
User-Guided Inverse 3D Modeling

James Andrews

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-103

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-103.html

May 17, 2013

Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

User-Guided Inverse 3D Modeling

by

James L. Andrews

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Carlo Séquin, Chair
Professor Jonathan Shewchuk

Professor Sara McMains

Spring 2013

User-Guided Inverse 3D Modeling

Copyright 2013
by

James L. Andrews

1

Abstract

User-Guided Inverse 3D Modeling

by

James L. Andrews

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Carlo Séquin, Chair

This thesis introduces and explores the idea of “user-guided inverse 3D modeling” –
an interactive approach to shape construction and redesign that extracts well-structured,
parameterized, procedural descriptions from unstructured, hierarchically flat input data,
such as point clouds, boundary representation meshes, or even multiple pictorial views of a
given inspirational prototype. This approach combines traditional “forward” 3D modeling
tools with a system of user-guided extraction modules and optimization routines. With a few
cursor strokes users can express their preferences regarding the type of modeling primitives
to be used in a particular area of the given prototype to be approximated, and they can also
select the degree of parameterization associated with each modeling routine. The results are
then pliable, structured descriptions that are well suited to implement the particular design
modifications intended by the user.

We present research on the components that make up an inverse 3D modeling system. Our
research focuses have been (1) fitting of modeling primitives to data; (2) fitting higher-level
structure (CSG expressions, symmetry, and hierarchy) to data; (3) minimal user interactions
that guide these fitting processes; and finally (4) shape editing using the fitted structure.
We also explore what is necessary to ultimately arrive at a clean, exportable result. A key
research question guiding the design of our system has been how bringing the user into the
loop affects the problem: i.e., where can the user’s inputs simplify, accelerate, or otherwise
improve the fitting process? What simple inputs can the user provide to unambiguously
extract a desired primitive fit? And how can we let the user immediately begin using
their fitted primitives to edit the shape? Answering these questions leads us to many new
research findings, including: (1) We identify simple, lightweight inputs that allow the system
to extract primitives with a great deal of user control, and we present detailed analysis of how
these inputs can be ambiguous and what additional inputs may be needed to exactly capture
the user’s desired primitive fit. (2) We show multiple improvements to the state of the art in
fast, effective fitting methods for sweeps and quadric surfaces. These improvements include
identifying and fixing a major problem with previously-standard methods for kinematic
surface fitting that led to grossly wrong results for data with small noise, and a new insight

2

into the nature of direct, algebraic fitting that leads us to more accurate type-specific quadric
fitting. (3) We show how the user can guide a boundary-to-CSG reverse-engineering process:
Specifically, we identify cases where the best result of such a process depends on the user’s
intent, and we show how simple user interactions can let users specify their intents. (4)
In addition to the diverse problems faced by individual structure-fitting and shape editing
modules, the combination of these modules also presents new research opportunities; we
identify new interactions between these diverse modules, including transformations between
primitive types and hierarchies that can be imposed across modules.

i

To time enough at last.

ii

Contents

Contents ii

List of Figures iv

List of Tables xii

1 Introduction 1
1.1 Related Work . 4
1.2 System Overview . 6

2 “Stationary” Swept Surface Primitives 8
2.1 Background . 9
2.2 Overview of Kinematic Field Fitting . 10
2.3 Failure Cases of Previous Methods . 13
2.4 Improved Fitting Methods . 15
2.5 Robustness to Outliers . 19
2.6 New Velocity Fields . 20
2.7 User-Guided Segmentation . 21

3 “Progressive” Swept Surface Primitives 29
3.1 Background . 29
3.2 User-Guided Segmentation and Fitting . 31
3.3 Editing with Progressive Sweeps . 35

4 Quadric surface primitives 40
4.1 Background . 41
4.2 Fitting method for hyperboloids, ellipsoids, and paraboloids 46
4.3 Fitting methods for lower-dimensional quadric types 52
4.4 User-Guided Segmentation and Fitting . 56
4.5 Implementation Details . 58

5 Smooth Surface Primitives 60
5.1 Background . 61

iii

5.2 Implementation . 64

6 General User-Guided Segmentation 67
6.1 Overview of Methods . 67
6.2 Easy Mesh Cutting . 69

7 Fitting CSG Structure 72
7.1 Automatic Boundary-to-CSG Conversion . 74
7.2 Interactive Refinements of the CSG Structure 82
7.3 Handling Inexact Representations . 85
7.4 Implementation . 87
7.5 Limitations and Future Work . 88

8 Higher Level Structure and Interaction Between Primitives 89
8.1 Symmetries . 89
8.2 Interactions Between Fitting Primitives . 90

9 Additional Input Sources 94
9.1 Related Work . 95
9.2 Technical Approach . 96
9.3 Results and Discussion . 111
9.4 Limitations and Future Work . 112

10 Cleaning Results for Export 115
10.1 Cleaning General Polygon Mesh Surfaces . 115
10.2 Cleaning the High Level Structure and Segmentation 118
10.3 Guaranteeing a Solid Model . 119

11 Summary 125

Bibliography 127

iv

List of Figures

1.1 Inspirational examples of redesigns using the manually-programmed Sculpture
Generator I. 2

1.2 Diverse redesigns of an input shape . 3
1.3 Diverse redesigns of another input shape . 4
1.4 Our pipeline for Inverse 3D Modeling. 6

2.1 An example of a shape redesign enabled by our sweep-based modules. 8
2.2 A simple example of kinematic surface fitting. 10
2.3 Visualization of two kinematic motions of a cylinder. 10
2.4 Example of a failure case for the rotation constraint. 13
2.5 Example of a failure case for the unit constraint at small scales. 14
2.6 Example of a failure case for the unit constraint at large scales. 15
2.7 A spiral velocity field fit to a number of different selections using Taubin’s constraint. 17
2.8 A spiral field (Eqn. 2.3) is fit to a cone using the HEIV method with varying

values for wp. 18
2.9 A spiral field (Eqn. 2.3) is fit to a cone with Gaussian noise applied to the base

(σ = 1% bounding box size) using the HEIV method (converged in 3 iterations)
and the Taubin method. 19

2.10 Fitting an example with outliers using RANSAC. 20
2.11 The general linear field (illustrated with red streamlines) is fit to a number of

selections (in blue) on various objects. 20
2.12 Optimization steps of the iterative segmentation and fitting algorithm for sta-

tionary sweeps. 23
2.13 The iterations of our user-guided algorithm for selecting and fitting stationary

sweeps. 24
2.14 A cylinder fit with and without user constraints. 26
2.15 An interesting example of shape editing using stationary sweeps. 27

3.1 Fitting a progressive sweep with a knotted path. 30
3.2 Overview of the progressive sweep-fitting initialization procedure. 33
3.3 The user can quickly extract any number of diverse sweeps on an armadillo. . . 34
3.4 Different initial strokes result in different sweep fits. 35

v

3.5 Local and global edits to a sweep cross section. 36
3.6 Key elements of the user-interface. 37
3.7 A detail-preserving modification of the Armadillo surface. 38
3.8 From a stroke (in yellow) on the dragon mesh, we automatically extract the main

hump of the dragon. 39

4.1 The difference between an ellipsoid and a hyperboloid can be very small in terms
of local surface behavior, leading to ambiguity in the best-fitting quadric type. . 41

4.2 A chart of quadric types, not including rotationally symmetric subtypes. 44
4.3 Comparison of ellipsoid- and hyperboloid-specific fitting results for our method

and the method of Allaire et al. 47
4.4 A sampling of the quadrics in a linear subspace formed by the best two eigenvec-

tors of Taubin’s fitting method. 48
4.5 Fitting errors at samples of a linear subspace of quadrics formed from the best

two eigenvalues of Taubin’s method. 49
4.6 Noisy data from a hyperbolic paraboloid fit by general quadric fitting and by

paraboloid-specific fitting. 52
4.7 Red streamlines showing motion fields of (a) Eqn. 4.10, (b) Eqn. 4.11, and (c)

Eqn. 4.12, fit to mesh data. 54
4.8 General and cone-specific fitting of a noisy cone. 55
4.9 Strokes (in yellow) are used to initialize various quadric fits on a variety of shapes. 56
4.10 Type-specific fitting can help disambiguate a user’s selection. 57
4.11 Comparison of fits resulting from measuring error at mesh vertices vs. integrating

error across the surfaces of a mesh . 58

5.1 (a) The elephant’s ear region is selected; (b) when optimized as a thin-plate
spline, all surface details get smoothed away. (c) The ear is fixed in place as a
constraint, and the foot marked by the blue patch is moved; continuity between
the blue and yellow patches and the rest of the shape (gray) is preserved by
Laplacian-preserving surface editing. 60

5.2 Non-linear formulations for smooth surfaces are very difficult to make fast and
stable. We show simple cases where a state-of-the-art non-linear smooth surface
method, FiberMesh [96], fails to converge in a number of simple configurations.
In this figure, the thick blue or red curves are constraint curves: The FiberMesh
surface interpolates these curves, and users edit the surface by adding or mov-
ing these curves. The top row shows an example where horizontally dragging a
constraint curve drawn on an ellipsoid causes the surface to diverge to infinity.
The bottom row shows configurations in which the FiberMesh system produces
an oscillating surface that never converges. 62

5.3 Effect of the order of the Laplacian on the resulting smooth shape. 65

vi

5.4 (a) A botijo model is approximated as a surface of revolution; (b) the correspond-
ing profile; (c) edited profile, and (d) the resulting shape. The handles, modeled
as detail-preserving smooth surfaces, move with the changes in the body. . . . 65

6.1 Segmentation of a shape where the desired primitive is not a close match to the
data. 70

6.2 Primitive-specific vs. “easy cut” segmentation of a botijo model. 71

7.1 A selection of shapes easily defined by CSG operations. 72
7.2 Simple examples of shape editing operations enabled by boundary-to-CSG con-

version . 73
7.3 Example of the “cells” that can define a given shape (cyan). Here we have two

circles and a box as our primitives, used to describe the cyan shape in the center
of the diagram. Any region of the diagram with a different in/out classification
with respect to any of the primitives, as well as the input shape, is numbered
as a distinct “cell.” Note that individual cells need not be contiguous, and the
combination of cells is a disjunctive covering of the entire space (cell 0 is an
unbounded cell covering everything not in any primitive). 75

7.4 An example of boundary-to-CSG conversion where separators are needed. Several
possible separators are shown. 76

7.5 An example where separators can’t easily help. 76
7.6 A 3D example of partial CSG decomposition . 77
7.7 A shape composed of a circle, ellipse and some additional unlabeled geometry is

shown (a). This decomposes into two representable parts (the circle and ellipse)
and a non-representable part (red). The user edits the shape by moving the
ellipse up and the circle down (b). We show two possible results of this edit
(c,d). If we do not subtract non-editable copies of the circle and ellipse from the
non-representable part, then corresponding areas of the non-representable part
will remain as those primitives are moved (c). We find this growth non-intuitive,
and prefer the result with non-editable primitive copies (d). 77

7.8 The ray casting approach to finding all fundamental product cells for a given set
of primitives: A ray (red) is cast through the primitives to identify cells. The
start of the ray is identified as the first cell, and the yellow arrows show where
the ray crosses a primitive boundary, potentially creating a new cell. 78

7.9 (a) The cyan circle and box are reconstructed with a circle primitive and four
linear halfspace primitives (arrows indicate the side of the linear halfspaces that
is “inside”). (b) When the user moves the circle down, the initial CSG expression
of Sec. 7.1.2 generates the solids shown on right. Note that the bottom of the
circle is missing because no cells in the original model included an intersection of
the bottom linear half space and the circle. 79

vii

7.10 A cyan shape with two boxes and a circular hole (a). If we reconstruct the shape
and move the hole down in our system, the result without optimization extends
the hole into the bottom box (b), while the result with optimization stops the hole
at the second box, since the hole has been removed from the expression defining
the second box (c). 82

7.11 (a) An arrow is represented as a CSG decomposition of an infinite cone, an infinite
cylinder, and two planar half spaces. (b) The CSG decomposition arising from
optimization leaves the cylinder at the base and the cone at the top as separate
primitives. The user can click (click 1) the portion of the cylinder outside the
cone, and then the cone (click 2), to add an intersection with the cone to the
cylinder and arrive at shape (c). 83

7.12 (a) A boundary representation of a die, with a plane fit to one side (blue) and
spheres fit to the corresponding dots (red, yellow, green, cyan). A “region of
interest” separator bounding box, bounding all colored faces, is also added (shown
in black wireframe). (b) A partial CSG representation, with the non-representable
portion left in red, and the representable portion in green. Without the region
of interest separator, the whole shape would be non-representable. (c) The user
edits the green part by moving and scaling one of the spheres. 84

7.13 The target shape (cyan) is fit with an ellipse primitive, but the ellipse doesn’t
match the target shape exactly. This causes our analysis to find cells 1 and 3,
which will make the entire shape non-representable (a). We propose two ways to
eliminate these cells. The first option is to make the ellipse and the target shape
match exactly (b). The second option is to compute the maximum deviation
between the ellipse and the corresponding part of the target shape, and reject
cells that are within that distance of both the matched primitive and the target
shape. We show this in (c) with green and red curves following the ellipse and
target shape respectively, with thickness equal to the maximum deviation: Cells
1 and 3 are discarded because they are completely under both the green and the
red curves. 85

7.14 (a) A primitive (red dotted line) has been modified to match a target shape (cyan).
(b) If the shape and primitive do not match exactly, or if the CSG operation is
not performed exactly, then subtracting the primitive from the shape will leave
some artifacts near the boundary of the primitive, whereever the target primitive
is found to be slightly outside the subtracting primitive. (c) If we simply push
the surface of the target shape to be slightly inside the subtracting primitive, we
can eliminate these artifacts. 87

8.1 Given a symmetric object, our system can edit the symmetry, for example by
changing the 3-fold rotational symmetry in (a) to a 4-fold rotational symmetry
in (b). We do this by scaling a 120◦ slice of the original model into a 90◦ wedge
and instancing it four times. 90

viii

8.2 The sculpture model (a) is fit with multiple primitives (b): a progressive sweep
on top, a cone in the lower half, and a plane at the bottom. The sweep path itself
can be fit onto a sphere (c). This spherical structure can be retained along with
any specified symmetry (here D2) while editing the sweep path (d). 91

8.3 An example of progressive editing: The base (green) of a sculpture (reconstructed
from a visual hull) is first approximated by a quadric surface shown in red (a).
Projecting the base mesh to the quadric surface gives a cleaner result (b). The
mesh is then converted to a surface of revolution and modified by editing the
profile curve (c, d). Finally, the base is converted to a progressive sweep (e), and
its sweep path (magenta) is edited to further deform the pedestal (f). 91

9.1 (a) An example of an organic shape without an obvious closed network of feature
curves. (b, c) Examples of more sculptural shapes that also lack obvious closed
networks of feature curves, (B) having internal structure and material properties
that could stymie automatic methods relying on photo consistency. 95

9.2 Overview of how our modeling primitives are combined. Starting from the sil-
houette curves defining a visual hull, we add in parametric primitives and feature
curves, and finally combine these primitives into a unified model, using a series
of optimization steps. 97

9.3 The standard visual hull of the Klein bottle (a) does not capture internal structure
and has jagged edges. Allowing the user to draw silhouettes of negative space
lets us capture internal structure (b), and a mesh smoothing optimization that
takes silhouettes into account can smooth out unwanted sharp features from the
hull (c). 98

9.4 A 2D example of a visual hull (in orange) obtained by intersecting the (pink)
object silhouette cones from three cameras. We approximate the distance to the
hull surface as a maximum of signed distances to the cone edges (with negative
distances inside each cone). For point p1 (inside hull) this gives the true distance
to the hull, in solid green. For point p2 (outside hull) the true distance is marked
with a blue arrow, and the approximate distance is shown as a solid red line.
Camera c3 is shown with an additional cone (with dotted black outline) indi-
cating the region that is visible in the image taken from that camera. We only
precompute distances in the region of the input image, so since p2 is outside this
cone, we approximate the distance from p2 to the c3 cone by first projecting to
the dotted cone (blue dotted line) and then projecting from there to the silhoutte
cone (red dotted line). 100

ix

9.5 An illustration of our simple primitive placement system. (a) The user clicks
a point (red) where they would like to place a simple primitive. (b) The user
chooses a cone primitive, and it is placed such that its centroid is directly under
the user’s point, in the part of the visual hull furthest from the surface. Its scale
is proportional to the distance from that centroid point to the hull surface. (c)
The user adjusts the cone orientation manually to roughly align with the desired
cone. (d) An optimization deforms and translates the cone to conform to the
visual hull. 102

9.6 Visualization of the curve fitting algorithm: Given a curve on an image (yellow),
the curve is sampled and rays are shot through the image samples from the camera
(green). These rays are intersected with the visual hull (blue), and candidate
points inside the hull are allocated for each ray (spaced evenly – at a distance
of a hundredth of the length of the diagonal bounding box of the visual hull, for
scale). We then use dynamic programming to find a shortest path through these
candidate points in the order of the rays, with some bias towards the center of
the hull. 103

9.7 From a user-drawn compound Bézier curve in one view (a), a curve optimization
taking into account 8 views and their silhouettes produces an initial 3D sweep
curve. After the user has indicated a cross section scale, a tubular sweep is
produced (b). Finally an optimization of the sweep spine control points and of
the sweep cross section yields a final fitted sweep shape (c). 105

9.8 The single-view spine curve fitting process can also be used to fit tube sweeps to
the elephant (a,b), quickly defining a smooth approximate shape with the correct
topology, which can then be optimized to fit the visual hull (d,e) using the smooth
surface optimization of Sec. 9.2.4. In contrast, starting from the noisy geometry
of the visual hull itself (c) will be much more difficult for the smooth surface
optimization (f) – the mesh surface optimization cannot discard some large ghost
geometry, and could not ever correct a topological error. 106

9.9 Visualization of the hull-primitive combination algorithm, from left to right: (a)
We start with an overlapping hull (red) and parametric primitive (green), and
then (b) subtract from the original hull the “hull” of the primitive, grown by
some fixed radius (pink). We then grow any remaining visual hull geometry (c),
and add back in the intersection of the grown hull and the original (d). 107

9.10 A small deviation from a hull view (a) reveals large “ghost” geometry in the
sweep half of the model, but the cone at the bottom looks reasonable (b). Here
we combine a fitted sweep primitive for the top with the hull on the bottom,
while still keeping the two parts connected at the join point (c). 108

x

9.11 Different methods for finding the curve-surface correspondence, illustrated on a
simple 2D example: The curve is drawn in red, the surface in green, and the
correspondences in black and green arrows. The surface after optimization is
shown in dotted blue. (a) The naive approach of simply using the closest point.
(b) The result of biasing the distance measure in a suitable direction. (c) The
result of adding intermediate curve points, thus avoiding the generation of folding
artifacts. 110

9.12 A set of 3D curves (in green) capture details of the elephant ear (a) constructed
from lines drawn by the user in 3 of the 5 initial images. When these 3D curves
are used in conjunction with the thin-plate spline reconstruction, the ear details
appear on the elephant mesh (c). Without using these curves we would get the
smooth, earless shape in (b). 110

9.13 Objects that we may attempt to handle with our modeling system. 112

10.1 Examples of surfaces that may be defined in a CAD file with open boundaries,
self-intersections, and/or non-orientable components: (a) An open, symmetrical
form of Girl’s Cap [53]. (b) A Klein bottle. Although these surfaces can also be
defined as solids, it is often easier to represent them as thin sheets, especially if
the user intends to continue editing the shape. 116

10.2 Examples of different artifacts in the high-level structure that a user may want to
clean before export: (a) Segments like the one shown in blue may have small gaps
where the surface deviated from the fitted primitive. (b) The cylinder’s segment
(blue) includes a small region that would ideally only belong to the sphere’s
segment (green), demonstrating how neighboring segments may not initially have
a clean boundary at the ideal transition point between the two shapes. 119

10.3 The Utah teapot (a) is a standard example of a surface with self-intersections
and holes, as can be seen in a cross-section view (b). In cleaning up shapes like
this, we aim to remove intersections and close gaps (c). 120

10.4 We attempt to resolve intersections in a complicated self-intersecting triangle
mesh (16k triangles) (a). Robust BSP-based code [18] resolves most major self-
intersections, but produces a result with an order of magnitude more triangles
(142k triangles), many near-degenerate sliver triangles and still has 2k pairs of
self-intersecting triangles due to floating point error in the output vertex positions
(b). The excessive additional triangles are co-planar, so could largely be removed
by mesh simplification, but the self-intersections may be more difficult to correct. 121

xi

10.5 There is a gap between the top and body of the Utah teapot (a) that should
be easily filled by connecting the boundary edges of the teapot top and body.
However, a per-element inside/outside segmentation of some tetrahedralizations
may be incapable of connecting these boundary edges, because the necessary
edges or facets simply aren’t present in that tetrahedralization. We illustrate this
problem in 2D with a triangulation (b): In this example, we can at best either
cover some of the teapot’s top, by marking the green and blue triangles as “inside”
(c) or connect the teapot top to the inside of the teapot body, by marking the
green and blue triangles as “outside” (d). The equivalent problem occurs in some
3D constrained Delaunay tetrahedralizations of the Utah teapot: We show the
result of covering some of the teapot top (e) or connecting the teapot top to the
inside of the body (f) for one such example. 122

10.6 When two or more intersecting shapes (a) are repaired by the mesh cleanup
algorithm, we typically want the region of the intersection to be solid (b), and
not hollow (c). Parity-based mesh repair strategies that try to ensure that the
shape changes from solid to hollow across facets of the input mesh tend to create
hollow intersections. 123

10.7 (a) A 2D slice of a good inside/outside segmentation of the Utah teapot, with
inside colored blue. (b) A 2D slice of Polymender’s segmentation using a parity-
based criteria for inside/outside segmentation [66], with inside colored blue. A
3D view of the region in the red box is shown in (c) – note the small tunnels
connecting the spout to the body. 123

xii

List of Tables

2.1 Timings for stationary sweep module . 28

3.1 Timings for progressive sweep module . 38

9.1 Timings for each optimization . 112

xiii

Acknowledgments

Many thanks to my advisor, Carlo Séquin, for his patient help in developing these ideas
with me, and for his boundless enthusiasm and support. The fascinating sculptures that
fill Carlo’s office, designed by Carlo and his colleagues in the art-math world, served as a
constant source of both challenge and inspiration for much of this work.

Thanks to Sara McMains and Jonathan Shewchuk for their careful reading of earlier
drafts of this thesis, and their many helpful questions and corrections.

Thanks to my collaborators during my internships at Adobe. Pushkar Joshi and Nathan
Carr helped me think intuitively about smooth surfaces, and supported my ideas even when
reviewers gave me a tough time. Hailin Jin gave me the opportunity to learn most everything
I know about photo-based modeling, and his direction and advice was a driving force behind
Chapter 10 of this thesis.

Thanks to the friends who I bothered with weird questions about my research, and who
gave me hugely helpful advice in return – especially Sridhar Ramesh, Rahul Narain, Florian
Hecht, and James Cook.

Thanks to the National Science Foundation (NSF award #CMMI-1029662 (EDI)) and
Adobe Systems for funding much of this work.

Thanks to the sources that provided the example shapes I used to test my ideas – par-
ticularly the Image-based 3D Models Archive, Tlcom Paris, and the Stanford Computer
Graphics Laboratory.

Thanks to my friends in the VCL and beyond, who make Soda Hall a great place to work
and who have filled so many of my days with good stories and conversations.

Thanks to everyone who gave me great suggestions while I wrote my thesis. Charles
Boebinger suggested the dedication. Rahul suggested my conclusions chapter should be a
100-page flipbook-style animation of a mic drop.

Thanks to my parents, for their endless love and support.
Thanks to Stephanie. ;)
And finally, thanks to all the helpful people who I appear to have forgotten here. Each

error of grammar, spelling or fact in this thesis is a carefully placed clue to a hidden puzzle
that, when solved, will reveal your names.

1

Chapter 1

Introduction

Many engineering tasks, redesign efforts, or artistic creations start from an existing prototype
shape, which may exist only as a physical artifact, as a virtual shape in some computer file,
or as a set of images or sketches. Unfortunately, because of insufficient record keeping or
incompatibilities between different design systems, high-level design information that could
readily be adapted to new requirements is often not available when a redesign or refinement
becomes necessary. In other cases, previous high-level design information may not provide the
best structure for making a desired change: for example, a vase modeled with a subdivision
surface might be edited more easily by re-interpreting it as a surface of revolution with an
editable profile curve. Likewise, when a model is reconstructed from point cloud data [81],
photographs [46], or sketches [50], the representation used for the reconstruction may not
be the most convenient for the desired re-design. For effective design optimization, it is
desirable to capture the prototype shape as a well-structured, parameterized, procedural
geometry description, which can then be fine-tuned to meet the current specifications and
design requirements.

In this thesis, we present “user-guided, inverse 3D modeling,” an interactive approach to
extracting such a pliable geometry description from unstructured, hierarchically flat input
data. Our approach consists of an integrated system of geometrical extraction and fitting
routines, which are applied to user-designated portions of the given input shape, combined
with a set of traditional “forward” 3D modeling tools that allow the extracted geometry
to be edited and fine-tuned. We primarily work with boundary mesh representations, but
discuss extensions to point cloud data and multiple pictorial views in Chapter 9.

While our inverse 3D modeling approach makes it possible to re-construct a proper geo-
metrical model from some unstructured, incomplete, or ambiguous input data, its primary
purpose is to create a well-structured, parameterized model that can easily be modified in
some specific way. For instance, we may wish to make the handles of a vase (Fig. 2.13) loop-
ier, or change the number of handles, or change the vase profile. We may want to adjust the
pose of an organic creature, treating the limbs as editable sweeps (Fig. 3.7). We may want
to arch the wings of a bird (Fig. 9.13b) or selectively thin a swept sculpture in order to recre-
ate an originally plastic or wooden sculpture (Fig. 3.5) in bronze, at a large scale. While

CHAPTER 1. INTRODUCTION 2

the system could readily be used for a wide range of shapes from creatures to crankshafts,
in this thesis we are especially interested in handling challenging, free-form shapes, which
have been less extensively covered in the literature. We assume that the designer trying to
extract a good geometrical description from a prototype shape already knows what the in-
tended design modifications are, and thus can make sure that the appropriate degrees of
freedom and edit-handles are incorporated in the extracted model description. We involve
the user (redesigner) right from the beginning of the extraction process, and let them begin
editing each primitive interactively as soon as it is extracted.

User-guided inverse 3D modeling can be seen as a generalization of an intuitive approach
that has been used by Carlo Séquin since the mid-1990s in the development of several special-
purpose computer programs to create models of abstract geometrical sculptures. One of the
first examples started from a manually-generated wood sculpture by artist Brent Collins
(Fig. 1.1a). The key geometric element, a sequence of biped saddles and holes, was captured
in a parameterized program, called Sculpture Generator I [123]. This program allows the
user to change the number of saddles and holes in the chain, the degree of the saddles, as
well as details of their geometry such as the thickness and extension of the flanges. For a
particular setting of the various parameters, the program can closely reproduce the original
inspirational shape shown in Figure 1.1a; but it can also be used to generate a multitude of
new sculptures that all seem to belong to the same “family” (Fig. 1.1b, 1.1c). Note that these
redesigned shapes are topologically different and could not be created using shape warping
alone.

The goal of our current effort is to generalize this approach to the reverse engineering of
a much wider domain of shapes, ranging from engineering parts to consumer products and

a b c

Figure 1.1: Inspirational examples of redesigns using the manually-programmed Sculpture
Generator I. (a) Collins’ original Hyperbolic Hexagon; (b) the generated Hyperbolic Hexagon
II, an enhanced version with 3rd-order saddle surfaces; (c) Heptoroid, with an added 7th
“story” and some twist, resulting in a single-sided Moebius geometry. Shapes (b) and (c)
were designed on Séquin’s Sculpture Generator I and realized in wood by Brent Collins (b)
from blueprints produced by Sculpture Generator I [123].

CHAPTER 1. INTRODUCTION 3

to the organic shapes of plants and creatures. We have constructed prototypes of a suite
of fitting methods, specifically designed to work together for the application of user-guided
inverse 3D modeling. To make these tools truly useful for the intended purpose, we believe
they should be:

• Easy to direct by the user with one or two menu clicks or cursor strokes.

• Fast enough to permit re-fitting with only seconds of interaction and computation time.

• Flexible enough to fit primitives with substantial non-matching surface details.

• Controllable with respect to the extent to which they cover a part of the input shape.

• Integrated with instant editing facilities that permit making high-level shape changes.

In addition to presenting the overall vision behind our integrated framework, this the-
sis presents results (and some lessons learned) obtained with extraction modules realized
during the last few years, in particular: two sweep modules that can produce generalized
and highly parameterized rotational or translatory sweep geometries; modules that extract
quadric primitives of user-specifed type and smooth surface patches; and modules that ex-
tract higher-level symmetry structure and Boolean CSG expressions of previously extracted
primitives. Although most of our modules have focused on mesh-based data, we have also
explored an image-based approach that starts with the visual hull constructed from a few
2D depictions of the given prototype. By supporting a diverse array of modules, and inter-
actions between these modules, we enable great creative flexibility that would be difficult to
achieve with any single tool – a single shape can be changed in diverse, surprising ways as
we illustrate in Figs. 1.2 and 1.3.

The primary focus of our research is on identifying how to best bring the user into the
loop of the primitive- and structure-fitting process, and how doing so can improve fitting and

input a b c

Figure 1.2: Starting from the input shape, shown at left, we use our inverse 3D modeling
system to create diverse output shapes. (a) Changing 3-fold to 4-fold symmetry. (b) Using
the stationary sweep module to change a flange. (c) Using the progressive sweep module (as
well as symmetry, and conversion between primitives types) to create an interesting shape
twisted along a complex path.

CHAPTER 1. INTRODUCTION 4

input a b c

Figure 1.3: Starting from the input shape, shown at left, we use our inverse 3D modeling
system to create diverse output shapes. (a) Using quadric fitting to cleanup and simplify
a noisy shape; (b) Using a rotational sweep to extract and edit the profile; (c) Using the
progressive sweep module to bend the shape.

editing results. We examine how the user can disambiguate primitive- and structure-fitting
processes, improving the speed at which results are obtained as well as the quality of the
results. For our primitive fitting modules, we identify minimal user inputs that can initialize
a fit, letting us fit a primitive in seconds. We then examine ambiguities that can arise in the
fitting and segmentation process – where the user may reasonably prefer a result that is not
the numerical “best” by any metric, or where there are many results that have similar quality
– and we introduce new, simple inputs to allow the user to ensure the system arrives at the
desired parameterized structure. Similar ambiguities arise in many other modules, such as
the Boundary-to-CSG module (Chapter 7) and the mesh-cleanup module (Chapter 10), and
in each case we research new ways to let the user quickly resolve these ambiguities. In
addition to these findings, we also present more fundamental improvements to the state of
the art in primitive fitting – for example, in the case of simple sweep fitting, we identify
significant problems with previous common fitting methods, which led to very poor results
on data with small noise, and show how to fix these problems.

1.1 Related Work

The idea of fitting modeling primitives and other high-level structures to a given shape
in order to facilitate editing and redesign has been pursued by many other researchers.
Reverse engineering for CAD applications [7, 81, 143, 142] has traditionally focused on
taking potentially noisy, unstructured data (for example from a 3D scan), and automatically
segmenting the shape into a set of clean, non-overlapping primitive shapes that fully capture
the desired structure and which can be imported into a CAD program. In these systems, user
interaction is minimized (ideally, eliminated), and the goal is an error-minimizing fit. Work
on primitive-based shape segmentation has covered similar conceptual ground [48, 149]. Some
work has focused on reverse-engineering to a more easily edited primitive, for example a kind
of sweep-morph primitive [112], but still with the general goal of finding a single best fit. We
use many of the techniques developed for these systems, but instead of focusing on finding

CHAPTER 1. INTRODUCTION 5

a single, ideally-fitting set of primitives, we focus on building a flexible system that may
abstract some detail in favor of a more structured, high-level representation that can easily
re-interpret a shape on the fly as the user’s ideas and redesign goals may change. Where a
traditional reverse-engineering goal is often to minimize user-interaction, ideally resulting in
a fully automatic system, our goal is to have a fully-controllable, interactive system.

Some ground-breaking previous systems have introduced user-guided abstraction of a
shape for redesign purposes. One such system is the method of Krishnamurthy and Levoy
[75] in which a B-spline patch network is fit to an input shape in the form of a dense
triangle mesh, using optimization routines to perfect the fit; the B-spline control points
then allow artists to edit the reconstructed mesh more easily. Another stepping stone for
our development is a sweep-specific shape editing system that lets a user manually fit a set
of sweeps to a model and then use the parameters of the sweep representation to edit the
underlying shape [151]. Several sketch-based modeling methods have also allowed the user
to interactively specify primitives fitting a target shape, for modeling purposes: for example,
by placing generalized cylinders, ellipsoids, and symmetry constraints over a sketched object
[50]. Our focus is on integrating many such modules in a unified framework, where each
module provides the few control parameters that are most useful for the redesign intensions
of the user.

In addition to fitting modeling primitives, recent work has also demonstrated progress
in automatically finding higher-level structure in a given input shape, for instance, find-
ing the symmetries and alignments between parts [79, 100]. This permits inverse procedural
modeling, in which a generative model describing an existing shape is discovered [11]. In-
teractively modifying the underlying symmetry of a given shape also played a key part in
Sculpture Generator I [123], and we therefore include some symmetry-based editing tools in
our framework.

Much recent work on variational surface editing has focused on factoring a model into
a smooth surface with low-frequency shape elements and a fine, detailed surface, which can
then be moved, transferred or edited separately [22, 132, 135]. This concept is broadly useful,
and all our modules are designed to permit some fine details to be handled separately from
the fitted high-level primitive structure.

Sketch-based methods for shape editing have often focused on direct editing of feature
curves such as silhouette or contour lines [156], or more general feature lines [69]. Another
sketch-based editing system focuses on editing meshes by editing the shading [51]. Focusing
on such direct features, rather than primitives, is an alternative approach that can work in
tandem with our system. In most cases, a general, mesh-based, smooth surface representation
is used as the underlying primitive representation to support such edits – this is a powerful,
general primitive that we use as well.

CHAPTER 1. INTRODUCTION 6

Unstructured mesh

Photos

3D scans

Input Data

Editable Model

Model Hierarchy

& Re-fitting

Clean
User-guided

fitting modules

Nice rendering

STL for RP

OBJ for CAD

Redesigned output

Figure 1.4: Our pipeline for Inverse 3D Modeling.

1.2 System Overview

Our approach to building a useful Inverse 3D Modeling system is to start by building a
robust library of “user-guided fitting modules” for diverse 3D modeling primitives. These
primitives will serve as a basis for a useful high-level reconstruction of a given artifact. We
focus on the parametric primitives most often found in today’s CAD tools, because these
familiar, practical primitives for shape design form a baseline of what can be expected from a
3D modeling tool. In many cases, suitable fitting methods for these primitives already exist,
but they may need to be adapted to suit our interactive context. We require our fitting
methods to be fast and user-controllable. We prefer that the user spend a few seconds
indicating the primitive they would like to extract and the degrees of parameterization they
desire, rather than relying on a fully automated process “to do the right thing.” In addition,
we would like our extraction methods to be able to either overlook or preserve, if desired,
intricate surface details that cannot be described conveniently with the higher-level primitive
itself. The difference between the original data and the simplified extracted primitive is
remembered as a decoration, which, if so desired, can be re-applied to a modified version of
the extracted primitive. The primitives we aim to fit can describe a shape directly (such as
quadric surfaces or swept surfaces), or can describe higher-level features like symmetries, or
a Boolean CSG expression of other, previously-fitted shapes.

Once we have fit various structures to a surface, the user can manipulate these structures
to redesign the shape as they desire. If the user’s goals or editing needs change, they can re-fit
new structures or transform existing structures into more general primitives – for example, a
quadric primitive may be transformed into a sweep primitive. The user may also recursively
fit structure to the model. For example, a quadric surface (e.g., an ellipsoid) may be fit to
the points of a sweep path; subsequently, the system may impose this structure onto any
modifications of the sweep path by reprojecting the sweep path onto the quadric surface
when either the sweep path control points or the quadric parameters are edited.

Finally, once a user is satisfied with the redesigned shape, the system helps the user to
clean up the resulting model, ideally providing a nice, watertight shape ready to be used in
various applications – rendering, rapid prototyping, simulation, or further editing in other

CHAPTER 1. INTRODUCTION 7

CAD tools. While this process can be partially automated, we again explore how lightweight
user input can clear up ambiguities and improve results.

8

Chapter 2

“Stationary” Swept Surface
Primitives

The first extraction modules that we focused on were based on generalized sweeps. Sweeps
are very powerful procedural geometry generators; fully general sweeps can have so much
parametric flexibility that sweep fitting can be made trivial: if the cross section is allowed
to morph arbitrarily, then a given shape can be fit by any arbitrary sweep path. To ensure
more meaningful fitting results, we define two useful, more-constrained sub-classes of general
sweep: First, we define “stationary sweeps” as sweeps that are describable by a single profile
curve swept along a sweep path that follows a constant rotation, translation or scaling motion
– such as simple rotational or helical sweeps based on a fixed rotational axis in space. Second,
we define “progressive sweeps” to handle generalized translatory sweeps, which we discuss
in the next chapter. We show an example of the kind of shape edits these two modules will
allow us in Fig. 2.1.

a b c d

Figure 2.1: An example of a shape redesign enabled by our sweep-based modules. (a) An
input surface. (b) User draws two strokes (in yellow) and clicks the “fit stationary sweep”
button to fit a stationary (rotational) sweep to the teapot body. (c) User edits the cross
section to change the shape of the teapot body. (d) Final re-designed shape, including further
edits to the body, as well as edits to the spout and handle using the progressive sweep module
(Chapter 3). Two different modified versions of the handle were added for variety.

CHAPTER 2. “STATIONARY” SWEPT SURFACE PRIMITIVES 9

Stationary sweeps are a relatively restricted class of sweep – following sweep paths that
can generally be characterized by only 6 or 7 global parameters – and because of that
they can be extracted in an extremely efficient and unambiguous manner. We can find a
stationary sweep fit for a mesh with a million triangles in about a quarter of a second on a
typical laptop computer. Our extraction method is based on the “kinematic surface fitting”
concepts pioneered by Pottmann and Randrup [108].

The kinematic surface fitting problem consists of several sub-problems: segmentation
of a surface into subsets that can be fit by separate kinematic surfaces [48, 59]; fitting a
kinematic motion to a given set of data points; and finally, finding a generator curve [115].
In this chapter, we show that previous methods for fitting general kinematic motion can fail
on some simple, common cases such as a box or a cone with small noise, and then show
how to fix these problems by applying more robust fitting methods that have previously not
been applied to kinematic surface fitting. We then show how to apply this kinematic motion
fitting algorithm in a simple, user-guided segmentation algorithm. Finally, we show how to
use this fitted motion to edit a stationary sweep.

