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Re-optimizing Data-Parallel Computing

Abstract

Performant execution of data-parallel jobs needs good execution
plans. Certain properties of the code, the data, and the interaction
between them are crucial to generate these plans. Yet, these properties
are difficult to estimate due to the highly distributed nature of these
frameworks, the freedom that allows users to specify arbitrary code
as operations on the data, and since jobs in modern clusters have
evolved beyond single map and reduce phases to logical graphs of
operations. Using fixed apriori estimates of these properties to choose
execution plans, as modern systems do, leads to poor performance in
several instances. We present RoPE, a first step towards re-optimizing
data-parallel jobs. RoPE collects certain code and data properties by
piggybacking on job execution. It adapts execution plans by feeding
these properties to a query optimizer. We show how this improves the
future invocations of the same (and similar) jobs and characterize the
scenarios of benefit. Experiments on Bing’s production clusters show
up to 2× improvement across response time for production jobs at the
75th percentile while using 1.5× fewer resources.

1 Introduction

In most production clusters, a majority of data parallel jobs are logical graphs
of map, reduce, join and other operations [5, 6, 21, 24].

An execution plan represents a blueprint for the distributed execution of
the job. It encodes, among other things, the sequence in which operations
are to be done, the columns to partition data on, the degree of parallelism
and the implementations to use for each operation.

While much prior work focuses on executing a given plan well, such as
dealing with stragglers at runtime [1], placing tasks [15, 25] and sharing the
network [8, 23], little has been done in choosing appropriate execution plans.
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Execution plan choice can alleviate some runtime concerns. For example,
outliers are less bothersome if even the most expensive operation is given
enough parallelism.

But plan choice can do much more– it can avoid needless work (for ex-
ample, by deferring expensive operations till after simpler or more selective
operations) and it can trade-off one resource type for another to speed up
jobs (for example, in certain cases, some extra network traffic can avoid a
read/write pass on the entire data set). However, plan choice is more chal-
lenging because the space of potential plans is large and also because the
appropriateness of the plan depends on the interplay between code, data and
cluster hardware.

Early data-parallel systems force developers to specify the execution
plan (e.g., Hadoop). To shield developers from coping with these details,
some recent proposals raise the level of abstraction. A few use hand-crafted
rules to generate execution plans (e.g., HiveQL [24]) or use compiler tech-
niques (e.g., FlumeJava [6]). Other declarative frameworks cast the execution
plan choice as the traditional query optimization problem (e.g., SCOPE [5],
Tenzing [7], Pig [21]).

A central theme, across all schemes, is the absence of insight into cer-
tain properties of the code (such as expected CPU and memory usage),
the data (such as the frequency of key values), and the interaction between
them (such as the selectivity of an operation). These properties crucially
impact the choice of execution plans.

Our experience with Bing’s production clusters shows that these code
and data properties vary widely. Hence, using fixed apriori estimates leads
to performance inefficiency. Even worse, not knowing these properties con-
strains plan choice to be pessimistic; techniques that provide gains in certain
cases but not all cannot be used.

This paper presents RoPE1, a first step towards re-optimizing data paral-
lel jobs, i.e., adapting execution plans based on estimates of code and data
properties. To our knowledge, we are the first to do so. The new domain
brings challenges and opportunities. Accurately estimating code and data
properties is hard in a distributed context. Predicting these properties by
collecting statistics on the raw data stored in the file-system is not practical
due to the prevalence of user-defined operations. But, knowing these prop-
erties enables a large space of improvements that is disjoint from prior work

1Reoptimizer for Parallel Executions
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and so are the methods to achieve these improvements.
The sheer number of jobs indicates that the estimation and use of prop-

erties has to be automatic. RoPE piggy-backs estimators with job execution.
The scale of the data and distributed nature of computation means that no
single task can examine all the data. Hence, RoPE collects statistics at many
locations and uses novel ways to compose them. To keep overheads small,
RoPE’s collectors can only keep a small amount of state and work in a sin-
gle pass over data. Collecting meaningful properties, such as the number of
distinct values or heavy hitters, under these constraints precludes traditional
data structures and leads to some interesting designs.

The flexibility allowed for users to define arbitrary code leads to a much
tighter coupling between data and computation in data parallel clusters. As
long as they conform to well-defined interfaces, users can submit jobs with bi-
nary implementations of operations. In this context, predicting code proper-
ties becomes even more difficult. Traditional database techniques can project
statistics on the raw data past some simple operations with alpha-numeric
expressions but doing so through multiple operations, more complex expres-
sions, potentially dependent columns and user-defined operations introduces
impractically large error [3]. Rather than predicting, RoPE instruments job
execution to measure properties directly.

We find traditional work on adaptive query optimization to be specific
to the environment of one database server [2, 3, 16] and the resulting space
of optimizations. For example, a target scenario minimizes the reads from
disk by keeping one side of the join in the server’s memory. RoPE translates
these ideas to the context of distributed systems and parallel plans. In doing
so, RoPE uses a few aspects of the distributed environment that make it a
better fit for adaptive optimization. Unlike the case of a database server
where most queries finish quickly and the server has to decide whether to
use its constrained resources to run the query or to re-optimize it, map-
reduce jobs last much longer and the resources to re-optimize are only a
small fraction of those used by the job. Further, if a better plan becomes
available, transitioning from the current plan to the better plan is tricky
in databases [16] whereas data parallel jobs have many inherent barriers at
which execution plans can be switched.

In Bing’s production clusters, we observe that many key jobs are re-run
periodically to process newly arriving data. Such recurring jobs contribute
40.32% of all jobs, 39.71% of all cluster hours and 26.07% of the intermediate
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data produced. We also observe that the code and data properties are re-
markably stable across recurring jobs despite the fact that each job processes
new data. These jobs are RoPE’s primary use-case.

RoPE adapts the execution plans for future invocations of such jobs by
feeding the observed properties into a cost-based query optimizer (QO). Our
prototype is built atop SCOPE [5], the default engine for all of Bing’s map-
reduce clusters, but our techniques can be applied to other systems. The
optimizer evaluates various alternatives and chooses the plan with the least
expected job latency. Additionally, we modified the optimizer to use the
actual code and data properties while estimating costs. Working with a QO
enables RoPE to not only perform local changes such as changing the degree of
parallelism of operations, but also changes that require a global context, such
as reordering operations, choosing appropriate operation implementations
and grouping operations that have little work to do into a single physical
task.

We find jobs that are not completely identical often have common parts.
Further, during the execution of a job, while some of the global changes
are logically impossible due to operations that have already executed, other
changes remain feasible. RoPE can help in both these cases since (a) the
query optimizer can work with incomplete estimates and (b) the code and
data properties are linked to the sub-graph at which they were collected and
can be matched to other jobs with an identical sub-graph.

Our contributions include:

• Based on experiences and measurements on Bing’s production clusters,
we describe scenarios where knowledge of code and data properties can
improve performance of data-parallel jobs. A few of these scenarios are
novel (§2).

