an alternative approach to the hypothesis merging procedure in IMM, based upon A∗ search over
the set of possible discrete trajectories, is discussed in Hofbaur and Williams (2002). Furthermore,
a generalization of the IMM algorithm has been proposed in Seah and Hwang (2009) for linear
Gaussian models whose discrete transitions are governed by by stochastic guard conditions. Fi-
nally, as alternatives to the traditional Kalman filtering algorithms, sampling-based methods such
as Markov Chain Monte Carlo algorithms (Doucet et al., 2000) and particle filtering algorithms
(Koutsoukos et al., 2003; Blom and Bloem, 2007) have also been applied to various models of
stochastic hybrid systems.

For control problem formulated in a partial information setting, the design of a feedback policy
needs to address the following questions:

• What is the information needed for the control task at hand?

• How can we construct this information from the history of inputs and outputs?

• How do we use this information for control selection?

The first two questions relate to the estimation aspect of the problem, while the last question relate
to the control aspect of the problem. In the case of a stability or regulation problem, what is needed
from an estimation perspective is a convergent estimator. For deterministic systems, the existence
of such an estimator is assured by sufficient conditions for observability. This is one of the reasons
that much of the studies in the deterministic case has focused on finding such conditions. The
practical construction of a convergent estimator, however, depends on issues of implementation.
In the case of a discrete state system, the estimation algorithm as proposed in Caines et al. (1988)
was used in Caines and Wang (1989) to design a dynamic observer, along with a control law for
using the discrete state estimates to drive the system trajectory to a target location. In the case
of linear systems, a common design for convergent observers is that of a Luenberger observer
(Luenberger, 1971), which has been extended by Alessandri and Coletta (2001) and Balluchi et
al. (2002) to design stabilizing controllers for hybrid systems with linear dynamics. For stochastic
optimal control problems with additive cost functions, it has been shown that the estimator needed
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for optimal control selection, called a sufficient statistic, is characterized by a set of Bayesian
filtering equations which produces as its output the conditional distribution of the system state at
each time step (see for example Bertsekas and Shreve, 1978; Kumar and Varaiya, 1986). Under
mild technical assumptions, the expected value with respect to this distribution in fact coincides
with the MMSE estimate, which is again a contributing reason for the study of MMSE estimators,
or approximations thereof, in stochastic estimation.

Within the context of a POdtSHS model, probabilistic safety and reach-avoid problems are
partial information stochastic optimal control problems with multiplicative or sum-multiplicative
payoffs. Thus, they unfortunately lie beyond the common classes of control problems as described
in the preceding paragraph. Perhaps the closest relative to these problems in the optimal control
literature is the partial information linear exponential Gaussian (LEG) problem, whose cost is an
exponential of a quadratic function, and hence multiplicative (see for example Speyer et al., 1974;
Whittle, 1981; Kumar and van Schuppen, 1981; Fan et al., 1994). The close correlation of the
structure of the cost with the form of the Gaussian distribution allows for the derivation of an-
alytical solutions (which is again not the case for probabilistic reachability problems due to the
indicator functions appearing in the payoff). Nonetheless, as shown in Whittle (1981), the optimal
estimate for the LEG problem in fact depends on the parameters of the cost function, while the
optimal control law depends on the parameters of the noise distribution. This provides an example
of a partial information optimal control problem in which the type of certainty equivalence prin-
ciple found in linear quadratic Gaussian (LQG) problems does not apply. Thus, as one considers
non-traditional forms of cost structure, there is a need for foundational understanding of the types
of estimation issues mentioned previously.

Before stating our main results, we will briefly review some previous work on partial informa-
tion reachability problems. For discrete event systems, Cieslak et al. (1988) and Lin and Wonham
(1988) considered problems of constructing supervisory controllers to satisfy language specifi-
cations under partial observations. The control objectives in these problems can be viewed as
reachability specifications through appropriate interpretation of the language of a discrete event
system under a supervisor as the closed-loop system behavior. Computational complexity issues
of two-player discrete reachability games with partial information is discussed in Reif (1984). In
particular, it is shown that the problem of determining the existence of a winning strategy for one of
the players is in general EXPTIME-complete. An algorithm for the synthesis of winning strategies
for two-player reachability games on graphs is proposed in Chatterjee et al. (2006), and is shown
to achieve the EXPTIME bound in worst-case. Similar complexity results have been obtained for
stochastic reachability problems in probabilistic models of two-player games with discrete state
spaces and partial information (Alur et al., 1995; Bertrand et al., 2009; Gripon and Serre, 2009;
Chatterjee et al., 2010). Within the class of hybrid systems referred to as linear hybrid automata,
the work of Henzinger and Kopke (1999) analyzed the complexity of partial information reacha-
bility problems, and controller synthesis algorithms have been developed in Wong-Toi (1997) and
De Wulf et al. (2006). Due to the simplicity of the continuous dynamics in each discrete state, as
described by a differential inclusion restricted to a convex polyhedron, the techniques for analysis
and control are often based upon extensions of methods developed for discrete state systems. For
a discrete time hybrid system model in which the discrete state is observed, but the continuous
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state measurement contains error, Del Vecchio (2009) proposes a method for designing safety con-
trollers based upon a set-valued state estimate, computed under order preserving assumptions on
the continuous dynamics. The work described in Del Vecchio et al. (2009) studies the continuous
time version of this problem and provides a separation principle. The problem of discrete state
estimation, under the assumption that the continuous state is measured without error, is addressed
in Verma and Del Vecchio (2012). To the best of our knowledge, the results given here are some
of the first of its kind on partial information reachability problems for a general class of stochastic
hybrid systems.

In this chapter, we present dynamic programming solutions to the partial information proba-
bilistic safety and reach-avoid problems for POdtSHS, as extensions of results in chapter 10 of
Bertsekas and Shreve (1978) on additive cost problems. In particular, we show that by augment-
ing the state space with a binary random variable, the safety problem, which has a multiplicative
payoff structure, is equivalent to a terminal cost problem on the augmented state space (section
5.3). The results of Bertsekas and Shreve (1978) can be then used to construct a sufficient statistic
in terms of abstract filtering equations which update a conditional distribution of the augmented
state. This distribution, referred to as an information state, allows us to derive an equivalent perfect
state information problem and a dynamic programming algorithm for computing the optimal safety
probability (section 5.4). The analysis is then extended to the reach-avoid problem, in which case
it is shown that the solution is an additive cost dynamic programming algorithm on the information
state space (section 5.5). We then state several consequences of these results. First, it is shown that
in the case of perfect information, the class of memoryless, deterministic control policies is opti-
mal for the safety problem within the class of randomized control policies with memory, despite
the multiplicative payoff (section 5.6). This provides justification for the restriction of attention to
such policies in previous work on perfect information probabilistic reachability problems (Amin
et al., 2006; Abate et al., 2008; Summers and Lygeros, 2010). Second, we consider the class of
Partially Observable Markov Decision Processes (POMDPs), which can be viewed as POdtSHS
models with discrete state, action, and observation space (section 5.7). In this case, the filtering
and policy computation can be carried out on an augmented state space with twice the number of
discrete states as the original model. Third, we specialize the dynamic programming solution to
hybrid system models with probability density models, in which case the sufficient statistic reduces
to a set of Bayesian update equations for a conditional probability density over an augmented hy-
brid state space (section 5.8). The practical implementation of this solution, however, depends on
the existence of a finite dimensional representation for the conditional density.

5.2 Model and Problem Formulation

5.2.1 Partially observable Discrete Time Stochastic Hybrid System
The model for a partially observable discrete time stochastic hybrid system (POdtSHS) augments
the DTSHS model proposed in Amin et al. (2006) and Abate et al. (2008) with an observation space
and a stochastic observation model. It can be viewed as a particular instantiation of the imperfect
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state information model given in Bertsekas and Shreve (1978).

Definition 5.1 (POdtSHS). A partially observable discrete time stochastic hybrid system is a tuple
H = (Q,n,Ca,Z,νx,νq,νr,ζ0,ζ ), defined as follows.

• Discrete state space Q := {q1,q2, ...,qm}, m ∈ N;

• Dimensions of continuous state space n : Q→N: a map which assigns to each discrete state
q ∈ Q the dimension of the continuous state space Rn(q). The hybrid state space is given by
S :=

⋃
q∈Q{q}×Rn(q);

• Control input space Ca: a nonempty Borel space;

• Observation space Z: a nonempty Borel space;

• Continuous state transition kernel νx : B(Rn(·))×S×Ca→ [0,1]: a Borel-measurable
stochastic kernel on Rn(·) given S×Ca, which assigns to each s = (q,x) ∈ S and a ∈ Ca a
probability measure νx(·|x,a) on the Borel space (Rn(q),B(Rn(q)));

• Discrete state transition kernel νq : Q×S×Ca→ [0,1]: a Borel-measurable discrete stochas-
tic kernel on Q given S×Ca, which assigns to each s∈ S and a∈Ca a probability distribution
νq(·|s,a) over Q;

• Reset transition kernel νr : B(Rn(·))× S×Ca×Q→ [0,1]: a Borel-measurable stochastic
kernel on Rn(·) given S×Ca×Q, which assigns to each s∈ S, a∈Ca, and q′ ∈Q a probability
measure νr(·|s,a,q′) on the Borel space (Rn(q′),B(Rn(q′))).

• Initial observation kernel ζ0 : B(Z)× S→ [0,1]: a Borel-measurable stochastic kernel on
Z given S, which assigns to each s ∈ S a probability measure ζ0(·|s) on the Borel space
(Z,B(Z));

• Observation kernel ζ : B(Z)× S×Ca→ [0,1]: a Borel-measurable stochastic kernel on Z
given S×Ca, , which assigns to each s ∈ S and a ∈Ca a probability measure ζ (·|s,a) on the
Borel space (Z,B(Z));

The definitions for an abstract observation space Z and observation kernels ζ0 and ζ are based
upon the abstract model for an imperfect state information stochastic optimal control problem pre-
sented in chapter 10 of Bertsekas and Shreve (1978). The generality of these definitions can be used
to treat a wide range of observation models found in practice. In particular, a discrete observation
space O := {o1,o2, ...,om′} and a Euclidean observation space Rno are both Borel spaces. Within
this context, the observation kernel ζ can be interpreted as the conditional distribution of the dis-
crete or continuous observations given a hybrid state s∈ S and control input a∈Ca. By the analysis
given in Davis (1993), we also have that the hybrid state space defined by Z = O×

⋃
q∈QRno(q),

where no : Q→ N is the dimension of the continuous observation space in each discrete state, is
a Borel space. In this case, the kernel ζ can be interpreted as the joint conditional distribution
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of the discrete and continuous observations given the hybrid state and control input. As a conse-
quence, it is worth noting that the perfect state information DTSHS model in Amin et al. (2006);
Abate et al. (2008) can be considered a special class of the POdtSHS by specifying Z = S and
ζ0(dz|s) = ζ (dz|s,a) = δs, where δs is a probability measure on S which assigns probability mass
one to the point s. To illustrate this modeling framework, consider the partially observable jump
linear system shown in Figure 5.1.

Figure 5.1: Jump linear system example to illustrate POdtSHS modeling framework.

Here we have x∈Rn, u∈Rni , y∈Rno , w∈Rnw , v∈Rnv , and Ai, Bi, Ci, Gi, Hi, Σv, Σw are matri-
ces of appropriate dimensions. In this example, the hybrid state space is given by S= {q1,q2}×Rn,
the control input space is given by Ca = Rni , and the observation space is given by Z = O×Rno ,
where O = {o1,o2}. The discrete transition kernel νq can be derived as νq(q j|(qi,x),u) = pi, if
j = i, and νq(q j|(qi,x),u) = 1− pi, otherwise. The continuous and reset transition kernels are
described as νx(dx′|(qi,x),u) = νr(dx′|(qi,x),u,q j) ∼ N (Aix+Biu,GiΣwGT

i ). Finally, the ob-
servation kernels are given by ζ0(o,dy|(q,x)) = ζ (o,dy′|(q,x),u) = ζo(o|q)ζx(dy|(q,x)), where
ζx(dy|(qi,x))∼N (Cix,HiΣvHT

i ) and ζo(o j|qi) = λi, if j = i, and ζo(o j|qi) = 1−λi, otherwise.
Under a PDTSHS model, the available information at each time step k is the observation and

input history (z(0),a(0), ...,z(k− 1),a(k− 1),z(k)), along with the probability distribution of the
initial state (q(0),x(0). For compactness of notation, we define as in Bertsekas and Shreve (1978)
the information spaces

Ik = Zk+1×Ck
a, k = 0,1, ....

An element of Ik is called the information vector at time step k. For the initial state distribution,
we denote the set of probability measures on S by P(S). By Corollary 7.25.1 of Bertsekas and
Shreve (1978), P(S) is also a Borel space. To keep the discussions general, we consider the set
of randomized control policies depending on the initial state distribution and information vector at
time k.

Definition 5.2. A policy π ′ for H is a sequence π ′ = (π ′0,π
′
1, ...,π

′
N−1) of universally measur-

able stochastic kernels π ′k : B(Ca)×P(S)× Ik→ [0,1], which assigns to each initial distribution
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p0 ∈P(S) and information vector ik ∈ Ik a probability measure π ′k(da|p0; ik) on the Borel space
(Ca,B(Ca)). The set of such policies is denoted by Π′.

If for each k, initial distribution p0 ∈P(S) and information vector ik ∈ Ik the stochastic kernel
π ′k assigns probability mass one to some point in Ca, the policy π ′ is said to be non-randomized.
The class of non-randomized policies for H is denoted as Π. For any π ′ ∈ Π, we can iden-
tify the stochastic kernels π ′k, k = 0,1, ...,N− 1 with a sequence of universally measurable maps
πk : P(S)× Ik → Ca, k = 0,1, ...,N− 1 (see for example Bertsekas and Shreve, 1978, Corollary
7.44.3). As shown in Bertsekas and Shreve (1978), for an additive cost imperfect state information
stochastic optimal control problem, it is sufficient to consider the class of non-randomized policies
Π over the set of general policies Π′. It turns out that a similar result also holds for the probabilistic
safety problem, which has a multiplicative cost structure.

Using a similar procedure as described in section 4.2 for a DTSHG, one can construct from νx,
νq, and νr a Borel-measurable stochastic kernel ν : B(S)× S×Ca→ [0,1] describing the hybrid
state evolution at each time step. With these definitions, the execution of the POdtSHS under a
given initial distribution p0 ∈P(S) and policy π ′ ∈Π′ is as described in Algorithm 5.2.1.

Algorithm 5.2.1 POdtSHS Execution
Require: Initial distribution p0 ∈P(S) and control policy π ′ ∈Π′.

Extract from S a value s0 according to p0;
Extract from Z a value z0 according to ζ0(·|s0);
Set s(0) = s0 and i0 = y0;
for k = 0 to N−1 do

Extract from Ca a value ak for a(k) according to π ′k(·|p0; ik);
Extract from S a value sk+1 for s(k+1) according to ν(·|sk,ak);
Extract from Z a value zk+1 for z(k+1) according to ζ (·|sk+1,ak);
Set ik+1 = (ik,a(k),z(k+1));

end for
return Sample Path {(s0,z0,a0, ...,sN−1,zN−1,aN−1,sN ,zN)}.

Now consider the sample space of state, observation, and control sequences over k time steps
given by Ωk := Sk+1×Zk+1×Ck

a, equipped with the canonical product topology
B(Ωk) :=∏

k+1
j=1(B(S)×B(Z))×∏

k
j=1 B(Ca). Then by Proposition 7.45 of Bertsekas and Shreve

(1978), for a given initial distribution p0 ∈P(S) and policy π ′ ∈ Π′, the stochastic kernels ν , ζ0,
and ζ induce a unique probability measure Pk(π, p) on Ωk. In particular, on measurable rectangles
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which generates the Borel σ -algebra B(Ωk), Pk(π, p0) is defined as

Pk(π ′, p0)(
k−1

∏
j=0

(S j×Z j×Ca, j)×Sk×Zk) (5.1)

=
∫

S0

∫
Z0

∫
Ca,0

· · ·
∫

Sk−1

∫
Zk−1

∫
Ca,k−1

∫
Sk

∫
Zk

ζ (dzk|sk,ak−1)ν(dsk|sk−1,ak−1)

×π ′k−1(dak−1|p; ik−1)ζ (dzk−1|sk−1,ak−2)ν(dsk−1|sk−2,ak−2)

×·· ·π ′0(da0|p;z0)ζ0(dz0|s0)p0(ds0),

where S0, ...,Sk ∈B(S), Z0, ...,Zk ∈B(Z), and Ca,0, ...,Ca,k−1 ∈B(Ca) are Borel subsets of the
state space, observation space, and control input space, respectively. In the following, we describe
how this probability measure allows us to quantify the probability of safety for a POdtSHS.

5.2.2 Partial Information Safety Problem
Now consider the probabilistic safety problem. Assume that a Borel set W ∈B(S) is given as a
safe set. The probability that the hybrid state trajectory (s0,s1, ...,sN) remains in W for an initial
distribution p0 ∈P(S) and π ′ ∈Π′ is given by

pπ ′(p0;W ) := PN(π ′, p0)({(s0,z0,a0, ...,sN−1,zN−1,aN−1,sN ,zN) : sk ∈W, ∀k ∈ [0,N]})
= PN(π ′, p0)(W N+1×ZN+1×CN

a ). (5.2)

By (5.1) and Proposition 7.45 of Bertsekas and Shreve (1978), the safety probability in (5.2)
can be rewritten as

pπ ′(p0;W ) =
∫

W

∫
Z

∫
Ca

· · ·
∫

W

∫
Z

∫
Ca

∫
W

∫
Z

ζ (dzN |sN ,aN−1)ν(dsN |sN−1,aN−1)

×π ′N−1(daN−1|p; iN−1)ζ (dzN−1|sN−1,aN−2)ν(dsN−1|sN−2,aN−2)

×·· ·π ′0(da0|p;z0)ζ0(dz0|s0)p0(ds0),

=
∫

ΩN

N

∏
k=0

1W (sk)dPN(π ′, p0) = Eπ ′
p0

[
N

∏
k=0

1W (sk)

]
, (5.3)

where Eπ ′
p0

denotes the expectation with respect to the probability measure PN(π ′, p0) on the sample
space ΩN .

