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1 Introduction
The task of object recognition has made significant advances in the past decade and crucial to this
success has been the creation of large datasets. Unfortunately, these successes have been limited
to the use of intensity images and have chosen to ignore the very important cue of depth. Depth
has long been thought to be an essential part of successful object recognition, but the reliance on
large datasets has minimized the importance of depth. Collection of large datasets of intensity
images is no longer difficult with the wide spread availability of images on the web and the relative
ease of annotating datasets using Amazon Mechanical Turk. Recently, there has been a resurgence
of interest in available 3-D sensing techniques due to advances in active depth sensing, including
techniques based on LIDAR, time-of-flight (Canesta), and projected texture stereo (PR2). The
Primesense sensor used on the Microsoft Kinect [4] gaming interface offers a particularly attractive
set of capabilities, and is quite likely the most common depth sensor available worldwide due to
its rapid market acceptance (8 million Kinects were sold in just the first two months).

There is a large body of literature on instance recognition using 3-D scans from the com-
puter vision and robotics communities. However, there are surprisingly few existing datasets for
category-level 3-D recognition, or for recognition in cluttered indoor scenes, despite the obvious

Figure 1: Two scenes typical of our dataset.
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Figure 2: Typical scenes found in the B3DO. The intensity image is shown on the left, the depth
image on the right.

importance of this application to both communities. As reviewed below, published 3-D datasets
have been limited to instance tasks, or to a very small numbers of categories. Described here is the
Berkeley 3-D Object dataset (B3DO) [21], a dataset for category level recognition, collected using
the Kinect sensor in domestic and office environments. Figures 1 and 2 shows images represen-
tative of B3DO. The dataset has an order of magnitude more variation than previously published
datasets. Since B3DO was collected using Kinect hardware, which uses active stereo sensing,
the quality of the depth scans is much higher than in datasets based on passive stereo or sparsely
sampled LIDAR. The dataset is available at http://www.kinectdata.com.

As with existing 2-D challenge datasets such as the Pascal VOC [12], B3DO has considerable
variation in pose and object size, with objects covering a range of sizes from nearly 5% to almost
75% of image width. An important observation the dataset enables is that the actual world size
distribution of objects has less variance than the image-projected, apparent size distribution. The
statistics of these and other quantities for categories in the dataset are reported in Section 3.4.

A key question is what value does depth data offer for category level recognition? Conventional
wisdom is that ideal 3-D observations provide strong shape cues for recognition, but in practice
even the cleanest 3-D scans may reveal less about an object than available 2-D intensity data.
Numerous schemes for defining 3-D features analogous to popular 2-D features for category-level
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recognition have been proposed and can perform in uncluttered domains. Section 4 evaluates the
application of histogram of gradients (HOG) descriptors on 3D data and evaluates the benefit of
such a scheme on our dataset. Observations about world size distribution can also be used to
place a size prior on detections, which can improve detection performance as evaluated by average
precision, as well as provide a potential benefit for detection efficiency.

For more significant performance improvements, features besides HOG must be explored.
Much of the recent success of object recognition based solely on intensity images begins with
the use of features derived from histograms of gradients. Detectors such as the deformable parts
model proposed by Felzenszwalb et al. [14] begin with feature inspired by the HOG features de-
scribed by Dalal and Triggs [10]. Such features have been demonstrated to have some success
when used on range images [23] as shown in Section 4, but the feature was not originally designed
to be used as a depth descriptor. In fact, a gradient based descriptor tends to identify discontinuities
in depth, which in many cases is very similar to the representation that is learned by computing
HOG features on intensity images. Despite this, there will be some differences in the features com-
puted using gradients on intensity and range images and both will be useful at times. For example,
in Figure 3 the back of the office chair would be easier to identify using HOG on the depth image.

Merely identifying discontinuities in depth does not capture much of the signal provided by
depth. For example, an important characteristic of a bowl, like the one in Figure 3, is that it is
concave on the inside, something that will not be captured by HOG on range images. There have
been a number of features proposed for depth as described in Section 2.3, including both local
features such as spin images [22], 3D shape context [16], the VFH model [27] and the features
used for pose estimation in the Microsoft Kinect [28].

This work proposes that the proper feature to use in coordination with HOG should be similar,
but instead of being based on first order statistics and gradients, should be based on second order
statistics or curvature. Curvature is an appealing concept because the same surface in a range
image will have the same Gaussian and mean curvature from any viewpoint under orthographic
projection. This is because both Gaussian and mean curvature encode the first and second principal
curvature in a way that is invariant to rotation, translations and changes in parameterization [6].
The curvature based feature, which we call a histogram of curvature or HOC, would be able to
capture the fact that a bowl is concave on the inside, while maintaining the spatial binning that is
appealing in HOG.

2 Related Work
There have been numerous previous efforts in collecting datasets with aligned 2D and 3D obser-
vations for object recognition and localization. Below is a review of the most pertinent ones, and a
brief highlight of how B3DO is different. Also included in this section is a summary of related past
work in 2D object recognition as well as an overview of previous work targeting the integration of
2D appearance and depth modalities.

