
Communication-Avoiding Parallel Recursive

Algorithms for Matrix Multiplication

Benjamin Lipshitz

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-100

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-100.html

May 17, 2013

Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Communication-Avoiding Parallel Recursive Algorithms for Matrix
Multiplication

by

Benjamin Lipshitz

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor James Demmel, Chair
Professor Katherine Yelick

Professor Armando Fox

Spring 2013

Communication-Avoiding Parallel Recursive Algorithms for Matrix
Multiplication

Copyright 2013
by

Benjamin Lipshitz

i

Contents

Contents i

List of Figures iii

List of Tables iv

1 Introduction 1
1.1 Communication Model . 2
1.2 Iterative Parallel Matrix Multiplication Algorithms 3
1.3 Parallelizing Recursive Algorithms . 3
1.4 The Loomis-Whitney Inequality . 4

2 Strassen’s Matrix Multiplication 5
2.1 Strassen-Winograd Algorithm . 6
2.2 Communication Lower Bounds . 6
2.3 Communication-Avoiding Parallel Strassen 7
2.4 Analysis of Other Algorithms . 15
2.5 Performance Results . 20
2.6 Performance Model . 25
2.7 Implementation Details . 31
2.8 Numerical Stability . 35
2.9 Parallelizing Other Fast Matrix Multiplication Algorithms 36

3 Classical Rectangular Matrix Multiplication 38
3.1 Communication Lower Bounds . 40
3.2 CARMA Algorithm . 44
3.3 Performance Results . 48
3.4 Remarks . 51

4 Sparse Matrix Multiplication 54
4.1 Preliminaries . 55
4.2 Communication Lower Bounds . 56
4.3 Algorithms . 59

ii

4.4 Performance Results . 63

5 Beyond Matrix Multiplication 68
5.1 Näıve n-body Interaction . 68
5.2 Dealing with Dependencies . 70
5.3 All-Pairs Shortest Paths . 70
5.4 Triangular Solve with Multiple Righthand Sides 71
5.5 Cholesky Decomposition . 73

6 Discussion and Open Questions 75

Bibliography 78

iii

List of Figures

1.1 The computation rectangular prism for matrix multiplication 4

2.1 Representation of BFS and DFS steps . 8
2.2 An example matrix layout for CAPS . 10
2.3 Bandwidth costs and strong scaling of matrix multiplication: classical vs. Strassen-

based. Horizontal lines correspond to perfect strong scaling. Pmin is the minimum
number of processors required to store the input and output matrices. 18

2.4 Strong scaling results for CAPS . 22
2.5 Efficiency at various numbers of Strassen steps 25
2.6 Comparison of the sequential model to the actual performance of classical and

Strassen matrix multiplication . 26
2.7 Time breakdown comparison between the sequential model 27
2.8 Comparison of the parallel model with the algorithms in strong scaling 29
2.9 Time breakdown comparison between the parallel model and the data 29
2.10 Predicted speedups of CAPS over 2.5D and 2D on an exascale machine 30
2.11 The memory and communication costs of all possible interleavings of BFS and

DFS steps . 34
2.12 Data layout for CAPS . 34
2.13 Stability test: theoretical error bound versus actual error 36

3.1 Three ways to split rectangular matrix multiplication to get two subproblems . . 39
3.2 Examples of the three cases of aspect ratios: one large dimension, two large

dimensions, and three large dimensions . 41
3.3 CARMA compared to ScaLAPACK on Hopper 49
3.4 Data layout for a BFS step . 53

4.1 How the cube is partitioned in 1D, 2D, and 3D algorithms 56
4.2 Graphical representation of V and `Cij. 57
4.3 Two ways to split the matrix multiplication into four subproblems 62
4.4 Strong scaling of sparse matrix multiplication. 64
4.5 Time breakdown for sparse matrix multiplication 66
4.6 Possible interleavings of the recursive algorithm 67

iv

List of Tables

2.1 Asymptotic computational and communication costs of Strassen-based and classi-
cal square matrix multiplication algorithms and corresponding lower bounds . . 16

2.2 The pattern of BFS and DFS steps and memory usage for CAPS. 23
2.3 Asymptotic bandwidth costs of classical and fast, square and rectangular matrix

mul tiplication . 37

3.1 Asymptotic bandwidth costs and lower bounds for rectangular matrix multiplication 44

4.1 Asymptotic expected communication costs and lower bonuds for sparse matrix
multiplication . 59

1

Chapter 1

Introduction

Matrix multiplication is one of the most fundamental algorithmic problems in numerical
linear algebra, distributed computing, scientific computing, and high-performance computing.
Parallelization of matrix multiplication has been extensively studied (e.g., [21, 12, 24, 2, 51,
39, 36, 23, 45, 61]). It has been addressed using many theoretical approaches, algorithmic
tools, and software engineering methods in order to optimize performance and obtain faster
and more efficient parallel algorithms and implementations.

To design efficient parallel algorithms, it is necessary not only to load balance the compu-
tation, but also to minimize the time spent communicating between processors. The inter-
processor communication costs are in many cases significantly higher than the computational
costs. Moreover, hardware trends predict that more problems will become communication-
bound in the future [38, 35]. Even matrix multiplication, which is widely considered to
be computation-bound, becomes communication-bound when a given problem is run on
sufficiently many processors.

Here we consider three cases of matrix multiplication: fast matrix multiplication algorithms,
such as Strassen’s, which compute the product of dense matrices using asymptotically fewer
than the näıve number of scalar products and so run in (o(n3)) time (Chapter 2); classical
matrix multiplication, for which all of the näıve scalar products Aik ·Bkj must be computed
(Chapter 3); and sparse matrix multiplication, where most of the entries of the input matrices
are zero, and only nonzero products are computed (Chapter 4). In each case, we present
a new recursive parallel algorithm. The new algorithms are communication-optimal: they
asymptotically match communication lower bounds, and they communicate asymptotically
less than previous algorithms. In the cases of sparse matrix multiplication and high aspect
ratio rectangular matrices for classical matrix multiplication we present new, tight lower
bounds. We also present benchmarking data that shows our new algorithms are faster than
previous algorithms in practice. Compared to the best previous algorithm, we show speedups
of up to 2.8× for Strassen’s algorithm, 140× for classical matrix multiplication, and 8× for
sparse matrix multiplication. In Chapter 5, we explain how to generalize our parallelization
approach to other recursive algorithms, including those with more dependencies than matrix
multiplication.

CHAPTER 1. INTRODUCTION 2

1.1 Communication Model

We model communication of distributed-memory parallel architectures as follows. We assume
the machine has P processors, each with local memory of size M words, which are connected
via a network. Processors communicate via messages, and we assume that a message of w
words can be communicated in time α+βw. Here α and β are machine parameters specifying
the overhead time per message and the reciprocal bandwidth, respectively. The bandwidth
cost of the algorithm is given by the word count and denoted by W , and the latency cost
is given by the message count and denoted by S. Similarly the computational cost is given
by the number of floating point operations and denoted by F . We call the time per floating
point operation γ.

We count the number of words, messages and floating point operations along the critical
path as defined in [66]. That is, two messages that are communicated between separate pairs
of processors simultaneously are counted only once, as are two floating point operations
performed in parallel on different processors. Note that we do not require the communication
to be bulk-synchronous: some of the processors may be engaged in communication while
others are performing computations. This metric is closely related to the total running time
of the algorithm, which we model as

αS + βW + γF.

We assume that (1) the architecture is homogeneous (that is, γ is the same on all processors
and α and β are the same between each pair of processors), (2) processors can send/receive
only one message to/from one processor at a time and they cannot overlap computation with
communication (this latter assumption can be dropped, affecting the running time by a factor
of at most two), and (3) there is no communication resource contention among processors.
That is, we assume that there is a link in the network between each pair of processors. Thus
lower bounds derived in this model are valid for any network, but attainability of the lower
bounds depends on the details of the network. One way to model more realistic networks is
as a hierarchy with different values for α and β at each level.

Perfect Strong Scaling

We say that an algorithm exhibits perfect strong scaling if its running time for a fixed problem
size decreases linearly with the number of processors; that is, if all three of F , W , and S
decrease linearly with P . Several of the algorithms we will discuss exhibit perfect strong
scaling within certain ranges. Our running time model naturally generalizes to give an energy
model, and perfect strong scaling of runtime corresponds to getting linear speedup in P while
using no extra energy [32].

CHAPTER 1. INTRODUCTION 3

1.2 Iterative Parallel Matrix Multiplication

Algorithms

The first scalable algorithm for parallel matrix multiplication is due to Cannon in 1969 [21].
Cannon’s algorithm multiplies two n × n matrices on P processors on a square grid with

bandwidth cost O
(
n2/
√
P
)

. SUMMA generalizes this to arbitrary matrix dimensions and a

rectangular grid of processors [36] using broadcasts rather than cyclic shifts. We call these
“2D” algorithms, because they use a two-dimensional processor grid and have bandwidth cost
that scales as 1/

√
P .

Another class of algorithms, known as “3D” [12, 2] because the communication pattern
maps to a three-dimensional processor grid, uses more local memory and reduces communi-
cation relative to 2D algorithms. The bandwidth cost of these algorithms scales as 1/P 2/3.
Unfortunately, they can only be used if a factor of Ω(P 1/3) extra memory is available.

The “2.5D” algorithm [52, 61] interpolates between 2D and 3D algorithms, using as much
memory as is available to reduce communication. For square matrices, it asymptotically
matches the lower bounds of [45] and [5], and so is communication-optimal. The recently
proposed 3D-SUMMA algorithm [57] attempts to generalize the 2.5D algorithm to rectan-
gular matrices. As our communication lower bounds in Section 3.1 show, 3D-SUMMA is
communication-optimal for many, but not all, matrix dimensions.

1.3 Parallelizing Recursive Algorithms

An alternative to the iterative parallelization approach is what we call the BFS/DFS approach.
BFS/DFS algorithms are based on sequential recursive algorithms, and view the processor
layout as a hierarchy rather than a grid. Breadth-first steps (BFS) and depth-first steps (DFS)
are alternate ways to solve the subproblems. At a BFS step, all of the subproblems are solved
in parallel on independent subsets of the processors, whereas at a DFS all the processors
work together to solve the subproblems serially. In general, BFS steps reduce communication
costs, but may require extra memory relative to DFS steps. The extra memory at a BFS step
is because each subset of the processors must have space for the entire input and output of
its subproblem. With correct interleaving of BFS and DFS steps to stay within the available
memory, we show that BFS/DFS gives communication-optimal algorithms for all the cases of
matrix multiplication we consider. Because of their recursive structure, BFS/DFS algorithms
are cache-, processor-, and network-oblivious in the sense of [34, 13, 25, 26]. Note that they are
not oblivious to the aggregated local memory (DRAM) size, which is necessary to determine
the optimal interleaving of BFS and DFS steps. Hence they should perform well without
much tuning on hierarchical architectures, which are becoming more common.

Our primary focus is on matrix multiplication algorithms. In this case, subproblems are
independent of each other, and hence may be computed simultaneously. In Chapter 5, we relax

CHAPTER 1. INTRODUCTION 4

this requirement, and show how to parallelize some recursive algorithms with dependencies
between the subproblems.

1.4 The Loomis-Whitney Inequality

The lower bound proofs in Sections 3.1 and 4.2 make use of the geometric embedding
techniques of [45, 10], so we review them here. This section may be safely skipped if the
reader is only interested in parallelizing Strassen’s fast matrix multiplication algorithm as
described in Chapter 2.

Let A be an m× k matrix, B be a k × n matrix, and C be an m× n matrix. The mnk
scalar multiplications that the classical algorithm performs when computing C = A ·B may
be arranged into a rectangular prism V of size m× n× k with the three matrices as its faces.
To perform a given multiplication, a processor must have access to the entries of A, B, and
C corresponding to the projections onto the m × k, n × k, and m × n faces of the prism,
respectively. If these entries are not assigned to that processor by the initial or final data
layout, these entries correspond to words that must be communicated.

Given a set of voxels V ⊂ V, the projections of the set onto three orthogonal faces
corresponds to the input elements of A and B necessary to perform the multiplications and
the output elements of C that the products must update. The computation cube and this
relationship of voxels to input and output matrix elements is shown in Figure 1.1. The
following lemma relates the volume of V to its projections:

Lemma 1.1. [49] Let V be a finite set of lattice points in R3, i.e., points (x, y, z) with
integer coordinates. Let Vx be the projection of V in the x-direction, i.e., all points (y, z)
such that there exists an x so that (x, y, z) ∈ V . Define Vy and Vz similarly. Let | · | denote
the cardinality of a set. Then |V | ≤

√
|Vx| · |Vy| · |Vz|.

V

B

A

C

Figure 1.1: The computation rectangular prism for matrix multiplication, with a specified sub-
set of voxels V along with its three projections. Each voxel corresponds to the multiplication
of its projection onto A and B, and contributes to its projection onto C.

5

Chapter 2

Strassen’s Matrix Multiplication

Strassen showed that 2× 2 matrix multiplication can be performed using 7 multiplications
and 18 additions, instead of the classical algorithm that does 8 multiplications and 4 additions
[62]. By recursive application this yields an algorithm which multiplies two n× n matrices
with O(nω0) flops, where ω0 = log2 7 ≈ 2.81. Winograd improved the algorithm to use 7
multiplications and 15 additions in the base case, thus decreasing the hidden constant in the
O notation [65]. Further reduction in the number of additions is not possible [56, 16].

In this chapter, we show how to parallelize Strassen’s algorithm in a communication-
optimal way, and benchmark and analyze its performance on several machines. The results in
this chapter are joint work with Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz.
The algorithm, analysis, and preliminary performance appear in [6]; more performance results,
implementation details, and performance modeling appear in [48].

We use the term parallel Strassen algorithm for a parallel algorithm that performs exactly
the same arithmetic operations as any variant of Strassen’s (sequential) algorithm; that is,
any algorithm based on 2× 2 matrix multiplication using 7 scalar multiplications. We use the
broader term parallel Strassen-based algorithm for a parallel matrix multiplication algorithm
that is a hybrid of any variant of Strassen’s and the classical algorithm. Examples of such
hybrids are given in the next section. Note that Theorems 2.1 and 2.2 below apply to parallel
Strassen algorithms, but not to all Strassen-based algorithms.

The rest of this chapter is organized as follows. We review the Strassen-Winograd algorithm
in Section 2.1, and the communication-cost lower bounds for Strassen-like algorithms in
Section 2.2. Section 2.3 presents our new communication-optimal algorithm. In Section 2.4
we analyze the communication costs of other approaches to parallelizing Strassen’s algorithm,
and show that none of them are communication-optimal. We present performance results for
both classical and Strassen-based algorithms in Section 2.5 and compare the performance to
a theoretical model in Section 2.6. We discuss details of our implementation, and numerical
stability of Strassen’s algorithm in Sections 2.7 and 2.8, respectively. Finally, in Section 2.9
we show how to generalize our approach to other fast matrix multiplication algorithms.

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 6

2.1 Strassen-Winograd Algorithm

To perform matrix multiplication using the Strassen-Winograd algorithm, first divide the
input matrices A,B and output matrix C into 4 submatrices:

A =

[
A11 A12

A21 A22

]
B =

[
B11 B12

B21 B22

]
C =

[
C11 C12

C21 C22

]
Then compute 7 linear combinations of the submatrices of each of A and B, call these Ti

and Si, respectively; multiply them pairwise; then compute the submatrices of C as linear
combinations of these products:

T1 = A11 S1 = B11 Q1 = T1 · S1 U1 = Q1 +Q4

T2 = A12 S2 = B21 Q2 = T2 · S2 U2 = U1 +Q5

T3 = A21 + A22 S3 = B12 −B11 Q3 = T3 · S3 U3 = U1 +Q3

T4 = T3 − A11 S4 = B22 − S3 Q4 = T4 · S4 C11 = Q1 +Q2

T5 = A11 − A21 S5 = B22 −B12 Q5 = T5 · S5 C12 = U3 +Q6

T6 = A12 − T4 S6 = B22 Q6 = T6 · S6 C21 = U2 −Q7

T7 = A22 S7 = S4 −B21 Q7 = T7 · S7 C22 = U2 +Q3

This is one step of Strassen-Winograd. The algorithm is recursive since it can be used
for each of the 7 smaller matrix multiplications. In practice, one often uses only a few
steps of Strassen-Winograd, although to attain O(nω0) computational cost, it is necessary
to recursively apply it all the way down to matrices of size O(1) × O(1). The precise
computational cost of Strassen-Winograd is

F(n) = csn
ω0 − 5n2. (2.1)

Here cs is a constant depending on the cutoff point at which one switches to the classical
algorithm. For a cutoff size of n0, the constant is cs = (2n0 + 4)/nω0−2

0 which is minimized at
n0 = 8 yielding a computational cost of approximately 3.73nω0 − 5n2.

2.2 Communication Lower Bounds

For parallel Strassen algorithms, the bandwidth cost lower bound has been proved using
expansion arguments on the computation graph [9], and the latency cost lower bound is an
immediate corollary. We believe the requirement of no recomputation is purely technical, but
there is no known proof of the lower bounds without it.

Theorem 2.1. (Memory-dependent lower bound) [9] Consider a parallel Strassen algorithm
running on P processors each with local memory size M . Let W (n, P,M) be the bandwidth
cost and S(n, P,M) be the latency cost of the algorithm. Assume that no intermediate values
are computed twice. Then

W (n, P,M) = Ω

((
n√
M

)ω0

· M
P

)
,

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 7

S(n, P,M) = Ω

((
n√
M

)ω0

· 1

P

)
.

We extended this to a memory-independent lower bound using the same expansion
approach:

Theorem 2.2. (Memory-independent lower bound) [5] Consider a parallel Strassen algorithm
running on P processors. Let W (n, P) be the bandwidth cost and S(n, P) be the latency cost
of the algorithm. Assume that no intermediate values are computed twice. Assume only
one copy of the input data is stored at the start of the algorithm and the computation is
load-balanced in an asymptotic sense. Then

W (n, P) = Ω

(
n2

P 2/ω0

)
,

S(n, P) = Ω (1) .

Note that when M = O(n2/P 2/ω0), the memory-dependent lower bound dominates, and
when M = Ω(n2/P 2/ω0), the memory-independent lower bound dominates.

2.3 Communication-Avoiding Parallel Strassen

In this section we present the CAPS algorithm, and prove it is communication-optimal. See
Algorithm 1 for a concise presentation and Algorithm 2 for a more detailed description.

Theorem 2.3. CAPS has computational cost

Θ

(
nω0

P

)
,

bandwidth cost

Θ

(
max

{
nω0

PMω0/2−1
,
n2

P 2/ω0

})
,

and latency cost

Θ

(
max

{
nω0

PMω0/2
logP, logP

})
.

By Theorems 2.1 and 2.2, we see that CAPS has optimal computational and bandwidth
costs, and that its latency cost is at most logP away from optimal. We prove Theorem 2.3
in Section 2.3.5.

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 8

A B

T
2
 S

2
T

7
 S

7
T

1
 S

1
T

5
 S

5
T

6
 S

6
T

4
 S

4
T

3
 S

3

A B

T
2
 S

2
T

7
 S

7
T

1
 S

1
T

5
 S

5
T

6
 S

6
T

4
 S

4
T

3
 S

3

BFS DFS

Figure 2.1: Representation of BFS and DFS steps. In a BFS step, all seven subproblems are
computed at once, each on 1/7 of the processors. In a DFS step, the seven subproblems are
computed in sequence, each using all the processors. The notation follows that of Section 2.1.

2.3.1 Overview of CAPS

Consider the recursion tree of Strassen’s sequential algorithm. CAPS traverses it in parallel
as follows. At each level of the tree, the algorithm proceeds in one of two ways. A “breadth-
first-step” (BFS) divides the 7 subproblems among the processors, so that 1

7
of the processors

work on each subproblem independently and in parallel. A “depth-first-step” (DFS) uses all
the processors on each subproblem, solving each one in sequence. See Figure 2.1.

In short, a BFS step requires more memory but reduces communication costs while a DFS
step requires little extra memory but is less communication-efficient. In order to minimize
communication costs, the algorithm must choose an ordering of BFS and DFS steps that
uses as much memory as possible.

Let k = log7 P and s ≥ k be the number of distributed Strassen steps the algorithm
will take. For simplicity, in this section, we assume that n is a multiple of 2s7dk/2e. If k is
even, the restriction simplifies to n being a multiple of 2s

√
P . Since P is a power of 7, it is

sometimes convenient to think of the processors as numbered in base 7. CAPS performs s
steps of Strassen’s algorithm and finishes the calculation with local matrix multiplication.
The algorithm can easily be generalized to other values of n by padding or dynamic peeling
(where, at each recursive step, if the matrix dimension is odd the last row and column are
handled separately).

We consider two simple schemes of traversing the recursion tree with BFS and DFS steps.
The first scheme, which we call the Unlimited Memory (UM) scheme, is to take k BFS steps
in a row. This approach is possible only if there is sufficient available memory. It is also used
in the second scheme, which we call the Limited Memory (LM) scheme, which is to take `
DFS steps in a row followed by k BFS steps in a row, where ` is minimized subject to the
memory constraints.

It is possible to use a more complicated scheme that interleaves BFS and DFS steps to
reduce communication. We show that the LM scheme is optimal up to a constant factor, and
hence no more than a constant factor improvement can be attained from interleaving.

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 9

Algorithm 1 CAPS, in brief. For more details, see Algorithm 2.

Input: A, B, n, where A and B are n× n matrices
P = number of processors

Output: C = A ·B
. The dependence of the Si’s on A, the Ti’s on B and C on the Qi’s follows the Strassen
or Strassen-Winograd algorithm. See Section 2.1.

1: procedure C = CAPS(A, B, n, P)
2: if enough memory then . Do a BFS step
3: locally compute the Si’s and Ti’s from A and B
4: parallel for i = 1 . . . 7 do
5: redistribute Si and Ti
6: Qi = CAPS(Si, Ti, n/2, P/7)
7: redistribute Qi

8: locally compute C from all the Qi’s
9: else . Do a DFS step

10: for i = 1 . . . 7 do
11: locally compute Si and Ti from A and B
12: Qi = CAPS(Si, Ti, n/2, P)
13: locally compute contribution of Qi to C

2.3.2 Data layout

We require that the data layout of the matrices satisfies the following two properties:

1. At each of the s Strassen recursion steps, the data layouts of the four sub-matrices of
each of A, B, and C must match so that the weighted additions of these sub-matrices
can be performed locally. This technique follows [51] and allows communication-free
DFS steps.

2. Each of these submatrices must be equally distributed among the P processors for load
balancing.

There are many data layouts that satisfy these properties, perhaps the simplest being block-
cyclic layout with a processor grid of size 7bk/2c×7dk/2e and block size n

2s7bk/2c
× n

2s7dk/2e
. (When

k = log7 P is even these expressions simplify to a processor grid of size
√
P ×
√
P and block

size n
2s
√
P

.) See Figure 2.2.

Any layout that we use is specified by three parameters, (n, P, s), and intermediate stages
of the computation use the same layout with smaller values of the parameters. A BFS step
reduces a multiplication problem with layout parameters (n, P, s) to seven subproblems with
layout parameters (n/2, P/7, s−1). A DFS step reduces a multiplication problem with layout
parameters (n, P, s) to seven subproblems with layout parameters (n/2, P, s− 1).