• Design of the first re-optimizer for data-parallel clusters, which involves
collecting statistics in a distributed context, matching statistics across
sub-graphs and adapting execution plans by interfacing with a query
optimizer (§3).

• Results from a partial prototype, deployed on production clusters,
which show RoPE to be effective at reoptimizing jobs (§4, §5). Pro-
duction jobs speed up by over 2× at the 75th percentile while using
1.5× fewer resources. RoPE achieves these gains by designing better
execution plans that avoid wasteful work (reads, writes, network shuf-
fles) and balance operations that run in parallel.
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A user would expect her data-parallel jobs to run quickly. She would
expect this even though the code is unknown, even though the data properties
are hard to estimate, even though the code and data interact in unpredictable
ways, and even though the code, the data and the cluster hardware and
software keep evolving. RoPE is a first step towards reoptimizing data-parallel
computing.

2 Cost of Ignoring Context

It is not uncommon for data-parallel computing frameworks such as Dryad
and MapReduce to process petabytes of data each day. However, their in-
ability to leverage data and computation statistics renders them unable to
generate execution plans that are better suited for the jobs they run and
prevents them from utilizing historical context to improve future executions.
Here, we describe axiomatic scenarios of such inefficiency and quantify both
their impact and frequency of occurrence.

2.1 Background

Our experience is rooted in Bing’s production clusters consisting of thousands
of multi-core servers participating in a distributed file system that supports
both structured and unstructured data. Jobs are written in SCOPE [5],
a SQL-like mashup language with support for arbitrary user-defined oper-
ators. That is, users specify their data parallel jobs within a declarative
framework (e.g., select, join, group by) but are allowed to declare their
own implementations of operators as long as they fit the templates pro-
vided (e.g., extractor, processor, combiner, reducer). A compiler trans-
lates the query into an execution plan which is then executed in parallel on
a Dryad-like [14] runtime engine. Plans are directed acyclic graphs where
edges represent dataflow and nodes represent work that can be executed in
parallel by many tasks. A task can consist of multiple operations. A job
manager orchestrates the execution of the job’s plan by issuing tasks when
their inputs are ready, choosing where tasks run on the cluster, and reacting
to outliers and failures. To facilitate better resource allocation across concur-
rent jobs, individual job managers work in close contact with a per-cluster
global manager.

Unless otherwise specified, our results here use a dataset that contains
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Figure 1: Data that remains in flight when a job has executed for 25% (or 75%) of its
running time.

all the events from a large production cluster in Bing. The events encode
for each entity (job/ operation/ task/ or network transfer), the start and
end times of the entity, the resources used, the completion status, and its
dependencies with other entities. Our experiments are based on examining
all events during the month of September 2011 on a cluster consisting of tens
of thousands of servers.

2.2 Little Data

We notice that while most map-reduce programs start off by reading a large
amount of data, each successive operation (filters, reduces, etc.) produces
considerably fewer output compared to its input. Hence, more often than
not, just after a small number of these consecutive operations there is very
little data left to process. We call this the little data case. The little-data
observation can be used to optimize the tail of most jobs. In some cases, the
degree of parallelism on many operations in the tail can be reduced. This
saves scheduling overhead on the un-necessary tasks. In other cases, multiple
operations in the tail can be coalesced into a single physical operation, i.e.,
one group of tasks executes these operations in parallel. This avoids needless
checkpoints to disk. In yet other cases, broadcast joins can be used instead of
pair-wise joins (see §2.6) thereby saving on network shuffle and disk accesses.
The challenge however is that the reduction factors are unknown apriori and
vary by several orders of magnitude.
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Figure 2: Motivating examples for re-optimizing data parallel computing
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(a) CDF

Range Fraction

0 3.7%
(0, .001) 12.9%
[.001, .1) 27.2%
[.1, .5) 11.3%
[.5, .9) 6.7%
[.9, 1] 32.8%
> 1 5.4%

> 2 .35%
> 10 .01%

(b) readout

Figure 3: Variation in selectivity across tasks

Fig. 1 plots the fraction of input data that remains in flight after jobs have
been running for 25% (and 75%) of their runtime. We compute the data in-
flight at any time by taking a cut of the job’s execution graph at that time
and adding up the data exchanged between tasks that are on either side of
this cut. For convenience, we place tasks running at that time to the left
of the cut. We see that while some jobs have more data in flight than their
input (above y = 1 line), most of the jobs have much fewer. In fact for over
20% of jobs, the data in flight reduces to less than 1

104
of their input within a

quarter of the job’s running time and over 60% of jobs have less than a tenth
of data in flight after three quarters of their running time. This means that
little data, and the above optimizations, can be brought to bear.
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(b) Mem Usage/ Data Processed

Figure 4: Variation in Operation costs; in time to process and memory usage, per unit
data processed

2.3 Varying Selectivity, Reordering

Consider a pair of commutative operations. Ordering them, so that the
more selective operation (one with a lower output to input ratio) runs first
will avoid work thereby saving compute hours, disk accesses and network
shuffle. See Fig. 2(a), where the width of block arrows represent the data
flow between a pair of commutative operators (indicated by the circles). Ev-
idently, the plan on the right avoids processing unnecessary data and poten-
tially saves significant cluster cycles by appropriately ordering the operators
based on their selectivity. These pairs happen often, due to operations that
are independent of each other (e.g. operations on different columns) or are
commutative. Identifying these pairs can be hard in general but SCOPE’s
declarative syntax allows the use of standard database techniques to discover
such pairs. Finding the selectivities of operations remains a challenge.

Standard database techniques to predict operator selectivity are hard to
translate to map-reduce like frameworks due to the complexity of expres-
sions and long sequences of operations. The selectivity of alphanumeric ex-
pressions (e.g. select on X=30) can be predicted by using clever histograms
on the raw data (e.g. equi-depth) but creating these histograms requires
many passes over the data. Predicting the selectivity for user-defined op-
erations (e.g. select when columnvalue.BeginsWith("http://bing")) is an
open problem [3]. We see such code in a majority of jobs. Moreover, the
prediction errors grow exponentially with the length of the sequence of oper-
ations [3]. Computing more detailed synopsis on a random sample is often of
only marginal benefit [18]. Finally, correlations between sets of columns, as is
common, increases prediction error (e.g. select on X=30 and Y=10 can pro-
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Figure 5: Imbalance

duce just as much data as the select on X=30 or much less). RoPE estimates
selectivity by direct instrumentation.

Fig. 3(a) plots a CDF of the selectivity (ratio of output to input) of
operations in our dataset. Note the y axis is in log scale. About 5% of
operations produce more data than they consume (above y = 1). These
are typically (outer) joins. About 34% have output roughly equalling input.
The remaining 60% operations produce less output than their input but the
selectivity varies widely– 17% produce fewer than 1

1000
’th of their input, and

the coefficient of variation ( stdev
mean

) is 1.3 with a range from 0 to 171. This
means that if these selectivities were available, there is substantial room to
reorder operators.

