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Abstract—We consider the problem of estimating the locations
of a set of points in a k-dimensional euclidean space given a subset
of the pairwise distance measurements between the points. We
focus on the case when some fraction of these measurements can
be arbitrarily corrupted by large additive noise. This is motivated
by applications like sensor networks, molecular conformation and
manifold learning where the measurement process can induce
large bias errors in some fraction of the distance measurements
due to physical effects like multipath, spin-diffusion etc. Given the
NP-completeness of the problem, we propose a convex relaxation
that involves decomposing the partially observed matrix of
distance measurements into low-rank and sparse components,
wherein the low-rank component corresponds to the Euclidean
Distance Matrix and the sparse component is a matrix of biases.
Using recent results from the literature, we show that this convex
relaxation yields the exact solution for the class of fixed radius
random geometric graphs. We evaluate the performance of the
algorithm on an experimental data set obtained from a network
of 44 nodes in an indoor environment and show that the algorithm
is robust to non-line-of-sight bias errors.

Keywords: Non-Line-of-Sight localization, robust matrix
decomposition.

I. INTRODUCTION

The problem of obtaining the locations of a set of points
given pairwise distances between the points is a topic of
significant research interest. The problem has applications in
a broad spectrum of areas such as sensor networks, molecular
biology, data analysis, manifold learning etc. In sensor
networks, the locations of different sensor nodes need to be
estimated, given the distance measurements between nodes
that are within some communication radius of each other [1]
(Fig. 1(a)). The structure of a protein molecule is determined
by estimating the distances between the component atoms of
the molecule using techniques such as NMR spectroscopy [2]
(Fig. 1(b)). Many applications that involve processing massive
data sets in high dimensions require efficient representations
of the data in a low dimensional space. Most of these data
sets tend to span a low dimensional hypersurface in the
higher dimensional space. Pairwise proximity measurements
between the data points could be used to obtain an efficient
representation of the data in lower dimensions preserving the
relative conformation of the points [3] (Fig. 1(c)).

Given the range of applications, significant research work
is devoted in the literature dealing with theory and algorithms
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(a) Sensor Localization. (b) Molecular conformation.

26 CHAPTER 1. OVERVIEW

Figure 5: Swiss roll from Weinberger & Saul [374]. The problem of manifold
learning, illustrated for N = 800 data points sampled from a “Swiss roll” 1 .
A discretized manifold is revealed by connecting each data point and its k=6
nearest neighbors 2 . An unsupervised learning algorithm unfolds the Swiss
roll while preserving the local geometry of nearby data points 3 . Finally, the
data points are projected onto the two dimensional subspace that maximizes
their variance, yielding a faithful embedding of the original manifold 4 .

(c) Manifold Learning.

Figure 1. (a) Sensors placed in a field for monitoring the region. (b)
Tryptophan, one of the 20 standard amino acids [8]. (c) (1) A high dimensional
“swiss roll” data set that spans a lower dimensional hypersurface [9]. (2) Data
points within a local radius are connected. (3) The lower dimensional repre-
sentation of the high dimensional surface preserving the relative geometry of
the points.

focusing on localization tailored to the problem of interest.
The problem is shown to be NP-complete [4] in the general
case wherein one is provided with an arbitrary subset of
the pairwise distance measurements and is asked to find
a valid configuration of points satisfying these distance
measurements. This is hard even when one has the side-
information that there is a unique set of points that satisfy
the given distances. Hence, most of the work in the literature
focus on developing efficient localization algorithms with
provable theoretical guarantees for specific node geometries.
This is when the distance measurements are either exact or
slightly perturbed, which is the case for line-of-sight (LOS)
localization [5], [6]. Existing theoretical results [7], [6] have
shown that LOS localization can be achieved in polynomial
time for random geometric graphs.

We consider a generalized version of the original LOS
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Figure 2. Centering the node locations.

localization problem, wherein we assume that some fraction
of the distance measurements can have large bias errors. This
problem is traditionally known as non-line-of-sight (NLOS)
localization. The motivation for this problem setup arises
from real world physical processes that cause bias errors
in the measurements. For example, multipath interference
causes huge bias errors in the distance measurements obtained
between nodes in a sensor network or from the GPS satellites
in vehicular networks [10]. The spin-diffusion phenomenon
in NMR spectroscopy causes apparent shrinkage of the
distance measurements in protein molecular conformation
applications. Outliers in the data can cause large bias errors
in applications like manifold learning. Thus there has been
significant recent interest in developing algorithms that tackle
NLOS errors [10], [11]. However, there are no theoretical
guarantees for this problem to the best of our knowledge.