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 10

Note that if the input data is initially load-balanced but distributed using a different

layout, we can rearrange it to the above layout using no more than O
(

n2

P

)
words and O(P)

messages. This has no asymptotic effect on the bandwidth cost but may significantly increase
the latency cost.

00 01 02 03 04 05 06

10 11 12 13 14 15 16

20 21 22 23 24 25 26

30 31 32 33 34 35 36

40 41 42 43 44 45 46

50 51 52 53 54 55 56

60 61 62 63 64 65 66

Figure 2.2: An example matrix layout for CAPS. Each of the 16 submatrices as shown on
the left has exactly the same layout. The colored blocks are the ones owned by processor 00.
On the right is a zoomed-in view of one submatrix, showing which processor, numbered base
7, owns each block. This is block-cyclic layout with some blocksize b, and matches our layout
requirements with parameters (n = 4 · 7 · b, P = 49, s = 2).

2.3.3 Unlimited Memory (UM) scheme

In the UM scheme, we take k = log7 P BFS steps in a row. Since a BFS step reduces the
number of processors involved in each subproblem by a factor of 7, after k BFS steps each
subproblem is assigned to a single processor, and so is computed locally with no further
communication costs. We first describe a BFS step in more detail.

The matrices A and B are initially distributed as described in Section 2.3.2. In order to
take a recursive step, the 14 matrices S1, . . . S7, T1, . . . , T7 must be computed. Each processor
allocates space for all 14 matrices and performs local additions and subtractions to compute
its portion of the matrices. Recall that the submatrices are distributed identically, so this
step requires no communication. If the layouts of A and B have parameters (n, P, s), the Si

and the Ti now have layout parameters (n/2, P, s− 1).
The next step is to redistribute these 14 matrices so that the 7 pairs of matrices (Si, Ti)

exist on disjoint sets of P/7 processors. This requires disjoint sets of 7 processors performing
an all-to-all communication step (each processor must send and receive a message from each
of the other 6). To see this, consider the numbering of the processors base-7. On the mth

BFS step, the communication is between the seven processors whose numbers agree on all
digits except the mth (counting from the right). After the mth BFS step, the set of processors
working on a given subproblem share the same m-digit suffix. After the above communication
is performed, the layout of Si and Ti has parameters (n/2, P/7, s − 1), and the sets of
processors that own the Ti and Si are disjoint for different values of i. Since each all-to-all

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 11

Algorithm 2 CAPS, in detail

Input: A, B, are n× n matrices
P = number of processors
rank = processor number base-7 as an array
M = local memory size

Output: C = A ·B
1: procedure C = CAPS(A, B, P , rank, M)
2: ` =

⌈
log2

4n
P 1/ω0M1/2

⌉
. ` is number of DFS steps to fit in memory

3: k = log7 P
4: call DFS(A, B, C, k, `, rank)

1: procedure DFS(A, B, C, k, `, rank) . Do C = A ·B by ` DFS, then k BFS steps
2: if ` ≤ 0 then call BFS(A, B, C, k, rank); return

3: for i = 1 . . . 7 do
4: locally compute Si and Ti from A and B . following Strassen’s algorithm
5: call DFS(Si, Ti, Qi, k, `− 1, rank)
6: locally compute contribution of Qi to C . following Strassen’s algorithm

1: procedure BFS(A, B, C, k, rank)
. Do C = A ·B by k BFS steps, then local Strassen

2: if k == 0 then call localStrassen(A, B, C); return

3: for i = 1 . . . 7 do
4: locally compute Si and Ti from A and B . following Strassen’s algorithm

5: for i = 1 . . . 7 do
6: target = rank
7: target[k] = i
8: send Si to target
9: receive into L . One part of L comes from each of 7 processors

10: send Ti to target
11: receive into R . One part of R comes from each of 7 processors

12: call BFS(L, R, V , k − 1, rank)
13: for i = 1 . . . 7 do
14: target = rank
15: target[k] = i
16: send ith part of V to target
17: receive from target into Qi

18: locally compute C from Qi . following Strassen’s algorithm

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 12

communication only involves seven processors no matter how large P is, this algorithm does
not have the scalability issues that typically come from an all-to-all communication pattern.

Memory requirements

The extra memory required to take one BFS step is the space to store all 7 triples Sj, Tj,
Qj. Since each of those matrices is 1

4
the size of A, B, and C, the extra space required at a

given step is 7/4 the extra space required for the previous step. We assume that no extra
memory is required for the local multiplications.1 Thus, the total local memory requirement
for taking k BFS steps is given by

MemUM(n, P) =
3n2

P

k∑
i=0

(
7

4

)i

=
7n2

P 2/ω0
− 4n2

P
= Θ

(
n2

P 2/ω0

)
.

Computational costs

The computation required at a given BFS step is that of the local additions and subtractions
associated with computing the Si and Ti and updating the output matrix C with the Qi.
Since Strassen-Winograd performs 15 additions and subtractions, the computational cost
recurrence is

FUM(n, P) = 15

(
n2

4P

)
+ FUM

(
n

2
,
P

7

)
with base case FUM(n, 1) = csn

ω0 − 5n2, where cs is the constant of Strassen-Winograd. See
Section 2.1 for more details. The solution to this recurrence is

FUM(n, P) =
csn

ω0 − 5n2

P
= Θ

(
nω0

P

)
.

Communication costs

Consider the communication costs associated with the UM scheme. Given that the redis-
tribution within a BFS step is performed by an all-to-all communication step among sets
of 7 processors, each processor sends 6 messages and receives 6 messages to redistribute
S1, . . . , S7, and the same for T1, . . . , T7. After the products Qi = SiTi are computed, each
processor sends 6 messages and receives 6 messages to redistribute Q1, . . . , Q7. The size of
each message varies according to the recursion depth, and is the number of words a processor
owns of any Si, Ti, or Qi, namely n2

4P
words.

1If one does not overwrite the input, it is impossible to run Strassen in place; however using a few
temporary matrices affects the analysis here by a constant factor only.

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 13

As each of the Qi is computed simultaneously on disjoint sets of P/7 processors, we obtain
a cost recurrence for the entire UM scheme:

WUM(n, P) = 36
n2

4P
+WUM

(
n

2
,
P

7

)
SUM(n, P) = 36 + SUM

(
n

2
,
P

7

)
with base case SUM(n, 1) = WUM(n, 1) = 0. Thus

WUM(n, P) =
12n2

P 2/ω0
− 12n2

P
= Θ

(
n2

P 2/ω0

)
SUM(n, P) = 36 log7 P = Θ (logP) . (2.2)

2.3.4 Limited Memory (LM) scheme

In this section we discuss a scheme for traversing Strassen’s recursion tree in the context of
limited memory. In the LM scheme, we take ` DFS steps in a row followed by k BFS steps in
a row, where ` is minimized subject to the memory constraints. That is, we use a sequence of
DFS steps to reduce the problem size so that we can use the UM scheme on each subproblem
without exceeding the available memory.

Consider taking a single DFS step. Rather than allocating space for and computing all 14
matrices S1, T1, . . . , S7, T7 at once, the DFS step requires allocation of only one subproblem,
and each of the Qi will be computed in sequence.

Consider the ith subproblem: as before, both Si and Ti can be computed locally. After
Qi is computed, it is used to update the corresponding quadrants of C and then discarded
so that its space in memory (as well as the space for Si and Ti) can be re-used for the next
subproblem. In a DFS step, no redistribution occurs. After Si and Ti are computed, all
processors participate in the computation of Qi.

We assume that some extra memory is available. To be precise, assume the matrices A,
B, and C require only 1

3
of the available memory:

3n2

P
≤ 1

3
M. (2.3)

In the LM scheme, we set

` = max

{
0,

⌈
log2

4n

P 1/ω0M1/2

⌉}
. (2.4)

The following subsection shows that this choice of ` is sufficient not to exceed the memory
capacity.

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 14

Memory requirements

The extra memory requirement for a DFS step is the space to store one subproblem. Thus,
the extra space required at this step is 1/4 the space required to store A, B, and C. The
local memory requirements for the LM scheme is given by

MemLM(n, P) =
3n2

P

`−1∑
i=0

(
1

4

)i

+ MemUM

(n
2`
, P
)

≤ M

3

`−1∑
i=0

(
1

4

)i

+
7
(

n
2`

)2
P 2/ω0

≤ 127

144
M < M,

where the last line follows from (2.4) and (2.3). Thus, the limited memory scheme does not
exceed the available memory.

Computational costs

As in the UM case, the computation required at a given DFS step is that of the local
additions and subtractions associated with computing each Si and Ti and updating the
output matrix C with the Qi. However, since all processors participate in each subproblem
and the subproblems are computed in sequence, the recurrence is given by

FLM(n, P) = 15

(
n2

4P

)
+ 7 · FLM

(n
2
, P
)
.

After ` steps of DFS, the size of a subproblems is n
2`
× n

2`
, and there are P processors involved.

We take k BFS steps to compute each of these 7` subproblems. Thus

FLM

(n
2`
, P
)

= FUM

(n
2`
, P
)
,

and

FLM (n, P) =
15n2

4P

`−1∑
i=0

(
7

4

)i

+ 7` · FUM

(n
2`
, P
)

=
csn

ω0 − 5n2

P
= Θ

(
nω
0

P

)
.

Communication costs

Since there are no communication costs associated with a DFS step, the recurrence is simply

WLM(n, P) = 7 ·WLM

(n
2
, P
)

SLM(n, P) = 7 · SLM

(n
2
, P
)

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 15

with base cases

WLM

(n
2`
, P
)

= WUM

(n
2`
, P
)

SLM

(n
2`
, P
)

= SUM

(n
2`
, P
)
.

Thus the total communication costs are given by

WLM (n, P) = 7` ·WUM

(n
2`
, P
)
≤ 12 · 4ω0−2nω0

PMω0/2−1
= Θ

(
nω0

PMω0/2−1

)
.

SLM (n, P) = 7` · SUM

(n
2`
, P
)
≤ (4n)ω0

PMω0/2
36 log7 P = Θ

(
nω0

PMω0/2
logP

)
. (2.5)

2.3.5 Communication optimality

Proof. (of Theorem 2.3 on page 7). In the case that M ≥ MemUM(n, P) = Ω
(

n2

P 2/ω0

)
the

UM scheme is possible. Then the communication costs are given by Equation (2.2) on
page 13 which matches the lower bound of Theorem 2.2 on page 7. Thus the UM scheme is
communication-optimal (up to a logarithmic factor in the latency cost and assuming that
the data is initially distributed as described in Section 2.3.2). For smaller values of M , the
LM scheme must be used. Then the communication costs are given by Equation (2.5) on
page 15 and match the lower bound of Theorem 2.1 on page 6, so the LM scheme is also
communication-optimal.

We note that for the LM scheme, since both the computational and communication costs
are proportional to 1

P
(up to a logP factor on S), we can expect perfect strong scaling: given

a fixed problem size, increasing the number of processors by some factor will decrease each
cost by the same factor. However, this strong scaling property has a limited range. For any
fixed M and n, increasing P increases the global memory size PM . The limit of perfect
strong scaling is exactly when there is enough memory for the UM scheme. See [5] for details.

2.4 Analysis of Other Algorithms

In this section we detail the asymptotic communication costs of other matrix multiplica-
tion algorithms, both classical and Strassen-based. These communication costs and the
corresponding lower bounds are summarized in Table 2.1.

Many of the algorithms described in this section are hybrids of two different algorithms.
We use the convention that the names of the hybrid algorithms are composed of the names
of the two component algorithms, hyphenated. The first name describes the algorithm used
at the top level, on the largest problems, and the second describes the algorithm used at the
base level on smaller problems.

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 16

F
lo

p
s

B
a
n
d
w

id
th

L
a
te

n
cy

Classical

L
ow

er
B

ou
n
d

[5
,

45
]

n
3 P

m
ax
{ n

3

P
M

1
/
2
,

n
2

P
2
/
3

}
m

ax
{ n

3

P
M

3
/
2
,1
}

2D
[2

1,
36

]
n
3 P

n
2

P
1
/
2

P
1
/
2

3D
[2

,
12

]
n
3 P

n
2

P
2
/
3

lo
g
P

2.
5D

[5
2,

61
],

C
A

R
M

A
[3

1]
n
3 P

m
ax
{ n

3

P
M

1
/
2
,

n
2

P
2
/
3

}
n
3

P
M

3
/
2

+
lo

g
P

Strassen

L
ow

er
B

ou
n
d

[5
,

9]
n
ω
0

P
m

ax
{

n
ω
0

P
M

ω
0
/
2
−
1
,

n
2

P
2
/
ω
0

}
m

ax
{ nω

0

P
M

ω
0
/
2
,1
}

2D
-S

tr
as

se
n

[5
1]

n
ω
0

P
(ω

0
−
1
)/

2
n
2

P
1
/
2

P
1
/
2

S
tr

as
se

n
-2

D
[3

9,
51

]
(7 8

) ` n3 P

(7 4

) ` n2 P
1
/
2

7`
P

1
/
2

2.
5D

-S
tr

as
se

n
[6

]
m

ax
{

n
3

P
M

3
/
2
−
ω
0
/
2
,

n
ω
0

P
ω
0
/
3

}
m

ax
{ n

3

P
M

1
/
2
,

n
2

P
2
/
3

}
n
3

P
M

3
/
2

+
lo

g
P

S
tr

as
se

n
-2

.5
D

[6
]

(7 8

) ` n3 P
m

ax
{ (7 8

) ` n
3

P
M

1
/
2
,(7 4

) ` n2 P
2
/
3

}
(7 8

) ` n
3

P
M

3
/
2

+
7`

lo
g
P

C
A

P
S

[6
]

n
ω
0

P
m

ax
{

n
ω
0

P
M

ω
0
/
2
−
1
,

n
2

P
2
/
ω
0

}
m

ax
{ nω

0

P
M

ω
0
/
2

lo
g
P
,l

og
P
}

T
ab

le
2.

1:
A

sy
m

p
to

ti
c

co
m

p
u
ta

ti
on

al
an

d
co

m
m

u
n
ic

at
io

n
co

st
s

of
S
tr

as
se

n
-b

as
en

d
an

d
cl

as
si

ca
l

sq
u
ar

e
m

at
ri

x
m

u
lt

ip
li
-

ca
ti

on
al

go
ri

th
m

s
an

d
co

rr
es

p
on

d
in

g
lo

w
er

b
ou

n
d
s.

H
er

e
ω
0

=
lo

g
2

7
≈

2.
81

is
th

e
ex

p
on

en
t

of
S
tr

as
se

n
;
`

is
th

e
n
u
m

b
er

of
S
tr

as
se

n
st

ep
s

ta
ke

n
.

T
h
e

C
A

P
S

al
go

ri
th

m
at

ta
in

s
th

e
lo

w
er

b
ou

n
d
s

of
S
ec

ti
on

2.
2,

an
d

th
u
s

is
op

ti
m

al
.

A
ll

of
th

e
ot

h
er

S
tr

as
se

n
-b

as
ed

al
go

ri
th

m
s

h
av

e
as

y
m

p
to

ti
ca

ll
y

h
ig

h
er

co
m

m
u
n
ic

at
io

n
co

st
s;

se
e

S
ec

ti
on

2.
4

fo
r

d
et

ai
ls

.

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 17

2.4.1 Classical Algorithms

Any classical algorithm must communicate asymptotically more than an optimal parallel
Strassen algorithm (see the lower bounds in[45]). To compare the communication cost upper
and lower bounds of classical and parallel Strassen algorithms, it is necessary to consider
three cases for the memory size: when the memory-dependent bounds dominate for both
classical and Strassen, when the memory-dependent bound dominates for classical but the
memory-independent bound dominates for Strassen, and when the memory-independent
bounds dominate for both classical and Strassen. See Figure 2.3.

Case 1 M = Ω(n2/P) and M = O(n2/P 2/ω0). The first condition is necessary for there
to be enough memory to hold the input and output matrices; the second condition puts
both classical and Strassen algorithms in the memory-dependent case. Then the ratio of the
bandwidth costs is:

R = Θ

(
n3

PM1/2

/
nω0

PMω0/2−1

)
= Θ

((
n2

M

)(3−ω0)/2
)
.

Using the two bounds that define this case, we obtain R = O(P (3−ω0)/2) and R = Ω(P 3/ω0−1).

Case 2 M = Ω(n2/P 2/ω0) and M = O(n2/P 2/3). This means that in the classical case the
memory-dependent lower bound dominates, but in the Strassen case the memory-independent
lower bound dominates. Then the ratio is:

R = Θ

(
n3

PM1/2

/
n2

P 2/ω0

)
= Θ

((
n2

M

)1/2

P 2/ω0−1

)
.

Using the two bounds that define this case, we obtain R = O(P 3/ω0−1) and R = Ω(P 2/ω0−2/3).

Case 3 M = Ω(P 2/3). This means that both the classical and Strassen lower bounds are
dominated by the memory-independent cases. Then the ratio is:

R = Θ

(
n2

P 2/3

/
n2

P 2/ω0

)
= Θ

(
P 2/ω0−2/3

)
.

Overall, depending on the ratio of the problem size to the available memory, the factor by
which the classical bandwidth costs exceed the Strassen bandwidth costs is Θ(P a), where a
ranges from 2

ω0
− 2

3
≈ 0.046 to 3−ω0

2
≈ 0.10. The same sort of analysis is used throughout

Section 2.4 to compare each algorithm with the parallel Strassen lower bounds.

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 18

Pmin Pmin
ω0/2

Pmin
3/2

(B
a
n
d
w

id
th

 c
o
s
t)

 x
 P

P

Classical
Strassen

Figure 2.3: Bandwidth costs and strong scaling of matrix multiplication: classical vs. Strassen-
based. Horizontal lines correspond to perfect strong scaling. Pmin is the minimum number of
processors required to store the input and output matrices.

2.4.2 2D-Strassen

One idea to construct a parallel Strassen-based algorithm is to use a 2D classical algorithm for
the inter-processor communication, and use the fast matrix multiplication algorithm locally
[51]. We call such an algorithm “2D-Strassen”. It is straightforward to implement, but cannot
attain all the computational speedup from Strassen since it uses a classical algorithm for part
of the computation. In particular, it does not use Strassen for the largest matrices, when
Strassen would provide the greatest reduction in computation. As a result, the computational
cost exceeds Θ(nω0/P) by a factor of P (3−ω0)/2 ≈ P 0.10. The 2D-Strassen algorithm has the
same communication cost as 2D algorithms, and hence does not match the communication
costs of CAPS. In comparing the 2D-Strassen bandwidth cost, Θ(n2/P 1/2), to the CAPS
bandwidth cost in Section 2.3, note that for the problem to fit in memory we always have
M = Ω(n2/P). The bandwidth cost exceeds that of CAPS by a factor of P a, where a ranges
from (3− ω0)/2 ≈ .10 to 2/ω0 − 1/2 ≈ .21, depending on the relative problem size. Similarly,
the latency cost, Θ(P 1/2), exceeds that of CAPS by a factor of P a where a ranges from
(3− ω0)/2 ≈ .10 to 1/2 = .5.

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 19

2.4.3 Strassen-2D

The “Strassen-2D” algorithm applies ` DFS steps of Strassen’s algorithm at the top level, and
performs the 7` smaller matrix multiplications using a 2D algorithm. By choosing certain data
layouts as in Section 2.3.2, it is possible to do the additions and subtractions for Strassen’s
algorithm without any communication [51]. However, Strassen-2D is also unable to match the
communication costs of CAPS. Moreover, the speedup of Strassen-2D in computation comes
at the expense of extra communication. For large numbers of Strassen steps `, Strassen-2D can
approach the computational lower bound of Strassen, but each step increases the bandwidth
cost by a factor of 7

4
and the latency cost by a factor of 7. Thus the bandwidth cost of

Strassen-2D is a factor of
(
7
4

)`
higher than 2D-Strassen, which is already higher than that of

CAPS. The latency cost is even worse: Strassen-2D is a factor of 7` higher than 2D-Strassen.
One can reduce the latency cost of Strassen-2D at the expense of a larger memory footprint.

Since Strassen-2D runs a 2D algorithm 7` times on the same set of processors, it is possible
to pack together messages from independent matrix multiplications. In the best case, the
latency cost is reduced to the cost of 2D-Strassen, which is still above that of CAPS, at the

expense of using a factor of
(
7
4

)`
more memory.

2.4.4 2.5D-Strassen

A natural idea is to replace a 2D classical algorithm in 2D-Strassen with the superior 2.5D
classical algorithm to obtain an algorithm we call 2.5D-Strassen. This algorithm uses the
2.5D algorithm for the inter-processor communication, and then uses Strassen for the local
computation. When M = Θ(n2/P), 2.5D-Strassen is exactly the same as 2D-Strassen, but
when there is extra memory it both decreases the communication cost and decreases the
computational cost since the local matrix multiplications are performed (using Strassen) on
larger matrices. To be precise, the computational cost exceeds the lower bound by a factor of
P a where a ranges from 1− ω0

3
≈ 0.064 to 3−ω0

2
≈ 0.10 depending on the relative problem size.

The bandwidth cost exceeds the bandwidth cost of CAPS by a factor of P a where a ranges
from 2

ω0
− 2

3
≈ 0.046 to 3−ω0

2
≈ 0.10. In terms of latency, the cost of n3

PM3/2 + logP exceeds

the latency cost of CAPS by a factor ranging from logP to P (3−ω0)/2 ≈ P 0.10, depending on
the relative problem size.

2.4.5 Strassen-2.5D

Similarly, by replacing a 2D algorithm with 2.5D in Strassen-2D, one obtains the new algorithm
we call Strassen-2.5D. First one takes ` DFS steps of Strassen, which can be done without
communication, and then one applies the 2.5D algorithm to each of the 7` subproblems. The
computational cost is exactly the same as Strassen-2D, but the communication cost will
typically be lower. Each of the 7` subproblems is multiplication of n/2`×n/2` matrices. Each
subproblem uses only 1/4` as much memory as the original problem. Thus there may be a
large amount of extra memory available for each subproblem, and the lower communication

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 20

costs of the 2.5D algorithm help. The choice of ` that minimizes the bandwidth cost is

`opt = max
{

0,
⌈
log2

n

M1/2P 1/3

⌉}
.

The same choice minimizes the latency cost. Note that when M ≥ n2

P 2/3 , taking zero Strassen
steps minimizes the communication within the constraints of the Strassen-2.5D algorithm.
With ` = `opt, the bandwidth cost is a factor of P 1−ω0/3 ≈ P 0.064 above that of CAPS.
Additionally, the computational cost is not optimal, and using ` = `opt, the computational
cost exceeds the optimal by a factor of P 1−ω0/3M3/2−ω0/2 ≈ P 0.064M0.096.

It is also possible to take ` > `opt steps of Strassen to decrease the computational
cost further. However the decreased computational cost comes at the expense of higher
communication cost, as in the case of Strassen-2D. In particular, each extra step over `opt
increases the bandwidth cost by a factor of 7

4
and the latency cost by a factor of 7. As

with Strassen-2D, it is possible to use extra memory to pack together messages from several
subproblems and decrease the latency cost, but not the bandwidth cost.

