
Communication-Avoiding Parallel Strassen:

Implementation and Performance

Benjamin Lipshitz
Grey Ballard
Oded Schwartz
James Demmel

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-90

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-90.html

May 11, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Research supported by Microsoft (Award #024263) and Intel (Award
#024894) funding and by matching funding by U.C. Discovery (Award
#DIG07-10227). Additional support comes from Par Lab affiliates National
Instruments, Nokia, NVIDIA, Oracle, and Samsung. Research is also
supported by DOE grants DE-SC0003959, DE-SC0004938, and DE-AC02-
05CH11231.

This research used resources of the Argonne Leadership Computing
Facility at Argonne National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under contract DE-AC02-
06CH11357.

Communication-Avoiding Parallel Strassen:
Implementation and Performance
Benjamin Lipshitz, Grey Ballard, James Demmel, and Oded Schwartz

Computer Science Division and Mathematics Department
UC Berkeley

Berkeley, California 94704
Email: {lipshitz,ballard,demmel,odedsc}@cs.berkeley.edu

Abstract—Matrix multiplication is a fundamental kernel of
many high performance and scientific computing applications.
Most parallel implementations use classical O(n3) matrix mul-
tiplication, even though there exist algorithms with lower arith-
metic complexity. We recently obtained a new Communication-
Avoiding Parallel Strassen algorithm (CAPS), based on Strassen’s
fast matrix multiplication, that minimizes communication (SPAA
’12). It communicates asymptotically less than all classical and
all previous Strassen-based algorithms, and it attains theoretical
lower bounds.

In this paper we show that CAPS is also faster in practice. We
benchmark and compare its performance to previous algorithms
on Hopper (Cray XE6), Intrepid (IBM BG/P), and Franklin
(Cray XT4). We demonstrate significant speedups over previous
algorithms both for large matrices and for small matrices on large
numbers of processors. We model and analyze the performance of
CAPS and predict its performance on future exascale platforms.

I. INTRODUCTION

Strassen’s algorithm is well-known for performing matrix
multiplication with asymptotically fewer floating point opera-
tions (flops) than the classical O(n3) algorithm. It is less well-
known that Strassen’s algorithm requires less data movement
(communication) as well. A theoretical lower bound for the
communication of Strassen’s algorithm is given in [5], and
the bound is asymptotically smaller than what is required for
the classical algorithm [13]. This bound applies to both the
sequential case, where communication is the movement of data
between main memory and cache, and the parallel case, where
communication is movement of data between processors.

In the sequential case, the lower bound is attained by the
cache-oblivious recursive algorithm [5], [10]. However, in the
parallel case, finding an algorithm that minimizes communi-
cation is not as straightforward. Several previous attempts to
use Strassen for parallel multiplication did not reduce com-
munication relative to classical algorithms and achieved only
modest speedups. In [3], we present a new Communication-
Avoiding Parallel Strassen algorithm (CAPS) which minimizes
communication: it communicates asymptotically less than all
classical and all previous Strassen-based algorithms, and it
attains the lower bound for parallel Strassen algorithms. There
we also show promising preliminary performance results.

In this paper, we demonstrate that CAPS achieves sig-
nificantly better performance than tuned implementations of

classical algorithms. We analyze the performance of our im-
plementation, compare to theoretical predictions, and identify
room for further performance improvement. Our main con-
clusion is that Strassen’s algorithm should be used in many
practical cases, and we believe it should be adopted into
parallel libraries.

We show that by using Strassen, it is possible to achieve
effective performance which exceeds the machine’s peak for
any classical implementation. We observe speedups over the
best classical implementations of up to 2×. In Section III
we benchmark and compare performance on three machines:
Hopper (Cray XE6), Intrepid (IBM BG/P), and Franklin
(Cray XT4). On all three machines we demonstrate significant
speedups over previous parallel classical and Strassen-based
algorithms for large matrices across the entire range of the
number of nodes. We also show speedups for communication-
bound multiplication of small matrices on large numbers of
processors. These speedups are especially significant consid-
ering how much effort is devoted to tuning classical matrix
multiplication to achieve speedups on the order of 10-20%.

In Section IV we model the performance of CAPS and
compare it to our benchmarks. This comparison validates
the qualitative theoretical conclusions drawn in [3] and also
identifies opportunities for further optimizations. Not only
does Strassen perform well on today’s machines, we expect
its advantage to grow in the future. Asymptotic analysis
shows that bigger problem sizes, more parallelism, and limited
local memory sizes all increase the communication savings
of Strassen’s compared with classical matrix multiplication.
Bigger problem sizes also increases the computational savings.
We discuss these predictions in more detail in Section IV-C.

However, there are drawbacks to Strassen’s algorithm and
to our CAPS implementation in particular. As we discuss in
Section VI-B, Strassen does not map as readily to current hard-
ware as does classical matrix multiplication. There are also
differences in the numerical stability properties of Strassen
and the classical algorithm. While the stability consequences
of using Strassen are often exaggerated, these issues have been
well understood [12], and we discuss them in Section VI-C.

II. ALGORITHM AND REVIEW

Let n, P, and M be the matrix dimension, number of
processors, and memory per processor, respectively.

A. Classical Parallel Algorithms

The most common algorithms for parallel matrix multipli-
cation are Cannon’s algorithm [8] and SUMMA [18]. Both of
these algorithms are considered “2D” algorithms as the proces-
sor grid is organized in two dimensions and communication
occurs among processors in the same row and in the same
column of the processor grid. They load balance the 2n3 flops
perfectly and communicate Θ

(
n2
√
P

)
words along the critical

path of the algorithm, requiring M = O
(

n2

P

)
words of local

memory.
The communication of classical parallel matrix multiplica-

tion can be reduced at the cost of extra local memory. The so-
called “3D” algorithms [2], [7] incorporate a three-dimensional
3
√
P × 3

√
P × 3

√
P processor grid and reduce the bandwidth

cost compared to 2D algorithms by a factor of P 1/6 at the
expense of requiring a factor of P 1/3 more memory. A 3D
algorithm can be executed only if M = Ω

(
n2

P 2/3

)
words of

local memory are available.
Recently, the “2.5D” matrix multiplication algorithm [17]

was developed to interpolate between 2D and 3D algorithms.
For any factor 1 ≤ c ≤ 3

√
P such that c copies of the input

and output matrices will fit into memory, the 2.5D algorithm
reduces the bandwidth cost compared to 2D algorithms by a
factor of

√
c. At the extremal values of c, the 2.5D algorithm

reproduces the original 2D and 3D algorithms.