2.1 Background

Sweeps are often described by a cross-section (or profile) curve, and a sweep path: By
moving the cross-section curve along the sweep path, one can generate the swept geometry.
However, for stationary sweep surfaces, we replace the standard sweep path with a “velocity
field” defined over all space, and we then advect the cross-section curve through the velocity
field to generate the swept geometry. This allows us to consider our stationary sweeps as
kinematic surfaces : Surfaces that are tangent everywhere to some easily parameterizeable,
linear velocity field over space (such as Eqns. 2.1, 2.2, 2.3). Given such a field and a curve
in space (which we refer to as the “generator curve”), advecting the generator curve by the
velocity field will generate a kinematic surface (Fig. 2.2), which is a specialized class of swept
surface; we refer to this class as “stationary sweeps.”

Such tangent-everywhere velocity fields are called the “slippable motions” of a surface
[48]. A point p with normal n, is considered slippable with respect to a field v() if v(p)
is orthogonal to n, which can be tested by checking that v(p) · n = 0. The full basis of
slippable motions of a surface can be used to classify the surface type: for example, if a
surface is slippable by both a pure rotation and a pure translation in the direction of the
rotation axis (as in Fig. 2.3), then the surface is a cylinder.

Previous methods for fitting kinematic motions have been either basis-dependent (leading
to results that change significantly depending on the scale of the data, under small noise; see
Figs. 2.5 and 2.6), or they are specialized to pure-translation or rotation-dominant motion
(e.g., cylinders or helices) and do not work well for the full range of surface types expressable
by standard kinematic surface equations. We give a detailed analysis of the problems caused
by basis dependence, and then show how a method from a related problem provides a new,
basis-independent solution that is generally applicable to any linear velocity field. We also

CHAPTER 2. “STATIONARY” SWEPT SURFACE PRIMITIVES 10

a b c

Figure 2.2: A simple example of kinematic surface fitting: (a) A slippable motion (illustrated
by red streamlines) is found for some selection of the data (in blue). (b) The data (in green) is
projected to some shared sweep plane, where it can be fit by a generator curve. (c) Advecting
the generator curve along the slippable motion field generates the kinematic surface.

Figure 2.3: Visualization of two kinematic motions of a cylinder. The arrows show the
direction of the fields at individual points, and the red lines are streamlines showing paths
traced by following the velocity fields.

discuss iterative methods to improve these solutions. Our improvements to kinematic motion
fitting can easily plug into any kinematic surface fitting system.

2.2 Overview of Kinematic Field Fitting

Previous work on fitting the velocity fields of kinematic surfaces has used a common fitting
method (Sec. 2.2.2) and problem formulation: Given a set of n points with corresponding
unit-length surface normals {pi,ni}, and a velocity field (Sec. 2.2.1) parameterized by some
vector m, find field parameters that are “most slippable” with respect to the data points.

CHAPTER 2. “STATIONARY” SWEPT SURFACE PRIMITIVES 11

2.2.1 Velocity Field Types

Three velocity fields have been proposed. In order of increasing generality, they are: First,
a constant field, which accepts only translational motion [115]:

v(p) = c. (2.1)

Second, a helical field, which adds optional rotational motion for helices and surfaces of
revolution [108]:

v(p) = r× p + c. (2.2)

Finally, a spiral field, which adds optional scaling motion for cones and logarithmic spirals
[107]:

v(p) = r× p + c+γp. (2.3)

2.2.2 Common Fitting Method

Almost all kinematic surface fitting papers use a common direct fitting algorithm [108] to
find the field parameters.

The input data for the common fitting algorithm is a set of points with unit surface
normals, {pi,ni}, which we express as a concatenated vector, x := [px, py, pz, nx, ny, nz]

T .
We also set a weight wi per data point, to control the contribution of that point to the
algorithm’s error metric. To apply the algorithm to a polygon mesh input, in this chapter
we take the mesh vertices as the points pi, and the average vertex normals as the associated
normals ni. Because vertices may not be uniformly distributed over the surface, we let
weight wi be the total area of the faces adjacent to the vertex. An alternative approach is to
triangulate the mesh and use Dunavant’s Gaussian quadrature rules [31] to integrate sums
over the mesh surface. In our experience, these two approaches to sampling a mesh give
nearly equivalent results for kinematic surface fitting.

The common fitting algorithm expresses the slippability of the field with respect to the
data in terms of some symmetric covariance matrix M, such that (v(p) · n)2 = m

T
Mm,

where m is the vector of velocity field parameters. For example, for the spiral field with
parameters m = [rx, ry, rz, cx, cy, cz, γ]T , matrix M will be

M :=
∑
i

wif(xi)f(xi)
T , (2.4)

where f(x) := [(p× n)x, (p× n)y, (p× n)z, nx, ny, nz, p · n]T .

The common fitting algorithm introduces a normalization to avoid degenerate solutions
such as the field with v(p) = 0 everywhere. The most straightforward solution would be to
normalize v(p) by ||v(p)||:

v(pi) · ni
||v(pi)||

. (2.5)

CHAPTER 2. “STATIONARY” SWEPT SURFACE PRIMITIVES 12

However, this normalization has been largely avoided because it has been considered too
computationally expensive to work with [108]. Instead, previous work has normalized the
cumulative squared error by some quadratic function q (Sec. 2.2.3) of the motion parameters
m:

argmin
m

∑n
i=1wi(v(pi) · ni)2

q(m)
. (2.6)

Note that this normalization can alternatively be viewed as a constraint on the solution
vector: minimizing Eqn. 2.6 is equivalent to minimizing the non-normalized metric under
the constraint q(m) = 1.

Finally, this quadratic function q is expressed in terms of some (often singular) sym-
metric matrix N: q(m) = mTNm. Using the method of Lagrange multipliers to solve
the constrained minimization problem, m must be a solution to the generalized eigenvalue
problem

(M− λN)m = 0. (2.7)

All eigenvectors corresponding to small eigenvalues of the matrix pencil (M− λN) are then
slippable motions of the data points.

Some systems augment this core fitting method by iterative re-weighting (for example
to downweight outliers) [108, 59] or subsequent application of a general, non-linear fitting
technique (which requires a reasonable “initial estimate” from the core fitting method to
perform well) [85].

2.2.3 Quadratic Normalization Functions

A few different quadratic normalizations have been proposed. The two commonly used nor-
malizations are: First, the unit constraint, in which the full parameter vector is constrained
to have unit magnitude [48, 59]. For the spiral field, this becomes

(||r||2 + ||c||2 + γ2) = 1. (2.8)

Second, the rotation constraint, which just constrains the rotation axis r [108]:

||r||2 = 1. (2.9)

The constant field is simple enough so that the constraint ||c||2 = 1 solves the problem
perfectly; however this is only applicable to the constant field.

The choice of normalization fundamentally affects the resulting fit: The rotation con-
straint requires the solution to include a rotation component of constant magnitude, so it
should only be used when it is known in advance that rotation is included in the desired
solution [108].

The unit constraint is “basis-dependent”: the best fit will change if the data is scaled
or translated. Previous work using the unit constraint suggested re-scaling the data to a

CHAPTER 2. “STATIONARY” SWEPT SURFACE PRIMITIVES 13

Rotation constraint Taubin constraint
a b

Figure 2.4: A spiral field (Eqn 2.3) (red streamlines) is fit to a blue selection of a helix with
randomly perturbed vertices (Gaussian noise with σ = 0.4% of bounding box size) using (a)
the rotation constraint and (b) Taubin’s constraint.

fixed size to address this issue [48, 59]. This mitigates but does not eliminate the problem:
We show in Sec. 2.3 that there is no fixed scale that can eliminate the artifacts of basis
dependence.

2.3 Failure Cases of Previous Methods

The kinematic surface fitting methods described in Sec. 2.1 work on many examples, as shown
in previous work [108, 48, 59]. However, we found that they also fail on some common, simple
cases. In this section, we demonstrate and explain the cases that cause these methods to
fail.

In each failure case, the key problem is that the slippability measured for each data point
is scaled by ||v(p)||, a quantity that is unrelated to the actual tangency of the field to the
surface at that point. While the quadratic normalizations of Sec. 2.2.3 avoid the degenerate
case of v(p) = 0 everywhere, they still permit “low velocity” fields for which ||v(p)|| is
reduced at every data point. The “most slippable” solutions under these constraints are
therefore biased towards such “low velocity” fields. For noisy data, where the expected
slippable motions have some error, these bias-favored solutions can be erroneously chosen as
the most slippable fields.

We demonstrate the failure cases in practice on simple synthetic example meshes, for
which the ideal solutions are readily apparent. Each example mesh is generated with ap-
proximately uniform vertex sampling. We introduce a small amount of Gaussian noise (with
σ less than 0.5% of the bounding box size and smaller than half the average edge length),
and we recompute the normal for each sample point by averaging face normals. These small-
noise examples should not be challenging, but they cause the previous methods to perform
poorly due to their systematic biases.

CHAPTER 2. “STATIONARY” SWEPT SURFACE PRIMITIVES 14

2.3.1 Rotation Constraint Failure Cases

The rotation constraint, ||r|| = 1, requires a fixed magnitude rotation to be part of the
solution field, but does not specify the constraints on the translational or scaling motion
of the field. Any translational or scaling motion in the field will therefore increase the
magnitude of ||v(p)|| everywhere, beyond what is mandated by the rotation constraint.
This additional velocity scales the error at each data point, causing the rotation constraint
to be systematically biased against translational or scaling motion in the presence of noise.

To demonstrate this, we fit a helix with small noise using the rotation constraint in
Fig. 2.4. The rotation constraint underestimates the pitch (translational motion) of the
helix. In contrast, a fitting method without this bias [137] (described in Sec. 2.4.1) recovers
the expected pitch.

2.3.2 Unit Constraint Failure Cases

The unit constraint (Eqn 2.8) is basis-dependent: Fitting results depend on the scale and
translation of the data points. Therefore, previous authors who use this constraint [48, 59]
first center the data points around the origin, and scale the bounding box to a fixed size
(e.g., so that the longest edge of the box has unit length). The bias of the unit constraint
depends on the chosen size.

One source of bias in the unit constraint favors scaling and rotation at small scales:
Velocities of linear scaling and rotational motions are proportional to the distance from the
center or axis of the motion; so as data points come closer together, the velocities (and thus
errors) from scaling and rotation become smaller. To demonstrate this bias, we fit four sides
of a box with small noise using the unit constraint in Fig. 2.5. At scales with bounding
box size 4 or smaller, the resulting fit has a significant, erroneous rotational component
(Fig. 2.5a).

Another source of bias favors offsetting the rotation axis from the origin. As the con-
stant parameter c increases to achieve the offset, the rotation axis ||r|| must scale down
proportionally (to satisfy the unit constraint). Scaling down the rotation axis scales down

Unit constraint, size=4 Taubin constraint
a b

Figure 2.5: A spiral field (Eqn 2.3) (red streamlines) is fit to a blue selection of a box with
randomly perturbed vertices (Gaussian noise with σ = 0.2% of bounding box size) using (a)
the unit constraint with bounding box size 4 and (b) Taubin’s constraint.

CHAPTER 2. “STATIONARY” SWEPT SURFACE PRIMITIVES 15

Unit constraint, size=4 Taubin constraint
a b

Figure 2.6: A spiral field (Eqn 2.3) (red streamlines) is fit to a cone with randomly perturbed
vertices (Gaussian noise with σ = 0.4% of bounding box size) using (a) the unit constraint
with bounding box size 4 and (b) the Taubin constraint.

the velocity (and thus error) of rotation. To demonstrate this bias, we fit a cone with small
noise using the unit constraint in Fig. 2.6. At scales with bounding box size 4 or greater,
the resulting fit erroneously offsets the rotation axis (Fig. 2.6a).

From these two examples, we see that the bias of the unit constraint can cause problems
at small scales (sizes ≤ 4) and large scales (sizes ≥ 4) alike: no single scale works well for all
cases.

2.4 Improved Fitting Methods

The problems we have identified in kinematic surface fitting methods are similar to those
faced by early methods for algebraic surface fitting [111]. “Approximate maximum likelihood”
(AML) methods are a general class of methods for fitting algebraic surfaces and general
parametric models, which have been applied to many other problems [137, 68, 23], although
they have not been applied to kinematic surface fitting before. In this section, we show
how to apply AML methods to the kinematic surface fitting problem to create an improved
kinematic surface fitting method.

AML methods can apply to any parametric model that takes the form m · f(x) = 0. For
our kinematic equations (Sec. 2.2.1) this holds – in the case of a spiral field, for example, m
would be the parameter vector [rx, ry, rz, cx, cy, cz, γ]T , and f(x) would be the transformation
defined in Eqn. 2.4.

The “maximum likelihood” (ML) method seeks to minimize the squared distance from
each data point xi to the nearest corresponding point on the model surface x̄i; in other
words, to minimize ∑

i

wi||xi − x̄i||2, subject to m · f(x̄i) = 0.

Because x̄i is the zero of m · f(x) that is closest to xi, the distance to this root can be
approximated to first order by the magnitude of one step of Newton’s method. This gives

CHAPTER 2. “STATIONARY” SWEPT SURFACE PRIMITIVES 16

the AML distance ∑
i

wi
(m · f(xi))

2

||∇x(m · f(xi))||2
. (2.10)

Rewritten in terms of kinematic surface fitting, the AML method becomes∑
i

wi
(v(pi) · ni)

2

||∇p(v(pi) · ni)||2 + ||v(pi)||2
. (2.11)

Note that the AML and ML methods are both scale dependent, because the closest
element x̄i can be different from xi in both position and normal. If the points are scaled
up, differences in the normal are unchanged, but differences in the position increase. We
can make this trade-off explicit: scale the data points to a fixed size bounding box (we scale
it so the longest axis has length 1), then introduce a weight parameter wp that scales the
contribution of the position-based term:∑

i

wi
(v(pi) · ni)2

wp||∇p(v(pi) · ni)||2 + ||v(pi)||2
. (2.12)

Note that as wp goes to zero, the AML fitting equation becomes the non-linear min-
imization (Eqn 2.5) previously proposed for kinematic surface fitting [108]. Therefore, in
theory, all results on AML fitting apply directly to this fitting problem. However, this origi-
nal non-linear minimization has numerical issues around singularities where ||v(p)|| goes to
zero: at these points, that slippability metric is undefined. A small, non-zero value for wp

gives a more stable metric with no undefined points.

2.4.1 Direct AML Method: Taubin’s Constraint

The AML distance metric is non-linear, requiring iterative methods or approximation to find
a solution. One popular approximation is Taubin’s method [137], which approximates the
non-linear AML metric (Eqn. 2.10) by summing all numerator and denominator elements
separately: ∑

iwi(m · f(xi))
2∑

iwi||∇x(m · f(xi))||2
. (2.13)

Like the previous kinematic surface fitting methods (Sec. 2.1), this is a direct method
solveable by a small generalized eigenvalue problem. Like those methods, it rescales the
cumulative squared error (as in Eqn. 2.6), so individual points are still scaled by local velocity.
However, when wp = 0, this constraint ensures that the overall average squared velocities
have a fixed magnitude. Taubin’s constraint then becomes

n∑
i=1

wi||v(pi)||
2 = 1. (2.14)

CHAPTER 2. “STATIONARY” SWEPT SURFACE PRIMITIVES 17

a b c

d e f

Figure 2.7: A spiral velocity field fit to a number of different selections (in blue) using
Taubin’s constraint. Streamlines tracing the best fitting field are shown for each image.

Because the average squared magnitude velocity is directly constrained, we can’t “cheat”
the Taubin-constrained error metric by choosing a field that globally reduces the velocity at
all data points. This prevents failure cases of the variety described in Sec. 2.3.

Note that letting wp = 0 ensures that Taubin’s method is basis independent, and does not
cause stability issues: degenerate points where v(pi) goes to zero simply do not contribute
to either the numerator nor denominator sums.

To implement Taubin’s method, we express the normalization in the form
mTNm required by the standard fitting algorithm (Sec. 2.2.2). The matrix N =∑

iwi(∇xf(xi))(∇xf(xi))
T ; for the spiral field (Eqn 2.3) this is

N =
n∑
i=1

wi

 [pi]
T
×[pi]× −[pi]× 0
−[pi]

T
× I pi

0 pi
T pi · pi

 (2.15)

+wp

n∑
i=1

wi

 [ni]
T
×[ni]× 0 0
0 0 0
0 0 ni · ni

with m = [rx, ry, rz, cx, cy, cz, γ]T .

For generality, we have included the wp terms here; when applying the Taubin constraint
this weight should be zero, but in a non-linear, iterative method (Sec. 2.4.2) it can be non-
zero.

CHAPTER 2. “STATIONARY” SWEPT SURFACE PRIMITIVES 18

wp := 10−5 wp := 10−3

a b

Figure 2.8: A spiral field (Eqn 2.3) is fit to a cone using the HEIV method with varying
values for wp. The HEIV method never converges for wp := 10−5; we show the state after
101 iterations. The method converges in 2 iterations for wp := 10−3.

To demonstrate the Taubin constraint in practice, we show a number of practical test
cases of the Taubin constraint in Figs. 2.4–2.7 and 2.9–2.11.

While the Taubin constraint works well in practice, it remains a biased approximation
— it systematically places less weight than ideal on points where the velocity field is small,
and more where the velocity field is large. To address this, we turn to iterative, non-linear
AML methods.

2.4.2 Iterative AML Methods: HEIV and Reduced

To minimize the true non-linear error term (either Eqn. 2.5 or Eqn. 2.12), we must use an
iterative method. Fortunately, a number of iterative AML methods have been developed [23,
67, 78] – all of which have been shown to converge very quickly in theory for data with small
noise [23]. All of these methods are based on solving an eigenvalue problem similar to the
direct methods (Sec. 2.2.2) but iteratively adjusted to correct the weights of the data points.
Because the weights can only be corrected with respect to one field, these iterative methods
focus on finding a single best solution rather than the full basis of solutions provided by
direct methods.

Previously the “reduced method” [67] has been suggested for use on the kinematic sur-
face fitting problem [109], although without evaluation. This method simply iteratively
re-weights the unit-constraint method. Specifically, it repeatedly solves the eigenvalue prob-
lem described in Sec. 2.2.2, with normalization matrix N = I and error matrix M recomputed
at the (j + 1)th iteration as

Mj+1 :=
∑
i

wi
f(xi)f(xi)

T

||∇x(mj · f(xi))||2
, (2.16)

where mj is the parameter vector at iteration j; m0 can be initialized by solving with
any direct method. Unfortunately, this fails in the same way as the non-iterative unit

CHAPTER 2. “STATIONARY” SWEPT SURFACE PRIMITIVES 19

HEIV,wp := 10−3 Taubin
a b

Figure 2.9: A spiral field (Eqn. 2.3) is fit to a cone with Gaussian noise applied to the base
(σ = 1% bounding box size) using the HEIV method (converged in 3 iterations) and the
Taubin method.

constraint method: the inherent biases of that method are not addressed by re-weighting,
and similar results to those of Figs. 2.5a and 2.6a occur. This result is consistent with the
poor performance observed for the reduced method on algebraic curve fitting problems under
mild noise [23].

In contrast, the “heteroscedastic errors-in-variables” (HEIV) method [78] performed much
more successfully when evaluated in the context of algebraic curve fitting [23] – replicating
the robustness under noise of the Taubin method, but with lower error. Intuitively this
may be expected because this method can be seen as an iterative re-weighting of Taubin’s
method. At each iteration, it solves a generalized eigenvalue problem with M reweighted as
in Eqn. 2.16 above, and N reweighted as

Nj+1 :=
∑
i

wi

(
(mj · f(xi))

2

||∇x(mj · f(xi))||4

)
(∇xf(xi))(∇xf(xi))

T .

This method performs similarly to the Taubin method on most examples we tested. Some
care must be taken to choose the wp large enough for stability; we found wp ≥ .001 worked
consistently, while smaller values could be unstable and thus fail to converge as shown in
Fig. 2.8. We therefore set wp := .001 for our tests. Advantages of HEIV over Taubin
become evident when noise is distributed unevenly over the surface, in areas which Taubin
will systematically over-weight, as shown in Fig. 2.9.

2.5 Robustness to Outliers

Like any least-squares fitting method, these methods are all sensitive to outliers. Many
methods can be, and have been, used to reduce the impact of such outlier points; in particu-
lar, M-estimators [61] and RANSAC [38] have both been suggested [108, 59]. The RANSAC

CHAPTER 2. “STATIONARY” SWEPT SURFACE PRIMITIVES 20

approach is explained in detail, in the context of kinematic surface fitting, by [59]. We rec-
ommend this procedure, albeit using the new fitting techniques and normalized distances
presented here instead of Eqn. 2.8. An example demonstrating the effectiveness of this ap-
proach is shown in Fig. 2.10. For this example we assumed that outliers have an error
(computed by Eqn. 2.5) greater than .1, and that 90% of points are not outliers.

a

b

c

Figure 2.10: A spiral field (Eqn 2.3) is fit to a scanned model of a drill bit, on which outliers
are concentrated at one end. The best-fitting vector field is visualized by red stream lines.
(a) and (b) are fit without using RANSAC; in (a) the outliers at the end have been omitted
manually by not selecting that portion of the mesh, while in (b) the outliers are included,
significantly affecting the result. (c) is fit using RANSAC, and it gives a result similar to
manually avoiding the outliers. The Taubin method is used for each fit.

2.6 New Velocity Fields

Previous methods for kinematic surface fitting did not generalize well beyond the few field
types listed in Sec. 2.2.1: the unit constraint’s problems only become worse with more com-

a b c d

Figure 2.11: The general linear field (illustrated with red streamlines) is fit to a number of
selections (in blue) on various objects.

CHAPTER 2. “STATIONARY” SWEPT SURFACE PRIMITIVES 21

plex fields, and it is unclear how to apply the rotation constraint unless the field prominently
features a rotation axis parameter. The Taubin and HEIV methods, in contrast, apply to
any velocity field linear in its parameters m – that is, any velocity field that can be ex-
pressed in the form v(p) :=

∑
imifi(p) where mi are the elements of the parameter vector

m, and the functions fi(p) can be any functions from positions to vectors. Therefore these
methods can be used to fit new, more general velocity fields. For sensible results, the class
of fields chosen should also be closed under the Lie bracket operator – in other words, com-
posing motions of multiple velocity fields in a class should result in motions that are also in
that class.

The space of possible classes of velocity fields is enormous, and not easy to understand
intuitively. But it opens doors to fitting some new, interesting primitives – and some simple
primitives that were notably missing from the past repertoire of kinematic surfaces. For
example: although spheres are handled by the more traditional kinematic surfaces, ellipsoids
and general quadrics are not, because there is no support for rotation combined with some
scaling. This would correspond to a non-linear field with some scaling matrix S as a new
parameter:

v(p) := S−1(r× (Sp)) + c. (2.17)

Just by adding this scale factor, kinematic surfaces would now include all quadric surfaces as
a subtype they could handle. This scaled equation is no longer linear in the parameters, but
if we multiply out (letting A = S−1[r]×S, where [r]× is the matrix form of a cross product
by r) we see that its fields are a subset of a class of general linear fields:

v(p) := Ap + c, (2.18)

where A is an arbitrary 3 × 3 matrix. This general linear field can be used to fit fields
with rotation combined with some scaling, as we demonstrate in Fig. 2.11. In Fig. 2.11a-c,
the fields follow elliptical paths for shapes that are (approximately) stretched surfaces of
revolution. In Fig. 2.11d, the field still fits the data well, but follows a path with exponential
scaling – essentially a stretched logarithmic spiral.

From this example it is clear that the more general fields do include at least one additional,
useful shape primitive, and thus seem worthy of further investigation. These more general
fields could find even broader applications, but also present new challenges: with more
complex velocity fields, a useful interpretation of the resulting parameters becomes more
difficult. Developing a complete surface reconstruction pipeline that exploits the full range
of possible kinematic surfaces will likely require exploration of additional new field types and
new algorithms to fit and interpret those field types. We consider this to be outside of the
scope of this thesis – an enticing direction for future work.

2.7 User-Guided Segmentation

Up to this point, we have focused on fitting a field given a selection of data — showing
how previous methods for kinematic surface fitting fail, and how methods from other fitting

CHAPTER 2. “STATIONARY” SWEPT SURFACE PRIMITIVES 22

domains can be applied to fix those problems. In this section, we tackle the problem of
segmentation: selecting the data to be fit. Our goal is to provide the users with great
control over what they choose to interpret as a stationary sweep, while keeping the user
input small and simple. Note that it may be useful to interpet a surface as a stationary
sweep even if that results in high error of fit – for example, the fit in Fig. 2.15 has high
error, but the fit is still meaningful and enables interesting shape editing possibilities – so
an automatic segmentation which focuses on error minimization [48, 59] is not suitable for
our purposes.

To explore user control of the stationary sweep fitting process, we present an interactive
system to allow the user to quickly select and edit stationary sweeps. We start from a
minimal user input: a single small stroke on part of the surface that the user would like to
extract as a stationary sweep. We present a simple region-growing approach that can often
extract a reasonable result from this input alone. We then explore ambiguous cases where
the system may not initially give the desired result, and we present lightweight additional
inputs that we show can clarify these ambiguous cases.

2.7.1 Basic Segmentation Algorithm

To make an initial selection in our system, the users stroke the surface that they would like
to extract as a stationary sweep, and then press the “extract stationary sweep” button. The
system uses a straightforward, region-growing approach to find a stationary sweep under the
user’s stroke: First, the system selects the data under the user stroke, then it alternatingly
fits a kinematic field to the selected data and expands the selection to neighboring surfaces
that also match the fitted field. An overview of this process is given as Algorithm 1.

In detail, the algorithm proceeds as follows: Starting from the selection of surface ele-
ments (in our case, mesh facets) under the user’s stroke, our algorithm first fits an initial
kinematic field to that selection. For the fitting step (line 3 in Algorithm 1), we use the direct
Taubin method of Sec. 2.4.1 – this is the fastest method, and gives good results for reason-
ably clean data. Once a tentative motion field has been estimated, the algorithm establishes
an error bound as the maximum deviation between the motion field and the user-selected
points. Error is computed using Eqn. 2.5. Surface elements that can be reached with a
flood-fill from the area seeded by the user, and which have a deviation within the current
error bounds, are added to our selection. This larger selection is used to obtain a better es-
timate of the motion field. The error bound is recomputed as the deviation between the new
field and the surface elements originally marked by the user. Then the process repeats with
another flood-fill from the user-selected surface elements; it stops after a round in which no
new elements have been accepted. This process tends to converge after just 2-3 iterations
(see Table 2.1). The growth process is illustrated in Fig. 2.12.

CHAPTER 2. “STATIONARY” SWEPT SURFACE PRIMITIVES 23

Algorithm 1 Fit stationary sweep

1: Initialize sweep s to set of surface elements m marked by user
2: while s continues to change do
3: Estimate parameters p from s (Section 2.4.1)
4: Find max distance t from m to p
5: s = floodfill from m to neighboring surfaces closer to p than t
6: end while

Figure 2.12: Stationary Sweep Fitting: A stroke (yellow) by the user defines an initial sweep
region that immediately provides a (potentially incorrect) axis of rotation (red). The sys-
tem automatically grows the sweep region (green) and extracts improved sweep parameters
iteratively until the region can no longer be extended.

2.7.2 User Guidance and Refinement of Fit

The problem of fitting and segmenting stationary sweeps is inherently ambiguous: There are
often multiple reasonable selections and sweep fits that could be chosen for a given surface. To
address cases of ambiguity, we support additional user input that lets the user disambiguate
the problem, ensuring that the selection and fit are exactly what the user intends. We identify
and address two main types of ambiguity: First, the size of the desired selection depends
on the user’s intent, and the default selection may be too small or too large. To address
this ambiguity, we give the users a simple way to control the error threshold that limits the
size of the initial selection, and we also give the users tools to exclude undesired parts of a
selection even if their error of fit is as low as that of the desired selection. The second type of
ambiguity is that the fitted field may not have the desired motion: in ambiguous cases such
as a portion of a sphere or a cylinder, there are mutliple fields that fit a given surface equally
well. To address this ambiguity, we give users the option to force the fitted field to follow
the direction of their input stroke, allowing for fine-grained control of the fitting result.

2.7.2.1 User controls to correct a too-small selection

The algorithm initially selects surface elements based on error-of-fit: It selects elements
that fit at-least-as-well-as the user-marked elements. This approach makes it very natural
to extend the selection further: If the surface area covered by the extracted sweep does
not extend as far as the user would like, she can simply mark a few additional surface

CHAPTER 2. “STATIONARY” SWEPT SURFACE PRIMITIVES 24

a b c d

Figure 2.13: (a) From an initial stroke (yellow) drawn by the user, the motion field (red
streamlines) is extracted, and matching surface elements are marked in blue. (b) The result
is filtered by morphological opening and closing [59], removing some spurious selections. (c)
Undoing the rotational sweep component generates a 2D “profile” view. By de-selecting
portions of this profile (orange) the user can manually cull undesired areas from (d) the
body sweep.

elements that should be included. The algorithm will re-fit the kinematic surface, using the
newly marked elements as well as the original elements when computing error bounds. This
implicitly increases the error bounds to accommodate the newly marked elements, ensuring
that the fit will include more of the surface. The fitting algorithm region-grows from all
marked parts simultaneously, so this also allows the user to fit disconnected parts with the
same sweep motion – for example, the top and body of a teapot (Fig. 2.1b).

2.7.2.2 User controls to correct a too-large selection

There are two common reasons that too much of the surface may be included in the selection.
First, the error threshold may have been raised so high that it isn’t useful for segmentation.
This can occur when the user wants to interpret a shape as a sweep even though it deviates
significantly from an ideal sweep surface. In this case, the segmentation problem is no longer
closely tied to stationary sweep fitting, so we turn to more general user-guided segmentation
techniques that we discuss in detail in Chapter 6. An example of one such general approach is
to allow the users to mark surfaces they would like to exclude from the selection, in addition
to surfaces that they want to include [63].

In the second case, the selection can be too large even when the error threshold is reason-
ably small, because some surface elements can have low error-of-fit despite not being part of
the intended selection. Hofer et al. [59] note that it is common for curve-like pieces of adja-

CHAPTER 2. “STATIONARY” SWEPT SURFACE PRIMITIVES 25

cent, conceptually-unrelated surfaces to be included in a kinematic field-based segmentation,
because they are also approximately tangent to that globally-defined motion field. We see
this occur for example for the Botijo model in Fig. 2.13a: The user has stroked to select
the body of the model, but parts of the handles are also tangent to that same velocity field
and so are also included in the initial selection. Hofer et al. suggest using morphological
operators to remove these features [59]: specifically, the “closing” operator, which deselects
selected elements touching the boundary of the selection, followed by the “opening” opera-
tor, which selects unselected elements touching the boundary of the selection. We show the
result of applying these morphological operators in Fig. 2.13b: The operators successfully
remove some narrow strips along the handles (e.g., the front-most nub, and the back-right
handle), but fail to remove the larger selections along the other handles. Because there is no
well-defined metric to remove these larger selections, additional user interaction is needed.
While generic selection-refinement approaches (Chapter 6) could be used, there is also an
elegant stationary-sweep specific approach to disambiguating these cases: We let the user
refine the selection in a 2D “profile” view. To generate the profile view, our system col-
lapses all the extracted surface parts into a common 2D plane, by moving the parts along
the fitted motion field. In this profile view (Fig. 2.13c) the undesirable portions (shown in
orange) can readily be selected and eliminated from the extracted sweep surface. The same
2D profile view can also be used to generate an idealized sweep profile curve by applying
a skeletonization to the green areas of the profile view, or for shape editing as we discuss
below.

2.7.2.3 User controls to correct the sweep motion

Many simple shapes can be fit well by multiple fields: for example, a spherical shape can
be fit by any rotational field with the axis passing through its center. A cylinder (Fig. 2.14)
can be fit by a purely translational field, a purely rotational field, or any helical field in the
subspace of linear combinations of these two fields. In such cases, we provide ways for the
user to express and enforce a preference over which field is extracted. One common case is
that the user wants a pure rotation: In this case, we simply provide an option to enforce
a pure-rotation fit. We enforce pure rotation simply by fitting a helical field and removing
any pitch from the field after each fit. (An iterative method to enforce a pure rotation fit
also exists [106] but we did not explore this because this simple, direct method seemed to
work fine already.) In the more general case, we let users constrain the fit to follow the
direction of their strokes, which gives users fine-grained control of the motion field they fit.
We demonstrate this control in Fig. 2.14.

To constrain the motion field fit to follow the direction of the user stroke, we use a
method based on [49]: we sample the user’s stroke path and generate a set of stroke points
projected to the mesh surface, si, with corresponding stroke directions ti. We project the
stroke directions to be orthogonal to the surface normals ni of the mesh at points si. We
define the path normal as this surface normal, and we define corresponding path binormal as
bi := ti×ni. We can then measure whether a motion field is tangent to the path in the same

CHAPTER 2. “STATIONARY” SWEPT SURFACE PRIMITIVES 26

a b c d e f

Figure 2.14: A cylinder fit by a stroke, (a) with an unconstrained helical field, (b) with a
rotation-specific fit, and (c) with a helical field following the stroke direction. Selected surface
is shown in blue, resulting fields are visualized by red streamlines. The helical field allows
interesting new edits; for example we can transform the profile from (d) to (f), resulting in
a spiral deformation (e).

way we measure whether a field is tangent to a surface: by measuring how orthogonal the
field at the sampled points v(si) is to the corresponding normal (and now binormal) vectors,
ni,bi. These sampled points and normals, {si,ni} and {si,bi}, can be added directly to the
set of points and normals over which we already optimize. The new stroke points must have
some weight relative to the original data points, which represents a trade-off: the field could
follow the user’s stroke more closely, at the expense of following the data less closely, or vice
versa. This trade-off is exposed to the user as a simple slider, with the system following the
stroke as closely as possible at one end of the slider, and following the data as closely as
possible at the other end. As a default value for this slider, when stroke-following is enabled,
we give the data fit and stroke fit equal weight overall.

2.7.3 Shape Editing

As soon as a stationary sweep is fit to the data, we allow a user to begin using that represen-
tation to perform shape edits. These edits are performed in the 2D profile view generated
by advecting all the surfaces facets fit by a given sweep into a common 2D plane via the
fitted motion field. Edits in this 2D view are immediately transferred back to 3D, so users
can see the results of their edits interactively. We demonstrate some example edits for a ro-

CHAPTER 2. “STATIONARY” SWEPT SURFACE PRIMITIVES 27

tational sweep in Fig. 2.1c; note the black curve shows the 2D profile view where the user
edits are performed.

This approach works even for shapes where the stationary sweep model is a very inexact
fit. In Fig. 2.15 a not-very-circular statue has been fit with a rotational sweep (a). The
corresponding 2D profile view (b) has substantial thickness due to the variation of the radial
distance to the central rotation axis. A small portion of this profile has been highlighted and
selected for editing (b, c). If the highlighted profile portion is moved to the right, the parts
of the sculpture containing the four noses and eight cheeks are being bulged outwards (d).
Alternatively, if just the portions of the profile corresponding to the nose-tips are selected
(e), then only the four noses are elongated; the cheeks of the face do not bulge outwards (f).

Note that this approach does not extract an explicit representation of the sweep profile –
it simply collapses the 3D mesh to a 2D “profile” space. If an explicit representation of the
profile is desired, one can perform a skeletonization [115] of the projected profile elements.
This can be desirable for some more advanced editing operations: for example, to beautify
a sweep, one can project all points to the nearest point on an “ideal” profile curve.

2.7.4 Performance

Thanks to the use of a fast direct method for fitting the kinematic motion field, performance
is not an issue: Even for relatively large input surfaces, the stationary sweep finder converges
in less than a second (Table 2.1) on our test machine – a laptop with 2GB RAM and a 2.4 GHz
Core Duo processor. The fitting time is proportional to the number of points processed. All
examples converged in 2-3 iterations, where an iteration includes one step of region growing

a b c d e f

Figure 2.15: (a) A not-very-circular statue is fit with a rotational sweep. (b) The corre-
sponding “thick 2D profile” view, generated by rotating all surface facets to a single 2D
plane. (c) A small portion of the “profile” selected for editing. (d) Modified statue after the
selected profile portion has been moved to the right. (e) Just the nose has been selected in
cross section view. (f) Four pointy noses have been created by moving the selected portion
to the right.

CHAPTER 2. “STATIONARY” SWEPT SURFACE PRIMITIVES 28

and re-adjusting the parameters.

Table 2.1: Timings for stationary sweep module

Model # Tris Section Fit Interaction Iterations Time (ms)
Bowl (Fig. 2.12) 4k Full shape One stroke 3 16 ms
Teapot (Fig. 2.1) 25k Body and top Two strokes 2 94 ms
Botijo (Fig. 2.13) 82k Body One stroke 2 171 ms

Angkor Wat (Fig. 2.15) 163k Full shape One stroke 3 375 ms

29

Chapter 3

“Progressive” Swept Surface
Primitives

We now describe our “progressive” sweep fitting module – our second sweep fitting module.
It is aimed at fitting more complex swept structures than the stationary sweep module, at
the cost of slightly more user involvement and computational effort. We define “progressive”
sweeps as a class of generalized translatory sweeps, characterized by an arbitrary smooth
space curve that serves as a sweep path, along which we sweep a planar cross section that is
allowed to be rotated or even affinely distorted as it moves along the path. The necessary
information is captured by a relatively large number of local parameters.

In this chapter, we present a simple algorithm for fitting progressive sweeps from a single
user stroke that indicates the desired location and direction of the sweep. The users can
optionally make additional strokes to refine the sweep fit in ambiguous cases – for example,
if they would like the sweep to progress past a region where the fitting error is high, or to take
a different path in a branching structure. We show that our sweep fitting algorithm handles
complex shapes in less than 10 seconds, making it a reasonable tool to use in the middle of
an interactive redesign session. Finally, we discuss the shape redesigns our progressive fit
enables, showing a number of examples.

3.1 Background

A number of previous systems have fit sweep-like structures to enable general shape edits.
Dion et al. [29] and Ueng et al. [140] describe a system for extracting sweeps from surfaces
that have a fixed orientation of the sweep cross section. Ramamoorthi and Arvo [114]
describe a general sweep fitting algorithm that extracts some relatively simple sweeps by
asking the user to place a cylinder as a first approximation, and then iteratively optimizing
a subset of the cylinder parameters to deform it into the given model shape; for complex
sweep surfaces (such as those in Fig. 3.1 and Fig. 3.5), it is often not clear where to place the
cylinder to align it with a contorted sweep surface. Moreover, the general framework in [114]

CHAPTER 3. “PROGRESSIVE” SWEPT SURFACE PRIMITIVES 30

simultaneously optimizes too many parameters to permit a global optimization of the whole
sweep surface at a speed suitable for interactive use. Yoon and Kim [151] describe a system
for sweep-based free-form deformation, in which the sweep fitting step is almost fully manual:
The user must provide a tubular “cage” that encloses the entire sweep and follows the desired
sweep path. Constructing such a cage for a complex sweep (Fig. 3.1) is essentially as hard
as re-building the geometry from scratch. Our contribution is a straightforward algorithm
that fits a fairly general class of sweeps, and handles complex examples with minimal, simple
user input.

a b

Figure 3.1: (a) An input surface with several touching components, with one trefoil com-
ponent shown with a black overlay. The system can easily fit a progressive sweep to that
component after the user draws a short stroke (shown in red) on its surface. (b) After the
closed trefoil sweep has been extracted, the user can then interactively edit its cross section
and sweep path.