Our control objective is to maximize this probability over the general policy space Π′. More
precisely, the problem statement is as follows:

Problem 5.1. Given a POdtSHS H , initial distribution p0 ∈P(S), and safe set W ∈B(S):

1. Compute the maximal probability of safety

p∗(p0;W ) := sup
π ′∈Π′

pπ ′(p0;W );
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2. Find an optimal policy π∗ ∈ Π′, if it exists, such that p∗(p0;W ) = pπ∗(p0;W ). Otherwise,
for a choice of ε > 0, find an ε-optimal policy π∗ε ∈Π′ satisfying

pπ∗ε (p0;W )≥ p∗(p0;W )− ε.

5.3 Sufficient Statistics and Equivalent Perfect State
Information Problem

It is well-known in the stochastic optimal control literature that under an additive cost structure,
the imperfect state information problem can be converted into one of perfect state information
through the notion of sufficient statistics, which is, roughly speaking, an estimator which provides
enough information to allow optimal control selection with respect to the history of observations
and controls (see for example Bertsekas and Shreve, 1978, chapter 10). Under mild assumptions,
the sufficient statistic for an additive cost problem can be shown to be the conditional probability
distribution of the system state given the information vector. However, due to the multiplicative
cost structure of the probabilistic safety problem, it is no longer sufficient to maintain a conditional
distribution of the current state, but also some information about the history of state evolution. As
will be shown in this section, a sufficient statistic for our problem consists of a filtered estimate
of the current state, along with an augmented state variable which keeps track of whether the state
history has remained within the safe set W .

We will proceed in several steps. First, the POdtSHS will be augmented with an auxiliary
state, so as to enable an equivalent terminal cost formulation of Problem 5.1. Second, using this
terminal cost formulation, a statistic sufficient for control will be constructed from the results given
in Bertsekas and Shreve (1978). Finally, an equivalent perfect state information problem will be
formulated through the sufficient statistic.

5.3.1 Terminal Cost Problem on Augmented System
As a first step, we augment the POdtSHS model of the previous section with the binary random
variables hk : Ωk→{0,1}, k = 0,1, ...,N, defined as:

h0 := 1; hk :=
k−1

∏
j=0

1W (s j), k ≥ 1. (5.4)

For the rest of this chapter, we will refer to hk as the history state. Now consider an augmented
POdtSHS model with the expanded state space S̃ = {0,1}×S, in which the state of the system at
any time k is given by the pair (hk,sk). From (5.4), the history state can be recursively updated as

hk+1 = 1W (sk)hk, h0 = 1,
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which results in an augmented state transition kernel ν̃ : B(S̃)× S̃×Ca→ [0,1] defined as follows:

ν̃((hk+1,dsk+1)|(hk,sk),ak) =


ν(dsk+1|sk,ak), hk = 0,hk+1 = 0
0, hk = 0,hk+1 = 1
1S\W (sk)ν(dsk+1|sk,ak), hk = 1,hk+1 = 0
1W (sk)ν(dsk+1|sk,ak), hk = 1,hk+1 = 1.

(5.5)

Similarly, we can define the observation kernels ζ̃0 : B(Z)× S̃→ [0,1] and Z̃ : B(Z)× S̃×Ca→
[0,1] on the extended state space:

ζ̃0(dzk|hk,sk) = ζ0(dzk|sk), (5.6)

ζ̃ (dzk|hk,sk,ak−1) = ζ (dzk|sk,ak−1). (5.7)

Clearly, ν̃ , ζ̃0, and ζ̃ are Borel-measurable. We denote the augmented POdtSHS model by H̃ :=
(S,Ca,Z, ν̃ , ζ̃0, ζ̃ ).

Now consider a Borel-measurable function ξ : P(S)→P(S̃) which takes an initial state dis-
tribution on S to an initial state distribution on S̃:

ξ (p0)(h0,ds0) =

{
0, h0 = 0
p0(ds0), h0 = 1.

(5.8)

Clearly, ξ is one-to-one. As such, by Kuratowski’s theorem (see for example Bertsekas and Shreve,
1978, Proposition 7.15), P(S) and ξ (P(S))⊂P(S̃) are isomorphic Borel spaces, with the Borel
isomorphism ξ .

We define the set of admissible control policies for an augmented POdtSHS model H̃ as
follows.

Definition 5.3. A policy π̃ ′ for H̃ is a sequence π̃ ′ = (π̃ ′0, π̃
′
1, ..., π̃

′
N−1) of universally measurable

stochastic kernels π̃ ′k : B(Ca)× ξ (P(S))× Ik → [0,1], which assigns to each initial distribution
ξ (p0) and information vector ik = (z0,a0, ...,zk−1,ak−1,zk) a probability measure π̃ ′k(dak|ξ (p0); ik)
on the Borel space (Ca,B(Ca)). The set of such policies is denoted by Π̃′.

Similarly as before, we denote the class of non-randomized policies for H̃ as Π̃. Given that
ξ is a Borel isomorphism, Π̃′ and Π′ can be viewed as identical policy spaces. In particular, a
policy π̃ ′ = (π̃ ′0, π̃

′
1, ..., π̃

′
N−1) can be identified with a policy π ′ = (π ′0,π

′
1, ...,π

′
N−1) ∈ Π′ through

the relation

π̃ ′k(dak|ξ (p0); ik) = π ′k(dak|p0; ik). (5.9)

For a given initial distribution ξ (p0) ∈ ξ (P(S)) and policy π̃ ′ ∈ Π̃′, the stochastic kernels ν̃ ,
ζ̃0, and ζ̃ induce a unique probability measure P̃k(π̃ ′,ξ (p0)) on the sample space Ω̃k := S̃k+1×
Zk+1×Ck

a defined similarly as in (4.1). Using this probability measure, we consider a probabilistic
reachability problem on the augmented system. Specifically, let W ∈B(S) be a safe set. Then

127



given an initial distribution ξ (p0)∈ ξ (P(S)) and policy π̃ ′ ∈ Π̃′, the probability that the trajectory
(s̃0, s̃1, ..., s̃N) terminates in a state such that hN = 1 and sN ∈W is given by

p̃π̃ ′(ξ (p0);{1}×W ) := P̃N(π̃ ′,ξ (p0))({(h0,s0,z0,a0, ...,hN ,sN ,zN) : hN = 1∧ sN ∈W})
= P̃N(π̃ ′,ξ (p0))({0,1}N×{1}×SN×W ×ZN+1×CN

a )

= E π̃ ′
ξ (p0)

[
1{1}×W (s̃N)

]
. (5.10)

Now consider a probabilistic reachability problem for H̃ defined as follows.

Problem 5.2. Given an initial distribution p0 ∈P(S) and an augmented POdtSHS H̃ defined
with respect to a Borel safe set W ∈B(S):

1. Compute the maximal reachability probability

p̃∗(ξ (p0);{1}×W ) := sup
π̃ ′∈Π̃′

p̃π̃ ′(ξ (p0);{1}×W );

2. Find an optimal policy π̃∗ ∈ Π̃′, if it exists, such that p̃∗(ξ (p0);{1}×W ) = p̃π̃∗(ξ (p0);{1}×
W ). Otherwise, for a choice of ε > 0, find an ε-optimal policy π̃∗ε ∈ Π̃′ satisfying

p̃π̃∗ε (ξ (p0);{1}×W )≥ p̃∗(ξ (p0);{1}×W )− ε.

By the form of the cost function in (5.10), the above problem can be viewed as a terminal
cost problem for H̃ . In the following, we will establish the equivalence between Problem 5.1 and
Problem 5.2.

Proposition 5.1. Let H = (Q,n,Ca,Z,νx,νq,νr,ζ0,ζ ) be a POdtSHS, and W ∈B(S) be a Borel
safe set. Let H̃ = (S̃,Ca,Z, ν̃ , ζ̃0, ζ̃ ) be the corresponding augmented POdtSHS. Then for every
p0 ∈P(S), we have

p∗(p0;W ) = p̃∗(ξ (p0);{1}×W ).

Proof. For every p0 ∈P(S), a policy π ′ ∈ Π′ for H is equivalent to a policy π̃ ′ ∈ Π̃′ for H̃ by
(5.9). Through this equivalence (as induced by the Borel isomorphism ξ ), it is sufficient to prove
that, for every π ′ ∈Π′, the following equality holds:

pπ ′(p0;W ) = p̃π ′(ξ (p);{1}×W ).
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Indeed, by the previous definitions,

p̃π ′(ξ (p0);{1}×W ) =
∫

Ω̃N

1{1}×W (s̃N)ζ̃ (dzN |s̃N ,aN−1)ν̃(ds̃N |s̃N−1,aN−1)

×π ′N−1(daN−1|p0; iN−1)ζ̃ (dzN−1|s̃N−1,aN−2)ν̃(ds̃N−1|s̃N−2,aN−2)

×·· ·π ′0(da0|p0;z0)ζ̃0(dz0|s̃0)ξ (p0)(ds̃0)

=
∫

S̃N×S×ZN+1×CN
a

1W (sN)ζ (dzN |sN ,aN−1)ν(dsN |sN−1,aN−1)

×π ′N−1(daN−1|p0; iN−1)ζ (dzN−1|sN−1,aN−2)

×1{1}×W (s̃N−1)ν̃(ds̃N−1|s̃N−2,aN−2)π ′N−2(daN−2|p0; iN−2)

×·· ·π ′0(da0|p0;z0)ζ0(dz0|s0)ξ (p0)(ds̃0)

=
∫

S̃×SN×ZN+1×CN
a

N

∏
k=1

1W (sk)ζ (dzN |sN ,aN−1)ν(dsN |sN−1,aN−1)

×π ′N−1(daN−1|p0; iN−1)ζ (dzN−1|sN−1,aN−2)ν(dsN−1|sN−2,aN−2)

×·· ·×π ′0(da0|p0;z0)ζ0(dz0|s0)1{1}×W (s̃0)ξ (p0)(ds̃0)

=
∫

ΩN

N

∏
k=0

1W (sk)dPN(π ′, p0) = pπ ′(p0;W ).

This completes the proof.

5.3.2 Construction of a Sufficient Statistic
By Proposition 5.1, the partial information safety problem for the original hybrid system H is
equivalent to a terminal reachability problem for the augmented hybrid system H̃ . This allows us
to use results from Bertsekas and Shreve (1978) to construct a statistic sufficient for control of the
augmented system.

In the following, we adapt the definition given in Bertsekas and Shreve (1978) of a sufficient
statistic for general additive cost stochastic optimal control problems to the terminal cost problem
for H̃ .

Definition 5.4. A statistic for H̃ is a sequence (η0,η1, ...ηN−1) of Borel-measurable functions ηk :
ξ (P(S))× Ik → Bk, where B0, ...,BN−1 are nonempty Borel spaces. A statistic (η0,η1, ...ηN−1)
for H̃ is said to be sufficient for control if

1. For every k = 0,1, ...,N−1, there exists a Borel-measurable stochastic kernel ν̂(dηk+1|ηk,a)
on Bk+1 given Bk×Ca such that for every p0 ∈P(S), π̃ ′ ∈ Π̃′, and Ek+1 ∈B(Bk+1), the
following identity holds

P̃k+1(π̃ ′,ξ (p0)){ηk+1(ξ (p0); ik+1) ∈ Ek+1|ηk(ξ (p0); ik) = η ,ak = a}= ν̂(Ek+1|η ,a)

for P̃k(π̃ ′,ξ (p)) almost every (η ,a).
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2. There exists a lower semianalytic function gN : BN → [0,1] such that for every p0 ∈P(S)
and π̃ ′ ∈ Π̃′, the following identity holds

E π̃ ′
ξ (p0)

[
1{1}×W (s̃N)|ηN(ξ (p0); iN) = η

]
= gN(η)

for P̃k(π̃ ′,ξ (p0)) almost every η .

For the derivation of a sufficient statistic, we will use the notations ξ (p0) ∈ ξ (P(S)) and p̃ ∈
P(S̃) to distinguish between an initial distribution in the range of ξ and a probability distribution
on S̃ produced using recursive update equations. In particular, p̃ may not belong to the range of ξ .

As a first step, by Lemma 10.3 of Bertsekas and Shreve (1978), there exist Borel-measurable
stochastic kernels Φ0(ds̃|ξ (p);z) on S̃ given ξ (P(S))×Z and Φ(ds̃|p̃;z,a) on S̃ given P(S̃)×
Z×Ca which satisfy

∫
E1

ζ̃0(E2|s̃)ξ (p0)(ds̃) =
∫

S̃

∫
E2

Φ0(E1|ξ (p0);z)ζ̃0(dz|s̃)ξ (p0)(ds̃) (5.11)∫
E1

ζ̃ (E2|s̃,a)p̃(ds̃) =
∫

S̃

∫
E2

Φ(E1|p̃;z,a)ζ̃ (dz|s̃,a)p̃(ds̃) (5.12)

for every Borel set E1 ∈B(S̃), E2 ∈B(Z), probability distribution ξ (p0) ∈ ξ (P(S)), p̃ ∈P(S̃),
and control action a ∈Ca.

Now consider a function Ψ : P(S̃)×Ca →P(S̃), corresponding to the prediction step of a
hybrid state filter:

Ψ(p̃,a)(E) =
∫

S̃
ν̃(E|s̃,a)p̃(ds̃), ∀E ∈B(S̃). (5.13)

By Propositions 7.26 and 7.29 of Bertsekas and Shreve (1978), the mapping Ψ is Borel-measurable.
For a given information vector ik ∈ Ik and initial distribution ξ (p0)∈ ξ (P(S)), define the stochas-
tic kernels p̃k : ξ (P(S))× Ik→P(S̃) through the following innovation equations:

p̃0(ξ (p0); i0) = Φ0(ds̃0|ξ (p0);z0), (5.14)
p̃k+1(ξ (p0); ik+1) = Φ(ds̃k+1|Ψ(p̃k(ξ (p0); ik),ak);zk+1,ak).

Clearly, these stochastic kernels are Borel-measurable. Furthermore, by Lemma 10.4 of Bertsekas
and Shreve (1978), p̃k(ξ (p0); ik) can be viewed as the conditional distribution of (hk,sk) given the
information vector ik and initial distribution ξ (p0). Finally, by Proposition 10.5 of Bertsekas and
Shreve (1978), we have that the sequence { p̃k(ξ (p0); ik)}N−1

k=0 is a sufficient statistic for H̃ .
In particular, a transition kernel ν̂ for the statistic p̃k can be defined as

ν̂(Ek+1|p̃k,ak) =
∫

S̃

∫
S̃

ζ (G(p̃k,ak,Ek+1)|s̃k+1,ak)ν̃(ds̃k+1|s̃k,ak)p̃k(ds̃k), (5.15)

where G(p̃,a,E) = {z ∈ Z|Φ(·|Ψ(p̃,a);z,a) ∈ E}. Thus, the evolution of p̃k(ξ (p); ik) can be char-
acterized exclusively in terms of the stochastic kernel ν̂ . For the rest of this paper, we will refer to

130



p̃k as an information state. The terminal cost with respect to this information state can be defined
as

gN(p̃N) :=
∫

S̃
1{1}×W (s̃N)p̃N(ds̃N) =

∫
W

p̃N(1,dsN). (5.16)

In the following section, this function will be used to construct an equivalent perfect information
stochastic optimal control problem on the space of information states.

5.3.3 Reduction to Perfect State Information Problem
Consider a perfect state information model Ĥ in which the state space is given by Ŝ := P(S̃),
the action space is given by Ca, and the state transition kernel is given by ν̂ . Define the set of
admissible control policies for Ĥ as follows.

Definition 5.5. A policy π̂ ′ for Ĥ is a sequence π̂ = (π̂ ′0, π̂
′
1, ..., π̂

′
N−1) of universally measurable

stochastic kernels π̂ ′k : B(Ca)× Ŝk+1×Ck
a→ [0,1], assigning to each sequence of controls and in-

formation states (p̃0,a0, ..., p̃k−1,ak−1, p̃k) a probability measure π̂ ′k(dak|p̃0,a0, ..., p̃k−1,ak−1, p̃k)

on the Borel space (Ca,B(Ca)). The set of such policies is denoted by Π̂′.

If for each k, the stochastic kernel π̂ ′k depends on the history only through the current in-
formation state p̃k, then the policy π̂ ′ is said to be Markov. If for each k and history vector
(p̃0,a0, ..., p̃k−1,ak−1, p̃k), the stochastic kernel π̂ ′k assigns probability mass one to some point in
Ca, the policy π̂ ′ is said to be non-randomized. The class of non-randomized, Markov policies for
Ĥ is denoted as Π̂. For any π̂ ′ ∈ Π̂, we can identify the stochastic kernels π̂ ′k with a sequence of
universally measurable maps π̂k : Ŝ→Ca (see for example Bertsekas and Shreve, 1978, Corollary
7.44.3).