B. Previous Attempts to Parallelize Strassen

There are a couple of natural ways to parallelize Strassen’s
algorithm using the infrastructure of a classical parallel algo-
rithm [11], [14]. We detail them below and note that neither
of these parallelization schemes minimizes communication.

First, Strassen can be used “at the bottom” as the local ma-
trix multiplication subroutine instead of a classical sequential
algorithm. In this scheme, the interprocessor communication
follows a classical algorithm exactly. If a 2D classical algo-
rithm is used at the interprocessor level, we call this approach
“2D-Strassen”. The main limitations of this algorithm are:
(a) the communication costs are the same as the classical
algorithm used, even though Strassen offers the possibility
of reduced communication, and (b) the reduction in flops is
less pronounced because Strassen is used only on smaller
subproblems.

Second, Strassen can be used “at the top” to generate seven
subproblems of half the size (or using ` Strassen steps, 7` sub-
problems of dimension n

2`
), and a classical parallel algorithm

can be used to evaluate the subproblems. If a 2D algorithm is
used for the subproblems, we call this approach “Strassen-
2D”. The advantage of this approach over 2D-Strassen is
that Strassen is used on larger problems and therefore further
reduces the flop count. The main drawback of this approach is
that it increases the communication costs relative to classical

algorithms. For every Strassen step applied, the computation
is reduced by a factor of roughly 7

8 but the bandwidth cost is
increased by a factor of 7

4 .
While the authors of [14] concluded that 2D-Strassen

achieved higher performance than Strassen-2D due to the
communication costs, the authors of [11] showed that with
an efficient classical algorithm and a machine with higher
network bandwidth, speedups over 2D-Strassen were still pos-
sible using Strassen-2D. However, they found that the optimal
number of Strassen steps taken was never more than two due to
the increasing communication costs. On modern machines, we
have found that 2D-Strassen generally outperforms Strassen-
2D.

C. 2.5D-Strassen and Strassen-2.5D

A natural extension of the Strassen parallelization ap-
proaches of [11], [14] is to replace the 2D classical algorithm
with the 2.5D classical algorithm of [17]. Since the 2.5D
algorithm reduces communication relative to 2D algorithms,
2.5D-Strassen and Strassen-2.5D communicate less than 2D-
Strassen and Strassen-2D, respectively. As argued in [3], this
combination still does not attain communication optimality.

D. The CAPS Algorithm

In [3] we introduced CAPS, a communication-optimal par-
allel algorithm for Strassen’s matrix multiplication. As shown
in Table I, the bandwidth cost of CAPS is asymptotically less
than both the other algorithmic approaches to parallelizing
Strassen and the 2.5D classical algorithm. That is, Strassen’s
algorithm allows for reducing both computation and commu-
nication costs compared to the classical algorithm, provided
that it is parallelized in the right way.

The CAPS algorithm is based on a parallel traversal of
the recursion tree, where at each level of the tree, either
a depth-first step (DFS) or a breadth-first step (BFS) is
taken. A DFS step consists of all processors working on
each of the seven subproblems in sequence, and a BFS step
consists of seven subsets of processors each working on one
subproblem in parallel. BFS steps require extra memory but
reduce communication costs overall. We show in [3] that
choosing to do sufficiently many DFS steps (to control the
memory footprint) followed by all BFS steps (to reduce the
problem to all processors working independently) attains the
communication lower bound. BFS and DFS steps may be
interleaved; see Section V-B.

E. Strong Scaling Range

We say that an algorithm exhibits perfect strong scaling if its
running time for a fixed problem size decreases linearly with
the number of processors. Note that 2D classical algorithms
do not exhibit perfect strong scaling. However, both 2.5D and
CAPS strongly scale perfectly within the following ranges [4]:

Pmin ≤ P ≤ Pω0/2
min for CAPS

Pmin ≤ P ≤ P 3/2
min for 2.5D

Flops Bandwidth

2D [8], [18] n3

P
n2

P1/2

2.5D [17] n3

P
max

{
n3

PM1/2 ,
n2

P2/3

}
2D-Strassen [14] nω0

P (ω0−1)/2
n2

P1/2

Strassen-2D [11]
(
7
8

)` n3

P

(
7
4

)` n2

P1/2

CAPS [3] nω0

P
max

{
nω0

PMω0/2−1 ,
n2

P2/ω0

}
TABLE I: Comparison of asymptotic computational and com-
munication costs of classical matrix multiplication algorithms
and the Communication-Avoiding Parallel Strassen algorithm.
Both the 2.5D classical algorithm and CAPS attain their rel-
ative communication lower bounds. Here ω0 = log2 7 ≈ 2.81
is the exponent of Strassen; ` is the number of Strassen steps.

where Pmin ≈ 4n2

M is the minimum number of processors
required to store the input/output and the required intermediate
values, and ω0 is log2 7.

III. PERFORMANCE: CAPS VS. PREVIOUS ALGORITHMS

We have implemented CAPS using MPI on three supercom-
puters, a Cray XE6 (Hopper), an IBM BG/P (Intrepid), and a
Cray XT4 (Franklin), and we compare it to various previous
classical and Strassen-based algorithms. All our experiments
are in double precision on random input matrices. CAPS
performs slightly less communication than communication-
optimal classical algorithms, and much less than previous
Strassen-based algorithms. As a result it outperforms all
classical algorithms, both on large problems (because of the
lower flop count of Strassen) and on small problems scaled
up to many processors (which are communication bound, so
the lower communication costs of CAPS make it superior). It
also outperforms previous Strassen-based algorithms because
of its lower communication costs.

For each of the three machines, we present two types of
plots. First, in Figures 1a, 1c, and 1e, we show strong scaling
plots for a fixed, large matrix dimension where the x-axis
corresponds to number of processor cores (on a log scale)
and the y-axis corresponds to fraction of peak performance,
as measured by the effective performance. Horizontal lines in
the plots correspond to perfect strong scaling.