2.1 3D Datasets for Detection
We present an overview of previously published datasets that combine 2D and 3D observation and
contrast our dataset from those previous efforts:
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Figure 3: The office chair on top illustrates an example where the depth discontinuities identified
by HOG on a depth image would offer additional information not as easily identified from the
intensity image. The bowl on the bottom shows an example where gradients on the depth image
would not be expected to yield much that could not be understood from the intensity image.
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RGBD-dataset of [23]: This dataset from Intel Research and University of Washington fea-
tures 300 objects in 51 categories. The category count refers to nodes in a hierarchy, with, for
example, coffee mug having mug as parent. Each category is represented by 4 to 6 instances,
which are densely photographed on a turntable. For object detection, only 8 short video clips are
available, which lend themselves to evaluation of just 4 categories (bowl, cap, coffee mug, and
soda can) and 20 instances. There does not appear to be significant viewpoint variation in the
detection test set.

UBC Visual Robot Survey [3, 20]: This dataset from University of British Columbia provides
training data for 4 categories (mug, bottle, bowl, and shoe) and 30 cluttered scenes for testing.
Each scene is photographed in a controlled setting from multiple viewpoints.

3D table top object dataset [30]: This dataset from University of Michigan covers 3 categories
(mouse, mug and stapler) and provides 200 test images with cluttered backgrounds. There is no
significant viewpoint variation in the test set.

Solutions in Perception Challenge [2]: This dataset from Willow Garage forms the challenge
which took place in conjunction with International Conference on Robotics and Automation 2011,
and is instance-only. It consists of 35 distinct objects such as branded boxes and household cleaner
bottles that are presented in isolation for training and in 27 scenes for test.

Max Plank Institute Kinect dataset [8]: This dataset was designed for category level recog-
nition and contains 82 objects for training and 72 objects for testing across 14 different categories.
Objects were photographed densely in isolation for both training and testing. The same object (but
at a different viewing angle) was included in both the training and test sets.

Indoor Scene Segmentation dataset [29]: This dataset from NYU includes videos of 64
different scenes in 7 different types of rooms. Approximately 2300 of the 100,000 frames are
segmented into regions.

Other datasets: Beyond these, other datasets have been made available which do include
simultaneous capture of image and depth but serve more specialized purposes like autonomous
driving [1], pedestrian detection [11] and driver assistance [32]. Their specialized nature means
that they cannot be leveraged for the multi-object category localization task that is our goal.

In contrast to all of these datasets, B3DO contains both a large number of categories and many
different instances per category. In addition, it is photographed “in the wild” instead of in a con-
trolled turntable setting, and has significant variation in lighting and viewpoint throughout the set.
For an illustration, consider Figure 4, which presents examples of the “chair” category in B3DO.
These qualities make B3DO more representative of the kind of data that can actually be seen in
people’s homes; data that a domestic service robot would be required to deal with and use for
online training.

2.2 2D Object Recognition
Robust multi-class object detection is a fundamental challenge in computer vision, and the litera-
ture on it is extensive. A common approach to detection employs a sliding window over the image,
with each window considered for the presence of an object of a given object class. Efficiency of
detection may be improved by employing cascades of detectors [31], or by window location and
scale pruning [24].

Within a window, the image is featurized for input into the classifier. Empirical success has
been found in features that encode spatial histograms of gradient orientations [25, 10]. Such fea-
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Figure 4: Instances of the “chair” class in our dataset, demonstrating the diversity of object types,
viewpoint, and illumination.
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tures achieve some invariance to slight viewpoint changes by spatially aggregating gradients, and
to illumination differences by engineered normalization schemes. A classic combination of slid-
ing window detection and gradient statistics-based local features is the Dalal-Triggs detector [10],
which learns object categories as single filters over HOG features, and then applies the filter at
all positions and scales in the image. The power of the PASCAL 2006-winning detector seems to
come from the normalization scheme of its features.

The restriction to a single template per category was lifted most notably by Deformable Part
Models [14], which keep HOG features, but enrich the Dalal-Triggs model to star-structured part-
based models consisting of a root filter, part filters, and associated deformations. In addition,
multiple such models may be learned per category, enabling increased discriminative power for
different views of objects. These models may be learned from only object-class bounding boxes
using a semi-convex optimization over part deformations. Due to the public availability of code and
good detection performance, the detection experiments in Section 4 were based on the Deformable
Part Models approach.

2.3 3D and 2D/3D Recognition
There have been a number of 3D features proposed for object recognition as well as a number of
systems that combine intensity images with depth for object recognition. Although this is by no
means an inclusive list, some local 3D features that have been proposed include spin images [22],
3D shape context [16], and the VFH model [27]. Both spin images and 3D shape context define
a support region around interest points and then compute a histogram centered at that point. The
support region is oriented with the surface normal in both cases, but for spin images the support
region is a cylinder and for 3D shape context it is a sphere. For spin images the cylinder is broken
up into bins radially and with the cylinders height. In contrast, 3D shape context breaks up the
sphere into bins in the azimuth, elevation and radial dimensions, thus unlike spin images, 3D
shape context is not rotationally invariant. Recently, Shotten et al [28] proposed a pose detector
based on a random forest of decision trees. The features used in the trees examine a specific point
and compare its depth to two other points to traverse the tree.

A number of 2D/3D hybrid approaches have been recently proposed, and B3DO should be a
relevant testbed for these methods. A multi-modal object detector in which 2D and 3D are traded
off in a logistic classifier is proposed by [17]. Their method leverages additional handcrafted
feature derived from the 3D observation such as “height above ground” and “surface normal”,
which provide contextual information. [30] shows how to benefit from 3D training data in a voting
based method. Fritz et al. [15] extends branch and bound’s efficient detection to 3D and adds size
and support surface constraints derived from the 3D observation.