There is some existing work in the literature that formulates
LOS localization as a low-rank matrix completion problem
[12]. The problem boils down to completing a low-rank matrix
of squared distances known as the Euclidean Distance Matrix
(EDM) and there are efficient convex relaxations for this [9].
Our contribution is the following:
(a) We formulate the NLOS localization problem as one

of matrix decomposition wherein we are interested in
decomposing the partially observed matrix of corrupted
pairwise squared distances into a low rank EDM and a
sparse matrix of bias errors.

(b) Using existing results from the matrix decomposition
literature, we show that the proposed relaxation will
achieve exact localization for a random geometric graph
with radius greater than a threshold that is a function of
the fraction of LOS measurements.

(c) We evaluate the algorithm performance on a real-world
dataset obtained from an indoor network of 44 nodes.

II. PROBLEM SETUP

Consider the case where we have N points/nodes located
inside a unit cube in the k-dimensional euclidean space. Let
X ∈ RN×k be the vector of all node locations, where each row
represents a point in the k-dimensional space. Let us assume
that these points are placed uniform randomly in this space and
we have distance measurements between any two points that
are within a radius r of each other. Note that given only these
distance measurements, one can at most hope to obtain the
conformation of points congruent to rotations and translations.
Let D ∈ RN×N be the matrix of all possible pairwise squared
distances, i.e. Dij = ||xi−xj ||2, where xTi is the ith row of X .

D =



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Figure 3. Relating the distance matrix and the node locations.

Let D̂ be the matrix of distance measurements that is partially
observed. We will assume the following measurement model,

D̂ij = Dij +Bij +Nij ∀ (i, j) | ||xi − xj || ≤ r,
where Bij is the bias in the measurement due to NLOS
errors and Nij is the thermal noise. B is taken to be the
matrix of biases. We will assume that only some fraction (α)
of the entries {Bij , (i, j) | ||xi − xj || ≤ r} are non-zero.
Further we will also assume that the thermal noise is a small
perturbation that is bounded by a quantity ∆.

We need to relate the matrix D and the node locations
X . Clearly, D is invariant to rigid transformations of X ,
i.e. rotations, translations and reflections of the relative node
placements. Hence we need to define a metric for comparing
node location estimates that is invariant to these rigid trans-
formations. The following equation relates the distance matrix
D and the node locations X , D = vecdiag(XXT )1T +
1vecdiag(XXT )T − 2XXT , where the vecdiag operation
creates a column vector of the input matrix by stacking the
diagonal entries and 1 is a vector of ones (see Fig. 3). We
will now derive one possible set of node locations given a
distance matrix D. Since D is invariant to translations, let
us normalize the node locations so that they are centered at
the origin. Define L = IN − 1

N 11T ∈ RN×N . Note that
X̃ = LX is a set of node locations that are centered at the
origin (see Fig 2). Since 1 lies in the left and right null spaces
of L, by multiplying the expression for D on both sides by
L, we get that − 1

2LDL = LX(LX)T . Thus given a fully
observed noiseless distance matrix D, one can obtain a set of
node locations centered at the origin by choosing X̃ = UΣ

1
2 ,

where − 1
2LDL has the singular value decomposition (SVD),

− 1
2LDL = UΣUT . In order to compare two possible node

location estimates, X and X̂ , we will use the following error
metric ||LXXTL−LX̂X̂TL||. Note that LX takes care of the
translations and XXT is invariant to rotations and reflections.

With this background we can now proceed with the problem
formulation. Note that the rank of D ∈ RN×N is at most k+2
irrespective of the number of nodes N . Thus the problem of
interest is to decompose the partially observed measurement
matrix D̃, as a low-rank matrix D and a sparse matrix B.
The reason to look for a sparse matrix B is in the hope
that only a small fraction of the measurements are arbitrarily
corrupted and hence we want a configuration of points with the
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Figure 4. L1 approximation to the L0 norm

minimum number of distance measurements being corrupted
by bias errors. Thus in the noiseless case (∆ = 0), we have
the following,

find (D,B)

s.t. D̃ij = Dij +Bij for all observed distances,
D is of rank at most k + 2, B is sparse.