Effective performance is a useful construct for comparing
classical and fast matrix multiplication algorithms. It is the
performance, normalized with respect to the arithmetic com-
plexity of classical matrix multiplication, 2n3:

Effective flop/s =
2n3

Execution time in seconds
.

For classical algorithms, this gives exactly the flop rate.
For fast matrix multiplication algorithms it gives the relative
performance, but does not accurately represent the number of
floating point operations performed.

There are general trends for all algorithms presented in these
plots. On the left side of the plots, the number of processors is

small enough such that the input and output matrices nearly fill
the memories of the processors. As the number of processors
increases, both 2.5D and CAPS can exhibit perfect strong
scaling within limited ranges. We demarcate the strong scaling
range of CAPS as defined in Section II-E with a shaded
region. To the right of the strong scaling range, CAPS must
begin to lose performance, as per-processor communication
no longer scales with 1/P . While CAPS performance should
theoretically degrade more slowly than classical algorithms,
network resource contention can also be a limiting factor.

Second, we show execution time for fixed, small matrix
dimension over an increasing number of processors. See
Figures 1b, 1d, and 1f. For these problem sizes, the execution
time is dominated by communication, and the speedup relative
to classical algorithms is based primarily on decreases in com-
munication. The optimal number of processors to minimize
time to solution varies for each implementation and machine.
These plots do not show strong scaling ranges; for both 2.5D
and CAPS if a problem fits on one processor, that is Pmin = 1,
then there is no strong scaling range.

Note that because several of the implementations, including
CAPS, are prototypes, each has its own requirement on the
matrix size n and the number of MPI processes P . We have
arranged for all algorithms in a given plot to use the same
value of n, but the values of P usually do not match between
algorithms.

A. Cray XE6 Hopper

Hopper is a Cray XE6 at the National Energy Research
Scientific Computing Center. It consists of 6,384 compute
nodes, each of which has 2 twelve-core AMD “MagnyCours”
2.1 GHz processors, and 32 GB of DRAM (384 of the nodes
have 64 GB of DRAM). The 24 cores are divided between 4
NUMA regions. Parallelism between the 6 cores in a NUMA
region comes from the threaded BLAS implementation in
Cray’s LibSci. Hopper’s peak double precision rate is 50.4
Gflop/s per NUMA region or 1.28 Pflop/s for the entire
machine. As of November 2011, it is ranked number 8 on
the TOP500 list [15], with a LINPACK score of 1.05 Tflop/s
on a matrix of dimension about 4.5 million.

CAPS outperforms all of the previous algorithms. For the
large problem (n = 131712), it attains performance as high as
30% above the peak for classical matrix multiplication, 83%
above 2D, and 75% above Strassen-2D. Note that there does
not exist tuned 2.5D code for Hopper, so we did not compare
against that algorithm (which should theoretically outperform
2D). On this machine, we benchmark ScaLAPACK/PBLAS as
the 2D algorithm. Since we were not able to modify that code,
the 2D-Strassen numbers are simulated based on single-node
benchmarks of the corresponding local matrix multiplication
size. For the small problem (n = 4704), we observed speedups
of up to 66% over 2.5D, which happened to be the best of the
other algorithms for this problem size.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

5e2 1e3 5e3 1e4 5e4 1e5

E
ff
e

c
ti
v
e
 P

e
rf

o
rm

a
n
c
e
,
F

ra
c
ti
o
n

 o
f

P
e

a
k

Number of Cores

Strong-Scaling Range

(a) Hopper (Cray XE6), n = 131712

 0.01

 0.1

 1

 10

1e1 1e2 1e3 1e4 1e5

E
x
e
c
u
ti
o

n
 t

im
e

,
s
e
c
o

n
d
s

Number of Cores

(b) Hopper (Cray XE6), n = 4704

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

5e2 1e3 5e3 1e4 5e4

E
ff
e
c
ti
v
e
 P

e
rf

o
rm

a
n
c
e
,
F

ra
c
ti
o
n

 o
f
P

e
a
k

Number of Cores

Strong-Scaling Range

(c) Intrepid (IBM BG/P), n = 65856

 0.01

 0.1

 1

 10

1e1 1e2 1e3 1e4

E
x
e
c
u
ti
o
n
 t
im

e
,
s
e
c
o
n
d
s

Number of Cores

(d) Intrepid (IBM BG/P), n = 4704

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2e2 5e2 1e3 2e3 5e3 1e4 2e4

E
ff
e
c
ti
v
e
 P

e
rf

o
rm

a
n
c
e
,

F
ra

c
ti
o
n
 o

f
P

e
a
k

Number of Cores

Strong-Scaling Range

(e) Franklin (Cray XT4), n = 94080

 0.01

 0.1

 1

1e1 1e2 1e3 1e4

E
x
e
c
u
ti
o
n
 t
im

e
,

s
e
c
o
n

d
s

Number of Cores

(f) Franklin (Cray XT4), n = 3136

CAPS

2.5D-Strassen
2D-Strassen

Strassen-2D

2.5D

2D

Fig. 1: Strong scaling results for large problems (left) and small problems (right) on three machines. Left column: effective
performance on large matrices. Right column: execution time on small matrices.

B. IBM BlueGene/P Intrepid

Intrepid is an IBM BG/P at the Argonne Leadership Com-
puting Facility. It consists of 40,960 compute nodes, each of
which has a quad-core IBM PowerPC 450 850 MHz processor,
and 2 GB of DRAM. Intrepid’s peak double precision rate is
13.6 Gflop/s per node, or 557 Tflop/s for the entire machine.
We obtain on-node parallelism using the threaded BLAS
implementation in IBM’s ESSL. As of November 2011, it is
ranked number 23 on the TOP500 list [15], with a LINPACK
score of 459 Tflop/s. Intrepid allows allocations only in powers
of two nodes (with a few exceptions), but in our performance
data we count only the nodes we use.

On Intrepid, the most efficient classical code is 2.5D and
is well-tuned to the architecture. It consistently outperforms
ScaLAPACK, Strassen-2D, and Strassen-2.5D for the large
problem size, so we omit those algorithms in the performance
plots. For the large problem (n = 65856), CAPS achieves a
speedup of up to 57% over 2.5D or 2.5D-Strassen; for the
small problem (n = 4704), the best speedup is 12%.