Most prominently, a set of methods have been proposed for fusing 2D and 3D information
for the task of pedestrian detection. The popular HOG detector [10] to disparity-based features
is extended by [19]. A late integration approach is proposed by [26] for combining detectors on
the appearance as well as depth image for pedestrian detection. Instead of directly learning on
the depth map, [32] uses a depth statistic that learns to enforce height constraints of pedestrians.
[11] explores pedestrian detection by using stereo and temporal information in a hough voting
framework also using scene constraints. Recently, Lai et al. [23] evaluated object detection of a
challenging dataset collected with the Kinect. They combined three features: HOG on intensity
images, HOG on depth images and a histogram calculated based on the estimated scale of an
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Figure 5: The Microsoft Kinect sensor [4].

object. They found the combination of the three features yields significantly improved results over
a detector based solely on intensity images.

3 The Dataset
The Berkeley 3D Object Dataset is a large-scale dataset of images taken in domestic and office
settings with the commonly available Kinect sensor. The sensor provides a color and depth image
pair, and is processed for alignment and inpainting (see Section 3.3). The data was collected by
many members of the research community, as well as an Amazon Mechanical Turk (AMT) worker,
providing an impressive variety in scene and object appearance. As such, the dataset is intended
for evaluating approaches to category-level object recognition and localization.

The dataset was collected with ten different Kinects that were taken to the homes and offices
of 19 different volunteers who collected 849 images from 75 different scenes or rooms. Volunteers
were given relatively simple instruction on how specifically to collect images. They were told a list
of objects that would be labeled and were told to take images that did not looked staged containing
one or more of these objects. Obviously, the more restrictive the instructions for collection are, the
more difficult it is to gather data. The hope was that simple instructions would enable the dataset
to grow more by using AMT workers for collection. This turned out to be more difficult than
anticipated, which is discussed in Section 4.

Over 50 different object classes are represented in the dataset by crowd-sourced labels. The
annotation was done by AMT workers in the form of bounding boxes on the color image, which
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are automatically transferred to the depth image.

3.1 Data Annotation
Crowd sourcing on AMT was used to label the data collected. AMT is a well-known service for
“Human Intelligence Tasks” (HIT), which are typically small tasks that are too difficult for current
machine intelligence. Our labeling HIT gives workers a list of eight objects to draw bounding
boxes around in a color image. Each image is labeled by five workers for each set of labels in order
to provide sufficient evidence to determine the validity of a bounding box. A proposed annotation
or bounding box is only deemed valid if at least one similarly overlapping bounding box is drawn
by another worker. The criteria for similarity of bounding boxes is based on the PASCAL VOC
[12] overlap criterion (described in more detail in Section 4.1), with the acceptance threshold set
to 0.3. If only two bounding boxes are found to be similar, the larger one is chosen. If more than
two are deemed similar, the bounding box which overlaps the most with the other bounding boxes
is kept, and rest are discarded.

3.2 The Kinect Sensor
The Microsoft Xbox Kinect [4] was originally designed as a video game peripheral designed for
controller-free gaming through human pose estimation and gesture recognition. The sensor (Figure
5) consists of a horizontal bar with cameras, a structured light projector, an accelerometer and an
array of microphones mounted on a motorized pivoting foot. Since its release in November 2010,
much open source software has been released allowing the use of the Kinect as a depth sensor
[9]. Across the horizontal bar are two sensors, an infrared camera and a RGB camera (640 x 480
pixels). Depth is measured using a laser projector that projects a structured light pattern on the
surface to be sensed by the infrared camera. The depth range is approximately 0.6 to 6.0 meters.
[4]. Depth reconstruction uses proprietary technology from Primesense, consisting of continuous
infrared structured light projection onto the scene.

The Kinect color and infrared cameras are a few centimeters apart horizontally, and have differ-
ent intrinsic and extrinsic camera parameters, necessitating their calibration for proper registration
of the depth and color images. Calibration parameters differ significantly from unit to unit, which
poses a problem to totally indiscriminate data collection. Fortunately, the calibration procedure is
made easy and automatic due to efforts of the open source community [9, 7].

3.3 Smoothing Depth Images
The structured-light method used for recovering ground-truth depth-maps necessarily creates areas
of the image that lack an estimate of depth. In particular, glass surfaces and infrared-absorbing
surfaces can be missing in depth data. Tasks such as getting the average depth of a bounding box,
or applying a global descriptor to a part of the depth image therefore benefit from some method for
“inpainting” this missing data.

This work assumes that proper inpainting of the depth image requires some assumption of
the behavior of natural shapes and that objects have second order smoothness (that curvature is
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Figure 6: Illustration of our depth smoothing method.
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Figure 7: Object frequency for 39 classes with 20 or more examples.

minimized)—a classic prior on natural shapes [18, 34]. In short, the inpainting algorithm mini-
mizes

�h ∗ Z�2F + �hT ∗ Z�2F (1)

with the constraints Zx,y = Ẑx,y for all (x, y) ∈ Ẑ, where h = [−1,+2,−1], is an oriented 1D
discrete Laplacian filter, ∗ is a convolution operation, and �·�2F is the squared Frobenius norm.
The solution to this optimization problem is a depth-map Z in which all observed pixels in Ẑ
are preserved, and all missing pixels have been filled in with values that minimize curvature in
a least-squares sense. This problem is occasionally ill-conditioned near the boundaries of the
image, so a small additional regularization term is introduced for first-order smoothness. For
speed considerations, the hard constraints in the problem above are relaxed to heavily penalized
soft constraints, and solve the induced least-square problem.