This problem is non-convex and NP-hard in general for arbi-
trary low-rank matrices. This is because, the rank constraint on
D essentially says that the L0-norm of the singular values of
D should be less than or equal to k+2 which is a highly non-
convex constraint and NP-hard to solve. Similarly, the sparsity
constraint on B would require us to minimize the L0-norm of
the matrix B which is also NP-hard. Hence in order to have
a tractable optimization problem, we will look for the closest
convex approximations to these two constraints that is easier
to solve. The smallest convex ball approximation to the L0-
norm is the L1-norm. An example of this is shown in Fig.
4. The L0-norm corresponds to the points where the lines
intersect the two axes since one of the coordinates is zero
and hence these form the contours of this norm. In solving
the optimization problem, the constraints on the observed
distance measurements essentially manifest as a plane in this
dimension or in general a convex surface (see Algorithm 1).
Thus the solution is the point where the smallest L1-ball
touches this surface. Similarly, a convex approximation for
the rank constraint, is the L1-norm of the singular values of
D known as the nuclear norm. Thus we will use the nuclear
norm and the L1-norm as surrogates for rank and sparsity
respectively. These are standard convex relaxation techniques
explored in the low-rank matrix completion literature [13].
Algorithm 1 details the optimization problem that we will
solve. This problem of decomposing a matrix into a low-
rank and a sparse matrix has been of recent interest in the
literature [13] and we use existing results to provide theoretical
guarantees. We will focus on the case when ∆ = 0.

III. RESULTS

The following theorem summarizes our result.

Theorem 1. For a random placement of nodes in [−1, 1]k,
ignoring border effects, as long as the radius of connectivity

4

Algorithm 1 Matrix decomposition for NLOS localization

1: Input: distance measurements d̃ij , (i, j) ∈ E , di-
mension k, bound on the measurement noise ∆.

2:

(D̂, B̂) = arg min||D||∗ + λ||vec(B)||1
s.t. ||Dij + Bij − D̃ij || ≤ ∆ ∀(i, j) ∈ E

3: Compute the rank k approximation of −1
2LD̂LT and

its SVD as ÛkΣ̂kÛ
T
k .

4: Output: X̂ = ÛkΣ̂
1

2

k .

(r) between nodes that obtain pairwise distance measure-

ments satisfies r ≥ O

((
1

1−α

) 1
k

)
where α fraction of the

measurements have bias errors, the proposed optimization
routine recovers the node locations exactly modulo rigid
transformations with high probability.

Proof: Standard matrix decomposition into low-rank
and sparse components can be achieved only when the
low-rank matrix is also not sparse. For this, the singular
vectors of the matrix have to be well spread out for which
they need to satisfy certain conditions known as incoherence
[13] conditions. In our case, as the singular vectors are
strongly related to the node location vectors, this condition is
equivalent to requiring that the node locations be well spread
out which is true for a random node placement. Further, if
we have to reconstruct every row of the low-rank matrix,
then we need to observe at least some fraction of the entries
in that row that are uncorrupted. This places a lower bound
on the number of neighbors each node has and hence a
restriction on the radius of connectivity which would be a
function of the fraction of corrupted entries. Thus the proof
ingredients involve showing that the EDM is incoherent with
high probability for a random node placement and obtain a
lower bound on the radius of connectivity.

We will first show that the EDM is incoherent with high
probability for a random placement of nodes. The proof is
modeled closely on the lines of the results of Oh et. al.
[14] with slight changes needed to account for the modified
incoherence definitions of Chen et. al. [13]. The restrictions
on the number of observed corrupted entries in each row
would impose a lower bound on the radius of connectivity
between the nodes. Our proofs here are shown to hold true
in expectation and these can be converted to high probability
results using concentration inequalities.

Given the true locations X and the estimated locations X̂ ,
we will use the distortion metric ||LXXTL− LX̂X̂TL||, to
characterize how close the estimated relative node geometry
is with respect to the true node geometry. The norm can be
taken to be the Frobenius norm for simplicity. Since matrix
recovery results would characterize the error in recovering the



distance matrix D, the following lemma would be useful,

Lemma 1. ||LXXTL− LX̂X̂TL|| ≤ ||D − D̂||.
Proof:

||L(XXT − X̂X̂T )L|| ≤ ||L(XXT +
1

2
D̂)L||

+ ||L(−1

2
D̂ − X̂X̂T )L||,

=
1

2
||D − D̂||

+ || − 1

2
LD̂L− LX̂X̂TL||.

Note that LX̂X̂TL is the best rank k approximation to
− 1

2LD̂L. Thus if S is any other rank k matrix, we have that
|| − 1

2LD̂L− S|| ≥ || − 1
2LD̂L− LX̂X̂TL||. Choosing S to

be − 1
2LDL we get that,

||L(XXT − X̂X̂T )L|| ≤ ||D − D̂||.