2.4 Varying Costs, Balance

Suppose we figured out selectivities and picked the right order. Uniquely for
data parallel computing, we need to choose the number of parallel instances
for each operation. Choosing too few instances will cause that operation
to become a bottleneck as per Amdahl’s law. On the other hand, choosing
too many leads to needless per-task scheduling, queuing and other startup
overhead. Balance, i.e., ensuring that each operation has enough parallelism
and takes roughly the same amount of time, can improve performance signif-
icantly [22]. See Fig. 2(b) where block arrows again represent the dataflow
and the thin arrows now represent the tasks in each of the two operations.
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Figure 7: Replacing Pair-wise Joins with Broadcast Joins
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Here, using one less task for the upstream operation and one more for the
downstream operation reduces job latency by over 30%.

Achieving balance in the context of general data parallel computing is
hard because the costs (runtime, memory etc.) of the operators are unknown
apriori. These costs depend on the amounts of data processed, the types
of computation performed and also on the type of data. For example, a
complex sentence can take longer to translate than a simpler one of the same
length. Even worse, late-binding, i.e., deferring the choice of the amount of
parallelism to the runtime is hard because local changes have global impact;
for example, the number of partitions output by the map phase restricts the
maximum number of reduce tasks at the next stage. RoPE estimates these
costs to generate balanced execution plans.

Fig. 4(a) plots a CDF of the runtime per unit byte read or written by
operations in the dataset. The analogous plot for memory used by tasks is
in Fig. 4(b). Note again that the y axes are in log scale. While as variable
as their selectivity– the middle 50th percent of operators have costs spread
over two orders of magnitude– we find that operator costs skew more towards
higher values. Per unit data processed, 20% of operations take over 100X
more time and memory than the average over the remaining operations. It is
crucial to identify these heavy operations, to offset their costs by increasing
the parallelism and for the case of memory, to place tasks so that they do
not compete with other memory hungry tasks.

A consequence of unpredictable data selectivity and operator costs is
the lack of balance. We find that our compiler both underestimates and
overestimates an operation’s work. Fig. 5 plots a CDF of the runtime of the
median task in each stage. The y axis is in log scale. The median task in
a stage is unlikely to be impacted by failures or be an outlier. So, if the
compiler apportions parallelism well, the median task in each stage should
take about the same time. This duration could be chosen to trade-off fault-
tolerance vs. the cost of checkpointing to disk. However, we see that while
roughly 60% of all tasks finish within 10 seconds, 4% take over 100s with the
last 1% taking over 1000s. We found the tail dominated by tasks with user
defined operators. Setup and scheduling overheads outweigh the useful work
in short-lived tasks whereas the long-lived tasks are bottlenecks in the job.
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2.5 Partition Skew and Repartitioning

A key to efficient data-parallel computing is to avoid skews in partition and
to re-partition only when needed. Consider the example in Fig. 2(c). The
naive implementation would partition the data twice– once on A, B, C (at
P1), followed by a network shuffle and a reduce to compute the sum, and
then again on A, B (at P2) followed by another shuffle for the join. It is
tempting to just partition the data once, say on A, B to avoid the network
shuffle and the pass over data. Note that partitioning on fewer keys does not
violate the correctness of the reduce that computes SUM(D). Each reduce
task will now compute many rows, one per distinct value of C, rather than
just the one row they would have produced were the map to partition on all
three columns. However, if there is not enough entropy on A and B, i.e., only
a few distinct values have many records, then partitioning on the sub-group
can make things worse. A few reduce tasks might receive a lot of data to
process while other reduce tasks have none, and the overall parallel execution
can slow down.

Fig. 6 estimates how skewed the partitions can be in our cluster. Note
that our compiler is conservative and does not partition on sub-groups to
avoid re-partitioning. Yet significant skew happens. We define skew as the
ratio of the maximum data processed by a reduce task to the average over
other tasks in that reduce phase. We see that in 20% of the reduce stages,
the largest partition is twice as large as the average and in about 5% of the
stages the largest partition is over ten times larger than the average. Such
skew causes unequal division of work and bottlenecks but can be avoided if
the data properties are known.

2.6 From operations to implementations

Often, the same operation can be implemented in several ways. While choos-
ing the appropriate implementation can result in significant improvements,
doing so requires appropriate context that is not available in today’s sys-
tems. For example, consider Join. The default implementation PairJoin,
involves a map-reduce operation on each side that partitions data on the
join columns. This causes three read/write passes on each of the sides and
at least one shuffle each across the network. However, if one of the sides is
smaller, perhaps due to the little data case (§2.2), one could avoid shuffling
the larger side and complete the join in one pass on that side. The trick is to
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Figure 8: Stability of data properties across recurring jobs

broadcast the smaller side to each of the tasks that is operating in parallel
on the larger side. The problem though is that when used inappropriately, a
BroadcastJoin can be even more expensive than a PairJoin.

Fig. 7 plots the potential benefits of replacing PairJoins with
BroadcastJoins. It shows the amount of data shuffled in either case. We
see that about 40% of joins in the dataset would see no benefit. This can
happen if both join inputs are considerably large and/or when the parallelism
on the larger side is so much that broadcasting the smaller input dataset to
too many locations becomes a bottleneck. However, off the remaining joins,
the median join shuffles 90% less data when using broadcast joins.

2.7 Recurring Jobs

We find that many jobs in the examined cluster repeat and are re-run period-
ically to execute on the newly arriving data. Such recurring jobs contribute
to 40.32% of all jobs, 39.71% of all cluster hours and 26.07% of intermediate
data produced. If the extracted statistics are stable per recurring job, i.e., the
operations behave statistically similar to the previous execution when run-
ning on newer data of the same stream, then RoPE’s instrumentation would
suffice to re-optimize future invocations.
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Fig. 8 plots the average difference between statistics collected at the same
location in the execution plan across recurring jobs. We picked all of the re-
curring jobs from one business group and instrumented five different runs
of each job. While most of these jobs repeated daily, a few repeated more
frequently. The figure has four distributions, one per data property that
RoPE measures. We defer details on the specifics of the properties (see Ta-
ble 1, §3.1) but note that while some properties, such as row length, are
more predictable than others, the overall statistics are similar across jobs–
the ratio stdev

mean
is less than 0.2 for 70% of the locations.

2.8 Current Approaches, Alternatives

To the best of our knowledge, we are the first to re-optimize data parallel
jobs by leveraging data and computation statistics. Current frameworks use
best-guess estimates on the selectivity and costs of operations. Such rules-
of-thumb, as we saw in §2.2–§2.6, perform poorly. Hadoop and the public
description of MapReduce leave the choice of execution plans, the number of
tasks per machine and even low-level system parameters such as buffer sizes
to the purview of the developer. HiveQL [24] uses a rule-based optimizer
to translate scripts written in a SQL-like language to sequences of map-
reduce operations. Starfish [12] provides guidance on system parameters for
Hadoop jobs. To do so, it builds a machine learning classifier that projects
from the multi-dimensional parameter space to expected performance but
does not explore semantic changes such as reordering. Ke et. al. [17] propose
choosing the number of partitions based on operator costs. In contrast,
RoPE can perform more significant changes to the execution plan, similar
to FlumeJava [6] and Pig [21], but additionally does so based on actual
properties of the code and data.