Figure 6 illustrates this algorithm operating on a typical input image with missing depth in
B3DO to produce the smoothed output.

3.4 Data Statistics
The distribution of objects in household and office scenes as represented in B3DO is shown in
Figure 7. The typical long tail of unconstrained datasets is present, and suggests directions for
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targeted data collection. There are 12 classes with more than 70 examples, 27 classes with more
than 30 examples, and over 39 classes with 20 or more examples.

Unlike other 3D datasets for object recognition, B3DO features large variability in the appear-
ance of object class instances. This can be seen in Figure 4, presenting random examples of the
chair class in the dataset; the variation in viewpoint, distance to object, frequent presence of partial
occlusion, and diversity of appearance in this sample poses a challenging detection problem.

The apparent size of the objects in the image, as measured by the bounding box containing
them, can vary significantly across the dataset. The real-world size of the objects in the same class
varies far less, as can be seen in Figure 8. As a proxy for the real-world object size, the product of
the diagonal of the bounding box l and the distance to the object from the camera D is used, which
is roughly proportional to the world object size by similar triangles (of course, viewpoint variation
slightly scatters this distribution–but less so than for the bounding box size).

This work found that mean smoothed depth is roughly equivalent to the median depth of the
depth image ignoring missing data, and so this is used to measure distance. The Gaussian was
found to be a close fit to these size distributions, allowing estimation of the size likelihood of a
bounding box as N (x|µ, σ)), where µ and σ are learned on the training data. This result will be
used further in Section 4.3.

4 Detection Baselines
The cluttered scenes of B3DO provide for a challenging object detection task, where the task is to
localize all objects of interest in an image. Here, the task is constrained to finding eight different
object classes: chairs, monitors, cups, bottles, bowls, keyboards, computer mice, and phones.
These object classes were among the most well-represented in our dataset.1

4.1 Sliding window detector
The baseline system is based on a standard detection approach of sliding window classifiers oper-
ating on a gradient representation of the image [10, 14, 33]. Such detectors are currently the state
of the art on cluttered scene datasets of varied viewpoints and instance types, such as the PASCAL-
VOC challenge [12]. The detector considers windows of a fixed aspect ratio across locations and
scales of an image pyramid and evaluates them with a score function, outputting detections that
score above some threshold.

Specifically, the implementation of the Deformable Part Model detector [14] is followed. This
uses the LatentSVM formulation

fβ(x) = max
z

β · Φ(x, z) (2)

for scoring candidate windows, where β is a vector of model parameters and z are latent values
(allowing for part deformations). Optimizing the LatentSVM objective function is a semi-convex
problem, and so the detector can be trained even though the latent information is absent for negative
examples.

1We chose not to include a couple of other well-represented classes into this test set because of extreme variation
in interpretation of instances of object by the annotators, such as the classes of “table” and “book.”
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Figure 8: Statistics of object size. For each object class, the top histogram is inferred world object
size, obtained as the product of the bounding box diagonal and the average depth of points in the
bounding box. The bottom histogram is the distribution of just the diagonal of the bounding box
size. (Note the difference in scale on the x-axis for these histograms)
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Since finding good negative examples to train on is of paramount importance in a large dataset,
the system performs rounds of data mining for small samples of hard negatives, providing a prov-
ably exact solution to training on the entire dataset.

To featurize the image, HOG with both contrast-sensitive and contrast-insensitive orientation
bins, four different normalization factors, and 8-pixel wide cells is used. The descriptor is analyti-
cally projected to just 31 dimensions, motivated by the analysis in Felzenszwalb et al. [14].

Two feature channels for the detector are explored. One consists of featurizing the color image,
as is standard. For the other, this work applies HOG to the depth image (Depth HOG), where the
intensity value of a pixel corresponds to the depth to that point in space, measured in meters.
This application of a gradient feature to depth images has little theoretical justification, since first-
order statistics do not matter as much for depth data (this is why we use second-order smoothing
in Section 3.3). Yet this is an expected first baseline that also forms the detection approach on
some other 3D object detection tasks, such as in [23]. Section 5 will explore features based on
second-order statistics.

Detections are pruned by non-maximum suppression, which greedily takes the highest-scoring
bounding boxes and rejects boxes that sufficiently overlap with an already selected detection. This
procedure results in a reduction of detections on the order of ten, and is important for the evaluation
metric, which penalizes repeat detections.

4.2 Evaluation
Evaluation of detection is done in the widely adopted style of the PASCAL detection challenge,
where a detection is considered correct if

area(B ∩G)

area(B ∪G)
> 0.5 (3)

where B is the bounding box of the detection and G is the ground truth bounding box of the same
class. Only one detection can be considered correct for a given ground truth box, with the rest
considered false positives. Detection performance is represented by precision-recall (PR) curves,
and summarized by the area under the curve–the average precision (AP). Evaluation is done on six
different splits of the dataset, averaging the AP numbers across splits.