Let π̂ ′ ∈ Π̂′, then by Proposition 7.44 of Bertsekas and Shreve (1978), the sequence π̃ ′ =
(π̃ ′0, π̃

′
1, ..., π̃

′
N−1) defined by

π̃ ′k(dak|ξ (p0); ik) = π̂ ′k(dak|p̃0(ξ (p0); i0),a0, ...,ak−1, p̃k(ξ (p0); ik)) (5.17)

is a policy belonging to Π̃′. Through this identification, we can view Π̂′ as a subset of Π̃′, and
hence also of Π′.

Now consider the sample space of information state and control sequences over time hori-
zon N given by Ω̂N := ŜN+1 ×CN

a , equipped with the canonical product topology B(Ω̂N) :=
∏

N+1
k=1 B(Ŝ)×∏

N
k=1 B(Ca). Then for a given initial information state p̃0 ∈ Ŝ and policy π̂ ′ ∈ Π̂′,

the stochastic kernels ν̂ and π̂ ′k, k = 0,1, ..,N induce a unique probability measure P̂π̂ ′
p̃0

on Ω̂N .
Let p̃0 ∈ Ŝ, π̂ ′ ∈ Π̂′, consider an N-stage cost function defined by

JN,π̂ ′(p̃0) :=
∫

Ω̂N

gN(p̃N)dP̂π̂ ′
p̃0
. (5.18)

The perfect state information problem for Ĥ is stated as follows.
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Problem 5.3. Given a perfect state information model Ĥ defined with respect to a Borel safe set
W ∈B(S):

1. Compute the optimal cost J∗N := supπ̂ ′∈Π̂′ JN,π̂ ′;

2. Find an optimal policy π̂∗ ∈ Π̂′, if it exists, such that J∗N(p̃0)= JN,π̂∗(p̃0), ∀p̃0 ∈ Ŝ. Otherwise,
for a choice of ε > 0, find an ε-optimal policy π̂∗ε ∈ Π̂′ satisfying

JN,π̂∗ε (p̃0)≥ J∗N(p̃0)− ε, ∀p̃0 ∈ Ŝ.

Given the terminal cost structure in (5.18), we can apply standard dynamic programming results
for additive cost problems to obtain a solution to Problem 5.3 (see for example Bertsekas and
Shreve, 1978, chapter 8). In particular, the ε-optimal policies can be found within the class of
non-randomized Markov policies Π̂. Before the discussion of this dynamic programming solution,
we will first establish the connection between Problem 5.1 and Problem 5.3.

Proposition 5.2. Let H = (Q,n,Ca,Z,νx,νq,νr,ζ0,ζ ) be a POdtSHS and W ∈B(S) be a Borel
safe set. Let Ĥ = (Ŝ,Ca, ν̂) be the corresponding perfect state information model. Define a
function ϕ : P(S)→P(Ŝ) as

ϕ(p0)(E) =
∫

S
ζ0({z0|p̃0(ξ (p0);z0) ∈ E}|s0)p0(ds0), (5.19)

for every Borel set E ∈B(Ŝ). Then we have

p∗(p0;W ) =
∫

Ŝ
J∗N(p̃0)ϕ(p0)(d p̃0), ∀p0 ∈P(S).

Furthermore, if π̂ ′ ∈ Π̂′ is optimal, or ε-optimal for Problem 5.3, then π̂ ′ is also optimal, or ε-
optimal for Problem 5.1.

Proof. Let ϕ̃ : ξ (P(S))→P(Ŝ) be defined as

ϕ̃(ξ (p0))(E) =
∫

S̃
ζ̃0({z0|p̃0(ξ (p0);z0) ∈ E}|s̃0)ξ (p0)(ds̃0),

for every Borel set E ∈B(S). Then it follows by Proposition 10.3 of Bertsekas and Shreve (1978)
that

p̃∗(ξ (p0);{1}×W ) =
∫

Ŝ
J∗N(p̃0)ϕ̃(ξ (p0))(d p̃0),

for every ξ (p0)∈ ξ (P(S)). Furthermore, if π̂ ′ ∈ Π̂′ is optimal, or ε-optimal for Problem 5.3, then
π̂ ′ is also optimal, or ε-optimal for Problem 5.2.

Thus, by Proposition 5.1 and the observation that ϕ(p0) = ϕ̃(ξ (p0)), ∀p0 ∈P(S), we have
the desired conclusion.
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5.4 Solution to Partial Information Safety Problem
As shown in Proposition 5.2, solving a partial information safety problem defined on the hybrid
state space is equivalent to solving a perfect information terminal cost problem defined on the
information state space. In this section, we will first focus on solving Problem 5.3. This then in
turn provides a solution to Problem 5.1.

Specifically, consider a dynamic programming operator TSa f e, which takes as its argument an
universally measurable function J : Ŝ→ [0,1] and returns a function TSa f e(J) : Ŝ→ [0,1]:

TSa f e(J)(p̃) = sup
a∈Ca

∫
Ŝ

J(p̃′)ν̂(d p̃′|p̃,a), p̃ ∈ Ŝ. (5.20)

The solution to Problem 5.3 is given as follows.

Proposition 5.3. Let Ĥ = (Ŝ,Ca, ν̂) be a perfect state information model defined with respect to
a Borel safe set W ∈B(S). Then

1. J∗N = T N
Sa f e(gN);

2. For every ε > 0, there exists an ε-optimal non-randomized Markov policy π̂∗ε ∈ Π̂ for Prob-
lem 5.3. In particular,

J∗N := sup
π̂ ′∈Π̂′

JN,π̂ ′ = sup
π̂∈Π̂

JN,π̂ .

Proof. These statements are direct consequences of Propositions 8.2, 8.3, and 10.1 of Bertsekas
and Shreve (1978).

From this result, we have that J∗N can be computed through recursive applications of the dy-
namic programming operator TSa f e, initialized with the terminal cost gN , and that the set of non-
randomized Markov policies Π̂ is optimal over the set of general policies Π̂′. Furthermore, suffi-
cient conditions of optimality can be also derived from the dynamic programming algorithm. For
notational conveniences, we define the optimal cost-to-go functions J∗k→N : Ŝ→ [0,1] by

J∗k→N := T N−k
Sa f e (gN), k = 0,1, ...,N. (5.21)

By Proposition 5.3, it follows that J∗0→N = J∗N . Using this fact and standard dynamic programming
arguments (see for example Bertsekas and Shreve, 1978, Proposition 8.2), we obtain the following
corollary.

Corollary 5.1.

1. If π̂ = (π̂0, π̂1, ..., π̂N−1) ∈ Π̂ satisfies

π̂k(p̃) ∈ arg sup
a∈Ca

∫
Ŝ

J∗k+1→N(p̃′)ν̂(d p̃′|p̃,a), (5.22)

for every p̃ ∈ Ŝ and k = 0,1...,N−1, then π̂ is an optimal policy for Problem 5.3.
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2. For a given ε > 0, let {εk}N−1
k=0 be any sequence of positive real numbers such that ∑

N−1
k=0 εk =

ε . If π̂ = (π̂0, π̂1, ..., π̂N−1) ∈ Π̂ satisfies∫
Ŝ

J∗k+1→N(p̃′)ν̂(d p̃′|p̃, π̂k(p̃))≥ J∗k→N(p̃)− εk, (5.23)

for every p̃ ∈ Ŝ and k = 0,1...,N−1, then π̂ is an ε-optimal policy for Problem 5.3.

Combining Propositions 5.2 and 5.3, and Corollary 5.1, we arrive at the main result of this
chapter.

Theorem 5.1. Let H be a POdtSHS and W ∈B(S) be a Borel safe set. Let Ĥ be the correspond-
ing perfect state information model. Define gN : Ŝ→ [0,1] as in (5.16) and ϕ : P(S)→P(Ŝ) as
in (5.19). Then given p0 ∈P(S), we have

1. p∗(p0;W ) =
∫

Ŝ T N
Sa f e(gN)(p̃0)ϕ(p0)(d p̃0);

2. For every ε > 0, there exists an ε-optimal non-randomized policy π∗ε ∈Π for Problem 5.1 of
the form

π∗k,ε(p0; ik) = π̂k,ε(p̃k(ξ (p0); ik)), k = 0,1, ...,N−1.

In particular,
p∗(p0;W ) := sup

π ′∈Π′
pπ ′(p0;W ) = sup

π̂∈Π̂

pπ̂(p0;W ).

3. If π̂ = (π̂0, π̂1, ..., π̂N−1) ∈ Π̂ satisfies (5.22), then π̂ is an optimal policy for Problem 5.1.
For a given ε > 0, if π̂ = (π̂0, π̂1, ..., π̂N−1) ∈ Π̂ satisfies (5.23), then π̂ is an ε-optimal policy
for Problem 5.1.

By this result, the optimal safety probability p∗(p0;W ) for the POdtSHS can be computed
through a terminal cost dynamic programming algorithm on the information state space Ŝ. Fur-
thermore, the ε-optimal policies can be found within the class of non-randomized policies which
depends on the initial distribution p0 and observation history ik only through the augmented in-
formation state p̃k(ξ (p0); ik). This decouples the partial information safety problem into two sub-
problems:

1. Computing the ε-optimal control policy π̂∗ε via the dynamic programming recursion given in
Proposition 5.3;

2. Computing the conditional state distribution p̃k(ξ (p0); ik) through the innovation equations
(5.14).

The first subproblem, which is the control aspect of the problem, can be performed in an offline
setting, while the second subproblem, which is the estimation aspect of the problem, has to be
performed in an online setting. In both of these problems, the difficulty of finding computationally
tractable solutions is to a large extent associated with the representation of the information state p̃k,
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as it determines the size of the space in which the filtering and dynamic programming algorithms
need to take place. Given that p̃k is a probability distribution, which is infinite dimensional, rather
than a hybrid state sk, which is finite dimensional, it can be seen that the partial information safety
problem is in general significantly more difficult than its perfect information counterpart.

It is observed in Kumar and Varaiya (1986) that the abrupt jump in complexity when one
moves from a perfect information model to a partial information model is reflective of the dual
role of control in a partial information optimal control problem. Namely the choice of control af-
fects not only the evolution of the actual state through the system dynamics, but also the sequence
of observations generated by the state trajectory, and hence the availability of information. If more
informative measurements or observations are made, then the uncertainty in state estimates would
likely reduce, leading to better choices of control inputs. However, the payoff gained by having
better estimates needs to be balanced with the payoff lost in the process of obtaining better esti-
mates. The use of an information state as a characterization of the estimation uncertainty allows
the control to quantify the expected costs and benefits of a reduction in uncertainty. This improve-
ment in control quality unfortunately comes at the expense of reasoning on the space of uncertainty
representations, which may be much larger than the underlying hybrid state space.

For cases in which it is possible to find an ε-optimal control policy π̂∗ε for Problem 5.3, a control
algorithm for the POdtSHS can be implemented, at least in principle, according to Algorithm 5.4.1.
A block diagram illustration of this algorithm is shown in Figure 5.2.

Algorithm 5.4.1 POdtSHS Control Algorithm
Require: Initial distribution p0 ∈P(S) and policy π̂∗ε ∈ Π̂.

for k = 0 to N−1 do
Obtain a measurement zk;
Compute information state p̃k(ξ (p0); ik) using (5.14);
Apply control input ak = π̂k,ε(p̃k(ξ (p0); ik));

end for

Figure 5.2: Block diagram of POdtSHS control algorithm.
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5.5 Extension to Probabilistic Reach-avoid Problem
In this section, we will discuss how the analysis of the preceding sections can be extended to
address the reach-avoid problem. In particular, due to the sum-multiplicative cost structure, the
reach-avoid problem is equivalent to an additive cost stochastic optimal control problem.

More specifically, suppose that R ∈B(S) is given as the target set and W ′ ∈B(S) as the safe
set, with R ⊆W ′. Then the probability that the state trajectory (s0,s1, ...,sN) of a POdtSHS H
reaches R while staying inside W ′ for an initial distribution p0 ∈P(W ′) and π ′ ∈Π′ is given by

rπ ′(p0;R,W ′)

:= PN(π ′, p0)(
{
(s0,z0,a0, ...,sN ,zN) : ∃k ∈ [0,N],(sk ∈ R)∧ (s j ∈W ′, ∀ j ∈ [0,k])

}
)

= PN(π ′, p0)

(
N⋃

k=0

(W ′ \R)k×R×SN−k×ZN+1×CN
a

)

=
N

∑
k=0

PN(π ′, p0)((W ′ \R)k×R×SN−k×ZN+1×CN
a ), (5.24)

where the final equality follows by the fact that the union is disjoint. From (5.1), this probability
can be computed as

rπ ′(p0;R,W ′) = Eπ ′
p0

[
N

∑
k=0

(
k−1

∏
j=0

1W ′\R(s j)

)
1R(sk)

]
, (5.25)

where Eπ ′
p0

denotes the expectation with respect to the probability measure PN(π ′, p0) on the sample
space ΩN . As before, our control objective is to maximize this probability over the general policy
space Π′. More precisely, the partial information reach-avoid problem for a POdtSHS is as follows:

Problem 5.4. Given a POdtSHS H , initial distribution p0 ∈P(S), target set R ∈B(S), and safe
set W ′ ∈B(S) such that R⊆W ′:

1. Compute the maximal reach-avoid probability

r∗(p0;R,W ′) := sup
π ′∈Π′

rπ ′(p0;R,W ′);

2. Find an optimal policy π∗ ∈ Π′, if it exists, such that r∗(p0;R,W ′) = rπ∗(p0;R,W ′). Other-
wise, for a choice of ε > 0, find an ε-optimal policy π∗ε ∈Π′ satisfying

rπ∗ε (p0;R,W ′)≥ r∗(p0;R,W ′)− ε.

We define a modified history state for the reach-avoid problem as

h0 = 1; hk =
k−1

∏
j=0

1W ′\R(s j), k ≥ 1. (5.26)

136



The corresponding augmented POdtSHS model H̃ , whose state at each time step k is given by
(hk,sk), can be defined similarly as in Section 5.3.1.

For a given initial distribution ξ (p0) ∈ ξ (P(S)) and policy π̃ ′ ∈ Π̃′ for H̃ , consider the fol-
lowing additive cost function

r̃π̃ ′(ξ (p0);R,W ′) := E π̃ ′
ξ (p0)

[
N

∑
j=0

1{1}×R(s̃ j)

]
, (5.27)

where E π̃ ′
ξ (p0)

denotes the expectation with respect to the probability measure P̃N(π̃ ′,ξ (p0)) on the

sample space Ω̃N := S̃N+1×ZN+1×CN
a . In the following, we use r̃π̃ ′(ξ (p0);R,W ′) to define an

additive cost optimal control problem for the augmented POdtSHS.

Problem 5.5. Given an initial distribution p0 ∈P(S) and an augmented POdtSHS H̃ defined
with respect to a target set R ∈B(S) and a safe set W ′ ∈B(S) such that R⊆W ′:

1. Compute the optimal cost

r̃∗(ξ (p0);R,W ′) := sup
π̃ ′∈Π̃′

r̃π̃ ′(ξ (p0);R,W ′);

2. Find an optimal policy π̃∗ ∈ Π̃′, if it exists, such that r̃∗(ξ (p0);R,W ′) = r̃π̃∗(ξ (p0);R,W ′).
Otherwise, for a choice of ε > 0, find an ε-optimal policy π̃∗ε ∈ Π̃′ satisfying

r̃π̃∗ε (ξ (p0);R,W ′)≥ r̃∗(ξ (p0);R,W ′)− ε.

We now proceed to establish the equivalence between Problem 5.4 and Problem 5.5.

Proposition 5.4. For every p0 ∈P(S) and R,W ′ ∈B(S) such that R⊆W ′, we have

r∗(p0;R,W ′) = r̃∗(ξ (p0);R,W ′).

Proof. By the equivalence of the policy spaces Π′ and Π̃′, it is again sufficient to prove that, for
every π ′ ∈Π′, the following equality holds:

rπ ′(p0;R,W ′) = r̃π ′(ξ (p0);R,W ′).

By the previous definitions,

r̃π ′(ξ (p0);R,W ′) =
∫

Ω̃N

N

∑
k=0

1{1}×R(s̃k)dP̃N(π ′,ξ (p0))

=
N

∑
k=0

∫
Ω̃k

1{1}×R(s̃k)dP̃k(π ′,ξ (p0))
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Using a similar line of argument as in the proof of Proposition 5.1, it can be shown that for
every k = 0,1, ...,N,

∫
Ω̃k

1{1}×R(s̃k)dP̃k(π ′,ξ (p0)) =
∫

Ωk

(
k−1

∏
j=0

1W ′\R(s j)

)
1R(sk)dPk(π ′, p0).

Thus, we have

r̃π ′(ξ (p0);R,W ′) =
N

∑
k=0

∫
Ωk

(
k−1

∏
j=0

1W ′\R(s j)

)
1R(sk)dPk(π ′, p0)

=
∫

ΩN

N

∑
k=0

(
k−1

∏
j=0

1W ′\R(s j)1R(sk)

)
dPN(π ′, p0)

=Eπ ′
p0

[
N

∑
k=0

(
k−1

∏
j=0

1W ′\R(s j)

)
1R(sk)

]
= rπ ′(p0;R,W ′)

The desired conclusion then follows.