C. Cray XT4 Franklin

Franklin is a recently retired Cray XT4 at the National
Energy Research Scientific Computing Center. It consists
of 9,572 compute nodes, each of which has a quad-core
AMD “Budapest” 2.3 GHz processor, and 8 GB of DRAM.
Franklin’s peak double precision rate is 36.8 Gflop/s per node,
or 352 Tflop/s for the entire machine. On each node, we use
the threaded BLAS implementation in Cray’s LibSci. As of
November 2011, it is ranked number 38 on the TOP500 list
[15], with a LINPACK score of 266 Tflop/s on a matrix of
dimension about 1.6 million.

CAPS outperforms all of the previous algorithms, and
attains performance as high as 33% above the theoretical
maximum for classical algorithms, as shown in Figure 1e.
The largest speedups we observed for the large problem
(n = 94080) was 103% faster than 2.5D, the fastest clas-
sical algorithm, and 187% faster than Strassen-2D, the best
previous Strassen-based algorithm. For the small problem size
(n = 3136), we observed up to 84% improvement over 2.5D,
which was the best among the all other approaches. We omit
ScaLAPACK data because it is always outperformed by the
other classical 2D and 2.5D algorithms on Franklin.

For a matrix dimension of n = 188160, we observed an
aggregate effective performance rate of 351 Tflop/s which
exceeds the LINPACK score. Note that for this run CAPS used
only 7203 (75%) of the nodes and a matrix of less than one
eighth the dimension used for the TOP500 number; increasing
the matrix size would only increase the performance of CAPS.
In fact, increasing the matrix size to n = 263424 increases its
effective performance to 388 Tflop/s, higher than Franklin’s
theoretical peak for classical algorithms.

D. CAPS vs. Strassen-based algorithms

Figure 2 compares the performance of CAPS with the
previous Strassen-based approaches on Intrepid. The plot
shows, for a fixed matrix dimension and number of processors,

0.2

0.4

0.6

0.8

1.0

1.2

2
D

-S
tr

S
tr

-2
D

2
D

-S
tr

S
tr

-2
D

C
A

P
S

2
D

-S
tr

S
tr

-2
D

C
A

P
S

2
D

-S
tr

S
tr

-2
D

C
A

P
S

2
D

-S
tr

S
tr

-2
D

C
A

P
S

2
D

-S
tr

S
tr

-2
D

C
A

P
S

2
D

-S
tr

S
tr

-2
D

P
e

rf
o
rm

a
n
c
e
,

F
ra

c
ti
o
n

 o
f

P
e

a
k

Number of Strassen Steps
0 1 2 3 4 5 6

Effective Performance
Actual Performance

Fig. 2: Efficiency at various numbers of Strassen steps, n =
21952, on 49 nodes (196 cores) of Intrepid.

both the effective and actual performance of the two previous
Strassen-based algorithms and CAPS over various numbers of
Strassen steps. For a given number of Strassen steps, the three
algorithms do (almost) the same number of flops. Note that
since the number of nodes is 49, CAPS is defined only for at
least 2 Strassen steps.

For this matrix dimension, CAPS attains highest effective
performance (shortest time to completion) at 4 Strassen steps.
We see that the actual performance for CAPS (and the other
two algorithms) decreases with the number of Strassen steps,
as it becomes harder to do the fewer flops as efficiently.

In the case of 2D-Strassen, varying the number of Strassen
steps means varying how each local matrix multiplication is
performed. For the local matrix dimension, two Strassen steps
is optimal, but the improvement in effective performance is
modest because the matrix dimension is fairly small. In the
case of Strassen-2D, both effective and actual performance
degrade with each Strassen step. This is due to the increasing
communication costs of the algorithm, which outweigh the
computational savings.

IV. PERFORMANCE MODEL

In this section, we introduce a performance model in order
to predict performance on a distributed-memory parallel ma-
chine. We include a single-node performance model to more
accurately represent local computation. The main goals of
the performance model are to validate the theoretical analysis
of CAPS to real performance, identify areas which might
benefit from further optimization, and make predictions for
performance on future hardware.

We choose to validate our model on Intrepid because its
performance is very consistent (usually less than 1% variation
in execution time when repeating an experiment, versus 10-
20% on Hopper) and also because we believe there is oppor-
tunity for topology-aware optimizations, which we discuss in
Section VI-D.

A. Single Node

Due to the sensitivity of Strassen performance to DGEMM
performance and the difficulty of modeling DGEMM perfor-
mance accurately for small problems, we use a third degree
polynomial of best fit to match the measured performance of
ESSL’s implementation of the classical algorithm (DGEMM).
Besides making calls to DGEMM, Strassen’s algorithm consists
of performing matrix additions which are communication
bound. Thus, we measured the time of DAXPY per scalar
addition, which is fairly independent of matrix size.

Let TDGEMM(n) be the polynomial for the time cost of
classical matrix multiplication of dimension n and TDAXPY
be the cost per scalar addition. We obtain the single node
performance model for the time cost of Strassen’s algorithm
using s steps of Strassen on a problem of dimension n as

Tseq(n) = min
s

{
7s · TDGEMM

(
n

2s

)
+

s−1∑
i=0

9 · TDAXPY ·
(
7

4

)i n2

4

}
(1)

The constant 9 comes from the fact that in Strassen-
Winograd, for each of A and B, four sub-matrices must be
read and four written (since three outputs are copies of inputs),
and to compute C, seven input matrices must be read and
four written; whereas TDAXPY is the time to read two values,
compute one addition, and write one value.

The parameters of our single node model (in seconds) are:

TDGEMM(n) = 2.04·10−10n3+2.14·10−8n2−4.18·10−6n+2.11·10−3

TDAXPY = 3.66 · 10−9

We present actual and modeled performance of both clas-
sical and Strassen performance on a single node in Figure 3.
Note that the classical model is nearly indistinguishable from
the data in the plot because it is a curve of best fit. The model
from Equation (1) correctly chooses the optimal cutoff point
to switch to the classical algorithm, and the performance of
Strassen matches the classical algorithm below that point.

In Figure 4 we show a breakdown of time between additions
and multiplications (calls to DGEMM) for both the model and
the actual implementation. For this problem size, the optimal
number of Strassen steps is 2, where the time is almost
completely dominated by the multiplications. Note that the
model predicts better performance for the additions than the
implementation achieves, but the main determining factor for
optimal number of Strassen steps is the performance of DGEMM
for the different problem sizes.