2.5 Performance Results

We have implemented CAPS using MPI on three supercomputers, a Cray XE6 (Hopper2), an
IBM BG/P (Intrepid3), and a Cray XT4 (Franklin4), and we compare it to various previous
classical and Strassen-based algorithms. All our experiments are in double precision on
random input matrices. CAPS performs less communication than communication-optimal
classical algorithms, and much less than previous Strassen-based algorithms. As a result it
outperforms all classical algorithms, both on large problems (because of the lower flop count
of Strassen) and on small problems scaled up to many processors (which are communication
bound, so the lower communication costs of CAPS make it superior). It also outperforms
previous Strassen-based algorithms because of its lower communication costs.

Effective performance is a useful construct for comparing classical and fast matrix mul-
tiplication algorithms. It is the performance, normalized with respect to the arithmetic
complexity of classical matrix multiplication, 2n3:

Effective flop/s =
2n3

Execution time in seconds
.

For classical algorithms, this gives exactly the flop rate. For fast matrix multiplication
algorithms it gives the relative performance, but does not accurately represent the number of
floating point operations performed.

2For machine details, see http://www.nersc.gov/users/computational-systems/hopper
3For machine details, see http://www.alcf.anl.gov/intrepid
4For machine details, see http://www.nersc.gov/users/computational-systems/retired-systems/

franklin

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 21

For each of the three machines, we present two types of plots. First, in Figures 2.4a,
2.4c, and 2.4e, we show strong scaling plots for a fixed, large matrix dimension where the
x-axis corresponds to number of processor cores (on a log scale) and the y-axis corresponds
to fraction of peak performance, as measured by the effective performance. Horizontal lines
in the plots correspond to perfect strong scaling.

There are general trends for all algorithms presented in these plots. On the left side of
the plots, the number of processors is small enough such that the input and output matrices
nearly fill the memories of the processors. As the number of processors increases, both
2.5D and CAPS can exhibit perfect strong scaling within limited ranges. We demarcate the
strong-scaling range of CAPS as defined in Section 1.1 with a shaded region. The slightly
larger strong-scaling range for the classical 2.5D algorithm is also shown. To the right of the
strong scaling range, CAPS must begin to lose performance, as per-processor communication
no longer scales with 1/P . While CAPS performance should theoretically degrade more
slowly than classical algorithms, network resource contention can also be a limiting factor.
The pattern of BFS and DFS steps used by CAPS for these benchmarks is shown in Table 2.2
when the number of MPI processes is a power of 7.

Second, we show execution time for fixed, small matrix dimension over an increasing
number of processors. See Figures 2.4b, 2.4d, and 2.4f. For these problem sizes, the execution
time is dominated by communication, and the speedup relative to classical algorithms is based
primarily on decreases in communication. The optimal number of processors to minimize
time to solution varies for each implementation and machine. These plots do not show strong
scaling ranges. For both 2.5D and CAPS if a problem fits on one processor, that is Pmin = 1,
then for 2.5D Pmax = P 1.5

min = 1 and for CAPS Pmax = P
ω0/2
min = 1, which means that there is

no strong scaling range.
Note that because several of the implementations, including CAPS, are prototypes, each

has its own requirement on the matrix size n and the number of MPI processes P . We have
arranged for all algorithms in a given plot to use the same value of n, but the values of P
usually do not match between algorithms. In both types of plots, we are comparing CAPS
performance with the best classical implementations and previous Strassen-based approaches.
To simplify the plots, we omit the performance of algorithms that are dominated by other
similar algorithms.

2.5.1 Cray XE6 Hopper

Hopper is a Cray XE6 at the National Energy Research Scientific Computing Center. It
consists of 6,384 compute nodes, each of which has 2 twelve-core AMD “MagnyCours” 2.1
GHz processors, and 32 GB of DRAM (384 of the nodes have 64 GB of DRAM). The 24 cores
are divided between 4 NUMA regions. Parallelism between the 6 cores in a NUMA region
comes from the threaded BLAS implementation in Cray’s LibSci version 11.0.05. Hopper’s
peak double precision rate is 50.4 Gflop/s per NUMA region or 1.28 Pflop/s for the entire
machine. As of November 2011, it was ranked number 8 on the TOP500 list [53], with a
LINPACK score of 1.05 Tflop/s on a matrix of dimension about 4.5 million.

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 22

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

5e2 1e3 5e3 1e4 5e4 1e5

E
ff
e
c
ti
v
e
 P

e
rf

o
rm

a
n
c
e
,
F

ra
c
ti
o
n
 o

f
P

e
a
k

Number of Cores

CAPS Strong-Scaling Range

2.5D Strong-Scaling Range

(a) Hopper (Cray XE6), n = 131712

 0.01

 0.1

 1

 10

1e1 1e2 1e3 1e4 1e5

E
x
e
c
u
ti
o
n
 t
im

e
,
s
e
c
o
n
d
s

Number of Cores

(b) Hopper (Cray XE6), n = 4704

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

5e2 1e3 5e3 1e4 5e4

E
ff
e
c
ti
v
e
 P

e
rf

o
rm

a
n
c
e
,
F

ra
c
ti
o
n
 o

f
P

e
a
k

Number of Cores

CAPS Strong-Scaling Range

2.5D Strong-Scaling Range

(c) Intrepid (IBM BG/P), n = 65856

 0.01

 0.1

 1

 10

1e1 1e2 1e3 1e4

E
x
e
c
u
ti
o
n
 t
im

e
,
s
e
c
o
n
d
s

Number of Cores

(d) Intrepid (IBM BG/P), n = 4704

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2e2 5e2 1e3 2e3 5e3 1e4 2e4

E
ff
e
c
ti
v
e
 P

e
rf

o
rm

a
n
c
e
,
F

ra
c
ti
o
n
 o

f
P

e
a
k

Number of Cores

CAPS Strong-Scaling Range

2.5D Strong-Scaling Range

(e) Franklin (Cray XT4), n = 94080

 0.01

 0.1

 1

1e1 1e2 1e3 1e4

E
x
e
c
u
ti
o
n
 t
im

e
,
s
e
c
o
n
d
s

Number of Cores

(f) Franklin (Cray XT4), n = 3136

CAPS

2.5D-Strassen

2D-Strassen

Strassen-2D

2.5D

2D
Classical Peak

Figure 2.4: Strong scaling results on three machines. Left column: effective performance on
large matrices (up is good). Right column: execution time on small matrices (down is good).

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 23

Machine, n P cores pattern memory use per process
Hopper, 131712 343 2058 D,B,B,B,D,D,D 5615 MB
Hopper, 131712 2401 14406 B,B,B,B,D,D,D 4816 MB
Intrepid, 65856 343 1372 D,B,B,B 1319 MB
Intrepid, 65856 2401 9604 B,B,B,B 1119 MB
Intrepid, 65856 16807 67228 B,B,B,B,B 289 MB
Franklin, 94080 49 196 D,D,B,B,D,D 6819 MB
Franklin, 94080 343 1372 B,B,D,B,D,D 5902 MB
Franklin, 94080 2401 9604 B,B,B,B,D,D 2449 MB

Table 2.2: The pattern of BFS and DFS steps and memory usage for CAPS.

CAPS outperforms all of the previous algorithms. For the large problem (n = 131712), it
attains performance as high as 30% above the peak for classical matrix multiplication, 83%
above 2D, and 75% above Strassen-2D. On this machine, we benchmark ScaLAPACK/PBLAS
(part of Cray’s LibSci version 11.0.03) as the 2D algorithm. Since we were not able to modify
that code, the 2D-Strassen numbers are simulated based on single-node benchmarks of the
corresponding local matrix multiplication size. We tested the 2.5D code tuned for Intrepid
on Hopper; for large problems it performed worse than ScaLAPACK, and since it was not
tuned for Hopper, we do not show results for 2.5D, Strassen-2.5D, or 2.5D-Strassen. We
would expect that 2.5D code, properly tuned for Hopper, would outperform 2D. For the small
problem (n = 4704), we observed speedups of up to 66% over 2.5D, which happened to be
the best of the other algorithms for this problem size.

2.5.2 IBM BlueGene/P Intrepid

Intrepid is an IBM BG/P at the Argonne Leadership Computing Facility. It consists of
40,960 compute nodes, each of which has a quad-core IBM PowerPC 450 850 MHz processor,
and 2 GB of DRAM. Intrepid’s peak double precision rate is 13.6 Gflop/s per node, or 557
Tflop/s for the entire machine. We obtain on-node parallelism using the threaded BLAS
implementation in IBM’s ESSL version 4.4.1-0. As of November 2011, it was ranked number
23 on the TOP500 list [53], with a LINPACK score of 459 Tflop/s. Intrepid allows allocations
only in powers of two nodes (with a few exceptions), but in our performance data we count
only the nodes we use.

On Intrepid, the most efficient classical code is 2.5D and is well-tuned to the architecture.
It consistently outperforms Strassen-2D and Strassen-2.5D, so we omit those algorithms in the
performance plots. The 2D and 2.5D code are from [61]. For the large problem (n = 65856),
CAPS achieves a speedup of up to 57% over 2.5D or 2.5D-Strassen; for the small problem
(n = 4704), the best speedup is 12%.

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 24

2.5.3 Cray XT4 Franklin

Franklin is a recently retired Cray XT4 at the National Energy Research Scientific Computing
Center. It consists of 9,572 compute nodes, each of which has a quad-core AMD “Budapest”
2.3 GHz processor, and 8 GB of DRAM. Franklin’s peak double precision rate is 36.8 Gflop/s
per node, or 352 Tflop/s for the entire machine. On each node, we use the threaded BLAS
implementation in Cray’s LibSci version 10.5.02. As of November 2011, it was ranked number
38 on the TOP500 list [53], with a LINPACK score of 266 Tflop/s on a matrix of dimension
about 1.6 million.

CAPS outperforms all of the previous algorithms, and attains performance as high as
33% above the theoretical maximum for classical algorithms, as shown in Figure 2.4e. The
largest speedups we observed for the large problem (n = 94080) was 103% faster than
2.5D, the fastest classical algorithm, and 187% faster than Strassen-2D, the best previous
Strassen-based algorithm. For the small problem size (n = 3136), we observed up to 84%
improvement over 2.5D, which was the best among the all other approaches. The 2D and
2.5D code are from [61].

For a matrix dimension of n = 188160, we observed an aggregate effective performance
rate of 351 Tflop/s which exceeds the LINPACK score. Note that for this run CAPS used
only 7203 (75%) of the nodes and a matrix of less than one eighth the dimension used for
the TOP500 number. In fact, increasing the matrix size to n = 263424 increases its effective
performance to 388 Tflop/s, higher than Franklin’s theoretical peak for classical algorithms.

2.5.4 CAPS vs. Strassen-based algorithms

Figure 2.5 compares the performance of CAPS with the previous Strassen-based approaches
on Intrepid. The plot shows, for a fixed matrix dimension and number of processors, both the
effective and actual performance of the two previous Strassen-based algorithms and CAPS
over various numbers of Strassen steps. For a given number of Strassen steps, the three
algorithms do (almost) the same number of flops. Note that since the number of nodes is 49,
CAPS is defined only for at least 2 Strassen steps.

For this matrix dimension, CAPS attains highest effective performance (shortest time
to completion) at 4 Strassen steps. We see that the actual performance for CAPS (and the
other two algorithms) decreases with the number of Strassen steps, as it becomes harder to
do the fewer flops as efficiently.

In the case of 2D-Strassen, varying the number of Strassen steps means varying how each
local matrix multiplication is performed. For the local matrix dimension of n = 3136, two
Strassen steps is optimal, and the improvement in effective performance is modest because
the matrix dimension is fairly small. In the case of Strassen-2D, both effective and actual
performance degrade with each Strassen step. This is due to the increasing communication
costs of the algorithm, which outweigh the computational savings.

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 25

0.2

0.4

0.6

0.8

1.0

1.2

2
D

-S
tr

S
tr

-2
D

2
D

-S
tr

S
tr

-2
D

C
A

P
S

2
D

-S
tr

S
tr

-2
D

C
A

P
S

2
D

-S
tr

S
tr

-2
D

C
A

P
S

2
D

-S
tr

S
tr

-2
D

C
A

P
S

2
D

-S
tr

S
tr

-2
D

C
A

P
S

2
D

-S
tr

S
tr

-2
D

P
e

rf
o

rm
a

n
c
e

,
F

ra
c
ti
o

n
 o

f
P

e
a

k

Number of Strassen Steps
0 1 2 3 4 5 6

Effective Performance
Actual Performance

Figure 2.5: Efficiency at various numbers of Strassen steps, n = 21952, on 49 nodes (196
cores) of Intrepid. Effective performance is relative to 2n3 flops and actual performance is
relative to the actual number of flops performed.

2.6 Performance Model

In this section, we introduce a performance model in order to predict performance on a
distributed-memory parallel machine. We include a single-node performance model to more
accurately represent local computation. The main goals of the performance model are to
validate the theoretical analysis of CAPS to real performance, identify areas which might
benefit from further optimization, and make predictions for performance on future hardware.

We choose to validate our model on Intrepid because its performance is very consistent
(usually less than 1% variation in execution time, versus 10-20% on Hopper) and also
because we believe there is opportunity for topology-aware optimizations, which we discuss
in Section 2.6.4.

2.6.1 Single Node

Due to the sensitivity of Strassen performance to DGEMM performance and the difficulty of
modeling DGEMM performance accurately for small problems, we use a third degree polynomial
of best fit to match the measured time of ESSL’s implementation of the classical algorithm
(DGEMM). Besides making calls to DGEMM, Strassen’s algorithm consists of performing matrix
additions which are communication bound. Thus, we measured the time of DAXPY per scalar
addition, which is fairly independent of matrix size.

Let TDGEMM(n) be the polynomial for the time cost of classical matrix multiplication of
dimension n and TDAXPY be the cost per scalar addition for large vectors. We obtain the single
node performance model for the time cost of Strassen’s algorithm using s steps of Strassen
on a problem of size n as

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 26

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

E
ff

e
c
ti
v
e

 P
e

rf
o

rm
a

n
c
e

,
F

ra
c
ti
o

n
 o

f
P

e
a

k

Matrix Dimension

Classical Model
Strassen Model

Classical Data
Strassen Data

Figure 2.6: Comparison of the sequential model to the actual performance of classical and
Strassen matrix multiplication on four cores (one node) of Intrepid.

Tseq(n) = min
s

{
7s · TDGEMM

(n
2s

)
+

s−1∑
i=0

9 · TD AXPY ·
(

7

4

)i
n2

4

}
(2.6)

The constant 9 comes from the fact that in Strassen-Winograd, for each of A and B, four
sub-matrices must be read and four written (since three outputs are copies of inputs), and to
compute C, seven input matrices must be read and four written; whereas TDAXPY is essentially
the time to read two words and write one word. Alternately, one can make 15 calls to
DAXPY, one for each matrix addition, which yields a constant of 15 but allows the use of a
tuned subroutine. We found better performance using DAXPY on Intrepid, but with enough
optimization, an implementation based on the first approach should be more efficient.

The parameters of our single node model (in seconds) are: TDGEMM(n) = 2.04 · 10−10n3 +
2.14 · 10−8n2 − 4.18 · 10−6n+ 2.11 · 10−3 and TDAXPY = 3.66 · 10−9.

We present actual and modeled performance of both classical and Strassen performance
on a single node in Figure 2.6. Note that the classical model is nearly indistinguishable from
the data in the plot because it is a curve of best fit. By minimizing over s, the model from
Equation (2.6) chooses the optimal cutoff point (around n = 1000) to switch to the classical
algorithm, and the performance of Strassen matches the classical algorithm below that point.

In Figure 2.7 we show a breakdown of time between additions and multiplications (calls
to DGEMM) for both the model and the actual implementation. For this problem size, the
optimal number of Strassen steps is 2, where the time is almost completely dominated by the
multiplications. Note that the model predicts better performance for the additions than the
implementation achieves, but the main determining factor for optimal number of Strassen
steps is the performance of DGEMM for the different problem sizes.

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 27

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Model Data Model Data Model Data Model Data

T
im

e
,

n
o

rm
a

liz
e

d
 t

o
 c

la
s
s
ic

a
l
m

o
d

e
l
ti
m

e

Number of Strassen Steps

0 1 2 3

DGEMM
Extra Additions

Other

Figure 2.7: Time breakdown comparison between the sequential model and the data for
n = 4097. Both model and data times are normalized to the modeled classical algorithm
time.

2.6.2 Distributed Machine

We start with the conventional (α, β, γ) performance model for a distributed-memory parallel
algorithm which uses three machine parameters: α as the latency between any two nodes,
β as the inverse bandwidth between any two nodes, and γ as the time cost per flop on a
single node [36, 10, 45]. By counting flops f , words w, and messages m along the critical
path and summing up the three terms with corresponding coefficients, one can model the
time cost of a parallel algorithm as αm+ βw+ γf . The main shortcomings of this model are
that it assumes an all-to-all network (thus ignoring contention among processors for network
links and the number of hops a message must take), it ignores overlap of computation and
communication, and it assumes the cost per flop is constant on a node (ignoring on-node
communication costs).

To overcome the third shortcoming, we modify the (α, β, γ) model by replacing the γ term
with the single node model for the local multiplications (which may include more Strassen
steps) and using the measured TDAXPY for the time cost of each scalar addition during the
parallel Strassen steps. Then the time spent on computation is

Tf (n, P) =
7k+`

P
Tseq

(n

2k+`

)
+

k+`−1∑
i=0

9 · TDAXPY ·
(

7

4

)i
n2

4P
(2.7)

where k = log7 P is the number of BFS steps taken, and

` = log2

(
4

√
7n2

MP 2/ω0
− 4n2

MP

)

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 28

is the number of DFS steps necessary to fit in the available memory. Note that the computation
is perfectly load balanced so that Tf(n, P) = 1

P
· Tseq(n). In the model we allow k and ` to

be real valued to give a continuous function, even though the algorithm only makes sense for
integral values.

The number of words and messages are exactly as in [6]:

w =

(
7

4

)`(
12n2

P 2/ω0
− 12n2

P

)
, m = 7`36k.

The distributed model is then:

T (n, P) = Tf (n, P) + 7`36kα +

(
7

4

)`(
12n2

P 2/ω0
− 12n2

P

)
β.

The parameters of the distributed model are β = 2.13 · 10−8 and α = 2 · 10−6, measured in
seconds.

We present actual and modeled strong scaling performance of CAPS, 2D and 2.5D
in Figure 2.8 (see Appendix A in [60] for the classical performance model). The CAPS
performance and model match quite well up to about 4116 cores, but for runs on more
cores the actual performance drops significantly below the predictions of the model. We
believe this is due to contention; we consider optimizing CAPS to a 3D-torus network in
Section 2.6.4. The model also allows us to break down the time into communication time
(the α and β terms), time spent in calls to DGEMM (the first term in Equation 2.7), and time
spent in additions (the second term in Equation 2.7). We compare these times to the actual
time breakdown (averaged over processors) in Figure 2.9. The model works well for small
values of P , but understates the communication cost for large values of P , due to contention.
In fact, at P=49, the communication is slightly faster than predicted by the model, which is
possible because the model counts bandwidth along only one direction on one of the six links
to a given node, and ignores communication hiding.

2.6.3 Exascale Predictions

We model performance on a hypothetical exascale machine by counting words communicated
on the network, words transferred between DRAM and cache, and flops computed per
processor. For the machine parameters, we use values from the 2018 Swimlane 1 extrapolation
in [58]:

Number of nodes 220

Flop rate per node 1 Tflop/s
Cache size per node 512 MB
DRAM per node 32 GB
Node memory bandwidth 0.4 TB/s
Network link bandwidth 20 GB/s
Network latency 1 µs

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 29

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

5e2 1e3 5e3 1e4 5e4

E
ff

e
c
ti
v
e

 P
e

rf
o

rm
a

n
c
e

,
F

ra
c
ti
o

n
 o

f
P

e
a

k

Number of Cores

CAPS Model
2.5D Model

2D Model

CAPS
2.5D

2D

Figure 2.8: Comparison of the parallel model with the algorithms in strong scaling of
n = 65856 on Intrepid.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Model Data Model Data Model Data Model Data

T
im

e
,

n
o

rm
a

liz
e

d
 t

o
 m

o
d

e
l
ti
m

e

P=49
n=4116

P=49
n=16464

P=2401
n=16464

P=2401
n=65856

DGEMM
Extra Additions
Communication
Reordering
Other

Figure 2.9: Time breakdown comparison between the parallel model and the data. In each
case the entire modeled execution time is normalized to 1.

The projected speedups of CAPS over 2.5D and 2D are shown in Figure 2.10. The horizontal
scale is the (log of the) number of nodes, and the vertical scale is the (log of the) amount
of memory per node used to store a single matrix. Thus moving horizontally in the plot
corresponds to weak scaling, and moving diagonally downward corresponds to strong scaling.
Compared to 2.5D, our largest speedup is 5.45× at the top-right of the plot: very large
matrices run using the entire machine. Although CAPS communicates asymptotically less
than 2.5D, the advantage is very slight, and the constants for CAPS are larger than for 2.5D
in our model. For small problems (bottom of the figure), CAPS is slightly faster when using
the entire machine but slower for fewer processors. Comparing to 2D, which communicates

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 30

 10

 15

 20

 25

 30

 4 6 8 10 12 14 16 18 20

lo
g

2
(n

2
/P

)

log2 P

1.0 0.49 0.33 0.45 0.55 0.66 0.81 0.99 1.19

0.50 0.34 0.49 0.59 0.70 0.80 0.93 1.08 1.26

0.40 0.52 0.67 0.77 0.87 0.95 1.08 1.25 1.42

0.57 0.68 0.83 0.94 1.04 1.12 1.28 1.48 1.71

0.72 0.84 0.96 1.09 1.23 1.40 1.62 1.89 2.20

0.88 1.00 1.18 1.35 1.54 1.77 2.07 2.41 2.82

1.11 1.26 1.46 1.68 1.93 2.24 2.61

1.38 1.56 1.81 2.08 2.40 2.77

1.69 1.91 2.20 2.53 2.87

2.01 2.24 2.52 2.84

2.14 2.34 2.59 2.90

3.04 3.54

3.22 3.72 4.21

3.24 3.68 4.18 4.77

3.21 3.64 4.13 4.69 5.34

3.27 3.70 4.20 4.78 5.45

 0

 1

 2

 3

 4

 5

 6

 10

 15

 20

 25

 30

 4 6 8 10 12 14 16 18 20

lo
g

2
(n

2
/P

)

log2 P

1.0 0.49 0.33 0.53 0.85 1.36 2.16

0.50 0.34 0.49 0.71 1.03 1.48 2.12 2.99

0.40 0.52 0.67 0.89 1.18 1.54 2.04 2.67

0.57 0.68 0.83 1.04 1.31 1.61 2.04 2.57

0.72 0.84 0.96 1.18 1.45 1.79 2.20 2.71

0.88 1.00 1.18 1.41 1.70 2.06 2.49

1.11 1.26 1.46 1.73 2.05 2.44 2.89

1.38 1.56 1.81 2.11 2.47 2.90

1.69 1.91 2.20 2.55 2.92

2.01 2.24 2.52 2.84

2.14 2.34 2.59 2.90

3.41 5.27

4.14

3.48

3.23

3.33

3.01 3.61

3.43 4.05

3.39 3.96 4.51

3.31 3.78 4.30 4.91

3.22 3.66 4.17 4.75 5.42

3.27 3.70 4.20 4.78 5.45

 0

 1

 2

 3

 4

 5

 6

Figure 2.10: Predicted speedups of CAPS over 2.5D (top) and 2D (bottom) on an exascale
machine.

much more for small problems, there are substantial speedups of 5.45× in the top right, and
5.27× in the communication-bound regime at the bottom right.