Applying the set of procedures given in Section 5.3.2, we can derive an information state
p̃k(ξ (p0); ik), k = 0,1, ...,N for the augmented POdtSHS model H̃ . By Proposition 10.5 of
Bertsekas and Shreve (1978), this then becomes a sufficient statistic for Problem 5.5. Let H =
(Ŝ,Ca, ν̂) be the corresponding perfect state information model. Consider a Borel-measurable one-
stage cost g : Ŝ→ [0,1] defined by

g(p̃) :=
∫

S̃
1{1}×R(s̃)p̃(ds̃) =

∫
R

p̃(1,ds), (5.28)

Let p̃0 ∈ Ŝ, π̂ ′ ∈ Π̂′, define an N-stage cost function as

J̃N,π̂ ′(p̃0) :=
∫

Ω̂N

N

∑
j=0

g(p̃ j)dP̂π̂ ′
p̃0
. (5.29)

The perfect state information problem is stated as follows.

Problem 5.6. Given a perfect state information model Ĥ defined with respect to a target set
R ∈B(S) and a safe set W ′ ∈B(S) such that R⊆W ′:

1. Compute the optimal cost J̃∗N := supπ̂ ′∈Π̂′ J̃N,π̂ ′;

2. Find an optimal policy π̂∗ ∈ Π̂′, if it exists, such that J̃∗N(p̃0)= J̃N,π̂∗(p̃0), ∀p̃0 ∈ Ŝ. Otherwise,
for a choice of ε > 0, find an ε-optimal policy π̂∗ε ∈ Π̂′ satisfying

J̃N,π̂∗ε (p̃0)≥ J̃∗N(p̃0)− ε, ∀p̃0 ∈ Ŝ.
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By an almost identical argument as in the proof of Proposition 5.2, we have the following result
establishing the connection between Problem 5.4 and Problem 5.6.

Proposition 5.5. Let H = (Q,n,Ca,Z,νx,νq,νr,ζ0,ζ ) be a POdtSHS and R,W ′ ∈B(S) be Borel
sets such that R ⊆W ′. Let Ĥ = (Ŝ,Ca, ν̂) be the corresponding perfect state information model
for the reach-avoid problem. Define a function ϕ : P(S)→P(Ŝ) as in (5.19). Then we have

r∗(p0;R,W ′) =
∫

Ŝ
J̃∗N(p̃0)ϕ(p0)(d p̃0), ∀p0 ∈P(S).

Furthermore, if π̂ ′ ∈ Π̂′ is optimal, or ε-optimal for Problem 5.6, then π̂ ′ is also optimal, or ε-
optimal for Problem 5.4.

Using standard dynamic programming results for additive cost problems, we can also derive a
solution to Problem 5.6, which in turn provides a solution to Problem 5.4. Specifically, consider a
dynamic programming operator TRA as defined by

TRA(J)(p̃) = sup
a∈Ca

g(p̃)+
∫

Ŝ
J(p̃′)ν̂(d p̃′|p̃,a), p̃ ∈ Ŝ (5.30)

for universally measurable functions J : Ŝ→ [0,1].
Then by propositions 8.2 and 8.3 of Bertsekas and Shreve (1978), we have the following dy-

namic programming result.

Proposition 5.6. Let Ĥ = (Ŝ,Ca, ν̂) be a perfect state information model defined with respect to
a target set R ∈B(S) and a safe set W ′ ∈B(S) such that R⊆W ′. Then

1. J̃∗N = T N
RA(g);

2. For every ε > 0, there exists an ε-optimal non-randomized Markov policy π̂∗ε ∈ Π̂ for Prob-
lem 5.6. In particular,

J̃∗N := sup
π̂ ′∈Π̂′

J̃N,π̂ ′ = sup
π̂∈Π̂

J̃N,π̂ .

Combining propositions 5.5 and 5.6, a solution to Problem 5.4 can be now stated.

Theorem 5.2. Let H be a POdtSHS and R,W ′ ∈ B(S) be Borel sets such that R ⊆W ′. Let
Ĥ be the corresponding perfect state information model for the reach-avoid problem. Define
g : Ŝ→ [0,1] as in (5.28) and ϕ : P(S)→P(Ŝ) as in (5.19). Then given p0 ∈P(S), we have

1. r∗(p0;R,W ′) =
∫

Ŝ T N
RA(g)(p̃0)ϕ(p0)(d p̃0);

2. For every ε > 0, there exists an ε-optimal non-randomized policy π∗ε ∈Π for Problem 5.4 of
the form

π∗k,ε(p0; ik) = π̂k,ε(p̃k(ξ (p0); ik)), k = 0,1, ...,N−1.

In particular,

r∗(p0;R,W ′) := sup
π ′∈Π′

rπ ′(p0;R,W ′) = sup
π̂∈Π̂

rπ̂(p0;R,W ′).
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3. Let J̃∗k→N := T N−k
RA (g), k = 0,1, ...,N. If π̂ = (π̂0, π̂1, ..., π̂N−1) ∈ Π̂ satisfies

π̂k(p̃) ∈ arg sup
a∈Ca

∫
Ŝ

J̃∗k+1→N(p̃′)ν̂(d p̃′|p̃,a), (5.31)

for every p̃ ∈ Ŝ and k = 0,1...,N− 1, then π̂ is an optimal policy for Problem 5.4. For a
given ε > 0, let {εk}N−1

k=0 be any sequence of positive real numbers such that ∑
N−1
k=0 εk = ε . If

π̂ = (π̂0, π̂1, ..., π̂N−1) ∈ Π̂ satisfies∫
Ŝ

J̃∗k+1→N(p̃′)ν̂(d p̃′|p̃, π̂k(p̃))≥ J̃∗k→N(p̃)− εk, (5.32)

for every p̃ ∈ Ŝ and k = 0,1...,N−1, then π̂ is an ε-optimal policy for Problem 5.4.

Thus, the partial information reach-avoid problem can be solved using an additive cost dynamic
programming algorithm on the information state space Ŝ. For the rest of this chapter, we will focus
our attention on the probabilistic safety problem, with the understanding that any result proved
for the safety problem can be generalized to the reach-avoid problem through the set of minor
modifications in argument as described in this section.

5.6 Sufficiency of Non-Randomized Markov Policies for the
Perfect Information Safety Problem

In this section, we will state a consequence of the preceding results for the special case in which the
hybrid state is perfectly observed. Specifically, consider a PODTSHS model H with observation
space Z = S and observation model ζ0(dz|s) = ζ (dz|s,a) = δs. For the system H , it will be shown
that the class of non-randomized Markov policies, which select input deterministically based upon
measurement the current state zk = sk, is optimal for the probabilistic safety problem, within the
general class of randomized non-Markov policies. In other words, for the perfect information case,
it is unnecessary to randomize one’s choice of controls or maintain memory of the history of hybrid
states and controls, despite the multiplicative cost structure of the safety problem. This provides
formal justification for the restriction of attention to this class of policies in previous work by
Amin et al. (2006), Abate et al. (2008), and Summers and Lygeros (2010) on perfect information
probabilistic reachability problems for DTSHS.

As consistent with a perfect state information model, we assume that the initial condition s0 ∈ S
of H is measured. This results in an initial distribution p0 = δs0 . The maximal safety probability,
as a specialization of the definitions in section 5.2.2, is then parameterized only by the initial
condition s0, and will be thus denoted simply as p∗s0

(W ). It can be verified that a sufficient statistic
for the perfect information safety problem is given by the sequence of functions ηk : ξ (P(S))×
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Ik→ S̃ defined as

η0(ξ (p0); i0) = (1,z0),

ηk(ξ (p0); ik) = (
k−1

∏
j=0

1W (z j),zk), k ≥ 1.

By the definition of the history state hk and the fact that zk = sk in the perfect information case,
it follows that ηk(ξ (p0); ik) = (hk,sk), ∀k ≥ 0. In other words, the information state for H is
simply the augmented system state s̃k = (hk,sk), with the transition kernel as defined in (5.5), and
the terminal cost gN(s̃N) = 1{1}×W (s̃N). Thus, by a special case of Theorem 5.1, we have

p∗s0
(W ) = sup

π̂∈Π̂

pπ̂
s0
(W ), ∀s0 ∈ S, (5.33)

where Π̂ is the class of policies consisting of elements π̂ = (π̂0, π̂1, ..., π̂N−1), such that π̂k : S̃→Ca
is a deterministic function of the augmented state. Now consider a subclass M of such policies
which selects inputs independently of the history state hk, namely π̂k(0,sk) = π̂k(1,sk) = µk(sk)
for some function µk : S→ Ca. In the following, we will proceed to prove that it is sufficient to
restrict one’s attention to the policy class M .

Proposition 5.7. Let H be a perfect state information model. Then given an initial condition
s0 ∈ S and a safe set W ∈B(S), we have

p∗s0
(W ) = sup

µ∈M
pµ

s0(W ), ∀s0 ∈ S.

Proof. Given (5.33), it is sufficient to prove that the following equality holds:

sup
π̂∈Π̂

pπ̂
s0
(W ) = sup

µ∈M
pµ

s0(W ), ∀s0 ∈W.

First, by virtue of M being a subset of Π̂, it can be inferred that

sup
π̂∈Π̂

pπ̂
s0
(W )≥ sup

µ∈M
pµ

s0(W ), ∀s0 ∈ S.

Now we proceed to show the reverse inequality. Fix any policy π̂ = (π̂0, π̂1, ..., π̂N−1)∈ Π̂, consider
a policy µ = (µ0,µ1, ...,µN−1) ∈M defined as

µk(sk) = π̂k(1,sk), ∀sk ∈ S, k = 0,1, ...,N−1.
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By Proposition 5.1, we have pπ̂
s0
(W ) = p̃π̂

(1,s0)
({1}×W ), ∀s0 ∈ S. This implies that for every initial

condition s0 ∈ S,

pπ̂
s0
(W ) =

∫
S̃N+1

1{1}×W (s̃N)
N−1

∏
k=0

ν̃(ds̃k+1|s̃k, π̂k(s̃k))δ(1,s0)(ds̃0)

=
∫

S̃N×S
1W (sN)ν(dsN |sN−1, π̂N−1(1,sN−1))

1{1}×W (s̃N−1)
N−2

∏
k=0

ν̃(ds̃k+1|s̃k, π̂k(s̃k))δ(1,s0)(ds̃0)

=
∫

S̃×SN

(
N−1

∏
k=0

1W (sk+1)ν(dsk+1|sk, π̂k(1,sk))

)
1{1}×W (s̃0)δ(1,s0)(ds̃0)

=1W (s0)
∫

SN

N−1

∏
k=0

1W (sk+1)ν(dsk+1|sk,µk(sk)) = pµ
s0(W ).

In other words, for every π̂ ∈ Π̂, there exists a choice of policy µ ∈M that does at least as well.
Thus, pπ̂

s0
(W )≤ supµ∈M pµ

s0(W ), ∀s0 ∈ S, π̂ ∈ Π̂. The desired result then follows.

We note briefly that in a perfect state information model, the sequence of functions
η̄k(ξ (p0); ik) = zk, k ≥ 0 is not a sufficient statistic in the strict sense of Definition 5.4. However,
due to the particular form of the cost function in the probabilistic safety problem, only decisions
made with respect to safe trajectories (i.e. hk = 1, ∀k) contribute to the final payoff. Thus, the
controls for hk = 0 can be chosen as identical to those for hk = 1.

5.7 Specialization to Partially Observable Markov Decision
Processes

In order to illustrate the state estimation and dynamic programming procedures for discrete models,
we now consider a special case of the POdtSHS model in which the state space, control input space,
and observation space are finite. Namely, S = Q, Ca = Σ, and Z = O, for some finite sets Q, Σ, and
O. This is commonly referred to in literature as Partially Observable Markov Decision Processes
(see for example Russell and Norvig, 2002; Thrun et al., 2005).

Given a finite state space, the state transition kernel ν can be summarized in terms of a transition
probability pq : Q×Σ×Q→ [0,1] such that

ν(Q′|q,σ) = ∑
q′∈Q′

pq(q′|q,σ), ∀Q′ ⊆ Q,q ∈ Q,σ ∈ Σ.

For simplicity of notation, we assume that the observations are not affected by the control inputs.
In this case, the observation kernels can be summarized in terms of an observation probability

142



po : Q×O→ [0,1] such that

ζ0(O′|q) = ζ (O′|q,σ) = ∑
o′∈O′

po(o′|q), ∀O′ ⊆ O,q ∈ Q,σ ∈ Σ.

We denote the POMDP model specified above as HPOMDP = (Q,Σ,O, pq, po). For a given safe
set W ⊆ Q, the corresponding augmented system model is given by H̃POMDP = (Q̃,Σ,O, p̃q, p̃o),
where Q̃, p̃q and p̃o are defined as

Q̃ = {0,1}×Q (5.34)

p̃q(hk+1,qk+1|(hk,qk),σk) =


pq(qk+1|qk,σk), hk = 0,hk+1 = 0
0, hk = 0,hk+1 = 1
1Q\W (qk)pq(qk+1|qk,σk), hk = 1,hk+1 = 0
1W (qk)pq(qk+1|qk,σk), hk = 1,hk+1 = 1,

p̃o(ok|hk,qk) = po(ok|qk), hk = 0,1.

for every qk,qk+1 ∈Q and ok ∈O. As discussed in section 5.3.1, for a given initial state distribution
p0 ∈P(Q) and policy π̃ ′ ∈ Π̃′, the transition probability p̃q and observation probability p̃o induce
a unique probability measure P̃k(π̃ ′,ξ (p0)) on the sample space Ω̃k := Q̃k+1×Ok+1×Σk.

First we will show that the state filtering equations in (5.14) in this case simplifies to a Bayesian
update rule for the augmented POMDP H̃POMDP. The precise statement is as follows.

Lemma 5.1. Let HPOMDP be a POMDP and W ⊆ Q be a safe set. Let H̃POMDP be the corre-
sponding augmented POMDP. Then for every p0 ∈P(Q), π̃ ′ ∈ Π̃′, q̃k ∈ Q̃, and k = 0,1, ..., we
have

p̃0(ξ (p0); i0)(q̃0) =
p̃o(o0|q̃0)ξ (p0)(q̃0)

∑q̃0∈Q̃ p̃o(o0|q̃0)ξ (p0)(q̃0)
,

p̃k(ξ (p0); ik)(q̃k) =
p̃o(ok|q̃k)p̃k|k−1(ξ (p0); ik−1,σk−1)(q̃k)

∑q̃k∈Q̃ p̃o(ok|q̃k)p̃k|k−1(ξ (p0); ik−1,σk−1)(q̃k)
, k ≥ 1,

where

p̃k|k−1(ξ (p0); ik−1,σk−1)(q̃k) = ∑
q̃k−1∈Q̃

p̃q(q̃k|q̃k−1,σk−1)p̃k−1(ξ (p0); ik−1)(q̃k−1),

for P̃k(π̃ ′,ξ (p0)) almost every ik.

The proof of this result largely revolves around manipulating the abstract definitions of sec-
tion 5.3.2, and can be found in appendix C. Using the transition probability p̃q and observation
probability p̃o, the filtering equations in the statement of Lemma 5.1 can be rewritten as follows.
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1. Initialization Step:

p̃0(ξ (p0); i0)(1,q0) =
po(o0|q0)p(o0)

∑q0∈Q po(o0|q0)p(q0)
, (5.35)

p̃0(ξ (p0); i0)(0,q0) = 0;

2. Prediction Step:

p̃k+1|k(ξ (p0); ik,σk)(1,qk+1) = ∑
qk∈W

pq(qk+1|qk,σk)p̃k(ξ (p0); ik)(1,qk), (5.36)

p̃k+1|k(ξ (p0); ik,σk)(0,qk+1) = ∑
qk∈Q

pq(qk+1|qk,σk)p̃k(ξ (p0); ik)(0,qk) (5.37)

+ ∑
qk∈Q\W

pq(qk+1|qk,σk)p̃k(ξ (p0); ik)(1,qk)

3. Update Step:

p̃k+1(ξ (p0); ik+1)(hk+1,qk+1) =

po(ok+1|qk+1)p̃k+1|k(ξ (p0); ik,σk)(hk+1,qk+1)

∑(hk+1,qk+1)∈Q̃ po(ok+1|qk+1)p̃k+1|k(ξ (p0); ik,σk)(hk+1,qk+1)
. (5.38)

From the Bayesian update equations (5.35)–(5.38), it can be observed that estimation in the
case of a partial information safety problem for the POMDP involves maintaining a discrete prob-
ability distribution over an augmented state space Q̃ containing twice the number of discrete states
as the original state space Q. In particular, if one were to marginalize the augmented distribution
p̃k over the history state hk, one recovers the regular POMDP update equations for the conditional
distribution of qk. More specifically, let pk|k(·|p0; ik) be the conditional state distribution of qk over
Q, given the initial distribution p0 and the information vector ik. The update equations for pk|k can
be found in for example Chapter 17 of Russell and Norvig (2002) or Chapter 15 of Thrun et al.
(2005). Then it can be verified that

pk|k(qk|p0; ik) = p̃k(ξ (p0); ik)(1,qk)+ p̃k(ξ (p0); ik)(0,qk), ∀qk ∈ Q.

Thus, the augmented information state p̃k provides slightly more information about the history of
state evolution (i.e. the safety of past trajectory) as compared with the regular information state
pk|k. As we will illustrate through an example later on, this extra information can be important in
a probabilistic safety problem.

In order to give a compact statement of the dynamic programming equations, consider a Borel-
measurable mapping f : P(Q̃)×O×Σ→P(Q̃) defined as

f (p̃,o,σ)(h′,q′) = Φ(h′,q′|Ψ(p̃,σ);o,σ), (h′,q′) ∈ Q̃,
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where Φ and Ψ are the abstract filtering operators in (5.12) and (5.13), respectively. Then we have
that p̃k is recursively updated according to

p̃k+1(ξ (p0); ik+1) = f (p̃k(ξ (p0); ik),ok+1,σk),

initialized with p̃0(ξ (p0); i0) = Φ0(·|ξ (p0); i0), where Φ0 is as defined in (5.11). By the result of
Lemma 5.1, on a set of executions which occur with probability one, p̃0(ξ (p); i0) has the repre-
sentation in equation (5.35) and the operator f has the representation in equations (5.36), (5.37),
and (5.38).