3.1.1 Progressive sweep representation

We define our progressive sweeps as general translatory sweeps that handle diverse tube-
like structures with arbitrary 3D sweep paths and 2D cross sections. Choosing how to
parameterize such a sweep structure is a matter of making trade-offs: Additional degrees of
freedom in the representation can allow us to handle new, more complex examples, but also
make the fitting problem harder and more ambiguous. With excessive degrees of freedom,
the fitting process can take longer and end up delivering qualitatively worse results – since
the added degrees of freedom can increase the possibility of undesirable but technically well-
fitting results – which in turn will require more user interaction to refine and correct. In
the trade-off between generality and efficiency, we found the following parameters seemed to
encapsulate a reasonably flexible, but still easy-to-fit, domain of swept surfaces:

CHAPTER 3. “PROGRESSIVE” SWEPT SURFACE PRIMITIVES 31

1. A polyline in 2D defining a planar cross-section template, which will be transformed
to generate the local sweep cross sections along the sweep path.

2. A polyline in 3D defining the path that the sweep follows. Cross sections are placed
perpendicular to this path.

3. A set of transformation parameters at each control point defining the sweep path,
specifying a transformation applied to the cross-section template to generate the local
cross section at that point.

Each set of transformation parameter values generates a 2D transformation matrix to be
applied to the cross-section template: This could be a 2D rotation, a uniform scaling, or an
arbitrary 2×2 matrix. The tangent of the sweep path at this point is taken as the average
directions of the two segments adjacent to it, and the cross-section template is always kept
perpendicular to that direction. When moving our cross section along the sweep path, we
orient the cross section relative to the rotation minimizing frame [145] before the 2×2 matrix
transformation is applied.

Note that our representation does not allow 3D rotations of the cross section with respect
to the tangent vector, or the possibility to morph the cross section between arbitrary shapes
(also called “lofting”). The additional flexibility gained did not seem worth the greatly
increased ambiguity, as we found that simply allowing affine scaling of the cross section can
already let the system handle a surprisingly diverse set of examples (e.g., Figs. 3.3 and 3.4b).

3.2 User-Guided Segmentation and Fitting

As with stationary sweeps, we provide a simple, fast fitting module for progressive sweeps.
This module lets the users make a small stroke on a surface that they would like to fit with
a progressive sweep, and then automatically fits a corresponding sweep surface. To help
disambiguate the desired sweep, the direction of the user stroke should be roughly aligned
with the desired initial direction for the sweep path to follow.

3.2.1 Fitting Algorithm

In contrast to stationary sweeps, there is no direct linear method for fitting progressive
sweep surfaces: We must instead rely on a relatively expensive non-linear optimization.
To achieve efficiency, we reduce the size of the optimization task by breaking the overall
problem into a chain of smaller optimization problems, each of which has relatively few
parameters. As an overview, our process is to generate an initial cross-sectional template
from the user stroke, then alternate between adding a new segment to the sweep path and
optimizing the parameters of this newest segment, while simultaneously also fine-tuning the
parameters of the last few segments. This incremental, segment-by-segment expansion of the
sweep continues until no further segment can be added without exceeding the current error

CHAPTER 3. “PROGRESSIVE” SWEPT SURFACE PRIMITIVES 32

bounds. The individual error for each sweep segment is calculated as the maximum distance
of any computed sweep surface point from the original input mesh. As a heuristic, our initial
error bounds are set automatically at a small constant factor above the error of the initial
sweep segment. We later discuss how the user may increase the error bounds interactively
by drawing a stroke in a not-yet-covered region to designate additional surface elements to
be incorporated into the sweep. Our fitting process is given as Algorithm 2.

Algorithm 2 Fit progressive sweep

1: Initialize template T based on stroke drawn by user
2: for d = −1 to 1 step 2 do {Go forwards and backwards}
3: while error of fit below threshold do
4: Add segment to sweep in direction d
5: k := 2
6: repeat
7: Optimize newest k segments
8: k := 2 + k
9: until error of fit below threshold or k > 6
10: end while
11: Remove last segment (for which the fit failed)
12: end for

3.2.1.1 Initializing the Cross-Section Template

First, the user draws an initial stroke on the mesh surface to indicate a starting location and
direction for the sweep (Fig. 3.2a). The system then extracts an estimate of a cross-section
template near the middle of the user stroke. To do so, it traces a local “cross-section” curve
on the mesh surface, starting from the user’s stroke and tracing in the plane perpendicular to
the user’s stroke direction. This template will be updated during subsequent optimization
steps: When the direction of the first segment of the sweep is optimized, the system re-
generates the template with a cutting plane perpendicular to the new direction. This allows
the system to adapt robustly to imprecisely drawn user strokes, so a casually-drawn user
stroke is still sufficient to obtain a good sweep initialization.

3.2.1.2 Optimization Procedure

Our system iteratively generates new sweep segments along a piecewise linear polyline sweep
path. For each new segment, it initializes a new control point by extrapolating from the last
two control points. We start out with a very conservative, short extension of the sweep path,
and then let the penalty function below (Eqn. 3.1) determine the most effective length for
the next segment.

We start out by optimizing the new sweep segment in the context of the last segment
extracted. To improve the speed of the optimization, we initially only optimize over these

CHAPTER 3. “PROGRESSIVE” SWEPT SURFACE PRIMITIVES 33

a b c

Figure 3.2: Initializing a progressive sweep: A stroke (red) by the user defines the approx-
imate direction for the selected sweep. An initial cross-section template is extracted in a
plane near the middle of the stroke and perpendicular to it (a). Plane orientation and tem-
plate are updated as the direction of the first sweep segment is optimized (b). The forwards
and backwards sweep-extent of the first segment is pushed as far as possible within the set
error bounds (c).

two segments: For much of the length of many sweeps, this will be sufficient to find a good
fit. However, in ambiguous regions we may need to optimize more of the sweep to find a good
fit. If the error of fit is above the error bounds, we increase the number of segments included
in the optimization, and try again. We give up at some maximum number of segments k,
and assume we have reached the end of the sweep. In all cases, we regularly sample points
pi on the last k segments of the sweep surface and use the standard Levenberg-Marquardt
algorithm [87] to minimize the following energy:

Σid(pi)
2 + w

(
ΣN
j=N−k(

1

||sj − sj−1||
)2

+ΣN
j=N−k||xj − xj−1||2

+ΣN−1
j=N−kκ(sj−1, sj, sj+1)

2
)
.

(3.1)

The first term is the squared distance of a sweep surface point from the original mesh. The
remaining terms are regularization terms that penalize, respectively: short segments (avoid
zero-length steps), changes in the transformation parameters xj (avoid un-needed parameter
wobbles), and curvature of the sweep path (prefer straight and smooth curves). A weight
value w is chosen to scale all the regularization terms. This weight controls how much the
sweep is willing to bend to fit the data: A larger weight w generates a simpler, smoother
sweep path at the cost of potentially following the data less closely. The desired smoothness
of the sweep path is typically scale-dependent, and tied to the size of the cross section: A
sweep with a smaller cross section can bend more before it self intersects, and intuitively we
expect thinner tubular shapes to have less resistance to bending. To give weight value w an
intuitive meaning for sweeps of different scales, we re-scale the data before fitting so that
the initial cross section fits in a unit-sized box.

To calculate the curvature-based penalty we use the discrete integrated curvature metric
[8] based on the last 3 control points of the sweep path κ(sj−1, sj, sj+1). Specifically, given

CHAPTER 3. “PROGRESSIVE” SWEPT SURFACE PRIMITIVES 34

Figure 3.3: The user can quickly extract any number of diverse sweeps on an armadillo.

two contiguous sweep path vectors ej−1 = sj−sj−1 and ej = sj+1−sj, the discrete curvature
is calculated as

2ej−1 × ej
|ej−1||ej|+ ej−1 · ej

.

To compute distances d(pi) efficiently, we use a precomputed adaptively-sampled distance
field [44]. Gradients required by the Levenberg-Marquardt method are computed by finite
difference approximation.

Note that this procedure, like most non-linear optimizations, relies on a number of ar-
bitrary constants: the number of samples pi of the sweep surface, the weight w of the reg-
ularization terms, and the maximum number of segments k over which we optimize. There
is no fundamentally correct value for these constants: They entail performance and accu-
racy trade offs in this system. Based on our investigations so far, we use six cross sections
per segment, with each cross section sampled at the vertices of the initially extracted 2D
cross-section template. We use a default regularization weight w of .0001 to ensure that
the distance term d(pi) dominates; however we find that the trade-off between smoothness
and willingness to exactly follow the data is something relatively intuitive, so we could also
expose parameter w to the user as a smoothness slider.

3.2.2 User Control of Fitting Process

The initial location and direction of the user stroke yields significant control over how the
shape will be interpreted, as illustrated in Figs. 3.3 and 3.4. In Fig. 3.4a, a short vertical
stroke on the lid of the teapot produces a vertical sweep, but in Fig. 3.4b, a stroke on the
spout produces a mostly horizontal sweep. In both cases, free-form scaling of the cross
section by an arbitrary 2×2 matrix was permitted. Depending on how the user plans to use
and/or modify the teapot model, one or the other representation may be preferable.

In some cases, the sweep fit may stop sooner (or later) than the user desires. In the
situation shown in Fig. 3.4b, the sweep fit, which starts in the middle of the spout, would
naturally stop at the tip of the spout and where the spout meets the teapot body. However,
the user allows the sweep fit to continue throughout the body of the teapot by adding
an additional sweep path stroke. Internally, the error margins that specify what surface

CHAPTER 3. “PROGRESSIVE” SWEPT SURFACE PRIMITIVES 35

a b

Figure 3.4: Different initial strokes result in different sweep fits. (a) A vertical stroke on
the lid produces a vertical sweep. (b) Stroke 1, on the spout, produces a mostly horizontal
sweep. Stroke 2, near the handle, is used to extend the range of the sweep fit across the
teapot body.

elements are acceptable to be included in the sweep fit are increased appropriately, so that
the sweep can continue. If the sweep goes beyond what the user had in mind, the user also
has a command to halt the sweep fitting process, and the ability to clip the ends of the fitted
sweep at any point.

In other cases, thanks to the inherent ambiguity of the sweep-fitting problem, the pro-
gressive sweep module may find an error-minimizing fit that is not the sweep envisioned by
the user. In these cases the user can draw a new target path, starting from the point where
the previous fit went awry. We then re-run the fit from that point, with a new regularization
term to ensure it follows the corrected path.

3.3 Editing with Progressive Sweeps

We allow users to edit a surface using progressive sweep structures as soon as the param-
eterized structures have been fitted to the input data. To enable sweep-based editing, we
create a correspondence between the vertices of the original surface and their closest images
on the extracted sweep model. Note that this is different from the distance used to extract
the sweep: For sweep extraction, we efficiently compute the distance from sweep to surface
via a pre-computed adaptively sampled distance field, but doing so does not give a corre-
spondence. The correspondence could be ambiguous near sharp bends in the sweep path
where multiple parts of the sweep may be almost equi-distant from a given point on the sur-
face, but for our initial prototype we simply use the first closest point found, and this gives
the results shown in this chapter.

The correspondence between the sweep and the original surface is represented as follows:
Each vertex on the surface that corresponds to the sweep is given a parameter t, indicating
where the vertex maps to along the sweep path, and a 2D position p2, indicating the position
of the vertex with respect to the cross section in that frame. When the user updates the pa-

CHAPTER 3. “PROGRESSIVE” SWEPT SURFACE PRIMITIVES 36

rameters of the sweep, the system re-computes where these new sweep parameters map the
corresponded vertices, and updates their 3D positions accordingly. Note that this represen-
tation is detail-preserving: The exact position of the vertex relative to the sweep is encoded
in p2, so the deviations between the sweep surface and the edited surface are maintained
across transformations of the sweep parameters, as shown in Fig. 3.7.

When the user edits the 2D cross section template, in our initial prototype system we
simply move each 2D position p2 exactly as the closest point on the cross section template
moves. This approach worked well enough in practice to generate the results shown in this
chapter, but has the same potential ambiguities of correspondence as the correspondence
from surface to sweep has. An alternative approach that avoids these amibiguities is to use
mean value coordinates [42] to define a smooth deformation of the 2D cross section space.

a b c

Figure 3.5: (a) The input surface with a cross-section template (shown in red) that twists as
it moves along the loop. (b) A new surface based on a modified cross section. (c) Another
modified surface with yet a new cross section, which was also scaled up locally in one part
of the sweep.

Results of the editing process are shown in Figs. 2.1, 3.1, 3.7, and 3.5. In Fig. 2.1 the
Utah teapot has been decomposed into a stationary sweep for the body and two progressive
sweeps for the spout and the handle. The geometry of these three parts has then been altered
at a high level: The sweep paths of the spout and the handles, as well as the cross-sectional
profiles of the body and of one handle-instance have been modified. The modified parts
have been re-assembled in an imaginative new way. Fig. 3.6 shows the additional editing
controls provided for a progressive sweep: the sweep path itself, the cross-section template,
and the adjustable transformation parameters along the path (in this case, scale). Fig. 3.5
illustrates the effect of the latter two controls: The user can make a global change to the
cross-section template (Fig. 3.5b) or introduce a dramatic localized change in the scale of
the profile (Fig. 3.5c).

Figs. 3.6 and 3.7 demonstrate the detail-preserving capabilities of our system. The left
side of Fig. 3.6 shows the leg of the Armadillo model being extracted as a progressive line-

CHAPTER 3. “PROGRESSIVE” SWEPT SURFACE PRIMITIVES 37

Figure 3.6: Key elements of the user-interface: the surface being reverse engineered, and
the extracted edit-handles: the discovered sweep path and corresponding cross-sectional
template, and a curve that controls the scale transformation applied to this template as it
moves along the sweep path. The user can edit the surface by clicking and dragging any of
the curves.

sweep. The user has drawn a small stroke on the left thigh to get the sweep started. The
automatically extracted sweep path and cross-section template are shown in red. Both these
curves can now be edited interactively and will immediately generate a new surface. The
curve at the bottom right of Fig. 3.6 controls how the cross-section template varies as it
moves along the sweep path. The y-coordinates of this curve indicates the scale factor as
a function of the position along the sweep path; it can also be edited interactively. As the
parameters of the sweep are modified, the surface is updated dynamically. The results can
be seen in Fig. 3.7b: One leg of the Armadillo has been made thicker and more strongly
bent; the other has become thinner and straight; but in both cases the original fine-structure
has been preserved, because we maintain deviations between the surface and the sweep when
we compute our surface-to-sweep correspondences.

3.3.1 Results

We tested our sweep extractor modules on a wide variety of input files. Figs. 3.3 and 3.4
demonstrate how the user can fit the same shape with very different sweeps. Fig. 3.5 shows
the extraction of a progressive sweep along a rather long and highly curved path; in addition,
its cross section does not simply follow a rotation-minimizing frame, but twists left and right
while traveling from one lobe to the next. Figure 3.1 demonstrates that such sweeps can also
be extracted from a tightly packed model or cluttered scene. Figs. 3.7 and 3.8 demonstrate
that we can fit surfaces with complex details that deviate from the sweep primitive.

CHAPTER 3. “PROGRESSIVE” SWEPT SURFACE PRIMITIVES 38

a b

Figure 3.7: (a) The input Armadillo surface. (b) Modified surface after fitting sweeps to
both legs and modifying the sweep paths and scale factors of the cross sections.

3.3.2 Performance

Table 3.1: Timings for progressive sweep module

Model # Tris Section Fit # Segments Time (ms)
“Pax Mundi” Sweep (Fig. 3.5) 5k Whole surface 111 8531 ms

Teapot (Fig. 2.1) 25k Spout 12 2578 ms
Armadillo (Fig. 3.7) 50k One Leg 14 2593 ms

Trefoil Cluster (Fig. 3.1) 69k One Knot 56 6531 ms
Dragon (Fig. 3.8) 870k Main hump 20 5640 ms

To accelerate our sweep-fitting optimization, we pre-compute an adaptively sampled dis-
tance field [44] and use this to compute distances from the sweep to the data. Yin et al.
showed that this pre-computation can be done in less than a second on a GPU for meshes
with on the order of a million triangles [150]. After an adaptively-sampled distance field had
been computed, all our examples took less than a minute of user interaction and computa-
tion time on our test machine – a laptop with 2GB RAM and a 2.4 GHz Core Duo processor.
Fitting any single sweep generally took less than 10 seconds. Significant factors in the perfor-
mance of the fitting algorithm were the number of segments required to fit, and the quality
of the optimal fit (i.e., varying noise / bumpiness of the input surface that is not captured in
the cross section). When a surface is noisy or has surface details not captured by the swept
surface, like the spines of the dragon in Fig. 3.8, the optimizer will expend more effort try-
ing to improve the fit by performing more iterations and expanding the number of segments
over which the optimization is performed. The ends of the sweep also tend to require more

CHAPTER 3. “PROGRESSIVE” SWEPT SURFACE PRIMITIVES 39

a b

Figure 3.8: From a stroke (in yellow) on the dragon mesh, we automatically extract the main
hump of the dragon. Our default error thresholds stop here, though of course the user may
manually ask the system to extract more. For clarity we show two views of the same fit; the
initial stroke was made in view (a).

iterations, because the system sees these ends as high-error regions which it fails to fit (this
gives a small advantage to looping sweeps which have no open ends).

To begin mesh editing with the extracted sweep parameters, a correspondence from origi-
nal mesh vertices to the extracted model must be established; this requires time proportional
to the size of the mesh, taking 1063 ms for the dragon mesh (Fig. 3.8 – our largest exam-
ple, with 870k triangles). After the correspondence has been established, the mesh vertices
can be updated quickly in response to any changes to the sweep parameters; this update
is performed in a single pass over the mesh vertices, which takes just 16 ms for the dragon
mesh.

40

Chapter 4

Quadric surface primitives

Quadric surfaces – ellipsoids, hyperboloids, paraboloids, cones, cylinders, and planes – are a
common primitive for construction of man-made shapes, and thus another important class
of primitive for our inverse modeling system to handle. By fitting quadrics to lower-level
data, we arrive at a higher-level parameteric representation, and also enable other high-level
shape editing methods that we discuss in subsequent chapters: notably, CSG-based editing
(Chapter 7), and also editing with hierarchical structure – for example, constraining a sweep
path to lie a quadric surface (Chapter 8).

In this chapter, we present a complete catalog of accurate, direct methods for fitting all
types of quadric surfaces, and an interactive system for selecting such surfaces. We focus on
type-specific fitting methods, which allow the user to optionally constrain or influence the
choice of quadric type: If the user specifies a desired quadric type then our system uses these
type-specific fitting methods to guarantee the fitted quadric has that type; otherwise, our
system uses general quadric fitting to find the error-minimizing quadric of any type. These
type-specific methods are useful in the common case that the users have some preference
regarding the desired quadric type – either due to aesthetic sensibility, or because they know
the true shape should have a specific type. When the desired type is known, general quadric
fitting should not be relied upon because even a small amount of noise can easily alter the
type of the best general quadric fit, as shown in Figs. 4.1, 4.6, and 4.8.

There are many applications where a quadric type is known a-priori: Allaire et al. give
the example of fitting a bone joint that is known to be a hyperboloid [3]; many CAD parts
are known to be cylinders or cones by construction; hyperbolic paraboloids show up in
architecture, art, and Pringles potato chips. In some cases it is important that the quadric
surface be bounded – for example, if the whole quadric surface is expected to correspond to
some real surface – and in this case, the type must be an ellipsoid and not a hyperboloid.
(Note that the best ellipsoid may be within ε of a paraboloid (Sec. 4.2.2), which is effectively
not bounded, but we will also find a linear subspace of quadrics, in Sec. 4.2.1, which generally
also contains much less eccentric, well-fitting ellipsoids, and is thus a good place to start a
non-linear search for an ellipsoid of bounded eccentricity.) There are other cases where
one knows the surface must have one of several types: Minimal surfaces (“soap film”) have

CHAPTER 4. QUADRIC SURFACE PRIMITIVES 41

 (a) (b) (c)

Figure 4.1: The difference between an ellipsoid and a hyperboloid can be very small in terms
of local surface behavior, leading to ambiguity in the best-fitting quadric type. We show a
small section of a sphere (blue) with no noise (a) and with small Gaussian noise (σ = 1% of
bounding box size) (b and c) fit by a quadric (red). The top row shows a zoomed in view,
while the bottom row is zoomed out; note the shapes are almost indistinguishable in the
zoomed in view. For (a) and (b) we show the result of general quadric fitting (Sec. 4.1.2);
for (c) we show the result of sphere-specific fitting (Sec 4.3.4).

negative Gaussian curvature everywhere, so they should be fit by hyperboloids of one sheet
or related boundary types such as hyperbolic paraboloids. Developable surfaces must have
zero Gaussian curvature everywhere, so they should be fit by general cylinders, cones, and
planes.

Our fitting methods handle a wide range of quadric types with just two high-level strate-
gies. In Sec. 4.2, we show how quadratic constraints and a closed-form line search in param-
eter space allow us to effectively fit hyperboloids, ellipsoids, and paraboloids. In Sec. 4.3,
we show that transforming the problems to more convenient spaces and reducing the pa-
rameters used in fitting allows us to handle all remaining cases. In all cases we ensure good
results by minimizing the nearly-unbiased linear error metric introduced by Taubin [137].
Finally, in Sec. 4.4 we show how our fitting method can be used in an interactive framework
to perform fast segmentation and fitting of quadric surfaces.

4.1 Background

General quadric fitting has been well studied [103, 137, 149], but methods for type-specific
quadric fitting are scattered throughout the literature: Some papers handle spheres, circular
cones and cylinders [86]; a few others handle ellipsoids [80] or hyperboloids [3]. Non-circular

CHAPTER 4. QUADRIC SURFACE PRIMITIVES 42

cones and general rotationally symmetric quadrics are not typically discussed. Our main
contribution in this chapter is to present a complete catalog of type-specific quadric fitting
methods to handle every quadric type, including new methods that handle neglected quadric
types, and improvements to previously proposed methods for ellipsoid- and hyperboloid-
specific fitting methods. Every method in our catalog is a fast direct method, based on the
effective Taubin method [137], suitable for use in an interactive system and the inner loop
of an iterative segmentation algorithm [149].

4.1.1 A Catalog of Quadric Types

For completeness, we give a brief overview of the different quadric types. Quadrics in their
most general form are represented by a 10-parameter implicit function of the form

f(c,p) = c0 + c1px + c2py + c3pz + c4p
2
x + c5p

2
y + c6p

2
z + c7pxpy + c8pxpz + c9pypz = 0. (4.1)

When categorizing quadric types, it is more convenient to rotate to a canonical, axis-
aligned form. In that form, the quadratic cross terms are eliminated, and we need only
consider the signs of the remaining pure squared terms. To perform this rotation, we re-
write the implicit quadric equation in matrix form:

pTAp+bTp + c0 = 0 with A =

 c4 c7/2 c8/2
c7/2 c5 c9/2
c8/2 c9/2 c6

 , b =

c1c2
c3

 . (4.2)

We can then rotate to the canonical form by way of an eigendecomposition, A = RDRT.
In the rotated space pr=RTp, the new quadric becomes pT

r Dpr+(Rb)Tpr + c0. In this
rotated space, the new quadric equation without cross terms has the form

c0 + c1px + c2py + c3pz + c4p
2
x + c5p

2
y + c6p

2
z = 0. (4.3)

The new squared terms, c4, c5, c6, are the eigenvalues of the original matrix of quadratic
terms, A. The signs of these eigenvalues determine the quadric type: If they are all positive,
or all negative (i.e., if the original matrix of terms A was positive- or negative-definite) then
the quadric is an ellipsoid. If they are a mix of positive and negative, then the quadric is a
hyperboloid. If any are zero, then we have a quadric subtype that exists right on the border
of the domain of all ellipsoids or hyperboloids.

When all the squared terms are non-zero, we can translate the quadric to center it at the
origin, resulting in the further-simplified equation of the form

c0 + c4p
2
x + c5p

2
y + c6p

2
z = 0. (4.4)

Depending on the sign of c0 relative to the signs of the squared terms, hyperboloids can
either have one sheet or two sheets. They become cones when c0 = 0.

CHAPTER 4. QUADRIC SURFACE PRIMITIVES 43

If one of the squared terms is zero (say the z-axis term, c6; we can rotate the quadric so
that this is the case), then there is no “center” along that axis and translation cannot zero
the corresponding linear term. In this case, we have a paraboloid with a canonical equation
of the form

c0 + c3pz + c4p
2
x + c5p

2
y = 0. (4.5)

If the corresponding linear term also happens to be zero, we arrive at an equation without
reference to the axis with zero coefficients:

c0 + c4p
2
x + c5p

2
y = 0. (4.6)

This is an elliptical, hyperbolic, or parabolic cylinder.
If two of the squared terms are zero, the result is either a parabolic cylinder or (if the

corresponding linear terms are also both zero) a double plane, which has canonical form

c0 + c4p
2
x = 0. (4.7)

Finally, if all of the squared terms are zero, then we have a plane equation.
Rotationally-symmetric quadric types (circular cylinders, circular cones, spheroids, and

circular hyperboloids) have the same equations, with the added constraint that two squared
terms have the same coefficient, i.e. c4 = c5. In the case of a sphere, all the squared terms
are equal: c4 = c5 = c6.

Note that all quadric types besides ellipsoids and hyperboloids exist right on the boundary
of other, more general quadric types. For example, any elliptical cylinder (such as p2x+p2y = 1)
is an infinitesimal parameter change ε away from becoming an ellipsoid (e.g. p2x+p2y+εp2z = 1)
or hyperboloid (e.g. p2x + p2y− εp2z = 1) or paraboloid (e.g. p2x + p2y + εpz = 1). We can always
perturb the parameters of any elliptical cylinder by ε to arrive at an ellipsoid or hyperboloid,
but the parameters of most ellipsoids and hyperboloids cannot be perturbed by ε to arrive
at a cylinder. When fitting a quadric of a more general type, we allow the fitting result
to include bordering more-constrained types: For example, an elliptical cylinder is a valid
fitting result of ellipsoid-specific fitting. This simplifies our discussion, and avoids exclusion
of, or bias against, quadrics near the boundary of their quadric type. Enforcing the “true”
quadric type can always be done subsequently by perturbing the result by ε as needed. We
illustrate these boundary relationships in Fig. 4.2.

4.1.2 Algebraic Direct Fitting Methods and Taubin’s Method

Algebraic direct fitting methods are a standard class of methods commonly used for fitting
quadric surfaces [111]. In this work, we focus primarily on Taubin’s direct fitting method
[137], which has been shown to be an effective, nearly-unbiased direct method for quadric
fitting [24, 116, 41].

All algebraic fitting methods are based on the same simple idea: We can approximate
a difficult, non-linear error (like the true orthogonal distance from data points to a quadric

CHAPTER 4. QUADRIC SURFACE PRIMITIVES 44

Computer-Aided Design & Applications, 10(a), 2013, bbb-ccc
© 2013 CAD Solutions, LLC, http://www.cadanda.com

3

 Planes

 Double Planes Intersecting Planes

 Elliptical Cylinders Parabolic Cylinders Hyperbolic Cylinders

 Elliptical Paraboloids Cones Hyperbolic Paraboloids

 Ellipsoids Hyperboloids (2 sheet) Hyperboloids (1 sheet)

Fig. 2: A chart of quadric types, not including rotationally symmetric subtypes. Arrows indicate “is on
the boundary of” relationships: One quadric type is on the boundary of another if any quadric of the
first type can be perturbed by ε to create a quadric of the second type. These relationships are
transitive, so, for example, planes lie on the boundary of all other quadric types.

 We can then find an axis-aligning rotation of the quadric by way of an eigendecomposition:

=
TA RDR . In a rotated space T

r
p = R p the new quadric becomes

0
c+

T T
r r r
p Dp +(Rb) p . For any non-

zero squared term, we can also translate the quadric to center it at the origin along the corresponding
axis, which eliminates the linear term and thus results in a further-simplified canonical equation.

Figure 4.2: A chart of quadric types, not including rotationally symmetric subtypes. Arrows
indicate “is on the boundary of” relationships: One quadric type is on the boundary of
another if any quadric of the first type can be perturbed by ε to create a quadric of the
second type. These relationships are transitive, so, for example, planes lie on the boundary
of all other quadric types.

CHAPTER 4. QUADRIC SURFACE PRIMITIVES 45

surface) by a simple, linear approximation:
∑n

i=0wif(c,pi)
2 where f(c,p) is an error metric

that is linear in terms of the parameter vector c, and wi is a weighting per data point. Weights
wi are set propotional to the local surface area that point represents; we use Dunavant
Gaussian quadrature rules [31] to set these weights, as we discuss in Sec. 4.5. For general
quadrics, we use the algebraic function that implicitly defines the quadric surface, Eqn. 4.1,
as our “algebraic” error metric, f(c,p).

The scale of that linear error metric is arbitrary: Scaling the vector c scales the error
without changing the surface. All algebraic methods therefore normalize the error by some
quadratic normalization function, q(c), arriving at the error metric,

(∑n
i=0wif(c,pi)

2) /q(c).
This normalization function can also be viewed as a constraint function: It is equivalent to
minimize

(∑n
i=0 f(c,pi)

2) subject to the constraint that q(c) = 1. It is standard to require
that both the squared error and normalization are quadratic functions, which permits an
efficient solution: We define symmetric matrices M and N such that

∑n
i=0wif(c,pi)

2 ≡
cTMc and q(c) ≡ cTNc, and take the eigenvector c of the generalized eigenvalue problem
(M− λN)c = 0 with smallest eigenvalue λ as our solution.

Algebraic fitting methods are distinguished by their choice of quadratic normalization
function q(c). The choice of q(c) dramatically affects the quality of the results: A good
choice can result in a fit that is nearly as good as the best non-linear fit, while a poor one
will exhibit clear biases against large parts of the solutions space. For example, an ellipse-
specific normalization used for 2D conic fitting [39] biases against eccentric ellipses, leading
to a fitting result that becomes less eccentric as noise increases.

The best choices of q(c) in theory [116] and in practice [41] are Taubin’s method [137],
and the more recent HyperLS method [116]. HyperLS is marginally more accurate, but also
more complex and less intuitive. For this thesis we explain and use Taubin’s method.

Taubin’s method is to choose q(c) =
∑n

i=0wi||∇pf(c,pi)||2. This is based on Sampson’s
error, which is a first-order approximation of the squared distance d(c,p)2 from a point p to

a quadric c: d(c,p)2 ≈ s(c,p)2 = f(c,p)2

||∇pf(c,p)||2 [119]. We can view the algebraic error f(c,p)

as a product, f(c,p) = s(c,p)||∇pf(c,p)||, of Sampson’s error approximation multiplied by
the (arbitrary) magnitude of the gradient of f(c,p). This arbitrary gradient magnitude can
be seen as a bias term, weighting the algebraic error at each data point. If these bias weights
at the data points are smaller overall for some shapes, then the algebraic error will be smaller
for those shapes, leading to a bias toward those shapes. Taubin’s idea – normalizing by the
squared magnitude of these bias weights – counters the aggregate effect of this bias: For
example, when the bias weights are smaller overall, Taubin’s normalization q(c) is likewise
also smaller, countering the algebraic error’s bias towards the shape. For a rigorous analysis
of how well this approach removes bias, refer to the analysis of Rangarajan et al. [116].

For any given data set, we compute matrices M and N such that
∑n

i=0wif(c,pi)
2 ≡

cTMc and q(c) =
∑n

i=0wi||∇pf(c,pi)||2 ≡ cTNc. To do so, we define l(p) such that
l(p) · c =f(c,p) (we can always do so because f(c,p) is linear in c), and define li(p) as the
partial derivative of l(p) with respect to the ith dimension. Then M =

∑n
i=0wil(pi)l(pi)

T

and N =
∑n

i=0wi
∑3

j=1 lj(pi)lj(pi)
T. We compute Taubin’s error metric as: cTMc

cTNc
. Taubin’s

CHAPTER 4. QUADRIC SURFACE PRIMITIVES 46

method applies generally to many least squares fitting problems. We use it to fit customized
quadric functions and also kinematic fields in Sec. 4.3 and in Chapter 2.

4.2 Fitting method for hyperboloids, ellipsoids, and

paraboloids

Previous direct fitting methods for ellipsoids and hyperboloids have used algebraic fitting
with a custom normalization function q(c) to ensure that at least one of the resulting eigen-
vectors has the desired quadric type [3, 80]. These methods guarantee a hyperboloid or
ellipsoid, but the result may not be a good fit: The type-constraining normalizations intro-
duce more bias than Taubin’s method, leading to poorer fitting results in the presence of
noise, as shown in Fig. 4.3(a,c).

Others have proposed exploring the space of solutions returned by the fitting method:
While the best fit may not have the desired type, algebraic fitting uses a generalized eigen-
value method that returns a basis of solutions, and one of the other eigenvectors might have
the desired type [3]. However, these eigenvectors are not optimal in terms of fitting error – in
fact, even the second-best eigenvector tends to correspond to a very poor fit, as we illustrate
in Figs. 4.4 and 4.5.

Our approach is inspired by previous work in the domain of 2D conic fitting: Harker et
al. [55] showed that an effective approach for ellipse- and hyperbola-specific fitting is to rely
on the biased ellipse- or hyperbola-specific fitting methods to ensure the correct conic type
is found, but then compensate for the bias by searching a linear subspace of conics for a
better-fitting result.

In this section, we generalize the search method of Harker et al. to quadrics. We improve
the method by more carefully considering which subspace we should search, and we simplify
the search by introducing the observation that, when Taubin’s method does not return the
desired type, then the best fit is right on the boundary of that type; i.e. it is within ε of
being a paraboloid. This result also leads us naturally to a method to fit paraboloids, and
to constrain the number of sheets in the hyperboloid fit.

4.2.1 How to Define a Good Linear Subspace of Ellipsoids and
Hyperboloids

Our goal is to search a linear subspace spanning both hyperboloids and ellipsoids for the best
quadric of the desired type. First, we need to identify a good subspace to search: That is,
we need to identify two parameter vectors ca, cb, such that ca + tcb includes both ellipsoids
and hyperboloids – ideally, well-fitting ones. For example, if we have one parameter vector
ce that defines an ellipsoid, and another parameter vector ch that defines a hyperboloid,
then ce + tch is an acceptable subspace spanning both hyperboloids and ellipsoids; at t = 0,

CHAPTER 4. QUADRIC SURFACE PRIMITIVES 47

a b c d

Figure 4.3: Ellipsoid- and hyperboloid-specific fitting results for an 8th of an ellipsoid with
vertices perturbed by Gaussian noise (σ = 0.5% of bounding box size). We show the results
of Allaire et al.’s hyperboloid- and ellipse-specific fitting methods (a) and (c) respectively,
and our improved methods (b) and (d). Top row: Side view of mesh to be fit (blue) and
quadric fitting result (red). Bottom row: Heat maps of error of fit over mesh surface, with
error key on left. Errors are orthogonal distances from mesh surface to quadric, relative to
bounding box size, ranging from 3% outside (blue, bottom of key) to 3% inside (red, top of
key). Note the high-error regions in the center of (a) and corners of (c).

the original ellipsoid is reproduced, and as t → ∞, the original hyperboloid is reproduced
(because the scale of the quadric parameters has no effect on the shape).

We always let the first parameter vector ca be the best fitting quadric under Taubin’s
method, without type constraints; it will be within ε of being either an ellipsoid or a hyper-
boloid (because every quadric is, as shown in Sec. 4.1.1). For the second parameter vector,
cb, there are two natural strategies: We could use one of the remaining (not optimal) eigen-
vectors from Taubin’s fit, or we could use one of the biased, constrained fitting methods. The
subspace including the first- and second-best eigenvectors has the lowest maximum error of
all subspaces, because the Taubin error is bounded between the corresponding eigenvalues.
We find that when the data could be reasonably approximated by both ellipsoids and hy-
perboloids, this subspace tends to include both types and to span reasonable fitting results,
as shown in Fig. 4.4. If the data is very far from an ellipsoid, however, the subspace may
only include hyperboloids. A subspace generated from the output of biased fitting methods
can span poorer fitting results, but guarantee the resulting quadric type. We use a hybrid
strategy: First we search the space of the two best eigenvectors, and if this fails to include

CHAPTER 4. QUADRIC SURFACE PRIMITIVES 48

t = −10000 −2.099 −.7 −.4

t = 0 .5 14.5 10000

Figure 4.4: A sampling of the quadrics in a linear subspace ca + tcb, where ca and cb are
the best and second-best eigenvectors of Taubin’s fitting method applied to a section of a
sphere. In each image the quadric is shown in red, and the data (a section of a sphere) is
shown in blue. As parameter t goes from -10000 to 10000, the quadric shape goes through
hyperboloids of one and two sheets, ellipsoids, cones, and paraboloids. When t is near zero,
the quadrics approximate the data well.

the desired quadric type we fall back to using the biased fitting method to find the second
vector cb by constraining it to have the type that ca does not have.

In the fall back case, where a biased fitting method is needed, we follow the method
of Allaire et al. [3]. Allaire et al. build their constraints out of basis-invariant quadratic
functions of matrix A from the matrix form of the quadric (Eqn. 4.2) to guarantee that the
constraints themselves are basis invariant:

qAllaire(A) = α
∑

detP2 (A) + ηtr(A)2 , (4.8)

where
∑

detP2 (A) is the sum of the three principal second-order minors of A, and tr(A) is
the trace of A. This constraint, applied to a general quadric equation using the standard
algebraic fitting framework (Sec. 4.1.2), guarantees the fitting solution will include at least
one ellipsoid if α = 4, η = −1, and guarantees the solution will include hyperboloids if
α = 0, η = −1. Solving with this constraint will result in a set of eigenvectors; we evaluate
each eigenvector and take the best under Taubin’s error metric with the desired quadric type.
To efficiently determine if a quadric is an ellipsoid, we check that the second leading principal
minor of A is positive, and that the first and third leading principal minors of A have the

CHAPTER 4. QUADRIC SURFACE PRIMITIVES 49

0

0.2

0.4

0.6

0.8

1

1.2

‐2 ‐1.5 ‐1 ‐0.5 0 0.5 1 1.5 2

N
o
rm

al
iz
e
d
 E
rr
o
r

Interpolation parameter (tθ=atan(t))

Fitting Error for a Linear Subspace of Quadrics

Non‐linear error
(Average squared
distance from data
to quadric surface)

Taubin error

Figure 4.5: Fitting errors at samples of a linear subspace of quadrics formed from the best
two eigenvalues of Taubin’s method (visualized in Fig. 4.3 above). Interpolation parameter t
has been transformed by tθ = atan(t) to compress its range, and errors have been normalized
by the error at the worst-fitting quadric. Taubin error (red crosses) approximates the true
non-linear error (blue squares).

same sign. Note that previous work has suggested instead using the sign of the eigenvalue
corresponding to each eigenvector to determine the quadric type [80], but (as noted by that
work) doing so makes the fit unable to handle some shapes such as flattened ellipsoids. Our
approach of directly testing the quadric type of each eigenvector avoids this limitation.