Given the above lemma, we can now concentrate on bound-
ing the error ||D − D̂||. We will use the following result of
Chen et. al. [13]. Consider matrices R and S ∈ RN×N such
that R is low rank and S is sparse (the exact conditions for low
rank and sparsity will be given in the theorem). Given a subset
Ω of the entries of R̃ = R+S, we are interested in recovering
R and S. Assume that R and S are symmetric. R has a SVD
decomposition UΣUT . R is said to be (µ, k′) incoherent if
the following conditions hold for some k′ ∈ {1, ..., N} and
µ ∈ {1, ..., Nk′ }.
• rank(R) = k′.
• maxi||UT ei|| ≤

√
µk′

N .

• ||UUT ||∞ ≤
√

µk′

N2 ,

where ei are the standard basis vectors. Consider the following
optimization problem,

(R̂, Ŝ) = arg min||R||∗ + λ||S||1
s.t. (R+ S)ij = R̃ij ∀(i, j) ∈ Ω.

Let q be the sum of the maximum number of unobserved
entries and the entries with errors (i.e. Sij 6= 0) in any row of
R̃. Let σmax(S) ≤ ηq||S||∞, where σmax is the maximum

singular value. Let β = 2
√

µk′q
N . The following theorem

holds.

Theorem 2. [13] For λ ∈
[

1
1−2β

√
µk′

N2 ,
1−β
ηq −

√
µk′

N2

]
, there

exists a constant c independent of N , µ and k′ such that
with probability 1− cN−10, the optimization recovers (R,S)
exactly if √

µk′q

N

(
2 + η

√
q

N

)
≤ 1

2
.

In order to apply the above theorem to our problem setting,
we need to show that D satisfies the incoherence properties
and identify parameters and thereby conditions on the radius r

and the fraction α for which the theorem holds. The following
lemma states the incoherence of D.

Lemma 2. D is (16k2(k + 2), k + 2) incoherent with high
probability.

Proof: Appendix.
We need a bound on the maximum singular

value of the symmetric bias matrix B. We have
σmax(B) =

√
maxz

||Bz||2
||z||2 . Let ∆′ be the maximum

value of the bias. Using the above equation we get that,
σmax(B) ≤

√
N∆′2 ≤ ηq∆′. η can thus be chosen as

√
N
q

to satisfy one of the conditions of Theorem 2.

We need to find the number of corrupted and unobserved
entries (q) in each row. Ignoring border effects, the average
number of neighbors of a node in k-dimensional Euclidean

space is given by κrkN , where κ =

π
k
2

Γ( k
2

+1)

2k
. Assuming that α

fraction of the measurements are corrupted by NLOS noise, we
have the average number of unobserved entries in every row
and the entries with errors given by E(q) = N(1−(1−α)κrk).
One can show that q is concentrated around its mean and can
use existing results from literature [15] to bound this value
with high probability. However we omit the details for sake
of brevity. Therefore, for the condition in the theorem to be
satisfied, we need the following.

√
µk′q

N

(
2 + η

√
q

N

)
≤ 1

2
,

√
µ(k + 2)N(1− (1− α)κrk)

N

(
2 +

1√
q

)
≤ 1

2
.

For large values of N we get that, r ≥ O
((

1
1−α

) 1
k

)
.

IV. VALIDATION

In this section we provide simulation results and validation
on experimental data to evaluate the performance of the
proposed algorithm based on robust matrix decomposition.

A. Simulations

For simulations, we have 50 nodes uniform randomly placed
in a grid [−1, 1]2, where the units are taken in meters (m).
The NLOS bias in the measurements is taken to be a uniform
random variable on a support of [0, 6] and the gaussian noise
in the measurements is taken to have a standard deviation
of 0.02m. Fig. 5 shows the results for the case where nodes
that are within a radius of 1.5m of each other obtain distance
measurements. The figure is a plot of the normalized error
||LXXTL−LX̂X̂TL||2

||LXXTL||2 as a function of the fraction of NLOS
measurements. The plots are obtained after averaging over
multiple iterations. One can see that the errors are quite large
even when the fraction of NLOS measurements are small.
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Figure 6. Normalized localization error for the experimental data set as a
function of the fraction of corrupted measurements.

The theoretical lower bound on the radius itself turns out
to be quite large for this case. Even in the LOS case, we
carried out simulations for a large network of nodes using fast
matrix completion solvers and saw that the localization was
not accurate unless the connectivity radius was quite large.
Since we are looking at local measurements, our observations
are largely biased towards the smaller entries of the low-rank
distance matrix which seems to be adversely affecting the
estimation process. Fig. 5 also shows the same plot for a fully
connected network, i.e. all the pairwise distances are observed
and the errors are only due to NLOS propagation. One can see
that the algorithm can tolerate up to 30% of the measurements
being NLOS.