B. Distributed Machine

We start with the conventional (α, β, γ) performance model
for a distributed-memory parallel algorithm which uses three
machine parameters: α as the latency between any two nodes,
β as the inverse bandwidth between any two nodes, and γ
as the time cost per flop on a single node [6], [13], [18]. By
counting flops f , words w, and messages m along the critical
path and summing up the three terms with corresponding co-
efficients, one can model the time cost of a parallel algorithm

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

E
ff
e

c
ti
v
e
 P

e
rf

o
rm

a
n
c
e

,
F

ra
c
ti
o
n

 o
f
P

e
a

k

Matrix Dimension

Classical Model
Strassen Model

Classical Data
Strassen Data

Fig. 3: Comparison of the sequential model to the actual
performance of classical and Strassen matrix multiplication
on four cores (one node) of Intrepid.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Model Data Model Data Model Data Model Data

T
im

e
,

n
o

rm
a

liz
e

d
 t

o
 c

la
s
s
ic

a
l
m

o
d

e
l
ti
m

e

Number of Strassen Steps

0 1 2 3

DGEMM
Extra Additions

Other

Fig. 4: Time breakdown comparison between the sequential
model and the data for n = 4097. Both model and data times
are normalized to the modeled classical algorithm time.

as αm+ βw + γf . The main shortcomings of this model are
that it assumes an all-to-all network (thus ignoring contention
among processors for network links and the number of hops
a message must take), it ignores overlap of computation and
communication, and it assumes the cost per flop is constant
on a node (ignoring on-node communication costs).

For a more accurate model, we modify the (α, β, γ) model
by replacing the γ term with the single node model for the
local multiplications (which may include more Strassen steps)
and using the measured TDAXPY for the time cost of each scalar
addition during the parallel Strassen steps. Then the time spent
on computation is

Tf (n, P) = 7`Tseq

(
n

2k+`

)
+

k+`−1∑
i=0

9 · TDAXPY ·
(
7

4

)i n2

4P
,

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

5e2 1e3 5e3 1e4 5e4

E
ff
e

c
ti
v
e
 P

e
rf

o
rm

a
n
c
e

,
F

ra
c
ti
o
n

 o
f
P

e
a

k

Number of Cores

CAPS Model
2.5D Model

2D Model

CAPS
2.5D

2D

Fig. 5: Comparison of the parallel model with the algorithms
in strong scaling of n = 65856 on Intrepid.

where k = log7 P is the number of BFS steps taken, and

` = log2

(
4

√
7n2

MP 2/ω0
− 4n2

MP

)
is the number of DFS steps necessary to fit in the available
memory. Note that in the model we allow k and ` to be non-
integer valued to give a continuous function, even though the
algorithm only makes sense for integer values of k and `.

The number of words and messages are exactly as in [3]:

w =

(
7

4

)`(
12n2

P 2/ω0
− 12n2

P

)
, m = 7`36k.

The distributed model is then:

T (n, P) = Tf (n, P) + 7`36kα+

(
7

4

)`
(

12n2

P 2/ω0
−

12n2

P

)
β.

The parameters of the distributed model are β = 2.13 · 10−8

and α = 2 · 10−6, measured in seconds.
We present actual and modeled strong scaling performance

of CAPS, 2D and 2.5D in Figure 5. The CAPS performance
and model match quite well up to about 4116 cores, but for
runs on more cores the actual performance drops significantly
below the predictions of the model. We believe this is due
to contention; we consider optimizing CAPS to a 3D-torus
network in Section VI-D.

The model also allows us to breakdown the time into
communication time (the α and β terms), time spent in calls
to DGEMM (the first term in Equation 1), and time spent
in additions (the second term in Equation 1). We compare
these times to the actual time breakdown in Figure 6. The
model works well for small values of P , but understates the
communication cost for large values of P , due to contention.
In fact, at P=49, the communication is slightly faster than
predicted by the model, which is possible because the model
only counts bandwidth along one direction on one of the six
links to a given node, and ignores communication hiding.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Model Data Model Data Model Data Model Data

T
im

e
,
n

o
rm

a
liz

e
d

 t
o

 m
o
d

e
l
ti
m

e

P=49
n=4116

P=49
n=16464

P=2401
n=16464

P=2401
n=65856

DGEMM
Extra Additions
Communication
Reordering
Other

Fig. 6: Time breakdown comparison between the parallel
model and the data. In each case the entire modeled execution
time is normalized to 1.

C. Exascale Predictions

We model performance on a hypothetical exascale machine
by counting words communicated on the network, words
transferred between DRAM and cache, and flops computed
per processor. For the machine parameters, we use values from
the 2018 Swimlane 1 extrapolation in [16]:

Number of nodes 220

Flop rate per node 1 Tflop/s
Cache size per node 512 MB
DRAM per node 32 GB
Node memory bandwidth 0.4 TB/s
Network link bandwidth 20 GB/s
Network latency 1 µs

The projected speedups of CAPS over 2.5D and 2D are
shown in Figure 7. The horizontal scale is the (log of the)
number of nodes, and the vertical scale is the (log of the)
amount of memory per node used to store a single matrix.
Thus moving horizontally in the plot corresponds to weak scal-
ing, and moving diagonally downward corresponds to strong
scaling. Compared to 2.5D, our largest speedup is 5.45× at
the top-right of the plot: very large matrices run using the
entire machine. Although CAPS communicates asymptotically
less than 2.5D, the advantage is very slight, and the constants
for CAPS are larger than for 2.5D in our model. For small
problems (bottom of the figure), CAPS is slightly faster when
using the entire machine but slower for fewer processors.
Comparing to 2D, which communicates much more for small
problems, there are substantial speedups of 5.45× in the top
right, and 5.27× in the communication-bound regime at the
bottom right.

V. IMPLEMENTATION DETAILS

The implementation of CAPS follows the algorithm pre-
sented in [3]. This section will fill in several of the details
that were left out of that discussion.