2.6.4 Areas of possible performance improvement

Based on our performance models and benchmarks, we believe there are several areas in which
further performance optimizations will be effective. First, since local computation dominates
the execution time for many problems, improving the on-node performance of Strassen can
help overall. By writing more efficient addition code which exploits the shared operands
and decreases reads from DRAM, we believe it is possible to match our modeled on-node
performance (an improvement of around 10%). Further improving the performance of DGEMM
for small problems would also boost on-node Strassen performance. If the performance curve

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 31

for the classical algorithm reaches its peak for smaller matrices, then the cutoff point can
be decreased; more Strassen steps implies greater computational savings, so the effective
performance will be improved for large matrices (using one more Strassen step can improve
performance up to about 14% since it only does 7 instead of 8 multiplications on matrices of
half the size).

Second, we believe there are important topology-aware optimization possibilities. On
Intrepid, where the topology is known, one can map processors to nodes in order to minimize
contention and also maximize the use of a node’s links in each of the three dimensions, as
in [61]. In most cases we achieve the best performance by laying out 7 processes onto 7 of
the 8 nodes in a 2 × 2 × 2 cube, and then recursively using this layout for higher powers
of 7. Another natural mapping is to place the 7k processes in a k-dimensional grid so that
the communication occurs only in disjoint pencils (lines of 7 axis-aligned processors). The
contention will then never be worse than for 7 processors communicating around a ring,
although only 1/k of the links will be active at any time. On Intrepid this works for k ≤ 3
since it has a 3-dimensional topology (k = 3 implies 1372 = 4 · 73 cores).

A more systematic approach of finding optimal mappings may yield significant improve-
ments. Avoiding contention completely would enable performance to match the performance
model (an improvement of around 30% for large P). Since the model is based on one link’s
bandwidth, optimizing the mapping to take advantage of multiple links can yield performance
which exceeds the model. For small matrices and communication-bound problems, this can
lead to significant performance improvements.

Our implementation is somewhat sensitive to matrix dimension and number of processors.
There are many optimizations which could help smooth the performance curve for arbitrary
n and P which we did not consider in this work.

2.7 Implementation Details

The implementation of CAPS follows the algorithm presented in Section 2.3. This section
fills in several of the details of the implementation.

2.7.1 Base-case Multiplication

Until now, we have assumed that Strassen will be performed all the way down to 1 × 1
matrices. In practice, however, it is faster to use a classical matrix multiplication algorithm on
sizes below some threshold. See section 2.6 for a discussion of what constitutes a reasonable
threshold.

So that the base-case doesn’t increase the communication cost, we demand that all
base-case matrix multiplies are local calls to DGEMM. This means that we must take exactly
k = log7 P BFS steps, which requires that there are at least k Strassen steps. This requirement
is not very demanding, and in practice any matrix size that scales well to P processors will
benefit from more than k Strassen steps. We count on the DGEMM implementation to provide

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 32

good shared-memory parallel performance, which is reasonable on today’s computers, but
may not be as the number of cores on each node increases.

2.7.2 Running on P = m · 7k Processors

In this section, we generalize the assumption that the number of processors is exactly a power
of 7. This assumption is not realistic in practice, and if we set P to be the largest power of 7
no larger than a given allocation, we might lose up to a factor of 7 in performance, making
Strassen slower than classical matrix multiplication in many cases. As shown in Section 2.7.3,
making the algorithm more practical and capable of running on m · 7k processors does not
sacrifice the theoretical communication optimality. Figure 2.4 shows that actual performances
with these generalizations is comparable.

If we take P = m · 7k, then after k BFS steps (and perhaps some DFS steps so there
is enough memory), the problem is reduced to multiplying smaller matrices on P = m
processors. We have implemented two schemes for Strassen in such cases: perform either DFS
steps or what we call hybrid steps, followed by a distributed classical matrix multiplication at
the base case. In our implementation the classical multiplication uses a 1D processor grid,
which performs well for small m.

Using only DFS steps, the number of words communicated grows by a factor of 7/4
for every DFS step. If more than one or two DFS steps are taken the increase in the
communication cost can be too large. If too few Strassen steps are taken we may miss the
arithmetic savings that they can provide. The situation is analogous to that of 2D-Strassen.

The alternative is a hybrid step on 1 < m < 7 processors. In a hybrid step, the 7 matrix
multiplies of a Strassen step are performed locally in groups of m, and any leftovers are run
on all m processors. For example if m = 2 then 3 of the 7 multiplications are performed
locally on each processor, and the remaining one is performed on both processors. Using
hybrid steps recursively, most of the subproblems are computed locally by one processor, and
so there is a lower communication cost.

In practice, the choice between hybrid steps and DFS steps on m processors is best
regarded as a tuning parameter. Hybrid steps are provably optimal (see Section 2.7.3), but
the extra communication from DFS steps overlaps more easily with the calls to DGEMM (see
Section 2.7.6).

2.7.3 Optimality of hybrid steps

In this section we prove that CAPS running on P = m · 7k using hybrid steps (as defined
in Section 2.7.2) is communication optimal, up to a constant factor, if m is regarded as a
constant. Given the optimality of CAPS using BFS and DFS steps proved in [6], we need
only consider the case P = m.

Theorem 2.4. Performing Strassen’s matrix multiplication using hybrid steps on m =
2, 3, 4, 5, 6 processors communicates O(n2) words and requires O(n2) memory. Combined with

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 33

the lower bounds of [9], this shows that the algorithm is communication optimal.

Proof. The bandwidth cost recurrence for a hybrid step on m processors is W (n,m) =
O(n2)+

(
7−m

⌊
7
m

⌋)
W
(
n
2
,m
)
, where the first term is the words communicated to redistribute

the first mb7/mc subproblems to the m processors, and the second term is the words required
to compute the remaining subproblems in parallel. Note that for m = 2, 3, 4, 5, 6, we have
7−mb7/mc < 4, and so the solution to this recurrence is W (n,m) = O(n2). Further, the
extra memory used by the algorithm is simply the amount of memory used to store the data
each processor receives, and so the memory usage is also M = O(n2).

It is similarly possible to show that the algorithm is communication-optimal, up to a
constant factor, for any constant m that has prime factors 2, 3, 5, by recursively using hybrid
steps. However the constant in the communication cost grows with m, and so it is probably
not practical to run on P = m · 7k processors for m much larger than 6. In general, given a
number of processors that is not a power of 7, the choice of how many processors to ignore
and how large to allow m to be is left to tuning.

2.7.4 Interleaving BFS and DFS steps

As argued in [6], it is possible to achieve the bandwidth lower bound, up to a constant factor,
using only a simple scheme of ` DFS steps, followed by k = log7 P BFS steps, followed by
local Strassen. Our implementation allows arbitrary interleaving of BFS and DFS steps,
which in some cases provides a reduction in the bandwidth costs. Computation of the optimal
interleaving patterns can be done once, offline, for each value of k.

For example, when running on 16807 = 75 processors, the simple interleaving patterns are
all optimal for certain memory sizes. However for intermediate memory sizes it is possible to
reduce the volume of communication by up to about 25% by choosing a different interleaving;
see Figure 2.11.

2.7.5 Data Layout

The data layout can be naturally divided into two levels: the global data layout specifies
which process owns each part of each matrix, and the local data layout specifies in what
order the data is stored in the local memory of a given process. For the global layout with 7k

processors, we use a cyclic distribution with a processor grid of size 7bk/2c × 7dk/2e. Note that
this satisfies the properties given in Section 3.2 of [6]. Thus the communication cost analysis
given there holds no matter what choice we make for the local data layout. Additionally,
transformations between different local layouts can be done quickly and without any inter-
processor communication. The local layout we choose is that blocks of size n

2s7bk/2c
× n

2s7dk/2e

are stored contiguously, and these blocks are ordered relative to each other following recursive
N-Morton ordering [54].

The entire layout can also be thought of as s levels of recursive Morton ordering, followed
by cyclic layout in each of the sub-matrices of size n

2s
. We choose Morton ordering because it

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 34

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 3 10 30 100

W
o

rd
s
 s

e
n

t
p

e
r

p
ro

c
e

s
s
o

r,
 u

n
it
s
 o

f
n

2

Memory usage per processor, units of n
2
/P

Other Mixed
Optimal Mixed

Simple

Figure 2.11: The memory and communication costs of all 252 possible interleavings of BFS
and DFS steps for multiplying matrices of size n=351232 on P=16807 processors using 10
Strassen steps. The optimal ones show the trade-off between memory size and communication
cost. Simple interleavings are those for which all k BFS steps are performed as a block.

00 01 02 03 04 05 06

10 11 12 13 14 15 16

20 21 22 23 24 25 26

30 31 32 33 34 35 36

40 41 42 43 44 45 46

50 51 52 53 54 55 56

60 61 62 63 64 65 66

Figure 2.12: Data layout: s levels of Morton ordering are used at the top level, block-cyclic
distribution is used at the bottom. Numbers correspond to processors in base 7.

is a very good fit to Strassen’s algorithm both conceptually and to enhance locality [1]. Since
we choose to pack messages together to minimize the number of message sent, it is necessary
to re-order the data for each communication step to maintain this data layout.

If the matrix dimension is a multiple of 2s7bk/2c, this layout is the same as cyclic layout.
Thus it is compatible, up to local re-ordering, with the block-cyclic layout of ScaLAPACK in
this case if the block size is one. Moreover, CAPS can work with any block size that divides

n
2s7dk/2e

, after local re-arrangement. If matrices are stored in another layout, re-arranging them
to the layout that CAPS uses would only increase the bandwidth cost of the multiplication
by a subleading term.

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 35

2.7.6 Overlapping Computation and Communication

We attempt to overlap computation and communication as long as it can be done without
breaking the recursive structure of the algorithm. First, during BFS steps the additions are
overlapped with the communication. For Strassen-Winograd, 6 of the 14 factors require no
computation, so the additions for the other 8 can be done while those are transferred. We
do not attempt to overlap the communication of the seven products with the additions to
convert them into entries of C, because it is not clear how to do this without degrading cache
performance. Second, for base-case multiplies with m > 1, we overlap the communication
with the calls to DGEMM. Finally, there is some overlap in hybrid BFS steps, where the details
of how much we can overlap depend on the exact value of m.

In principle, it should be possible to hide more of the communication cost, ideally by
performing some DGEMM calls during the communication of each BFS step. However these
DGEMM calls only appear deeper in the recursion tree of the algorithm, so to do this would
require breaking the recursive structure of the algorithm (that is, breaking one recursive call up
into several parts, which are performed when the data they require has been communicated).

2.8 Numerical Stability

CAPS has the same stability properties as sequential versions of Strassen. For a complete
discussion of the stability of fast matrix multiplication algorithms, see [41, 30]. We highlight
a few main points here. The tightest error bounds for classical matrix multiplication
are component-wise: |C − Ĉ| ≤ nε|A| · |B|, where Ĉ is the computed result and ε is
the machine precision. Strassen and other fast algorithms do not satisfy component-wise
bounds but do satisfy the slightly weaker norm-wise bounds: ‖C − Ĉ‖ ≤ f(n)ε‖A‖‖B‖,
where ‖A‖ = maxi,j Aij and f is polynomial in n [41]. Accuracy can be improved with
the use of diagonal scaling matrices: D1CD3 = D1AD2 ·D−12 BD3. It is possible to choose
D1, D2, D3 so that the error bounds satisfy either |Cij − Ĉij| ≤ f(n)ε‖A(i, :)‖‖B(:, j)‖ or

‖C − Ĉ‖ ≤ f(n)ε‖|A| · |B|‖. By scaling, the error bounds on Strassen become comparable
to those of many other dense linear algebra algorithms, such as LU and QR decomposition
[29]. Thus using Strassen for the matrix multiplications in a larger computation will often
not harm the stability at all.

Using fewer than log2 n Strassen steps improves the theoretical constant in the error
bound. More precisely, using s Strassen steps, the error bound for Strassen-Winograd given
in [41] is

‖C − Ĉ‖max ≤
(

18s

((n
2s

)2
+

6n

2s

)
− 6n

)
‖A‖max‖B‖maxε

where ε is the machine precision and ‖A‖max := maxi,j |Aij| is the max-norm of A.
However, as illustrated in [41], this theoretical bound is too pessimistic. In Figure 2.13,

we show the measured max-norm absolute error compared to the theoretical bound for a
single matrix of size n = 16384 in double precision where each entry is chosen uniformly at

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 36

 1e-14
 1e-12
 1e-10
 1e-08
 1e-06

 0.0001
 0.01

 1
 100

 0 2 4 6 8 10 12

M
a

x
-n

o
rm

 E
rr

o
r

Number of Strassen Steps

Theoretical bound
Actual

Figure 2.13: Stability test: theoretical error bound versus actual error for n=16384. Zero
Strassen steps corresponds to the classical algorithm. Double precision machine epsilon is
2.2 · 10−16.

random from [−1, 1], varying the number of Strassen steps taken. For the “exact” answer we
compute the product in quadruple precision. To maximize performance on a single node of
Hopper or Intrepid, for example, the optimal number of Strassen steps for n = 16834 is 4,
where the result loses about two decimal digits (measured by norm-wise error) compared to
classical matrix multiplication.

2.9 Parallelizing Other Fast Matrix Multiplication

Algorithms

Our approach of executing a recursive algorithm in parallel by traversing the recursion
tree in DFS or BFS manner is not limited to Strassen’s algorithm. Recursive matrix
multiplication algorithms are typically built out of ways to multiply n0 × n0 matrices using
q < n3

0 multiplications. As with Strassen and Strassen-Winograd, they compute q linear
combinations of entries of each of A and B, multiply these pairwise, then compute the
entries of C as linear combinations of these. CAPS can be easily generalized to any such
multiplication, with the following modifications:

• The number of processors P is a power of q.

• The data layout must be such that all n2
0 blocks of A, B, and C are distributed equally

among the P processors with the same layout.

• The BFS and DFS determine whether the q multiplications are performed simultaneously
or in sequence.

The communication costs are then exactly as above, but with ω0 = logn0
q. One special case

is the classical square recursive algorithm that splits A, B, and C each into 4 square blocks
and solves the problem with 8 multiplications of those blocks. Generalizing CAPS to this

CHAPTER 2. STRASSEN’S MATRIX MULTIPLICATION 37

Square Rectangular

Classical n2

P 2/3 min

{
nt
0p

t
0,

√
mt

0n
t
0p

2t
0

P
,
(

mt
0n

t
0p

t
0

P

)2/3}
Fast n2

P 2/ω0

mt
0n

t
0

P logq m0n0

Table 2.3: Asymptotic bandwidth costs of classical and fast, square and rectangular matrix
multiplication in the case of unlimited memory. See the text for a description of the fast
rectangular algorithm and problem size.

algorithm gives a communication-optimal classical square matrix multiplication algorithm
with the same asymptotic costs as the 2.5D algorithm [31].

Using the techniques from Theorem 3.3 of [30], one can convert any fast square matrix
multiplication algorithm into one that is nearly as fast and is of the form above. Using
the CAPS parallelization approach this gives a communication-avoiding parallel algorithm
corresponding to any fast matrix multiplication algorithm. We conjecture that there is a
matching lower bound, making these algorithms optimal.

CAPS can also be generalized to fast rectangular matrix multiplication algorithms (see
[42, 14, 27, 50, 44, 43, 28] and further details in [20]), which are built out of a base case for
multiplying an m0 × n0 matrix A with an n0 × p0 matrix B to obtain an m0 × p0 matrix
C using only q < m0n0p0 scalar multiplications. As with the square case, a lower bound is
known for some of these algorithms [7], and its generalization is a conjecture. Implementing
and benchmarking the BFS/DFS approach on any of these algorithms remains to be done.

It is instructive to compare the communication costs of fast rectangular matrix multi-
plication with those of the communication-optimal classical algorithm that is presented in
Chapter 3. Consider a fast algorithm as above, with m0 ≥ n0 ≥ p0 applied t times to multiply
matrices with dimensions mt

0 ≥ nt
0 ≥ pt0 in the unlimited memory regime. The bandwidth

costs of the generalization of CAPS and of CARMA (see Chapter 3) in this situation are
shown in Table 2.3.

Note that since p0 ≤ m0, n0,

q < m0n0p0 ≤ (m0n0)
3/2,

and so the exponent of P in the denominator in the fast rectangular case is logqm0n0 > 2/3.
This means that for any given problem, on sufficiently many processors, any fast algorithm
will communicate less than the classical algorithm. On a small number of processors, however,
fast rectangular algorithms may communicate more than the classical algorithm because
fast algorithms require the largest matrix to be communicated, whereas, depending on the
number of processors, the classical algorithm may not.

38

Chapter 3

Classical Rectangular Matrix
Multiplication

In this chapter we focus on the classical (three nested loops) matrix multiplication algorithm.
For square matrices, the CAPS algorithm immediately generalizes to give an optimal algo-
rithm as described in Section 2.9. However for rectangular matrices, there are additional
complications. Using the classical algorithm, there are several ways to split up the problem
into smaller matrix multiplications. To obtain a communication-optimal algorithm, it is
necessary to combine three of these, corresponding to splitting each of the three dimensions,
as illustrated in Figure 3.1.

For the sequential case, it is shown in [34] that splitting the largest dimension at each
recursive step asymptotically minimizes the communication costs. We apply the BFS/DFS
approach to the dimension-splitting recursive algorithm to obtain a communication-avoiding
recursive matrix multiplication algorithm, CARMA, which is asymptotically communication-
optimal for any matrix dimensions, number of processors, and memory size. CARMA is a
simple algorithm. However, because it is optimal across the entire range of inputs, we find
cases where it significantly outperforms ScaLAPACK.

The basic idea of CARMA is that at each recursive step, the largest of the three dimensions
is split in half, yielding two subproblems. Depending on the available memory, these
subproblems are solved by either a BFS step or a DFS step. A simplified version of its
pseudocode appears as Algorithm 3 (for more details, see Algorithm 4).

The results in this chapter are joint work with James Demmel, David Eliahu, Armando
Fox, Shoaib Kamil, Oded Schwartz and Omer Spillinger, and appear in [31].

Notation

We consider the case of computing C = AB where A is an m × k matrix, B is a k × n
matrix, and C is an m × n matrix. In the next two subsections, it will be convenient to
have an ordered notation for the three dimensions. Hence we define d1 = min(m,n, k),
d2 = median(m,n, k), and d3 = max(m,n, k). Both the lower bounds and the communication

CHAPTER 3. CLASSICAL RECTANGULAR MATRIX MULTIPLICATION 39

=

(a) Split along m

=

(b) Split along n

=

(c) Split along k

Figure 3.1: Three ways to split rectangular matrix multiplication to get two subproblems,
shown in red and blue. In each case, two of the three matrices are split between the
subproblems, and one is needed for both subproblems. The matrix that is needed for both
subproblems is shown as two overlapping copies.

Algorithm 3 CARMA, in brief

Input: A is an m× k matrix, B is a k × n matrix
Output: C = AB is m× n

1: Split the largest of m,n, k in half, giving two subproblems
2: if Enough memory then
3: Solve the two problems recursively with a BFS
4: else
5: Solve the two problems recursively with a DFS

CHAPTER 3. CLASSICAL RECTANGULAR MATRIX MULTIPLICATION 40

costs of CARMA depend only on the values of the three dimensions, not on their order.
Similarly, let M3,M2,M1 be the three matrices in increasing size, so M3 has dimensions d1, d2,
M2 has dimensions d1, d3, and M1 has dimensions d2, d3.

3.1 Communication Lower Bounds

To prove lower bounds on the communication costs, we will assume that the initial/final
data layout of each matrix consists of one copy of the matrix load balanced among the P
processors. Recall the arrangement of the mnk scalar products that must be computed
into a rectangular prism from Section 1.4. At least one processor will perform at least mnk

P

multiplications. Consider such a processor, and let V be the set of voxels corresponding to
the multiplications it performs. Let |Vi| be the size of the projection of V onto matrix Mi.
The Loomis-Whitney inequality [49] gives a lower bound on the product of these projections:

|V1| · |V2| · |V3| ≥
(
d1d2d3
P

)2

(3.1)

There are three cases to consider, depending on the aspect ratio of the matrices (see Figure 3.2
for graphical representations of the cases).

One large dimension

First, consider the case of one very large dimension, so that

2
d3
d2

> P.

We consider three possibilities depending on the sizes of |V1| and |V2|.
If |V1| ≥ 5d2d3

4P
, then the processor needs access to at least this many entries of M1. We

assumed that the input and output data layouts are exactly load balanced, so at most d2d3
P

of
these entries are stored by that processor in the initial/final data layout. As a result, the
remaining d2d3

4P
must be communicated by that processor.

Similarly, if |V2| ≥ 5d1d3
4P

, then the processor needs access to at least this many entries of
M2. We assumed that the input and output data layouts are exactly load balanced, so at
most d1d3

P
of these entries are stored by that processor in the initial/final data layout. As a

result, the remaining d1d3
4P

must be communicated by that processor.

If |V1| < 5d2d3
4P

and |V2| < 5d1d3
4P

, we may substitute into Inequality 3.1 to obtain

|V3| ≥
16

25
d1d2.

Since M3 is load balanced, only d1d2
P

of these entries can be owned by the processor in the
initial/final data layout, so for P ≥ 2, at least

W ≥ 7

50
d1d2 = Ω(d1d2)

CHAPTER 3. CLASSICAL RECTANGULAR MATRIX MULTIPLICATION 41

k

mn

(a) One large di-
mension

n
m

k

(b) Two large dimensions

m
n

k

(c) Three large dimensions

Figure 3.2: Examples of the three cases of aspect ratios on P = 8 processors. The lowest
communication cost is attained if an algorithm divides the m×n× k prism of multiplications
into 8 equal sub-prisms that are as close to cubical as possible. If that division involves
dividing only one of the dimensions, we call that case one large dimension. If it involves
dividing only two of the dimensions, we call that case two large dimensions. If all three
dimensions are divided, we call that case three large dimensions. Note that in the first two
cases, only one processor needs access to any given entry of the largest matrix, so with the
right data layout an algorithm only needs to transfer the smaller matrices.

words must be communicated. The lower bound is the minimum of these three possibilities:

W = Ω

(
min

{
d1d2,

d2d3
P

,
d1d3
P

})
.

By the assumption that 2d3
d2
> P , this simplifies to

W = Ω (d1d2) . (3.2)

Since this lower bound depends only on the size of the smallest matrix, it is only attainable if
the two larger matrices are distributed such that each processor owns corresponding entries
of them.

The latency lower bound is the trivial one that there must be at least one message:
L = Ω(1).

CHAPTER 3. CLASSICAL RECTANGULAR MATRIX MULTIPLICATION 42

Two large dimensions

Next consider the case that

2
d2d3
d21

> P ≥ 2
d3
d2
.