It is tempting to ask end-users to specify the necessary context, for e.g.,
tag operations with cost and selectivity estimates. We found this to be
of limited use for a few reasons. First, considerable expertise and time is
required to hand-tune each query. Users often miss opportunities to improve
or make mistakes. Second, exposing important knobs to a wide set of users is
risky. Unknowingly, or greedily, a user can hog the cluster and deny service
to others; for instance, by tricking the system to give her job a high degree
of parallelism. Finally, changes in the script, the cluster characteristics, the
resources available at runtime or the nature of data being processed can
require re-tuning the plan. Hence, RoPE re-optimizes execution plans by
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automatically inferring these statistics.

2.9 Experience Summary, Takeaways

Note that all of the problems described here happen deterministically. They
are not due to heterogeneity or runtime variations [1] or due to poor place-
ment of tasks [15, 25] or due to sharing the cluster [13, 23]. We believe that
the choice of execution plan is orthogonal to these problems that arise dur-
ing the execution of a plan. The underlying cause is that predicting relevant
data and computation statistics deep into a job’s execution is necessary to
find a good plan but is difficult due to the intricate coupling between data
and computation.

When employed together, these improvements add up to more than their
sum. Promoting a more selective operator closer to the input, can reduce
the data flowing in so much that a subsequent join may be implemented
with broadcast join. We found in practice that such global changes to the
execution plan accrue more benefits than making singleton changes. RoPE

achieves both types of re-optimizations as we will see in §3.
A few key takeaways follow.

• Being un-aware of data and computation context leads to slower re-
sponses and wasted resources.

• Unlike the case of singleton database servers, data-parallel computation
provides different space for improvements and has new challenges such
as coping with arbitrary user defined operations and expressions.

• Global changes to the execution plan add more value than local ones.

3 Design

RoPE enables re-optimization of data parallel computing. To obtain data-
and computation- context, RoPE interposes instrumentation code into the
job’s dataflow. An operation can be instrumented with collectors on its
input(s), output(s) or both. We describe how RoPE chooses what information
to collect, avoids redundancy in the locations from which stats are collected,
and the algorithms to compose statistics from distributed locations in §3.1.
These statistics are funneled to the job manager and are used to improve
execution plans in a few different ways, each differing in the scope of possible
changes and the complexity to achieve those changes.
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Figure 9: RoPE’s architecture for re-optimization

Even though an execution plan is already chosen for a running job, RoPE
uses the statistics collected during the run to improve some aspects of the
job. Descendant stages that are at least a barrier away from the stages
where datastats are being collected will not have begun execution. The
implementation of these stages can be changed on the fly. Stages that are
pipelined with the currently executing stage can be changed, since inter-task
data flow happens through the disk. Some plan changes may be constrained
by stages (or parts of stages) that have already run. Hence RoPE performs
changes that only impact the un-executed parts of the plan, such as altering
the degree of parallelism of non-reduce stages.

RoPE uses the collected statistics to generate better execution plans for
new jobs. Here, RoPE can perform more comprehensive changes. Recall
from §2.7 that many jobs in the examined cluster recur because they period-
ically execute on new data and that the extracted datastats are stable across
runs of these jobs. In this case, upon a new run of a recurrent job, datastats
collected from previous runs are used as additional inputs to the plan opti-
mizer. We describe how statistics are stored so they can be matched with
expressions from subsequent jobs in §3.2. We also note that partial overlaps
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are common among jobs [11] and our matching framework extends to cover
this case. The methodology of how the statistics are used is described in §3.3.
An illustrative case study of the changes that RoPE achieves is in §5.2.

3.1 Collecting contextual information

Choosing what to observe and the statistics to collect has to be done with
care since the context we collect will determine the improvements that we
can make. Broadly, we collect statistics about the resource usage (e.g., CPU,
memory) and data properties (e.g., cardinality, number of distinct values).
See Table 1 for a summary.

The nature of map-reduce jobs leads to a few unique challenges. First,
map-reduce jobs examine a lot of data in a distributed fashion. There is
no instrumentation point that observes all the data and even if created,
such instrumentation would not scale with the data size. Hence, we require
stat collection mechanisms to be composable, i.e., local statistics obtained by
looking at parts of the data should be composable into a global statistic over
all data. Second, to be applicable to a wide set of jobs, the collection method
should have low overhead, i.e., overhead that is only a small fraction of the
task that it piggybacks upon. In particular, the memory used should scale
sub-linearly with data size and to limit computation cost, the statistics should
be collected in a single pass. Together, these constraints are quite strict, so
we adapt some pre-existing streaming and approximation algorithms.

Finally, to be useful, the statistics have to be un-ambiguous, precise, and
have high coverage. By unambiguous, we mean that the statistics should
contain metadata describing the location in the query tree that these statis-
tics were collected at. Global changes to the plan, during re-optimization
for subsequent jobs for example, can alter the plan so much that previously
observed subtrees no longer occur. Precision is an accuracy metric; we try
to match the accuracy requirements of the improvements that we would like
to make with the properties of the algorithmic techniques that we use to
collect statistics. For coverage, we would like to observe as many different
points in the job execution as possible. However, to keep costs low, we ignore
instrumenting operations whose impact on the data is predictable (e.g., the
input size of a sort operation is the same as its output). Further, we only
look at the interesting columns. That is, we collect column-specific statistics
only on columns whose values will, at some later point in the job, be used in
expressions (e.g. record stats for col if select col=. . ., join by col=. . ., or

17



Type Description Granularity

Data
Properties

Cardinality Query Subgraph
Avg. Row Length Query Subgraph
# of Distinct values Column @ Subgraph
Heavy hitter values, their fre-
quency

Column @ Subgraph

Code Proper-
ties

CPU and Memory Used per
Data read and written

Task

Leading
Statistics

Hash histogram Column @ Subgraph
Exact sample Column @ Subgraph

Table 1: Statistics that RoPE collects for reoptimization

∑

taski
task1

taskn

.

.

.

.

collector

Job Manager

Figure 10: A task can have many operations and hence, collectors. A job manager
composes individual statistics.

reduce on col follow).
Implementation: RoPE interposes stat-collectors at key points in the
job’s dataflow. Datastat collectors are pass-through operators which keep
negligible amounts of state and add little overhead. We also extend the task
wrapper to collect the resources used by the task. When a task finishes,
all datastats are ferried to the job manager (see Figure 10), which then
composes the stats. The stats are used right away and also stored with a
matching service for use with future jobs (see Figure 9(b)).

3.1.1 Data Properties

At each collection point we collect the number of rows and the average row
length. This statistic will inform whether data grows or shrinks and by how
much as it flows through the query tree. Composing these statistics is easy–
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for example, the total number of rows after a select operation is simply the
sum of the number of rows seen by the collectors that observe the output of
that select across all the tasks that contain that select.