 10

 15

 20

 25

 30

 4 6 8 10 12 14 16 18 20

lo
g

2
(n

2
/P

)

log2 P

1.0 0.61 0.36 0.45 0.55 0.66 0.81 0.99 1.19

0.76 0.42 0.50 0.59 0.70 0.80 0.93 1.08 1.26

0.65 0.65 0.70 0.77 0.87 0.95 1.08 1.25 1.42

0.86 0.84 0.86 0.94 1.04 1.12 1.28 1.48 1.71

0.98 0.98 0.99 1.09 1.23 1.40 1.62 1.89 2.20

1.08 1.11 1.20 1.35 1.54 1.77 2.07 2.41 2.82

1.25 1.34 1.48 1.68 1.93 2.24 2.61

1.48 1.62 1.82 2.08 2.40 2.77

1.75 1.95 2.21 2.53 2.87

2.05 2.27 2.52 2.84

2.16 2.35 2.59 2.90

3.04 3.54

3.22 3.72 4.21

3.24 3.68 4.18 4.77

3.21 3.64 4.13 4.69 5.34

3.27 3.70 4.20 4.78 5.45

 0

 1

 2

 3

 4

 5

 6

 10

 15

 20

 25

 30

 4 6 8 10 12 14 16 18 20

lo
g

2
(n

2
/P

)

log2 P

1.0 0.49 0.33 0.53 0.85 1.36 2.16

0.50 0.34 0.49 0.71 1.03 1.48 2.12 2.99

0.40 0.52 0.67 0.89 1.18 1.54 2.04 2.67

0.57 0.68 0.83 1.04 1.31 1.61 2.04 2.57

0.72 0.84 0.96 1.18 1.45 1.79 2.20 2.71

0.88 1.00 1.18 1.41 1.70 2.06 2.49

1.11 1.26 1.46 1.73 2.05 2.44 2.89

1.38 1.56 1.81 2.11 2.47 2.90

1.69 1.91 2.20 2.55 2.92

2.01 2.24 2.52 2.84

2.14 2.34 2.59 2.90

3.41 5.27

4.14

3.48

3.23

3.33

3.01 3.61

3.43 4.05

3.39 3.96 4.51

3.31 3.78 4.30 4.91

3.22 3.66 4.17 4.75 5.42

3.27 3.70 4.20 4.78 5.45

 0

 1

 2

 3

 4

 5

 6

Fig. 7: Predicted speedups of CAPS over 2.5D (left) and 2D (right) on an exascale machine.

A. Data Layout

The data layout can be naturally divided into two levels:
the global data layout specifies which process owns each
part of each matrix, and the local data layout specifies in
what order the data is stored in the local memory of a given
process. For the global layout, we use a cyclic distribution
with a processor grid of size 7bk/2c × 7dk/2e. Note that this
satisfies the properties given in Section 3.2 of [3]. Thus
the communication cost analysis given there holds no matter
what choice we make for the local data layout. Additionally,
transformations between different local layouts can be done
quickly and without any inter-processor communication. The
local layout we choose is that blocks of size n

2s7bk/2c× n
2s7dk/2e

are stored contiguously, and these blocks are ordered relative
to each other following recursive Morton ordering.

The entire layout can also be thought of as s levels of
recursive Morton ordering, followed by cyclic layout in each
of the sub-matrices of size n

2s . We choose Morton ordering
because it is a very good fit to Strassen’s algorithm both con-
ceptually and to enhance locality [1]. Since we choose to pack
messages together to minimize the number of message sent, it
is necessary to re-order the data for each communication step
to maintain this data layout.

B. Interleaving BFS and DFS steps

As argued in [3], it is possible to achieve the bandwidth
lower bound, up to a constant factor, using only a simple
scheme of ` DFS steps, followed by k = log7 P BFS
steps, followed by local Strassen. Our implementation allows
arbitrary interleaving of BFS and DFS steps, which in some
cases provides a significant reduction in the bandwidth costs.

For example, when running on 16807 = 75 processors, it is
sometimes possible to reduce the volume of communication by
nearly 25% by choosing the optimal interleaving, depending
on the amount of available memory; see Figure 8.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 3 10 30 100

W
o
rd

s
 s

e
n
t
p
e
r

p
ro

c
e
s
s
o
r,

 u
n
it
s
 o

f
n

2

Memory usage per processor, units of n
2
/P

Other Mixed
Optimal Mixed

Simple

Fig. 8: The memory and communication costs of all 252
possible interleavings of BFS and DFS steps for multiplying
matrices of size n = 351232 on P = 16807 processors
using 10 Strassen steps. The optimal ones show the trade-
off between memory size and communication cost. Simple
interleavings are those for which all k BFS steps are performed
as a block.

C. Running on P = m · 7k Processors

In [3], we assume that the number of processors is exactly
a power of 7. This assumption is not realistic in practice, and
if we set P to be the largest power of 7 no larger than a given
allocation, we might lose up to a factor of 7 in performance,
making Strassen slower than classical matrix multiplication in
many cases.

If we take P = m · 7k, then after k BFS steps (and perhaps
some DFS steps so there is enough memory), the problem is
reduced to multiplying smaller matrices on P = m processors.
We have implemented two schemes for Strassen in such
cases: perform either DFS steps or what we call hybrid steps,
followed by a distributed classical matrix multiplication at the

base case. In our implementation the classical multiplication
uses a 1D processor grid, which performs well for small m.

Using only DFS steps, the number of words communicated
grows by a factor of 7/4 for every DFS step. If more than one
or two DFS steps are taken the increase in the communication
cost can be too large. If too few Strassen steps are taken we
may miss the arithmetic savings that they can provide. The
situation is analogous to that of 2D-Strassen.

The alternative is a hybrid step on 1 < m < 7 processors.
In a hybrid step, the 7 matrix multiplies of a Strassen step
are performed locally in groups of m, and any leftovers are
run on all m processors. For example if m = 2 then 3 of
the 7 multiplications are performed locally on each processor,
and the remaining one is performed on both processors.
Using hybrid steps recursively, most of the subproblems are
computed locally by one processor, and so there is a lower
communication cost.

In practice, the choice between hybrid steps and DFS steps
on m processors is best regarded as a tuning parameter. Hybrid
steps are provably optimal (see Section VI-E), but the extra
communication from DFS steps overlaps more easily with the
calls to DGEMM (see Section V-D).