Specializing (5.15), the transition kernel ν̂ characterizing the evolution of the information state
is given by

ν̂(E|p̃,σ) = ∑
q̃∈Q̃

∑
q̃′∈Q̃

∑
o∈G(p̃,σ ,E)

p̃o(o|q̃′)p̃q(q̃′|q̃,σ)p̃(q̃),

where G(p̃,σ ,E) = {o ∈ O : f (p̃,o,σ) ∈ E}, for p̃ ∈ Q̂, σ ∈ Σ, and E ∈B(Q̂). In practical terms,
the dynamic programming operator TSa f e defined in (5.20) can be rewritten for POMDPs as

TSa f e(J)(p̃) = max
σ∈Σ

∑
(h,q)∈Q̃

∑
q′∈Q

∑
o∈O

J( f (p̃,o,σ))po(o|q′)pq(q′|q,σ)p̃(h,q), p̃ ∈ Q̂. (5.39)

By Theorem 5.1, the maximal probability of safety over a finite time horizon [0,N] is computed by
the following dynamic programming recursion:

p∗(p0;W ) = ∑
q0∈Q

∑
o0∈O

T N
Sa f e(gN)(p̃0(ξ (p0);o0))po(o0|q0)p0(q0) (5.40)

with the terminal cost

gN(p̃N) = ∑
qN∈W

p̃N(1,qN). (5.41)

By the form of the dynamic programming equations (5.39)–(5.41), the partial information
safety problem is a terminal cost problem for the augmented POMDP model H̃POMDP with twice
the number of discrete states as the original POMDP model HPOMDP. Thus, in principle, one can
apply existing computational techniques for POMDP problems to find the optimal control policy
(Russell and Norvig, 2002, Chapter 17; Thrun et al., 2005, Chapter 15). However, as shown by
Papadimitriou and Tsitsiklis (1987) and Lusena et al. (2001), the problem of computing optimal
or even ε-optimal control policies for POMDPs is in general PSPACE-complete (note that NP is a
subset of PSPACE), due to the possible exponential increase in complexity of the optimal policy
with respect to the number of discrete states, observations, control actions, and time steps. As
such, exact optimal policies are typically computed only for models with no more than about 20
discrete states.

In the following, we will illustrate these procedures using a concrete example. Consider a
POMDP HPOMDP with state space Q = {q1,q2,q3,q4}, control input space Σ = {σL,σR}, and ob-
servation space O = {oL,oR}. The transition probability function pq for HPOMDP can be described
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in terms of a transition probability matrix Pq(σ) ∈ [0,1]4×4 such that pq(q j|qi,σ) = Pq(σ)(i, j) for
every qi,q j ∈ Q and σ ∈ Σ. For this example, Pq(σ) is given below, with the corresponding state
transition diagram as shown in Figure 5.3.

Pq(σL) =


1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 ,Pq(σR) =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

 .
The corresponding state transition diagram is given by

Figure 5.3: State transition diagram for POMDP example.

The observation probability function po for HPOMDP can be described in terms of an observa-
tion probability matrix Po(o)∈ [0,1]4×4 such that po(o|qi) = Po(o)(i, i) for every qi ∈Q and o∈O.
For this example, Po(o) is specified as follows.

Po(oL) = diag
(

α, α, 1−α, 1−α
)
,

Po(oR) = diag
(

1−α, 1−α, α, α
)
.

where α ∈ [0,1]. The corresponding state observation diagram is as shown in Figure 5.4.
We consider an initial state distribution p0 described in terms of a vector p̄0 ∈ [0,1]4 such that

p0(qi) = p̄0(i), ∀qi ∈ Q:

p̄0 =
[

1−β
2

β
2

β
2

1−β
2

]T
,

where β ∈ [0,1]. The safe set is selected to be W = {q2,q3}.
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Figure 5.4: State observation diagram for POMDP example.

With a representation of p̃k(ξ (p0); i0)(h, ·) by vectors p̃h
k ∈ [0,1]4, h = 0,1, the state filtering

equations given in (5.35)–(5.38) can be rewritten in a compact form:

p̃1
0 =

Po(o0)p̄0

1T Po(o0)p̄0
, p̃0

0 =
[

0 0 0 0
]T ;

p̃1
k+1 =

Po(ok+1)Pq(σk)
T MW p̃1

k

1T Po(ok+1)Pq(σk)T (p̃0
k + p̃1

k)
,

p̃0
k+1 =

Po(ok+1)Pq(σk)
T (p̃0

k +MQ\W p̃1
k)

1T Po(ok+1)Pq(σk)T (p̃0
k + p̃1

k)
,

where 1 = [1 1 1 1]T and MW , MQ\W ∈ [0,1]4×4 are diagonal matrices given by

MW = diag(0, 1, 1, 0), MQ\W = diag(1, 0, 0, 1).

Given a time horizon [0,N], N ≥ 1, the first step of the dynamic programming procedure de-
scribed in (5.39) can be carried out as follows.

J∗N−1→N(p̃) = TSa f e(gN)(p̃) = max
σ∈Σ

∑
o∈O

gN( f (p̃,o,σ))1T Po(o)Pq(σ)T (p̃0 + p̃1),

where p̃h denotes the vector p̃(h, ·) ∈ [0,1]4. By the definitions of gN and f , we then have

J∗N−1→N(p̃) = max
σ∈Σ

∑
o∈O

∑
q j∈W

(Po(o)Pq(σ)T MW p̃1)( j) = max
σ∈Σ

∑
q j∈W

(Pq(σ)T MW p̃1)( j),

where we use the fact that ∑o Po(o) = I. It then follows by the definitions of Pq(σ) and MW that

J∗N−1→N(p̃) = max
σ∈Σ

∑
qi∈W

∑
q j∈W

pq(q j|qi,σ)p̃(1,qi) =

{
p̃(1,q2), p̃(1,q2)≥ p̃(1,q3)

p̃(1,q3), otherwise,
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with the corresponding optimal control policy

π̂∗N−1(p̃) =

{
σR, p̃(1,q2)≥ p̃(1,q3)

σL, otherwise.

Using a similar line of reasoning, we can show that the optimal cost-to-go function at time
k = N−2 is given by

J∗N−2→N = TSa f e(J∗N−1→N) = J∗N−1→N .

Thus, J∗N−1→N is a fixed point of the operator TSa f e and

J∗N(p̃) = J∗0→N(p̃) = J∗N−1→N(p̃), ∀p̃ ∈ Q̂, N ≥ 1.

Furthermore, a stationary optimal control policy is given by π̂∗ = (π̂∗N−1, π̂
∗
N−1, ..., π̂

∗
N−1). The

corresponding maximal probability of safety is computed as

p∗(p0;W ) = ∑
o0∈O

J∗N(p̃0(ξ (p0);o0))1T Po(o0)p̄0 =

{
αβ , α ≥ 0.5
(1−α)β , otherwise.

To demonstrate the value of the augmented information state, we plot in Figure 5.5 the realiza-
tions of pk|k for the original model HPOMDP and p̃k for the augmented model H̃POMDP in a sample
simulation run under the optimal policy π̂∗ over time steps k = 0,1,2. In this simulation, the pa-
rameters of the model were chosen to be α = 0.6 and β = 0.5. At the initial step, the information
provided by the regular information state p0|0 and the augmented information state p̃0 are essen-
tially the same, namely p0|0 is the component of p̃0 corresponding to h0 = 1. However, at time step
k = 1, due to an erroneous measurement, the regular information state p0|0 would seem to suggest
that the most likely system state is q3, while the actual system state q2 has the least likelihood out
of all the states with non-zero probability. If one were to select an input according to this belief,
then perhaps one would choose σ(1) = σL, which would render the actual state trajectory unsafe.
On the other hand, the augmented information state splits the distribution p0|0 in two, and weights
the conditional probability in each component according to the likelihood that the trajectory has
been safe or unsafe. In particular, the safe component (h1 = 1) of p̃1 takes into account the fact
that given the last input was σ(0) = σL, the state trajectory could not have been safe if the current
system state were q3. Thus, the state q3 is given a zero weighting in the safe component, resulting
in a correct choice of input σ∗(1) = σR according to π̂∗. In fact, one can show that, for this partic-
ular example, as long as the system state is initialized in a safe state (either q2 or q3), and a correct
observation is obtained at time k = 0, then the optimal policy π̂∗ would ensure a correct choice of
input for all k ≥ 0, regardless of the realization of the output trajectory.

5.8 Specialization to Probability Density Models of Stochastic
Hybrid Systems

In this section, we consider the more general case of a POdtSHS equipped with a hybrid state
space S :=

⋃
q∈Q{q}×Rn(q) and a hybrid observation space Z = O×

⋃
q∈QRno(q), where O :=
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(a) Information states at k = 0 (b) Information states at k = 1

(c) Information states at k = 2

Figure 5.5: Sample simulation run of POMDP example over three time steps.
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{o1,o2, ...,om′} is the discrete observation space and no : Q→ N is the dimension of the contin-
uous observation space. To avoid technical complications, it is assumed that the evolution of the
continuous state and the generation of continuous observations in this system are modeled by non-
degenerate probability distributions, so that the stochastic kernels νx, νr, ζ0, and ζ can be described
in terms of probability density functions on Euclidean spaces. More precisely, the assumption on
H is as follows.

Assumption 5.1.

1. There exists a Borel-measurable probability density function px : Rn(·)× S×Ca → R such
that for each s = (q,x) ∈ S and a ∈Ca,

νx(X ′|s,a) =
∫

X ′
px(x′|(q,x),a)dx′, ∀X ′ ∈B(Rn(q));

2. There exists a Borel-measurable probability density function pr : Rn(·)× S×Ca×Q→ R
such that for each s = (q,x) ∈ S, a ∈Ca, and q′ ∈ Q,

νr(X ′|s,a,q′) =
∫

X ′
pr(x′|(q,x),a,q′)dx′, ∀X ′ ∈B(Rn(q′));

3. There exists a Borel-measurable probability density function pz,0 : Z×S→ R such that for
each s = (q,x) ∈ S,

ζ0({o}×Y ′|s) =
∫

Y ′
pz,0((o,y′)|(q,x))dy′, ∀o ∈ O, Y ′ ∈B(Rno(q));

4. There exists a Borel-measurable probability density function pz : Z×S×Ca→ R such that
for each s = (q,x) ∈ S and a ∈Ca,

ζ ({o}×Y ′|s,a) =
∫

Y ′
pz((o,y′)|(q,x),a)dy′, ∀o ∈ O, Y ′ ∈B(Rno(q)).

Using the density functions px and pr, we can define, for each s = (q,x) ∈ S and a ∈ Ca, a
Borel-measurable hybrid probability density function ps(s′|s,a) as follows

ps((q′,x′)|(q,x),a) =

{
νq(q|(q,x),a)px(x′|(q,x),a), if q′ = q
νq(q′|(q,x),a)pr(x′|(q,x),a,q′), if q′ 6= q.

Let S′ =
⋃

q∈Q{q}×Xq be any Borel subset of the hybrid state space S such that Xq ∈B(Rn(q)),
∀q ∈ Q. Then the hybrid state transition kernel ν can be characterized in terms of the probability
density function ps as

ν(S′|s,a) = ∑
q′∈Q

∫
Xq′

ps((q′,x′)|(q,x),a)dx′, ∀s = (q,x) ∈ S, a ∈Ca.
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Thus, under Assumption 5.1, a POdtSHS with hybrid observation space can be equivalently
characterized in terms of the tuple H = (S,Ca,Z, ps, pz,0, pz). We will refer to this as a probability
density model of POdtSHS. It can be observed that the probability density functions ps, pz,0, and
pz are analogous to the probability mass functions pq and po in the POMDP case. For a given
safe set W ∈B(S), the corresponding augmented system model H̃ = (S̃,Ca,Z, p̃s, p̃z,0, p̃z) can be
defined similarly as in (5.34).

To be consistent with Assumption 5.1, we will consider initial state distributions p0 ∈P(S)
which can be characterized in terms of a Borel-measurable probability density function p̄0 : S→R
such that

p0({q}×X ′) =
∫

X ′
p̄0(q,x)dx, ∀q ∈ Q, X ′ ∈B(Rn(q)).

With a slight abuse of notation, we will denote by ξ (p̄0) the probability density function associated
with the initial state distribution ξ (p0) on the augmented state space. Then, given a policy π̃ ′ ∈
Π̃′, the probability density functions p̄0, p̃s, p̃z,0, and p̃z induce a unique probability measure
P̃k(π̃ ′,ξ (p̄0)) on the sample space Ω̃k := S̃k+1×Zk+1×Ck

a.
It turns out that, for the class of POdtSHS considered here, the filtering equations given in

section 5.3.2 specializes to the Bayesian update rule for the conditional probability density of
the augmented state s̃k given ik ∈ Ik and p0 ∈P(S̃). This is analogous to the update rule for the
conditional probability mass function in the POMDP case. For compactness of notation, we denote
the integration of a Borel-measurable function F̃ : S̃→ R over S̃ as∫

S̃
F̃(s̃)ds̃ := ∑

h∈{0,1}
∑

q∈Q

∫
Rn(q)

F̃(h,q,x)dx.

Lemma 5.2. Let H = (S,Ca,Z, ps, pz,0, pz) be a probability density model of POdtSHS and W ∈
B(S) be a Borel safe set. Let H̃ = (S̃,Ca,Z, p̃s, p̃z,0, p̃z)) be the corresponding augmented POdt-
SHS. Let p̄0 : S → R be a Borel-measurable initial state density. Then for every π̃ ′ ∈ Π̃′ and
k = 0,1, ..., the stochastic kernel p̃k(ξ (p̄0); ik) has the probability density p̃d

k (·|ξ (p̄0); ik) : S̃→ R
given by

p̃d
0(s̃0|ξ (p̄0); i0) =

p̃z,0(z0|s̃0)ξ (p̄0)(s̃0)∫
S̃ p̃z,0(z0|s̃′0)ξ (p̄0)(s̃′0)ds̃′0

,

p̃d
k (s̃k|ξ (p̄0); ik) =

p̃z(zk|s̃k,ak−1)p̃d
k|k−1(s̃k|ξ (p̄0); ik−1,ak−1)∫

S̃ p̃z(zk|s̃′k,ak−1)p̃k|k−1(s̃′k|ξ (p̄0); ik−1,ak−1)ds̃′k
,

where

p̃d
k|k−1(s̃k|ξ (p̄0); ik−1,ak−1) =

∫
S̃

p̃s(s̃k|s̃k−1,ak−1)p̃d
k−1(s̃k−1|ξ (p̄0); ik−1)ds̃k−1,

for P̃k(π̃ ′,ξ (p̄0)) almost every ik.

The proof of this result is again somewhat technical in nature and can be found in appendix
D. Using the definitions of p̃s, p̃z,0, and p̃z, the update equations for the probability density in the
statement of Lemma 5.2 can be rewritten as follows.
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1. Initialization Step:

p̃d
0(1,s0|ξ (p̄0); i0) =

pz,0(z0|s0)p̄0(s0)∫
S pz,0(z0|s0)p̄(s0)ds0

, (5.42)

p̃d
0(0,s0|ξ (p̄0); i0) = 0;

2. Prediction Step:

p̃d
k+1|k(ξ (p̄0); ik,ak)(1,sk+1) =

∫
W

ps(sk+1|sk,ak)p̃d
0(1,sk|ξ (p̄0); ik)dsk, (5.43)

p̃d
k+1|k(ξ (p̄0); ik,ak)(0,sk+1) =

∫
S

ps(sk+1|sk,ak)p̃d
0(0,sk|ξ (p̄0); ik)dsk (5.44)

+
∫

S\W
ps(sk+1|sk,ak)p̃d

0(1,sk|ξ (p̄k); ik)dsk

3. Update Step:

p̃d
k+1(hk+1,sk+1|ξ (p̄0); ik+1) =

pz(zk+1|sk+1,ak)p̃d
k+1|k(ξ (p̄0); ik,ak)(hk+1,sk+1)

∑hk+1∈{0,1}
∫

S pz(zk+1|sk+1,ak)p̃d
k+1|k(ξ (p̄0); ik,ak)(hk+1,sk+1)dsk+1

. (5.45)

Similarly as in the case of a POMDP, the estimation procedure given in (5.42)–(5.45) for a prob-
ability density model of POdtSHS involves maintaining a conditional probability density function
over a hybrid state space with twice the number of discrete states as in the original hybrid system
model. However, while the probability distribution for a POMDP is a vector of probabilities, and
hence finite dimensional, the hybrid probability density is a real-valued function over the contin-
uous state space within each mode, and hence infinite dimensional. It can be also verified that
marginalizing over the history state hk recovers the conditional probability density function of the
hybrid state sk, as produced by Bayesian update equations (see for example Kumar and Varaiya,
1986, chapter 5). Specifically, let pd

k|k(·|p0; ik) be the conditional probability density of sk over S,
given the initial probability density p̄0 and the information vector ik. Then we have

pd
k|k(sk|p̄0; ik) = p̃d

k (ξ (p̄0); ik)(1,sk)+ p̃d
k (ξ (p̄0); ik)(0,sk), ∀sk ∈ S.