4.2.2 The Best Ellipsoid or Hyperboloid is Always a Paraboloid
(if it isn’t the Best Quadric Overall)

Assume for this discussion that the best quadric under Taubin’s metric does not have the
desired type: Otherwise, we would have simply returned the result of Taubin’s method,
without the need for any additional constraints or searches.

We now show that when constraints are needed, for example because the best fitting
quadric is an ellipsoid and we want a hyperboloid, then the best quadric of the desired
type (e.g. hyperboloid) must be right at the transition point between quadrics: at some

CHAPTER 4. QUADRIC SURFACE PRIMITIVES 50

exact point t where the interpolated quadric becomes the quadric of the desired type. This
transitional quadric is a paraboloid (or on the boundary of a paraboloid). To prove this,
we first note that Harker et al. showed that the maxima and minima of Taubin’s error for
any linear subspace ca + tcb can be found by solving the roots of a quadratic equation in
the interpolation parameter t [55]. Because this error function is always non-negative, and
quadratic equations have at most two roots, it can only have one minima and one maxima.
Let c

′
a and c

′

b be the minima and maxima respectively, and consider the subspace c
′
a + tc

′

b.
This is equivalent to searching the original subspace ca + tcb: Due to scale invariance,
ca + tcb spans the full planar subspace s(ca + tcb), and any two different quadrics from this
planar subspace will span the same set of quadrics. In the limit as t → ∞ or t → −∞
the interpolated quadric c

′
a + tc

′

b becomes c
′

b, again due to scale invariance. Therefore the
maximum error is at the limits t→ ±∞, and the error is monotonic in the ranges t ∈ [0,+∞)
and t ∈ [0,−∞). When the minima does not have the desired type, it follows that within
each monotonic range the best quadric of the desired type must be on the boundary of
that type: If it were not, we could move t closer to 0 without changing the type and arrive
at a quadric of the desired type with lower error, thanks to monotonicity. Therefore, the
best quadric of the desired type overall is also on the boundary of that type – i.e., it is a
paraboloid.

This result is not an artifact of our choice to restrict our search to a specific linear subspace
of quadrics, since the reasoning applies to any linear subspace – including an optimal subspace
spanning the true best ellipsoid and hyperboloid. It is therefore a fundamental property of
Taubin’s metric on quadrics that the best quadric of a specific type is either the best quadric
of general type, or it is right on the boundary of the desired quadric type.

Note that the result is not specific to quadrics: Any linear subspace of parameters has
at most one maxima and one minima under Taubin’s error, regardless of the application, so
the logic of this section also applies to any other cases where Taubin’s error is used. For
example, it follows for 2D conics that the best ellipse or hyperbola under Taubin’s metric is
a parabola (if it isn’t the best conic overall).

4.2.3 Fitting Ellipsoids or Hyperboloids

If the desired type is returned by unconstrained Taubin fitting, then we just use that result.
Otherwise, we know that the best quadric of the desired type is at a transition (Sec. 4.2.2),
and we have selected a reasonable subspace of quadrics to search for that best quadric (Sec.
4.2.1). We now find all the transitional quadrics in our chosen subspace, and return the one
with the desired type and lowest error.

To search the subspace ct = ca + tcb for transitions between ellipsoids and hyperboloids,
we refer to the matrix form of the quadric expression (2.2) to express the subspace of the
quadratic coefficient matrices as an interpolated matrix At = Aa + tAb. We search for the
points t where At could change its positive- or negative-definiteness. Because eigenvalues of
any symmetric matrix are continuous with respect to the entries of the matrix [52], these are
the points where one or more of the eigenvalues is 0; i.e., where the matrix determinant is 0.

CHAPTER 4. QUADRIC SURFACE PRIMITIVES 51

To compute the determinant of At as a function of t, we express the determinant of
At with column vectors |At| =

∣∣a1 + tb1 a2 + tb2 a3 + tb3

∣∣ where ai and bi are the ith

column of Aa and Ab, respectively. We use the linear independence of the columns to expand
the determinant to a third degree polynomial:

|At| =
∣∣a1 a2 a3

∣∣+
(∣∣b1 a2 a3

∣∣+ ∣∣a1 b2 a3

∣∣+ ∣∣a1 a2 b3

∣∣) t+(∣∣a1 b2 b3

∣∣+ ∣∣b1 a2 b3

∣∣+ ∣∣b1 b2 a3

∣∣) t2 +
∣∣b1 b2 b3

∣∣ t3. (4.9)

The best quadric of the desired type is then (within ε of) one of the roots of this cubic
polynomial. If we want a hyperboloid, then it is simply the root with the lowest error under
Taubin’s metric. For an ellipsoid, we also require all non-zero eigenvalues of At to have the
same sign, to ensure it can be perturbed by ε to generate an ellipsoid.

When fitting hyperboloids, we may also wish to constrain the number of sheets in the
hyperboloid we fit. If the result of hyperboloid-specific fitting has the wrong number of
sheets, then Sec. 4.2.2 shows that the best hyperboloid with the desired number of sheets
must be at the boundary of the desired type. In this case, that means it must be (within
ε of) either a paraboloid or a cone. Therefore, if the initial fit does not have the desired
number of sheets, we separately fit a paraboloid (elliptical for two sheets, hyperbolic for one
sheet; see Sec. 4.2.4) and cone (Sec. 4.3.3) to the data, and take whichever has the lowest
Taubin error.

4.2.4 Fitting Paraboloids

Because the hyperboloid and ellipsoid fitting method above already finds well-fitting
paraboloids, it seems natural to use the same approach for paraboloid-specific fitting. Any
quadric is within ε of a paraboloid if its matrix of squared coefficients A is singular; i.e. if
|A| = 0. Therefore, the roots of Eqn. 4.9 are all the paraboloids in a linear subspace of
quadrics. We use the linear subspace of quadrics formed by the best two eigenvectors of
Taubin’s method, and take the quadric corresponding to the root of Eqn. 4.9 with the lowest
Taubin error as our paraboloid-specific fit.

To fit elliptical paraboloids specifically, we search the subspace including both ellipsoids
and hyperboloids found in Sec. 4.2.1; this subspace must also include elliptical paraboloids
because the quadric type on the boundary between hyperboloids and ellipsoids is the elliptical
paraboloid (Fig. 4.1).

To fit hyperbolic paraboloids specifically, we first search the space of the best two eigen-
vectors, which appears to always include hyperbolic paraboloids in practice. However, since
this is not a mathematical guarantee, in the event that no hyperbolic paraboloid is found,
we suggest fitting a hyperbolic cylinder (Sec. 4.3.2) – the most general quadric type on the
boundary of hyperbolic paraboloids (Fig. 4.1) – based on the intuition of Sec. 4.2.2. An
example of hyperbolic paraboloid fitting is shown in Fig. 4.6.

CHAPTER 4. QUADRIC SURFACE PRIMITIVES 52

a b c

Figure 4.6: Data from a hyperbolic paraboloid (blue) fit with a quadric (red). (a) Noise-free
data. (b and c) Data with Gaussian noise (σ = 2% of bounding box size). (b) General quadric
fitting finds a hyperboloid. (c) Paraboloid-specific fitting finds a hyperbolic paraboloid.

4.3 Fitting methods for lower-dimensional quadric

types

Ellipsoids and hyperboloids exist in a high-dimensional parameter space with 9 degrees of
freedom (having 10 unconstrained, but scale-invariant, parameters). The remaining quadric
types all exist in simpler sub-spaces with fewer degrees of freedom [103]. The key to efficiently
fitting these quadric types is to express the quadric with fewer parameters, such that only
quadrics of the specified type can be generated, and then apply the standard algebraic fitting
procedures of Sec. 4.1.2 on that parametrically-reduced form. For example, for planes and
spheres we can simply drop and combine terms from the standard implicit quadric function
to arrive at a plane- or sphere-specific function (e.g. c0+c1px+c2py+c3pz+c4(p

2
x+p2y+p2z) = 0

for spheres).
For most other lower-dimensional quadrics, the required low-dimensional space is more

complicated: For example, there is no known linear least-squares method to fit circular
cones and cylinders to a point cloud using just point positions [103]. However, there are
linear least-squares methods for fitting such shapes to point clouds with normals [86]. For
dense point clouds and polygonal meshes we can estimate normals (e.g. by local plane fitting,
or averaging triangle normals), and then use a two-step process to fit the quadric. First, we
estimate key parameters of the quadric using a direct “kinematic surface fitting” procedure
that can determine properties such as a rotation symmetry axis (for a rotationally symmetric
quadric), the direction in which the shape does not change (the axis of a cylindrical shape),
or the central point of scaling (for a general cone) (Chapter 2). Second, we transform the
data to a more convenient space and perform the standard algebraic fit in that space. In
the transformed space, it is possible to reduce the quadric parameters as we did for planes
and spheres. For example, to fit general cones we translate the data so that the cone apex is
at the origin, and then fit a quadric with the linear and constant parameter terms dropped:
c4p

2
x + c5p

2
y + c6p

2
z + c7pxpy + c8pxpz + c9pypz = 0 (Sec. 4.3.3).

CHAPTER 4. QUADRIC SURFACE PRIMITIVES 53

4.3.1 Kinematic field fitting

Kinematic surface fitting is another type of fitting procedure, typically aimed at recon-
structing surfaces of revolution, general cylinders, or other shapes that can be generated by
sweeping a general profile curve along a simple, linear velocity field. We explain kinematic
surface fitting in greater detail in Chapter 2, where we use it to fit stationary sweeps. It is
performed in two stages: First, fitting a “kinematic field” that defines the parameters of the
sweep motion, and second, using that field to transform the points into a shared plane in
which the profile curve can be fit. For quadric fitting, we focus on the first stage – fitting a
motion field – to find some property of the desired quadric type: the axis of invariance for
the cylinder, or the axis of rotation for a spheroid, or the central point of the scaling for a
general cone. We can then use that to transform the data to a space where the type-specific
quadric fitting problem is easier to specify.

Kinematic motion fields are linear functions v(p) that define a velocity field everywhere
in space. For our quadric fitting catalog we use three specific field types (Fig. 4.7): first, the
simple general cylinder field due to [115], which defines a constant motion field:

v(p) = a, (4.10)

where a is a parameter vector defining the direction of the motion field. Second, we use the
rotational field due to [108], which defines a rotational (or helical) motion:

v(p) = r× p + a, (4.11)

where r and a are parameter vectors encoding the rotation axis and position of the axis (plus
helical motion, if any). And finally, we use a scaling field, which defines a scaling motion:

v(p) = γp + a, (4.12)

where γ is a parameter defining the scaling and a is a parameter vector encoding the center
of the scaling.

To fit a field, we need data points that include both position and normal information.
(Normals, if unavailable, can be approximated for dense point clouds [15]; for meshes we
use area-weighted vertex normals.) Data points fit the field if they define a surface that
is tangent to the field, which we characterize by the error function f(p,n)= v(p)·n. In
Chapter 2, we show that an effective direct solution to this fitting problem for any field
is to apply Taubin’s method (Sec. 4.1.2), with

∑n
i=0wi(v(pi) · ni)2 ≡ cTMc and q(c) =∑n

i=0wi||v(pi)||2 ≡ cTNc, where c is a vector concatenating all parameters defining the

motion field (e.g. for scaling, c = [γ, ax, ay, az]
T).

4.3.2 Fitting Cylinders

Cylinders of any subtype can be fit in two steps: First, we fit a general cylinder field to find
the invariant axis of the cylinder, along which the cross section does not change. Next, we

CHAPTER 4. QUADRIC SURFACE PRIMITIVES 54

a b c

Figure 4.7: Red streamlines showing motion fields of (a) Eqn. 4.10, (b) Eqn. 4.11, and (c)
Eqn. 4.12, fit to mesh data.

rotate all points so that this axis is aligned with the z-axis. We then fit a conic of the desired
type to the points: i.e., for a circular cylinder, we fit a circle; for an elliptical cylinder, we
fit an ellipse. For circle fitting, we fit the equation c0 + c1px + c2py + c4(p

2
x + p2y) = 0 directly

using Taubin’s method. For other types, we use the methods from Sec. 4.2 (adapted from
Harker et al. [55]) for type-specific conic fitting, as explained below. The resulting conic
equation, evaluated in 3D, is a cylinder along the z-axis. We finally rotate the cylinder back
to the original basis.

In full detail, the type-specific conic fitting method adapted from Harker et al. [55]
and Sec. 4.2 proceeds as follows. First, we fit using Taubin’s method, and check the type
of the best fit result. If it is the correct type, we return that and stop. Otherwise, we
use biased fitting to find some (sub-optimal) conic of the desired type; specifically, we use
the constraint function qFitzgibbon(c) = 4c4c5 − c27 [39]. We search the subspace between the
best fit conic using Taubin’s method, ca, and the biased fit of the desired type, cb, for an
improved fit of the desired type. Now we define Aa and Ab as 2 × 2 matrices of quadratic

terms terms, of the form A =

(
c4 c7/2
c7/2 c5

)
(analogous to the 3 × 3 of Eqn. (2.2)), and

define At ≡ Aa + tAb. Sec. 3.2 shows that a well-fitting conic of the desired type should be
at the transitional parabola where the conic changes type. This is a point where |At| = 0.
With ai and bi defining the ith columns of Aa and Ab respectively, we solve for the roots
|At| =

∣∣a1 a2

∣∣ +
(∣∣b1 a2

∣∣+ ∣∣a1 b2

∣∣) t +
∣∣b1 b2

∣∣ t2 = 0, and take the root with lowest
Taubin error.

4.3.3 Fitting General Cones

To fit a cone, we first find the center point of scaling by fitting the kinematic scaling field
v(p) = γp + a. The center of scaling is −a/γ. Note that if |γ| is very small, then division
by γ becomes unstable. In the limit as γ approaches zero, the center of scaling moves
infinitely far from the origin, so the cone becomes a cylinder. We therefore define a threshold
tcyl = 10−6, and if |γ| < tcyl, we consider the best cone to be a cylinder. If a cylinder is an
acceptable result of cone-fitting, then we can fit an elliptical cylinder instead of a cone (see
Sec. 4.3.2). Alternatively, if a cylinder is not an acceptable result, we can instead take the

CHAPTER 4. QUADRIC SURFACE PRIMITIVES 55

a b c

Figure 4.8: An image-based reconstruction of a sculpture has a noisy cone as its base (a).
We select the base (blue) and fit quadrics (red). (b) Without type specific-fitting, the result
is a hyperboloid with a non-zero neck at the top. (c) With cone-specific fitting, the result is
an exact cone.

best eigenvector returned by algebraic fitting with |γ| > tcyl.
Once some (non-infinite) cone center is chosen, we can translate the points so that the

cone center is at the origin, and fit a centered cone quadric equation c4p
2
x + c5p

2
y + c6p

2
z +

c7pxpy + c8pxpz + c9pypz = 0 using Taubin’s method. Finally, we translate the resulting
quadric back to the original space.

4.3.4 Fitting Rotationally Symmetric Quadrics

To fit a rotationally symmetric quadric, we first find the axis of rotational symmetry by
fitting the rotational field v(p) = r× p + a. We normalize the resulting parameters by
dividing both a and r by ||r||, and then find a point on the axis of the rotational field
pr = r × (a − (a · r)r). If ||r|| is very small, then normalizing by ||r|| is unstable. When
||r|| = 0, the field becomes a pure translation and therefore has no rotation axis. To handle
small values of ||r||, we use a threshold tcyl = 10−6: If ||r < tcyl|| then we assume the best
motion is approximately a pure translation, i.e. a cylinder, so we fit a circular cylinder (see
Sec. 4.3.2). If a cylinder is not desired, we can alternatively take the best eigenvector with
||r|| > tcyl. Once the axis of rotation is known, we transform the data so that the z-axis is
aligned with the rotation axis, and the point pr is at the origin. We then fit the equation
c0 + c3pz + c4(p

2
x + p2y) + c6p

2
z = 0 for a general quadric with rotational symmetry, and finally

transform the result back to the original basis. We can directly apply the methods of Section
3 to further constrain the quadric type.

For circular cones we either find the center of scaling and make that pr, then fit the

CHAPTER 4. QUADRIC SURFACE PRIMITIVES 56

Figure 4.9: Strokes (in yellow) are used to initialize various quadric fits on a variety of shapes.
The quadric is shown in red, and the given input triangles are shown in green.

simpler equation c4(p
2
x + p2y) + c6p

2
z = 0, or we can alternatively rotate the data points to a

shared plane and fit a 2D line to find the angle of the cone. Note that quadric cones are in
fact two cones connected at the tip, and this second method ignores the possibility that the
data points may come from both cones; but it may be desirable in the common case where
only one of the two cones is desired in the fit.

For spheres we directly fit the equation c0 + c1px + c2py + c3pz + c4(p
2
x + p2y + p2z) = 0 [2].

For planes, we translate the data to its centroid and fit the equation c1px + c2py + c3pz = 0
[101]. We handle double planes and intersecting planes by just applying multiple plane fits,
because we always prefer single-plane solutions.

4.4 User-Guided Segmentation and Fitting

We use a simple, user-guided system to allow the user to select and fit a quadric surface. The
method is essentially the same as the stationary sweep selection method in Chapter 2. The
user makes a stroke on the display to designate a surface region for extraction, and presses
the “select quadric” button. The data under the stroke is selected, and then the system
iteratively (a) fits a quadric to the selected data points, and (b) locally grows the selection
to any neighboring data points that are as close to the fitted quadric as the originally-selected
data points are. For our flood-fill process, we use two metrics to test whether a given input
point and normal is a match with the current quadric surface: the distance to the quadric
surface, and how parallel surface normal is to the gradient of the quadric: | ∇f(p)||∇f(p)|| · n| − 1.
We only grow the selection to a new point if it is closer than a threshold to the quadric
by both metrics; we set this threshold as the maximum distance of the user-selected points
to the fitted quadric. This simple method provides a quick, effective method for selecting
quadrics on many different surfaces; we show a number of results using general quadric fitting
in Fig. 4.9. As with the user interface in Chapter 2, the user can make additional strokes
to expand the selection, and these additional strokes also allow the user to fit disconnected
parts of the surface with the same quadric. Further refinement of the selection is possible
using the general sketch-based segmentation techniques discussed in Chapter 6.

CHAPTER 4. QUADRIC SURFACE PRIMITIVES 57

a b c

Figure 4.10: (a) A user has made a small stroke (yellow) on a mesh surface (top row: teapot;
bottom row: moonbus), to select a quadric surface under the stroke using our simple region
growing method. In (b) and (c), we show the fit quadric (red) and wireframe views of the
mesh (selection in blue); (b) shows the result of general quadric fitting; (c) shows the result
when a preference for rotationally symmetric quadrics is added.

Quadric type-preferences expressed by the user, in addition to guaranteeing the quadric
type, have the additional benefit that they can help disambiguate the quadric selection
process. Our convenient, simple selection method faces inherent ambiguity both in the best
directions to grow the selection (Fig. 4.10, top row) and how much error should be accepted
in order to fit a larger region (Fig. 4.10, bottom row). A user’s preference for a quadric of a
specific type or with a specific property, like rotational symmetry, can reduce that ambiguity
(Fig. 4.10c).

Preferences for quadric types can either be absolute, or heuristic: If the user’s type-
preference is absolute, we simply replace general quadric fitting with the appropriate type-
specific fitting method. Otherwise, the user can specify how much additional error they will
accept in exchange for a simpler quadric type; the system will fit both the simpler type and
the general type, and use the simpler fit only if its error is within the user’s additional error
threshold of the general fit.

CHAPTER 4. QUADRIC SURFACE PRIMITIVES 58

4.5 Implementation Details

Each direct fitting method we describe involves simply solving generalized eigenvalue prob-
lems, and in some cases finding the roots of a cubic or quadratic equation. Generalized
eigenvalue problems can be solved with standard linear algebra packages (we use LAPACK
[4]), but some care must be taken to ensure good results.

First, care must be taken to avoid numerical instability. We observed some cases in
which floating point error resulted in an incorrect ordering of the eigenvalues of a generalized
eigenvector problem cTMc = λcTNc for clean data with low noise. To ensure that the best
eigenvector is chosen, we disregard the computed eigenvalues and instead directly compute
Taubin’s error metric for each eigenvector. We then choose the eigenvector with lowest error
(ignoring eigenvectors of the wrong quadric type, if the constraint matrix N was intended
to constrain the quadric type). We also use double precision floating point numbers for
computation, and center and re-scale the data points (to a unit-sized bounding box) before
fitting.

Another important implementation detail is the method of sampling of the original sur-
face. When fitting segments of a polyhedral mesh, we have two reasonable options: We could
sample the error at vertices, or we could integrate the error over the surface of the mesh.
Sampling error at vertices makes it easier to smooth noise implicitly, for example by using
averaged vertex normals. It also leads to more intuitive results if the vertices represent true
samples from an original surface, which is often the case. However, integrating the error over
the surface of the mesh can greatly reduce ambiguity in the case of sparse, non-uniform sam-
pling, as shown in Fig. 4.11. In our tests, we found that the reduced ambiguity can greatly
improve robustness when fitting implicit quadric equations.

For ease of implementation, we perform integration over a polyhedral mesh by trian-

a b c d

Figure 4.11: (a) Dunavant’s integration points. (b) A wireframe view of a mesh with sparse,
non-uniformly distributed vertices. (c) Fitting result when error is measured only at vertices:
A double-plane quadric that exactly interpolates the vertices. (d) Fitting result when error
is integrated over mesh surface.

CHAPTER 4. QUADRIC SURFACE PRIMITIVES 59

gulating the mesh and using Dunavant’s Gaussian quadrature rules [31]. This is simple to
implement because it is exactly like fitting with discrete points: We just generate six sample
points per triangle (at barycentric co-ordinates given by Dunavant) and weight each point
according to Dunavant’s rules. Because the error function (a squared quadratic) is a quar-
tic polynomial in terms of position, Dunavant’s six-point rule correctly integrates the error
without approximation.

60

Chapter 5

Smooth Surface Primitives

Smooth surface primitives are very general, and can fit any surface. In our framework,
smooth surfaces primitives serve three main purposes: (1) to surpress detail in a user-selected
area (Fig. 5.1b), (2) to create smooth blends between parts (see Chapter 10), and finally (3)
with detail-preservation enabled, to act as a generic default primitive. The third mode, as a
generic default primitive fit to the unselected portions of the surface, allows the user to edit
other parts of the shape while maintaining continuity across the detail-preserving smooth
surface, as shown in Figs. 5.1c and 5.4.

All our smooth surface operations can be done with existing methods [12, 132]. In this
chapter, we review the existing smooth surface primitive methods, and explain the trade-offs
between these methods in the context of our system. We detail the method we chose to
use [12] for our prototype system, and present results of this method in the context of our
framework.

a b c

Figure 5.1: (a) The elephant’s ear region is selected; (b) when optimized as a thin-plate
spline, all surface details get smoothed away. (c) The ear is fixed in place as a constraint,
and the foot marked by the blue patch is moved; continuity between the blue and yellow
patches and the rest of the shape (gray) is preserved by Laplacian-preserving surface editing.

CHAPTER 5. SMOOTH SURFACE PRIMITIVES 61

5.1 Background

There are many types of smooth surface primitive: for example, NURBS patches, subdivision
surfaces, and PDE surfaces [141, 12]. We can categorize these methods based on a few
important distinctions: (a) Linear vs. non-linear surfaces; (b) methods where the result
is strongly tied to a mesh/network topology, or independent of it; and finally (c) methods
that preserve surface detail by storing displacements, or by storing surface curvatures or
Laplacians. In this section, we explain the tradeoffs inherent in these distinctions, and why
these tradeoffs lead us to favor mesh-based PDE surfaces for our system.

5.1.1 Linear vs. Non-Linear Surfaces

Linear smooth surfaces define a smooth surface as a linear combination of some basis func-
tions, so that the position of any point on the final smooth surface can be expressed as a
linear combination of some control points. The weights may be determined by a polynomial
(for linear spline patches), recursive subdivision rules (for subdivision surfaces), or a linear
system (for PDE surfaces). Weights may be defined over the surface, generally over space
[30], or in reference to some enclosing “cage” surface [122, 64]. These weights can be com-
puted quickly, and provide predictable control: Control point movements always move the
surface in the same direction as the control points, and no further than the control points
move. However, the resulting surface may not always be smooth: The surface can have sharp
creases in it. For example, if the control points of a 3D shape all lie in a flat plane, then
any linear combination of those points (and thus any point on the smooth surface) will also
lie in that flat plane; for any shape with a front and back (e.g., for a sphere, but not a disc
with open boundary), this will cause a sharp, “fold over” crease at the transition between
the front and back of the shape [97].

Non-linear smooth surfaces typically define a surface by means of a geometric “functional”
that is minimized by the surface: For example, the surface may be defined to minimize
bending energy, or variation of curvature, or any of a number of other options [65]. In
contrast to linear smooth surfaces, this can guarantee that the surface is smooth everywhere.
However, these surfaces are typically much more expensive to compute, and thus very difficult
to include in an interactive system. Furthermore, they can be unpredictable to control –
in the worst case, the surface can potentially diverge to an infinitely large surface. We
are not aware of an interactive, non-linear smooth surface solver that always converges:
We found that the only solver that works at interactive rates, “FiberMesh” [96], fails to
converge on a number of simple examples shown in Fig. 5.2. For any user-guided system,
we believe stable behavior and fast performance are extremely important, and non-linear
smooth surface solvers are still not quite up to the task.

CHAPTER 5. SMOOTH SURFACE PRIMITIVES 62

Figure 5.2: Non-linear formulations for smooth surfaces are very difficult to make fast and
stable. We show simple cases where a state-of-the-art non-linear smooth surface method,
FiberMesh [96], fails to converge in a number of simple configurations. In this figure, the
thick blue or red curves are constraint curves: The FiberMesh surface interpolates these
curves, and users edit the surface by adding or moving these curves. The top row shows
an example where horizontally dragging a constraint curve drawn on an ellipsoid causes the
surface to diverge to infinity. The bottom row shows configurations in which the FiberMesh
system produces an oscillating surface that never converges.

5.1.2 Topology-Dependence

Linear smooth surfaces based on spline or subdivision surfaces are defined by a patch network
(for splines), or base mesh (for subdivision surfaces), that may need to be fairly dense to
accurately capture a complex shape. The vertices of this network or mesh are then the
control points used to edit the smooth surface. The exact structure of this network or mesh
affects the quality of the resulting surface, and the degrees of freedom available to edit
that surface. Automatic systems for reverse engineering a shape to subdivision or B-Spline
surfaces [60, 32, 84] tend to give networks that are not ideal for shape redesign – either
because they do not provide the desired degrees of freedom, or because they are overly dense
and therefore tedious to edit. Krishnamurthy and Levoy [75] developed an artist-centered
system for fitting a B-Spline network to a dense triangle mesh, and found that the artists
wanted to completely control the spline network layout by specifying it up-front – a task
that requires substantial user interaction and expertise.

PDE surfaces on meshes [12], as well non-linear smooth surface methods [96], and methods
that define deformations over space [30] or in reference to a separate control cage [122], in
contrast, can separate the degrees of freedom of the surface from the control points used to

CHAPTER 5. SMOOTH SURFACE PRIMITIVES 63

edit the surface: One can increase the degrees of freedom by increasing the mesh resolution
independently of the number of control points exposed to the user. Furthermore, the user has
the ability to pick sparse, arbitrary control points based on their intent, without needing to
form any coherent mesh topology connecting those control points. This approach completely
avoids the need for any reverse-engineering system to guess the degrees of freedom and control
points desired by the user. These advantages come at a higher computational cost, and less
accuracy: Spline and subdivision surfaces can be evaluated quickly and exactly at any point,
while mesh-based PDE surfaces are evaluated by the finite element method, which requires
the solution of a large sparse matrix, and is an approximation. Non-linear smooth surfaces
are likewise typically found by an optimization algorithm that relies on some approximation.

For our prototype system, we prefer the simplicity of a topology-independent approach.
Mesh-based PDE surfaces, while slower to evaluate than traditional spline surfaces, are still
typically fast enough for interactive use. The primary weakness of this approach is accuracy:
We were not looking in depth at applications where exact solutions are critical, but if we
were, it likely would have been worth exploring a subdivision surface approach as well.

5.1.3 Detail-Preservation Methods

Space warp approaches like free-form deformation [122], which define smooth deformations
over space, automatically preserve detail. In contrast, surface-based approaches often de-
compose a surface into a smooth part and a separate encoding of surface detail. There are
two common, high-level approaches to preserving fine-scale details alongside a smooth sur-
face representation: One can store a displacement map that records details as local offsets in
the direction of the surface normal, or one can store a map of local bending (or Laplacians)
of the surface. Of surface-based approaches, the displacement map approach is perhaps con-
ceptually simpler, and very easy to compute on the fly (one can even implement it on the
GPU as a shader). However, it is more limited in the kind of detail it can preserve: The
detail must effectively be a “height field” with respect to the smooth surface, i.e., a displace-
ment map cannot faithfully preserve details when the angle between the smooth surface and
the corresponding detail surface exceeds 90 degrees. Methods that preserve local bending of
a surface are more general in the type of detail they can preserve.

Preserving “local bending” or a surface Laplacian can be done in several ways. The
easiest way, “Laplacian surface editing” [132], is to preserve the discrete Laplacian vector
at each vertex of a mesh. This method is relatively easy to compute – only requiring the
solution to a sparse linear system – but it preserves details with respect to an absolute, not
surface-relative, orientation, which leads to unintuitive results when the control points are
rotated. Preserving the Laplacians in a surface-relative orientation is harder to get right,
and doing so without artifacts turns out to be fundamentally a non-linear problem [13]. One
simple, iterative approach is the “as-rigid-as-possible” surface deformation method, which
iteratively (a) solves for the surface with Laplacian vectors in an absolute orientation, and
(b) finds a locally-rigid rotation to re-orient the Laplacian vectors [131]. Unlike non-linear
smooth surfaces, this iterative solution is proven to always converge towards the correct

CHAPTER 5. SMOOTH SURFACE PRIMITIVES 64

solution – and though it may take an arbitrarily large number of steps to do so in theory, in
practice researchers have reported that these systems converge fast enough to be interactive
for surfaces with tens of thousands of vertices [14]. For our prototype system, for simplicity
we just use the basic Laplacian surface editing method, but a more complete system should
ultimately use a non-linear method to correct the Laplacian orientations.

There is one inherent limitation for both of these approaches: The smooth surface must
topologically match the detailed one, without any additional holes or tunnels. To preserve
the details of a completely arbitrary surface, while deforming the surface analogously to a
smooth surface, one needs to establish a more global smooth mapping between the smooth
surface and nearby space. One practical method to do this has been described in detail by
Peng et al. [102].

5.2 Implementation

Because our prototype system is focused on surface mesh inputs, the mesh-based PDE surface
primitive of [12] was a natural fit. This method is implemented as follows: Given some
selection of the mesh that we wish to treat as a smooth surface, we create the desired
smooth surface by triangulating the selection and solving for the surface where each free
vertex satisfies ∆k(p) = 0 for k typically equal to 2 or 3, where ∆ is a discrete Laplacian
operator. Specifically, the higher-order Laplacian is defined recursively at a mesh vertex as

∆k(u) =
∑
i

wi(∆
k−1(u)−∆k−1(vi)) , (5.1)

where vi are the one-ring neighbors of vertex u, ∆0(u) = u and wi are the cotangent
weights [104] scaled by the inverse Voronoi area the vertex (as defined by Meyer et al. [92]).
Cotangent weights are computed in a fixed initial domain and held constant to linearize
the system – resulting in a surface that smoothly interpolates positions of constrained or
boundary vertices, using the original mesh as a base domain. (Avoiding this linearization
would result in a non-linear surface with the performance and convergence problems discussed
in Sec. 5.1.1.) By formulating this equation for all unconstrained vertices in a mesh, we obtain
a sparse, symmetric positive-definite linear system of the form Ax = b, which we factor and
solve with a sparse direct Cholesky method [21].

To preserve detail, we preserve the surface Laplacians [132]. For simplicity, in our current
implementation we do not rotate the Laplacian vector, so we can preserve Laplacians with
a simple extension of the mesh-based PDE surface: Instead of solving for the surface where
∆k(p) = 0, we solve for the surface where ∆k(p) = ∆k(porig), where ∆k(porig) is the kth-order
Laplacian of the original, detailed surface.

The order of the Laplacian, k, trades off two considerations: (1) As k increases, the
linear system defining the surface becomes more dense and has a larger condition number,
thus requires more time to solve and is more likely to face issues with numerical instability,
but (2) for smaller k, the surface is less smooth at constraint boundaries: The surface will

CHAPTER 5. SMOOTH SURFACE PRIMITIVES 65

a b c

Figure 5.3: A surface that was originally a cylinder is solved as a smooth surface without
detail preservation, with Laplacian order (a) k = 1, (b) k = 2, and (c) k = 3. Laplacian
order k = 1 results in a linearized minimum-area surface, which cannot guarantee continuity
with boundaries and tends to collapse tubes; Laplacian order k = 2 is a linearization of
minimizing bending energy, which still tends to collapse tubes slightly; Laplacian order
k = 3 is a linearization of minimizing curvature variation, and tends not to collapse tubes.

a b c d

Figure 5.4: (a) A botijo model is approximated as a surface of revolution; (b) the corre-
sponding profile; (c) edited profile, and (d) the resulting shape. The handles, modeled as
detail-preserving smooth surfaces, move with the changes in the body.

CHAPTER 5. SMOOTH SURFACE PRIMITIVES 66

maintain Ck−1 smoothness at boundaries, so for k = 0 there may be sharp creases at the
boundary. In addition, surfaces with k < 3 tend to collapse tube-like shapes, as we illustrate
in Fig. 5.3. This effect is mitigated somewhat by detail-preservation: The bending necessary
to keep the tube straight will be preserved in the Laplacian detail vector, ensuring the tube
does not collapse.

When detail preservation is not used, our smooth surface solver can be used to suppress
details on the input shape. For example, in Fig. 5.1a, the user selects the portion of the
mesh that covers the elephant’s ear (blue). The user clicks the “smooth surface” button,
and our system re-models the ear with our smooth surface solver, removing all the details
and resulting in Fig. 5.1b.

When detail-preservation is enabled, the smooth surface solver allows us to edit parts of
a shape while automatically maintaining continuity with adjacent parts. Fig. 5.1c shows how
this capability can be used to preserve continuity and smoothness in the right fore-leg of the
elephant when the foot (marked by the blue patch) is moved, while the yellow surface serves
as an anchor. This is especially useful in combination with other primitive-editing methods:
For example, in Fig. 5.4 the user edits the body of a Botijo model using the stationary sweep
module, and the handles are automatically updated by our system using a detail-preserving
smooth surface, so that their connection points to the body are maintained.

67

Chapter 6

General User-Guided Segmentation

In Chapters 2 to 4, we discussed segmentation in the context of finding selections of a
surface that fit specific primitive types. In this chapter, we discuss the general user-guided
segmentation problem, to allow us to tackle cases in which the segmentation is not closely
tied to a specific modeling primitive. This is useful when a user wants to edit a surface with
a primitive type that does not fit the surface closely, as in Fig. 2.15, or when the user wants
to use the smooth surface solver to smooth or move an arbitrary part of the surface, as in
Fig. 5.1.

Efficient methods for user-guided segmentation have been studied primarily in the context
of “mesh cutting” – selecting parts of a mesh to pull off and re-attach to another surface,
resulting in novel shapes [45, 37]. Rather than focus on primitive fitting, typically these
methods aim to segment “natural” parts of a model by aligning segment boundaries with
mesh features such as creases on the mesh surface. In this chapter, we give a brief overview
of recent work in this field, and highlight an existing method [63] that we believe is a good
match for user-guided inverse 3D modeling.

6.1 Overview of Methods

We categorize methods for user-guided segmentation by the method of user interaction.
To evaluate the trade-offs between these methods, we rely on a pair of user studies [89,
37] evaluating best-of-class algorithms for each interaction type on a number of metrics,
including the speed at which users can perform segmentation, the accuracy with which they
perform segmentation, and the users’ own senses of how easy the methods are to use. We use
these study results as a guide to evaluate the different segmentation methods in the context
of our own inverse 3D modeling system, and in doing so identify a technique well-suited to
our system.

The method of user interaction in all these systems is that users either (a) mark what is
inside and (optionally) outside the desired segment [63, 36], or (b) mark where the segmen-
tation boundary should be placed [154, 90, 155]. Methods for marking the boundary include

CHAPTER 6. GENERAL USER-GUIDED SEGMENTATION 68

stroking along the boundary [90], across the boundary [154], or simply clicking a point on
the boundary [155]. A recent user study comparing these approaches [37] found that mark-
ing the boundary was faster, and (when stroking along the boundary) perceived as easier to
use, but less accurate than marking inside (and outside) the segment by a wide margin – the
boundary markings gave a reasonable initial segmentation, but users found it more difficult
to adjust the segmentation with additional markings.

For our purposes, a problem with boundary marking systems is that they achieve usability
by making large assumptions about the user intent: The user can stray quite far from the
“natural” segment boundary, and the system will still snap back to that “natural” boundary.
This is valuable because it avoids the need for the user to make highly precise inputs with
an imprecise tool like a mouse, but it also makes the tool potentially frustrating to use if the
system’s idea of a “natural” boundary doesn’t match the user’s design goal. The user study
comparing these segmentation methods [37] specifically focused on part-like segmentations
selected from a Princeton ground truth segmentation database [20], and therefore assumed
that all users want to make selections of “natural” object parts. However, in some cases a user
may prefer a different type of segmentation, depending on their design goal. Some systems
use a bi-modal approach, allowing the user to choose if they are selecting “parts” or “patches”
(flatter segments bounded by creases) [154, 36], but in our context the user’s selection may
not correspond cleanly to either concept – the user selection is simply a section of the model
that the user wants to redesign with one of our user-guided inverse modeling modules. In
constrast to boundary marking systems, systems that use inside/outside markings typically
do not second-guess the user input: It is hard to mark a boundary exactly, but much
easier to ensure a stroke stays inside (or outside) the desired segment, so systems that use
inside/outside markings can typically respect the user’s input exactly.

