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Abstract

The Internals of GameTime: Implementation and Evaluation of a Timing Analyzer for
Embedded Software

by

Jonathan Prakash Inocencio Kotker

Master of Science in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Sanjit Seshia, Chair

Timing analysis is central to the design and implementation of cyber-physical systems.
This thesis presents GameTime, a timing analysis toolkit that is based on a combination
of game-theoretic online learning and systematic testing using satisfiability modulo theories
(SMT) solvers. GameTime can be used to tackle a range of problems related to program
timing, including estimating the worst-case execution time, predicting the distribution of
execution times, and detecting timing-related anomalies.

This thesis describes the details of the implementation of GameTime. The notion of ba-
sis paths is used to handle the exponentially many paths in a program. The issues that arise
during the translation of statements in C programs to the equivalent clauses in SMT queries
are presented, and the techniques used by GameTime to address these issues are elaborated
through examples. Finally, experimental results demonstrate the speed of GameTime anal-
ysis and the accuracy of the predictions made by GameTime, with a relative error margin
of less than 5% on most of the benchmarks measured.
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Chapter 1

Introduction

Cyber-physical systems, or embedded computer systems, are systems where computation is
tightly integrated with the physical world [46, 30]. The physical properties of these increas-
ingly ubiquitous systems, such as those relating to execution time or energy consumption,
are thus determined significantly by the programs that run on them, and by the platforms
that these programs run on. As a result, the quantitative analysis of these programs is
crucial to the design, implementation and appraisal of these systems.

Timing analysis is a particularly important type of quantitative analysis that addresses
several kinds of problems that arise in practice [45]. A classic problem is to estimate the
worst-case execution time (WCET) of a terminating software task. The solutions to this
problem are relevant in verifying if a deadline can be met for all of the possible inputs to
the program: for example, it would be very useful to know if the brake-by-wire software in
a car always actuates within a pre-specified time frame. The knowledge of the WCET also
informs effective and efficient scheduling strategies. A related problem is the discovery of
a test case whereby a task exhibits anomalous timing behavior: for example, the test case
could cause the task to miss a deadline.

Another problem in timing analysis is estimating the distribution of the execution times
that can be exhibited by a task. Finally, in “software-in-the-loop” simulations, the software
implementation of a controller is simulated along with a model of the plant that it controls.
These simulations are connected through execution time estimates. For the purposes of
scalability, these simulations must be performed on a workstation, and not directly on the
target platform. Hence, for the workstation-based simulations, it is important to predict the
timing of a particular execution path on the target platform.

All of the problems described so far are variants of the same problem: given a program
that terminates on all inputs, predict a particular execution time property. One approach to
these problems is implemented in GameTime, a toolkit for the timing analysis of software.
GameTime can predict not only extreme-case timing behavior, but also the timing along
particular execution paths of a program, and thus several execution time statistics.

The theory behind GameTime has already been established in several existing papers,
e.g., [46, 47]. This thesis describes different aspects of the implementation, along with
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an extensive experimental evaluation, that have not been described in those papers. The
GameTime approach relies upon the ability to model execution paths through embedded C
programs as queries made to a satisfiability modulo theories (SMT) solver. This approach,
however, is complicated by the constructs of the C language that permit, for example, unions
and pointer aliasing. This thesis presents a few algorithms and heuristics that attempt to
encode many of the constructs and semantics of the C language as closely as possible, while
allowing a straightforward translation of a path into an equivalent query to an SMT solver.
The encoding strategies that are described in this thesis can also be useful for program
verification algorithms or testing methodologies that rely on SMT solving.

In Chapter 2, the theory behind GameTime is briefly reiterated, and the relevant no-
tion of basis paths is described through examples. Chapter 3 explores various steps of the
GameTime toolflow. It also poses the challenges described in the preceding paragraph, as
well as the details of the implementation that tackle these challenges. Experimental evi-
dence of the accuracy of GameTime is presented in Chapter 4, while Chapter 5 concludes
the thesis and presents avenues for future work.

To summarize, this thesis makes the following novel contributions:

• New modeling strategies that encode C constructs into SMT queries, such as unions,
struct aliasing and pointer aliasing.

• Exploration and evaluation of various implementation options of the GameTime algo-
rithm that permit, for example, different SMT solvers, different ILP solvers and basis
randomization.

• Application of the GameTime algorithm to other quantitative properties, specifically
the problem of estimating the energy consumption of a program.

1.1 Related Work

The estimation of execution time is a vast and active field of research. WCET analysis is
comprehensively surveyed by Li and Malik [31] and Wilhelm et al [50]. Seshia and Rakhlin
compare many of the approaches in these surveys to the GameTime approach in [46, 47].

The implementation of GameTime makes significant use of symbolic execution to auto-
matically generate test cases. Many symbolic execution tools have been recently constructed
to solve a wide variety of problems, such as test generation (e.g., [6]) or bug finding (e.g., [10]).
As in GameTime, these tools employ constraint solvers to generate test inputs. However,
for many of these tools, one main concern is the potentially exponential number of paths that
need to be explored. GameTime addresses this concern by performing symbolic execution
for only the basis paths of a program, the number of which scales polynomially as the size
of the control-flow graph of the program.