In essence, the augmented probability density p̃k splits the regular probability density into two
components, and weights each according to the likelihood that the past trajectory has been safe.
To illustrate the form of the augmented probability density, we consider a simple example of 1-D
linear Gaussian system, as described below:

xk+1 = xk +uk +wk,

yk = xk + vk,
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where x0,wk,vk are random variables with standard normal distribution N (0,1). The proba-
bility density model of this system can be then derived as px(xk+1|xk,uk) = N (xk + uk,1) and
pz(yk|xk,uk−1) = N (xk,1) (the reset kernel coincide with the continuous state transitional kernel
given that there is only one mode). It can be seen that the regular information state pk|k in this case
is simply the output of the Kalman filter for H . Selecting the safe set as the interval W = [−1,1],
we simulate the system forward in time and plot the realizations of the Kalman filter output and the
augmented information state p̃k for H̃ , under somewhat arbitrary choices of control input. In this
case, the components of the augmented density function p̃k are computed by numerical integration
using equations (5.42)–(5.45). The results of a sample simulation run over time steps k = 0,1,2
are shown in Figure 5.6.

(a) Information states at k = 0 (b) Information states at k = 1

(c) Information states at k = 2

Figure 5.6: Sample simulation run of linear Gaussian example over three time steps.
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As in the case of discrete state systems, the information provided by the Kalman filter and the
augmented probability density are the same at the first time step, namely the safe component (h0 =
1) of the augmented probability density coincide with the regular conditional density. However, at
the second or third time step, the augmented probability density splits the Kalman filter into two
components according to the likelihood that the state history x0 or (x0,x1) was in the safe set. Note
that this is a hybrid probability density on the augmented state space {0,1}×R, even though the
original system is continuous. While the output of a Kalman filter is Gaussian, it is no longer clear
whether the components of the augmented density are in fact Gaussian, although they appear to
exhibit Gaussian characteristics in Figure 5.6.

To derive a compact form of the dynamic programming equations, we again consider a Borel-
measurable mapping f : P(S̃)×Z×Ca→P(S̃) given by

f (p̃,z,a) = Φ(ds̃|Ψ(p̃,a);z,a),

where Φ and Ψ are the abstract filtering operators in (5.12) and (5.13), respectively. Then we have
that

p̃k+1(ξ (p̄0); ik+1) = f (p̃k(ξ (p̄0); ik),zk+1,ak),

initialized with p̃0(ξ (p̄0); i0) = Φ0(·|ξ (p̄0);z0), where Φ0 is as defined in (5.11). By the result
of Lemma 5.2, on a set of executions which occur with probability one, p̃0(ξ (p̄0); i0) has the
probability density given in equation (5.42) and p̃k(ξ (p̄0); ik), k ≥ 1 has the probability density
given in equation (5.45).

The dynamic programming operator TSa f e can be rewritten for a probability density model H
of POdtSHS as follows.

TSa f e(J)(p̃) = sup
a∈Ca

∑
h

∫
S

∫
S

(∫
Z

J( f (p̃,z,a))pz(z|s′,a)dz
)

ps(s′|s,a)ds′ p̃d(h,s)ds, (5.46)

where p̃d is the probability density associated with the information state p̃ ∈ Ŝ. By Theorem 5.1,
the maximal probability of safety for H over time horizon [0,N] is then computed by the following
dynamic programming recursion:

p∗(p̄0;W ) =
∫

S

∫
Z
T N

Sa f e(gN)(p̃0(ξ (p̄0);z0))pz,0(z0|s0)p̄0(s0)dz0ds0 (5.47)

with the terminal cost

gN(p̃N) =
∫

W
p̃d

N(1,sN)dsN . (5.48)

As can be seen from equations (5.46)–(5.48), the computation of optimal safety probability for H
in general needs to be carried out on the space of augmented probability density functions. Thus,
finding computationally tractable algorithms for the synthesis of optimal control policies hinges on
the existence of finite dimensional representations of the hybrid probability density p̃d

k in particular
instances of the POdtSHS model.
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Chapter 6

Conclusions

In many application scenarios found in practice, the overall system behavior features elements
from both the discrete and continuous domain. While a hybrid system model provides a natural
abstraction for such behaviors, the problem of controller synthesis for hybrid systems suffers from
both theoretical and computational difficulties. The results presented in this dissertation, whether
theoretical, computational, or experimental, can be viewed as part of an overall effort towards
systematic design and algorithmic synthesis of feedback control policies to satisfy reachability
specifications for hybrid system abstractions of control systems. The methods that we have devel-
oped vary in terms of the model of interaction between the discrete and continuous dynamics, as
well as of the model of uncertainty in the system behavior, and are to a large degree motivated by
the needs of varying application scenarios. In the following, we will provide a summary of our
main results, along with a discussion of directions for future work.

6.1 Summary
The controller design and synthesis methods developed in the first part of this dissertation are
concerned with deterministic switched nonlinear systems in which the discrete transitions are con-
trolled. These methods can be viewed as translations of the abstract controller synthesis algorithms
for general hybrid systems as proposed in Lygeros et al. (1999b) and Tomlin et al. (2000), which
have been largely applied manually on a case by case basis, to systematic design procedures and
compuational synthesis techniques for subclasses of hybrid system models found in practical ap-
plications. In particular, we considered switched system models with two different interpretations
of the discrete transitions as either the temporal phases of a dynamic process, or the control choices
available to a high level controller. In the case of the former, a hybrid system formalism is proposed
for sequential transition systems, whose discrete transitions follow a pre-defined sequence and can
be controlled either by automation, or by an external human operator. For this class of systems,
a systematic procedure is presented for designing continuous control laws and discrete switching
conditions to satisfy sequential reachability specifications, namely specifications consisting of a
sequence of safety or reach-avoid objective. This procedure uses the method of Hamilton-Jacobi
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reachability analysis, as developed by Mitchell et al. (2005) for nonlinear continuous time systems,
to compute reachable sets which provide information on the satisfaction of a safety or reach-avoid
objective under a given continuous feedback policy, as well as the domain on which it is satisfied.
This information is then used to design a feedback policy, which consists of both a continuous and
a discrete component, to achieve individual reachability objectives within the respective modes,
while assuring compatibility across mode transitions. The design procedure is applied to the ex-
ample of automated aerial refueling (AAR). Simulation studies show that the resulting control
design satisfies the desired safety and target attainability objectives, and that there is a possibility
for using reachable sets as a guidance tool for decision making by a human operator.

For switched systems in which the discrete modes represent high level control choices, we de-
scribed methods for performing algorithmic controller synthesis to satisfy safety and reach-avoid
objectives, within a sampled-data setting, and subject to bounded continuous disturbances. In par-
ticular, under a discretization of the continuous input space, computational reachability analysis is
performed over successive sampling intervals (once again using the Hamilton-Jacobi method), to
find the set of initial conditions for which a given reachability specification is feasible, assuming
feedback selections of the discrete mode and continuous input, and worst-case disturbance behav-
ior. From the results of this reachability analysis, a set-valued feedback law is derived over the time
horizon of interest, represented as a finite collection of reachable sets, along with an algorithm for
performing online control selections with respect to the computed control law. This synthesis tech-
nique is applied in an experimental setting to the problem of controlling a quadrotor to reach and
then remain in a hover region over a moving ground target. The experimental results show that
the reachability-based control laws exhibit strong robustness properties and are for the most part
capable of ensuring the desired specifications, excepting occasional, brief violations due to under-
estimation in the disturbance bound. It is also discussed how the methodology can be extended to
perform controller synthesis for sequential reachability problems, by appropriately incorporating
the design procedure of chapter 2 to ensure compatibility across the different phases of the reacha-
bility specification. This combined design approach is applied to the experimental example for the
two phases of reach and hover, as well as to the AAR example in a simulation study, for the phases
of the refueling sequence.

The theoretical and computational tools developed in the second part of this dissertation are
concerned with discrete time stochastic hybrid systems (DTSHS), as motivated by applications in
which system models are derived from statistical analysis or assumptions. Based upon prior work
by Amin et al. (2006), Abate et al. (2006), and Summers et al. (2011) on probabilistic reachability
problems for DTSHS, we considered two extensions to account for different models of uncertainty.
In the first extension, two-player stochastic game formulations of the probability reachability prob-
lem are analyzed, in terms of a model which we referred to as a discrete-time stochastic hybrid
game (DTSHG). These formulations feature a control whose objective is to achieve either a proba-
bilistic safety or reach-avoid objective, and an adversarial disturbance whose objective is assumed
to be opposed to that of the control. Our analysis of these formulations generalizes the stochastic
optimal control argument used by Amin et al. (2006), Abate et al. (2006), and Summers et al.
(2011) for the single player case, while also adapting results from the literature on additive cost
stochastic games (see for example Kumar and Shiau, 1981; Nowak, 1985; Gonzalez-Trejo et al.,
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2002) to the multiplicative payoff structure of the safety and reach-avoid problems. For a feed-
back Stackelberg formulation, with an asymmetric information pattern favoring the disturbance,
a dynamic programming algorithm is given for the computation of the max-min probability of
satisfying either the safety or the reach-avoid specifications, as the Stackelberg value. Sufficient
conditions of optimality are also derived for the synthesis of a Stackelberg solution for the control,
as a deterministic Markov policy. The Stackelberg value is later shown to be the lower value of
a symmetric feedback Nash game, whose equilibrium solutions are in general found within the
class of randomized policies. Some results on infinite horizon reachability computation are also
provided, as related to the approximation of infinite horizon value and the existence of infinite hori-
zon optimal policies. The utility of this methodology is illustrated using a two aircraft collision
avoidance example, in which the adversarial uncertainty is due to the unknown intent of an un-
controlled aircraft, and the stochastic uncertainty is due to wind effects. Probabilistic reachability
computations are performed to determine a conflict resolution strategy which provides probabilis-
tic assurances of safety.

The second extension involves the consideration of partial information in probabilistic reach-
ability problems, as pertaining to application scenarios in which control decisions are to be made
with respect to uncertainties in the state estimate or measurement. These uncertainties can arise
from limited sensor placements, lack of sensor precision, or measurement noise. As compared
with the large body of previous work on perfect information reachability problems, there have
been relatively few studies on the issue of imperfect state information in the literature on hybrid
system reachability. In this dissertation, we investigated partial information safety and reach-avoid
problems within the context of a partially observable discrete time stochastic hybrid system (POdt-
SHS), which formally accounts for the imperfections in state measurement through a probabilistic
observation model. Our analysis shows that a sufficient statistic for the partial information safety
or reach-avoid problems maintains inferred knowledge about both the current state of the hybrid
system and the safety of past state evolution. The added information, as encoded in a binary ran-
dom variable augmenting the hybrid state space, differentiates the partial information reachability
problems from conventional additive cost partial information problems, such as the LQG problem.
Through a sequence of transformations which reduces the original partial information reachability
problems to perfect information terminal cost or additive cost problems on the space of informa-
tion states, we apply the results of Bertsekas and Shreve (1978) to derive a dynamic programming
algorithm. It is then shown in the case of a POMDP model, with discrete state, control, and obser-
vation spaces, the information state is a probability distribution over twice the number of discrete
states as the original model, and hence finite dimensional. However, in the case of a stochastic
hybrid system model with probability density descriptions over continuous state spaces, the space
of information states is in general infinite dimensional. Thus, computational solutions would have
to be found in particular instances with finite dimensional representations or approximations for
the hybrid conditional density.
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6.2 Future Work
While we have taken some important first steps, the transition of reachability-based controller
design methods from research and development to implementation in practical applications will
require resolving a number of theoretical and computational issues. While some of these issues
were alluded to in the individual chapters, we will highlight here some of the main challenges, and
offer some ideas for future research.

6.2.1 Approximation of Deterministic Reachable Sets
By using the Hamilton-Jacobi approach for reachable set computation within each mode of a
switched system, the controller design methods described in Part I of this dissertation can ac-
commodate system models with up to four or five continuous state dimensions. While this may
be sufficient for abstractions of control systems with a small number continuous states, as in the
aircraft conflict resolution and AAR example, or applications in which there is decoupling in the
continuous dynamics, as in the quadrotor target tracking example, there may be practical scenarios
in which one may not be able to capture the richness of continuous behavior using a low dimen-
sional model. For such cases it is important to investigate alternative methods for the reachable set
computation.

Due to the fact that reachable sets for general nonlinear systems can exhibit increasingly com-
plex shapes as one allows for increasing degrees of freedom, it comes as no surprise that numerical
techniques for approximating such sets in general features a trade-off between accuracy and com-
putational efficiency. While the Hamilton-Jacobi method can provide highly accurate approxima-
tions of reachable sets for low dimensional systems, it is also limited by its exponential growth in
computational complexity. Some proposed methods for approximation of reachable sets for non-
linear systems include Mitchell and Tomlin (2003), Stipanović et al. (2004), Hwang et al. (2005),
and Mitchell (2011), with varying forms of reachable set representation and levels of conservatism
in the approximation. It would be interesting to investigate the possible use of these methods for
the reachability computations described in chapter 2 and 3, with appropriate modifications of the
controller design techniques to account for approximation errors.

For hybrid system models whose continuous dynamics are linear, a number of alternative reach-
ability analysis techniques are available for the computation of approximate reachable sets in con-
tinuous time, based upon representations such as polyhedra (Asarin et al., 2000a; Chutinan and
Krogh, 2003), ellipsoids (Kurzhanski and Varaiya, 2000), and zonotopes (Girard, 2005). More
recently, a method has been proposed by Kaynama and Oishi (2011) for approximate reachabil-
ity analysis of linear time invariant systems using Schur-based decomposition. While not all of
these methods explicitly consider dynamic game formulations of reachability problems, it should
be noted that the design procedures of chapter 2 and the controller synthesis algorithms of chap-
ter 3 only require reachable set computations under differential inclusions (with respect to the
disturbance input). However, as noted by Mitchell (2007b), there are subtle differences between
these methods in their abilities to handle reachable set computation under existentially quantified
inputs or universally quantified inputs. Given that our design method employs both capture sets,
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which are computed under universally quantified disturbance inputs, and unsafe sets, which are
computed under existentially quantified disturbance inputs, one should be careful in the selection
of an approximation method which allows for both types of reachability computations.

6.2.2 Approximation of Probabilistic Reachability Computations
In an analogous fashion as the deterministic case, the applicability of the controller design methods
described in chapter 4 for DTSHG models depends on one’s ability to approximate the max-min
safety and reach-avoid probabilities. Using a piecewise constant approximation, as adapted from
the approach described in Abate et al. (2007) for the single player case, we have been able to per-
form probabilistic reachability computations in low dimensional examples. However, this method
suffers from a similar type of exponential growth in complexity as the Hamilton-Jacobi method,
due to the choice of a uniform grid over the hybrid state space. Thus, a more computationally ef-
ficient approximation algorithm, with provable bounds on the approximation error will be needed
for problems with large continuous state dimensions. A possible approach is to investigate exten-
sions of methods that have been developed in the realm of approximate dynamic programming.
For example, various approaches have been proposed for using adaptive gridding of the state space
(Munos and Moore, 2002), or parameterized families of basis functions (Bertsekas and Tsitsik-
lis, 1996; de Farias and van Roy, 2003; Kveton et al., 2006) to approximate the optimal value
function in deterministic or stochastic optimal control problems. The difficulty in applying these
approaches, however, lies in finding suitable adaptive grids and basis functions which result in
accurate and tractable computation algorithms for probabilistic reachability problems. One effort
in this direction can be found in the work of Esmaeil Zadeh Soudjani and Abate (2011) which
describes an adaptive mesh refinement method for the approximation of the optimal safety prob-
ability of a DTSHS in the single player case. Another approach that has been proposed recently
by McEneaney (2011) interprets the dynamic programming operator for stochastic optimal control
problems as an abstract semigroup operator on a max-plus algebra. Through this viewpoint, the
value function for certain classes of problems, such as those with affine dynamics and additive
quadratic cost functions, can be represented through a pointwise minimum of quadratic functions.
It would be of interest to investigate whether this approach can be extended to the multiplicative
indicator cost functions encountered in probabilistic reachability problems.

6.2.3 Computational Approaches to Partial Information Probabilistic
Reachability Problems

While the results of chapter 5 provide us with important insights into the structure of partial in-
formation safety and reach-avoid problems, they also serve to highlight the challenge of optimal
control when we do not have accurate measurements or estimates of the system state. In partic-
ular, even in the case that the system only features continuous dynamics (e.g. a linear Gaussian
system), the information needed to perform optimal control is in general a conditional probabil-
ity distribution over a hybrid state space, with two discrete states. Thus, finding computational
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solutions to such problems requires further understanding of hybrid estimation and the represen-
tation of hybrid probability distributions. One possibility is to explore parameterized families of
functions which provide accurate approximations to the conditional probability distribution. In the
case that the parameterization is finite dimensional, then it may be possible to develop approximate
dynamic programming algorithms to compute suboptimal control policies on the space of parame-
terizations, with bounds on the suboptimality. An alternative approach is to formulate methods for
computing the optimal safety or reach-avoid probabilities with respect to particular choices of es-
timators. Performance comparisons can be then made across the different estimators to decide on
a final design. It is important to note that for the special case in which the discrete mode is known,
and the continuous state estimation error is bounded, one can potentially include the estimation
error as part of the disturbance and hence address the problem within the framework of a DTSHG.
To illustrate this, consider a POdtSHS described as follows.

q(k+1)∼ νq(·|(q(k),x(k)),(σ(k),u(k))), q(k) ∈ Q, (6.1)
x(k+1) = f (q(k),x(k),u(k),w(k)), x(k) ∈ Rn,

o(k) = q(k), y(k) = x(k)+ v(k),

where o(k) is the discrete observation, y(k) is the continuous observation, w(k) is the process noise,
and v(k) is the continuous state measurement or estimation error, with the probability distribution
Pv(dv) over Rn. Now suppose that the probability distribution of the estimation error has compact
support, namely Pv(B) = 1 for some compact Borel set B ∈B(Rn). We can rewrite the model in
(6.1) as

o(k+1)∼ νq(·|(o(k),y(k)− v(k)),(σ(k),u(k))), o(k) ∈ Q, (6.2)
y(k+1) = f (o(k),y(k)− v(k),u(k),w(k))+ v(k+1), y(k) ∈ Rn,

If one were to treat the observation error in a worst-case fashion, then (6.2) describes a DTSHG
model with the disturbance b(k) = [v(k) v(k + 1)]T ∈ B2, and the methodology in chapter 4 of
this dissertation applies. However, it can be seen that if the set B is large with respect to the
reachability specification of interest, the results can be conservative. Furthermore, in the case that
the observation error does not feature bounded support, for example in the case of a Gaussian
distribution, then a different analysis technique is required in order to quantify the safety or reach-
avoid probability.