Of the methods that work by the user marking inside (and optionally outside) the desired
selection, the results of two user studies indicate that responsiveness to user input is the most
important feature. The first user study [89] examined only systems that required both inside-
selection and outside-selection strokes [63, 76, 148, 16], and found the best tool was “Easy
Mesh Cutting” [63]: a very simple method, that – thanks to its simplicity – was also the
fastest and therefore most responsive. The second study [37] compared “Easy Mesh Cutting”
with a new system, “Paint Mesh Cutting” [36], which gave immediate feedback without
requiring any outside-selection strokes, and found that “Paint Mesh Cutting” performed
even better still. (Note that “Paint Mesh Cutting,” as originally presented, does not allow
outside-selection strokes to indicate where the selection should not go, but one could easily
add support for such strokes – in the simplest approach, by simply switching to Easy Mesh
Cutting as soon as any such strokes are made.)

In the context of our system, general user-guided segmentation is largely a fall-back to
handle cases for which primitive-specific segmentation is insufficient to meet the user’s needs
(e.g., Fig. 6.1). For these cases, the user will already have drawn inside-selection strokes,
and will want to reduce an over-inclusive segmentation. This is a scenario where requiring
outside-selection strokes seems very natural, so “Easy Mesh Cutting” seems like the natural
paradigm.

CHAPTER 6. GENERAL USER-GUIDED SEGMENTATION 69

6.2 Easy Mesh Cutting

We have chosen “Easy Mesh Cutting” [63] as an effective, simple algorithm that fits well
with our system. For completeness, we give the details of this algorithm here, and then
show how it handles examples where the primitive-specific segmentation has trouble due to
ambiguities.

Easy Mesh Cutting is a simple, greedy region-growing algorithm. It starts from two sets
of user strokes: The first set is comprised of “foreground,” or the inside-selection strokes that
mark points that must be included in the selection; the second set contains “background,” or
the outside-selection strokes that mark points that must not be included in the selection. All
vertices of triangles crossed by these strokes are marked accordingly as foreground or back-
ground. Then, neighboring vertices, paired with the label of their neighbor, are added to
a priority queue ordered by a feature-sensitive metric of the distance to the initial vertices.
The closest vertices are popped from the queue, labelled as foreground or background ac-
cording to the neighbor’s label that they were paired with in the queue, and their unlabelled
neighbors added to the queue (paired with their new label), until the queue is empty.

The feature-sensitive distance metric used by Easy Mesh Cutting is what lets the algo-
rithm place segment boundaries at “natural” boundaries. This distance metric is a combina-
tion of Euclidean distance, angular difference (change in surface normal), and a curvature-
based distance,

d(p, q) = ||p− q||+ wn||np − nq||+ wk||k(p,q)||,
where wn and wk are weights of the normal-difference and curvature-difference terms, which
guide the feature-sensitivity of the metric, np and nq are surface normals, and k(p,q) is a
function of curvature along the surface in the direction from p to q. Ji et al. use wn =
wk = 5 for all examples [63]. The curvature function treats positive and negative curvature
differently, because natural part boundaries tend to more often fall at points with negative
curvature:

k(p,q) =

{
kpq, kpq > 0

e−kpq − 1 kpq < 0
,

where kpq is the curvature along the line from p to q. Note that the relative weighting of
the terms of this distance metric is scale dependent; so to create a consistent metric across
all examples, the mesh is first scaled to a unit box before processing.

In the original algorithm, after region growing has generated an initial segmentation, the
segmentation boundary is smoothed by a greedy optimization that cuts across faces, instead
of following face borders. This is important for mesh cutting, but not for our application:
We want the segmentation to be made on a per-face basis, so we do not need this step in
the context of inverse 3D modeling.

6.2.1 Examples

We now show practical examples where general user-guided segmentation offers advantages
over primitive-specific segmentation. A prime example where this segmentation helps us is

CHAPTER 6. GENERAL USER-GUIDED SEGMENTATION 70

a b c

Figure 6.1: (a) The user fit a kinematic surface (a surface of revolution, indicated by the red
streamline) to a sculpture, using a large stroke to ensure even the poorly-fitting pedestal is
included. The fitting result is a sweep around the primary axis of symmetry. (b) We add
a bunny’s head to the top of the sculpture, and with the same selection stroke the system
also selects most of the bunny head, because the error threshold has been raised so high.
This leads to a less desirable fitting result, indicated by the red streamline. (c) Easy mesh
cutting [63] can be used to directly segment the faces from the bunny: The user strokes the
the sculpture base as foreground (green), and the bunny head as background (red), and the
system automatically finds a reasonable segmentation boundary. Additional strokes could
be used to refine this boundary.

shown in Fig. 6.1: The user wants to select a rotationally symmetric statue, and interpret it
as a surface of revolution despite details that do not match the surface of revolution model
well. This works well if only the rotationally-symmetric part is selected (Fig. 6.1a), but when
an undesired part (the bunny head) is adjacent, the error threshold to select the lower half
plus pedestal of the statue is so high that the undesired part will also be included (Fig. 6.1b).
By making a stroke where we do not want the selection to go, and relying on Easy Mesh
Cutting, we can separate the undesired part (Fig. 6.1c). Note that the method does not
choose to place the segment boundary right at the boundary of the non-symmetric part, but
it does make it easy to control the placement of the boundary, and additional strokes will
move the boundary if desired.

Another example where we may want to use general user-guided segmentation is shown
in Fig. 6.2. This is an example where primitive-specific segmentation almost works: It finds
a good axis of revolution, but it includes some extraneous regions in the segmentation that
are not desired despite having low error-of-fit. In Chapter 2 we point out that this is easy to
fix with primitive-specific methods: We can simply mark the undesired parts in a 2D view

CHAPTER 6. GENERAL USER-GUIDED SEGMENTATION 71

a b c d

Figure 6.2: A comparison of segmentation approaches. When using the primitive-specific
segmentation method of Chapter 2, we use a single stroke on the body (a), and some addition
selection in the 2D “profile” view (b) to finalize the selection. When using a foreground-
background method, scribbling on the body (green) and the handles (red) gives an initial
segmentation (c), although one will need to make more markings in additional views (d) to
fully separate the previously-invisible handle from the body.

(Fig. 6.2b). However, we can also use Easy Mesh Cutting to perform the segmentation, as
shown in Fig. 6.2c. In this case, Easy Mesh Cutting requires a bit of additional work as well:
Parts not seen in the original view may need some correction later, as shown in Fig. 6.2d.

72

Chapter 7

Fitting CSG Structure

Constructive solid geometry (CSG) is a traditional, powerful modeling method for shape
design: It defines a shape using Boolean operations (union, intersection, and subtraction) to
combine solid primitives. CSG combination of primitives such as solid sweeps and quadric
surfaces can very naturally define the shape of many man-made objects, as shown in Fig. 7.1.
CSG-based editing is also a convenient way to redesign those same shapes, enabling design
changes like those shown in Fig. 7.2.

In our context, it is common that any CSG structure used to design a shape has been lost,
so we must use boundary-to-CSG reverse engineering methods [126] to construct a new CSG
representation if we want to use CSG-based editing to redesign the shape. CSG structures
are lost for a number of reasons: For example, if the shape was exported, stored or distributed
in a file format that does not include this information, or if the user never explicitly stored
the Boolean structure in the first place because the original designer performed Boolean
operations “in place” on boundary representations. Even when the structure is kept, it may
be inconsistent with the model after another modeling method has been used to edit the
shape, forcing a new structure to be imposed for any further CSG-based editing [113].

Boundary-to-CSG representation conversion is a fundamentally ambiguous problem:
Many CSG expressions result in the same boundary representation, but generate very dif-
ferent shapes once the user begins editing using the CSG primitives (see Figs. 7.9, 7.10,

a b c d

Figure 7.1: A selection of shapes easily defined by CSG operations.

CHAPTER 7. FITTING CSG STRUCTURE 73

a b c

Figure 7.2: Simple examples of shape editing operations enabled by boundary-to-CSG con-
version. (a) Two boundary representations of shapes that were originally generated by CSG.
(b) A CSG-based version of both shapes is reconstructed by fitting quadric primitives to the
surfaces, and then recovering matching CSG structures with our system. (c) The shape af-
ter the user has edited the primitives defining the CSG shape: On top, the user selected
and scaled a cylinder; on bottom, the user moved a plane (colored yellow in the original
boundary representation) forward.

and 7.11). Fully-automatic boundary-to-CSG conversion methods [126, 125, 127] attempt
to minimize the size of the CSG expression, but do not explicitly consider whether the CSG
expression matches the user’s intent. Additionally, these methods are limited to surfaces
that are entirely composed of quadric surface patches. In this chapter, we present a pre-
liminary exploration into how lightweight user input can help to disambiguate the problem,
giving more control over the results of boundary-to-CSG-based shape edits. In addition, we
demonstrate how boundary-to-CSG conversion can fit in the larger framework of inverse 3D
modeling: Specifically, we discuss how partial CSG structures can be extracted and used for
editing as soon as any primitive structures are fit, and finally how we can apply CSG-based
editing to inexact input that deviates significantly from fitting primitives.

Note that this chapter focuses on boundary-to-CSG conversion to edit existing CSG-like
structures in a shape. We don’t always need this conversion to perform CSG-like editing
of a shape: For example, one could add or subtract a cylinder from an arbitrary surface
by simply selecting a circular patch on that surface and extruding. However, as that cylin-
der intersects other surfaces, we will typically want some way to resolve those intersections:
Will the cylinder destroy the surface it intersects, or will the surface cut into the cylin-

CHAPTER 7. FITTING CSG STRUCTURE 74

der? Boundary-to-CSG conversion is one formal approach to ensure we always have logical,
consistent answers to those questions, which is especially valuable when editing a complex
existing structure formed out of intersecting CSG primitives. A drawback of this formal pro-
cess is that it requires that our shape have a well-defined inside and outside: i.e., our input
boundary representation should be a watertight solid. If an input shape is not watertight,
we must therefore pre-process it so that (1) within some region-of-interest where we want
to apply CSG-based editing, we define a watertight solid, and (2) any non-watertight sur-
faces that we do not need to edit with CSG are simply marked as such, and ignored by the
CSG-based editing process. To preprocess a shape (or the region of interest on that shape)
so that it is watertight, we can use the mesh cleanup methods for solid shapes described in
Chapter 10. Any surfaces added to ensure the shape is watertight could be optionally re-
moved after CSG-based editing is completed, so this preprocess need not leave any artifacts
in the final result. For the remainder of this chapter, we assume that the input has been
pre-processed to be watertight.

7.1 Automatic Boundary-to-CSG Conversion

A robust, fully-automatic algorithm for converting quadric-bounded surfaces to a compact
CSG representation was introduced in a series of papers by Shapiro and Vossler [126, 125,
127]. Although other approaches for 3D boundary-to-CSG conversion have been proposed,
most are either not robust and will in fact fail on some simple shapes [83], or are not
designed to generate a compact output for shape editing [136]. We base our approach on
that of Shapiro and Vossler [127]; in this section we explain the ideas behind their approach,
as well as our own tweaks to those ideas that will allow us to handle more general inputs,
and to generate a more designer-friendly result. This automatic system will create an initial
result that the user can then refine to suit their needs, using interactions that we discuss in
Sec. 7.2.

The approach of Shapiro and Vossler has three steps:

1. First, determine the exact primitives (and their parameters) to be used in the CSG
structure.

2. Second, compute an initial Boolean expression by a union of all the primitives’ “fun-
damental products” (defined below) that are inside the shape.

3. Finally, optimize this expression to be concise.

7.1.1 Determining the Primitive Set

Our system models a shape by a set of primitives that were defined by the fitting modules
described in Chapters 2-4: This is a collection of swept surfaces and quadrics describing the
boundaries of the shape. However, this set of primitives may not be sufficient to describe

CHAPTER 7. FITTING CSG STRUCTURE 75

0

1 12 3 4

5 6
7

75 6

1

1

1

2

1

1

2

1

2

1

1

2

1

1

2

Figure 7.3: Example of the “cells” that can define a given shape (cyan). Here we have two
circles and a box as our primitives, used to describe the cyan shape in the center of the
diagram. Any region of the diagram with a different in/out classification with respect to
any of the primitives, as well as the input shape, is numbered as a distinct “cell.” Note that
individual cells need not be contiguous, and the combination of cells is a disjunctive covering
of the entire space (cell 0 is an unbounded cell covering everything not in any primitive).

the target shape with CSG. The key concept needed to analyze the sufficiency of a given set
of primitives is the “fundamental product” of the primitives.

Fundamental products of a set of primitives are intersections that include each primitive
(or its complement) exactly once. Together, these products define a kind of “Venn diagram”
of the primitives – a cellular decomposition of space, which is disjunctive and covers each
Boolean combination of primitives present in space. The cells of this decomposition (Fig. 7.3)
are the smallest elements that CSG can produce with the given primitives, and are therefore
the building blocks from which the shape must be constructed: Shapiro and Vossler proved
that if any cell is partly both inside and outside the shape we want to reconstruct, then the
set of primitives is not sufficient to represent the shape [126], as illustrated in Figs. 7.4 and
7.5. Otherwise, the union of cells inside the desired shape is a CSG expression of the shape,
as illustrated in Fig. 7.3.

Automatically generating a sufficient set of primitives is difficult in the general case,
especially if we want these primitives to be useful to the artist re-designing the shape. For
surfaces bounded by quadrics, Shapiro and Vossler show that a sufficient set of primitives can
be acquired by adding an exhaustive set of planar half-spaces, called “separators,” which are
chosen to isolate each curved face [127]. However, for more general surface types, complicated
non-planar separator primitives may be required. In our case, we have a wide range of
parametric surface types and typically have at least some surfaces that the user has not (yet)
labeled with any particular primitive type (for example, because the unlabeled surfaces are
not the part of the shape the user intends to redesign). Furthermore, the choice of primitives
will affect how the user’s subsequent edits using the CSG system will affect the shape, so
the user will likely want some control over these choices.

Rather than require our system to generate a sufficient set of primitives, we modify
Shapiro and Vossler’s method to allow for partial CSG decompositions: Parts that are not
representable by CSG with the given primitive set are simply marked in red and preserved

CHAPTER 7. FITTING CSG STRUCTURE 76

0

1 12 3 4

5 6
7

75 6

1

1

1

2

1

1

2

1

2

1

1

2

1

1

2

0

1 12 3 4

5 6
7

75 6

1

1

1

2

1

1

2

1

2

1

1

2

1

1

2

0

1 12 3 4

5 6
7

75 6

1

1

1

2

1

1

2

1

2

1

1

2

1

1

2

0

1 12 3 4

5 6
7

75 6

1

1

1

2

1

1

2

1

2

1

1

2

1

1

2

0

1 12 3 4

5 6
7

75 6

1

1

1

2

1

1

2

1

2

1

1

2

1

1

2

a b c d e

Figure 7.4: A box with a rounded corner (cyan) is not representable by the shown primitives –
a circle and a box – because cell 1 is both inside and outside the shape (a). Cell 1 is intersected
with the cyan shape to create the “non-representable” part of the CSG expression, shown in
red; the representable portion is shown in green (b). Adding an additional shape can make
the shape representable: For example, an axis-aligned bounding box of the part of the circle
present in the original shape’s boundary (c), the portion of cell 1 outside the original shape
(d), or a minimal separator between the inside and outside parts of Cell 1 (e).

0

1

0

1

00

1

2

1

0

0

C

L1

L2

L3 L4
C

L1

L2

L3 L4

1

2
3

0

1

0

1

00

1

2

1

0

0

C

L1

L2

L3 L4
C

L1

L2

L3 L4

1

2
3

a b

Figure 7.5: (a) A cyan shape consists of an ellipse and appendages to which no primitives
have been fit. (b) This leads to the partial CSG representation: The ellipse is representable,
while the rest is not because parts of cell 0 are both inside and outside of the target shape.
In constrast to Fig. 7.4, there are no simple separator primitives to suggest in this case:
Minimal separators and bounding boxes do not help, and the portion of cell 0 outside the
shape encompasses all empty space.

as-is, while the CSG-representable parts of the shape are marked in green and exposed as
editable primitives to the user (Fig. 7.6). Addition of “separator” primitives to make more of
the shape representable with CSG can be performed as-needed in a subsequent user-driven
step, detailed in Sec. 7.2, in which the user is able to choose between possible separator
primitive options like those in Fig. 7.4c-e. Note that, thanks to the more general range of
surface types we handle, it may be impossible to make the full shape representable with
planar separators [127] and other simple primitives, as illustrated by Fig. 7.5.

The fundamental product analysis of a shape naturally provides a formal definition of
“non-representable” parts: Non-representable parts are the intersection of the target shape
itself with the cells that are partially both inside and outside of the target shape. Including

CHAPTER 7. FITTING CSG STRUCTURE 77

a b c

Figure 7.6: (a) A screw model where the surfaces on top have been labelled as quadric
primitives (a cone and a number of planes), but the bottom is left unlabeled. (b) A partial
CSG representation, with the non-representable part left in red, and the representable part
in green. (c) The user edits the green part by moving the top plane primitive upward.

a b c d

Figure 7.7: A shape composed of a circle, ellipse and some additional unlabeled geometry
is shown (a). This decomposes into two representable parts (the circle and ellipse) and a
non-representable part (red). The user edits the shape by moving the ellipse up and the
circle down (b). We show two possible results of this edit (c,d). If we do not subtract non-
editable copies of the circle and ellipse from the non-representable part, then corresponding
areas of the non-representable part will remain as those primitives are moved (c). We find
this growth non-intuitive, and prefer the result with non-editable primitive copies (d).

non-representable parts in our expression is equivalent to adding the target shape itself to the
primitive set, ensuring everything is representable, but using the target shape as a primitive
in as few places as possible. Non-representable parts can be edited to a limited extent:
Subtractions from these parts work normally, but allowing extension of these parts can give
unintuitive results as shown in Fig. 7.7c. We disallow such extensions by adding static,
non-editable copies of each primitive to the Boolean expression defining a non-representable
part, as illustrated in Fig. 7.7d.

7.1.2 Computing an Initial Boolean Expression

Shapiro and Vossler [126] show that an initial Boolean CSG expression can be computed
as the union of fundamental products that are inside the target shape. These fundamental

CHAPTER 7. FITTING CSG STRUCTURE 78

0

1

0

1

00

1

2

1

0

0

C

L1

L2

L3 L4
C

L1

L2

L3 L4

1

2
3

Figure 7.8: The ray casting approach to finding all fundamental product cells for a given set
of primitives: A ray (red) is cast through the primitives to identify cells. The start of the
ray is identified as the first cell, and the yellow arrows show where the ray crosses a primitive
boundary, potentially creating a new cell.

products define a cellular decomposition of space; computing the initial CSG expression is
a matter of finding all the cells that (a) exist with non-zero volume, and (b) are inside the
target shape. The fundamental products are defined with respect to some primitive set; to
extend our system to handle otherwise non-representable shapes, we add the target shape
itself to the primitive set when computing cells. Our initial CSG expression is then the
union of cells inside the target shape, and each cell is marked as representable if there is
no otherwise-equivalent cell outside the target shape, and non-representable otherwise. We
leave the target shape out of the Boolean expression for representable cells.

There are several ways to find all the existing fundamental product cells of a set of prim-
itives. Shapiro and Vossler [127] introduce a robust but slow approach based on intersecting
offset surfaces of all primitives; this requires computation of offset surfaces for all primi-
tives, which is more difficult in our case where the primitive set includes arbitrarily complex
surfaces. Hartquist [57] proposed instead using a ray-casting approach, in which rays are
intersected with each primitive to find the transition points between cells (Fig. 7.8). This
approach is easier to optimize – and can even likely be generalized to run on the GPU by
a Layered Depth Image approach [153] – but could possibly miss small cells, depending
on the distribution of the rays cast. For our initial prototype, we simply used an ad-hoc,
brute force sampling approach that can miss cells: We regularly sampled points in space,
performed inside-outside tests on each point with respect to each primitive, and stored the
results of these tests in a hash set to arrive at a set of unique cells present at the sampled
points. A more complete, robust system would instead use a ray-casting approach.

7.1.3 Optimize the Boolean Expression

The initial Boolean expression we generate is a valid CSG description, but (a) it is much
longer than necessary, and thus probably unweildly, and (b) each fundamental product cell is
defined by an intersection including every primitive (or their complements), including distant
primitives, which the user may view as unrelated to the cell, and this leads to unintuitive re-
sults as we show in Fig. 7.9. Shapiro and Vossler [126] solve the first issue by applying generic

CHAPTER 7. FITTING CSG STRUCTURE 79

C

L1

L2

L3 L4

C

L1

L2

L3 L4

1

2
3

C

L1

L2

L3 L4

C

L1

L2

L3 L4

1

2
3

a b

Figure 7.9: (a) The cyan circle and box are reconstructed with a circle primitive and four
linear halfspace primitives (arrows indicate the side of the linear halfspaces that is “inside”).
(b) When the user moves the circle down, the initial CSG expression of Sec. 7.1.2 generates
the solids shown on right. Note that the bottom of the circle is missing because no cells in
the original model included an intersection of the bottom linear half space and the circle.

Boolean expression optimization, which can typically find much shorter equivalent expres-
sions. Here, we focus primarily on the second issue, which is to our knowledge unaddressed
in previous work. Our approach does reduce the CSG expression size as well.

To optimize our expressions, we use a simple greedy approach to remove un-needed
primitives from the fundamental product expressions for each cell defining our shape. For
each cell inside the shape, we iterate through each primitive intersection in the definition of
that cell, and see if we can remove the primitive from the expression without creating a shape
that goes outside the target shape. The test of whether a primitive can be removed is listed
as Algorithm 3 below, and the complete algorithm to construct an optimized expression is
listed as Algorithm 4.

To check if a cell can be removed, Algorithm 3 simply checks each possible cell that
removing a primitive could add, to see if that cell exists outside the target shape. Note
that this is an O(2n) procedure, where n is the number of primitives. It is effective in
practice because our CSG trees tend to be fairly small. To scale to larger examples, it will
be important to cull these cell tests.

To see how this optimization works, it is instructive to step through the example given
in Fig. 7.9. This figure shows a circle defined by a circle primitive, C, and a box defined by
the intersection of four linear half-spaces, (L1 ∩ L2 ∩ L3 ∩ L4). Due to the initial positions
of these primitives, our initial CSG reconstruction process finds three separate cells: the top
of the circle, L1 ∩ L2 ∩ L3 ∩ L4 ∩ C, the bottom of the circle, L1 ∩ L2 ∩ L3 ∩ L4 ∩ C, and
the box, L1 ∩ L2 ∩ L3 ∩ L4 ∩ C. The initial CSG expression is simply the union of these
cells. As the circle is moved down (Fig. 7.9b), the expression remains the same: Cell 1 is
still evaluated but is now empty, and the bottom of the circle is missing because there was
no cell including the intersection L2 ∩C in the initial configuration.

Our optimization proceeds as follows: Cell 1, L1 ∩ L2 ∩ L3 ∩ L4 ∩ C, becomes simply
C, since all the other half-spaces can be removed without changing the shape. Cell 2, the

CHAPTER 7. FITTING CSG STRUCTURE 80

bottom of the circle, is now covered by the expanded cell 1, so is discarded. Cell 3 becomes
L1 ∩ L2 ∩ L3 ∩ L4, since C can be removed without changing the shape. The complete,
optimized expression is therefore: C ∪ (L1 ∩ L2 ∩ L3 ∩ L4). Now the circle can be moved
anywhere without losing its integrity.

Algorithm 3 CanRemove(Boolean expression E, Primitive Pi):
This function returns true if primitive Pi can be removed from the Boolean expression E
without creating a shape that goes outside the target shape T. It also returns what cells
that removal (if allowed) would cause the expression to additionally cover.

Require: This function can access the target shape T, the set of all primitives {P}, and
the set of fundamental product cells {S} as found in Sec. 7.1.2

Require: Primitive Pi or Pi is in E
Require: Boolean expression E only contains intersections
1: Initialize an empty set of cells: C
2: if there is some primitive Pj in {P} but not referenced by E then
3: if not CanRemove(E ∩Pj, Pi) then
4: return false
5: end if
6: if not CanRemove(E ∩Pj, Pi) then
7: return false
8: end if
9: Add to C all cells returned by these two calls to CanRemove
10: else
11: Switch Pi for its complement in E (or vice versa if its complement is already in E)
12: if any fundamental product cell matches the primitives now in E, but outside T then
13: return false
14: else
15: Add this cell to C
16: return true, and C
17: end if
18: end if
19: return true, and C

Our optimization method aggressively removes intersections terms, leading the resulting
shape to be as large as possible when edited, since as little as possible of the shape is “cut
away” by intersection with other primitives. For distant primitives, and for best performance,
this is generally desirable. But for nearby primitives that appear conceptually related, there
is more ambiguity: For example, the un-optimized result in Fig. 7.10b may seem more
intuitive than the optimized result in Fig. 7.10c, depending on the user’s intent. In these
cases we still prefer our optimization’s result as the default choice, because it makes it easier
for the user to clarify their intent when needed: The optimization always errs on the side of
having excess geometry, and it seems easier for a user to identify and select excess geometry

CHAPTER 7. FITTING CSG STRUCTURE 81

Algorithm 4 Compute an optimized Boolean CSG expression

Require: This algorithm can access the target shape T, the set of all primitives {P}, the
set of fundamental product cells {S} as found in Sec. 7.1.2, and a set {C} that contains
those cells of {S} that are in T

1: Initialize Boolean expression E as an empty expression
2: Initialize a set of removed cells R as an empty set
3: for all cells Ci in {C} do
4: if Ci 6∈ R then
5: Initialize a Boolean expression to represent the cell: Ec := ∅
6: Initialize flag representableCell := true
7: if {S} contains a cell outside T that is otherwise-equivalent to Ci then
8: Ec := Ec ∩T
9: representableCell := true
10: end if
11: for all primitives Pi ∈ {P} do
12: Active primitive A := Pi

13: if Ci 6∈ Pi then
14: A := Pi

15: end if
16: Ec := Ec ∩A
17: if not representableCell and there is an otherwise-equivalent cell in {S} with

opposite inside/outside classification with respect to primitive Pi then
18: Define As as a static, non-editable copy of A
19: Ec := Ec ∩As

20: end if
21: end for
22: if representableCell then
23: for all Pi ∈ {P} do
24: if CanRemove(Ec, Pi) then
25: Remove reference to Pi from Ec

26: Add the cells returned by CanRemove() to set R
27: end if
28: end for
29: end if
30: E := E ∪ Ec

31: end if
32: end for
33: return optimized CSG expression E

CHAPTER 7. FITTING CSG STRUCTURE 82

0

1

0

1

00

1

2

1

0

0

C

L1

L2

L3 L4
C

L1

L2

L3 L4

1

2
3

0

1

0

1

00

1

2

1

0

0

C

L1

L2

L3 L4
C

L1

L2

L3 L4

1

2
3

0

1

0

1

00

1

2

1

0

0

C

L1

L2

L3 L4
C

L1

L2

L3 L4

1

2
3

a b c

Figure 7.10: A cyan shape with two boxes and a circular hole (a). If we reconstruct the
shape and move the hole down in our system, the result without optimization extends the
hole into the bottom box (b), while the result with optimization stops the hole at the second
box, since the hole has been removed from the expression defining the second box (c).

to remove than it is for a user to select “missing” geometry to add. The interface for removing
such excess geometry is presented next.

7.2 Interactive Refinements of the CSG Structure

Once an initial optimized CSG representation has been computed, users may immediately
begin selecting and modifying the parameters of the primitives defining this shape. They
may also wish to modify the CSG representation itself to better suit their redesign goals.
In this section we focus on modifications tailored to address ambiguities inherent in the
reconstruction process. These ambiguities arise because many different CSG expressions
reconstruct the same target shape, but generate different shapes after the primitives are
edited.

We identify two types of ambiguity in our reconstruction that users may wish to modify:
(1) As the primitives are modified the user may wish to add back interactions between
primitives that the optimization removed, for example in the scenario illustrated in Fig. 7.10.
And (2), if the CSG representation was partial, they may wish to add separator primitives
to gain more editing control over the parts of the shape that were left as “non-representable”
by CSG.

The first type of modification, adding back interactions between primitives, is supported
by a straightforward interface: The user first clicks to select the portion of the current shape
that they would like another primitive to subtract or intersect, and then clicks the primitive
that they would like to do the subtraction or intersection. The system will automatically
add the appropriate intersection or subtraction to remove the initially-clicked part. This
interaction is illustrated in Fig. 7.11.

CHAPTER 7. FITTING CSG STRUCTURE 83

James Andrews October 2012

11

If CanRemove(Ec, Pi):

Remove Pi (or its complement) from E

Add the cells returned by CanRemove to set R

E := E ∪ Ec

Return E

Listing 3: Algorithm for computing an optimized CSG expression

4. Interactive Refinements of the CSG Structure

Once an initial optimized CSG representation has been computed, users may immediately begin

selecting and modifying the parameters of the primitives defining this shape. They may also wish to

modify the CSG representation itself to better suit their redesign goals. Fully general interfaces for

modifying CSG expressions are well studied []; in this section we focus on modifications tailored to

address ambiguities inherent in the reconstruction process. These ambiguities arise because many

different CSG expressions reconstruct the same target shape, but generate different shapes after the

primitives are edited.

We identify two types of ambiguity in our reconstruction that users may wish to modify: (1) as

the primitives are modified the user may wish to add back interactions between primitives that the

optimization removed, for example if the “clipped circle” behavior identified in Figure C3 is preferred by

the users. And (2), if the CSG representation was partial, they may wish to add separator primitives to

gain more editing control over the parts of the shape that were left as “non-representable” by CSG.

The first type of modification, adding back interactions between primitives, is supported by a

straightforward interface: The user first clicks to select the portion of the current shape that they would

like another primitive to subtract or intersect, and then clicks the primitive that they would like to do

the subtraction or intersection. The system will automatically add the appropriate intersection or

subtraction to remove the initially-clicked part. This interaction is illustrated in Fig. C6.

 (a) (b) (c)

Figure C6: (a) An arrow is represented as a CSG decomposition of an infinite cone, an infinite cylinder,

and two planar half spaces. (b) The CSG decomposition arising from optimization leaves the cylinder at

the base and the cone at the top as separate primitives. The user can click (click 1) the portion of the

Click 1

Click 2

James Andrews October 2012

11

 If CanRemove(Ec, Pi):

 Remove Pi (or its complement) from E

 Add the cells returned by CanRemove to set R

 E := E ∪ Ec

Return E

Listing 3: Algorithm for computing an optimized CSG expression

4. Interactive Refinements of the CSG Structure

 Once an initial optimized CSG representation has been computed, users may immediately begin

selecting and modifying the parameters of the primitives defining this shape. They may also wish to

modify the CSG representation itself to better suit their redesign goals. Fully general interfaces for

modifying CSG expressions are well studied []; in this section we focus on modifications tailored to

address ambiguities inherent in the reconstruction process. These ambiguities arise because many

different CSG expressions reconstruct the same target shape, but generate different shapes after the

primitives are edited.

 We identify two types of ambiguity in our reconstruction that users may wish to modify: (1) as

the primitives are modified the user may wish to add back interactions between primitives that the

optimization removed, for example if the “clipped circle” behavior identified in Figure C3 is preferred by

the users. And (2), if the CSG representation was partial, they may wish to add separator primitives to

gain more editing control over the parts of the shape that were left as “non-representable” by CSG.

 The first type of modification, adding back interactions between primitives, is supported by a

straightforward interface: The user first clicks to select the portion of the current shape that they would

like another primitive to subtract or intersect, and then clicks the primitive that they would like to do

the subtraction or intersection. The system will automatically add the appropriate intersection or

subtraction to remove the initially-clicked part. This interaction is illustrated in Fig. C6.

 (a) (b) (c)

Figure C6: (a) An arrow is represented as a CSG decomposition of an infinite cone, an infinite cylinder,

and two planar half spaces. (b) The CSG decomposition arising from optimization leaves the cylinder at

the base and the cone at the top as separate primitives. The user can click (click 1) the portion of the

Click 1

Click 2

James Andrews October 2012

11

If CanRemove(Ec, Pi):

Remove Pi (or its complement) from E

Add the cells returned by CanRemove to set R

E := E ∪ Ec

Return E

Listing 3: Algorithm for computing an optimized CSG expression

4. Interactive Refinements of the CSG Structure

Once an initial optimized CSG representation has been computed, users may immediately begin

selecting and modifying the parameters of the primitives defining this shape. They may also wish to

modify the CSG representation itself to better suit their redesign goals. Fully general interfaces for

modifying CSG expressions are well studied []; in this section we focus on modifications tailored to

address ambiguities inherent in the reconstruction process. These ambiguities arise because many

different CSG expressions reconstruct the same target shape, but generate different shapes after the

primitives are edited.

We identify two types of ambiguity in our reconstruction that users may wish to modify: (1) as

the primitives are modified the user may wish to add back interactions between primitives that the

optimization removed, for example if the “clipped circle” behavior identified in Figure C3 is preferred by

the users. And (2), if the CSG representation was partial, they may wish to add separator primitives to

gain more editing control over the parts of the shape that were left as “non-representable” by CSG.

The first type of modification, adding back interactions between primitives, is supported by a

straightforward interface: The user first clicks to select the portion of the current shape that they would

like another primitive to subtract or intersect, and then clicks the primitive that they would like to do

the subtraction or intersection. The system will automatically add the appropriate intersection or

subtraction to remove the initially-clicked part. This interaction is illustrated in Fig. C6.

 (a) (b) (c)

Figure C6: (a) An arrow is represented as a CSG decomposition of an infinite cone, an infinite cylinder,

and two planar half spaces. (b) The CSG decomposition arising from optimization leaves the cylinder at

the base and the cone at the top as separate primitives. The user can click (click 1) the portion of the

Click 1

Click 2

a b c

Figure 7.11: (a) An arrow is represented as a CSG decomposition of an infinite cone, an
infinite cylinder, and two planar half spaces. (b) The CSG decomposition arising from
optimization leaves the cylinder at the base and the cone at the top as separate primitives.
The user can click (click 1) the portion of the cylinder outside the cone, and then the cone
(click 2), to add an intersection with the cone to the cylinder and arrive at shape (c).

The second type of modification, adding separator primitives, is more open-ended: There
are a number of separators that could be added to any primitive set to make the shape rep-
resentable, as we illustrate in Fig. 7.4. Therefore, when the user selects a non-representable
part, we show a list of possible separators that they may wish to add to that part. Upon
the user’s selection, we re-compute the CSG representation for that non-representable part.

Recall that non-representable cells have two parts – the part inside the target shape, and
the part outside – and both can be generated by CSG expressions involving the target shape
(intersection with the target shape for the inside part, with the complement of the target
shape for the outside part). The purpose of the separator primitives is to separate these two
parts. We identify several candidates as potentially-useful separator primitives:

1. The inside or outside parts themselves. We use the inside part automatically in our
initial partial solution, which works well if the user does not wish to edit that part of
the shape. The outside part can alternatively be subtracted, which works well when
there are irregular cavities or other negative spaces that the user does not wish to edit.

2. The bounding box of the input triangles to which the user has fit primitives. We call
this a “region of interest” separator, because it can help to separate the part that the
user is interested in from the rest of the shape – avoiding the need for excessive primitive
fitting in regions that the user does not want to edit, as illustrated in Fig. 7.12.

3. The bounding box of either the outside part or the inside part. This works well in
some common cases, including rolling ball-blended corners and edges, and cases where

CHAPTER 7. FITTING CSG STRUCTURE 84

a b c

Figure 7.12: (a) A boundary representation of a die, with a plane fit to one side (blue)
and spheres fit to the corresponding dots (red, yellow, green, cyan). A “region of interest”
separator bounding box, bounding all colored faces, is also added (shown in black wireframe).
(b) A partial CSG representation, with the non-representable portion left in red, and the
representable portion in green. Without the region of interest separator, the whole shape
would be non-representable. (c) The user edits the green part by moving and scaling one of
the spheres.

the exact separator need not be precise (for example, if the cells are well separated).
When applicable, it is attractive for its simplicity.

4. A single “maximum margin” separating primitive. Separating the two parts with a sin-
gle primitive is equivalent to a support vector machine (SVM) classification problem
[19]. SVM classifiers take two sets of points and find a plane separating those sets of
points. By transforming the points using the so-called “kernel trick,” SVM classifiers
can alternatively find a quadric separator, or any higher-order implicit primitive sepa-
rator – for example, a radial basis function could be used to define a smooth separator
primitive by a few control points.

5. For quadric surfaces, Shapiro and Vossler propose an exhaustive set of planar half-
spaces as separators [127]; although we may have non-quadric primitives, we can also
propose these half-spaces as additional separators.

In our initial prototype system, we only implement the first two options; we are interested
in exploring more separators in future work. Note that even separators that fail to fully
separate the inside and outside parts may still be useful, because they may reduce the amount
of the shape that is not representable. We plan to present separators in a ranked list based
on two criteria: First, how effectively the separators reduce the size of the non-representable
part, and second, how simple the separator primitives are.

CHAPTER 7. FITTING CSG STRUCTURE 85

7.3 Handling Inexact Representations

The approach so far has operated under the assumption that the primitives fit the target
shape exactly, without deviation. However, in practice our input may be noisy, it may have
additional details, or it may simply have minor errors due to tessellation. Such differences
between the primitives and the target shape, if treated naively, will lead to errors in the
cellular classification process and in the creation of static cells. In addition, some of these
details may be desirable features to preserve, but they will be lost in the CSG reconstruction.

A related concern arises if the CSG operations themselves are not computed exactly:
Even if the primitive matches the surface exactly, an inexact CSG operation may leave
behind portions of the surfaces on subtraction. For example, with an image-based CSG
method, the ordering of primitives is only determined to the resolution of the depth buffer,
and is decided arbitrarily for primitives closer together than that.

7.3.1 Handling Inexact Matches Between Primitive and Target
Geometry

There are two ways to handle such inexact matches between a primitive and the target
geometry: Either change the geometries to exactly match, or characterize the maximum size
of the deviations between matching geometries and use this as a threshold to ignore tiny
cells that are artifacts of these deviations. These methods are illustrated in Fig. 7.13.

0

1

2

3

0

C

L1

L2

L3 L4

C

L1

L2

L3 L4

1

2
3a b c

Figure 7.13: The target shape (cyan) is fit with an ellipse primitive, but the ellipse doesn’t
match the target shape exactly. This causes our analysis to find cells 1 and 3, which will
make the entire shape non-representable (a). We propose two ways to eliminate these cells.
The first option is to make the ellipse and the target shape match exactly (b). The second
option is to compute the maximum deviation between the ellipse and the corresponding
part of the target shape, and reject cells that are within that distance of both the matched
primitive and the target shape. We show this in (c) with green and red curves following the
ellipse and target shape respectively, with thickness equal to the maximum deviation: Cells
1 and 3 are discarded because they are completely under both the green and the red curves.