B. Experimental results

The algorithm was applied to a data set [16] obtained
from pairwise measurements in a 44 node network. The
experiments were conducted in an indoor office environment
by simulating 44 node locations using a transmitter and a
receiver and obtaining pairwise time-of-arrival measurements.
The environment had a lot of scatterers and nearly all the
distance estimates have strong NLOS biases in them. In order
to validate the performance as a function of the fraction of
NLOS measurements, some fraction of the measured distances
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Figure 7. Node location estimates for the experimental data set. (a) Without
using anchors. Error per node = 1.91m. (b) After rotation by fixing four of
the nodes as anchors. Error per node = 1.47m.

were replaced by the true distances and the performance is
plotted as function of this fraction in Fig. 6. The true and
estimated node locations for the experimental data set (all
the measurements are corrupted in this case) is shown in
Fig. 7(b). Four nodes were designated as anchors (known
node locations) and the other node locations were rotated to
match the locations of the anchors in order to have a fair
comparison with the true node locations. All the node locations
are centered to the origin. The average node error is 1.47m.
This can be contrasted with the error of 1.26m reported by
Patwari et. al. [16]. However they obtained the node locations
after subtracting out the NLOS bias in the measurements and
using one of the best LOS localization algorithm. We can see
that our algorithm is quite robust since our errors are not too
far off given that we work on the NLOS corrupted data. Thus
the robust matrix decomposition approach seems to handle the
NLOS errors quite well.

V. CONCLUSION

In this work, we proposed a low-rank + sparse matrix
decomposition framework for the problem of cooperative
NLOS localization. Given that the problem is NP-complete
in the general case, we showed that it can be solved in
polynomial time for the special case of fixed radius random



geometric graphs. We applied the algorithm to a real world
sensor measurement dataset and showed that it is robust to
NLOS errors. However, we saw from simulations that the
connectivity radius needs to be quite large in order to obtain a
good estimate of the node locations. This seems to be partially
due to the observed entries being largely skewed towards the
smaller entries of the distance matrix. One way of tackling
this could be to introduce heterogenous nodes in the network
that have a larger communication radius and hence we get to
observe some fraction of the larger distances. Exploring these
possibilities is part of future work.
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APPENDIX

A. Proof of Lemma 2 [14]

Let X̃ =




1 xT1 ||x1||2
1 xT2 ||x2||2
...
1 xTN ||xN ||2


 =




x̃T1
x̃T2
...
x̃TN


 ∈ RN×k+2

and Y =




0 0T 1
0 −2Ik 0
1 0T 0


 ∈ Rk+2×k+2. We have the

relation, D = X̃Y X̃T . For a random placement of nodes we
have that rank (X̃) is k + 2 with high probability and hence
the rank of D is also k + 2 with high probability.

We can write X̃ = V A, where V ∈ RN×k+2, V TV = I
and A ∈ Rk+2×k+2 (e.g. using QR factorization). Thus we
can write D = V AY ATV T . Let the SVD of D be given as
D = UΣUT , U ∈ RN×k+2 and UTU = I . Hence U can be
expressed as U = V Q for some Q ∈ Rk+2×k+2 such that
QTQ = I .

Let U =




uT1
uT2
...
uTN


 and V =




vT1
vT2
...
vTN


. We have uTi = vTi Q.

Thus
maxi||UT ei|| = maxi||ui|| = maxi||vi||.

We have V = X̃A−1. Thus vTi = x̃Ti A
−1. Therefore,

||vi|| ≤ (σmin(AT ))−1||x̃i||,
≤ (σmin(AT ))−1

√
k(k + 2).

We haveσmin(AT ) =
√
λmin(ATA). Note that X̃T X̃ =

ATA. Thus we get,

X̃T X̃ =

N∑

i=1




1 xTi ||xi||2
xi xix

T
i xi||xi||2

||xi||2 xTi ||xi||2 ||xi||4




→




N 0T Nk
3

0 N
3 Ik 0

Nk
3 0T N

(
k
5 + k(k−1)

9

)


 .

One can easily verify that λmin(ATA) = N
3 with high

probability for any value of k. Therefore,

||vi|| ≤
√

4k(k + 2)

n
.

Let us now look at ||UUT ||∞.

||UUT ||∞ = maxij |uTi uj |,
= maxi|uTi ui|,
= maxi||vi||2,

≤
√

16k2(k + 2)2

N2
.

Thus by choosing µ = 16k2(k + 2) we get the result.