The goal of this work is category, not instance-level recognition. As such, it is important to keep
instances of a category confined to either training or test set. This makes the recognition task much
harder than if training on the same instances of a category as exists in the test set was allowed (but
not necessarily the same views of them). To enforce this constraint, images from the same scene
or room are never in both the training and test sets. This is a harder constraint than needed, and is
not necessarily perfect (for example many different offices might contain the same model laptop).
As there is no scalable way to provide per-instance labeling of a large, crowd-sourced dataset of
cluttered scenes, this method is settled upon, and keep the problem open for further research.

Figure 9 shows the detector performance on 8 different classes. Note, depth HOG is never
better than HOG on the 2D image. This can be attributed to the inappropriateness of a gradient
feature on depth data, as mentioned earlier, and to the fact that due to the limitations of the infrared
structured light depth reconstruction, particular objects (such as monitors) tend to have significant
missing depth data. Figure 10 provides an illustration of cases in which objects are missing depth
data, along with objects from the same class which are missing much less depth data.
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Figure 9: Performance of the baseline detector on our dataset, as measured by the average preci-
sion. Depth HOG fails completely on some categories, for reasons explained in the text.

4.3 Pruning and rescoring by size
In Section 3.4, the distributions of object size demonstrated that true object size, even as approx-
imated by the product of object projection in the image and median depth of its bounding box,
varies less than bounding box size. In the following, two ways of using approximated object size
as an additional source of discriminative signal to the detector are investigated.

The first way of using size information consists of pruning candidate detections that are suf-
ficiently unlikely given the size distribution of that object class. The object size distribution is
modeled with a Gaussian, which is a close fit to the underlying distribution; the Gaussian param-
eters are estimated on the training data only. Boxes that are more than σ = 3 standard deviations
away from the mean of the distribution are pruned.

Figure 11 shows that the pruning results provide a boost in detection performance, while re-
jecting from 12% to 68% of the suggested detection boxes (on average across the classes, 32% of
candidate detections are rejected). This observation can be leveraged as part of an “objectness”
filter or as a thresholding step in a cascaded implementation of this detector for detection speed
gain [5, 13]. The classes chair and mouse are the two classes most helped by size pruning, while
monitors and bottle are the least helped.
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Figure 10: Top set of examples show good depth data for the objects. Bottom set of examples
shows examples of missing depth data for objects of the same classes.

Using bounding box size of the detection (as measured by its diagonal) instead of inferred
world size results in no improvement to AP performance on average. Two classes that are most
hurt are bowl and plate; two that are least hurt by the bounding box size pruning are bottle and
mouse.

The second way we use size information consists of learning a rescoring function for detections,
given their SVM score and size likelihood. A simple combination of the two values is learned:

s(x) = exp(α log(w(x)) + (1− α) log(N (x|µ, σ))) (4)

where w(x) = 1/(1 + exp(−2fβ(x))) is the normalized SVM score, N (x|µ, σ)) is the likelihood
of the inferred world size of the detection under the size distribution of the object class, and α is a
parameter learned on the training set. This corresponds to unnormalized Naive Bayes combination
of the SVM model likelihood and object size likelihood. Since what matters for the precision-recall
evaluation is the ordering of confidences and whether they are normalized is irrelevant, s(x) can
be evaluated.
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Figure 11: Effect on the performance of our detector shown by the two uses of object size we
consider.

As Figure 12 demonstrates, the rescoring method works better than pruning. This method is
able to boost recall as well as precision by assigning a higher score to likely detections in addition
to lowering the score (which is, in effect, pruning) of unlikely detections.

5 A Histogram of Curvature (HOC)
The previous section demonstrated how HOG could be used to featurize range images. As men-
tioned earlier, this is not the ideal use of HOG since it is designed to be used on intensity images.
This work seeks to define a feature representation analogous to HOG that is more appropriate for
range images. Curvature is an appealing feature to work with when range data is available because
it is potentially less sensitive to changes in viewpoint than gradient based descriptors (such as
HOG). As mentioned in the introduction, a surface in a range image will have the same Gaussian
and mean curvature from any viewpoint under orthographic projection.
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Figure 12: Average percentage of past-threshold detections pruned by considering the size of the
object. The light gray rectangle reaching to 32% is the average across classes. In both cases, error
bars show standard deviation across six different splits of the data.
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5.1 Curvature
Curvature is a measurement of the rate of change of the orientation of the tangent vector to a curve.
In the case of a surface, the curvature can be measured at any point P by computing the curvature
for all curves along the surface passing through P . The principal curvatures for this point P is the
maximum (K1) and minimum (K2) curvature for all curves passing through P . To further reduce
curvature to a single measurement one can either calculate Gaussian curvature,

Kgauss = K1K2 (5)

or mean curvature,
Kmean = (K1 +K2)/2 (6)

The sign of the Gaussian and mean curvature are enough to characterize the surface at a point P
into one of eight fundamental surface types: peak, pit, ridge, valley, saddle ridge, saddle valley, flat
or minimal [6]. Table 5.1 shows which type of surface is present for different values of Gaussian
and mean curvature.

Kgauss > 0 Kgauss = 0 Kgauss < 0
Kmean < 0 Peak Ridge Saddle Ridge
Kmean = 0 Flat Minimal
Kmean > 0 Pit Valley Saddle Valley

Table 1: Different types of surfaces that are possible depending on the value of the surfaces mean
and Gaussian curvature at a particular point.