6.2.4 Consideration of Multi-Objective Problems
For many safety-critical control applications, the performance specifications consist of both con-
straint satisfaction and cost minimization objectives. The former objectives are often of primary
importance in ensuring safe and correct system behavior, and have been studied in this dissertation
in the form of safety and reach-avoid problems, with proper interpretation for reachability speci-
fications as state constraints and input spaces as control constraints. The latter objectives, on the
other hand, ensure that the controller does not consume more resources than it needs to satisfy the
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constraints. For example, in an aircraft conflict resolution scenario, one would like to ideally design
controllers which generate safe and fuel-efficient trajectories. In Lygeros et al. (1999b), an abstract
design methodology is proposed for a general class of hybrid systems, whereby the different con-
trol objectives are considered in a sequence of design steps according to their order of importance,
with the controller design from the more important objectives serving as constraints for the less
important objectives. Within the context of the controller synthesis algorithms for sampled-data
switched systems (chapter 3) and DTSHG models (chapter 4), this idea can be potentially imple-
mented through an added layer of dynamic programming procedure, by using the results of the
reachability calculations as input constraints. In the switched system case, these constraints can
be derived from the set-valued control laws given in sections 3.4 and 3.5, while in the DTSHG
case, these constraints can be derived from the sufficient conditions of optimality given in sections
4.4 and 4.6. Some possible issues to such an approach, however, include whether the value func-
tions of the resulting constrained optimal control problem satisfy necessary properties for dynamic
programming, and also whether computationally tractable algorithms can be formulated.

6.2.5 Accounting for Autonomous Switches in Deterministic Continuous
Time Hybrid Systems

Hybrid systems with controlled switching, as studied in Part I of this dissertation, are suitable
for application scenarios in which the dynamics of a physical process is well-approximated by a
nonlinear vector field (e.g. the kinematics of an aircraft), and the switching behavior is introduced
through the discrete set of control choices (e.g. flight maneuvers) at the higher levels of abstraction.
However, there is a number of instances in which autonomous discrete transitions, as triggered by
changes in the continuous state, provides a natural abstraction of system behavior. This includes
systems featuring event-triggered finite state machine models in high level control, pre-designed
switching laws between modes of operation, or sharp changes in continuous dynamics caused by
idealized physical modeling (e.g. elastic impacts). Examples of such systems range from auto-
motive engines (Balluchi et al., 2000), power electronics (Aimer et al., 2007), to bipedal walkers
(Ames et al., 2009).

However, the consideration of autonomous switching for continuous time systems is also ac-
companied by a significant increase in the difficulty of analyzing system properties. Specifically,
state dependent switching introduces the possibility for discontinuous vector fields, which can re-
sult in infinitely fast switching or chattering at the switching boundary. This is referred to as a Zeno
behavior in the hybrid systems literature (Zhang et al., 2001; Ames et al., 2005). The analysis of
such scenarios typically requires generalized solution concepts for continuous trajectories (Filip-
pov, 1988; Ames et al., 2006). While it may be reasonable in certain cases to work with models
which preclude this behavior, the discontinuities in the vector field would nonetheless violate the
typical assumptions of Lipschitz continuity in the analysis of viscosity solutions to HJB or HJI
equations (Evans and Souganidis, 1984; Bardi and Capuzzo-Dolcetta, 1997).

There are several possibilities for overcoming this difficulty. One direction is to consider mod-
ifications of the Hamilton-Jacobi method for reachable set computation, whereby autonomous
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switching is handled through proper definition of boundary conditions (Mitchell, 2002). Another
possibility is to explore the use of explicit reachable set computation techniques which propagate
sets directly under differential flows, and have been applied to examples with autonomous switch-
ing (see for example Asarin et al., 2000a; Chutinan and Krogh, 2003; Botchkarev and Tripakis,
2000; Girard and Le Guernic, 2008). As discussed previously, the controller design methods in
Part I can accommodate alternative reachability analysis techniques as long as computations can
be performed under both existentially and universally quantified inputs. Finally, it appears promis-
ing to apply existing methods based upon viability theory (Cardaliaguet et al., 1999; Aubin et al.,
2002; Saint-Pierre, 2002; Gao et al., 2007). These methods have the advantage of being able to han-
dle nonlinear dynamics, differential games, and discontinuous vector fields. Some disadvantages,
as compared with the Hamilton-Jacobi approach, include the loss of value function information
outside reachable sets, and the difficulty of assuring subgrid accuracy due to relaxation of the con-
tinuity assumption. The former is not a significant impediment to our controller design procedures,
as we only require representations of sets, rather than value functions. The latter issue will require
further investigation, as checking set-memberships for a given continuous state away from grid
nodes may require numerical interpolation.

6.2.6 Reducing Conservativeness of Max-min Solutions for DTSHG
In our discussion of stochastic game formulations of the probabilistic reachability problems, we
primarily assumed an asymmetric information pattern which favors the adversary. While this al-
lows us to provide robust performance guarantees with respect to the worst-case adversary behav-
ior, the resulting control policy can be also somewhat conservative, as it assumes that choices of
control are revealed to the adversary at each discrete time instant. However, as we discussed in
section 4.5.2, if one were to consider a symmetric zero-sum game formulation, the existence of
an equilibrium solution would often require randomized policies, as opposed to the deterministic
policies of an asymmetric formulation. This is in stark contrast with continuous time differential
games, in which the saddle-point condition can be satified by a large class of nonlinear systems,
whose dynamics are affine in the inputs (i.e. feedback linearizable systems). One intuitive expla-
nation is that if one were to consider the discrete time system as a sampled continuous time system,
then the choices of inputs on each sampling interval can be interpreted in terms of an open-loop
rather than a feedback game. Thus, for discrete time models that are derived from continuous time
ones, it would be interesting to investigate conditions under which the gap between the upper and
lower values, in this case corresponding to the Stackelberg values of two asymmetric games, would
become smaller as the time discretization is reduced.

Another possible direction is to explicitly consider the possible use of randomized policies.
While they are not often found within the classical control applications, such type of control poli-
cies are of the norm in many modern communication protocols. In particular, the medium access
control scheme of the IEEE 802.11 standard for wireless networks requires a station to select a
random backoff time if it finds the channel to be busy when trying to transmit data, resulting in
the well-known Markov chain model for the 802.11 family of protocols (Bianchi, 2000). When
viewed from a multi-player game perspective, the reason for this randomization becomes some-
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what intuitive. Namely, as each station with a packet to transmit is trying to gain access to a com-
mon medium (i.e. the channel) without knowledge of whether other stations might be transmitting
during the same time slot, selection of randomized transmission times is one way to minimize
the possibility of collision. However, it should also be noted that this very choice of random-
ization is one of the reasons that the performance of a wireless communication network is often
much less predictable as compared with a traditional wired network. Thus, in deciding between
deterministic and randomized policies for a given application, one should first consider the prac-
tical implications of a randomized approach. If such an approach is found to be reasonable, then
the next step becomes addressing the computational issues. For cases in which the input space is
continuous, the randomized policy space becomes infinite dimensional, namely it is the set of prob-
ability distributions over the input space. The problem then involves selecting a finite dimensional
parameterization of a subclass of the randomized policies, and finding computationally tractable
algorithms for carrying out the dynamic programming calculations with respect to the choice of
parameterization.

6.2.7 Expanding the Class of Permissible Specifications
Our work in this dissertation has considered in some detail two types of reachability specifica-
tions. The first class is specifications with safety or invariance objectives, and the second class
is those with target attainability objectives subject to a safety constraint. While they encompass
a large range of atomic performance specifications encountered in practice, the complete design
specifications of real-world control system often feature a combination of state-based objectives
with temporal-based objectives. The sequential reachability specification considered in chapter 2
provides a simple example of this type of specifications. Namely, not only do we want to satisfy
individual safety or reach-avoid specifications, we would also like them to be satisfied in a certain
temporal order. Thus, the problem becomes one of composition between controllers satisfying
individual safety or reach-avoid objectives. One of the immediate extensions would be to investi-
gate the stochastic counterpart to this design approach for DTSHG models, in particular, whether
nested dynamic programming algorithms can be carried out to compute the max-min probability
of satisfying a sequence of safety and reach-avoid objectives.

Over the longer term, it would be interesting to explore whether sequential reachability specifi-
cations can be expanded to accommodate a richer class of temporal objectives, such as handled by
discrete state model checking languages, including linear temporal logic (LTL), computation tree
logic (CTL), and probabilistic computation tree logic (PCTL). The primitives of these languages,
such as “always φ1,” “eventually φ2,” and “φ1 until φ2,” where φ1 and φ2 are logic statements, have
interpretations in terms of the reachability specifications discussed in this dissertation. Speaking
somewhat informally, suppose that φ1 is “remain in a safe set W” and φ2 is “reach a target set
R,” then the statements given previously correspond to safety, terminal reachability, and reach-
avoid, respectively. The power of these specification languages, however, lies in the combination
of these primitives, along with logic operators to produce complex specifications such as “reach
R1 if a control command σ1 is received after visiting R2 or R3, while always avoiding A1 and A2.”
For the interested reader, a comprehensive overview of LTL and CTL can be found in the survey
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by Emerson (1990), while a detailed exposition on PCTL can be found in Hansson and Jonsson
(1994).

Efforts to extend synthesis algorithms for temporal logic specifications to systems with contin-
uous dynamics include the work by Belta et al. (2005); Tabuada and Pappas (2006); Kloetzer and
Belta (2008); Fainekos et al. (2009); Kress-Gazit et al. (2009). These methods typically proceed
by discretizing the state space into a finite number of partitions, and designing continuous con-
trollers to satisfy objectives of staying within a partition or reach another partition in finite time.
From the point of view of high level control, the partitions become the states of a discrete abstrac-
tion, with the continuous controllers implementing the state transitions in the discrete abstraction.
The solution to the continuous synthesis problem can be then obtained from the result of a dis-
crete synthesis algorithm. However, due to the difficulties of constructing continuous controllers
implementing the required transition behaviors, applications of these methods have been mostly
restricted to systems with affine continuous dynamics.

Combining the insights from these previous works with our experiences in addressing the se-
quential reachability specification, it would appear that the problem of synthesizing controllers to
satisfy state-based objectives in conjunction with temporal-based objectives is inherently a hybrid
control problem. Namely a discrete structure is induced by the temporal objectives over the set of
atomic state-based reachability objectives. To be somewhat more concrete, in the case of the se-
quential reachability problem, the discrete structure is given by a sequence of transition states and
stationary states, while the atomic reachability objectives are given by the reach-avoid objectives
within the transition states and the invariance objectives within the stationary states. This then
suggests a two staged approach to the synthesis problem, whereby the discrete structure is inferred
from a given specification during the first stage, and the atomic controllers are constructed during
the second stage, with proper considerations for composition between the atomic controllers. With
improvements in the computational efficiency of reachability analysis, it is the hope of the author
that such an approach would provide an avenue for addressing a range of interesting controller
design problems arising in practical applications.
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Appendix A

Proof of Lemma 4.3

First we recall the notion of a simple function (see for example Folland, 1999).

Definition A.1. Let (X ,B(X)) be a borel space. A simple function on X is a finite linear combi-
nation, with complex coefficients, of characteristic functions of sets in B(X).

More concretely, a simple function is of the form f =∑
K
k=1 zk1Ek , where zk ∈C and Ek ∈B(X).

Below is a result for approximation of measurable functions by simple functions, stated as Theorem
2.10(a) in Folland (1999).

Lemma A.1. Let (X ,B(X)) be a borel space. If f : X → [0,∞) is bounded and measurable, then
there exists a sequence {φn} of simple functions with real coefficients such that 0≤ φ1≤ φ2≤ ·· · ≤
f , and φn→ f uniformly on X.

We will also need the following well-known result from real analysis (stated as Theorem 7.11
in Rudin (1976)).

Lemma A.2. Let { fn} ,n = 1,2, ... and f be real-valued functions on a set E in a metric space X
such that fn→ f uniformly E. Let x be a limit point of E, and suppose that

lim
t→x

fn(t) = An

for n = 1,2, .... Then {An} converges, and

lim
t→x

f (t) = lim
n→∞

An

This result essentially allows an exchange of limits

lim
t→x

lim
n→∞

fn(t) = lim
n→∞

lim
t→x

fn(t)

when the convergence of fn to f is uniform.
The proof now proceeds as follows.
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Proof. With the observation that∫
f (y)t(dy|x) =

∫
f+(y)t(dy|x)−

∫
f−(y)t(dy|x)

where f+ and f− are the positive and negative parts of f , we can consider, without loss of gener-
ality, the case of f ≥ 0.

Let x0 be a limit point of X and {xm}∞

m=1 be a sequence in X such that xm→ x0 as m→ ∞. For
each m≥ 0, there exists a Borel-measurable function fm on Y and a Borel subset Bm of Y such that
f = fm on Bm and t(Bm|xm) = 1 (Lemma 7.27 of Bertsekas and Shreve (1978)). Let B =

⋃
m≥0 Bm,

then t(B|xm) = 1,∀m ≥ 0. Define a function f̃ : B→ [0,∞) by f̃ (x) = fm(x), if x ∈ Bm. This
definition is possible since for any m1 and m2 such that x ∈ Bm1 ∩Bm2 , we have

fm1(x) = f (x) = fm2(x)

Furthermore, f̃ is also Borel-measurable on B under the observation that for any Borel subset A of
[0,∞)

f̃−1(A) =
⋃

m≥0

f−1
m (A)∩Bm.

By Lemma A.1, there exists a sequence of simple functions {φn} of the form φn = ∑
Kn
k=1 zn

k1En
k
,

where zn
k ≥ 0 and En

k ∈B(Y ), such that 0≤ φ1 ≤ φ2 ≤ ·· · ≤ f̃ , and φn→ f̃ uniformly on Y .
Define a function g : X → [0,∞) as

g(x) =
∫

B
f̃ (y)t(dy|x)

and functions gn : X → [0,∞), n ∈ N as

gn(x) =
∫

B
φn(y)t(dy|x)

Then by the Monotone Convergence Theorem (see for example Folland, 1999, Theorem 2.14),
g(x) = limn→∞ gn(x), ∀x ∈ X . Furthermore, we claim that this convergence is uniform. Indeed,
given the uniform convergence of φn to f̃ , we have for every ε > 0 some N ∈ N such that

f̃ (y)−φn(y)< ε,∀y ∈ Y,n≥ N

Thus, for any x ∈ X and n≥ N, we have

g(x)−gn(x) =
∫

B
( f̃ (y)−φn(y))t(dy|x)< ε

which completes the proof of the claim.
Now for each m≥ 0, n ∈ N, the definition of Lebesgue integrals implies

gn(xm) =
∫

B
φn(y)t(dy|xm) =

Kn

∑
k=1

zn
kt(En

k |xm)
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By the continuity assumption on t, t(En
k |xm)→ t(En

k |x0) as m→ ∞. Thus,

lim
m→∞

gn(xm) =
Kn

∑
k=1

zn
kt(En

k |x0) =
∫

B
φn(y)t(dy|x0)

Applying Lemma A.2, we conclude that

lim
m→∞

∫
B

f̃ (y)t(dy|xm) = lim
m→∞

g(xm) = lim
n→∞

∫
B

φn(y)t(dy|x0) =
∫

B
f̃ (y)t(dy|x0)

where the last equality follows by a repeated application of the Monotone Convergence Theorem.
The statement of Lemma 4.3 now follows directly:∫

Y
f (y)t(dy|xm) =

∫
B

f (y)t(dy|xm) =
∫

B
f̃ (y)t(dy|xm)

→
∫

B
f̃ (y)t(dy|x0) =

∫
B

f (y)t(dy|x0) =
∫

Y
f (y)t(dy|x0)

as m→ ∞, which completes the proof.
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Appendix B

Proof of Proposition 4.7

Proof. From the proof of Lemma 4.5, we have that rN
s0
(R,W ′) = T N(1R)(s0) is monotonically

increasing for every s0 ∈ S. Thus, by the definition of V∞ in (4.47), it can be inferred that for each
N ≥ 1,

rN
s0
(R,W ′)≤V∞(s0), ∀s0 ∈ S.

By the monotonicity of the operator T , it then follows that

rN+1
s0

(R,W ′)≤T (V∞)(s0), ∀s0 ∈ S, N ∈ N.

Taking the limit on the left hand side of this expression, we arrive at the inequality

V∞(s0)≤T (V∞)(s0), ∀s0 ∈ S.