Further, for each interesting column, we compute the number of distinct
values and the heavy hitters, i.e., values that repeat in a large fraction of the
rows. These statistics, as we will see shortly, help avoid skews during parti-
tion and also help pick better implementations. Computing these statistics
while keeping only a small amount of state in a single pass is challenging, let
alone the need to compose across different collection points.

Our solution builds on some state-of-the-art techniques that we carefully
chose because we could extend them to be composable. We will only sketch
the basic algorithms and focus on how we extended them.

Lossy Counting to find Heavy Hitters Suppose we want to identify all
values that repeat more frequently than a threshold, say 1% of the data size
N . Doing this in one pass, naively, requires tracking running counts of all
distinct values and uses up to O(N) space.

Lossy counting [19] is an approximate streaming algorithm, with param-
eters s, ε that has these properties. First, it guarantees that all values with
frequency over sN will be output. Further no value with a frequency smaller
than (s− ε)N will be output. Second, the worst case space required to do so
is (sub-linear) 1

ε
log (εN). In practice, we find that the usage is often much

smaller. Third, the frequency estimated undercounts the true frequency of
the elements by at most εN . The key technique is rather elegant; it tracks
running frequency counts but after every d1

ε
e records, it retires values that

do not pass a test on their frequency. For more details, please refer [19].
RoPE uses a distributed form of lossy counting. Each stat collector em-

ploys lossy counting on the subset of data that their task observes with
parameters s = 2ε, ε. To compute heavy hitters over all the data, we add
up the frequency estimates over all collectors and report distinct values with
count greater than εN . Interestingly, composing in this manner retains the
properties of lossy counting with slight mods. A proof sketch follows.
Proof Sketch: Let Ni be the number of records observed by the i’th
collector. Note that s − ε = ε and

∑
Ni = N First, for the frequency

estimation error, if a value is reported by stat collector i, we know that its
frequency estimate is no worse off than εNi. If the value is not reported, its
frequency estimate is zero; but by the existence constraint, we know that the
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element did not occur more than 2εNi times at this collector. Summing up
the errors across collectors, we conclude that the global estimate is not off
the true frequency by more than 2εN . Second, for false positives, we note
that we only keep values whose cumulative recorded count is greater than
εN , that means their true frequency is at least εN . Third, for false negatives,
suppose a value has a global frequency greater than f > 3εN , then it has to
occur more than 3εNi > sNi times at some collector, and so will be reported.
Even more, since we just showed that the cumulative error is no worse than
2εN , its cumulative recorded count will be no worse than f − 2εN which is
larger than εN , hence RoPE will report this value after composition. Finally,
the space used at each collector is 1

ε
log (εNi) meeting our requirements.

Implementation: RoPE uses ε = .01. Micro-benchmarks show that fre-
quency estimates are never worse off by more than εN and the space used is
small multiples of log(N

ε
).

Hash Sketches to count Distinct Values Counting the number of dis-
tinct items in sub-linear state and in a single pass has canonically been a hard
problem. Using only O(logN) space, hash sketches [9] computes this number
approximately. That is, the estimate is a random variable whose mean is the
same as the number of distinct values and the standard deviation is small.

The key technique involves uniformly random hashing the values. The
first few bits of the hash value are used to choose a bit vector. From the
remaining bits, the first non-zero bit is identified and the corresponding bit
is set in the chosen bit vector. Such a hash sketch estimates the number of
distinct values because 1

2
of all hash-values will be odd and have their first

non-zero bit at position 1, 1
22

will do so at position 2 and so on. Hence,
the maximum bit set in a bit-vector is proportional to the logarithm of the
number of distinct values. Using a few bit-vectors rather than one guards
against discretization error. The actual estimator is a bit more complex to
correct for additive bias. For more details, please refer [9].

RoPE uses a distributed form of hash sketches. Each stat collector main-
tains local hash sketches and relays these bit vectors to the job manager. The
job manager maintains global bit vectors, such that the ith global bit vector
is an OR of all the individual ith bit vectors. By doing so, the global hash
sketch is exactly the same as would be computed by one instrumentation
point that looks at all data. Hence, RoPE retains all the properties of hash
sketches.
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Implementation: If the hash values are h bits long, where h = O(logN),
and the first m bits choose the bit-vector, then there are 2m bit vectors and
the size of the hash sketch is h∗2m bits. RoPE uses m = 6 and h = 64. Hence,
each task’s hash sketch is 512B long. Our micro-benchmarks show that hash
sketches retain precision even as the number of distinct values grows to 240.

3.1.2 Operation Costs

We collect the processing time and memory used by each task. A task is a
multi-threaded process that reads one or more inputs from the disk (locally
or over the network) and writes its output to the local disk. However, popu-
lar data-parallel frameworks can combine more than one operation into the
same task (e.g. data extraction, decompression, processing). Since such op-
erations run within the same thread and frequently exchange data via shared
memory, the per-operator processing and memory costs are not directly avail-
able. But, per-operator costs are necessary to reason about alternate plans,
e.g., reordering operators. Program analysis of the underlying code could
reason about how the operators interact in a task, but this analysis can be
hard because the interactions are complex, e.g., pipelining. Also, profiling
individual operators does not scale to the large number of UDOs. Instead,
RoPE uses a simple approach that only estimates the costs of the more costly
operations.

The approach works as follows. First, tasks containing costly operations
are likely to be costly as well. We pick stages with costs in the top tenth
percentile as expensive. We only use the costs of the median task in each
stage to filter the impact from failures and other runtime effects. Second,
not all the operators in expensive tasks are expensive. So, for each operator,
we compute a confidence score as the fraction of the stages containing the
operator that have been picked as expensive. An operator will have a high
confidence score only if it exclusively occurs in expensive tasks. Third, we
compute the support of an operator as the number of distinct expensive
stages that it occurs in. Finally, we estimate the cost of operators, that have
high confidence and high support scores, as the average cost of the stages
containing that operator.

To validate this approach, we profiled over 200K randomly chosen stages
from the production cluster. It is hard to obtain ground truth at this scale.
Hence, we corroborate our results on succinctness – only a few among all
the operations should be expensive, and coverage – most of the expensive
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tasks should contain at least one expensive operation. This method identi-
fied 22.3% and 15.6% of the operators as expensive for CPU and memory
costs respectively. This number was higher than expected because there are
only a few generic operations but many UDOs. Most of the costly opera-
tions were UDOs. Further, 87.9% (92.4%) of the tasks picked as expensive
based on their memory (cpu) cost contained at least one expensive operator.
Hence, their cost can be explained by these operations. Very few contained
more than one expensive operation. The succinct set of operations identified
as expensive and the high coverage of this set makes us optimistic about
this simple method. Fig 11 plots the relative cost values attributed to the
expensive operations.