We consider two posibilities depending on the size of |V1|.
If |V1| ≥ 3d2d3

2P
, then the processor needs access to at least this many entries of M1. We

assumed that the input and output data layouts are exactly load balanced, so at most d2d3
P

of
these entries are stored by that processor in the initial/final data layout. As a result, the
remaining d2d3

2P
must be communicated by that processor.

If |V1| < 3d2d3
2P

, we may substitute for |V1| in Inequality 3.1 to obtain

|V2| · |V3| ≥
2d21d2d3

3P
. (3.3)

It follows that

max{|V2|, |V3|} ≥
√

2

3

√
d21d2d3
P

.

The amount of data a processor stores of M2 or M3 in the initial/final layout is at most d1d3
P

(recall that d1 ≤ d2 ≤ d3), thus we obtain a bandwidth lower bound of

W ≥
√

2

3

√
d21d2d3
P

− d1d3
P

.

By the assumption that P ≥ 2d3
d2

, the first term dominates and this simplifies to

W ≥

(√
2

3
− 1√

2

)√
d21d2d3
P

= Ω

(√
d21d2d3
P

)
.

The lower bound is the minimum of these two possibilities:

W = Ω

(
min

{√
d21d2d3
P

,
d2d3
P

})
.

By the assumption that d2d3
d21

> P , this simplifies to

W = Ω

(√
d21d2d3
P

)
. (3.4)

Note that this lower bound is only attainable if the largest matrix is distributed among the
processors in such a way that it doesn’t need to be communicated.

The latency lower bound is the trivial one that there must be at least one message:
L = Ω(1).

CHAPTER 3. CLASSICAL RECTANGULAR MATRIX MULTIPLICATION 43

Three large dimensions

If

P ≥ 2
d2d3
d21

,

then by Theorem 3.1 of [45], we have

W ≥ d1d2d3

2
√

2P
√
M
−M.

In the case that

M ≤
(
d1d2d3

4P

)2/3

,

this bound can be simplified to

W = Ω

(
d1d2d3

P
√
M

)
. (3.5)

Additionally, following the methods of [5], Inequality 3.1 implies that

max{|V1|, |V2|, |V3|} ≥
(
d1d2d3
P

)2/3

.

By the assumption of load balance, the amount of data available to one processor in the
initial/final layout of any of the matrices is at most d2d3

P
(recall that d1 ≤ d2 ≤ d3), so this

corresponds to a bandwidth cost of at least

W ≥
(
d1d2d3
P

)2/3

− d2d3
P

.

By the assumption that P ≥ 2d2d3
d21

, the first term dominates, and

W = Ω

((
d1d2d3
P

)2/3
)
. (3.6)

Equation 3.5 only applies for M ≤
(
d1d2d3
4P

)2/3
, but for larger M , the bound in Equation 3.6

dominates it. Thus the lower bound may be concisely expressed as their sum:

W = Ω

(
d1d2d3

P
√
M

+

(
d1d2d3
P

)2/3
)
. (3.7)

This bound is attainable for any load balanced data layout, since it is larger than the cost of
d2d3
P

words to redistribute the data.

CHAPTER 3. CLASSICAL RECTANGULAR MATRIX MULTIPLICATION 44

P < d3
d2

d3
d2
< P < d2d3

d21

d2d3
d21

< P

“1 large dimension” “2 large dimensions” “3 large dimensions”

Lower Bound [45, 31] d1d2

√
d21d2d3

P
d1d2d3
P
√
M

+
(
d1d2d3

P

)2/3
2D SUMMA [2, 36]

√
d21d2d3

P

√
d21d2d3

P

√
d21d2d3

P

3D SUMMA [57]

√
d21d2d3

P

√
d21d2d3

P
d1d2d3
P
√
M

+
(
d1d2d3

P

)2/3
CARMA [31] d1d2

√
d21d2d3

P
d1d2d3
P
√
M

+
(
d1d2d3

P

)2/3
Table 3.1: Asymptotic bandwidth costs and lower bounds for rectangular matrix multiplication
on P processors, each with local memory size M , where the matrix dimensions are d1 ≤ d2 ≤
d3. 2D SUMMA and 3D SUMMA have the variant and processor grid chosen to minimize
the bandwidth cost.

The latency lower bound is the combination of two trivial bounds: at least one message
must be sent, and the maximum message size is M . Therefore the number of messages is:

L = Ω

(
d1d2d3
PM3/2

+ 1

)
Note that whenever P = Θ

(
d2d3
d21

)
, Equations 3.7 and 3.4 give the same bound. Similarly,

whenever P = Θ
(

d3
d2

)
, Equations 3.4 and 3.2 give the same bound. We may thus drop the

factors of 2 in the definitions of one, two, and three large dimensions.

3.2 CARMA Algorithm

Detailed pseudocode for CARMA is shown in Algorithm 4 on page 46. The recursion cuts
the largest dimension in half to give two smaller subproblems. At each level of the recursion
in CARMA, a decision is made between making a depth-first step (DFS) or a breadth-first
step (BFS) to solve the two subproblems. A BFS step consists of two disjoint subsets of
processors working independently on the two subproblems in parallel. In contrast, a DFS step
consists of all processors in the current subset working on each subproblem in sequence. A
BFS step increases memory usage by a constant factor, but decreases future communication
costs. On the other hand, a DFS step decreases future memory usage by a constant factor,
but increases future communication costs. On P processors, with unlimited memory, we show
that the algorithm only needs BFS steps and is communication-optimal.

If the execution of only BFS steps causes the memory requirements to surpass the bounds
of available memory, it is necessary to interleave DFS steps within the BFS steps to limit
memory usage. We show that the resulting algorithm is still communication-optimal, provided
the minimal number of DFS steps is taken. As we show in the analysis in Section 3.2.1, at

CHAPTER 3. CLASSICAL RECTANGULAR MATRIX MULTIPLICATION 45

most a factor of 3× extra memory is needed in the cases of one or two large dimensions,
so DFS steps are not necessary in these cases. When all dimensions are large, the extra
memory requirement may grow asymptotically. Therefore the memory may become a limiting
resource in that case and DFS steps may be necessary. In our experiments, we used relatively
small matrices on many processors so that the problem is communication-bound rather than
computation-bound. As a result, the matrices are small enough that memory was not a
limiting factor, and only BFS steps were used.

See Section 3.4.3 and Figure 3.4 for a description of the data layout in the distributed-
memory case.

3.2.1 Communication cost of CARMA

CARMA will perform a total of log2 P BFS steps, possibly with some DFS steps interleaved.
There are again three cases to consider. In each case, CARMA attains the bandwidth lower
bound up to a constant factor, and the latency lower bound up to a factor of at most logP .
In the previous subsection, we defined one large dimension, two large dimensions, and three
large dimensions asymptotically. The lower bounds are “continuous” in the sense that they
are equivalent for parameters within a constant factor of the threshold, so the precise choice of
the cutoff does not matter. In this section, we define them precisely by CARMA’s behavior.

One large dimension

If P ≤ d3
d2

, then there are no DFS steps, only one dimension is ever split, and the smallest
matrix is replicated at each BFS step. The communication cost is the cost to send this matrix
at each step:

W = O

(
log2 P−1∑

i=0

d1d2
P

2i

)
= O (d1d2) ,

since d1d2/P is the initial amount of data of the smallest matrix per processor, and it increases
by a factor of 2 at each BFS step. In this case the BFS steps can be thought of as performing
an all-gather or reduce-scatter on the smallest matrix. By having the initial/final data
layout be distributed across the processors, the BFS approach avoids the logP factor in
the bandwidth that a broadcast or reduce would incur. When d1d2 < P , there is still a

logarithmic factor, and the cost is W = O
(
d1d2 log P

d1d2

)
.

The memory use is the memory required to hold the input and output, plus the memory
required to hold all the data received, so

M = O

(
d1d2 + d1d3 + d2d3

P
+ d1d2

)
= O

(
d2d3
P

)
.

At most a constant factor of extra memory is required. In fact the constant factor is quite
small: since d1d2 ≤ d1d3/P ≤ d2d3/P, it uses at most a factor of 3/2 as much memory as is
required to store the input and output.

CHAPTER 3. CLASSICAL RECTANGULAR MATRIX MULTIPLICATION 46

Algorithm 4 CARMA(A,B,C,m,k,n,P)

Input: A is an m× k matrix and B is a k × n matrix
Output: C = AB

1: if P = 1 then
2: SequentialMultiply(A, B, C, m, k, n)
3: else if Enough Memory then . Do a BFS
4: if n is the largest dimension then
5: Copy A to disjoint halves of the processors.

. Processor i sends and receives local A from processor i± P/2
6: parallel for do
7: CARMA(A, Bleft, Cleft, m, k, n/2, P/2)
8: CARMA(A, Bright, Cright, m, k, n/2, P/2)

9: if m is the largest dimension then
10: Copy B to disjoint halves of the processors.
11: . Processor i sends and receives local B from processor i± P/2
12: parallel for do
13: CARMA(Atop, B, Ctop, m/2, k, n, P/2)
14: CARMA(Abot, B, Cbot, m/2, k, n, P/2)

15: if k is the largest dimension then
16: parallel for do
17: CARMA(Aleft, Btop,C, m, k/2, n, P/2)
18: CARMA(Aright, Bbot,C, m, k/2, n, P/2)

19: Gather C from disjoint halves of the processors.
. Processor i sends C and receives C ′ from processor i± P/2

20: C ← C + C ′

21: else . Do a DFS
22: if n is the largest dimension then
23: CARMA(A, Bleft, Cleft, m, k, n/2, P)
24: CARMA(A, Bright, Cright, m, k, n/2, P)

25: if m is the largest dimension then
26: CARMA(Atop, B, Ctop, m/2, k, n, P)
27: CARMA(Abot, B, Cbot, m/2, k, n, P)

28: if k is the largest dimension then
29: CARMA(Aleft, Btop, C, m, k/2, n, P)
30: CARMA(Aright, Bbot, C, m, k/2, n, P)

CHAPTER 3. CLASSICAL RECTANGULAR MATRIX MULTIPLICATION 47

The number of messages sent at each BFS is constant, so the latency cost is L = O(logP).

Two large dimensions

Next consider the case that
d3
d2

< P ≤ d2d3
d21

.

There will be two phases: for the first log2
d3
d2

BFS steps, the original largest dimension is split;

then for the remaining log2
Pd2
d3

BFS steps, the two original largest dimensions are alternately
split. Again, no DFS steps are required. The bandwidth cost of the first phase is

W1 = O

log2
d3
d2
−1∑

i=0

d1d2
P

2i

 = O

(
d1d3
P

)
.

The bandwidth cost of the second phase is

W2 = O

1
2
log2

Pd2
d3∑

i=0

d1d2
Pd2/d3

2i

 = O

(√
d21d2d3
P

)
,

since every two BFS steps increases the amount of data being transferred by a factor of 2.
The cost of the second phase dominates the cost of the first. Again, the memory use is

the memory required to hold the input and output, plus the memory required to hold all the
data received, so

M = O

(
d1d2 + d1d3 + d2d3

P
+

√
d21d2d3
P

)
= O

(
d2d3
P

)
.

At most a constant factor of extra memory is required, justifying our use of BFS only. In
fact, by the assumptions of this case, the algorithm never uses more than 3 times the amount
of memory used to store the input and output.

There are a constant number of messages sent at each BFS step, so the latency cost is
L = O(logP).

Three large dimensions

Finally, consider the case that P > d2d3
d21

. The first phase consists of log2
d3
d2

BFS steps splitting

the largest dimension, and is exactly as in the previous case. The second phase consists
of 2 log2

d2
d1

BFS steps alternately splitting the two original largest dimensions. After this

phase, there are P3 =
Pd21
d2d3

processors working on each subproblem, and the subproblems are
multiplication where all three dimensions are within a factor of 2 of each other. CARMA

CHAPTER 3. CLASSICAL RECTANGULAR MATRIX MULTIPLICATION 48

splits each of the dimensions once every three steps, alternating BFS and DFS to stay within
memory bounds, until it gets down to one processor.

The cost of the first phase is exactly as in the previous case. The bandwidth cost of the
second phase is

W2 = O

log2
d2
d1∑

i=0

d1d2
Pd2/d3

(2)i

 = O

(√
d2d3
P

)
.

In the final phase, the cost is within a factor of 4 of the square case, which was discussed
in Section 2.9, giving

W3 = O

(
d31

P3

√
M

+

(
d31
P3

)2/3
)

= O

(
d1d2d3

P
√
M

+

(
d1d2d3
P

)2/3
)
,

while remaining within memory size M . W3 is the dominant term in the bandwidth cost.
The latency cost of the first two phases is log d2d3

d21
, and the latency cost of the third phase

is

L3 = O

((
d1d2d3
PM3/2

+ 1

)
log

Pd21
d2d3

)
,

giving a total latency cost of

L = O

(
d1d2d3
PM3/2

log
Pd21
d2d3

+ logP

)
.

3.3 Performance Results

We have implemented CARMA in C++ with MPI. We benchmark on Hopper1, a Cray XE6
at the National Energy Research Scientific Computing Center (NERSC). It consists of 6,384
compute nodes, each of which has 2 twelve-core AMD “Magny-Cours” 2.1 GHz processors
and 32 GB of DRAM (384 of the nodes have 64 GB of DRAM). The 24 cores are divided
between 4 NUMA regions.

CARMA gets the best performance when run as “flat MPI”, with one MPI process per
core. Local sequential matrix multiplications are performed by calls to Cray LibSci version
11.1.00. The distributed-memory version of CARMA supports splitting by arbitrary factors
at each recursive step rather than just by a factor of 2. For each data point, several splitting
factors and orders were explored and the one with the best performance is shown. It is
possible that further performance improvements are possible by exploring the search space

1For machine details, see http://www.nersc.gov/users/computational-systems/hopper

CHAPTER 3. CLASSICAL RECTANGULAR MATRIX MULTIPLICATION 49

(a) Strong scaling, 192× 6291456× 192. (b) Time breakdown, 192× 6291456× 192.

(c) Strong scaling, 12288× 192× 12288. (d) Time breakdown, 12288× 192× 12288.

(e) Strong scaling, square n = 6144. (f) Time breakdown, square n = 6144.

Figure 3.3: CARMA compared to ScaLAPACK on Hopper. Left column: Strong scaling of
performance. Right column: CPU-time breakdown summed over all cores (so perfect strong
scaling would correspond to equal heights at 24 and 6144 cores).

CHAPTER 3. CLASSICAL RECTANGULAR MATRIX MULTIPLICATION 50

more thoroughly. For a description of the data layout used by distributed CARMA, see
Section 3.4.3.

We compare CARMA against ScaLAPACK version 1.8.0 as optimized by NERSC. ScaLA-
PACK also uses LibSci for local multiplications. For each data point we explore several
possible executions and show the one with the highest performance. First, we try running
with 1, 6, or 24 cores per MPI process. Parallelism between cores in a single process is
provided by LibSci. Second, we explore all valid processor grids. We also try storing the
input matrices as stated, or transposed. In some cases storing the transpose of one of the
inputs increases ScaLAPACK’s performance by more than a factor of 10.

The topology of the allocation of nodes on Hopper is outside the user’s control, and, for
communication-bound problems on many nodes, can affect the runtime by as much as a
factor of 2. We do not attempt to measure this effect. Instead, for every data point shown,
the CARMA and ScaLAPACK runs were performed during the same reservation and hence
using the same allocation.

We benchmark three shapes of matrices corresponding to the three cases in the communi-
cation costs in Table 3.1. For the case of one large dimension, we benchmark m = n = 192,
k = 6291456. The aspect ratio is very large so it is in the one large dimension case
(k/P > m, n) even for our largest run on P = 24576 cores. In this case we see improvements
of up to 140× over ScaLAPACK. This data is shown in Figure 3.3a. If ScaLAPACK is not
allowed to transpose the input matrices, the improvement grows to 2500×.

For the case of two large dimensions, we benchmark m = n = 24576, k = 192. In this
case both CARMA and ScaLAPACK (which uses SUMMA) are communication-optimal, so
we do not expect a large performance difference. Indeed performance is close between the
two except on very large numbers of processors (the right end of Figure 3.3c) where CARMA
is nearly 2× faster.

Finally for the case of three large dimensions, we benchmark m = n = k = 6144. For small
numbers of processors, the problem is compute-bound and both CARMA and ScaLAPACK
perform comparably. For more than about 1000 cores, CARMA is faster, and on 24576 cores
it is nearly 3× faster. See Figure 3.3e.

The right-hand column of Figure 3.3 shows the breakdown of time between computation
and communication for CARMA and ScaLAPACK, for each of these matrix sizes, and for 24
cores (1 node) and 6144 cores (256 nodes). In the case of 1 large dimension on 6144 cores,
CARMA is 16× faster at the computation, but more than 1000× faster at the communication.
CARMA is faster at the computation because the local matrix multiplications are as close to
square as possible allowing for more efficient use of the cache. For the other two sizes, the
computation time is comparable between the two, but CARMA spends about 3.5× less time
on communication on 6144 cores.

All tests are for multiplication of randomly generated double precision matrices. For each
algorithm and size, one warm-up run was performed immediately before the benchmark.

CHAPTER 3. CLASSICAL RECTANGULAR MATRIX MULTIPLICATION 51

3.4 Remarks

CARMA is the first distributed-memory parallel matrix multiplication algorithm to be
communication-optimal for all dimensions of matrices and sizes of memory. We prove
CARMA’s communication optimality and compare it against ScaLAPACK. Despite its simple
implementation, the algorithm minimizes communication, yielding performance improvements
of 2× to 140×. As expected, our best improvement comes in ranges where CARMA achieves
lower bounds on communication but previous algorithms do not.

3.4.1 Opportunities for Tuning

The algorithm described in Section 3.2 always splits the largest dimension by a factor of 2.
This can be generalized considerably. At each recursive step, the largest dimension could be
split by any integer factor s, which could vary between steps. Increasing s from 2 decreases
the bandwidth cost (by at most a small constant factor) while increasing the latency cost.
The choice of split factors is also affected by the number of processors, since the product of
all split factors at BFS steps must equal the number of processors. Additionally, when two
dimensions are of similar size, either one could be split. As long as the s are bounded by
a constant, and the dimension that is split at each step is within a constant factor of the
largest dimension, a similar analysis to the one in Section 3.2.1 shows that CARMA is still
asymptotically communication-optimal. Note that this means that CARMA can efficiently
use any number of processors that does not have large prime factors, by choosing split factors
s that factor the number of processors.

In practice, however, there is a large tuning space, and more performance improvements
may be possible by exploring this space further. Our implementation allows the user to
choose any dimension to split and any split factor at each recursive step (but the required
data layout will vary; see Section 3.4.3). On Hopper, we have found that splitting 6 or 8
ways at each step typically performs better than splitting 2 ways, but we have not performed
an exhaustive search of the tuning space.

3.4.2 Perfect Strong Scaling Range

Recall the definition of perfect strong scaling from Section 1.1. In the square case, the 2.5D
algorithm and the square BFS/DFS algorithm exhibit perfect strong scaling in the range
P = Ω(n2/M) and P = O(n3/M3/2), which is the maximum possible range. Similarly, in the
case of three large dimensions, defined by

P = Ω

(
d2d3
d21

,

)
,

both CARMA and 3D-SUMMA exhibit perfect strong scaling in the maximum possible range

P = Ω

(
mn+mk + nk

M

)
, P = O

(
mnk

M3/2

)
.

CHAPTER 3. CLASSICAL RECTANGULAR MATRIX MULTIPLICATION 52

Note that in the plots shown in this paper, the entire problem fits on one node, so the range
degenerates to just P = 1.

In the case of one or two large dimensions, the bandwidth lower bound does not decrease
linearly with P (see Table 3.1). As a result, perfect strong scaling is not possible. Figure 3.3a
shows very good strong scaling for CARMA in practice because, even though the bandwidth
cost does not decrease with P in this case, it is small enough that it is not dominant up to
6144 cores (see Figure 3.3b).

3.4.3 Data Layout Requirements

Recall the three cases of the bandwidth cost lower bounds from Section 3.1. In the case of
three large dimensions, the lower bound is higher than the size of the input and output data
per processor: mn+nk+mk

P
. This means it is possible to attain the bandwidth lower bound

with any load balanced initial/final data layout, since the bandwidth cost of redistributing
the data is sub-dominant.

However, in the case of one or two large dimensions, the bandwidth cost lower bound
is lower than the size of the input and output data per processor. This means that a
communication-optimal algorithm cannot afford to redistribute the largest matrix, which
limits the data layouts that can be used. For example, in the case of one large dimension,
where CARMA shows its greatest advantage, it is critical that only entries of the smallest
matrix ever be communicated. As a result, it is necessary for corresponding entries of the
two larger matrices to be on the same processor in the initial/final data layout.

CARMA only communicates one of the three matrices at each BFS step. It requires that
each of the two halves of the other two matrices already resides entirely on the corresponding
half of the processors. See Figure 3.4. This requirement applies recursively down to some
block size, at which point CARMA uses a cyclic data layout (any load balanced layout would
work for the base case). The recursive data layout that the distributed version of CARMA
uses is different from any existing linear algebra library; hence CARMA cannot be directly
incorporated into, for example, ScaLAPACK or Elemental. Changing the data layout before
or after calling CARMA would defeat its advantage, which comes from not communicating
the largest matrices at all.

In fact, even if a new library is designed for CARMA, there is a complication. If a matrix
is used multiple times in a computation, sometimes as the largest and sometimes not the
largest, the data layouts CARMA prefers will not be consistent. It should still be possible to
asymptotically attain the communication lower bound for any sequence of multiplications
by choosing the correct initial or final layout and possibly transforming the layout between
certain multiplications. Doing so in a way that makes the library easy to use while remaining
efficient is left as an open problem.

CHAPTER 3. CLASSICAL RECTANGULAR MATRIX MULTIPLICATION 53

B
top
on

1,...,P/2

B
bot
on

P/2+1,...,P

A
left

on

1,...,P/2

A
right

on

P/2+1,...,P

C

on

1,...,P

Figure 3.4: Data layout for a BFS step splitting dimension k. Before the BFS step, all three
matrices are distributed on P processors. The distributed code assumes that Aleft and Btop

are distributed among the first P/2 processors, Aright and Bbot are distributed among the
remaining P/2 processors, and C is distributed among all the processors. The layout applies
recursively, following the execution pattern, and in the base case the layout is cyclic.

54

Chapter 4

Sparse Matrix Multiplication

A sparse matrix is one for which o(n2) entries are nonzero, and only the nonzero entries
are explicitly stored. This means that, when applying the classical matrix multiplication
algorithm, among the n3 multiplications that are performed in the dense case, only those
for which the corresponding entries of A and B are both nonzero must be performed. Here
we only consider algorithms where every nonzero product is computed directly, and not fast
sparse algorithms such as the one of Yuster and Zwick [67].

The results in this chapter are joint work with Grey Ballard, Aydın Buluç, James Demmel,
Laura Grigori, Oded Schwartz and Sivan Toledo; the algorithms and analysis appear in [4].

Achieving scalability for parallel algorithms for sparse matrix problems is challenging
because the computations tend not to have the potential for Θ(

√
M) data re-use that is

common in dense matrix problems. Further, the performance of sparse algorithms is often
highly dependent on the sparsity structure of the input matrices. We show in this chapter
that previous algorithms for sparse matrix-matrix multiplication are non optimal in their
communication costs, and we obtain new algorithms which are communication optimal,
communicating less than the previous algorithms and matching new lower bounds.