CHAPTER 7. FITTING CSG STRUCTURE 86

Changing the geometries to match exactly is the more direct solution. For simple cases,
a mesh merging approach, such as the one proposed by Takayama et al. [135], may be used
to copy matched geometry from the target to the primitive (i.e., removing the part of the
primitive that corresponds to the target surface, and putting the target surface geometry
in its place, as illustrated in Fig. 7.13b) or vice-versa, ensuring a match. However, the
solution of Takayama et al. only applies if the “matching” geometries are topologically
disks; cylindrical selections, selections with holes, or selections with different topology require
a different approach. In more complicated cases, changing the geometries to match becomes
similar to a general hole-filling problem that we discuss in Chapter 10; however, general
hole-filling approaches can be slow, especially if they need to be applied for every primitive.
We have yet to find a method that is both fast and general enough to handle every possible
case.

The threshold method, which discards small cells near the target shape’s surface, is less
ideal: It could miss small, user-intended cells near the target shape surface in addition to cells
that are just artifacts of the inexact match. However, it is simple to implement, and robust
regardless of the differences (topological or geometric) between the corresponded surfaces. It
is performed in two steps: First, compute the maximum distance between the two surfaces, d.
Then, discard any cells for which all points are are within that distance d of the two surfaces
– for example, in Fig. 7.13c we would discard the two cells that are entirely underneath the
thick red and green lines. To do so with the ray-casting method, one could intersect each
ray with a thin offset volume of distance d from the inside and outside of each surface (the
thick red and green lines in Fig. 7.13c), and if the ray is inside both corresponding offset
volumes for the whole span in which the ray is inside a cell, then do not add that cell.

These methods are not mutually exclusive: One can try to change the geometry to match,
detect cases where it fails (for example, where the corresponded surfaces are not topological
matches), then fall back on the threshold method for those cases. A related option is to
match the geometry in a simpler, inexact way, before applying the threshold method: We
project the vertices of the target shape to their corresponding ideal primitive surfaces, and
then apply the threshold method using this projected geometry. This is a simple, fast way
to reduce (but not eliminate) the mismatch between the surfaces, thus reducing the size of
the small real cells that the threshold method can miss.

7.3.2 Handling Inexact CSG Operations

Even when the target shape exactly matches the primitive geometry, artifacts can appear
if the CSG operations themselves are performed inexactly: A primitive subtracted from an
exactly matched part may leave behind geometry if the CSG operation is not performed at
high enough resolution to recognize the exact match as illustrated in Fig. 7.14. While an
exact CSG algorithm such as the one provided by CGAL [17] could solve this problem, it
is not practical for an interactive session: Exact CSG computations can take minutes on
examples that are rendered interactively by the inexact method. Therefore, we use a more
immediate solution along with inexact CSG during interactive shape-editing sessions: Our

CHAPTER 7. FITTING CSG STRUCTURE 87

a b c

Figure 7.14: (a) A primitive (red dotted line) has been modified to match a target shape
(cyan). (b) If the shape and primitive do not match exactly, or if the CSG operation is not
performed exactly, then subtracting the primitive from the shape will leave some artifacts
near the boundary of the primitive, whereever the target primitive is found to be slightly
outside the subtracting primitive. (c) If we simply push the surface of the target shape to
be slightly inside the subtracting primitive, we can eliminate these artifacts.

system moves the target shape’s surface slightly inside the shape that is being subtracted
– just enough so that the CSG operation is disambiguated (Fig. 7.14c). This removes the
artifacts while only changing geometry that will never be seen, because it is deleted by the
CSG operation.

7.3.3 Preserving Surface Details on CSG Primitives

Some deviations between ideal primitive surfaces and the target shape may include surface
details that we would like to preserve during editing, without encoding these details as
additional primitives in the CSG expression. We can do so by transferring these details to
the primitive surface. A number of methods have been developed for transferring details
between two surfaces, ranging from simply encoding those details in a bump or displacement
map [75], to transferring the mesh geometry explicitly [135]; any such method will work as
long as the resulting primitive remains a watertight, manifold solid. Note that preservation
of these details is orthogonal to the problem of generating an initial CSG representation:
Because these details are not included in the CSG expression itself, we can add or remove
these details without re-computing the CSG expression. As a detail-preserving primitive is
transformed, the details must be transformed as well; we discuss methods to do so for sweeps
and quadric surfaces in the chapters on fitting those primitives (Chapters 2-4).

7.4 Implementation

To enable CSG-based editing of arbitrary shapes with numerous surface types (sweeps,
quadrics, arbitrary polygon meshes), we convert all primitives to the “least common de-

CHAPTER 7. FITTING CSG STRUCTURE 88

nominator” format of watertight triangle meshes, and use a mesh-based CSG method. To
ensure the system can be used interactively and robustly, we use OpenCSG [72], an image-
based CSG library that uses the GPU depth buffer to compute CSG between closed solids.

OpenCSG requires that all primitives, including open half-spaces such as planes and
paraboloids, must be closed. To do so, we add the bounding box of the target shape as an
additional primitive. We extend the open primitives so they completely cover this box, and
then close off the primitives (by making planar half-spaces into boxes, and adding end-caps
as-needed to open ended primitives including cones, paraboloids, and sweeps). Primitives
that extend outside the target shape’s bounding box are intersected with the box. The users
can extend the bounding box during editing whenever they wish to enlarge the shape.

7.5 Limitations and Future Work

We present a prototype, proof-of-concept system that shows how CSG-based editing can
be integrated in our overall system, and we demonstrate that system working with several
examples (Figs. 7.2, 7.6, 7.11, 7.12). However, as we discuss throughout the chapter, there
is much more work to be done to make this a scalable system that allows more effective user
control. Specifically, the main research questions we that remain open are: (1) How do we
best create a faster algorithm for reducing the CSG expressions, as we discuss in Sec. 7.1.3, so
that the algorithm scales to large examples? And (2) what are the best separator primitives
of those discussed in Sec. 7.2, and what is the best way to help the user choose separator
primitives in a general setting like ours?

89

Chapter 8

Higher Level Structure and
Interaction Between Primitives

In this chapter, we explore higher-level structures that we can find in an object, when we
go beyond focusing on a single segment of the object and a single primitive-fitting module.
We discuss structure we can identify on the object as a whole, such as symmetry. We also
look for relationships between primitive fits, structures we can fit recursively to previously-
fitted primitives, and transformations between primitive structures. We show examples
that demonstrate the benefits of integrating many different primitive- and structure-fitting
modules in a shared system – allowing editing operations that would not be possible from a
single module alone.

8.1 Symmetries

Approximate symmetries, readily apparent to the designer, can be specified as constraints
and can then be either used either to fill in domains in the prototype description that may
be missing in the given data set, or to average and smooth the available input data in order
to generate a truly symmetrical description. The high-level description of such a shape relies
on multiple instances of one extracted and averaged segment. Thus we can readily change
the symmetry of such an object by changing the number of instances after the prototype
segment has been properly modified, e.g., rotationally compressed in a cylindrical coordinate
system (Fig. 8.1).

A large body of recent work on automatically identifying complete and partial symmetries
in a given shape has made automatic symmetry detection practical [94]. For our prototype
system, we do not research new methods, and simply assume the symmetries are found by one
of these systems. However, we do note that it should be very simple to accelerate symmetry-
finding algorithms with a small amount of user input: One of the more successful partial
symmetry detection algorithms [93] starts by finding approximate point correspondences,
and then searches locally to verify these correspondences. Thus a user could readily provide

CHAPTER 8. HIGHER LEVEL STRUCTURE AND INTERACTION BETWEEN
PRIMITIVES 90

a b

Figure 8.1: Given a symmetric object, our system can edit the symmetry, for example by
changing the 3-fold rotational symmetry in (a) to a 4-fold rotational symmetry in (b). We
do this by scaling a 120◦ slice of the original model into a 90◦ wedge and instancing it four
times.

such approximate correspondences. Once a correspondence has been identified, it simply
needs to be verified and re-aligned – a step that takes less than ten seconds even for large
examples (> 100k triangles) where the full process would have taken several minutes.

In addition to the symmetries of a part, we can also identify symmetry in fitted primitive
parameters: For example, we might recognize a sweep path as symmetric (Fig. 8.2).

8.2 Interactions Between Fitting Primitives

Combining many structure- and primitive-fitting modules into a unified system allows these
modules to interact in interesting, useful ways. We identify some of these interactions, and
show examples of some relevant cases.

As the user specifies various modeling primitives to approximate different portions of
a given shape, the covered surface areas will tend to grow into one another. There are
several ways to handle this overlap. A first approach uses segmentation to find a natural
boundary between the areas modeled by different primitives and then restricts the growth of
the covered surface area to one side of that boundary. Alternatively, a hierarchical distinction
can be used. Several primitives can apply to the same geometry, but at different levels of
abstraction. For example, the overall structure could be an ellipsoid, but small details could
be modeled as thin plate splines.

The extracted higher-level structures themselves can also be fit by an additional structure-
or primitive-fitting module. For instance, a progressive 3D sweep path could be fit against a
quadric surface. This might reveal that the sweep path of the sculpture in Fig. 8.2 lies on a
sphere, and this property could then be locked in during a subsequent shape editing session.
Moreover the symmetry of the extracted path can be extracted and enforced during editing.

CHAPTER 8. HIGHER LEVEL STRUCTURE AND INTERACTION BETWEEN
PRIMITIVES 91

a b c d

Figure 8.2: The sculpture model (a) is fit with multiple primitives (b): a progressive sweep
on top, a cone in the lower half, and a plane at the bottom. The sweep path itself can
be fit onto a sphere (c). This spherical structure can be retained along with any specified
symmetry (here D2) while editing the sweep path (d).

a b c d e f

Figure 8.3: An example of progressive editing: The base (green) of a sculpture (reconstructed
from a visual hull) is first approximated by a quadric surface shown in red (a). Projecting
the base mesh to the quadric surface gives a cleaner result (b). The mesh is then converted
to a surface of revolution and modified by editing the profile curve (c, d). Finally, the base
is converted to a progressive sweep (e), and its sweep path (magenta) is edited to further
deform the pedestal (f).

CHAPTER 8. HIGHER LEVEL STRUCTURE AND INTERACTION BETWEEN
PRIMITIVES 92

Some fitting modules can also be applied to extracted 2D structures: For example, one
can edit 2D curves (e.g., extracted cross-sections or profile curves) with Laplacian curve
editing [132], a natural extension of the smooth surface editing system to 1-manifolds. Or
one can edit the same 2D curves by fitting 2D conics – for example, to ensure a profile curve
remains elliptical – using methods we have already implemented for cylinder-specific fitting
(Sec. 4.3.2).

Finally, we can also transform a primitive fit to a more general fit. Currently we allow
quadrics to be converted to surfaces of revolution (with an additional scaling factor), and
surfaces of revolution to be converted to progressive sweeps, as demonstrated in Fig. 8.3.
One could also allow rotational symmetries to be converted to surfaces of revolution – e.g.,
after finding the rotational symmetry of Fig. 1.2(top), one could convert to a surface of
revolution to allow edits like the one in Fig. 1.2b. These conversions allow the user to easily
add degrees of freedom to an existing fit.

8.2.1 Transformations Between Primitives Types

Tranforming one primitive into a more general primitive is not always completely straight-
forward, so we give the details of these tranformations here.

To convert a surface of revolution to a progressive sweep, we place a straight-line sweep
path along the axis of revolution and use a circular cross section that scales to match the
profile curve. In cases where the profile curve folds back on itself, and multiple cross section
scales would be needed simultaneously, we can break the sweep into separate segments that
join at the turn-around points.

To convert an arbitrary quadric to a surface of revolution, we first rotate the quadric into
a canonical space that is convenient for analysis. To do so, we follow the method of [40] and
express the quadratic terms in matrix form:

pTAp + bTp + C0 with A =

 C7 C4/2 C5/2
C4/2 C8 C6/2
C5/2 C6/2 C9

 , b =

 C1

C2

C3

 . (8.1)

We can rotate the quadric to eliminate the cross-terms by using an eigendecomposition,
A = RDRT ; then in the rotated space pr = RTp the new quadric becomes pr

TDpr +
(Rb)Tpr + C0. The columns of the rotation matrix R are the axes of the quadric. A

point pa on the axes can then be found as pa = 1
2
RD−PR

T
b where D−P is a Moore-Penrose

pseudo-inverse [52] because D could be singular. The terms of the diagonal matrix D also
tells us how space is scaled along each axis. If all the terms have the same sign, we pick the
column of R corresponding to the smallest term as the axis of revolution r1; otherwise, we
choose the axis corresponding to the term with the opposite sign. The remaining two axes
r2 and r3 then describe the major and minor axes of an ellipse scaled by the corresponding
scale terms D22 and D33. By scaling space with the scale matrix S = (1− D22

D33
)(I− r3 ⊗ r3),

this ellipse becomes a circle, and the scaled space can then be edited as a surface of rev-
olution. (In the degenerate case where one or both of D22 and D33 are zero, the quadric

CHAPTER 8. HIGHER LEVEL STRUCTURE AND INTERACTION BETWEEN
PRIMITIVES 93

surface is planar and can be handled separately as a plane.) The stationary sweep velocity
field which fits the surface is finally

v(p) = S−1(r1 × Sp− r1 × pa). (8.2)

94

Chapter 9

Additional Input Sources

Although the bulk of this thesis focuses on polygonal mesh inputs, the concept of user-guided
inverse 3D modeling can be applied to other data sources, such as scans, photographs,
or even videos. This could be done indirectly, by using a fully automatic reconstruction
method to aquire a polygonal mesh representation from the original scan or photograph
data, but such automatic techniques often require certain assumptions to be met about
the material properties and illumination of the shape and the number and distribution of
images. Researchers have repeatedly demonstrated that by bringing a user into the loop of
the reconstruction process itself, a clean, easy-to-edit model can often be made with less raw
data and fewer assumptions about the material properties of the shape [27, 147, 58, 130].

However, these systems tend to introduce a new assumption: that the shape can be
modeled easily by the modeling primitives exposed to the user. For example, [147] assume
that the shape has strong curvilinear features that form a full network over the surface of
the shape. [27, 130] assume that the shape is modeled by planar surfaces, while [58] allow
planar surfaces and networks of feature curves in combination. [58] also provide tube sweep
primitives, but these are kept separate – not informing or informed by the other primitives.
These assumptions restrict the domain of feasible shapes that can be tackled by interactive,
image-based modeling: None of the above systems could easily model the shapes in Fig. 9.1,
because they lie outside the assumed domain for those systems.

In this chapter, we explore how a system that is aware of many different modeling prim-
itives simultaneously could expand the domain of shapes that such user-guided shape re-
construction systems can handle. We focus specifically on reconstructing shapes from pho-
tographs by combining the information from five primitive types: visual hulls, CSG prim-
itives, swept curves (or generalized cylinders), mesh-based thin-plate splines (as a generic,
explicit smooth surface), and surface feature curves. While none of these primitives are
new concepts in interactive image-based modeling, our methods for combining information
from each modeling primitive into a single unified shape enables us to model geometries that
would be cumbersome or impossible to model with just one of those primitives, or with a
fully automated system. Our work in this area is preliminary, and we discuss remaining
challenges and limitations in applying these approaches.

CHAPTER 9. ADDITIONAL INPUT SOURCES 95

a b c

Figure 9.1: (a) An example of an organic shape without an obvious closed network of feature
curves. (b, c) Examples of more sculptural shapes that also lack obvious closed networks
of feature curves, (B) having internal structure and material properties that could stymie
automatic methods relying on photo consistency.

9.1 Related Work

Previous interactive systems for modeling objects from multiple photographs or from a video
sequence have typically focused on directly constructing a set of surface patches that will
result in the final boundary representation. For example, [147] ask the user to draw closed
boundaries from multi-view feature curves, and they then fill those boundaries by thin-
plate spline interpolation of the enclosed sparse data points. [58] proceed similarly, but
use NURBS or planar patches. [27, 130] focus on planar patches exclusively. In contrast,
we start with a rough, approximate, volumetric reconstruction based on the visual hull,
then fit parameterized modeling primitives, and finally fine-tune the resulting surface to be
compatible with all the depicted features.

Silhouette and occluding-contour curves have been used extensively in single-view mod-
eling systems. Such systems tend to assume the object is a smooth shape that is orthogonal
to the image plane at the silhouette contours, giving lumpy, pillow-like results [70, 110].
Other single view modeling systems only attempt to reconstruct the visible geometry [152].
Silhouettes from three orthogonal views were used in a recent from-scratch modeling sys-
tem [117]. This could be combined with previous techniques to create a silhouette-based
orthogonal-view system for modeling from photographs [139]. However, the ability of this
system to reconstruct smooth shapes is somewhat limited, since it uses overly simplistic as-
sumptions to place the silhouette generators (rims) of the shape; and for complex shapes its
smoothed surfaces may overshoot beyond the visual hull. In a more general, multi-view con-
text, silhouettes have also been used effectively for automatic reconstruction systems that

CHAPTER 9. ADDITIONAL INPUT SOURCES 96

use these features as the starting point for further shape optimization [34, 47]. Silhouettes
have also been used in combination with specialized models for specific domains such as ani-
mating human motion [144]; we adapt a number of key ideas from [144] to our more general
context.

Simple sweep primitives were used in the VideoTrace system to define tubular shapes
by drawing the tube path in two views and by indicating the tube radius with a separate
stroke [58]. No optimization was used to ensure an accurate fit, since the swept tube was thin
enough to avoid ambiguity in their example. Sweep primitives have also proven effective for
modeling organic creatures [50]. In both cases, the reconstructed surfaces were smooth and
featureless, since no additional step was taken to add features on top of the swept surface.

The problem of automatically identifying skeleton curves from incomplete point cloud
data has been approached recently by Tagliasacchi et al. [134]; but this is a more difficult
task in the context of multiple 2D views. Swept surfaces with non-circular cross sections
have not yet been used successfully as a modeling primitive in multi-view modeling systems,
since it is typically difficult to devise what the cross section curve might look like, as it is
normally not directly observable.

9.2 Technical Approach

9.2.1 Overview

Our approach is to add information from various types of modeling primitives in a logical
sequence, illustrated in Fig. 9.2. First, we start with the silhouette curves: These primitives
are unambiguous and provide both an initial shape estimate in the form of a visual hull, and
constraints that will inform the use of all subsequent modeling primitives. Next, we introduce
higher-level, parameterized modeling primitives; in our current system these are generalized
sweeps and CSG (constructive solids geometry) primitives. Initially some (usually imprecise)
user input places these primitives into the context of the model, indicating which parts should
be represented in what particular way. Information from the visual hull is then used to
constrain and fine-tune the placement and parameter values of these primitives. A modified
surface reconstruction algorithm is introduced to combine the geometry of these primitives
and of the visual hull into a single boundary representation that follows the primitives where
available and uses the shape of the visual hull elsewhere. Finally, overall surface optimization
is performed to bring this boundary representation in agreement with any other constraints,
such as local surface feature curves produced by sharp edges or by abrupt texture or color
discontinuities.

Our contribution focuses on the geometric reconstruction phase of image-based modeling.
We thus make use of many common components found in other interactive modeling systems.
Specifically, we assume that our images or video frames come from some set-up for which
the intrinsic and extrinsic camera parameters are known, and that our work is done once

CHAPTER 9. ADDITIONAL INPUT SOURCES 97

we have a boundary representation of the 3D geometry. Thus texturing and re-lighting are
outside the scope of our investigation.

User

Silhouette
Curves

Visual Hull

Parametric
Primitives

Combined
Hull and

Primitives

Feature
Curves

Fully
Combined

Model

Figure 9.2: Overview of how our modeling primitives are combined. Starting from the
silhouette curves defining a visual hull, we add in parametric primitives and feature curves,
and finally combine these primitives into a unified model, using a series of optimization steps.

9.2.2 Modeling with Silhouette Curves

Silhouette curves are our initial modeling primitive, because they are typically easy to extract
and can define both a reasonable initial approximate shape and a good guide for constraining
and fine-tuning the parameters of additional modeling primitives. To extract the curves, any
standard object selection algorithm such as GrabCut [118] or Lazy Snapping [82] can be used.
Similar algorithms have been extended to video [25]. Silhouette curves are then projected
from the camera to form cones, the intersection of which yields the visual hull – an incomplete
but fairly precise shape description, which in many computer vision applications is used as
a good-enough approximation of the actual shape [133, 77]. Recently the use of visual hulls
as powerful modeling primitives was demonstrated in a constrained context of orthogonal
orthographic views [117].

Some shapes can be modeled well by the silhouette curves alone. For example, we show
a Klein bottle reconstructed from eight silhouette views in Fig. 9.3a. By allowing the user to

CHAPTER 9. ADDITIONAL INPUT SOURCES 98

a b c

Figure 9.3: The standard visual hull of the Klein bottle (a) does not capture internal structure
and has jagged edges. Allowing the user to draw silhouettes of negative space lets us capture
internal structure (b), and a mesh smoothing optimization that takes silhouettes into account
can smooth out unwanted sharp features from the hull (c).

mark also the silhouettes of the negative space, we can capture the internal structure of this
glass bottle. Similarly, by allowing the user to manually place a ground plane, implemented
as a negative space, we can give the shape a clean bottom even when views from that direction
are impossible to capture – a common case for large objects on solid ground. This results
in the reconstructed bottle of Fig. 9.3b, rendered to show its internal structure. Finally, a
silhouette-aware mesh optimization (introduced in Sec. 9.2.4) can remove the characteristic
jagged hull structure from the surface, giving a smooth, clean surface (Fig. 9.3c).

Our other two example shapes will prove more difficult to model with the silhouettes
alone; however we will still make good use of the information from the silhouettes in subse-
quent modeling phases.

9.2.2.1 Visual Hull Surface Reconstruction

We use a publicly available octree marching cubes algorithm [71] to construct our visual
hull, employing a method similar to that of [33]. This allows us to efficiently model the
hull to the desired accuracy, with a higher density of vertices in areas with much detail or
with high curvature. The basic idea of the octree method is simply to subdivide the octree
cells until every leaf cell is either entirely inside or outside the hull, or a maximum depth is
reached, or some adaptive sampling criteria (like curvature of the local faces, or distance to
the surface being less than a “local feature size” measure) is satisfied. To test if an octree
cell is on the boundary of the hull, we use the test of [133]: Project the cube defining the
cell to each silhouette view, and test the 2D bounding box of that cell’s projected shape in

CHAPTER 9. ADDITIONAL INPUT SOURCES 99

the corresponding silhouette image.
The main advantage of this method over non-volumetric methods is that we can easily

adapt it to include additional modeling primitives in a single watertight reconstruction, using
the method discussed in Sec. 9.2.3.4.

9.2.2.2 Approximate Distance Queries on the Visual Hull

The efficient calculation of approximate signed distances to the visual hull is crucial not only
for efficient root finding in the marching cubes algorithm that constructs the visual hull as
an actual boundary representation, but is also invaluable for the optimizations that will be
performed in subsequent phases of shape reconstruction. Therefore we use the methods of
[33, 144] to compute signed distance estimates efficiently for any point in space.

We first precompute an approximate 2D distance field for each silhouette image on the
pixel-raster grid of the original images. This can be computed by the fast marching method
[124] or by Dijkstra’s algorithm [28]. To compute the distance of a given point p to the 3D
visual hull surface, we project p to each available 2D image, look up the signed distance d2
in the precalculated 2D distance field, and transform that distance back to a 3D distance
d3 to the 3D “silhouette cone” based on the distance of p from the eye point. If p projects
outside one of the 2D images (for example, see point p2 and camera c3 in Fig. 9.4), then it is
outside the range for which we have precomputed distances; in this case we find the closest
point pc on the corresponding image boundary, and approximate the distance from p as the
precomputed distance at pc (red dotted line in Fig. 9.4) plus the distance from pc to p (blue
dotted line in Fig. 9.4). The maximum of all observed d3 values in the various images works
in practice as a reasonable approximation of the distance field. For points lying outside the
visual hull, it is the maximum distance to any silhouette cone surface; for points lying inside,
it is the actual closest-to-zero distance. This distance approximation algorithm is shown in
Fig. 9.4. For negative silhouettes (the silhouettes of tunnels through the object) we simply
compute the distance to the negative hull using this same method, then combine distance
fields by taking the maximum of the ordinary distance field value and the opposite of the
negative distance field value, as suggested (albeit for an oppositely-signed distance field) by
Frisken et al. [43].

Because these distance estimates tend to be conservative, we can also use them to do
efficient ray-casting on the visual hull by distance field ray marching [56]. To cast a ray from
p in direction d̂, we sample the distance field at p and move p by (D(p) + ε)d̂, where D(p)
is the approximate distance at point p and ε is some small constant to avoid excessively
tiny steps. This process stops when the sign of the distance field changes, indicating we’ve
crossed through the surface, or when we exit the bounding box of the space where the object
could be, indicating that the ray doesn’t intersect the visual hull. This ray cast query will
be useful in several of the optimization steps discussed below.

CHAPTER 9. ADDITIONAL INPUT SOURCES 100

Figure 9.4: A 2D example of a visual hull (in orange) obtained by intersecting the (pink)
object silhouette cones from three cameras. We approximate the distance to the hull surface
as a maximum of signed distances to the cone edges (with negative distances inside each
cone). For point p1 (inside hull) this gives the true distance to the hull, in solid green. For
point p2 (outside hull) the true distance is marked with a blue arrow, and the approximate
distance is shown as a solid red line. Camera c3 is shown with an additional cone (with dotted
black outline) indicating the region that is visible in the image taken from that camera. We
only precompute distances in the region of the input image, so since p2 is outside this cone,
we approximate the distance from p2 to the c3 cone by first projecting to the dotted cone
(blue dotted line) and then projecting from there to the silhoutte cone (red dotted line).

9.2.3 Modeling with Parametric Primitives

Once we have constructed a visual hull based on all silhouette constraints, we can introduce
parametric modeling primitives commonly used in the design of man-made parts – specifi-
cally: swept surfaces and common CSG primitive shapes. While the visual hull tends to be
noisy and difficult for the user to edit (except the highly controlled case of orthogonal or-
thographic views), the parametric primitives are precise and designed specifically for shape
editing. Where applicable, generalized sweeps in particular are highly desirable, flexible
representations, if the user intends to subsequently edit the reconstructed shape.

The chosen parameterized primitives could be placed and scaled by the user to obtain the

CHAPTER 9. ADDITIONAL INPUT SOURCES 101

desired fit. However, 3D-positioning of objects and especially of complex curves is cumber-
some. Thus we introduce some optimization processes that can help to fit these primitives
within the silhouette constraints. We do not fully automate the process, but just reduce the
workload for the user to simple, typically single-view, interactions. We herewith introduce a
method to reconstruct a combined surface model that uses the parametric primitives where
applicable, and falls back to the visual hull in other regions.

The details of our fitting process depend on the type of the parameterized primitive.
However, the high-level concept is always the same: First the user selects an image with
a good view of the object, and sketches some input indicating the location of the desired
primitive. The system casts rays from the position of the camera that took that image,
through the user’s input. It marches along these rays to find a set of points inside the hull
that are candidates for the position of the primitive, and then uses a discrete optimization
to choose the best of those points as the initial position of the primitive. Finally the system
uses non-linear optimization to refine the primitive’s parameters, by penalizing generated
sample points on the surface of the modeling primitive for being outside the visual hull.
To ensure the primitive “fills out” the visual hull as much as possible, we also penalize the
primitive for being too small, or too far inside the hull. We believe that this basic approach
is general enough that it can be extended to a variety of other modeling primitives beyond
the types that we demonstrate in this chapter.

9.2.3.1 Placing Simple CSG Primitives

Simple primitives such as ellipsoids, cubes, or cones may be applied by asking the user to
click in the rough center of the desired shape (Fig. 9.5a). A ray cast places the object inside
the hull (Fig. 9.5b), and the user can use a crystal-ball interface to orient the shape to
roughly align with the desired result (Fig. 9.5c). We parameterize the shape by a translation
t and an unconstrained 3×3 transformation matrix M, which allows an input quadric shape
to deform to match any quadric in the same class, and we optimize those parameters to
minimize the error function: ∑

i

(
D(pi)
3
√
|M|

)2 , (9.1)

where each pi is a sample on the surface of the primitive, and D() estimates the signed
distance to the visual hull. This penalizes samples for their distance to the visual hull
surface, while penalizing downscaling to avoid e.g., the solution where the shape is shrunk
to a single point on the hull surface. The resulting shape should fit more snugly inside
the visual hull than the original placement by the user, as demonstrated in Fig. 9.5d. The
function minimization can be performed by any non-linear optimization tool. We use the
Levenberg-Marquardt algorithm [87].

CHAPTER 9. ADDITIONAL INPUT SOURCES 102

a b c d

Figure 9.5: An illustration of our simple primitive placement system. (a) The user clicks a
point (red) where they would like to place a simple primitive. (b) The user chooses a cone
primitive, and it is placed such that its centroid is directly under the user’s point, in the part
of the visual hull furthest from the surface. Its scale is proportional to the distance from
that centroid point to the hull surface. (c) The user adjusts the cone orientation manually
to roughly align with the desired cone. (d) An optimization deforms and translates the cone
to conform to the visual hull.

9.2.3.2 Placing Swept Curve Primitives

We also support placement of a limited form of progressive sweep: The sweeps we fit here
have fewer degrees of freedom compared to the progressive sweeps of Chapter 3, because the
guidance provided by the visual hull is much more limited than that provided by an input
3D model. Specifically, we only support sweeps that set their cross-section orientation by a
fixed global scheme (i.e., a rotation minimizing frame or Frenet frame) without local twists.
Extending to more general sweeps is an important area for future work, as we discuss in
Sec. 9.4, but our current, limited sweep primitive already gives promising results – allowing
us to handle the complicated ribbon-sweep of Fig. 9.1c. In this section, we detail our current
approach to fitting sweep primitives.

To fit our sweep primitive, we begin by asking the user to to draw an approximate
sweep path on a single image. We let the user draw this path as a compound Bézier curve.
Optionally the user may supplement this drawing with additional sweep paths, or portions of
such, in other images. We then introduce an optimization procedure to locate this sweep in
3D space. This optimization requires two steps: an initialization step in which we generate
a set of candidate points and use a discrete optimization to choose a good initial sweep path
through those candidate points, and a subsequent continuous optimization that adjusts all
sweep parameters to find the best fit in the local neighborhood of that initial estimate.

Our initial discrete optimization observes the following constraints: (1) The curve must
be continuous in space, (2) it should stay within the visual hull or at least very close to
it. If the same curve, with nearly the same start and end points (e.g., the handle or spout
of the Utah teapot), can be drawn in two views, a number of methods can be used to
approximate the curve, such as the method of Videotrace [58]. However, in some cases, such

CHAPTER 9. ADDITIONAL INPUT SOURCES 103

Figure 9.6: Visualization of the curve fitting algorithm: Given a curve on an image (yellow),
the curve is sampled and rays are shot through the image samples from the camera (green).
These rays are intersected with the visual hull (blue), and candidate points inside the hull
are allocated for each ray (spaced evenly – at a distance of a hundredth of the length of the
diagonal bounding box of the visual hull, for scale). We then use dynamic programming to
find a shortest path through these candidate points in the order of the rays, with some bias
towards the center of the hull.

as Fig. 9.1c, drawing such corresponding curves segments – or even two complete curves –
is difficult. In addition, these methods are not guaranteed to respect goal (2): There can be
large ambiguities in a 2-view matching, which may result in a curve that leaves the visual
hull. Therefore, we introduce a simple optimization that works for a curve drawn in only a
single view.

Our discrete optimization works as follows. We first create a set of possible points: We
sample the 2D curve, and for each 2D sample point on the curve we cast a ray from the
camera through the visual hull (Fig. 9.6). When that ray is inside the visual hull or within
a few pixels of its surface, we sample 3D candidate points at a fixed spacing along the ray.
Our goal is to then select, for each 2D sample point in order, a 3D point that satisfies our
optimization objectives. We use dynamic programming to solve this optimization problem,
where the incremental cost of adding a point pi to a path with previous point pi−1 is
computed as

w1Dp(pi−1,pi) + w2
1.0

|Dh(pi + ε)|
, (9.2)

where w1 is a weight controlling the importance of the curve continuity, while w2 is the
weight controlling the importance of falling inside the hull, favoring the center. Dp is the
distance between two points, while Dh is the approximate distance from a point to the visual
hull (Sec. 9.2.2.2).

CHAPTER 9. ADDITIONAL INPUT SOURCES 104

The output of our discrete optimization is a set of 3D points in space, which we then fit
with a uniform quartic B-spline to get a smooth spine curve. We distribute B-spline control
points to match the Bézier control points used to specify the original 2D curve, with the
intent that our resulting curve have similar degrees of freedom as the input and thus will give
the user the expected flexibility in control. This also allows us to place C1 discontinuities in
the spline where they have been placed in the original Bézier drawing, as an initial guess at
the locations of non-smooth junctions.

Given this approximate spine curve, we must now estimate the initial cross-section curve
and its scale. We currently always initialize the cross section’s shape to a circle, and turn to
the user to estimate its scale: Following the method of [58], we let users specify cross section
scale locally along the curve by (1) clicking the point on the curve where they would like
to specify a scale, and then (2) clicking a point away from the curve that the cross-section
curve should go through, when it is projected to the user’s current view. Using this system,
the user can quickly place approximate scales along the curve, which we interpolate with a
Catmull-Rom spline.

Finally, we introduce a non-linear optimization to refine both the spine curve and the
cross-section shape simultaneously. Note that, in theory, a generalized sweep primitive may
have arbitrary degrees of freedom in the cross section: The cross section may have an ar-
bitrary shape, orientation, and may even change shape and orientation arbitrarily as it
progresses. However, allowing too many degrees of freedom makes the optimization mean-
ingless: Any shape at all can be perfectly fit by any spine curve simply by aggressively
morphing the cross section. Therefore it is up to the user to specify the limited degrees of
freedom that they actually want the system to use. We give the user several choices for re-
stricted degrees of freedom that are common in practice: We can limit morphing to just
scaling, or optionally no morphing at all; we can limit the shape to a circle; and we can limit
the rotation of the cross section to a standard choice of either the Frenet frame or the ro-
tation minimizing frame [10]. For example, the Klein bottle (Fig. 9.1b) has a circular cross
section for which morphing is limited to pure scaling, while the sculptural sweep (Fig. 9.1c)
has a fixed size cross section that derives its orientation from the Frenet frame. To further
simplify our optimization and avoid the need for strong smoothness constraints on the cross
section, we model the cross section as a polar function sampled at a fixed number of angles
– thus limiting our cross sections to star shapes.

Given a user-specified set of limitations of the cross section and framing, we then optimize
the sweep by minimizing the following energy:

w1

∑
i

(max(0, D(pi)))
2 + w2(

1.0

S + ε
)2 , (9.3)

where w1 is the weight controlling the importance of staying inside the hull, and w2 penalizes
shrinking the cross section. D() estimates an approximate distance to the visual hull, and
S is the cross section area, while ε is a small value used to avoid division by zero.

Note that this optimization is different from the one used for the simple CSG primitives,
because the sweep primitive has many more degrees of freedom and is thus more sensitive

CHAPTER 9. ADDITIONAL INPUT SOURCES 105

a b c

Figure 9.7: From a user-drawn compound Bézier curve in one view (a), a curve optimization
taking into account 8 views and their silhouettes produces an initial 3D sweep curve. After
the user has indicated a cross section scale, a tubular sweep is produced (b). Finally an
optimization of the sweep spine control points and of the sweep cross section yields a final
fitted sweep shape (c).

to inaccuracies in the error function. Errors computed for points outside the visual hull
always correspond to real problems with the fit, but errors computed for points inside the
visual hull may arise simply because the visual hull does not match the true surface very
well (a common occurence for complex sweeps; see Fig. 9.10b). Therefore, our error function
penalizes the sweep only for points that are outside the visual hull. However, we then also
need a new way to ensure the optimization does not shrink the primitive away to nothing;
for this we adopt the slightly less elegant approach of adding a separate term to penalize
shrinking solutions. We use Levenberg-Marquardt to perform this optimization [87].

The sweep fitting process is illustrated in Fig. 9.7, which shows an initial 2D curve first
being reconstructed as a simple tube sweep, and then optimized to have a better sweep path
and a curved cross section like the photographed sculpture (Fig. 9.1c).

9.2.3.3 Skeletal Swept Curve Primitives for Organic Shapes

We can adopt the swept primitive optimization to a much looser setting for organic shapes,
where the goal is not to exactly model the shape, but rather to define the rough structure and
topology in the same vein as the single-view creature modeling system of [50]. This is most
beneficial when a relatively small number of views is available. There may then be significant
artifacts in the visual hull that can be removed by a swept shape approximation and thus yield
a much better starting point for a subsequent mesh optimization step (Sec. 9.2.4). Fig. 9.8
shows an example of a elephant with a noisy hull constructed from only five silhouettes.
Note that the sweep curves were defined by the single-view curve optimization described in

CHAPTER 9. ADDITIONAL INPUT SOURCES 106

a b c

d e e

Figure 9.8: The single-view spine curve fitting process can also be used to fit tube sweeps to
the elephant (a,b), quickly defining a smooth approximate shape with the correct topology,
which can then be optimized to fit the visual hull (d,e) using the smooth surface optimization
of Sec. 9.2.4. In contrast, starting from the noisy geometry of the visual hull itself (c) will be
much more difficult for the smooth surface optimization (f) – the mesh surface optimization
cannot discard some large ghost geometry, and could not ever correct a topological error.

the previous section, using the green curves in Fig. 9.8a. For these sweeps we used a default
circular cross section with spherical end-caps.

9.2.3.4 Combined Reconstruction Method

In many cases, parametric surfaces will only cover a portion of the model being reconstructed.
In these cases, we still want to reconstruct the full surface represented by the visual hull,
but using the (presumably more accurate or more meaningful) parametric surface(s) where
applicable. In this section, we introduce a new method that allows us to combine visual
hull geometry with parametric primitive geometry – using the visual hull geometry only on
portions not defined by the parametric primitives.

To combine all primitives and the hull together, we first represent the primitives in the
same implicit octree as the visual hull. Our simple CSG primitives typically have analytic
distance functions that can be computed easily, allowing for efficient reconstruction with
any standard implicit meshing method. For the reconstruction of sweeps we use a method

CHAPTER 9. ADDITIONAL INPUT SOURCES 107

a b c d

Figure 9.9: Visualization of the hull-primitive combination algorithm, from left to right:
(a) We start with an overlapping hull (red) and parametric primitive (green), and then (b)
subtract from the original hull the “hull” of the primitive, grown by some fixed radius (pink).
We then grow any remaining visual hull geometry (c), and add back in the intersection of
the grown hull and the original (d).

similar to that of [121].
We introduce a heuristic that lets us estimate whether or not a point in the visual hull

is also represented by a known parametric surface. We define a visual hull of the parametric
surface by projecting an explicit model of the parametric surface into each view for which
we have silhouette curves indicating the visual hull of the full surface, thus getting a set of
silhouettes for the parametric surface. To account for disparity between the models, we grow
each parametric model silhouette by some fixed T pixels, thus growing the corresponding
hull of the parametric surface. If a point is inside this hull, we tentatively consider it owned
by the parametric surface.