3.1.3 Leading Statistics

The ability to predict behavior of future operators is invaluable, especially
for on-the-fly optimizations. Doing so precisely is hard. Rather than aspiring
for precise predictions in all cases, RoPE collects simple leading statistics to
help with typical pain points. We collect histograms and random samples
on interesting columns (i.e. columns which are involved in where/group by
clauses or joins) at the earliest collection points preceding the operator at
which those columns will be used.

We looked at several histogram generators, including equi-width, equi-
depth and serial but ended up with a simpler, albeit less useful alternative.
This is because none of the others satisfied our single pass and bounded
memory criterion with a reasonable accuracy. For each interesting column,
in an operator, we build a hash-based histogram with B buckets, that is
hashed on a given column value (hash[column value] % B → bucket) and
counts the frequency of all entries in each bucket. RoPE uses B = 256.

We also use reservoir sampling to pick a constant sized, random sample
of the data flowing through the operator. For each interesting column, RoPE
collects up to 100 samples but no more than 10KB.

3.2 Matching context to query expressions

As metadata to enable matching, with each stat collector we associate a
hash-value that captures the location of the collector in the query graph. In
particular, location in the query graph refers to a signature of the input(s)
along with a topologically sorted chain of all the operators that preceded
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Figure 11: Normalized memory and user CPU costs for the operators identified as
expensive.

the stat collector on the execution plan. We colloquially refer to this as the
query subgraph. RoPE uses 64 bit hashes to encode these query subgraphs.

3.3 Adapting query plans

We build on top of SCOPE Cloud Query Optimizer (CQO) which is a cost-
based optimizer. CQO translates the user-submitted script into an expression
tree, generates variants for each expression or group of expressions and fi-
nally chooses the query tree with the lowest cost. However, lacking direct
knowledge of query context, the CQO uses simple apriori constants to de-
termine the costs and selectivities of various operators as well as the data
properties. By providing exactly this context, RoPE helps the CQO make
better decisions.

RoPE imports statistics uses a stat-view matching technique similar to
the analogous method in databases [4, 10, 18]. Statistics are matched in dur-
ing the exploration stage in optimization, i.e. before implementing physical
alternatives but after equivalent rewrites have been explored. The optimizer
then propagates the statistics offered at one location to equivalent semantic
locations, e.g., cardinality of rows remains the same after a sort operation
and can be propagated. For expressions that have no direct evidence avail-
able, the optimizer makes-do by propagating statistics from nearby locations

23



Cosmos Storage System

Execution 

Engine (Dryad)

SCOPE Runtime

SCOPE Compiler

SCOPE

Optimizer

Cosmos Files

SCOPE Scripts

Data

Statistics

Runtime

Optimizer

SCOPE

Optimizer

Runtime

Optimizer

Figure 12: The RoPE prototype consists of 3 key components: a distributed statistics
collection module, a pre-processor to the existing SCOPE compiler that provides matching
functionality and a basic on-the-fly runtime optimizer.

with apriori estimates on the behavior of operators that lie along the path.
Such uncertain estimates are deemed to be of lower quality and are used only
when other estimates are unavailable.

We extended the optimizer to make use of these statistics. Cardinality,
i.e., the number of rows observed at each collection point, helps estimate
operator selectivity and compare reordering alternatives. Along with selec-
tivity, the computation costs of operations are used to determine whether an
operation is worth doing now or later when there is less work for it. Costs also
help determine the degree of parallelism, the number of partitions, and which
operations to fit within a task. Besides the choice of broadcast join, statistics
also help decide when self-join or index-join are appropriate. Most of these
optimizations are specific to the context of parallel executions. We believe
that there is more to do with statistics than what RoPE currently does, but
our prototype (§4) suffices to provide substantial gains in production (§5).

4 Prototype

The prototype collects all the statistics described in §3. Data stats are written
to a distributed file system and the matching functionality (§3.2) runs as a
pre-processing step of the job compiler. The statistics collection code is a
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few thousand lines of C#, which during code generation for each operator,
gets placed into the appropriate location in the operator’s dataflow. Note
that not all operators collect statistics, and even when they do, they do not
collect all types of statistics. Collected statistics are passed to the C++ task
wrapper via reflection which piggybacks them along with task status reports
to the job manager. Composing statistics required a few hundred lines of
code in the job manager.

We allow the compiler to specify varying requirements across the columns.
The constants also can change, to trade-off costs for improved precision,
based on previous statistics or other information that the compiler has such
as required accuracy of an estimate.

Parts of the code are production quality to the extent that all of our
results here are from experiments that run in Bing’s production clusters.
Rather than implementing every optimization possible with the statistics
that RoPE collects, we built a subset up to production quality code in order
to deploy, run and gain experiences from Bing’s production clusters. We
acknowledge that our prototype is just that, and there is more benefit to be
achieved.

Using these statistics required extensive changes in the SCOPE query
optimizer involving several hundred lines of code spread over several tens of
files.

5 Evaluation

We built and deployed RoPE on a large production cluster that supports the
Bing search engine at Microsoft.

5.1 Methodology

Cluster: This cluster constitutes of tens of thousands of 64-bit, multi-core,
commodity servers; processes petabytes of data each day and is shared across
many business groups. The core of the network is moderately over-subscribed
and hence shuffling data across racks remains more expensive than transfers
within a rack.
Workload Evaluated: We present results from evaluating RoPE on all the
recurring jobs of a major business group at Bing and randomly chosen jobs
from ten other business groups. The dataset has over 80 jobs. We repeat each
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job over ten times for each variant that we compare. The only modification we
do to the jobs is to pipe the output to another location in the distributed file
system so as to not pollute the production data. Though small, since we pick
a large set of jobs, our dataset spans a wide range of characteristics. Latency
of the unmodified runs varied from minutes to several hours. Tasks ranged
from small tens to hundreds of thousands. The largest job had several tens
of stages. User-defined operations are prevalent in the dataset, as is common
across our cluster.
Compared Variants: For each job, we compare the execution plan gener-
ated by RoPE with the execution plan generated without RoPE. The latter
is a strong strawman, since it uses apriori fixed estimates of operator costs
and selectivities and is the current default in our production clusters. Early
results from a variant that was equivalent to Hive over Hadoop, i.e., one that
translated users’ jobs into literal map-reduce execution plans, were signifi-
cantly worse than our cluster’s baseline implementation. Here, we omit those
results.
Metrics: Our evaluation metrics are the reduction in job completion time
and resource usage. Resources include cluster slot occupancy computed in
machine-hour units, as well as the total amount of data read, written and
moved across low bandwidth (inter-rack) network links.

5.2 A Case Study

Many plan changes can be performed given the statistics that RoPE collects.
We report a case study that illustrates some of the changes to execution plans
that achieved significant gains in practice. Aggregate results from applying
RoPE to a wide variety of jobs are in §5.3.

Consider a job that processes four datasets. Let these be requests (R),
synonyms (S), documents (D) and classified URLs (C). The goal is to com-
pute how many requests (of a certain type) access documents (of a certain
other type). Doing so, involves the following five operations:

1. Filter requests (R) by location. This operation has a selectivity of
1

2000
x.