Our lower bounds require two important assumptions: (1) the sparsity of the input
matrices is random, corresponding to Erdős-Rényi random graphs (see Definition 4.1), and (2)
the algorithm is sparsity-independent, where the partitioning of the computation among the
processors is independent of the sparsity structure of the input matrices (see Definition 4.4).
The second assumption applies to nearly all existing algorithms for general sparse matrix-
matrix multiplication. While a priori knowledge of sparsity structure can certainly reduce
communication for many important classes of inputs, dynamically determining and efficiently
exploiting the structure of general input matrices is a challenging problem. In fact, a common
technique of current library implementations is to randomly permute rows and columns of
the input matrices in an attempt to destroy their structure and improve computational load
balance [17, 19]. Because the input matrices are random, our analyses are in terms of expected
communication costs.

CHAPTER 4. SPARSE MATRIX MULTIPLICATION 55

4.1 Preliminaries

For sparse matrix indexing, we use the colon notation, where A(:, i) denotes the ith column,
A(i, :) denotes the ith row, and A(i, j) denotes the element at the (i, j)th position of matrix
A. We use nnz (·) to denote the number of nonzeros in a matrix or submatrix.

We consider the case where A and B are n× n ER(d) matrices:

Definition 4.1. An ER(d) matrix is an adjacency matrix of an Erdős-Rényi graph with
parameters n and d/n. That is, an ER(d) matrix is a square matrix of dimension n where
each entry is nonzero with probability d/n. We assume d�

√
n.

It is not important for our analysis to which semiring the matrix entries belong, though we
assume algorithms do not short-circuit summations or exploit cancellation in the intermediate
values or output entries. In this case, the following facts will be useful for our analysis.

Fact 4.2. Let A and B be n× n ER(d) matrices. Then

(a) the expected number of nonzeros in A and in B is dn,

(b) the expected number of scalar multiplications in A ·B is d2n, and

(c) the expected number of nonzeros in C is d2n(1− o(1)).

Proof. Since each entry of A and B is nonzero with probability d/n, the expected number of
nonzeros in each matrix is n2(d/n) = dn. For each of the possible n3 scalar multiplications
in A · B, the computation is required only if both corresponding entries of A and B are
nonzero, which are independent events. Thus the probability that any multiplication is
required is d2/n2, and the expected number of scalar multiplications is d2n. Finally, an entry
of C = A ·B is zero only if all n possible scalar multiplications corresponding to it are zero.
Since the probability that a possible scalar multiplication is zero is (1− d2/n2) and the n
possible scalar multiplications corresponding to a single output entry are independent, the
probability that an entry of C is zero is (1 − d2/n2)n = 1 − d2/n + O(d4/n2). Thus the
expected number of nonzeros of C is n2(d2/n−O(d4/n2) = d2n(1− o(1)), since we assume
d�

√
n.

Recall from Section 1.4 that the n3 scalar multiplications in dense matrix multiplication
can be arranged into a cube V whose faces represent the input matrices.

Definition 4.3. We say a voxel (i, j, k) ∈ V is nonzero if, for given input matrices A and
B, both A(i, k) and B(k, j) are nonzero.

Definition 4.4. A sparsity-independent parallel algorithm for sparse matrix-matrix multipli-
cation is one in which the assignment of entries of the input and output matrices to processors
and the assignment of computation voxels to processors is independent of the sparsity pattern
of the input (or output) matrices. If an assigned matrix entry is zero, the processor need

CHAPTER 4. SPARSE MATRIX MULTIPLICATION 56

not store it; if an assigned voxel is zero, the processor need not perform the computation
corresponding to that voxel.

Our lower bound argument in Section 4.2 will apply to all sparsity-independent algorithms.
However, we will analyze a more restricted class of algorithms in Section 4.3, those that
assign contiguous brick-shaped sets of voxels to each processor.

Figure 4.1: How the cube is partitioned in 1D (left), 2D (middle), and 3D (right) algorithms.

4.1.1 All-to-all Communication

Several of the algorithms we discuss make use of all-to-all communication. If each processor
needs to send b different words to each other processor (so each processor needs to send a
total of b(P − 1) words), the bandwidth lower bound is W = Ω(bP) and the latency lower
bound is S = Ω(logP). Each of these bounds is attainable, but it has been shown that they
are not simultaneously attainable (see Theorem 2.9 of [15]). Depending on the relative costs
of bandwidth and latency, one may wish to use the point-to-point algorithm (each processor
sends data directly to each other processor) which incurs costs of W = O(bP), S = O(P) or
the bit-fixing algorithm (each message of b words is sent by the bit-fixing routing algorithm)
which incurs costs of W = O(bP logP), S = O(logP). Both of these are optimal, in the
sense that neither the bandwidth cost nor the latency cost can be asymptotically improved
without asymptotically increasing the other one.

4.2 Communication Lower Bounds

The general lower bounds for direct linear algebra [10] apply to our case and give

W = Ω

(
d2n

P
√
M

)
. (4.1)

This bound is highest when M takes its minimum value d2n/P , in which case it becomes
W = Ω(

√
d2n/P). In this section we improve (increase) these lower bounds by a factor of√

n ·min{1, d/
√
P}. For larger values of M , the lower bound in Equation 4.1 becomes weaker,

whereas our new bound does not, and the improvement factor increases to
√
M ·min{1,

√
P/d}.

The previous memory-independent lower bound [5] reduces to the trivial bound W = Ω(0).

CHAPTER 4. SPARSE MATRIX MULTIPLICATION 57

Theorem 4.5. Any sparsity-independent sparse matrix multiplication algorithm with load-
balanced input and output has an expected communication cost lower bound of

W = Ω

(
min

{
dn√
P
,
d2n

P

})
when applied to ER(d) input matrices on P processors.

Note that this bound can also be written as

W = Ω

(
dn√
P

min

{
1,

d√
P

})
,

and so which bound applies depends on the ratio d/
√
P .

Proof. Consider the n3 voxels that correspond to potential scalar multiplications A(i, k) ·
B(k, j). A sparsity-independent algorithm gives a partitioning of these multiplications among
the P processors. Let V be the largest set of voxels assigned to a processor, so |V | ≥ n3

P
. For

each i, j, let `Cij be the number of values of k such that (i, j, k) ∈ V , see Figure 4.2. We count
how many of the voxels in V correspond to `Cij <

n
4

and divide into two cases.

C(i,j)
 ℓ

ij

V

 C

Figure 4.2: Graphical representation of V and `Cij.

Case 1: At least n3

2P
voxels of V correspond to `Cij <

n
4
. Let V ′ be these voxels, so |V ′| ≥ n3

2P
.

We will analyze the communication cost corresponding to the computation of V ′ and get a
bound on the number of products computed by this processor that must be sent to other
processors. Since the output is load balanced and the algorithm is sparsity-independent, the
processor that computes V ′ is allowed to store only a particular set of n2

P
entries of C in

the output data layout. Since every voxel in V ′ corresponds to an `Cij <
n
4
, the n2

P
output

elements stored by the processor correspond to at most n3

4P
voxels in V ′, which is at most

half of |V ′|. All of the nonzero voxels in the remainder of V ′ contribute to entries of C that

CHAPTER 4. SPARSE MATRIX MULTIPLICATION 58

must be sent to another processor. In expectation, this is at least d2n
4P

nonzero voxels, since

each voxel is nonzero with probability d2

n2 . Moreover, from Lemma 4.2, only a small number
of the nonzero entries of C have contributions from more than one voxel, so very few of the
values can be summed before being communicated. The expected bandwidth cost is then
bounded by W = Ω(d2n/P).

Case 2: Fewer than n3

2P
voxels of V correspond to `Cij <

n
4
. This means that at least n3

2P

voxels of V correspond to `Cij ≥ n
4
. Let V ′′ be these voxels, so |V ′′| ≥ n3

2P
. We will analyze

the communication cost corresponding to the computation of V ′′ and get a lower bound on
the amount of input data needed by this processor. For each i, k, let `Aik be the number of
values of j such that (i, j, k) ∈ V ′′. Similarly, for each j, k, let `Bjk be the number of values of
i such that (i, j, k) ∈ V ′′. Partition V ′′ into three sets: V0 is the set of voxels that correspond
to `Aik >

n
d

and `Bjk >
n
d
; VA is the set of voxels that correspond to `Aik ≤ n

d
; and VB is the set

of voxels that correspond to `Bjk ≤ n
d

and `Aik >
n
d
. At least one of these sets has at least n3

6P

voxels, and we divide into three subcases.
Case 2a: |V0| ≥ n3

6P
. Let pA, pB, and pC be the sizes of the projections of V0 onto A, B,

and C, respectively. Lemma 1.1 implies that pApBpC ≥ |V0|2 = n6

36P 2 . The assumptions of

Case 2 implies pC ≤ |V0|
n/4

. Thus pApB ≥ n4

24P
, or max{pA, pB} ≥ n2

√
24P

. Since the situation
is symmetric with respect to A and B, assume without loss of generality that A has the
larger projection, so pA ≥ n2

√
24P

. Since the density of A is d
n
, this means that the expected

number of nonzeros in the projection of V0 onto A is at least dn√
24P

. Since each of these

nonzeros in A corresponds to a `Aik >
n
d
, it is needed to compute V0 with probability at least

1− (1− d/n)n/d > 1− 1/e. Thus in expectation a constant fraction of the nonzeros of A in
the projection of V0 are needed. The number of nonzeros the processor holds in the initial
data layout is dn

P
in expectation, which is asymptotically less than the number needed for the

computation. Thus we get a bandwidth lower bound of W = Ω(dn/
√
P).

Case 2b: |VA| ≥ n3

6P
. Each voxel in VA corresponds to `Aik ≤ n

d
. In this case we are able

to bound the re-use of entries of mA to get a lower bound. Count how many entries of A
correspond to each possible value of `Aik, 1 ≤ r ≤ n

d
, and call this number Nr. Note that∑n/d

r=1 r ·Nr = |VA|. Suppose a given entry A(i, k) corresponds to `Aik = r. We can bound the
probability that A(i, k) is needed by the processor to compute VA as a function f(r). The
probability that A(i, k) is needed is the probability that both A(i, k) is nonzero and one of
the r voxels corresponding to A(i, k) in VA is nonzero, so

f(r) =
d

n

(
1−

(
1− d

n

)r)
≥ rd2

2n2
,

since r ≤ n
d
. Thus the expected number of nonzeros of A that are needed by the processor is

n/d∑
r=1

Nrf(r) ≥ d2

2n2

n/d∑
r=1

r ·Nr ≥
d2n

12P
.

CHAPTER 4. SPARSE MATRIX MULTIPLICATION 59

This is asymptotically larger than the number of nonzeros the processor holds at the beginning
of the computation, so we get a bandwidth lower bound of W = Ω(d2n/P).

Case 2c: |VB| ≥ n3

6P
. The analysis is identical to the previous case, except we look at the

number of nonzeros of B that are required.
Since an algorithm may be in any of these cases, the overall lower bound is the minimum:

W = Ω

(
min

{
dn√
P
,
d2n

P

})
.

4.3 Algorithms

In this section we consider algorithms which assign contiguous bricks of voxels to processors.
We categorize these algorithms into 1D, 2D, and 3D algorithms, as shown in Figure 4.1. If
we consider the dimensions of the brick of voxels assigned to each processor, 1D algorithms
correspond to bricks with two dimensions of length n (and 1 shorter), 2D algorithms correspond
to bricks with one dimension of length n (and 2 shorter), and 3D algorithms correspond
to bricks with all 3 dimensions shorter than n. Table 4.1 provides a summary of the
communication costs of the sparsity-independent algorithms we consider.

Algorithm Bandwidth cost Latency cost

Previous Lower Bound [10] d2n
P
√
M

0

Lower Bound [4] min
{

dn√
P
, d

2n
P

}
1

1D
Näıve Block Row [18] dn P

Improved Block Row* [22] d2n
P

min{logP, dn
P
}

Outer Product* [46] d2n
P

logP

2D SpSUMMA [18] dn√
P

√
P

3D Recursive [4] min
{

dn√
P
, d

2n
P

⌈
log P

d2

⌉}
logP

Table 4.1: Asymptotic expected communication costs of sparsity-independent algorithms and
lower bounds. Algorithms marked with an asterisk make use of all-to-all communication.
Depending on the algorithm used for the all-to-all, either the bandwidth or latency cost listed
is attainable, but not both; see Section 4.1.1.

CHAPTER 4. SPARSE MATRIX MULTIPLICATION 60

4.3.1 1D Algorithms

Näıve Block Row Algorithm

The näıve block row algorithm [18] distributes the input and output matrices to processors
in a block row fashion. Then in order for processor i to compute the ith block row, it needs
access to the ith block row of A (which it already owns), and potentially all of B. Thus, we
can allow each processor to compute its block row of C by leaving A and C stationary and
cyclically shifting block rows of B around a ring of the processors. This algorithm requires P
stages, with each processor communicating with its two neighbors in the ring. The size of
each message is the number of nonzeros in a block row of B, which is expected to be dn/P
words. Thus, the bandwidth cost of the block row algorithm is dn and the latency cost is P .
An analogous block column algorithm works by cyclically shifting block columns of A with
identical communication costs.

Improved Block Row Algorithm

The communication costs of the block row algorithm can be reduced without changing the
assignment of matrix entries or voxels to processors [22]. The key idea is for each processor
to determine exactly which rows of B it needs to access in order to perform its computations.
For example, if processor i owns the ith block row of A, Ai, and the jth subcolumn of Ai

contains no nonzeros, then processor i doesn’t need to access the jth row of B. Further, since
the height of a subcolumn is n/P , the probability that the subcolumn is completely empty is

Pr [nnz (Ai(:, j)) = 0] =

(
1− d

n

) n
P

≈ 1− d

P
,

assuming d < P . In this case, the expected number of subcolumns of Ai which have at least
one nonzero is dn/P . Since processor i needs to access only those rows of B which correspond
to nonzero subcolumns of Ai, and because the expected number of nonzeros in each row of B
is d, the expected number of nonzeros of B that processor i needs to access is d2n/P .

Note that the local memory of each processor must be of size Ω (d2n/P) in order to store
the output matrix C. Thus, it is possible for each processor to gather all of their required rows
of B at once. The improved algorithm consists of each processor determining which rows it
needs, requesting those rows from the appropriate processors, and then sending and receiving
approximately d rows. While this can be implemented in various ways, the bandwidth cost of
the algorithm is at least Ω (d2n/P) and if point-to-point communication is used, the latency
cost is at least Ω(min{P, dn/P}). The block column algorithm can be improved in the same
manner.

Outer Product Algorithm

Another possible 1D algorithm is to partition A in block columns, and B in block rows [46].
Without communication, each processor locally generates an n×n sparse matrix of rank n/P ,

CHAPTER 4. SPARSE MATRIX MULTIPLICATION 61

and processors combine their results to produce the output C. Because each column of A and
row of B have about d nonzeros, the expected number of nonzeros in the locally computed
output is d2n/P . By deciding the distribution of C to processors up front, each processor can
determine where to send each of its computed nonzeros. The final communication pattern
is realized with an all-to-all collective in which each processer sends and receives O(d2n/P)
words. Note that assuming A and B are initially distributed to processors in different ways
may be unrealistic; however, no matter how they are initially distributed, A and B can be
transformed to block column and row layouts with all-to-all collectives for a communication
cost which is dominated by the final communication phase.

To avoid the all-to-all, it is possible to compute the expected number of blocks of the
output which actually contain nonzeros; the best distribution of C is 2D, in which case the
expected number of blocks of C you need to communicate is min{P, dn/

√
P}. Thus for

P > (dn)2/3, the outer product algorithm can have W = O(d2n/P) and S = O(dn/
√
P).

4.3.2 2D Algorithms

Sparse SUMMA

In the Sparse SUMMA algorithm [18], the brick of voxels assigned to a processor has its
longest dimension (of length n) in the k dimension. For each output entry of C to which it
is assigned, the processor computes all the nonzero voxels which contribute to that output
entry. The algorithm has a bandwidth cost of O(dn/

√
P) and a latency cost of O(

√
P) [18].

Improved Sparse SUMMA

In order to reduce the latency cost of Sparse SUMMA, each processor can gather all the
necessary input data up front. That is, each processor is computing a product of a block row
of A with a block column of B, so if it gathers all the nonzeros in those regions of the input
matrices, it can compute its block of C with no more communication. Since every row of
A and column of B contain about d nonzeros, and the number of rows of A and columns
of B in a block is n/

√
P , the number of nonzeros a processor must gather is O(dn/

√
P). If

d >
√
P , then the memory requirements for this gather operation do not exceed the memory

requirements for storing the block of the output matrix C, which is Ω(d2n/P).
The global communication pattern for each processor to gather its necessary data consists

of allgather collectives along processor columns and along processor grids. The bandwidth
cost of these collectives is O(dn/

√
P), which is the same as the standard algorithm, and the

latency cost is reduced to O(logP). To our knowledge, this improvement has not appeared
in the literature before.

We might also consider applying the optimization that improved the 1D block row
(or column) algorithm. Processor (i, j) would need to gather the indices of the nonzero
subcolumns of Ai and the nonzero subrows of Bj. This requires receiving Ω(dn/

√
P) words,

and so it cannot reduce the communication cost of Sparse SUMMA.

CHAPTER 4. SPARSE MATRIX MULTIPLICATION 62

As in the dense case, there are variants on the sparse SUMMA algorithm that leave one of
the input matrices stationary, rather than leaving the output matrix C stationary [40]. When
multiplying ER(d) matrices, stationary input matrix algorithms require more communication
that the standard approach because the global data involved in communicating C is about
d2n, while the global data involved in communicating A and B is only dn.

4.3.3 3D Recursive Algorithm

Next we adapt the BFS/DFS approach to the sparse case. Although we have assumed
that the input matrices are square, the recursive algorithm will use rectangular matrices for
subproblems. Assume that P processors are solving a subproblem of size m× k ×m, that is
A is m× k, and B is k ×m, and C is m×m. We will split into four subproblems, and then
solve each subproblem independently on a quarter of the processor. There are two natural
ways to split the problem into four equal subproblems that respect the density similarity
between A and B, see Figure 4.3.

1. Split m in half, creating four subproblems of shape (m/2)× k × (m/2). In this case
each of the four subproblems needs access to a different part of C, so no communication
of C is needed. However one half of A and B is needed for each subproblem, and since
each quarter of the processors holds only one quarter of each matrix, it will be necessary
to replicate A and B. This can be done via allgather collectives among disjoint pairs of
processors at the cost of O (dmk/(nP)) words and O(1) messages.

2. Split k in quarters, creating four subproblems of shape m × (k/4) ×m. In this case
each of the four subproblems needs access to a different part of A and B, so with the
right data layout, no communication of A or B is needed. However each subproblem
will compute nonzeros across all of C, so those entries need to be redistributed and
combined if necessary. This can be done via all-to-all collective among disjoint sets of 4
processors at a cost of O(d2m2/(nP)) words and O(1) messages.

A B C

m

k

k m

m

m

1 2

3 4

1,2

3,4
1,3 2,4

A B C

1 2 43

1

2

3

4

1,2,3,4m

k

k m

m

m

Figure 4.3: Two ways to split the matrix multiplication into four subproblems, with the parts
of each matrix required by each subproblem labelled. On the left is split 1 and on the right
is split 2.

At each recursive step, the algorithm chooses whichever split is cheapest in terms of
communication cost. Initially, m = k = n so split 1 costs O(dn/P) words and is cheaper
than split 2, which costs O(d2n/P) words. There are two cases to consider.

CHAPTER 4. SPARSE MATRIX MULTIPLICATION 63

Case 1: If P ≤ d2, the algorithm reaches a single processor before split 1 becomes more
expensive than split 2, so only split 1 is used. This case corresponds to a 2D algorithm, and
the communication costs are

W =

log4 P−1∑
i=0

O

(
d(n/2i)n

P/4i

)
= O

(
dn√
P

)
, S = O(logP).

Case 2: If P > d2, split 1 becomes more expensive than split 2 after log2 d steps. After
log2 d steps, the subproblems have dimensions (n/d)×n×(n/d) and there are P/d2 processors
working on each subproblem. The first log2 d steps are split 1, and the rest are split 2, giving
communication costs of

W =

log2 d−1∑
i=0

O

(
d(n/2i)n

P/4i

)
+

log4 P∑
i=log2 d

O

(
d2n

P

)
= O

(
d2n

P

⌈
log

P

d2

⌉)
, S = O(logP).

This case corresponds to a 3D algorithm.
In both cases, the communication costs match the lower bound from Section 4.2 up to

factors of at most logP . Only layouts that are compatible with the recursive structure
of the algorithm will allow these communication costs. One simple layout is to have A is
block-column layout, B in block-row layout. Then C should have blocks of size n/d× n/d,
each distributed on a different dP/d2e of the processors.

Note that since BFS only algorithm does not use more than a constant factor extra
memory, there is no need for DFS steps.

4.4 Performance Results

We have implemented the block row algorithm, the improved block row algorithm, the outer
product algorithm, sparse SUMMA, and the recursive algorithm in MPI and C++. The five
implementations share the same local sparse matrix multiplication code. All our experiments
are of Erdős-Rényi random matrices whose entries are random double precision values. They
are stored in coordinate layout, and use either 32-bit or 64-bit integers for indexing, as
appropriate for the matrix dimension.

We benchmarked on Titan1, a Cray XK7 at Oak Ridge National Laboratory. It consists
of 18,688 nodes connected by a Gemini interconnect. Each node has 32GB of RAM, a 16 core
AMD Opteron 6274 processor, and an Nvidia K20 GPU. As of November 2012, it ranked
first on the TOP500 list [53], with a LINPACK score of 17.59 Tflop/s. In our experiments,
we only make use of the CPUs and not the GPUs. We use one core per process (16 MPI
processes per node).

In general, the recursive algorithm outperforms all the previous algorithms, especially
when run at large scale. Among the previous algorithms, when d is small relative to

√
P , the

1For machine details, see http://www.olcf.ornl.gov/titan/

CHAPTER 4. SPARSE MATRIX MULTIPLICATION 64

 0.01

 0.1

 1

 10

 100

 1 16 256 4096 65536

ru
n

ti
m

e
,

s
e

c
o

n
d

s

P

(a) n = 226, d = 20

 0.01

 0.1

 1

 10

 100

 1 16 256 4096 65536

ru
n

ti
m

e
,

s
e

c
o

n
d

s

P

(b) n = 218, d = 24

 0.1

 1

 10

 100

 256 1024 4096 16384 65536

ru
n

ti
m

e
,

s
e

c
o

n
d

s

P

(c) n = 226, d = 22

 0.1

 1

 10

 100

 256 1024 4096 16384 65536

ru
n

ti
m

e
,

s
e

c
o

n
d

s

P

(d) n = 218, d = 26

 1

 10

 100

 4096 16384 65536

ru
n

ti
m

e
,

s
e

c
o

n
d

s

P

(e) n = 226, d = 24

 0.1

 1

 10

 100

 4096 16384 65536

ru
n

ti
m

e
,

s
e

c
o

n
d

s

P

(f) n = 218, d = 28

Block Row OuterImproved Row SpSUMMA Recursive

Figure 4.4: Strong scaling of sparse matrix multiplication.