An exception is made near the boundary of the parametric surface. There will often
be some geometry connecting the non-parametric hull geometry to the parametric surface,
and this connecting geometry must not be deleted. Therefore, for any point inside both
the original hull and the parametric surface hull, but outside the actual parametric surface,
we check the distance to the surface defined by the Boolean subtraction of (original hull
− parametric hull). If this distance is equal to the distance to the parametric hull, we
assume that we are in the geometry connecting us to the non-parametric hull geometry,
which is owned by the original hull. Unfortunately, our efficient distance approximations
(Sec. 9.2.2.2) are especially inaccurate near the border of a Boolean subtraction, so a more
expensive distance calculation is typically required: As a next-best-heuristic we use a ray
cast in the direction of the parametric hull gradient, and check if the distance to the surface
along that ray meets our criteria.

Once a point’s ownership is determined, we use the owner’s distance field estimate for
surface reconstruction purposes. An overview of the full process is illustrated in Fig. 9.9,
and an example of a successful sweep-hull merge is shown in Fig. 9.10.

CHAPTER 9. ADDITIONAL INPUT SOURCES 108

a b c

Figure 9.10: A small deviation from a hull view (a) reveals large “ghost” geometry in the
sweep half of the model, but the cone at the bottom looks reasonable (b). Here we combine
a fitted sweep primitive for the top with the hull on the bottom, while still keeping the two
parts connected at the join point (c).

9.2.4 Thin-plate Splines and Surface Feature Curves

Once we have some initial reasonable surface mesh from our hull and/or parametric primi-
tives, we can introduce a thin-plate spline primitive [12]. Thin plate splines have been used
previously in image-based modeling to connect networks of feature curves [147], and are es-
pecially attractive as a smooth surface representation because they avoid the topological
constraints of NURBS patches and even the need for a connected network curves at all. We
will use these primitives to smooth our visual hull surfaces, and to integrate surface feature
curves in a free form manner.

The linearized thin plate surface itself can be found by a simple, linear, least squares
optimization on the extracted hull or parametric primitive mesh surface. We minimize an
energy on the vertex positions V :

wL||∆V ||2 + wC ||CV − P ||2 , (9.4)

where wL is the weight of the smoothness term, and wC is the weight of control points P
defining where the surface should go. Matrix C contains the barycentric coordinates of the
points on the mesh that should be moved to meet control points P . ∆ is the area-weighted
cotangent Laplacian operator [73]. This minimization results in a sparse, linear, least squares
problem, which we solve via the normal equations using a sparse Cholesky factorization using
the CHOLMOD library [21].

The key is to find a good correspondence between points on the mesh surface (CV)
and our control points (P). We do so in two ways: (1) We find a correspondence between
samples of 2D silhouette curves and the mesh surface, which we use to enforce the silhouette

CHAPTER 9. ADDITIONAL INPUT SOURCES 109

constraints, and (2) we find a correspondence between samples of 3D space curves defining
surface features and the mesh surface. In addition to these control points, we add (with
much smaller weight) an extra “control point” for each vertex that just pulls the vertex
back to its original position on the visual hull: This regularizes the solution, keeping it from
shrinking away too excessively in regions without other constraints. In a complete system,
one could allow the user to control the relative weighting of this regularization term more
directly – allowing the user to interpolate between the visual hull and the smoothed surface
– but in our prototype system we just used a small fixed weight over the whole surface, so
that the smoothness terms and curve-specific control points largely dominate the solution.

9.2.4.1 Silhouette to Surface Correspondence

The general silhouette to surface correspondence problem has seen a number of similar recent
approaches [144, 74, 117, 47]. Each method attempts in some way to find the silhouette
generators – the points on the mesh that project back to the silhouette curve. Of these
methods we chose to pursue [144], because it easily applies to meshes that were not generated
by the hull (unlike [47, 117]) and does not expect continuity of the silhouettes on the surface
(unlike [74], which was designed for occluding contours). We find that the method of [144]
works well in practice; for completeness we summarize it here.

The approach is to sample the 2D silhouette curves and project a ray through each sample
point from the silhouette curve camera. Then we try to find a point on the surface that, if
moved to the silhouette ray, is likely to reproduce that silhouette. If the ray misses the mesh,
we just use the point on the mesh closest to the ray. If the silhouette ray intersects the mesh,
we find the point on the ray that is deepest inside the mesh, and use the point on the mesh
closest to that point. In both cases, we find the 2D normal of the sample on the silhouette
curve, project that direction to 3D, and bias the closest point query in the direction of the
silhouette normal to avoid “mesh folding,” as shown in Fig. 9.11b. To bias the query, we
scale distances in the bias direction by a factor of 0.25, which is the constant factor suggested
in [144]. We perform this matching and re-solve for the surface four times, increasing the
weight of the silhouette constraints by a factor of two each time, to reduce the likelihood of
artifacts due to a “bad” or conflicting correspondence; the smoothness constraints dominate
in the first few iterations and help prevent folding.

The end result of this process is a mesh that respects the visual hull constraints, but
which is otherwise smooth. Thus the process can be thought of as a mesh smoothing al-
gorithm that is specially tailored to use the visual hull primitives, capable of acting like
Laplacian smoothing away from the contour generators, while continuing to fill out the pro-
vided silhouette curves.

9.2.4.2 Feature Curve to Surface Correspondence

Our final modeling primitive is the surface feature curve. Previous interactive image-based
modeling systems have relied heavily on networks of such curves to define a smooth surface

CHAPTER 9. ADDITIONAL INPUT SOURCES 110

a b c

Figure 9.11: Different methods for finding the curve-surface correspondence, illustrated on a
simple 2D example: The curve is drawn in red, the surface in green, and the correspondences
in black and green arrows. The surface after optimization is shown in dotted blue. (a) The
naive approach of simply using the closest point. (b) The result of biasing the distance
measure in a suitable direction. (c) The result of adding intermediate curve points, thus
avoiding the generation of folding artifacts.

a b c

Figure 9.12: A set of 3D curves (in green) capture details of the elephant ear (a) constructed
from lines drawn by the user in 3 of the 5 initial images. When these 3D curves are used in
conjunction with the thin-plate spline reconstruction, the ear details appear on the elephant
mesh (c). Without using these curves we would get the smooth, earless shape in (b).

topology [147, 58]. We instead simply add these curves as freeform constraints on the surface
of the thin-plate spline, thus integrating them naturally with the spline surface and any
primitives that initially generated that surface. Our process is: (1) the user reconstructs the
surface curve from multiple views, using any of the many available methods [147, 58, 35],
(2) the curves are dynamically mapped to the surface of the mesh and included in surface
optimization along with the silhouette constraints.

To perform the mapping from 3D space curve to mesh surface, we adapt the above
silhouette correspondence approach: From samples on the space curve, we find closest points
on the mesh surface using a biased distance metric which scales distances in a “bias direction”
by a factor of 0.25 (the same as was used for the silhouette curves). In this case, we choose
the bias direction based on the camera views in which the 3D curve was originally found:
Specifically, we take the average direction from those cameras to the current sample point
on the space curve as the bias direction. We can completely avoid the “surface folding” issue
raised by [144] for the 3D curve case by creating extra sample points on the surface where

CHAPTER 9. ADDITIONAL INPUT SOURCES 111

the geodesic path between subsequent initial correspondence points crosses any mesh edges.
These additional sample points are mapped back to the appropriate curve interval to create
additional correspondence pairs, illustrated by the green arrows in Fig. 9.11c. To allow the
mesh to bend along feature curves, we also temporarily, locally re-tessellate the mesh so that
we have a continuous path of edges following each path.

We demonstrate the effect of our feature curves by adding an elephant ear to the smooth
mesh we previously extracted (Fig. 9.12).

9.3 Results and Discussion

We evaluated our methods on the three data sets illustrated in Fig. 9.1. Each data set came
with camera information already provided, and we used the “QuickSelect tool” in Adobe
Photoshop to extract silhouettes. Other curve data was extracted within our own system.
Our results are shown in Figs. 9.3, 9.5, 9.7, 9.8, 9.10, and 9.12. For each example we typically
had a large number of photos available (at least 25) but we chose to use only a fixed subset
of five to ten photos for reconstruction: This smaller set more accurately simulates a casual
modeling context in which the user may not have taken more than a few photos of an object
(from unique angles) – either because the object in the wild was not visible from more angles,
or the user did not have the knowledge, forethought or time to collect a large data set, or the
user may even be using images from another person or time when 3D reconstruction from
photos was not a consideration. Table 9.1 lists the number of views used in each set. We
have demonstrated different features of our procedure for different shapes as appropriate:
The Klein bottle demonstrates the features of the visual hull primitive and thin plate spline,
the sculpture demonstrates the parametric primitives and combination with the visual hull,
and the elephant demonstrates the skeleton primitives, thin plate spline and surface feature
curves. In each case, a combination of at least two techniques was required for a good
reconstruction that could be used as the start of a redesign effort, emphasizing the value of
a combined approach.

9.3.1 Performance

While our focus was not on optimizing the method to be as fast as possible, we do want it
to fit into the context of an interactive modeling system. As an initial guideline we have
attempted to avoid optimizations taking more than a minute of user time. Note that the
thin plate spline method takes time roughly proportional to the mesh size, so it could take
longer if we required a higher resolution mesh – for our examples we chose what we felt to
be reasonably “high-quality” settings (30-60k triangles).

Timings for each data set are listed in Table 9.1. We performed all tests on a laptop with a
2.4 GHz Core Duo processor and 2 GB of RAM. Timings are only listed for the optimizations
new to this thesis: Efficient tessellation of an implicit surface and fitting curves from multiple
views are already known to be efficient from previous work [33, 58].

CHAPTER 9. ADDITIONAL INPUT SOURCES 112

Table 9.1: Timings for each optimization

Model # Views Curve (ms) Prim. (ms) Sweep (ms) Thin Plate (ms) # Tris.
Fig. 9.1a 5 47 N/A N/A 10328 30366
Fig. 9.1b 8 N/A N/A N/A 22125 64864
Fig. 9.1c 9 594 406 5297 N/A 17600

9.3.2 Current Scope

With just the addition of two parameterized primitives – a simple sweep (with constant cross-
section) and a CSG element (cone) – we are able to reconstruct decent models from just a few
photographs of objects that would impose great difficulties on earlier image-based reverse-
engineering systems: We are able to deal with transparent objects with internal structure,
complex geometry wrapping around a large void, and organic shapes with a non-distinct,
noisy visual hull.

9.4 Limitations and Future Work

Reconstructing from photographs is a very challenging problem, and in this chapter we have
focused on only a slice of that problem: We assume camera calibration and positions are
known from the start, and then focus on reconstructing geometry from that information. To
do so, we use photographs collected in a lab setting, where calibration is known and positions
can be reconstructed in reference to a pattern on which the reconstructed object was placed.
In the future, we would of course like our system to work with arbitrary photographs taken in
uncontrolled settings, which raises new challenges and new opportunties for user interaction.
We performed a preliminary test in which we used a popular solution for finding camera
calibrations and positions automatically [146], to find camera positions for collections of
22, 23, and 40 photos of the objects in Fig. 9.13a-c respectively, and we found that the
system did not really work well enough for us to use the results: It could only find relative

a b c

Figure 9.13: Objects that we may attempt to handle with our modeling system.

CHAPTER 9. ADDITIONAL INPUT SOURCES 113

camera positions for small subsets of the images in each set (the subsets contained only 2-3
photos typically, and at most 8 photos but with very low accuracy in that case), and these
subsets tended to include only images taken from very similar views. Our approach of visual
hull-based model fitting really needs views of multiple sides of an object to work well, so
this was not enough to work with. While taking more photos would likely help this system
work better, we thought our collections of photos were already quite large and covered all
angles of the objects well – therefore, it seems unlikely that casual users would provide better
data. We then tested a semi-automatic system [1] on the same data, and this gave much
more promising results – leading to some partial reconstructions that could use a much wider
range of views – but this semi-automatic approach required a long session of manually finding
and correcting point correspondences between the images. We are interested to see what
higher-level structure-labelling could bring to this aspect of the problem as well. We hope
that in the future we can push such systems to work with much smaller sets of photographs,
on the order of 4-5 photos, which seems like a more reasonable amount for a casual user
to take. Enabling our system to work well outside of a controlled lab setting will be an
important step in making our techniques useful for a much wider range of examples.

In addition to expanding the scope where our system can apply, we also want to improve
our fitting methods to handle more general primitives. For example, the sweep primitives
we fit in this chapter do not allow for arbitrary rotation of the cross section, and instead
require that the sweep maintain a torsion-minimizing frame or a frenet frame. Generalizing
our sweep primitives to have the same degrees of freedom as progressive sweeps in Chapter 3
is challenging because fitting a visual hull is much more ambiguous than fitting an actual
surface: The visual hull may have significant amounts of “ghost” geometry (see Fig. 9.10b),
and in regions near this ghost geometry there may be many cross section orientations that
appear to fit the visual hull equally well. To disambiguate the solution in these cases, we
will need to add additional, optional user hinting: The user should be able to specify (1)
the rough shape of the cross section, and (2) the positions and orientations of cross section
slices at arbitrary points along the curve. We plan to solve for the sweep parameters with
these inputs as approximate constraints to guide the optimization.

This chapter has focused primarily on reconstruction, but one of the primary goals of
our primitive-fitting approach is that it is also useful in subsequent redesign of the shape.
Portions of a shape that were generated by parameteric primitives can be easily matched
to the generating primitive, so we can use the generating primitive parameters to edit the
shape. Likewise feature curves can be edited, and the smooth surface can be updated to
match. However, two interesting questions arise: (A) What editing can be done with the
silhouette curves, and (B) what do we do about the interaction between primitives?

Silhouettes have been shown to be intuitive handles for shape editing in the special
cases of a single view [157] or orthogonal, orthographic views [117]. However, in the case of
arbitrary views, editing one silhouette will typically change the silhouettes in neighboring
views. We plan to explore whether there is any intuitive and efficient way to edit a silhouette
while respecting the silhouettes of nearby views – leaving them as “un-damaged” as possible.
If not, the initial silhouettes may not be useful for redesign, and in this case silhouette-based

CHAPTER 9. ADDITIONAL INPUT SOURCES 114

editing could be achieved by some adaptation of the single-view methods [157].
For the problem of interaction between primitives, we propose that the user could indicate

for each primitive (A) if it is hierarchically related to another primitive, so that when it moves
the other primitive should move with it, and (B) if its structure should be preserved while
edits to other primitives occur. For example, the user may want a portion of a reconstructed
surface to always maintain its original sweep-like structure – if so, this structure should
be imposed as a constraint on any subsequent shape edits. This would likely require that
mesh optimization be broken into phases: First, primitive parameters would be optimized to
match the edited constraints; second, any child primitives would be updated to move along
with their parent(s); and, finally, mesh optimization would be run on the remaining surfaces.

115

Chapter 10

Cleaning Results for Export

In the process of freely editing a shape, users can easily create a number of undesirable ar-
tifacts in the surface, such as self-intersections and holes – for example, if the users bend a
sweep too sharply, or clone the handle of a pot and “re-attach” it by simply letting it in-
tersect with the body. In addition, many artifacts may already exist in surfaces that the
user wants to redesign: Degenerate triangles, non-manifold geometry, self-intersections, and
holes are all common problems in existing scanned and CAD models. These artifacts must
be fixed in order to properly support downstream applications like 3D printing and finite el-
ement simulation. If we can export our high-level representation with fitted primitive (e.g.,
to a CAD tool that supports such higher level primitives), we may want to also clean up
the higher-level representation: We may want to ensure, e.g., that the higher-level represen-
tation segments the input surface cleanly into logical parts without holes, and with smooth
boundaries.

In this chapter, we give an overview of the common problems that arise in our input
and output, and the methods available to clean such output. These problems are already
well-studied, so we highlight the solutions best-suited to cleaning our models, and discuss
issues with and tradeoffs between these solutions.

10.1 Cleaning General Polygon Mesh Surfaces

Our most basic level of cleaning starts with an arbitrary polygon mesh – either scanned
or modeled manually – that may have been further edited in our inverse modeling system.
A number of artifacts can be present in such a surface: For example, there may be small
gaps, either from the scanning process or from poor stitching of CAD surfaces; there may
be overlapping surface components; faces may be oriented inconsistently; there may be non-
manifold edges which are shared by more than two polygons. Repairing artifacts of these
types is a well-studied problem, and recently well-covered by an extensive literature review
[6]. Here we give a brief overview of the techniques we find most useful, as well as pointers
to existing software that is effective for cleaning these artifacts.

CHAPTER 10. CLEANING RESULTS FOR EXPORT 116

a b

Figure 10.1: Examples of surfaces that may be defined in a CAD file with open boundaries,
self-intersections, and/or non-orientable components: (a) An open, symmetrical form of
Girl’s Cap [53]. (b) A Klein bottle. Although these surfaces can also be defined as solids,
it is often easier to represent them as thin sheets, especially if the user intends to continue
editing the shape.

Note that in this section we do not assume in our initial cleanup phase that the surface
is intended to define a watertight solid: We want our inverse 3D modeling system to be
able to handle abstract mathematical shapes such as those in Fig. 10.1, which may be non-
orientable, may have open boundaries and may have self-intersections. We discuss methods
to clean surfaces that are supposed to be watertight below, in Sec. 10.3.

10.1.1 Correcting Face Orientations

In some badly-constructed CAD models, faces may be arbitrarily oriented; often, users prefer
that mesh faces have a consistent orientation. Enforcing a consistent orientation of mesh
faces is not possible for a non-orientable surface (e.g., a Klein Bottle or Moebius Strip), but it
is easy to detect when consistent face orientation is possible, and to enforce it in these cases
[5]. To enforce consistent face orientation, we can pick a face and propagate its orientation to
all neighbors – flipping any oppositely-oriented neighbor faces. Then continue to propagate
this orientation to all neighbor’s neighbors, recursively, until the entire connected component
has the same orientation. As we traverse the neighbors, we can mark which faces have already
been verified to have a consistent orientation, and not revisit those faces. If we ever see a face
that we have already visited and its orientation corrected, but which still must be flipped to
maintain a consistent orientation with another neighbor, then this component of the mesh
is not orientable. Consistent orientation algorithms have been implemented in a number of
existing mesh cleanup packages [5, 91]. When each component of the mesh is consistently
oriented, it is also easier for the user to correct components that are facing the incorrect
direction: The user can select and flip the whole connected component at once.

CHAPTER 10. CLEANING RESULTS FOR EXPORT 117

10.1.2 Enforcing a Manifold Surface

Typically we want our surfaces to be manifold, meaning that edges are incident to at most
two faces, and vertices are not shared by multiple rings of faces. Gueziec et al. [54] showed
how to fix non-manifold elements by duplicating vertices and edges that are shared by too
many faces, and re-assigning faces to the new vertices and edges as needed. They also showed
how to optionally pull such elements apart, if duplicate identical vertices and edges are also
undesirable. These methods are implemented in freely available open source software [5, 91].
Note that this approach is designed to respect all the geometry, and simply ensure that it
is represented as manifold; in some cases, however, non-manifold portions of a surface are
small local artifacts due to the failure of an earlier mesh processing algorithm (for example,
the low-res meshes of the Stanford Bunny model [138] have tiny non-manifold details, added
by the software used to simplify them). When non-manifold details should be deleted, one
option (implemented in the MeshMixer software [120]) is to simply delete the triangles in
the local neighborhood of the non-manifold elements, and then treat the resulting hole as a
small gap to be filled.

10.1.3 Closing Undesired Gaps

Some holes in a surface may be artifacts that arise when a mesh is aquired by scanning – some
geometry cannot be easily seen by the scanner – or may be left inadvertently by an artist in
a CAD model, or arise as cracks between parametric patches in some modeling programs.
They may also arise from errors in mesh processing – for example, a naive implementation
of marching cubes [98] can leave holes in a surface in certain cases. Therefore, it is useful to
have an a semi-automated way to fill holes in a mesh surface. Of course, some holes may be
left intentionally – for example, in the visualization of the Girl’s Cap surface in Fig. 10.1a,
the holes help clearly visualize how the true surface interpenetrates. The process of cleaning
holes in surfaces therefore has two parts: (1) Determining whether a hole should be filled or
not, and (2) if it should be filled, generating the hole-fill geometry.

The simplest approaches to determine whether holes should be filled are (a) ask the
user about every hole (implemented in MeshMixer [120]) or (b) fill all holes smaller than
a threshold size (implemented in MeshLab [91]). It would be interesting to explore more
sophisticated heuristics for deciding whether a hole should be filled or not: For example, if
the data is scanned (i.e., a scan of a thin sheet with holes), then a hole is likely intentional
if the scanner had a clear view of some part of the hole, and it still left the hole. Also, if
the hole fill surface would either intersect other parts of the existing surface, or otherwise be
relatively much larger than the boundary of the original hole (as would be the case for the
holes in a thin-sheet version of Girl’s Cap in Fig. 10.1a), then the holes are likely intentional.
However, simply asking the user whether or not to fill all holes larger than a threshold is not
an overly-burdensome approach for most surfaces.

Once we’ve identified a hole to fill, there are a number of approaches to filling it. In the
simplest case, a hole is defined by a single open boundary loop – this is the common case

CHAPTER 10. CLEANING RESULTS FOR EXPORT 118

handled easily by most freely available mesh cleaning software [5, 91, 120]. While closing open
boundary loops works well for simple holes, for more complex holes this approach can create
self-intersecting geometry, and cannot properly handle holes with disconnected “islands” of
geometry that should be incorporated into the hole fill surface [26]. In these general cases,
a more robust approach is to locally segment space into “inside” and “outside” components
[26, 105]. Segmenting space into inside and outside components is most commonly used when
the whole model is known to be a solid model, so a globally coherent notion of what is inside
and outside the shape applies, but the same approach could be applied to open surfaces as
well, as long as we can define some local notion of what is inside and outside of the surface,
and then restrict the volume of space we process to that local region.

10.1.4 Merging Parts

Often artists will “merge” two parts of a model by simply moving the parts together, leaving
them intersecting. As long as the viewer does not have an inside view of the surfaces,
the rendered surface will appear to be the union of the two surfaces. When cleaning a
model for export, we may want to resolve these intersections and explicitly merge the two
parts – removing intersections and making a continuous surface that includes both parts.
Merging parts in this way is a well-studied [45, 135, 120] special case of resolving holes and
intersections in surfaces, and effective tools to do so are now freely available [120]. Note that
if the surface is known to be solid, this is not as necessary – we can apply more general
methods to globally resolve all self-intersections and holes – but in the non-solid case this
special-case cleanup is common enough to be valuable.

10.2 Cleaning the High Level Structure and

Segmentation

Our higher-level surface primitives are typically derived by fitting surfaces to an underlying
polygon mesh surface. To faithfully represent all features of the underlying polygon mesh
surface, we would have to transfer holes to the higher-level primitive surface, for example
by using trim curves. Removing holes is then a matter of simply not transferring them.
Alternatively, if undesired holes are patched in the underlying polygon surface using the
machinery above, then there will be no undesired holes to transfer to the higher-level surfaces.
The higher-level primitives could also make filling holes on the polygon mesh easier, by
guiding where the hole-fill surfaces go [88].

In addition to gaps in the underlying geometry, we may have gaps in the segmentation:
Small regions of unselected faces within a larger segment can arise if there are small regions
of noise or detail that cause the surface to deviate more than usual from the fitted surface,
as shown in Fig. 10.2a. Cleaning such gaps in a segmentation can be performed with a mor-
phological approach similar to the one described in Chapter 2 (Fig. 2.13b). Specifically, we
can use the “opening” operator, which selects unselected elements touching the boundary

CHAPTER 10. CLEANING RESULTS FOR EXPORT 119

a b

Figure 10.2: Examples of different artifacts in the high-level structure that a user may want
to clean before export: (a) Segments like the one shown in blue may have small gaps where
the surface deviated from the fitted primitive. (b) The cylinder’s segment (blue) includes a
small region that would ideally only belong to the sphere’s segment (green), demonstrating
how neighboring segments may not initially have a clean boundary at the ideal transition
point between the two shapes.

of the selection, followed by the “closing” operator, which deselects selected elements touch-
ing the boundary of the selection. The size of the selection and deselection by the opening
and closing operators respectively controls the size of segmentation gap that the algorithm
will fill. The selection size can be defined in terms of the number of polygons away from the
boundary that are selected, or in terms of a geodesic distance – in which case we would select
any polygons that are entirely within some threshold geodesic distance d of the boundary.

Another common issue is that the boundaries between two segments may not placed at
the ideal curve of intersection between the two primitives (Fig. 10.2b). Because the primitive
surfaces and the input surfaces generally do not match exactly, the true curve of intersection
could be arbitrarily far from the input surface – or may not even exist. Therefore, the
boundaries between segments are typically refined by locally optimizing the segmentation
boundaries on the input surface. One effective method in practice is to use a graph cut to
find a shortest-path curve that separates the two surfaces and that stays within the region
that fits both primitives [149].

10.3 Guaranteeing a Solid Model

If the surface we are attempting to clean is intended to define a solid model, then we know
that the surface must be orientable, and that all self-intersections and holes in the surface are
defects that need to be fixed. Therefore, it should be possible to more effectively automate
the cleanup process – ideally resulting in a global, guaranteed algorithm for fixing holes and
self-intersections as illustrated in Fig. 10.3c. In addition to our primary goal of guaranteeing
that our output is a valid solid model, we also want to respect the structure of the input
surface as much as possible: The polygons of 3D meshes are often carefully placed to best-

CHAPTER 10. CLEANING RESULTS FOR EXPORT 120

a b c

Figure 10.3: The Utah teapot (a) is a standard example of a surface with self-intersections
and holes, as can be seen in a cross-section view (b). In cleaning up shapes like this, we aim
to remove intersections and close gaps (c).

approximate the desired surface, so we don’t want to change those polygons if we don’t need
to. In this section we give an overview of global solid-repairing algorithms, and discuss the
tradeoffs and limitations in the best approaches developed so far. The algorithms typically
work by segmenting space into “inside” and “outside” partitions, and differ in two key ways:
the choice of representation of volumes in space, and the choice of criteria for segmenting
space into inside and outside partitions.

10.3.1 Volumetric Representations

Most algorithms for partitioning space into solid “inside” and empty “outside” regions were
initially defined in terms of a specific volumetric representation (such as regular voxels, BSP
trees, or tetrahedra), but could be adapted to run on any volumetric representation. The
choice of volumetric representation trades ease of implementation for exactness of represen-
tation and quality of output mesh. In this section we give the details of important trade-offs
made by this choice.

The most popular choices to represent volumes in space are regular grids of voxels [99]
and implicit surfaces [128], because these approaches are relatively easy to implement in a
way that guarantees a correct output. The main difficulty with these approaches is their
accuracy in preserving the input surface, and the economy of their representation: Naive
implementations will destroy sharp details and small features, and more sophisticated, hier-
archical implementations can still miss some very tiny features and will still tend to create
a shape with many more polygons than the original input. The mesh could be simplified to
reduce this problem, but if the input was an artist-crafted mesh with carefully placed poly-
gons, it’s difficult for any automatic simplification algorithm to recover an as-good result.
It is often preferrable to preserve those original polygons directly. This issue can be greatly
minimized by using a hybrid approach [9] that uses the original surface except in the neigh-
borhood of areas that required repair. However, this adds a great deal of implementation
complexity and still “damages” more of the surface than is strictly necessary.

To preserve all sharp edges, tiny features, and the exactly input polygons, we can use a
volumetric representation that respects the input geometry exactly, such as a BSP tree or

CHAPTER 10. CLEANING RESULTS FOR EXPORT 121

a b

Figure 10.4: We attempt to resolve intersections in a complicated self-intersecting triangle
mesh (16k triangles) (a). Robust BSP-based code [18] resolves most major self-intersections,
but produces a result with an order of magnitude more triangles (142k triangles), many
near-degenerate sliver triangles and still has 2k pairs of self-intersecting triangles due to
floating point error in the output vertex positions (b). The excessive additional triangles are
co-planar, so could largely be removed by mesh simplification, but the self-intersections may
be more difficult to correct.

a tetrahedralization. BSP-based approaches still create many more polygons in the output
than the original input (as we show in Fig. 10.4), but they exactly represent the input
polygons, and all additional polygons should be exactly co-planar and thus easier to simplify
away. One new problem with BSP-based approaches is that the new geometry computed
at the intersection of previously self-intersecting facets may require exact computation to
represent. Converting exactly-computed intersection coordinates to finite-precision vertex
coordinates (a necessary step to export a shape in most file formats) can then introduce
new self-intersections, which are difficult to remove in a robust, guaranteed-correct way. We
find that state of the art exact BSP-based approaches to resolving self-intersections [18]
do indeed create new self-intersections in practice on examples such as the one shown in
Fig. 10.4. Finally, the volumes that result from a BSP-based decomposition of space are
somewhat arbitrary, and since holes will be filled by surfaces that follow the boundaries of
those volumes, the resulting hole-fill geometry can be oddly shaped as well.

Tetrahedralization of an input surface faces many of the same numerical problems as
BSP-trees, and worse: All self-intersections must be resolved before attempting to tetra-
hedralize an input, by another method that simply breaks up intersecting polygons with
explicit mesh edges along the intersections [62], and this process is as difficult to do in a
guaranteed, robust fashion as computing an intersection-free BSP-tree. But in addition to
this problem, even after all self-intersections are resolved, currently the state of the art in
efficient, robust tetrahedralization [129] still cannot tetrahedralize many challenging inputs.
Jacobson et al. [62] recently found that it is necessary to instead approximately tetrahedral-

CHAPTER 10. CLEANING RESULTS FOR EXPORT 122

a b c d e f

Figure 10.5: There is a gap between the top and body of the Utah teapot (a) that should
be easily filled by connecting the boundary edges of the teapot top and body. However,
a per-element inside/outside segmentation of some tetrahedralizations may be incapable of
connecting these boundary edges, because the necessary edges or facets simply aren’t present
in that tetrahedralization. We illustrate this problem in 2D with a triangulation (b): In this
example, we can at best either cover some of the teapot’s top, by marking the green and
blue triangles as “inside” (c) or connect the teapot top to the inside of the teapot body, by
marking the green and blue triangles as “outside” (d). The equivalent problem occurs in
some 3D constrained Delaunay tetrahedralizations of the Utah teapot: We show the result
of covering some of the teapot top (e) or connecting the teapot top to the inside of the body
(f) for one such example.

ize the input, meaning that some tetrahedra will cut through polygons of the input surface.
They minimize the problems this causes by locally subdividing the problematic polygons,
so that typically only a small fraction of each problematic polygon will not be preserved in
the output tetrahedralization. Once a tetrahedralization has been computed, there are some
advantages over a BSP tree: (1) The decomposition of space is less arbitrary, and tends
to result in more natural hole-fill boundaries in practice, (2) the tetrahedra can be useful
for other downstream applications like finite element simulation, and (3) tetrahedralizations
do not tend to introduce nearly as many un-needed new triangles in the output surface as
BSP-trees do.

Both BSP- and tetrahedra-based approaches assume that a good output surface will lie
on the boundaries of the volumetric elements (BSP-leaves or tetrahedra). Unfortunately,
this is not always the case: Some BSP-trees and tetrahedralizations will make an ideal
inside/outside segmentation impossible, because the ideal boundaries simply do not exist
in their decomposition of space, as demonstrated in Fig. 10.5. This problem has been
addressed partially by Podolak et al. [105] in the context of hole filling: They subdivide
space in areas that could otherwise be too coarsely tessellated to include their ideal hole-fill
surface. This idea has not yet been generalized to algorithms that repair self-intersections
as well as holes; thus it is a promising direction for future work. An orthogonal idea is to
create a hybrid approach: We could tetrahedralize the input so that all details of the input
are captured exactly by tetrahedra boundaries, and then perform a marching-tetrahedra
isosurface extraction step so that hole-fill surfaces can cross freely through tetrahedra.

CHAPTER 10. CLEANING RESULTS FOR EXPORT 123

10.3.2 Criteria for Inside/Outside Segmentation

a b c

Figure 10.6: When two or more intersecting shapes (a) are repaired by the mesh cleanup
algorithm, we typically want the region of the intersection to be solid (b), and not hollow
(c). Parity-based mesh repair strategies that try to ensure that the shape changes from solid
to hollow across facets of the input mesh tend to create hollow intersections.

a b c

Figure 10.7: (a) A 2D slice of a good inside/outside segmentation of the Utah teapot, with
inside colored blue. (b) A 2D slice of Polymender’s segmentation using a parity-based criteria
for inside/outside segmentation [66], with inside colored blue. A 3D view of the region in
the red box is shown in (c) – note the small tunnels connecting the spout to the body.

There are few common high-level criteria used to help decide what parts of a shape should
be inside or outside, which we refer to as (1) parity-based approaches, (2) visibility/outer
hull-based approaches, and (3) winding number-based approaches. Parity-based approaches
are based on the assumption that the segmentation should tend to switch between inside
and outside across facets of the input. Murali and Funkhouser [95] and later Nooruddin
and Turk [99] and Ju [66] introduced methods to approximately satisfy a parity-like criteria
for arbitrary inputs. Unfortunately, parity-like approaches tend to generate undesirable
results for intersecting volumes: For example, the intersection of two closed volumes will be
labelled as outside, creating an undesired void as illustrated in Fig. 10.6c. This can lead
to bizarre results in practice even for simple examples like the Utah teapot, as we show
in Fig. 10.7. Visibility or outer hull-based approaches [26, 99, 18] avoid these problems by
instead attempting to only take the outer-most surfaces of the volumes – for surfaces with
holes, this is approximated by preserving only the surfaces that are visible from outside the
bounding box of the input shape. This deletes all internal structure of the shape – including
structures the user may have wanted to preserve. Finally, winding number-based approaches

CHAPTER 10. CLEANING RESULTS FOR EXPORT 124

avoid the problems of parity-based approaches while still preserving internal structure, but
assume the orientations of all input faces are correct. The standard concept of winding
number is only defined for closed, oriented 2D polygons, so until recently, winding number-
based approaches would need to close holes in a model first by some other method, and then
resolve self-intersections by taking the winding number of the polygons in 2D planar slices
of the new hole-free model. However, recently Jacobson et al. [62] generalized the concept
of winding numbers to open, 3D surfaces. Their approach diffuses winding number across
open holes, effectively combining winding number with diffision-based hole filling [26].

The best of these methods depends on whether the shape has complex internal structure
that should be preserved: If so, then repairing incorrect or inconsistent surface orientations is
a relatively easy mesh-repair task (see Sec. 10.1.1), so we suggest repairing surface orientation
first, then using a winding number-based approach. However, if there is no internal structure
to represent – as is the case for scanned shapes, where such a structure could not have been
captured by the scanner – then it is easier to use a visibility/outer-hull approach.

125

Chapter 11

Summary

We have presented the idea of user-guided inverse 3D modeling, an approach to shape re-
design that gives users simple, flexible control of a fast reverse-engineering process. Our goal
is to enable users to quickly express a shape with exactly the degrees of freedom they need
to achieve the redesigns they want. To demonstrate the effectiveness of this approach, we
presented a number of useful inverse 3D modeling modules, and we presented a number of
shape redesigns achieved in practice with prototype implementations of these modules.

In the first half of this thesis, we presented a collection of surface-fitting modules that let
users quickly fit shape modeling primitives – sweeps, quadrics and smooth surfaces – to an
input surface mesh. The modules we described work from minimalistic input – typically a few
user strokes, and a choice of desired primitive type. The modules return segmentation and
fitting results to users in an immediately-editable form, so users can begin using their fitted
model to edit the shape as soon as possible. We identified ambiguities that can cause initial
segmentation and fitting results to not reflect the users’ intent, and we presented simple
additional inputs that can disambiguate the desired fit. We identified efficient methods
to guarantee that subsequent fitting would respect those additional inputs. In addition to
in-depth analysis of how users can guide the primitive-fitting process, these chapters also
presented improvements to the state of the art in efficient fitting methods: We showed that
previous methods used for kinematic surface fitting have significant failure cases and then
showed how to fix those failures, and we also presented direct, type-specific quadric fitting
methods that find lower-error solutions than previous methods.

Next, we explored how multiple primitive fitting modules can be used in combination to
enable an even wider range of shape redesigns. We discussed a boundary-to-CSG conversion
process that combines primitives in a Boolean expression to define the target shape (or
as much of it as possible), allowing CSG-based redesigns. We discussed the fundamental
ambiguity that many different CSG trees can describe any given shape, and we introduced
simple additional inputs to disambiguate cases where those different CSG trees would give
different editing results. In addition to CSG-based editing, we also explored how different
primitive fits can be combined hierarchically, allowing multiple levels of structure to be
enforced or edited. Finally, we discussed transformations between primitive fits, allowing

CHAPTER 11. SUMMARY 126

users to quickly change the degrees of freedom available to them when editing a shape.
We then proposed that combining multiple shape modeling primitives into a unified

system is also a powerful idea in the domain of image-based modeling. We demonstrated
this with a study of three example shapes that we believe would be very challenging to
reconstruct with previous methods, using only five to ten photos of each shape. We presented
a series of optimizations to combine data from visual hulls, simple CSG primitives, swept
primitives, curves, and smooth surfaces into a unified model; by using these optimizations,
we were able to reconstruct reasonable models for each of our three challenging examples.
Much work is left to build a truly practical system based on this approach: In particular, our
examples all used photos taken in a controlled setting with very accurate camera calibration
and position data, while an ideal system would work from small sets of photos taken in an
uncontrolled setting.

Finally, we discussed methods to clean up redesigned shapes for export to other sys-
tems. Artifacts such as holes, self-intersections, inconsistent face orientations, and more are
common in CAD models and poorly-processed scanned models, and our tools for shape re-
design may create even more artifacts – such as additional self-intersections if a sweep path
is bent sharply. An ideal inverse 3D modeling system would include the tools to correct such
problems, ensuring that a clean representation of the shape is available to downstream ap-
plications. This kind of model repair is a well studied problem, so we provided a guide to
existing approaches – highlighting methods that work well, and giving a breakdown of the
tradeoffs between methods in cases where no method was ideal.

Overall, this thesis has presented a thorough guide to the problems and opportunities
presented by the idea of user-guided inverse 3D modeling. The promising results of our many
prototype inverse 3D modeling modules make the case that this approach to shape redesign is
both powerful and computationally reasonable, as most of our fitting modules return useful
results in a matter of seconds. Throughout this thesis we have highlighted a number of
interesting avenues for future work: New velocity fields could be explored to fit new types
of stationary sweep; some of the modules, especially boundary-to-CSG conversion, could
be optimized further to handle more complex examples; new separators for boundary-to-
CSG conversion could be explored; the sweep-fitting approach in our image-based modeling
prototype module could be improved by integrating more user guidance. Another key area
for future research and development is the integration of these prototypes into a full shape-
modeling software package, with a user-interface that is accessible and convenient for novice
and professional users alike. We hope that this thesis inspires other researchers to join us in
tackling these wide-ranging, interesting problems, and that our work ultimately culminates
in the availability of effective user-guided inverse 3D modeling tool sets in professional 3D
shape editing software.