2. Join requests (R) with synonyms (S). There are many synonyms per
word, so the selectivity is 50x.

3. Apply a user-defined operation (UDO) to documents (D). The selec-
tivity is 1

8
x but has a very large CPU cost per document.
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Figure 13: Case Study: Evolution of the execution plan as RoPE provides more
statistics. See Table 2 for how well these plans do upon execution.

Alternate Execution Plans
Performance

Latency
(s)

Cluster
Occu-
pancy
(s)

Cross
Rack
Shuf-
fle (GB)

Reads +
Writes
To
Disk (GB)

Tasks

Un-modified (Fig.13(b)) 1x 1y 21.23 91.96 234
Push UDO to appropriate loca-
tion (Fig. 13(c))

.057x .201y 30.35 125.68 236

+ Replace pair-wise join with
broadcast (not shown)

.016x .227y 13.29 94.05 211

+ Balance (not shown) .008x .215y 12.82 90.75 341
RoPE (+push UDO even lower, lit-
tle data,Fig. 13(d))

.006x .139y 15.98 84.04 366

Table 2: Summarizes salient features of executing a typical job with and without RoPE.
Overall, with RoPE latency reduces by almost 160X, while using 7X fewer cluster hours.
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4. Join documents (D) with the list of classified URLs (C). This has a
selectivity of 1

10
x.

5. Join synonymized requests with documents containing classified URLs;
has a selectivity of 4

5
x.

6. Finally, count number of requests per document URL.

The dataset sizes are R: 3GB, S: 18GB, D: 12GB, C: 160MB.
Figure 13(b) shows the plan computed by the unmodified optimizer which

uses apriori estimates on data properties and costs. Each circle represents
a stage, a collection of tasks that execute one or more operations which are
listed in the adjacent label (see legend in 13(a)). Unlabeled stages are ag-
gregates [14]. The size of the circle denotes the number of tasks allocated
to that stage, in logarithmic scale. The color of the circle in linear redscale
denotes the average time per task in that stage, darker implies longer. Fig-
ure 13(d)(13(c)) show the plan generated using (a subset of) the statistics
provided by RoPE. We explain the figures as we go along. Table 2 shows
how well these plans do when executed, the metrics are averaged over five
different runs.

Recall that the compiler sets costs proportional to the data processed and
sets selectivity based on the type of the operation– for instance, filters are
assumed to be more selective than joins. These apriori estimates have mixed
results. They pick the right choice for the operation on requests; the more
selective filter operation (#1) is done before joining with synonyms (#2) (see
Fig. 13(b) top left). However, for documents, the plan performs the user-
defined filter (UDO) (#3) before the more selective join (#4) leading to a
lot of wasted work. As we see in Table 2, due to the high cost of the UDO,
this plan takes over 17x the time of the next best alternative.

By providing an estimate of the UDO’s selectivity, RoPE lets the compiler
join the documents dataset with the classified dataset first. Figure 13(c)
depicts such a plan (see change in middle right). From Table 2, we see that
since the UDO is applied on fewer data, the median execution time improves
substantially. And, not many more tasks are needed since fewer documents
through the UDO means fewer net work, and so the cluster hours decrease
as well. But, by performing the UDO later, more data is shuffled across the
network, since the join with classifieds is done on unfiltered documents.

When comparing these two plans, note that the thickness of the edges
represent data volume moving between stages in logarithmic scale (see leg-
end). Also, the color indicates the type of data movement. Dark solid lines
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denote data flow from a partition stage to an aggregate stage (many to many)
which has to move over the network. Light solid lines indicate one-to-one
data flow. Here, data-local placement can avoid movement across the net-
work. Dotted lines indicate broadcast, i.e., the source stage’s output is read
by every task in the destination stage. Double edges indicate two source
tasks per destination task, i.e., at least one of the sides has to be moved over
the network.

With the UDO at a better place, the bottleneck moves to two new places.
The average task duration of the stage with the UDO is very high (deep red).
If the compiler knew the cost of the UDO, it could apportion more tasks to
this stage to resolve this bottleneck. Similarly, even though requests (R)
becomes small after applying the very selective filter (#1), the compiler is
unaware and picks a pair-wise join for #2. This causes the large dataset S
to be partitioned and shuffled across the network needlessly.

Figure 13(d) shows the plan where RoPE provides the compiler with the
selectivity and costs of all the operations. Intermediate plans have been
omitted for brevity. Table 2 shows that the median execution of this plan
improves by another 9.5x. A few changes are worth noting.

First, operation #2 is now implemented as a broadcast join. This not only
saves cross rack shuffle and reads/writes to disk but also avoids partitioning
both these datasets. Since pair-wise joins shuffle data across the network,
such stages are more at risk from congestion induced outliers. We observed
this with the default plan.

Second, given the high cost of the UDO (#3), the compiler instead of
adding more tasks to the stage with operation #4 defers the UDO till even
later, i.e., till after operations #5 and #6. Both these operations are net
data reductive, however #6 is particularly so since it produces one row for
each document url that is in the eventual output. The increase in cost from
performing other operations on more data was lower than the benefits from
performing the UDO on fewer data.

More optimizations are enabled recursively. The compiler realizes that
both sides of the input for the join in operation #5 are small due to the
cumulative impact of earlier operations, leading to the third improvement–
implement operation #5 also as a broadcast join.

This leads to a fourth improvement that is subtle. Notice that opera-
tion #6, a reduce operation that needs data to be partitioned by document
url to compute the number of times each URL occurs, now lies between
operations #5 and #3 thereby eliminating one complete map-reduce!
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To understand why, note that the join in operation #5 matches words in
synonymized requests with words in the classified documents. Typically this
join would require both inputs to be partitioned on words. However, here
there is so little data that the left side (requests) can be broadcast and the
right side (documents) can be partitioned in any way. Hence the right side is
partitioned on url immediately after it is read to facilitate operation #6 and
never re-partitioned thereby providing for coalescing many more operations
into the same stage. The enabler for this optimization is little data– the later
parts of most data parallel jobs can benefit from serial plans. Achieving the
change, however, requires reasoning about the entire execution plan and not
one stage at a time which is possible in RoPE due to the interface with a
query optimizer.

Fifth, to offset the cost of the UDO, the compiler assigns more
tasks (larger size) to the stage that now implements the UDO (along with
operations #5 and #6). Doing so, is again a global change because the earlier
operations have to partition the data enough ways. To benefit from not re-
partitioning, the compiler implements the join in #4 with the same (larger)
amount of parallelism.

Finally, a potential change that was not performed is worth discussing.
Since the classifieds dataset is small (C), it is possible to implement opera-
tion #4 also as a broadcast join. But the compiler chooses to not do that.
The reason is that the documents have to be partitioned by url to facilitate
the reduce in op #6. Either they are partitioned before the join op #5 or
after. If the partition happens before, as is the case with the chosen plan,
the large amount of work in the stage doing ops #5, #6 and #3 needs more
parallelism resulting in more partitions, i.e., more tasks in op #4. But, the
network costs of broadcasting C grow linearly with the number of tasks in
op #4 offsetting the savings which is one additional read/write of C. Parti-
tioning after op #5 would mean one more map-reduce on the critical path
and just before the end of the job. Any outliers here would directly impact
the job unlike outliers on the shuffle before op #4 which is not on the critical
path since more work lies on the left side of the DAG.