5.2 HOC
The first step in compute a histogram of curvature is to compute curvature at every pixel. A simple
computation of curvature using second derivatives is very sensitive to noise and the Kinect sensor is
by no means a noiseless sensor. As a first attempt to remove noise, range images are smoothed us-
ing a simple convolution with an averaging filter. This type of preprocessing is commonly used by
the computer vision community before processing intensity images. In order to further overcome
the obstacle of noise, Besl describes how Gaussian and mean curvature can be computed robustly
for points on a surface [6]. The equations below are from the method described in [6], with the
only modification being the following 3 x 3 filter windows are used instead of 7 x 7 windows.

Fu = 1/8




1 0 −1
2 0 −2
1 0 −1





Fv = 1/8




1 2 1
0 0 0
−1 −2 −1





Fuu = 1/4




1 −2 1
2 −4 2
1 −2 1
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Fvv = 1/4




1 2 1
−2 −4 −2
1 2 1





Fuv = 1/4




1 0 −1
0 0 0
−1 0 1





These filters are then convolved (denoted by ∗) with the depth Z to produce intermediate values
that can be used to compute mean and gaussian curvatures in equations 8 and 9:

gu(i, j) =Fu ∗ Z(i, j) gv(i, j) = Fv ∗ Z(i, j)

guu(i, j) =Fuu ∗ Z(i, j) gvv(i, j) = Fvv ∗ Z(i, j)

guv(i, j) =Fuv ∗ Z(i, j) (7)

Kmean(i, j) =
(1 + g2v(i, j))guu(i, j) + (1 + g2u(i, j))gvv(i, j)− 2gu(i, j)gv(i, j)guv(i, j)

2(
�
1 + g2u(i, j) + g2v(i, j))3

(8)

Kgauss(i, j) =
guu(i, j)gvv(i, j)− g2uv(i, j)

(1 + g2u(i, j) + g2v(i, j))2
(9)

After computing both Gaussian and mean curvature at every point in the range image, the goal
is to compute some sort of histogram over a window of the image based on curvature. This work
experiments with four different types of features with varying number of bins.

The feature vector for each window is actually computed for a pyramid of different resolution
windows similarly to [14]. For each of the different variations of HOC, the first step in computing
a feature vector for a particular level of the pyramid is to divide the window into spatial bins, or
cells. More specifically the number of cells in the horizontal direction is equal to w/k, where w
is the width of the window and k is some constant, in this case k = 8. The number of cells in
the vertical direction is equal to h/k, where h is the height of the window. A histogram is then
computed for each cell and the resulting histograms for each cell and each level of the pyramid are
concatenated to create a feature vector for the entire window.

The first HOC methods are inspired by the fact that mean curvature might be a sufficient feature
because if the boundary of a curve is specified, mean curvature uniquely determines the shape of
the surface [6]. Since noise is such a concern when computing curvature the first two HOC features
are not actually histograms, but simply averages over a spatial area. For each spatial cell(i,j), the
average mean curvature is computed as

acurv(i, j) =

�
pixel(x,y)∈cell(i,j) Kmean(x, y)�

pixel(x,y)∈cell(i,j) 1
(10)

A single number is assigned for that cell based on the average:

HOC1(i, j) =






−1 if acurv(i, j) < −t
0 if − t < acurv(i, j) < t
1 if acurv(i, j) > t

(11)
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Experiments were also conducted using two thresholds instead of just one. Using one threshold
assigns negative, zero and positive curvature to different values (or in the case of the histograms
below, different bins). Using two thresholds assigns strongly negative, weak negative, zero, weak
positive and strongly positive curvature to different values. This is a intuitively desirable effect
because it might bin depth discontinuities (strong curvature) into different bins than small changes
in curvature that can be seen within the edges of an object. This intuition leads to the hypothesis
that, without two thresholds the features would be dominated by the strong curvature at depth
discontinuities, thus making HOC similar to HOG on a range image. Obviously, this should be
avoided so the second HOC feature is assigned using two thresholds:

HOC2(i, j) =






−2 if acurv(i, j) < −t2
−1 if − t2 < acurv(i, j) < −t1
0 if − t1 < acurv(i, j) < t1
1 if t1 < acurv(i, j) < t2
2 if acurv(i, j) > t2

(12)

Since the features described in equations 11 and 12 are not actually histograms, the following
similar features to be experimented with are actually histograms of the average curvature in a
spatial bin:

HOC3(i, j, 1) =

�
1 if acurv(i, j) < −t
0 otherwise

HOC3(i, j, 2) =

�
1 if − t < acurv(i, j) < t
0 otherwise

HOC3(i, j, 3) =

�
1 if acurv(i, j) > t
0 otherwise

(13)

As before a fourth feature that uses two thresholds instead of one can be defined:

HOC4(i, j, 1) =

�
1 if acurv(i, j) < −t2
0 otherwise

HOC4(i, j, 2) =

�
1 if − t2 < acurv(i, j) < −t1
0 otherwise

HOC4(i, j, 3) =

�
1 if − t1 < acurv(i, j) < t1
0 otherwise

HOC4(i, j, 4) =

�
1 if t1 < acurv(i, j) < t2
0 otherwise

HOC4(i, j, 5) =

�
1 if acurv(i, j) > t2
0 otherwise

(14)

Of course, averaging might not be the right solution, a lot of signal might be lost in attempts
to denoise. As mentioned before, Gaussian curvature may or may not be useful, so the following
HOC features continue to use just mean curvature (Kmean). (Gaussian curvature will be used later.)
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In the following feature descriptor, instead of averaging, a true histogram is computed by counting
the number of pixels in each cell that fall into each of the three bins of the histogram:

HOC5(i, j, 1) =
�

pixel(x,y)∈cell(i,j)

(Kmean(x, y) < −t)

HOC5(i, j, 2) =
�

pixel(x,y)∈cell(i,j)

(−t < Kmean(x, y) < t)

HOC5(i, j, 3) =
�

pixel(x,y)∈cell(i,j)

(Kmean(x, y) > t) (15)

As before, a five bin version of the feature vector can also be formulated:

HOC6(i, j, 1) =
�

pixel(x,y)∈cell(i,j)

(Kmean(x, y) < −t2)

HOC6(i, j, 2) =
�

pixel(x,y)∈cell(i,j)

(−t2 < Kmean(x, y) < −t1)

HOC6(i, j, 3) =
�

pixel(x,y)∈cell(i,j)

(−t1 < Kmean(x, y) < t1)

HOC6(i, j, 4) =
�

pixel(x,y)∈cell(i,j)

(t1 < Kmean(x, y) < t2)

HOC6(i, j, 5) =
�

pixel(x,y)∈cell(i,j)

(Kmean(x, y) > t2) (16)

After experimenting with different thresholds, we found empirically that t = t1 = 0.005 and
t2 = 0.05 worked best.

Finally, it is necessary to evaluate feature descriptors that use Gaussian curvature as well as
mean curvature. To do this additional bins must be added to either HOC5 or HOC6. A six bin
histogram of mean and gaussian curvature (Kgauss) is computed as follows:

HOC7(i, j, k) = HOC5(i, j, k) for k = 1, 2, 3

HOC7(i, j, 4) =
�

pixel(x,y)∈cell(i,j)

(Kgauss(x, y) < −tg)

HOC7(i, j, 5) =
�

pixel(x,y)∈cell(i,j)

(−tg < Kgauss(x, y) < tg)

HOC7(i, j, 6) =
�

pixel(x,y)∈cell(i,j)

(Kgauss(x, y) > tg) (17)

A similar feature descriptor (HOC8) can be computed for a 8 bin histogram using two thresh-
olds for mean curvature:

HOC8(i, j, k) = HOC6(i, j, k) for k = 1, 2, 3, 4, 5 (18)

HOC8(i, j, k) = HOC7(i, j, k − 2) for k = 6, 7, 8 (19)

We found empirically that tg = 0.00005 worked well.
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6 Histogram of Curvature Experiments

6.1 Experimental Setup and Baselines
All the experiments in this section are based on a sliding window linear SVM classifier trained
in two phases, one using random negative examples and one using “hard” negatives generated us-
ing the code from Felzenszwalb et al. [14]. Two mirrored models are trained for each class and
windows are constrained to a fixed aspect ratio but varying position and scale. All features are
evaluated as a pyramid of scales. In contrast to the experiments in Section 4, the models com-
puted in this section were not based on the deformable parts model. As in Section 4, nonmaximal
suppression is used at test time and the same evaluation paradigm (equation 3) is used.

Two baselines were performed, both based on the use of a HOG feature descriptor that uses
both contrast-sensitive and contrast-insensitive bins, and four different normalization schemes [14].
The first baseline simply ignores depth and just computes HOG features for the color image. The
second baseline concatenates HOG features for both color and depth images.

Experimental results were computed for 16 different feature vectors. The first 8 consist of a
HOG feature descriptor for intensity image concatenated with one of the 8 different HOC features.
The second 8 features consist of the concatenation of HOG on the intensity image, HOG on the
range image and one of the eight HOC features.

6.2 Results
Figure 13 shows average precision (the area under a precision recall curve), for 8 different classes
of objects and all 16 feature vectors in addition to the two baselines (Intensity HOG and Intensity
HOG + Depth HOG). For most categories, using HOG on intensity images and depth images in
conjunction with HOC performed better than leaving out HOG on the depth images. The biggest
exception to this is for computer monitors. Most of the monitors in B3DO are turned off and are
thus completely black. The structured light sensor used by the Kinect does not always work well
for black objects, and monitors are an example of surface that often has significant missing data.
Thus, increased performance by adding a depth channel should not be expected.

In order to visualize results more clearly, Figure 14 shows results for only the features that
combine HOG on intensity and depth images with HOC, as well as the baselines. The most notice-
able result is that the best performance for bottle, chair, keyboard, monitor, computer mouse and
phone occurs when depth is ignored. There are positive results for the categories of cup and bowl.
For bowls, both HOC4 and HOC7 outperform the baseline that ignores depth by approximately
5% and the baseline that uses HOG on depth and no curvature by approximately 10%. Similar
results can be observed for cups, but for cups the best performing features are HOC6 and HOC7.
This result is somewhat intuitive, the shape of cups and bowls is very simple, and likely easier to
learn than the shape of more complicated objects like chairs and telephones.

7 Discussion
The Berkeley 3D Object Dataset provides a challenging dataset on which to test the ability of object
detectors to take advantage of 3D signal. This dataset provides a unique opportunity for researchers
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Figure 13: Average Precision for all sixteen different feature vectors as well as the two baselines.
Performance is averaged over 6 different splits of the data.

23



!"

!#
$"

!#
%"

!#
&"

!#
'"

!#
("

!#
)"

!#
*"

!#
+"

!#
,"

-.
//
01
"

-.
2
0"

34
56
7"

38
9"

:1
;-

.5
7<
"

=
.>

6/.
7"

=
.8

?1
"

94
.>

1"

!"#$%&#'($#)*+*,-'

(#
$.
,$
/
%-

)#
',
-'
0
12

3
'

@>
/1
>?