127

Bibliography

[1] 123D Catch. 2012. url: http://www.123dapp.com/catch.

[2] A. Al-Sharadqah and N. Chernov. “Error analysis for circle fitting algorithms”. EN.
In: Electronic Journal of Statistics 3 (2009), pp. 886–911. issn: 1935-7524. url: http:
//projecteuclid.org/euclid.ejs/1251119958.

[3] S. Allaire, J.-J. Jacq, V. Burdin, C. Roux, and C. Couture. “Type-Constrained Robust
Fitting of Quadrics with Application to the 3D Morphological Characterization of
Saddle-Shaped Articular Surfaces”. In: ICCV. IEEE, 2007, pp. 1–8. isbn: 978-1-4244-
1630-1. url: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=
true\&arnumber=4409163.

[4] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’
Guide. 3rd ed. Society for Industrial and Applied Mathematics, 1999.

[5] M. Attene and B. Falcidieno. “ReMESH: An Interactive Environment to Edit and
Repair Triangle Meshes”. In: IEEE International Conference on Shape Modeling and
Applications 2006 (SMI’06). IEEE, 2006, pp. 41–41. isbn: 0-7695-2591-1. url: http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1631218.

[6] M. Attene, M. Campen, and L. Kobbelt. “Polygon Mesh Repairing: An Application
Perspective”. In: ACM Computing Surveys 45.2 (Feb. 2013), pp. 1–33. issn: 03600300.
url: http://dl.acm.org/citation.cfm?id=2431211.2431214.

[7] P. Benko, R. R. Martin, and T. Vrady. “Algorithms for reverse engineering boundary
representation models”. In: Computer-Aided Design 33.11 (2001), pp. 839–851.

[8] M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun. “Discrete elastic
rods”. In: ACM SIGGRAPH 2008 papers. SIGGRAPH ’08. New York, NY, USA:
ACM, 2008, 63:1–63:12. isbn: 978-1-4503-0112-1. url: http://doi.acm.org/10.
1145/1399504.1360662.

[9] S. Bischoff and L. Kobbelt. “Structure Preserving CAD Model Repair”. In: Computer
Graphics Forum 24.3 (Sept. 2005), pp. 527–536. issn: 01677055. url: http://doi.
wiley.com/10.1111/j.1467-8659.2005.00878.x.

[10] R. L. Bishop. “There is More than One Way to Frame a Curve”. In: The American
Mathematical Monthly 82.3 (1975), pp. 246–251. issn: 00029890.

BIBLIOGRAPHY 128

[11] M. Bokeloh, M. Wand, and H.-P. Seidel. “A Connection between Partial Symmetry
and Inverse Procedural Modeling”. In: ACM Siggraph. 2010.

[12] M. Botsch and L. Kobbelt. “An intuitive framework for real-time freeform modeling”.
In: ACM Trans. Graph. 23.3 (Aug. 2004), pp. 630–634. issn: 0730-0301.

[13] M. Botsch and O. Sorkine. “On linear variational surface deformation methods.” In:
IEEE Transactions on Visualization and Computer Graphics 14.1 (2008), pp. 213–
230. url: http://www.ncbi.nlm.nih.gov/pubmed/17993714.

[14] S. Bouaziz, M. Deuss, Y. Schwartzburg, T. Weise, and M. Pauly. “Shape-Up: Shap-
ing Discrete Geometry with Projections”. In: Computer Graphics Forum 31.5 (Aug.
2012), pp. 1657–1667. issn: 01677055. url: http://dl.acm.org/citation.cfm?id=
2346796.2346802.

[15] A. Boulch and R. Marlet. “Fast and Robust Normal Estimation for Point Clouds
with Sharp Features”. In: Computer Graphics Forum 31.5 (Aug. 2012), pp. 1765–
1774. issn: 01677055. url: http://doi.wiley.com/10.1111/j.1467-8659.2012.
03181.x.

[16] S. Brown, B. Morse, and W. Barrett. “Interactive part selection for mesh and point
models using hierarchical graph-cut partitioning”. In: Proceedings of Graphics Inter-
face 2009. GI ’09. 2009, pp. 23–30.

[17] CGAL, Computational Geometry Algorithms Library. 2013. url: http://www.cgal.
org.

[18] M. Campen and L. Kobbelt. “Exact and Robust (Self-)Intersections for Polygo-
nal Meshes”. In: Computer Graphics Forum 29.2 (June 2010), pp. 397–406. issn:
01677055. url: http://doi.wiley.com/10.1111/j.1467-8659.2009.01609.x.

[19] C.-C. Chang and C.-J. Lin. “LIBSVM”. In: ACM Transactions on Intelligent Systems
and Technology 2.3 (Apr. 2011), pp. 1–27. issn: 21576904. url: http://dl.acm.
org/citation.cfm?id=1961189.1961199.

[20] X. Chen, A. Golovinskiy, and T. Funkhouser. “A benchmark for 3D mesh segmen-
tation”. In: ACM Transactions on Graphics 28.3 (July 2009), p. 1. issn: 07300301.
url: http://dl.acm.org/citation.cfm?id=1531326.1531379.

[21] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. “Algorithm 887:
CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate”. In:
ACM Trans. Math. Softw. 35.3 (Oct. 2008), 22:1–22:14. issn: 0098-3500. url: http:
//doi.acm.org/10.1145/1391989.1391995.

[22] Y. Chen, Z.-Q. Cheng, J. Li, R. R. Martin, and Y.-Z. Wang. “Relief extraction and
editing”. In: Comput. Aided Des. 43.12 (Dec. 2011), pp. 1674–1682. issn: 0010-4485.

[23] N. Chernov. “On the Convergence of Fitting Algorithms in Computer Vision”. In: J.
Math. Imaging Vis. 27.3 (Apr. 2007), pp. 231–239. issn: 0924-9907.

BIBLIOGRAPHY 129

[24] N. Chernov and H. Ma. “Least squares fitting of quadratic curves and surfaces”. In:
Computer Vision. 2011, pp. 285–302.

[25] D. Corrigan, S. Robinson, and A. Kokaram. “Video Matting Using Motion Extended
GrabCut”. In: IET European Conference on Visual Media Production (CVMP). Lon-
don, UK, 2008.

[26] J. Davis, S. Marschner, M. Garr, and M. Levoy. “Filling holes in complex surfaces
using volumetric diffusion”. English. In: Proceedings. First International Symposium
on 3D Data Processing Visualization and Transmission. IEEE Comput. Soc, 2002,
pp. 428–861. isbn: 0-7695-1521-5. url: http://ieeexplore.ieee.org/xpls/abs\
_all.jsp?arnumber=1024098’escapeXml=’false’/>.

[27] P. E. Debevec, C. J. Taylor, and J. Malik. “Modeling and rendering architecture
from photographs: a hybrid geometry- and image-based approach”. In: SIGGRAPH
’96. New York, NY, USA: ACM, 1996, pp. 11–20. isbn: 0-89791-746-4. url: http:
//doi.acm.org/10.1145/237170.237191.

[28] E. W. Dijkstra. “A note on two problems in connexion with graphs”. In: Numerische
Mathematik 1 (1959), pp. 269–271.

[29] J. Dion D., D. Laurendeau, and R. Bergevin. “Generalized cylinders extraction in a
range image”. In: 3-D Digital Imaging and Modeling. 1997, pp. 141–147.

[30] J. Dorman and A. Rockwood. “Surface design using hand motion with smoothing”. In:
Computer-Aided Design 33.5 (Apr. 2001), pp. 389–402. issn: 00104485. url: http:
//dx.doi.org/10.1016/S0010-4485(00)00130-5.

[31] D. Dunavant. “High Degree Efficient Symmetrical Gaussian Quadrature Rules for the
Triangle”. In: International Journal for Numerical Methods in Engineering 21 (1985),
pp. 1129–1148.

[32] M. Eck and H. Hoppe. “Automatic reconstruction of B-spline surfaces of arbitrary
topological type”. In: Proceedings of the 23rd annual conference on Computer graphics
and interactive techniques - SIGGRAPH ’96. New York, New York, USA: ACM Press,
Aug. 1996, pp. 325–334. isbn: 0897917464. url: http://dl.acm.org/citation.
cfm?id=237170.237271.

[33] A. Erol, G. Bebis, R. D. Boyle, and M. Nicolescu. “Visual Hull Construction Using
Adaptive Sampling”. In: Applications of Computer Vision and the IEEE Workshop
on Motion and Video Computing, IEEE Workshop on 1 (2005), pp. 234–241.

[34] C. H. Esteban and F. Schmitt. “Silhouette and stereo fusion for 3D object modeling.”
In: Computer Vision and Image Understanding (2004), pp. 367–392.

[35] R. Fabbri and B. B. Kimia. “{3D} Curve Sketch: Flexible Curve-Based Stereo Re-
construction and Calibration”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. San Francisco, California, USA: IEEE Computer
Society Press, 2010.

BIBLIOGRAPHY 130

[36] L. Fan, L. Lic, and K. Liu. “Paint Mesh Cutting”. In: Computer Graphics Forum 30.2
(Apr. 2011), pp. 603–612. issn: 01677055. url: http://doi.wiley.com/10.1111/
j.1467-8659.2011.01895.x.

[37] L. Fan, M. Meng, and L. Liu. “Sketch-based mesh cutting: A comparative study”.
In: Graphical Models 74.6 (Nov. 2012), pp. 292–301. issn: 15240703. url: http:

//dx.doi.org/10.1016/j.gmod.2012.03.001.

[38] M. A. Fischler and R. C. Bolles. “Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography”. In: Commun.
ACM 24.6 (June 1981), pp. 381–395. issn: 0001-0782.

[39] A. Fitzgibbon, M. Pilu, and R. Fisher. “Direct least square fitting of ellipses”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 21.5 (May 1999),
pp. 476–480. issn: 01628828. url: http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=765658.

[40] A. W. Fitzgibbon, D. W. Eggert, and R. B. Fisher. “High-level CAD Model Acquisi-
tion from Range Images”. In: Computer-Aided Design 29 (1997), pp. 321–330.

[41] A. Fitzgibbon and R. B. Fisher. “A Buyer’s Guide to Conic Fitting”. In: British
Machine Vision Conference. 1995, pp. 513–522. url: http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.36.695.

[42] M. S. Floater. “Mean value coordinates”. In: Computer Aided Geometric Design 20.1
(Mar. 2003), pp. 19–27. issn: 01678396. url: http://dx.doi.org/10.1016/S0167-
8396(03)00002-5.

[43] S. F. Frisken and R. N. Perry. “Designing with distance fields”. In: ACM SIGGRAPH
2006 Courses. SIGGRAPH ’06. New York, NY, USA: ACM, 2006, pp. 60–66.

[44] S. F. Frisken, R. N. Perry, A. P. Rockwood, and T. R. Jones. “Adaptively sampled
distance fields: a general representation of shape for computer graphics”. In: SIG-
GRAPH ’00. 2000, pp. 249–254.

[45] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer, A. Tal, S. Rusinkiewicz,
and D. Dobkin. “Modeling by example”. In: ACM SIGGRAPH 2004 Papers on -
SIGGRAPH ’04. Vol. 23. 3. New York, New York, USA: ACM Press, Aug. 2004,
p. 652. url: http://dl.acm.org/citation.cfm?id=1186562.1015775.

[46] Y. Furukawa and J. Ponce. “Accurate, Dense, and Robust Multiview Stereopsis”.
In: Pattern Analysis and Machine Intelligence, IEEE Transactions on 32.8 (2010),
pp. 1362–1376. issn: 0162-8828.

[47] Y. Furukawa and J. Ponce. “Carved Visual Hulls for Image-Based Modeling”. In: Int.
J. Comput. Vision 81.1 (2009), pp. 53–67. issn: 0920-5691.

[48] N. Gelfand and L. Guibas. “Shape Segmentation Using Local Slippage Analysis”. In:
Eurographics Sympoium on Geometry Processing. 2004.

BIBLIOGRAPHY 131

[49] A. Gfrerrer, J. Lang, A. Harrich, M. Hirz, and J. Mayr. “Car side window kinematics”.
In: Computer-Aided Design 43.4 (Apr. 2011), pp. 410–416. issn: 00104485. url: http:
//dx.doi.org/10.1016/j.cad.2011.01.009.

[50] Y. Gingold, T. Igarashi, and D. Zorin. “Structured Annotations for 2D-to-3D Mod-
eling”. In: ACM Transactions on Graphics (TOG) 28.5 (2009), p. 148.

[51] Y. Gingold and D. Zorin. “Shading-based surface editing”. In: ACM SIGGRAPH
2008 papers. SIGGRAPH ’08. New York, NY, USA: ACM, 2008, 95:1–95:9. isbn:
978-1-4503-0112-1.

[52] G. H. Golub and C. F. Van Loan. Matrix computations (3rd ed.) Baltimore, MD,
USA: Johns Hopkins University Press, 1996. isbn: 0-8018-5414-8.

[53] S. Goodman, A. Mellnik, and C. H. Séquin. “Girl’s Surface”. In: Bridges. Enschede,
The Netherlands, 2013.

[54] A. Gueziec, G. Taubin, F. Lazarus, and B. Horn. “Cutting and stitching: convert-
ing sets of polygons to manifold surfaces”. In: IEEE Transactions on Visualiza-
tion and Computer Graphics 7.2 (2001), pp. 136–151. issn: 10772626. url: http:
//ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=928166.

[55] M. Harker, P. OLeary, and P. Zsombor-Murray. “Direct type-specific conic fitting
and eigenvalue bias correction”. In: Image and Vision Computing 26.3 (Mar. 2008),
pp. 372–381. issn: 02628856. url: http://dx.doi.org/10.1016/j.imavis.2006.
12.006.

[56] J. C. Hart, D. J. Sandin, and L. H. Kauffman. “Ray tracing deterministic 3-D frac-
tals”. In: SIGGRAPH Comput. Graph. 23.3 (July 1989), pp. 289–296. issn: 0097-8930.
url: http://doi.acm.org/10.1145/74334.74363.

[57] E. E. Hartquist. BCSG-1.0: A Practical Implementation of Boundary to CSG Con-
version. 1994.

[58] A. van den Hengel and A. Dick. “Image based modelling with VideoTrace”. In: SIG-
GRAPH Comput. Graph. 42.2 (2008), pp. 1–8. issn: 0097-8930.

[59] M. Hofer, B. Odehnal, H. Pottmann, T. Steiner, and J. Wallner. “3D Shape Recog-
nition and Reconstruction Based on Line Element Geometry”. In: Proceedings of the
Tenth IEEE International Conference on Computer Vision - Volume 2. ICCV ’05.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 1532–1538. isbn: 0-7695-
2334-X-02.

[60] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald, J. Schweitzer,
and W. Stuetzle. “Piecewise smooth surface reconstruction”. In: SIGGRAPH ’94.
1994, pp. 295–302.

[61] P. J. Huber. Robust Statistics. New York: John Wiley and Sons, 1981.

BIBLIOGRAPHY 132

[62] A. Jacobson, L. Kavan, and O. Sorkine-Hornung. “Robust Inside-Outside Segmen-
tation using Generalized Winding Numbers”. In: SIGGRAPH. 2013. url: http :

//igl.ethz.ch/projects/winding-number/.

[63] Z. Ji, L. Liu, Z. Chen, and G. Wang. “Easy Mesh Cutting”. In: Computer Graphics
Forum 25.3 (Sept. 2006), pp. 283–291. issn: 0167-7055. url: http://doi.wiley.
com/10.1111/j.1467-8659.2006.00947.x.

[64] P. Joshi, M. Meyer, T. DeRose, B. Green, and T. Sanocki. “Harmonic coordinates for
character articulation”. In: ACM Siggraph (2007).

[65] P. Joshi and C. Sequin. “Energy Minimizers for Curvature-Based Surface Function-
als”. In: Computer-Aided Design & Applications 4.5 (2007), pp. 607–617.

[66] T. Ju. “Robust repair of polygonal models”. In: ACM SIGGRAPH 2004 Papers on
- SIGGRAPH ’04. Vol. 23. 3. New York, New York, USA: ACM Press, Aug. 2004,
p. 888. url: http://dl.acm.org/citation.cfm?id=1186562.1015815.

[67] K. Kanatani. “Further improving geometric fitting”. In: Proc. 5th Int. Conf. 3-D
Digital Imaging and Modeling. 2005, pp. 2–13.

[68] K. Kanatani and N. Ohta. “Comparing optimal three-dimensional reconstruction for
finite motion and optical flow.” In: J. Electronic Imaging 12.3 (2003), pp. 478–488.

[69] L. B. Kara, C. M. D’Eramo, and K. Shimada. “Pen-based styling design of 3D ge-
ometry using concept sketches and template models”. In: Proceedings of the 2006
ACM symposium on Solid and physical modeling. SPM ’06. New York, NY, USA:
ACM, 2006, pp. 149–160. isbn: 1-59593-358-1. url: http://doi.acm.org/10.1145/
1128888.1128909.

[70] O. A. Karpenko and J. F. Hughes. “Smoothsketch: 3D free-form shapes from complex
sketches”. In: ACM Trans. Graph 25 (2006), pp. 589–598.

[71] M. Kazhdan, A. Klein, K. Dalal, and H. Hoppe. “Unconstrained isosurface extrac-
tion on arbitrary octrees”. In: Proceedings of the fifth Eurographics symposium on
Geometry processing. Aire-la-Ville, Switzerland, Switzerland: Eurographics Associa-
tion, 2007, pp. 125–133. isbn: 978-3-905673-46-3. url: http://portal.acm.org/
citation.cfm?id=1281991.1282009.

[72] F. Kirsch and J. Döllner. “OpenCSG: a library for image-based CSG rendering”. In:
Proceedings of the FREENIX / Open Source Track, 2005 USENIX Annual Technical
Conference. Apr. 2005, pp. 129–140. url: http://dl.acm.org/citation.cfm?id=
1247360.1247409.

[73] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. “Interactive multi-resolution
modeling on arbitrary meshes”. In: Proceedings of the 25th annual conference on
Computer graphics and interactive techniques. SIGGRAPH ’98. New York, NY, USA:
ACM, 1998, pp. 105–114. isbn: 0-89791-999-8. url: http://doi.acm.org/10.1145/
280814.280831.

BIBLIOGRAPHY 133

[74] V. Kraevoy, A. Sheffer, and M. van de Panne. “Modeling from contour drawings”. In:
Eurographics Symposium on Sketch-Based Interfaces and Modeling. SBIM ’09. New
York, NY, USA: ACM, 2009, pp. 37–44. isbn: 978-1-60558-602-1.

[75] V. Krishnamurthy and M. Levoy. “Fitting smooth surfaces to dense polygon meshes”.
In: SIGGRAPH ’96. 1996, pp. 313–324.

[76] Y.-K. Lai, S.-M. Hu, R. R. Martin, and P. L. Rosin. “Fast mesh segmentation using
random walks”. In: Proceedings of the 2008 ACM symposium on Solid and physical
modeling - SPM ’08. New York, New York, USA: ACM Press, June 2008, p. 183. isbn:
9781605581062. url: http://dl.acm.org/citation.cfm?id=1364901.1364927.

[77] A. Laurentini. “The Visual Hull Concept for Silhouette-Based Image Understanding”.
In: IEEE Trans. Pattern Anal. Mach. Intell. 16.2 (1994), pp. 150–162. issn: 0162-
8828.

[78] Y. Leedan and P. Meer. “Heteroscedastic Regression in Computer Vision: Problems
with Bilinear Constraint”. In: Int. J. Comput. Vision 37.2 (June 2000), pp. 127–150.
issn: 0920-5691.

[79] M. Li, F. C. Langbein, and R. R. Martin. “Detecting design intent in approximate
CAD models using symmetry”. In: Computer-Aided Design 42.3 (2010), pp. 183–201.
issn: 0010-4485.

[80] Q. Li and J. Griffiths. “Least squares ellipsoid specific fitting”. In: Geometric Mod-
eling and Processing. IEEE, 2004, pp. 335–340. isbn: 0-7695-2078-2. url: http :

//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1290055.

[81] Y. Li, X. Wu, Y. Chrysathou, A. Sharf, D. Cohen-Or, and N. J. Mitra. “GlobFit:
consistently fitting primitives by discovering global relations”. In: ACM Trans. Graph.
30.4 (July 2011), 52:1–52:12. issn: 0730-0301.

[82] Y. Li, J. Sun, C.-K. Tang, and H.-Y. Shum. “Lazy snapping”. In: ACM SIGGRAPH
2004 Papers. SIGGRAPH ’04. New York, NY, USA: ACM, 2004, pp. 303–308. url:
http://doi.acm.org/10.1145/1186562.1015719.

[83] W.-C. Lin and T.-W. Chen. “CSG-based object recognition using range images”.
In: 9th International Conference on Pattern Recognition. IEEE Comput. Soc. Press,
1988, pp. 99–103. isbn: 0-8186-0878-1. url: http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?arnumber=28180.

[84] R. Ling, W. Wang, and D. Yan. “Fitting Sharp Features with Loop Subdivision
Surfaces”. In: Computer Graphics Forum 27.5 (July 2008), pp. 1383–1391. issn:
01677055. url: http://doi.wiley.com/10.1111/j.1467-8659.2008.01278.x.

[85] Y. Liu, H. Pottmann, and W. Wang. “Constrained 3D shape reconstruction using
a combination of surface fitting and registration”. In: Computer-Aided Design 38.6
(2006), pp. 572–583.

BIBLIOGRAPHY 134

[86] G. Lukács, R. Martin, and D. Marshall. “Faithful Least-Squares Fitting of Spheres,
Cylinders, Cones and Tori for Reliable Segmentation”. In: ECCV. June 1998, pp. 671–
686. isbn: 3-540-64569-1. url: http://dl.acm.org/citation.cfm?id=645311.
649078.

[87] K. Madsen, H. B. Nielsen, and O. Tingleff. Methods for Non-Linear Least Squares
Problems (2nd ed.) 2004.

[88] T. Masuda. “Filling the signed distance field by fitting local quadrics”. English. In:
Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and
Transmission, 2004. 3DPVT 2004. IEEE, 2004, pp. 1003–1010. isbn: 0-7695-2223-8.
url: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1335425’
escapeXml=’false’/>.

[89] M. Meng, L. Fan, and L. Liu. “A comparative evaluation of foreground/background
sketch-based mesh segmentation algorithms”. In: Computers & Graphics 35.3 (June
2011), pp. 650–660. issn: 00978493. url: http://dx.doi.org/10.1016/j.cag.
2011.03.038.

[90] M. Meng, L. Fan, and L. Liu. “iCutter: a direct cut-out tool for 3D shapes”. In: Com-
puter Animation and Virtual Worlds 22.4 (July 2011), pp. 335–342. issn: 15464261.
url: http://doi.wiley.com/10.1002/cav.422.

[91] MeshLab. 2013. url: http://meshlab.sourceforge.net/.

[92] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. “Discrete differential-geometry
operators for triangulated 2-manifolds”. In: Visualization and Mathematics III (2003),
pp. 35–57.

[93] N. J. Mitra, L. J. Guibas, and M. Pauly. “Partial and approximate symmetry detec-
tion for 3D geometry”. In: ACM Transactions on Graphics 25.3 (July 2006), p. 560.
issn: 07300301. url: http://dl.acm.org/citation.cfm?id=1141911.1141924.

[94] N. J. Mitra, M. Pauly, M. Wand, and D. Ceylan. “Symmetry in 3D Geometry: Ex-
traction and Applications”. In: Computer Graphics Forum (Feb. 2013), no–no. issn:
01677055. url: http://doi.wiley.com/10.1111/cgf.12010.

[95] T. M. Murali and T. A. Funkhouser. “Consistent solid and boundary representations
from arbitrary polygonal data”. In: Proceedings of the 1997 symposium on Interactive
3D graphics - SI3D ’97. New York, New York, USA: ACM Press, Apr. 1997, 155–ff.
isbn: 0897918843. url: http://dl.acm.org/citation.cfm?id=253284.253326.

[96] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa. “FiberMesh: designing freeform
surfaces with 3D curves”. In: ACM Trans. Graph. 26.3 (2007), p. 41. issn: 0730-0301.

[97] A. Nealen and O. Sorkine. A Note on Boundary Constraints for Linear Variational
Surface Design. Tech. rep. TU Berlin, 2007.

BIBLIOGRAPHY 135

[98] G. M. Nielson and B. Hamann. “The asymptotic decider: resolving the ambiguity in
marching cubes”. In: (Oct. 1991), pp. 83–91. url: http://dl.acm.org/citation.
cfm?id=949607.949621.

[99] F. Nooruddin and G. Turk. “Simplification and repair of polygonal models using vol-
umetric techniques”. In: IEEE Transactions on Visualization and Computer Graphics
9.2 (Apr. 2003), pp. 191–205. issn: 1077-2626. url: http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=1196006.

[100] M. Pauly, N. J. Mitra, J. Wallner, H. Pottmann, and L. J. Guibas. “Discovering
structural regularity in 3D geometry”. In: ACM Trans. Graph. 27.3 (Aug. 2008), 43:1–
43:11. issn: 0730-0301. url: http://doi.acm.org/10.1145/1360612.1360642.

[101] K. Pearson. “On lines and planes of closest fit to systems of points in space”. In:
Philosophical Magazine. 6th ser. 2.6 (1901), pp. 559–572. issn: 19415982. url: http:
//stat.smmu.edu.cn/history/pearson1901.pdf.

[102] J. Peng, D. Kristjansson, and D. Zorin. “Interactive modeling of topologically complex
geometric detail”. In: ACM Trans. Graph. 23.3 (Aug. 2004), pp. 635–643. issn: 0730-
0301.

[103] S. Petitjean. “A survey of methods for recovering quadrics in triangle meshes”. In:
ACM Computing Surveys 34.2 (June 2002), pp. 211–262. issn: 03600300. url: http:
//dl.acm.org/citation.cfm?id=508352.508354.

[104] U. Pinkall and K. Polthier. “Computing Discrete Minimal Surfaces and Their Con-
jugates”. In: Experimental Mathematics 2.1 (1993), pp. 15–36.

[105] J. Podolak and S. Rusinkiewicz. “Atomic volumes for mesh completion”. In: (July
2005), p. 33. url: http://dl.acm.org/citation.cfm?id=1281920.1281926.

[106] H. Pottmann, H.-Y. Chen, and I. K. Lee. “Approximation by Profile Surfaces”. In:
The Mathematics of Surfaces VIII (1998), pp. 17–36.

[107] H. Pottmann, I.-K. Lee, and T. Randrup. “Reconstruction of kinematic surface from
scattered data”. In: Proceedings of Symposium on Geodesy for Geotechnical and Struc-
tural Engineering (1998), pp. 483–488.

[108] H. Pottmann and T. Randrup. “Rotational and helical surface approximation for
reverse engineering”. In: Computing 60.4 (June 1998), pp. 307–322.

[109] H. Pottmann and J. Wallner. Computational Line Geometry. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2001. isbn: 3540420584.

[110] M. Prasad, A. Zisserman, and A. W. Fitzgibbon. “Fast and Controllable 3D Modelling
from Silhouettes”. In: Annual Conference of the European Association for Computer
Graphics (Eurographics). 2005, pp. 9–12. url: http://marcade.robots.ox.ac.uk:
8080/~vgg/publications/2005/Prasad05.

[111] V. Pratt. “Direct least-squares fitting of algebraic surfaces”. In: SIGGRAPH Comput.
Graph. 21.4 (Aug. 1987), pp. 145–152. issn: 0097-8930.

BIBLIOGRAPHY 136

[112] A. I. Protopsaltis and I. Fudos. “A feature-based approach to re-engineering CAD
models from cross sections”. In: Computer-Aided Design and Applications 7.5 (2010),
pp. 739–757.

[113] S. Raghothama and V. Shapiro. “Consistent updates in dual representation systems”.
In: Computer-Aided Design 32.8-9 (Aug. 2000), pp. 463–477. issn: 00104485. url:
http://dx.doi.org/10.1016/S0010-4485(00)00036-1.

[114] R. Ramamoorthi and J. Arvo. “Creating Generative Models from Range Images”. In:
ACM Siggraph. 1999.

[115] T. Randrup. “Approximation by cylinder surfaces”. In: Computer Aided Design 30
(1998), pp. 807–812.

[116] P. Rangarajan, K. Kanatani, H. Niitsuma, and Y. Sugaya. “Hyper Least Squares and
Its Applications”. In: 2010 20th International Conference on Pattern Recognition.
IEEE, Aug. 2010, pp. 5–8. isbn: 978-1-4244-7542-1. url: http://ieeexplore.ieee.
org/xpl/articleDetails.jsp?arnumber=5597662.

[117] A. Rivers, F. Durand, and T. Igarashi. “3D modeling with silhouettes”. In: ACM
Trans. Graph. 29.4 (2010), pp. 1–8. issn: 0730-0301.

[118] C. Rother, V. Kolmogorov, and A. Blake. “”GrabCut”: interactive foreground extrac-
tion using iterated graph cuts”. In: ACM SIGGRAPH 2004 Papers. SIGGRAPH ’04.
New York, NY, USA: ACM, 2004, pp. 309–314. url: http://doi.acm.org/10.
1145/1186562.1015720.

[119] P. D. Sampson. “Fitting conic sections to very scattered data: An iterative refinement
of the Bookstein algorithm”. In: Computer Graphics and Image Processing 18.1 (Jan.
1982), pp. 97–108. issn: 0146664X. url: http://dx.doi.org/10.1016/0146-

664X(82)90101-0.

[120] R. Schmidt. MeshMixer. 2013. url: http://www.meshmixer.com/.

[121] R. Schmidt and B. Wyvill. “Generalized sweep templates for implicit modeling”. In:
Proeedings of GRAPHITE 2005. GRAPHITE ’05. New York, NY, USA: ACM, 2005,
pp. 187–196. isbn: 1-59593-201-1.

[122] T. W. Sederberg and S. R. Parry. “Free-form deformation of solid geometric mod-
els”. In: ACM SIGGRAPH Computer Graphics 20.4 (Aug. 1986), pp. 151–160. issn:
00978930. url: http://dl.acm.org/citation.cfm?id=15886.15903.

[123] C. Séquin. “Virtual Prototyping of Scherk-Collins Saddle Rings”. In: Leonardo 30.2
(1997), pp. 89–96.

[124] J. A. Sethian. “A Fast Marching Level Set Method for Monotonically Advancing
Fronts”. In: Proc. Nat. Acad. Sci. 93.4 (1996), pp. 1591–1595.

BIBLIOGRAPHY 137

[125] V. Shapiro and D. L. Vossler. “Efficient CSG Representations of Two-Dimensional
Solids”. In: Journal of Mechanical Design 113.3 (Sept. 1991), p. 292. issn: 10500472.
url: http://mechanicaldesign.asmedigitalcollection.asme.org/article.
aspx?articleid=1443058.

[126] V. Shapiro and D. L. Vossler. “Construction and optimization of CSG representa-
tions”. In: Computer-Aided Design 23.1 (Jan. 1991), pp. 4–20. issn: 00104485. url:
http://dl.acm.org/citation.cfm?id=115604.115605.

[127] V. Shapiro and D. L. Vossler. “Separation for boundary to CSG conversion”. In:
ACM Transactions on Graphics 12.1 (Jan. 1993), pp. 35–55. issn: 07300301. url:
http://dl.acm.org/citation.cfm?id=169728.169723.

[128] C. Shen, J. F. O’Brien, and J. R. Shewchuk. “Interpolating and approximating im-
plicit surfaces from polygon soup”. In: ACM SIGGRAPH 2004 Papers. Vol. 23. 3.
New York, New York, USA: ACM Press, Aug. 2004, p. 896. url: http://dl.acm.
org/citation.cfm?id=1186562.1015816.

[129] H. Si. TetGen. Berlin, Germany, 2011. url: http://tetgen.org.

[130] S. N. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and M. Pollefeys. “Interactive 3D
architectural modeling from unordered photo collections”. In: ACM Trans. Graph.
27.5 (2008), pp. 1–10. issn: 0730-0301.

[131] O. Sorkine and M. Alexa. “As-rigid-as-possible surface modeling”. In: (July 2007),
pp. 109–116. url: http://dl.acm.org/citation.cfm?id=1281991.1282006.

[132] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P. Seidel. “Laplacian
Surface Editing”. In: Proceedings of the Eurographics/ACM SIGGRAPH Symposium
on Geometry Processing. 2004, pp. 179–188.

[133] R. Szeliski. “Rapid Octree Construction from image sequences”. In: CVGIP: Image
Understanding 58.1 (1993), pp. 149–156.

[134] A. Tagliasacchi, H. Zhang, and D. Cohen-Or. “Curve skeleton extraction from incom-
plete point cloud”. In: ACM Trans. Graph. 28.3 (July 2009), pp. 1–9. issn: 0730-0301.

[135] K. Takayama, R. Schmidt, K. Singh, T. Igarashi, T. Boubekeur, and O. Sorkine.
“GeoBrush: Interactive Mesh Geometry Cloning”. In: Computer Graphics Forum 30.2
(Apr. 2011), pp. 613–622. issn: 1467-8659. url: http://doi.wiley.com/10.1111/
j.1467-8659.2011.01883.x.

[136] K. Tang and T. Woo. “Algorithmic aspects of alternating sum of volumes. Part 1: Data
structure and difference operation”. In: Computer-Aided Design 23.5 (June 1991),
pp. 357–366. issn: 00104485. url: http://dx.doi.org/10.1016/0010-4485(91)
90029-V.

BIBLIOGRAPHY 138

[137] G. Taubin. “Estimation Of Planar Curves, Surfaces And Nonplanar Space Curves
Defined By Implicit Equations, With Applications To Edge And Range Image Seg-
mentation”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 13
(Nov. 1991), pp. 1115–1138.

[138] The Stanford 3D Scanning Repository. 2011. url: http://graphics.stanford.edu/
data/3Dscanrep/ (visited on 2013).

[139] T. Thormählen and H.-P. Seidel. “3D-modeling by ortho-image generation from image
sequences”. In: SIGGRAPH ’08. New York, NY, USA: ACM, 2008, pp. 1–5. isbn:
978-1-4503-0112-1.

[140] W.-D. Ueng, J.-Y. Lai, and J.-L. Doong. “Sweep-surface reconstruction from Three-
Dimensional Measured Data”. In: Computer-Aided Design 30.10 (1998), pp. 791–805.

[141] H. Ugail, M. I. G. Bloor, and M. J. Wilson. “Techniques for interactive design using
the PDE method”. In: ACM Trans. Graph. 18.2 (1999), pp. 195–212.

[142] T. Várady, M. A. Facello, and Z. Terék. “Automatic extraction of surface structures
in digital shape reconstruction”. In: Comput. Aided Des. 39.5 (May 2007), pp. 379–
388. issn: 0010-4485.

[143] T. Várady, R. Martin, and J. Cox. “Reverse Engineering of Geometric Models - An
Introduction”. In: Computer Aided Design 29 (1997), pp. 255–268.

[144] D. Vlasic, I. Baran, W. Matusik, and J. Popović. “Articulated mesh animation from
multi-view silhouettes”. In: ACM Trans. Graph. 27.3 (2008), pp. 1–9. issn: 0730-0301.

[145] W. Wang, B. Jüttler, D. Zheng, and Y. Liu. “Computation of rotation minimizing
frames”. In: ACM Trans. Graph. 27.1 (Mar. 2008), 2:1–2:18. issn: 0730-0301.

[146] C. Wu. VisualSFM: A Visual Structure from Motion System. 2011. url: http://
homes.cs.washington.edu/~ccwu/vsfm/.

[147] H. Wu and Y. Yu. “Photogrammetric reconstruction of free-form objects with curvilin-
ear structures”. In: The Visual Computer 21.4 (2005), pp. 203–216. issn: 0178-2789.
url: http://dx.doi.org/10.1007/s00371-005-0281-7.

[148] C. Xiao, H. Fu, and C.-L. Tai. “Hierarchical aggregation for efficient shape extrac-
tion”. In: The Visual Computer 25.3 (Apr. 2008), pp. 267–278. issn: 0178-2789. url:
http://link.springer.com/10.1007/s00371-008-0226-z.

[149] D.-M. Yan, Y. Liu, and W. Wang. “Quadric surface extraction by variational shape
approximation”. In: Proceedings of the 4th international conference on Geometric
Modeling and Processing. GMP’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 73–
86. isbn: 3-540-36711-X, 978-3-540-36711-6.

[150] K. Yin, Y. Liu, and E. Wu. “Fast Computing Adaptively Sampled Distance Field
on GPU”. In: Pacific Graphics 2011. 2011, pp. 25–30. isbn: 978-3-905673-84-5. url:
http://diglib.eg.org/EG/DL/PE/PG/PG2011short/025-030.pdf.abstract.pdf;

internal\&action=action.digitallibrary.ShowPaperAbstract.

BIBLIOGRAPHY 139

[151] S.-H. Yoon and M.-S. Kim. “Sweep-based Freeform Deformations”. In: Computer
Graphics Forum 25.3 (2006), pp. 487–496. issn: 1467-8659.

[152] L. Zhang, G. Dugas-phocion, J.-s. Samson, and S. M. Seitz. “Single View Modeling
of Free-Form Scenes”. In: In Proc. of CVPR. 2002, pp. 990–997.

[153] H. Zhao, C. C. L. Wang, Y. Chen, and X. Jin. “Parallel and efficient Boolean on
polygonal solids”. In: The Visual Computer 27.6-8 (Apr. 2011), pp. 507–517. issn:
0178-2789. url: http://link.springer.com/10.1007/s00371-011-0571-1.

[154] Y. Zheng and C.-L. Tai. “Mesh Decomposition with Cross-Boundary Brushes”. In:
Computer Graphics Forum 29.2 (June 2010), pp. 527–535. issn: 01677055. url: http:
//doi.wiley.com/10.1111/j.1467-8659.2009.01622.x.

[155] Y. Zheng, C.-L. Tai, and O. K.-C. Au. “Dot scissor: a single-click interface for mesh
segmentation.” In: IEEE transactions on visualization and computer graphics 18.8
(Aug. 2012), pp. 1304–12. issn: 1941-0506. url: http://www.computer.org/csdl/
trans/tg/2012/08/05989803-abs.html.

[156] J. Zimmermann, A. Nealen, and M. Alexa. “SilSketch: automated sketch-based editing
of surface meshes”. In: Proceedings of the 4th Eurographics workshop on Sketch-based
interfaces and modeling. SBIM ’07. New York, NY, USA: ACM, 2007, pp. 23–30.
isbn: 978-1-59593-915-9.

[157] J. Zimmermann, A. Nealen, and M. Alexa. “Sketching contours.” In: Computers and
Graphics (2008).