CHAPTER 4. SPARSE MATRIX MULTIPLICATION 65

outer product algorithm and the improved block row algorithm perform best; whereas when
d is large relative to

√
P , sparse SUMMA performs best. This is as one would expect from

the communication costs of each algorithm (see Table 4.1).
Figure 4.4 shows strong scaling of all five algorithms on a variety of problem sizes. In

the top row, the output has 226 expected nonzeros (the actual number of nonzeros in the
experiments is within 0.1% of the expected number), so the input and output can be stored on
one node. When d = 1, on up to 256 cores, the best performing algorithms are the recursive
algorithm, the outer product algorithm, and the improved block row algorithm. Beyond that
point, the recursive algorithm substantially outperforms the other two. For d = 1, every step
of the recursive algorithm is of type 2, and it is essentially the same algorithm as the outer
product algorithm. The difference in performance is because, when using many cores, the
all-to-all on entries of C that is performed by our recursive code substantially outperforms
the Alltoallv function of MPI. In this case, the recursive algorithm has a best time to solution
of 0.0303 seconds, which makes it 11× faster than the next best algorithm: improved block
row algorithm. When d = 16, sparse SUMMA is the closest competitor, and the recursive
algorithm is about 4× faster.

In the second row of Figure 4.4, the output has 230 expected nonzeros. When d = 4, the
recursive algorithm’s minimum time to solution is about 8.1× better than the improved block
row algorithm, which is the closest competitor. When d = 16, sparse SUMMA is the closest
competitor, and the recursive algorithm is 3.9× faster.

In the third row of Figure 4.4, the output has 234 expected nonzeros. When d = 16, the
recursive algorithm beats all the other algorithms by at least 6×. Note that among the
other algorithms, the best performance is by the improved block row algorithm using 4096
cores, which is near the minimum to hold the input and output; only the recursive algorithm
was able to use more parallelism to run faster than this. When d = 256, sparse SUMMA is
again the closest competitor, and the recursive algorithm is 4.7× faster. Only the recursive
algorithm shows significant performance gains when going from 16k cores to 64k cores.

Figure 4.5 shows a breakdown of the time between interprocessor communication (MPI
calls), local computation (everything else), and time imbalance between the processors using
4096 cores with 230 nonzeros in the output. All of the previous algorithms are communication
bound, whereas the recursive algorithm is able to reduce the communication to be faster than
the local computation (which is expected to itself be communication bound in the memory
hierarchy). Load imbalance is not a significant problem for any of the algorithms.

In Figure 4.6, we explore the possibilities for interleaving type 1 and type 2 recursive
steps in the recursive algorithm on P = 1024 cores. Our implementation allows for arbitrary
interleavings, which makes for 2log4 P =

√
P possible executions. For large values of P , this

is too many to realistically explore, so in Figures 4.4 and 4.5 we only explored “simple”
interleavings: those for which all of the type 1 steps are taken before any of the type 2 steps.
These are shown in green in Figure 4.6. In red in Figure 4.6 is the case of log2 d − 1 type
1 steps followed by log4 P − log2 d+ 1 type 2 steps. Taking into account the fact that two
matrices must be communicated at a type 1 step (A and B), whereas only one must be
communicated at a type 2 step (C), this is what the analysis of Section 4.3.3 suggests will

CHAPTER 4. SPARSE MATRIX MULTIPLICATION 66

 0

 2

 4

 6

 8

 10

 12

Block R
ow

O
uter

Im
proved R

ow

SpSU
M

M
A

R
ecursive

Block R
ow

O
uter

Im
proved R

ow

SpSU
M

M
A

R
ecursive

Block R
ow

O
uter

Im
proved R

ow

SpSU
M

M
A

R
ecursive

Block R
ow

O
uter

Im
proved R

ow

SpSU
M

M
A

R
ecursive

S
e
c
o
n
d
s

n=2

30
 d=2

0
n=2

26
 d=2

2
n=2

22
 d=2

4
n=2

18
 d=2

6

Interprocessor communication
Local operations
Imbalance

Figure 4.5: Time breakdown on 4096 cores. In each case, the expected number of nonzeros
in the output is d2n = 230. For n = 230, d = 1, the block row algorithm spent 39.3 seconds
on communication, 11.9 seconds on local computation, and 0.985 seconds were due to load
imbalance, but the plot is cut off at 12 seconds.

perform best. In three of the four cases this is the fastest option, and in the fourth it is only
8.3% slower than the best interleaving. This suggests that following that rule will give very
close to optimal performance, and tuning is probably not necessary.

CHAPTER 4. SPARSE MATRIX MULTIPLICATION 67

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2
2

2
2

2

2
2

2
1

2

2
2

2
2

1

2
2

1
2

2

2
2

2
1

1

2
2

1
1

2

2
2

1
2

1

2
1

2
2

2

1
2

2
2

2

2
1

2
2

1

2
1

2
1

2

1
2

2
2

1

1
2

2
1

2

2
1

1
2

2

2
2

1
1

1

1
2

1
2

2

2
1

2
1

1

2
1

1
2

1

1
2

2
1

1

1
2

1
2

1

1
2

1
1

2

2
1

1
1

2

1
1

2
2

2

1
1

2
2

1

1
1

2
1

2

1
1

1
2

2

1
2

1
1

1

2
1

1
1

1

1
1

2
1

1

1
1

1
2

1

1
1

1
1

2

1
1

1
1

1

S
e

c
o

n
d

s

Predicted
Simple
Other

(a) n = 226, d = 20

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

2
2

2
1

2

2
2

2
2

1

2
2

2
1

1

2
2

1
2

2

2
2

2
2

2

2
2

1
2

1

2
1

2
2

2

2
2

1
1

2

2
1

2
2

1

1
2

2
2

2

1
2

2
1

2

1
2

2
2

1

2
1

1
2

2

2
1

2
1

2

1
2

1
2

2

2
2

1
1

1

1
2

2
1

1

2
1

2
1

1

1
2

1
2

1

2
1

1
2

1

1
1

2
2

2

2
1

1
1

2

1
2

1
1

2

1
1

2
2

1

1
1

2
1

2

1
1

1
2

2

2
1

1
1

1

1
2

1
1

1

1
1

2
1

1

1
1

1
2

1

1
1

1
1

2

1
1

1
1

1

S
e

c
o

n
d

s

(b) n = 222, d = 22

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

1
1

1
2

2

1
1

2
2

1

1
1

2
2

2

1
1

2
1

2

1
1

2
1

1

1
1

1
2

1

1
1

1
1

2

1
2

2
1

1

1
2

1
1

2

1
2

2
1

2

1
2

1
2

2

1
2

1
2

1

1
2

2
2

1

2
1

2
1

1

1
2

1
1

1

2
1

1
1

2

2
1

1
2

1

2
1

2
1

2

2
2

2
1

1

1
2

2
2

2

2
1

1
2

2

2
1

1
1

1

2
2

1
1

1

2
2

1
1

2

2
1

2
2

1

2
1

2
2

2

2
2

1
2

1

1
1

1
1

1

2
2

2
1

2

2
2

1
2

2

2
2

2
2

1

2
2

2
2

2

S
e

c
o

n
d

s

(c) n = 218, d = 24

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

1
1

1
1

1

1
1

1
2

1

1
1

2
1

1

1
1

1
1

2

1
1

1
2

2

1
1

2
2

1

1
1

2
1

2

1
1

2
2

2

1
2

1
1

1

1
2

2
1

1

1
2

1
1

2

1
2

1
2

1

2
1

1
1

1

2
1

1
1

2

1
2

1
2

2

2
1

2
1

1

1
2

2
1

2

2
1

1
2

1

1
2

2
2

1

2
2

1
1

1

1
2

2
2

2

2
1

1
2

2

2
1

2
1

2

2
1

2
2

1

2
2

2
1

1

2
2

1
1

2

2
1

2
2

2

2
2

1
2

1

2
2

2
1

2

2
2

1
2

2

2
2

2
2

1

2
2

2
2

2

S
e

c
o

n
d

s

(d) n = 214, d = 26

Figure 4.6: Possible interleavings of the recursive algorithm on 1024 processors. The red
bar corresponds to taking log2 d− 1 steps of type 1 followed by the remaining steps of type
2. Green bars correspond to taking all type 1 steps before the first type 2 step. Blue bars
correspond to other interleavings.

68

Chapter 5

Beyond Matrix Multiplication

In this chapter we show how to use the BFS/DFS approach to parallelize various recursive
algorithms beyond matrix multiplication. We start with näıve n-body interaction, for which
the recursive calls are independent. We then examine several algorithms with dependencies
between the recursive calls.

5.1 Näıve n-body Interaction

For an n-body simulation, at each timestep we want to compute the force on each particle
due to each other particle. This can be computed using the näıve iterative algorithm as:

for i in 1 : n do
for j in 1 : n do

Fi =force(i, j)

where force(i, j) computes the force on particle i due to particle j.
To recast this as a recursive algorithm, generalize it slightly to computing the forces on

n particle in a list A due to n particles in a (possibly different) list B. Then the recursive
algorithm is:

function RecNbody(A,B,n)
if n = 1 then

force(A(1), B(1))
else

RecNbody(A(1 : n/2), B(1 : n/2))
RecNbody(A(1 : n/2), B(n/2 + 1 : n))
RecNbody(A(n/2 + 1 : n), B(1 : n/2))
RecNbody(A(n/2 + 1 : n), B(n/2 + 1 : n))

The function makes four recursive calls to itself. The four calls are not quite independent:
two of them update each particle in A. If we instead make two copies A for the two different
calls, and then combine the contributions at the end, they become independent at the cost

CHAPTER 5. BEYOND MATRIX MULTIPLICATION 69

of O(n) work after the recursive calls. The parallelization is now very similar to the case of
square matrix multiplication.

5.1.1 Unlimited Memory

Assume, for now, that memory is not a limiting factor. Then we can perform the calculation
by doing k BFS steps, followed by local computation. For each BFS step, the communication
consists of 3 all-to-all’s between disjoint sets of 4 processors: one to redistribute A, one to
redistribute B, and one to collect the forces. Assume that a single particle or force can be
represented by O(1) words. The number of words in each message is all the data a processor
has about half of the particles (or forces). Thus at each step, each processor sends and
receives O(1) messages of length O(n/P). The recurrences for bandwidth and latency are
thus

W (n, P) = W (n/2, P/4) +O(n/P) = O(n/
√
P),

S(n, P) = S(n/2, P/4) +O(1) = O(logP).

The memory usage is a geometric sum, since each BFS step needs twice as much memory as
the previous, and is dominated by the last term:

M(n, P) = O(2kn/P) = O(n/
√
P).

5.1.2 Limited Memory

If there is not enough memory to perform the unlimited memory scheme above, it is possible
to perform DFS steps, each of which reduces the future memory requirements by a factor of
2. If there is M local memory available, take

` = log2

n

M
√
P

+ c,

for some constant c, DFS steps followed by k BFS steps. This fits inside the available local
memory M , and consists of 4` calls to the unlimited memory case with size n/2`. Thus its
costs are

W (n, P) = 4`O

(
n

2`
√
P

)
= O

(
n2

MP

)
,

S(n, P) = 4`O(logP) = O

(
n2

M2P
logP

)
.

These asymptotically match the communication costs of the 1.5D iterative algorithm and
the lower bounds presented in [33].

CHAPTER 5. BEYOND MATRIX MULTIPLICATION 70

5.2 Dealing with Dependencies

So far, all of the algorithm we have considered have had independent recursive calls, possibly
with some work at the beginning and end. For many recursive algorithms, however, this is
not the case. To obtain communication-efficient parallelizations in such cases, we modify
BFS/DFS approach by allowing the algorithm to discard some fraction of the processors at
each recursive step. The reason is to avoid having to solve many small base cases on all P
processors, which would incur a high latency cost. Discarding processors will always increase
the arithmetic and bandwidth cost, but if we do not discard too many at each recursive step,
we can keep these from increasing by more than constant factors.

5.3 All-Pairs Shortest Paths

Consider the Floyd-Warshall algorithm for computing all-pairs shortest paths on a graph
(the minimum distance between every pair of vertices in a graph). We can write the problem
using three nested loops so that it looks like matrix multiplication, except with addition and
multiplication replaced by taking minima and addition, respectively. Additionally, unlike
matrix multiplication, there are dependencies between the iterations in the inner loop, so
they cannot be arbitrarily re-ordered and parallelized.

Like matrix multiplication, the Floyd-Warshall algorithm can be recast as a recursive
algorithm, where each index is split in half and there are 8 subproblems to solve [55]. Because
of the dependencies, all 8 subproblems must be solved in order. Fortunately, however, 6 of
the 8 subproblems have no internal dependencies, and thus have exactly the same asymptotic
costs as matrix multiplication, while the remaining 2 have the same dependencies as the
original problem.

Consider starting with the problem of size n on P processors, using only P/a of
those processors to solve the two subproblems. The cost recurrence is then FW(n, P) =
2FW(n/2, P/a) + 6GEMM(n/2, P) + βn2/P + α. Here FW(n, P) is the cost (arithmetic, bandi-
wdith, or latency) of the recursive Floyd-Warshall algorithm, GEMM(n, P) is the cost of square
n× n matrix multiplication on P processors, and βn2/P + α is the communication cost of
redistributing the input and output at each recursive step. Assuming a > 1, the base case
computation is performed on one processor, without incurring any communication costs, after
loga P recursive steps. In terms of flops, this gives

F (n, P) = 2F

(
n

2
,
P

a

)
+O

(
n3

P

)
=

loga P∑
i=1

O

(
n3

P

(a
4

)i)
=

 O
(

n3

P

)
a < 4

O
(

n3

P log4 a

)
a > 4

.

Thus as long as a < 4 (at least 1/4 of the processors are kept at each recursive step), the
computation is asymptotically load balanced, although it will suffer a constant factor increase
in the flop cost. Taking a > 4 turns out to be asymptotically equivalent to discarding some

CHAPTER 5. BEYOND MATRIX MULTIPLICATION 71

of the processors at the beginning and then using a smaller value of a, so we do not consider
that case further.

In terms of bandwidth cost, it gives

W (n, P) = 2W

(
n

2
,
P

a

)
+O

(
n2

P 2/3
+

n3

P
√
M

)
=

 O
(

n2

P 2/3 + n3

P
√
M

)
a < 23/2

O
(

n2

P loga 2 + n3

P
√
M

)
23/2 < a < 4

.

The communication lower bounds of [10, 5] apply to Floyd-Warshall, so the recursive algorithm
is bandwidth-optimal for small values of a. The value of a between a = 23/2 and a = 4 at
which it becomes not bandwidth-optimal depends on how much memory is available.

The latency cost is

S(n, P) = 2S

(
n

2
,
P

a

)
+O

(
1 +

n3

PM3/2

)
= O

(
P loga 2 +

n3

PM3/2

)
,

as long as a < 4. Increasing a decreases the latency cost, because it avoids having many
subproblems to solve, each using many processors. Because of the dependencies, the latency
is always higher than logP , unlike for matrix multiplication. For a > 23/2 (assuming there is
enough memory), the latency and bandwidth match the conjectured tradeoff lower bound of
[59]. The asymptotic costs of their iterative algorithm are very similar to the costs of the
recursive algorithm shown above: their case of c = 1 corresponds here to a = 4, and their
case of c = P 1/3 corresponds to a = 23/2. A similar algorithm was also presented in [63]. The
recursive algorithm requires no more than a constant factor extra memory for any a ≤ 4,
although if more is available the subproblems that look like matrix multiplication benefit
from it.

5.4 Triangular Solve with Multiple Righthand Sides

Next consider solving a triangular system LX = Y , where L is an n × n lower triangular
matrix, and X and Y are n×m matrices; the inputs are L and Y and the output is X.

First consider the square case that m = n. A recursive algorithm is given in [8] that
splits both dimensions of all three matrices in half, and has four recursive calls to triangular
solves, and two matrix multiplications. The critical path consists of one triangular solve,
then one matrix multiplication, then another triangular solve; meanwhile the other half of
the computation can be done in parallel. This leads to a cost recurrence of TRSM(n, n, P) =
2TRSM(n/2, n/2, P/(2a)) + GEMM(n/2, P/2) + βn2/P + α. The base case is local computation
on one processor after log2a P recursive steps. As in the case of all pairs shortest path, we
analyze the flop, bandwidth, and latency costs as a function of a. The flop cost is

F (n, P) = 2F

(
n

2
,
P

2a

)
+O

(
n3

P

)
= O

(
n3

P

)
,

CHAPTER 5. BEYOND MATRIX MULTIPLICATION 72

as long as a < 2. The bandwidth cost is

W (n, P) = 2W

(
n

2
,
P

2a

)
+O

(
n2

P 2/3
+

n3

P
√
M

)
=

 O
(

n2

P 2/3 + n3

P
√
M

)
a <
√

2

O
(

n2

P log2a 2 + n3

P
√
M

) √
2 < a < 2

.

The latency cost is

S(n, P) = 2S

(
n

2
,
P

2a

)
+O

(
1 +

n3

PM3/2

)
= O

(
P log2a 2 +

n3

PM3/2

)
,

as long as a < 2. Increasing a decreases latency cost at the expense of higher bandwidth and
flop cost. Since we are limited to a < 2, the latency cost cannot be reduced below O(P 1/2).
For small values of a, the bandwidth cost asymptotically matches the lower bounds of [10, 5].

We can improve the latency cost, even for the square case, by allowing the two dimensions
to be split separately. In [11], it is shown how to break the recursive algorithm of [8] into two
recursive steps. One step splits m, creating two triangular solves on matrices of half as many
columns that can be performed in parallel. The other step splits n, creating two triangular
solves with half as many rows, and a matrix multiplication, all three of which must be
performed in order. Consider an algorithm that combines one step of splitting n with k steps
of splitting m (so the algorithm considered above is the case k = 1). This leads to a recurrence
of TRSM(n,m, P) = 2TRSM(n/2,m/2k, P/(2ka)) +O(GEMM(n, n,m, P)) + (mn+n2)/Pβ, where
the last term is the bandwidth cost of redistribution at each step. The flop cost is

F (n,m, P) = 2F

(
n

2
,
m

2k
,
P

2ka

)
+O

(
n3

P

)
= O

(
n2m

P

)
,

as long as a < 2. The bandwidth cost due to the matrix multiplications is

WMM(n,m, P) = 2WMM

(
n

2
,
m

2k

P

2ka

)
+O

(
(mn2)2/3

P 2/3
+

mn2

P
√
M

)

=

O
(

(mn2)2/3

P 2/3 + mn2

P
√
M

)
a <
√

2

O

(
(mn2)2/3

P
log

2ka
22k/3+1/3 + mn2

P
√
M

) √
2 < a < 2

.

The bandwidth cost due to redistribution is

WR(n, P) = 2WR

(
n

2
,
m

2k
P

2ka

)
+O

(
n2

P
+
mn

P

)
= O

(
mn

P log
2ka

2k

)
+

 O
(
n2

P

)
2ka < 2

O
(

n2

P
log

2ka
2

)
2ka > 2

.

The total bandwidth cost is the sum of these two contributions. The latency cost is

S(n, P) = 2S

(
n

2
,
P

2a

)
+O

(
1 +

n3

PM3/2

)
= O

(
P log

2ka
2 +

n3

PM3/2

)
,

CHAPTER 5. BEYOND MATRIX MULTIPLICATION 73

as long as a < 2. In general, one should choose k and a so that WR = WMM ; there will still
be a remaining degree of freedom, and increasing k or a will decrease latency at the expense
of higher bandwidth.

A simple example is the square case m = n, with a = 1 and k ≥ 3/2. Then the above
costs simplify to

F = O

(
n3

P

)
, W = O

(
n2

P 1/k
+

n3

P
√
M

)
, S = O

(
P 1/k +

n3

PM3/2

)
.

Note that by taking large values of k, the latency is substantially reduced relative to the
previous algorithm, at to cost of further increase to the bandwidth term. It is only possible
to run this algorithm if m ≥ P , since with a = 1 the only reduction in number of processors
comes from splitting m. If we instead take

√
2 < a < 2 and k ≥ 5/2 and define b = k+ log2 a,

the asymptotic costs are

F = O

(
n3

P

)
, W = O

(
n2

P 1/b
+

n3

P
√
M

)
, S = O

(
P 1/b +

n3

PM3/2

)
,

and the algorithm works as long as m ≥ P k/(k+log2 a).
The latency costs are substantially higher than the lower bounds of [10]. We conjecture

that taking into account dependencies will give tighter lower bounds.

5.5 Cholesky Decomposition

Sequential Cholesky decomposition of an n×n matrix can be done recursively by making two
calls to Cholesky decomposition on an n

2
× n

2
matrix, one call to a square triangular solve, and

one call to matrix multiplication [3, 8]. All four of those calls must be done in order. Thus
our parallelization gives the recurrence CHOL(n, P) = 2CHOL(n/2, P/a) +O(GEMM(n, n, n, P) +
TRSM(n, n, P)+n2/Pβ). For the costs of the triangular solve, use the k = 3/2, a = 1 algorithm
from the previous section; further reductions to the latency cost of the triangular solve do
not reduce the latency cost of the Cholesky decomposition.

In terms of flops, we have

F (n, P) = 2F

(
n

2
,
P

a

)
+O

(
n3

P

)
= O

(
n3

P

)
,

for a < 4. The bandwidth cost is

W (n, P) = 2W

(
n

2
,
P

a

)
+O

(
n2

P 2/3
+

n3

P
√
M

)
=

 O
(

n2

P 2/3 + n3

P
√
M

)
a < 23/2

O
(

n2

P loga 2 + n3

P
√
M

)
23/2 < a < 4

.

The latency cost is

S(n, P) = 2S

(
n

2
,
P

a

)
+O

(
P 2/3 +

n3

PM3/2

)
= O

(
P loga 2 +

n3

PM3/2

)
,

CHAPTER 5. BEYOND MATRIX MULTIPLICATION 74

as long as a < 4. Note that increasing a from 1 to 23/2 decreases the latency cost without any
asymptotic affect on the bandwidth cost. The interesting range is 23/2 < a < 4, for which the
costs are

F = O

(
n3

P

)
, W = O

(
n2

P loga 2
+

n3

P
√
M

)
, S = O

(
P loga 2 +

n3

PM3/2

)
.

This algorithm is similar to the pivot-free generic Gaussian elimination algorithm of [64],
although that algorithm requires as many all-to-all communication phases as ours requires
messages, and so it may be less efficient in practice. The costs are also equivalent to the
iterative 2.5D Cholesky algorithm [37]; c = 1 there corresponds to a = 4, and c = P 1/3

corresponds to a = 23/2.

75

Chapter 6

Discussion and Open Questions

The original impetus for this work was the search for a communication-optimal parallel
algorithm for Strassen’s matrix multiplication. Following the communication-cost lower
bounds of [9], we were unable to find a matching algorithm in the parallel case in the
literature (although we later found an algorithm quite similar to our CAPS algorithm in [52]).
Since, unlike most linear algebra algorithms, Strassen’s algorithm has no simple iterative
definition, we found a method of parallelization that respects the recursive structure of the
algorithm: by traversing the recursion tree using BFS and DFS steps.