Overall, we see that significant reductions result from optimizations build-
ing on top of each other. Unfortunately, the space of optimizations is not
monotonic; some times using more tasks is better, whereas at other times
pushing a filter after some operators but before some others is the best choice.
By providing accurate estimates of code and data properties, RoPE is a crucial
first step towards picking appropriate execution plans.
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(a) Reduction in Job Latency
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(b) Reduction in Cluster Hours Used
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(c) Reduction in data shuffled across racks

Figure 14: Aggregated results from production dataset (see 5.3)
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5.3 Aggregate results

Here, we present aggregated results across jobs in the dataset. These are
runs of production jobs in a production cluster, so the noise from other jobs
and other traffic on the cluster is realistic.

Figure 14(a) plots a CDF of the ratio between the job runtimes without
and with RoPE. So, y = 1 implies no benefit. Samples below that line are
regressions while those above indicate improvement. To compute a single
metric from a disparate set of jobs, we weight job by the total cluster hours
that it occupies. All the results in this section share this format.

Figure 14(a) shows that 25% (50%) of the jobs speed up by over 2x (1.5x).
Several significant jobs see over 5x reduction in their latencies. Upon inspec-
tion we find that all the samples under the y = 1 line are from two jobs.
Both jobs have a small number of stages (and tasks). RoPE does not change
their execution plans. Noise due to the cluster is the likely cause for lower
performance. The vast majority of jobs see performance improvements. The
reason is due to one or more of the optimizations described in the case study
above.

Figure 14(b) shows that the latency savings due to RoPE are not from
simply using more resources. In fact by avoiding wasteful work, RoPE speeds
up jobs while reducing cluster usage. At the 50th (75th) percentile, jobs use
1.2x (1.5x) fewer cluster hours with RoPE.

Figure 14(c) shows that while the volume of cross rack shuffle is lower
for some jobs, it stays the same for many and increases for only a few. This
is expected since while some of the optimizations enabled by RoPE lower
cross rack shuffle, others can increase it. Our optimization goal is to improve
job latency and hence, on all the other metrics, we only indirectly constrain
RoPE. Yet, we find that RoPE mostly achieves its gains by shuffling fewer
amounts of data across the network. Figure 15(b) shows a similar pattern
for the data read and written to disk. Figures 15(a) and 15(c) show that
RoPE’s plans mostly use fewer tasks and stages, though sometimes, for e.g.,
when offsetting the cost of UDOs, RoPE can use more tasks.

In summary, RoPE judiciously uses resources to improve job latency. Some
gains accrue from avoiding wasted work, others from trading a little more
of one type of resource for large savings on another while still others accrue
from balancing the parallel plans.
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(a) Reduction in # of Stages
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(b) Reduction in intermediate writes to disk
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(c) Reduction in # of Tasks

Figure 15: Aggregated results from production dataset (see 5.3)
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6 Related Work

Recent work on data-parallel cluster computing framework has mainly fo-
cused on solving issues that arise during the execution of jobs, by sharing
the cluster [13, 23], tackling outliers [1], fairness vs. locality [25] and network
scheduling [8]. Others incorporate new functionality such as the support for
iterative and recursive control flow [20]. Orthogonally, RoPE generates better
execution plans by leveraging data and execution insights.

The AutoAdmin project examined adapting physical database design,
e.g., choosing which indices to build and which views to materialize, based
on the data and queries.

Closer to us, is the work that adapts query plans based on data. Kabra
and DeWitt [16] were one of the earliest to propose a scheme that collects
statistics, re-runs the query optimizer concurrently with the query, and mi-
grates from the current query plan to the improved one, if doing so is pre-
dicted to improve performance. They mainly address the challenges of trad-
ing off re-optimization vs. doing actual work and of re-using the partial
executions from the old plan to avoid wasting work that is already done.
These challenges are easier in the context of map-reduce while collecting
statistics is harder due to the distributed setting. Further, RoPE explores
new opportunities arising due to the parallel nature of plans.

Eddies [2] adapts query executions at a much finer, per-tuple, granularity.
To do so, Eddies (a) identifies points of symmetry in the plan at which re-
ordering can happen without impacting the output, (b) creates tuple routing
schemes that adapt to the varying selectivity and costs of operators. RoPE

looks at a disjoint space of optimizations (choosing appropriate degrees of
parallelism and operator implementations), which are not easily cast into
Eddies’ tuple routing algorithm.

Starfish [12] examines Hadoop jobs, one map followed by one reduce,
and tunes low-level configuration variables in Hadoop such as io.sort.mb.
To do so, it constructs a what-if engine based on a classifier trained on
experiments over a wide range of parameter choices. Results show that the
prescriptions from Starfish improve on developer’s rules-of-thumb on non-
traditional servers (e.g., fewer memory or cores). RoPE is complementary
because (a) it applies to jobs that are more complex than a map followed
by a reduce, (b) explores a larger space of plans and (c) uses a cost-based
optimizer.
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7 Discussion

Recurring jobs are a first-order use case in our production system. We find
that RoPE achieves meaningful improvements to such jobs. However, it is
important to note that statistics from a run only cover sub-graphs of opera-
tions used in that execution plan. This information may not suffice to find
the optimal plan. After a few runs, we usually find all the necessary statis-
tics since each run can explore new parts of the search space. However, plans
chosen during this transition are not guaranteed to monotonically improve.
In fact, there are no general ways to bound the worst case impact from plans
chosen based on incomplete information. As a result, RoPE largely errs on
the side of very conservative changes.

We defer to future work some advanced techniques that choose plans given
uncertainity regimes over statistics or choose a set of plans, each of which
has an associated validity range specified over statistics, and switch between
these plans at runtime depending on the observed statistics [3]. Clearly these
techniques are more complex than RoPE, the risks from picking worse plans
are larger here, and to the best of our knowledge using these ideas in the
context of parallel plans is an open problem.

8 Final Remarks

Results from a deployment in Bing show that leveraging properties of the
data, the code and their interaction significantly improves the execution of
data parallel programs. The improvements derive from using statistics to
generate better execution plans. Note that these improvements are mostly
orthogonal to those from solving runtime issues during the execution of the
plans (e.g., outliers, placing tasks). They are also in addition to those accrued
by a context-blind query optimizer over literally executing the programs as
specified by the users.

While RoPE leverages database ideas, we believe that the realization in
the context of data parallel programs is interesting due to challenges that are
new (e.g., distributed collection), or are more important in this context (e.g.,
user defined operations) and novel opportunities for improvement (e.g., re-
curring jobs, little data and the optimizations specific to parallel plans such
as choosing degree of parallelism to achieve balance).
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