6/;
"A
B
C
"D
"E
19

/4
"A
B
C
"D
"A
B
FG

$"

@>
/1
>?

6/;
"A
B
C
"D
"E
19

/4
"A
B
C
"D
"A
B
FG

%"

@>
/1
>?

6/;
"A
B
C
"D
"E
19

/4
"A
B
C
"D
"A
B
FG

&"

@>
/1
>?

6/;
"A
B
C
"D
"E
19

/4
"A
B
C
"D
"A
B
FG

'"

@>
/1
>?

6/;
"A
B
C
"D
"E
19

/4
"A
B
C
"D
"A
B
FG

("

@>
/1
>?

6/;
"A
B
C
"D
"E
19

/4
"A
B
C
"D
"A
B
FG

)"

@>
/1
>?

6/;
"A
B
C
"D
"E
19

/4
"A
B
C
"D
"A
B
FG

*"

@>
/1
>?

6/;
"A
B
C
"D
"E
19

/4
"A
B
C
"D
"A
B
FG

+"

@>
/1
>?

6/;
"A
B
C
"

@>
/1
>?

6/;
"A
B
C
"D
"E
19

/4
"A
B
C
"

Figure 14: Similar to Figure 13, the chart shows performance just for the features that combine
HOG on the intensity image and depth image with a HOC feature.
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to test their methods in the face of large variation in pose and viewpoint. In addition, the lack of
dense training data (for example on a turntable) and the simple collection process enables this
dataset to continue to grow with contributions from the world outside the research community.

One difficult of continuing to grow the dataset is that obtaining volunteers willing and able to
collect is not easy. The concept of paying Kinect owners to collect data seems promising, but using
AMT as an avenue to find workers did not work as well as hoped. The first difficultly in paying
novices to collect data is that an easy to use software tool must be designed for collection. This
tool was produced by modifying software available online [9], but distributing the software turned
out to be difficult. AMT has rules against requiring workers to download software and our hit was
removed when we inadvertently broke this rule. In addition to this difficulty, is the fact that most
AMT workers don’t own a Kinect and there is not way to target those that do. Finally, those that do
own a Kinect might not be looking for the kind of work that takes more set up time than the typical
AMT hit, even if the potential to earn more money is significant. It is quite possible that paying
for images is the right tack, but AMT is not the best source of workers. Advertising on websites
for Xbox or Kinect enthusiasts might be more successful. A video demonstrating the Kinect being
using for object recognition could be used to drum up excitement within the gaming, robotics or
hacking communities. We also discussed reaching out to undergraduates at our University who
could presumably be trusted to borrow a Kinect from the lab. Undergrads owning an Xbox but no
Kinect might be willing to collect data if they were paid and were also able to play with the Kinect
for a week or two. Future work could focus on exploring these opportunities in order to identify
the ideal way to find paid workers.

Section 4 demonstrated that techniques based on estimating the size of objects can be used to
slightly improve performance. Simple solutions such as computing a histogram of gradient for
range images can extract some of the information present in the range image but not all. In order
to extract all the available information from depth signal, features that can learn the shape of the
objects that one wishes to recognize must be used. To this end, this work proposes the histogram
of curvature, or HOC. Unfortunately, experiments with HOC in Section 6 have not been overly
successful and the results bring up some important questions:

• Why does adding features hurt performance? (This should not happen.)

• Why do only cups and bowls perform well using HOC?

• Which HOC feature is best?

The first question is perhaps the most important one. Adding features should not hurt classifi-
cation performance because at worst the classifier should learn to ignore the new feature if it isn’t
helpful. Before even adding HOC, we can see that adding HOG on depth images decreases perfor-
mance across the board. This is contradictory to the results in [23], where it was shown that HOG
on depth images will increase performance significantly. (They use a different dataset in which the
training data consists of objects on a turntable. This setup provides much more training data which
is uncluttered and might account for their different results.) If adding new features is decreasing
performance it can be concluded that some over fitting to the training set is occurring, but what
can be done about it? One answer is that there needs to be a different regularizer, but preliminary
experiments with this idea yielded no results. Another possibility is that linear classifiers are not
powerful enough. HOG has been hand tuned with various normalization factors in order to work
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well with linear classifiers, but as HOC is missing this, it may require nonlinear kernels. In addi-
tion, by simply concatenating feature vectors, the fact that the three feature vectors were obtained
by different processes is lost. A multiple kernel learning framework may be better able to handle
the fact that there are in fact three feature vectors without simply concatenating them.

The second question is perhaps simpler. Why do cups and bowls actually perform well with
HOC? The answer is probably that they have a very simple shape and there is not a lot of variation
in pose or viewpoint since they are symmetrical in multiple directions. In fact, baseline perfor-
mance for bowls and cups is higher than all the other categories except for monitors. Our initial
inspiration to use curvature as a feature vector was motivated by simple shapes like bowls and
cups. The success of bowls and cups might also be related to the size of the dataset. More com-
plicated shapes will obviously require more data, and perhaps the dataset does not contain enough
examples of more complicated objects like chairs to learn their representation. Finally, the third
question is unanswerable at this point. There are not enough categories that performed well with
HOC to conclude which HOC feature is best.
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