D. Overlapping Computation and Communication

We attempt to overlap computation and communication as
long as it can be done without breaking the recursive structure
of the algorithm. First, during BFS steps the additions are
overlapped with the communication. For Strassen-Winograd,
6 of the 14 factors require no computation, so the additions for
the other 8 can be done while those are transferred. We do not
attempt to overlap the communication of the product Q’s with
the additions to convert them into entries of C, because it is
not clear how to do this without degrading cache performance.
Second, for base-case multiplies with m > 1, we overlap the
communication with the calls to DGEMM. Finally, there is some
overlap in hybrid BFS steps, where the details of how much
we can overlap depend on the exact value of m.

In principle, it should be possible to hide more of the
communication cost, ideally by performing some DGEMM calls
during the communication of each BFS step. However these
DGEMM calls only appear deeper in the recursion tree of the
algorithm, so to do this would require breaking the recursive
structure of the algorithm.

VI. DISCUSSION AND CONCLUSIONS

A. Hardware scaling

Although Strassen performs asymptotically less computa-
tion and communication than classical matrix multiplication,
it is more demanding on the hardware. That is, if one wants to
run matrix multiplication near the peak CPU speed, Strassen
is more demanding of the memory size and communication
bandwidth. This is because the ratio of computational cost to
bandwidth cost is lower for Strassen than for classical matrix
multiplication. The asymptotic ratio of computational cost to
bandwidth cost is Mω0/2−1 for Strassen-based algorithms,
versus M1/2 for classical algorithms. In terms of the machine

parameters β and γ introduced in Section IV, the condition to
be able to be computation-bound is γM1/2 ≥ cβ for classical
matrix multiplication and γMω0/2−1 ≥ c′β for Strassen. Here
c and c′ are constants that depend on the constants in the costs
of classical and Strassen-based matrix multiplication.

The above inequalities may guide hardware design as long
as classical and Strassen matrix multiplication are considered
important computations. They apply both to the distributed
case, where M is the local memory size and β is the inverse
network bandwidth, and to the sequential case where M is the
cache size and β is the inverse memory-cache bandwidth.

B. Mapping Strassen to current hardware

Current hardware designs are a much better fit to classical
matrix multiplication algorithms than to Strassen. In this
section we highlight two examples of such hardware choices.
Classical matrix multiplication is balanced between additions
and multiplications, whereas Strassen performs some extra
additions. As long as the cutoff between Strassen and the
classical algorithm is large, the time for these additions is not
significant. However if one uses Strassen for small matrices,
the imbalance is significant. Since most modern floating point
units can operate at peak efficiency only if the additions
and multiplications are balanced, this hardware choice puts
Strassen and other fast algorithms at a disadvantage.

More relevant to the CAPS algorithm is the number of
processors in a system. CAPS runs fastest when it is given
a power of 7 processors. On machines where arbitrary sized
partitions are allowed, this is not a problem. However on a
BG/P such as Intrepid, one must use a power of two nodes,
whereas CAPS would prefer using a power of 7. Ignoring the
extra nodes will, in many cases, nullify the speedup of CAPS.
The same problem exists on a shared-memory machine, where
the number of cores or NUMA regions is typically a power
of 2 and is almost never a multiple of 7.

C. Stability

Strassen’s algorithm (and all other fast matrix multiplication
algorithms) satisfy weaker error bounds than the classical
algorithm. While the classical algorithm satisfies a component-
wise bound, Strassen satisfies only norm-wise bounds. Further,
the constant in the norm-wise bounds for Strassen is larger
than for the classical algorithm. However, using fewer than
log2 n Strassen steps improves the theoretical constant. More
precisely, using s Strassen steps, the error bound for Strassen-
Winograd given in [12] is

‖C − Ĉ‖ ≤
(

18s
((n

2s

)2
+

6n

2s

)
− 6n

)
‖A‖‖B‖ε

where ε is the machine precision and ‖A‖ := maxi,j |Aij |.
However, as illustrated in [12], this theoretical bound is too

pessimistic. In Figure 9, we show the measured max-norm
absolute error compared to the theoretical bound for a single
matrix of size n = 16384 in double precision where each
entry is chosen uniformly at random from [−1, 1], varying
the number of Strassen steps taken. For the “exact” answer

 1e-14
 1e-12
 1e-10
 1e-08
 1e-06

 0.0001
 0.01

 1
 100

 0 2 4 6 8 10 12

M
a

x
-n

o
rm

 E
rr

o
r

Number of Strassen Steps

Theoretical bound
Actual

Fig. 9: Stability test: theoretical error bound versus actual error
for n=16384. Zero Strassen steps corresponds to the classical
algorithm. Double precision machine epsilon is 2.2 · 10−16.

we compute the product in quadruple precision. To maximize
performance on a single node of Hopper or Intrepid, for exam-
ple, the optimal number of Strassen steps for n = 16834 is 4,
where the result loses about two decimal digits (measured by
norm-wise error) compared to classical matrix multiplication.

As mentioned in [3] and [9], diagonal scaling can be used
to improve the error bounds of Strassen so that they become
comparable to other dense linear algebra algorithms, including
LU and QR decomposition. In the context of many larger
computations, this implies that the stability loss due to using
Strassen instead of classical matrix multiplication is no worse
than errors made in the rest of the computation.

D. Areas of possible performance improvement

Based on our performance models and benchmarks, we
believe there are several areas in which further performance
optimizations will be effective. First, since local computation
dominates the execution time for many problems, improving
the on-node performance of Strassen can help overall. By
writing more efficient addition code which exploits the shared
operands and decreases reads from DRAM, we believe it
is possible to match our modeled on-node performance (an
improvement of around 10%). Further improving the perfor-
mance of DGEMM for small problems would also boost on-
node Strassen performance. If the performance curve for the
classical algorithm reaches its peak for smaller matrices, then
the cutoff point can be decreased; more Strassen steps implies
greater computational savings, so the effective performance
will be improved for large matrices (using one more Strassen
step can improve performance up to 14%).

Second, we believe there are important topology-aware
optimization possibilities. On Intrepid, where the topology is
known, one can map processors to nodes in order to minimize
contention and also maximize the use of a node’s links in
each of the three dimensions. In most cases we got the best
performance by laying out 7 processes onto 7 of the 8 nodes
in a 2× 2× 2 cube, and then recursively using this layout for
higher powers of 7. Another natural mapping is to place the 7k

processes in a k-dimensional grid so that the communication
occurs only in disjoint pencils. The contention will then never
be worse than for 7 processors communicating around a ring,

although only 1/k of the links will be active at any time. On
Intrepid this works for k ≤ 3 since it has a 3-dimensional
topology (k = 3 implies 1372 cores).