We call this algorithm Communication-Avoiding Parallel Strassen (or CAPS), which
appears in Chapter 2, but the idea easily applies more broadly than just to Strassen’s
algorithm. Many other fast matrix multiplication algorithms, including those with exponents
much smaller than Strassen’s, have similar recursive formulations. However several practical
issues prevent their use, and we are not aware of any practical algorithm with a substantially
better exponent than Strassen’s algorithm.

Question 1. Is there a matrix multiplication algorithm that is faster than Strassen’s algorithm
in practice? If so, it may have a much higher branching factor than Strassen’s algorithm (for
example, the algorithms in [47] have thousands of recursive calls or more per step). Would
the BFS/DFS approach work well in practice given the high branching factor?

One other practical example (though with higher exponent than Strassen’s algorithm) is the
recursive formulation of classical matrix multiplication. Splitting each of the three dimensions
in half gives 8 subproblems instead of the 7 subproblems in the case of Strassen’s algorithm.
Applying the BFS/DFS approach to this algorithm gives a recursive communication-optimal
parallel algorithm with asymptotically identical costs to the 2.5D algorithm [52, 61].

In fact, the classical algorithm has more implementation freedom than Strassen’s algorithm.
Instead of splitting all three dimensions at once, one may split only one at a time. For
rectangular matrices, it is natural to expect that splitting the largest dimension, to create
closer to square subproblems, would save on communication (as in the sequential case
[34]). When we first applied the BFS/DFS approach to this idea, it did indeed outperform
previous algorithms for rectangular matrices. But when we proved lower bounds for classical

CHAPTER 6. DISCUSSION AND OPEN QUESTIONS 76

rectangular matrix multiplication, in some cases they were lower than the costs of our initial
algorithm. To match the lower bounds, we realized that, with the right data layout, only the
smallest matrix needs to be redistributed at each recursive step. This improvement gives
the CARMA algorithm as presented in Chapter 3. Unfortunately, to communicate only one
matrix at each recursive step seems to require that the initial data layout of a matrix depends
on the other input matrix. There does not seem to be one standard layout that works well in
all cases; rather the best layout depends on the context.

Question 2. Can a library be developed that reaches the communication lower bounds of
Section 3.1 for any sequence of matrix multiplications, possibly by changing data layouts when
appropriate?

When input matrices are sparse, the problem becomes more complicated. Even for the
square case that we analyzed in Chapter 4, the number of nonzeros in the input and output
matrices may be very different. Thus, as in the rectangular case, a natural algorithm is to
communicate the smallest matrix (measured by number of nonzeros) and split the other
dimension at each recursive step. For matrices with non-uniform distribution, the correct
split may not be in the middle, and the split that balances data size may be different from
the one that balances work. For the special case of square, random matrices with sparse
output we showed that this algorithm is communication-optimal among sparsity-independent
algorithms.

Question 3. Using an efficient way to estimate the number of nonzeros in the output matrix,
one could generalize the recursive algorithm to arbitrary sparse matrices. What can be proved
about the communication costs of such an algorithm?

Moving beyond matrix multiplication, many recursive algorithms have dependencies
between the recursive calls. We analyzed several of these algorithms in Chapter 5 (all pairs
shortest path, triangular solve with multiple righthand sides, and Cholesky decomposition),
and presented bandwidth optimal algorithms based on the BFS/DFS approach. However the
algorithms with dependencies do not match existing latency cost lower bounds. There are
several open questions:

Question 4. Can stronger latency lower bounds be proved for algorithms with dependencies?
In other words, is the bandwidth-latency tradeoff exhibited by the best existing algorithms
necessary?

Question 5. Would implementations of the algorithms in Chapter 5 perform well in practice?
In particular, is the technique of discarding processors at each recursive step, to control latency
costs, effective?

Question 6. Among the class of cache-oblivious sequential communication-optimal algorithms,
which ones give communication-optimal parallel algorithms using the BFS/DFS approach?
To what extent can the parallelization of recursive algorithms be automated?

77

Acknowledgments

We acknowledge funding from Microsoft (award #024263) and Intel (award #024894),
and matching funding by UC Discovery (award #DIG07-10227), with additional support
from ParLab affiliates National Instruments, Nokia, NVIDIA, Oracle, and Samsung, and
support from MathWorks. We also acknowledge the support of the US DOE (grants DE-
SC0003959, DE-SC0004938, DE-SC0005136, DE-SC0008700, DE-AC02-05CH11231, DE-
FC02-06ER25753, and DE-FC02-07ER25799), DARPA (award #HR0011-12-2-0016),

This research used resources of the Argonne Leadership Computing Facility at Argonne
National Laboratory, which is supported by the Office of Science of the U.S. Department
of Energy under contract DE-AC02-06CH11357, resources of the National Energy Research
Scientific Computing Center, which is supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC02-05CH11231, and resources of the Oak Ridge
Leadership Facility at the Oak Ridge National Laboratory, which is supported by the Office
of Science of the U.S. Department of Energy under contract No. DE-AC05-00OR22725.

78

Bibliography

[1] M. D. Adams and D. S. Wise. “Seven at one stroke: results from a cache-oblivious
paradigm for scalable matrix algorithms”. In: MSPC ’06: Proceedings of the 2006
Workshop on Memory System Performance and Correctness. New York, NY, USA:
ACM, 2006, pp. 41–50. isbn: 1-59593-578-9. doi: 10.1145/1178597.1178604.

[2] R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar. “A three-
dimensional approach to parallel matrix multiplication”. In: IBM Journal of Research
and Development 39 (1995), pp. 39–5.

[3] N. Ahmed and K. Pingali. “Automatic generation of block-recursive codes”. In: Euro-Par
’00: Proceedings from the 6th International Euro-Par Conference on Parallel Processing.
London, UK: Springer-Verlag, 2000, pp. 368–378. isbn: 3-540-67956-1.

[4] G. Ballard, A. Buluç, J. Demmel, L. Grigori, B. Lipshitz, O. Schwartz, and S. Toledo.
“Communication optimal parallel multiplication of sparse random matrices”. In: Pro-
ceedings of the 25th ACM Symposium on Parallelism in Algorithms and Architectures.
SPAA ’13. 2013.

[5] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz. “Brief announce-
ment: strong scaling of matrix multiplication algorithms and memory-independent
communication lower bounds”. In: Proceedings of the 24th ACM Symposium on Par-
allelism in Algorithms and Architectures. SPAA ’12. New York, NY, USA: ACM,
2012, pp. 77–79. isbn: 978-1-4503-1213-4. doi: 10.1145/2312005.2312021. url:
http://doi.acm.org/10.1145/2312005.2312021.

[6] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz. “Communication-
optimal parallel algorithm for Strassen’s matrix multiplication”. In: Proceedings of
the 24th ACM Symposium on Parallelism in Algorithms and Architectures. SPAA
’12. New York, NY, USA: ACM, 2012, pp. 193–204. isbn: 978-1-4503-1213-4. doi:
10.1145/2312005.2312044. url: http://doi.acm.org/10.1145/2312005.2312044.

[7] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz. “Graph expansion anal-
ysis for communication costs of fast rectangular matrix multiplication”. In: Proceedings
of the Mediterranean Conference on Algorithms. 2012.

BIBLIOGRAPHY 79

[8] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. “Communication-optimal parallel
and sequential Cholesky decomposition”. In: SIAM Journal on Scientific Computing 32.6
(2010), pp. 3495–3523. doi: 10.1137/090760969. url: http://link.aip.org/link/
?SCE/32/3495/1.

[9] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. “Graph expansion and commu-
nication costs of fast matrix multiplication: regular submission”. In: Proceedings of
the 23rd ACM Symposium on Parallelism in Algorithms and Architectures. SPAA
’11. San Jose, California, USA: ACM, 2011, pp. 1–12. isbn: 978-1-4503-0743-7. doi:
10.1145/1989493.1989495. url: http://doi.acm.org/10.1145/1989493.1989495.

[10] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. “Minimizing communication in
numerical linear algebra”. In: SIAM Journal on Matrix Analysis and Applications 32.3
(2011), pp. 866–901. doi: 10.1137/090769156. url: http://link.aip.org/link/
?SML/32/866/1.

[11] G. Ballard, J. Demmel, B. Lipshitz, O. Schwartz, and S. Toledo. “Communication
efficient Gaussian elimination with partial pivoting using a shape morphing data
layout”. In: Proceedings of the 25th ACM Symposium on Parallelism in Algorithms and
Architectures. SPAA ’13. 2013.

[12] J. Berntsen. “Communication efficient matrix multiplication on hypercubes”. In: Parallel
Computing 12.3 (1989), pp. 335 –342. issn: 0167-8191. doi: 10.1016/0167-8191(89)9
0091-4. url: http://www.sciencedirect.com/science/article/pii/0167819189
900914.

[13] G. Bilardi, A. Pietracaprina, G. Pucci, and F. Silvestri. “Network-oblivious algorithms”.
In: Proceedings of 21st International Parallel and Distributed Processing Symposium.
2007.

[14] D. Bini, M. Capovani, F. Romani, and G. Lotti. “O(n2.7799) complexity for n × n
approximate matrix multiplication”. In: Information Processing Letters 8.5 (1979),
pp. 234 –235. issn: 0020-0190. doi: DOI:10.1016/0020-0190(79)90113-3. url:
http://www.sciencedirect.com/science/article/B6V0F-45FCWS8-2J/2/5fe4a4c

2f661f7d574409b8999cb3914.

[15] J. Bruck, C.-T. Ho, S. Kipnis, and D. Weathersby. “Efficient algorithms for all-to-all
communications in multi-port message-passing systems”. In: Proceedings of the sixth
annual ACM symposium on Parallel algorithms and architectures. SPAA ’94. New York,
NY, USA: ACM, 1994, pp. 298–309.

[16] N. H. Bshouty. “On the additive complexity of 2 × 2 matrix multiplication”. In:
Information processing letters 56.6 (1995), pp. 329 –335. issn: 0020-0190. doi: 10.101
6/0020-0190(95)00176-X. url: http://www.sciencedirect.com/science/articl
e/pii/002001909500176X.

[17] A. Buluç and J. Gilbert. “The Combinatorial BLAS: design, implementation, and
applications”. In: Int. J. High Perform. Comput. Appl. 25.4 (Nov. 2011), pp. 496–509.

BIBLIOGRAPHY 80

[18] A. Buluç and J. R. Gilbert. “Challenges and advances in parallel sparse matrix-matrix
multiplication”. In: ICPP’08: Proc. of the Intl. Conf. on Parallel Processing. Portland,
Oregon, USA: IEEE Computer Society, 2008, pp. 503–510.

[19] A. Buluç and J. R. Gilbert. “Parallel sparse matrix-matrix multiplication and indexing:
implementation and experiments”. In: SIAM Journal of Scientific Computing (SISC)
34.4 (2012), pp. 170 –191.

[20] P. Bűrgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complexity Theory. Grundleh-
ren der mathematischen Wissenschaften 315. Springer Verlag, 1997. isbn: 3-540-60582-7.

[21] L. Cannon. “A cellular computer to implement the Kalman filter algorithm”. PhD thesis.
Bozeman, MN: Montana State University, 1969.

[22] M. Challacombe. “A general parallel sparse-blocked matrix multiply for linear scaling
SCF theory”. In: Computer Physics Communications 128.1-2 (2000), pp. 93–107.

[23] J. Choi. “A new parallel matrix multiplication algorithm on distributed-memory con-
current computers”. In: Concurrency: practice and experience 10.8 (1998), pp. 655–670.
issn: 1096-9128. doi: 10.1002/(SICI)1096-9128(199807)10:8<655::AID-CPE369>
3.0.CO;2-O. url: http://dx.doi.org/10.1002/(SICI)1096-9128(199807)10:8<6
55::AID-CPE369>3.0.CO;2-O.

[24] J. Choi, D. W. Walker, and J. J. Dongarra. “PUMMA: parallel universal matrix
multiplication algorithms on distributed memory concurrent computers”. In: Con-
currency: Practice and Experience 6.7 (1994), pp. 543–570. issn: 1096-9128. doi:
10.1002/cpe.4330060702. url: http://dx.doi.org/10.1002/cpe.4330060702.

[25] R. A. Chowdhury, F. Silvestri, B. Blakeley, and V. Ramachandran. “Oblivious algo-
rithms for multicores and network of processors”. In: IPDPS. 2010, pp. 1–12.

[26] R. Cole and V. Ramachandran. “Resource oblivious sorting on multicores”. In: Pro-
ceedings of the 37th International Colloquium Conference on Automata, Languages and
Programming. ICALP’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 226–237. isbn:
3-642-14164-1, 978-3-642-14164-5. url: http://dl.acm.org/citation.cfm?id=1880
918.1880944.

[27] D. Coppersmith. “Rapid multiplication of rectangular matrices”. In: SIAM Journal on
Computing 11.3 (1982), pp. 467–471. doi: 10.1137/0211037. url: http://link.aip.
org/link/?SMJ/11/467/1.

[28] D. Coppersmith. “Rectangular matrix multiplication revisited”. In: J. complex. 13
(1 Mar. 1997), pp. 42–49. issn: 0885-064X. doi: 10.1006/jcom.1997.0438. url:
http://portal.acm.org/citation.cfm?id=270488.270504.

[29] J. Demmel, I. Dumitriu, and O. Holtz. “Fast linear algebra is stable”. In: Numerische
Mathematik 108 (1 2007). 10.1007/s00211-007-0114-x, pp. 59–91. issn: 0029-599X. url:
http://dx.doi.org/10.1007/s00211-007-0114-x.

BIBLIOGRAPHY 81

[30] J. Demmel, I. Dumitriu, O. Holtz, and R. Kleinberg. “Fast matrix multiplication is
stable”. In: Numerische Mathematik 106.2 (2007), pp. 199–224.

[31] J. Demmel, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, and O. Spillinger. “Communicat-
ion-optimal parallel recursive rectangular matrix multiplication”. In: IPDPS. 2013.

[32] J. Demmel, A. Gearhart, B. Lipshitz, and O. Schwartz. “Perfect strong scaling using
no additional energy”. In: IPDPS. 2013.

[33] M. Driscoll, P. Koanantakool, E. Georganas, E . Solomonik, and K. Yelick. “A
Communication-Optimal N-Body Algorithm for Short-Range, Direct Interactions.”
In: IPDPS. 2013.

[34] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. “Cache-oblivious algo-
rithms”. In: FOCS ’99: Proceedings of the 40th Annual Symposium on Foundations of
Computer Science. Washington, DC, USA: IEEE Computer Society, 1999, p. 285. isbn:
0-7695-0409-4.

[35] S. H. Fuller and L. I. Millett, eds. The Future of Computing Performance: Game
Over or Next Level? 200 pages, http://www.nap.edu. Washington, D.C.: The National
Academies Press, 2011.

[36] R. A. van de Geijn and J. Watts. “SUMMA: scalable universal matrix multiplication
algorithm”. In: Concurrency - Practice and Experience 9.4 (1997), pp. 255–274.

[37] E. Georganas, J. González-Domı́nguez, E. Solomonik, Y. Zheng, J. Tourino, and K.
Yelick. “Communication avoiding and overlapping for numerical linear algebra”. In: High
Performance Computing, Networking, Storage and Analysis (SC), 2012 International
Conference for. IEEE. 2012, pp. 1–11.

[38] S. L. Graham, M. Snir, and C. A. Patterson, eds. Getting up to Speed: The Future
of Supercomputing. Report of National Research Council of the National Academies
Sciences. 289 pages, http://www.nap.edu. Washington, D.C.: The National Academies
Press, 2004.

[39] B. Grayson, A. Shah, and R. van de Geijn. “A high performance parallel Strassen
implementation”. In: Parallel Processing Letters. Vol. 6. 1995, pp. 3–12.

[40] J. Gunnels, C. Lin, G. Morrow, and R. Van De Geijn. “A flexible class of parallel matrix
multiplication algorithms”. In: Parallel Processing Symposium, 1998. IPPS/SPDP
1998. Proceedings of the First Merged International... and Symposium on Parallel and
Distributed Processing 1998. IEEE. 1998, pp. 110–116.

[41] N. J. Higham. Accuracy and Stability of Numerical Algorithms. 2nd. Philadelphia, PA:
SIAM, 2002.

[42] J. E. Hopcroft and L. R. Kerr. “On minimizing the number of multiplications necessary
for matrix multiplication”. English. In: SIAM Journal on Applied Mathematics 20.1
(1971), pp. 30–36. issn: 00361399.

BIBLIOGRAPHY 82

[43] X. Huang and V. Y. Pan. “Fast rectangular matrix multiplication and applications”.
In: J. Complex. 14 (2 June 1998), pp. 257–299. issn: 0885-064X. doi: 10.1006/jcom.1
998.0476. url: http://portal.acm.org/citation.cfm?id=299029.299038.

[44] X. Huang and V. Y. Pan. “Fast rectangular matrix multiplications and improving
parallel matrix computations”. In: Proceedings of the Second International Symposium
on Parallel Symbolic Computation. PASCO ’97. New York, NY, USA: ACM, 1997,
pp. 11–23. isbn: 0-89791-951-3. doi: http://doi.acm.org/10.1145/266670.266679.
url: http://doi.acm.org/10.1145/266670.266679.

[45] D. Irony, S. Toledo, and A. Tiskin. “Communication lower bounds for distributed-
memory matrix multiplication”. In: J. Parallel Distrib. Comput. 64.9 (2004), pp. 1017–
1026.

[46] C. P. Kruskal, L. Rudolph, and M. Snir. “Techniques for parallel manipulation of sparse
matrices”. In: Theor. Comput. Sci. 64.2 (1989), pp. 135–157.

[47] J. Laderman, V. Pan, and X.-H. Sha. “On practical algorithms for accelerated matrix
multiplication”. In: Linear Algebra and Its Applications 162 (1992), pp. 557–588.

[48] B. Lipshitz, G. Ballard, J. Demmel, and O. Schwartz. “Communication-avoiding paral-
lel Strassen: implementation and performance”. In: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis. IEEE
Computer Society Press. 2012, p. 101.

[49] L. H. Loomis and H. Whitney. “An inequality related to the isoperimetric inequality”.
In: Bulletin of the AMS 55 (1949), pp. 961–962.

[50] G. Lotti and F. Romani. “On the asymptotic complexity of rectangular matrix multi-
plication”. In: Theoretical Computer Science 23.2 (1983), pp. 171 –185. issn: 0304-3975.
doi: DOI:10.1016/0304-3975(83)90054-3. url: http://www.sciencedirect.com/
science/article/B6V1G-45F5WM7-1J/2/f5d51de21cdc48808f5e31f8788cf651.

[51] Q. Luo and J. Drake. “A scalable parallel Strassen’s matrix multiplication algorithm
for distributed-memory computers”. In: Proceedings of the 1995 ACM Symposium on
Applied Computing. SAC ’95. Nashville, Tennessee, United States: ACM, 1995, pp. 221–
226. isbn: 0-89791-658-1. doi: http://doi.acm.org/10.1145/315891.315965. url:
http://doi.acm.org/10.1145/315891.315965.

[52] W. F. McColl and A. Tiskin. “Memory-efficient matrix multiplication in the BSP
model”. In: Algorithmica 24 (3 1999), pp. 287–297. issn: 0178-4617.

[53] H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon. Top500 Supercomputer Sites.
www.top500.org. 2011.

[54] G. Morton. A Computer Oriented Geodetic Data Base and a New Technique in File
Sequencing. International Business Machines Company, 1966.

BIBLIOGRAPHY 83

[55] J.-S. Park, M. Penner, and V. K Prasanna. “Optimizing graph algorithms for improved
cache performance”. In: Parallel and Distributed Systems, IEEE Transactions on 15.9
(2004), pp. 769–782.

[56] R. L. Probert. “On the additive complexity of matrix multiplication”. In: SIAM Journal
on Computing 5.2 (1976), pp. 187–203.

[57] M. D. Schatz, J. Poulson, and R. A. van de Geijn. “Scalable universal matrix multiplica-
tion algorithms: 2d and 3d variations on a theme”. In: submitted to ACM Transactions
on Mathematical Software (2013).

[58] J. Shalf, S. S. Dosanjh, and J. Morrison. “Exascale computing technology challenges”.
In: High Performance Computing for Computational Science - VECPAR 2010 - 9th
International conference, Berkeley, CA, USA, June 22-25, 2010, Revised Selected Papers.
Ed. by J. M. L. M. Palma, M. J. Daydé, O. Marques, and J. C. Lopes. Vol. 6449.
Lecture Notes in Computer Science. Springer, 2010, pp. 1–25. isbn: 978-3-642-19327-9.
doi: http://dx.doi.org/10.1007/978-3-642-19328-6_1.

[59] E. Solomonik, A. Buluç, and J. Demmel. “Minimizing communication in all-pairs
shortest paths”. In: IPDPS. 2013.

[60] E. Solomonik and J. Demmel. Communication-optimal parallel 2.5D matrix multi-
plication and LU factorization algorithms. Tech. rep. UCB/EECS-2011-10. EECS
Department, University of California, Berkeley, Feb. 2011. url: http://www.eecs.be
rkeley.edu/Pubs/TechRpts/2011/EECS-2011-10.html.

[61] E. Solomonik and J. Demmel. “Communication-optimal parallel 2.5D matrix multi-
plication and LU factorization algorithms”. In: Euro-Par 2011 Parallel Processing.
Ed. by Emmanuel Jeannot, Raymond Namyst, and Jean Roman. Vol. 6853. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2011, pp. 90–109. isbn:
978-3-642-23396-8. url: http://dx.doi.org/10.1007/978-3-642-23397-5-10.

[62] V. Strassen. “Gaussian elimination is not optimal”. In: Numerische Mathematik 13 (4
1969). 10.1007/BF02165411, pp. 354–356. issn: 0029-599X. url: http://dx.doi.org/
10.1007/BF02165411.

[63] A. Tiskin. “All-pairs shortest paths computation in the bsp model”. In: Proceedings of
the 28th International Colloquium on Automata, Languages and Programming, ICALP
’01. London, UK, UK: Springer-Verlag, 2001, pp. 178–189. isbn: 3-540-42287-0. url:
http://dl.acm.org/citation.cfm?id=646254.684237.

[64] A. Tiskin. “Communication-efficient parallel generic pairwise elimination”. In: Future
Generation Computer Systems 23.2 (2007), pp. 179 –188. issn: 0167-739X. doi: 10.10
16/j.future.2006.04.017. url: http://www.sciencedirect.com/science/artic
le/pii/S0167739X06000835.

[65] S. Winograd. “On the multiplication of 2 × 2 matrices”. In: Linear Algebra Appl. 4.4
(Oct. 1971), pp. 381–388.

BIBLIOGRAPHY 84

[66] C.-Q. Yang and B.P. Miller. “Critical path analysis for the execution of parallel and
distributed programs”. In: Proceedings of the 8th International Conference on Distributed
Computing Systems. June 1988, pp. 366–373. doi: 10.1109/DCS.1988.12538.

[67] R. Yuster and U. Zwick. “Fast sparse matrix multiplication”. In: ACM Trans. Algorithms
1.1 (2005), pp. 2–13. issn: 1549-6325. doi: http://doi.acm.org/10.1145/1077464.1
077466.