To show that the reverse inequality also holds, we define for notational convenience the func-
tions Vk : S→ [0,1] as Vk := T k(1R), k ≥ 0. Clearly, for every s0 ∈ S,

V∞(s0)≥T N+1(1R)(s0) = T (VN)(s0) (B.1)
≥ inf

b∈Cb
1R(s0)+1W ′\R(s0)H(s0,a,b,VN),∀a ∈Ca.

By Proposition 4.1, there exists a Borel-measurable function g∗N : S×Ca→Cb which achieves the
infimum in equation (B.1) for any fixed (s0,a) ∈ S×Ca. This then implies the inequality

V∞(s0)≥ 1R(s0)+1W ′\R(s0)H(s0,a,g∗N(s0,a),VN) (B.2)

for every s0 ∈ S, a ∈Ca, and N ≥ 1.
Given that the player II action space Cb is compact, the sequence {g∗N(s0,a)}∞

N=1 has a sub-

sequence
{

g∗Nk
(s0,a)

}∞

k=1
which converges to some point b∗(s0,a)

∈ Cb (see for example Rudin,

1976, Theorem 3.6). For any fixed (s0,a) ∈ S×Ca, we relabel the sequence
{

g∗Nk
(s0,a)

}∞

k=1
as{

bk
(s0,a)

}∞

k=1
.
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Now define a function Fk : S×Ca×Cb→ [0,1] by

Fk(s0,a,b) = 1R(s0)+1W ′\R(s0)H(s0,a,b,VNk).

Some useful properties of the operator H are given below:

• For any Borel-measurable functions J,J′ ∈F such that J ≤ J′, H(s,a,b,J) ≤ H(s,a,b,J′),
∀s0 ∈ S, a ∈Ca, b ∈Cb.

• For any sequence of Borel-measurable functions Jk ∈F such that J0 ≤ Jk ≤ Jk+1 for all k
and limk→∞ Jk = J, limk→∞ H(s,a,b,Jk) = H(s,a,b,J), ∀s0 ∈ S, a ∈Ca, b ∈Cb.

The first property can be directly inferred from the definition of H, while the second property
follows by an application of the Monotone Convergence Theorem (see for example Folland, 1999,
Theorem 2.14).

Using these properties and the fact that VNk is a sequence of monotonically increasing functions
converging to V∞, we have for every s0 ∈ S, a ∈Ca, b ∈Cb that

Fk(s0,a,b)≤ Fk+1(s0,a,b), k ≥ 1 (B.3)

lim
k→∞

Fk(s0,a,b) = 1R(s0)+1W ′\R(s0)H(s0,a,b,V∞). (B.4)

Consider a function F : S×Ca×Cb→ [0,1] defined as

F(s0,a,b) := 1R(s0)+1W ′\R(s0)H(s0,a,b,V∞).

Using (B.3) and (B.4), we will proceed to show that the following inequality holds:

sup
k∈N

Fk(s0,a,bk
(s0,a)

)≥ F(s0,a,b∗(s0,a)), ∀s0 ∈ S,a ∈Ca. (B.5)

This combined with (B.2) would then imply

V∞(s0)≥ sup
k∈N

Fk(s0,a,bk
(s0,a)

)≥ F(s0,a,b∗(s0,a)),

for every s0 ∈ S and a ∈Ca, and hence

V∞(s0)≥ sup
a∈Ca

inf
b∈Cb

F(s0,a,b) = T (V∞)(s0), ∀s0 ∈ S.

In order to show (B.5), we first observe that by (B.4),

lim
k→∞

Fk(s0,a,b∗(s0,a)) = F(s0,a,b∗(s0,a)), ∀s0 ∈ S,a ∈Ca.

Now fix s0 ∈ S and a ∈Ca. For any ε > 0, it then follows that there exists some N ∈ N such that

FN(s0,a,b∗(s0,a))≥ F(s0,a,b∗(s0,a))− ε.
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By the assumptions placed on the DTSHG, FN(s0,a, ·) is a continuous function on Cb, which
implies

lim
k→∞

FN(s0,a,bk
(s0,a)

) = FN(s0,a,b∗(s0,a)).

This in turn implies that there exists K ∈ N such that for every k ≥ K,

FN(s0,a,bk
(s0,a)

)≥ FN(s0,a,b∗(s0,a))− ε.

Now we consider two cases. First, suppose N ≥ K. Then

FN(s0,a,bN
(s0,a)

)≥ FN(s0,a,b∗(s0,a))− ε

≥ F(s0,a,b∗(s0,a))−2ε

Second, suppose N < K. Then by (B.3),

FK(s0,a,bK
(s0,a))≥ FN(s0,a,bK

(s0,a))

≥ FN(s0,a,b∗(s0,a))− ε

≥ F(s0,a,b∗(s0,a))−2ε

Since ε is arbitrary, (B.5) then follows. This completes the proof.
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Appendix C

Proof of Lemma 5.1

Proof. First, we note that given p̃ ∈P(Q̃) and a ∈ Ca, the prediction equation (5.13) in section
5.3.2 becomes

Ψ(p̃,σ)(q̃′) = ∑
q̃∈Q̃

p̃q(q̃′|q̃,σ)p̃(q̃), q̃′ ∈ Q̃.

Furthermore, the stochastic kernels Φ0 and Φ satisfying equations (5.11) and (5.12) in section 5.3.2
can be defined as

Φ0(q̃|p̃;o) = Φ(q̃|p̃;o,σ) =
p̃o(o|q̃)p̃(q̃)

∑q̃′∈Q̃ p̃o(o|q̃′)p̃(q̃′)
, q̃ ∈ Q̃,

if ∑q̃′∈Q̃ p̃o(o|q̃′)p̃(q̃′) 6= 0 and

Φ0(q̃|p̃;o) = Φ(q̃|p̃;o,σ) = p̄(q̃), q̃ ∈ Q̃,

where p̄ ∈P(Q̃) is arbitrary, if ∑q̃′∈Q̃ p̃o(o|q̃′)p̃(q̃′) = 0. Now fix p0 ∈P(Q) and π̃ ′ ∈ Π̃′. Define
p̃k(ξ (p0); ik) recursively through the filtering equation (5.14) as

p̃0(ξ (p0); i0)(q̃0) = Φ0(q̃0|ξ (p0);o0), q̃0 ∈ Q̃,

p̃k+1(ξ (p0); ik+1)(q̃k+1) = Φ(q̃k+1|Ψ(p̃k(ξ (p0); ik),σk);ok+1,σk), q̃k+1 ∈ Q̃,

Then by the definitions of Ψ, Φ0 and Φ, it is sufficient to show that the following events

E0 =

(q̃0,o0) ∈ Ω̃0 : ∑
q̃′0∈Q̃

p̃o(o0|q̃′0)ξ (p0)(q̃′0) = 0

 ,

Ek =
{
(q̃0,o0,σ0, ..., q̃k−1,ok−1,σk−1, q̃k,ok) ∈ Ω̃k :

∑
q̃′k∈Q̃

∑
q̃′k−1∈Q̃

p̃o(ok|q̃′k)p̃q(q̃′k|q̃′k−1,σk−1)p̃k−1(ξ (p0); ik−1)(q̃′k−1) = 0

 , k ≥ 1
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have P̃k(π̃ ′,ξ (p0)) measure zero for every k.
Indeed, for k = 0 and any set Q̃×{o0} ⊂ E0, we have

P̃0(π̃ ′,ξ (p0))(Q̃×{o0}) = ∑
q̃0∈Q̃

p̃o(o0|q̃0)ξ (p0)(q̃0) = 0,

from which it follows that P̃0(π̃ ′,ξ (p0))(E0) = 0.
For k≥ 1, we note that by Lemma 10.4 of Bertsekas and Shreve (1978), there exists a set Ĩk−1⊂

Ik−1 with P̃k−1(π̃ ′,ξ (p0)) measure one on which p̃k−1(ξ (p0); ik−1) is the conditional probability
distribution of q̃k−1 given ξ (p0) and ik−1. Thus, for any set Q̃k+1×{ik} ⊂ Ek such that ik−1 /∈ Ĩk−1,
P̃k(π̃ ′,ξ (p0))(Q̃k+1×{ik}) = 0. On the other hand, for any set Q̃k+1×{ik} ⊂ Ek such that ik−1 ∈
Ĩk−1,

P̃k(π̃ ′,ξ (p0))(Q̃k+1×{ik}) = ∑
(q̃0,...,q̃k)∈Q̃k+1

p̃o(ok|q̃k)p̃q(q̃k|q̃k−1,σk−1)

× π̃ ′k−1(σk−1|ξ (p0); ik−1)P̃k−1(π̃ ′,ξ (p0))(q̃0, ..., q̃k−1, ik−1)

= ∑
(q̃0,...,q̃k−1)∈Q̃k

∑
q̃′k−1∈Q̃

∑
q̃k∈Q̃

p̃o(ok|q̃k)p̃q(q̃k|q̃′k−1,σk−1)

× π̃ ′k−1(σk−1|ξ (p0); ik−1)p̃k−1(ξ (p0); ik−1)(q̃′k−1)

× P̃k−1(π̃ ′,ξ (p0))(q̃0, ..., q̃k−1, ik−1) = 0.

Hence, P̃k(π̃ ′,ξ (p0))(Ek) = 0. The statement of the lemma then follows.
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Appendix D

Proof of Lemma 5.2

Proof. Fix any policy π̃ ′ ∈ Π̃′. For the case of k = 0, consider a stochastic kernel Φ0(·|ξ (p̄0);z0)
defined by

Φ0(B0|ξ (p̄0);z0) =

∫
B0

p̃z,0(z0|s̃0)ξ (p̄0)(s̃0)ds̃0∫
S̃ p̃z,0(z0|s̃′0)ξ (p̄0)(s̃′0)ds̃′0

,

for B0 ∈B(S̃), if
∫

S̃ p̃z,0(z0|s̃′0)ξ (p̄0)(s̃′0)ds̃′0 6= 0 and

Φ0(B0|ξ (p̄0);z0) = p̄(B0),

for B0 ∈B(S̃), if
∫

S̃ p̃z,0(z0|s̃′0)ξ (p̄0)(s̃′0)ds̃′0 = 0, where p̄ ∈P(X̃) is arbitrary. By Proposition
7.29 of Bertsekas and Shreve (1978), the function λ0 : Z→ R defined as

λ0(z0) =
∫

S̃
p̃z,0(z0|s̃′0)ξ (p̄0)(s̃′0)ds̃′0

is Borel-measurable. Hence, the set

Ī0 :=
{

z0 ∈ Z :
∫

S̃
p̃z,0(z0|s̃′0)ξ (p̄0)(s̃′0)ds̃′0 = 0

}
is also Borel-measurable. It then follows that Φ0(ds̃0|ξ (p̄0);z0) as defined above is a Borel-
measurable stochastic kernel. Furthermore, it can be checked in a straightforward manner that
Φ0 satisfies equation (5.11) in section 5.3.2. By the filtering procedure in equation (5.14), we have

p̃0(ξ (p̄0);z0) = Φ0(ds̃′0|ξ (p̄0);z0).

Let E0 ⊂ Ω̃0 be the set of events such that
∫

S̃ p̃z,0(z0|s̃′0)ξ (p̄0)(s̃′0)ds̃′0 = 0. Clearly, for (s0,z0) /∈ E0,
p̃0(ξ (p̄0);z0) has the density p̃d

0(·|ξ (p̄0);z0) as given in the statement of the lemma. It remains to
be shown that E0 has P̃0(π̃ ′,ξ (p̄0)) measure zero. Indeed, by the observation that E0 = S̃× Ī0 and
Fubini’s theorem,

P̃0(π̃ ′,ξ (p0))(E0) =
∫

S̃

∫
Ī0

p̃z,0(z0|s̃′0)ξ (p̄0)(s̃′0)dz0ds̃′0

=
∫

Ī0

∫
S̃

p̃z,0(z0|s̃′0)ξ (p̄0)(s̃′0)ds̃′0dz0 = 0.
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For the inductive step, we assume that for some k ≥ 1, p̃k−1(ξ (p̄0); ik−1) has the probability
density p̃d

k−1(·|(ξ (p̄0); ik−1) for P̃k−1(π̃ ′,ξ (p̄0)) almost every ik−1. We note that given p̃ ∈P(S̃)
and a ∈Ca, the prediction equation (5.13) in section 5.3.2 becomes

Ψ(p̃,a)(S̃′) =
∫

S̃

(∫
S̃′

p̃s(s̃′|s̃,a)ds̃′
)

p̃(ds̃), S̃′ ∈B(S̃).

By an application of Fubini’s theorem, Ψ(p̃,a) has the density function

s̃′→
∫

S̃
p̃s(s̃′|s̃,a)p̃(ds̃).

Similarly as before, a stochastic kernel Φ satisfying equation (5.12) in section 5.3.2 can be defined
as

Φ(B|p̃;z,a) =
∫

B p̃Z(z|s̃,a)p̃(ds̃)∫
S̃ p̃z(z|s̃′,a)p̃(ds̃′)

,

for B ∈B(S̃), if
∫

S̃ p̃z(z|s̃′,a)p̃(ds̃′) 6= 0 and

Φ(B|p̃;z,a) = p̄(B),

for B ∈B(S̃), if
∫

S̃ p̃z(z|s̃′,a)p̃(ds̃′) = 0, where p̄ ∈P(S̃) is arbitrary. Define a set

Ck =

{
ik ∈ Ik :

∫
S̃

∫
S̃

p̃z(zk|s̃′k,ak−1)p̃s(s̃′k|s̃k−1,ak−1)p̃k−1(ξ (p̄0); ik−1)(ds̃k−1)ds̃′k = 0
}
.

For ik /∈Ck, we have by equation (5.14) in section 5.3.2 that for every B ∈B(S̃),

p̃k(ξ (p̄0); ik)(B) = Φ(B|Ψ(p̃k−1(ξ (p̄0); ik−1),ak−1);zk,ak−1)

=

∫
B p̃Z(zk|s̃k,ak−1)p̃k|k−1(s̃k|ξ (p̄0); ik−1,ak−1)ds̃k∫
S̃ p̃z(zk|s̃′k,ak−1)p̃k|k−1(s̃′k|ξ (p̄0); ik−1,ak−1)ds̃′k

,

where

p̃k|k−1(s̃k|ξ (p̄0); ik−1,ak−1) =
∫

S̃
p̃s(s̃k|s̃k−1,ak−1)p̃k−1(ξ (p̄0); ik−1)(ds̃k−1).

By the induction hypothesis, there exists a set Īk−1⊂ Ik−1 with P̃k−1(π̃ ′,ξ (p̄0)) measure zero, away
from which p̃k−1(ξ (p̄0); ik−1) has the probability density p̃d

k−1(·|(ξ (p̄0); ik−1). It then follows that
for ik ∈

(
ĪC
k−1×Ca×Z

)
∩CC

k , p̃k(ξ (p̄0); ik) has the probability density p̃d
k (·|(ξ (p̄0); ik). With the

observation that

P̃k(π̃ ′,ξ (p̄0))(Sk× Īk−1×Ca×S×Z) = P̃k−1(π̃ ′,ξ (p̄0))(Sk× Īk−1) = 0,
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it is sufficient to show that the set Ck has P̃k(π̃ ′,ξ (p̄0)) measure zero. For notational conveniences,
we denote by Ck(ik−1), ik−1 ∈ Ik−1 the ik−1-section of Ck, namely

Ck(ik−1) := {(ak−1,zk) ∈Ca×Z : (ik−1,ak−1,zk) ∈Ck} .

It can be checked that Ck(ik−1) is a Borel subset of Ca× Z for every ik−1 ∈ Ik−1. By Lemma
10.4 of Bertsekas and Shreve (1978), there exists a subset Ĩk−1 of the information space Ik−1 with
P̃k−1(π̃ ′,ξ (p̄0)) measure one on which p̃k−1(ξ (p̄0); ik−1) is the conditional probability distribution
of s̃k−1 given ξ (p̄0) and ik−1. Using this fact and Fubini’s theorem, we can deduce that

P̃k(π̃ ′,ξ (p̄0))(S̃k+1×Ck) =
∫

S̃k+1

∫
Ck

p̃z(zk|s̃k)dzk p̃s(s̃k|s̃k−1,ak−1)ds̃k

× π̃ ′k−1(dak−1|ξ (p̄0); ik−1)dP̃k−1(π̃ ′,ξ (p̄0))

=
∫

S̃k

∫
Ik−1

∫
S̃

∫
Ck(ik−1)

p̃z(zk|s̃k)dzk p̃s(s̃k|s̃k−1,ak−1)

× π̃ ′k−1(dak−1|ξ (p̄0); ik−1)ds̃kdP̃k−1(π̃ ′,ξ (p̄0))

=
∫

S̃k

∫
Ĩk−1

∫
S̃

∫
S̃

∫
Ck(ik−1)

p̃z(zk|s̃′k)dzk p̃s(s̃′k|s̃k−1,ak−1)

× π̃ ′k−1(dak−1|ξ (p̄0); ik−1)ds̃′k p̃k−1(ξ (p̄0); ik−1)(ds̃k−1)

×dP̃k−1(π̃ ′,ξ (p̄0))

=
∫

S̃k

∫
Ĩk−1

∫
Ck(ik−1)

∫
S̃

∫
S̃

p̃z(zk|s̃′k)p̃s(s̃′k|s̃k−1,ak−1)

× p̃k−1(ξ (p̄0); ik−1)(ds̃k−1)ds̃′kdzkπ̃ ′k−1(dak−1|ξ (p̄0); ik−1)

×dP̃k−1(π̃ ′,ξ (p̄0)) = 0

The statement of the lemma then follows.
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