A more systematic approach of finding optimal mappings
may yield significant improvements. Avoiding contention com-
pletely would enable performance to match the performance
model (an improvement of around 30% for large P). Since
the model is based on one link’s bandwidth, optimizing
the mapping to take advantage of multiple links can yield
performance which exceeds the model. For small matrices and
communication-bound problems, this can lead to significant
performance improvements.

Our implementation is somewhat sensitive to matrix dimen-
sion and number of processors. There are many optimizations
which could help smooth the performance curve for arbitrary
n and P which we did not consider in this work.

E. Optimality of hybrid steps

In this section we prove that CAPS running on P = m · 7k
using hybrid steps (as defined in Section V-C) is communi-
cation optimal, up to a constant factor, if m is regarded as a
constant. Given the optimality of CAPS using BFS and DFS
steps proved in [3], we need to consider only the case that
P = m.

Claim 1: Performing Strassen’s matrix multiplication using
hybrid steps on m = 2, 3, 4, 5, 6 processors communicates
O(n2) words and requires O(n2) memory. Combined with
the lower bounds of [5], this shows that the algorithm is
communication optimal.

Proof: The bandwidth cost recurrence for a hybrid step
on m processors is

W (n,m) = O(n2) +

(
7−m

⌊
7

m

⌋)
W
(n

2
,m
)
,

where the first term is the words communicated to redistribute
the first mb7/mc subproblems to the m processors, and the
second term is the words required to compute the remaining
subproblems in parallel. Note that for m = 2, 3, 4, 5, 6, we
have 7−mb7/mc < 4, and so the solution to this recurrence
is W (n,m) = O(n2). Further, the extra memory used by the
algorithm is simply the amount of memory used to store the
data each processor receives, and so the memory usage is also
M = O(n2).

ACKNOWLEDGMENT

We would like to thank Edgar Solomonik for access to his 2.5D code and
helping us to get it running efficiently.

Research supported by Microsoft (Award #024263) and Intel (Award
#024894) funding and by matching funding by U.C. Discovery (Award
#DIG07-10227). Additional support comes from Par Lab affiliates National
Instruments, Nokia, NVIDIA, Oracle, and Samsung. Research is also sup-
ported by DOE grants DE-SC0003959, DE- SC0004938, and DE-AC02-
05CH11231.

This research used resources of the Argonne Leadership Computing
Facility at Argonne National Laboratory, which is supported by the Office
of Science of the U.S. Department of Energy under contract DE-AC02-
06CH11357.

REFERENCES

[1] M. D. Adams and D. S. Wise. Seven at one stroke: Results from a
cache-oblivious paradigm for scalable matrix algorithms. In MSPC ’06:
Proceedings of the 2006 workshop on memory system performance and
correctness, pages 41–50, New York, NY, USA, 2006. ACM.

[2] R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar.
A three-dimensional approach to parallel matrix multiplication. IBM
Journal of Research and Development, 39:39–5, 1995.

[3] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz.
Communication-optimal parallel algorithm for Strassen’s matrix multi-
plication. Technical Report EECS-2012-32, UC Berkeley, March 2012.
To appear in SPAA 2012.

[4] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz. Strong
scaling of matrix multiplication algorithms and memory-independent
communication lower bounds. Technical Report EECS-2012-31, UC
Berkeley, March 2012. To appear in SPAA 2012.

[5] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Graph expansion
and communication costs of fast matrix multiplication. In SPAA ’11:
Proceedings of the 23rd annual symposium on parallelism in algorithms
and architectures, pages 1–12, New York, NY, USA, 2011. ACM.

[6] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Minimizing
communication in numerical linear algebra. SIAM J. Matrix Analysis
Applications, 32(3):866–901, 2011.

[7] J. Berntsen. Communication efficient matrix multiplication on hyper-
cubes. Parallel Computing, 12(3):335 – 342, 1989.

[8] L. Cannon. A cellular computer to implement the Kalman filter
algorithm. PhD thesis, Montana State University, Bozeman, MN, 1969.

[9] J. Demmel, I. Dumitriu, and O. Holtz. Fast linear algebra is stable.
Numerische Mathematik, 108(1):59–91, 2007.

[10] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-
oblivious algorithms. In FOCS ’99: Proceedings of the 40th Annual
Symposium on Foundations of Computer Science, page 285, Washington,
DC, USA, 1999. IEEE Computer Society.

[11] B. Grayson, A. Shah, and R. van de Geijn. A high performance parallel
Strassen implementation. In Parallel Processing Letters, volume 6, pages
3–12, 1995.

[12] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia, PA, 2nd edition, 2002.

[13] D. Irony, S. Toledo, and A. Tiskin. Communication lower bounds for
distributed-memory matrix multiplication. J. Parallel Distrib. Comput.,
64(9):1017–1026, 2004.

[14] Q. Luo and J. Drake. A scalable parallel Strassen’s matrix multiplication
algorithm for distributed-memory computers. In Proceedings of the 1995
ACM symposium on Applied computing, SAC ’95, pages 221–226, New
York, NY, USA, 1995. ACM.

[15] H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon. Top500 super-
computer sites, 2011. www.top500.org.

[16] J. Shalf, S. S. Dosanjh, and J. Morrison. Exascale computing technology
challenges. In J. M. L. M. Palma, M. J. Daydé, O. Marques, and J. C.
Lopes, editors, High Performance Computing for Computational Science
- VECPAR 2010 - 9th International conference, Berkeley, CA, USA, June
22-25, 2010, Revised Selected Papers, volume 6449 of Lecture Notes in
Computer Science, pages 1–25. Springer, 2010.

[17] E. Solomonik and J. Demmel. Communication-optimal parallel 2.5D
matrix multiplication and LU factorization algorithms. In Euro-Par’11:
Proceedings of the 17th International European Conference on Parallel
and Distributed Computing. Springer, 2011.

[18] R. A. van de Geijn and J. Watts. SUMMA: scalable universal matrix
multiplication algorithm. Concurrency - Practice and Experience,
9(4):255–274, 1997.