Pointer and alias analysis also feature heavily in the implementation of GameTime. A
survey of different analysis techniques is presented in [22]. One of the primary motivations
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of pointer analysis is to determine the set of memory locations that a pointer could point to
at a program point, based on the paths that could lead to that program point. GameTime,
however, only has to deal with one path from a small subset of program paths at a time.
Consequently, it can significantly simplify its pointer analysis, while also leveraging the
notion of basis paths to reason about properties of all the paths through the program. The
pointer analysis performed by GameTime attempts to simplify the queries sent to the SMT
solver, without having to provide supplementary axioms as the SLAM2 analysis engine from
Microsoft does [3]. This allows GameTime to ‘plug-and-play’ an SMT solver: any SMT
solver that works with the QF AUFBV logic can be used with GameTime.
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Chapter 2

Theoretical Background

In this chapter, we give a brief overview of the relevant aspects of GameTime, followed by
a description of one of its core components, the generation of basis paths.

2.1 Overview

We consider programs P where loops have statically-known finite loop bounds and function
calls have known finite recursion depths. Thus, P can be transformed to an equivalent
program Q, where every execution path in the (possibly cyclic) control-flow graph of P is
mapped one-to-one to a path in the acyclic control-flow graph of Q.

Figure 2.1: GameTime overview [45].
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Toolflow and Operation

Figure 2.1 depicts the operation of GameTime. The process begins with the generation of
the control-flow graph (CFG) of the program. The CFG is assumed to have a single source
node (entry point) and a single sink node (exit point); if not, dummy source and sink nodes
are added.

The next step is a critical one, where a subset of program paths, called basis paths, are
extracted. These basis paths form a basis for the set of all paths, in the standard linear alge-
bra sense of a basis. This concept will be explored further in Section 2.2. Symbolic execution
is used to generate a satisfiability modulo theories (SMT) formula for each candidate basis
path. An SMT solver is invoked to ensure that the basis paths are feasible and to generate
the test cases that will drive execution down those paths.

The original program is compiled for the target platform, and executed on these test cases.
In the basic GameTime algorithm, described in [46, 47] and reiterated in Chapter 3, the
sequence of tests is randomized, with basis paths chosen uniformly at random to be executed.
The overall execution time of the program is recorded for each test case. From these end-
to-end execution time measurements, the learning algorithm of GameTime generates a
weighted graph model that is used for predictions about timing properties of interest.

Game-Theoretic Formulation and Theoretical Guarantees

The theoretical papers on GameTime ([46, 47]) formulate the problem of estimating the
worst-case execution time (WCET), and the path in the graph with this execution time, in
a game-theoretic manner. The estimation problem is modeled as a two-player game between
the estimation tool T and the environment E of a program P .

We now briefly reiterate the rules of this game. The game proceeds over several rounds,
t = 1, 2, 3, . . .. In each round, the environment E chooses path-independent weights for the
edges in the CFG. Concurrently, the tool T chooses an input to the program P , which drives
program execution along a particular path xt in the CFG. Once T chooses xt, E uses this
choice to pick a distribution from which it draws a path-dependent perturbation for each edge
in the CFG. As a result, the weight of each edge is the sum of its assigned path-independent
weight and the path-dependent perturbation. The sum of the weights of the edges along the
path xt are revealed to T as the length of the path xt.

In round τ , T can stop the game and make a guess. T wins the game in round τ iff it
correctly estimates the path that generates the worst-case execution time due to the states
of the environment in previous rounds. The goal of T is thus to select a sequence of inputs
x1, x2, . . . , xτ that will allow it to identify, with high probability, the longest execution time
of P during the previous rounds t = 1, 2, 3, . . . , τ .

Intuitively, the path-dependent perturbation allows us to model the perturbation in the
execution time of a path that arises due to, for example, the input or the measurement error.
In practice, this perturbation is not arbitrary, or else prediction would be impossible: for
instance, this perturbation can be bounded.
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The predictions made by GameTime hold with high probability. The details of theo-
retical results about the predictions can be found in the theoretical papers on GameTime.
While these details are beyond the scope of this thesis, we provide here a less formal and
more intuitive description of the theoretical guarantees [28]:

1. Given any δ > 0, GameTime can predict the execution time of any program path
to within a tolerance of ε with probability 1 − δ by timing a number of tests that is
polynomial in the program size, in ln

(
1
δ

)
, and in a parameter µmax.

µmax is an upper bound on the mean perturbation to program path timing due to the
variations in basic block time based on the path it lies on. Such a perturbation also
includes variation in environmental conditions and measurement error. The tolerance ε
is O(bµmax), where b is the number of basis paths. The greater the mean perturbation,
the larger the number of tests needed and the larger the value of ε.

2. For the estimation of the worst-case execution time (WCET), GameTime provides
a similar high-probability guarantee on finding the path along which the WCET is
exhibited. Once this path is identified, we can execute the path on the target platform
and measure its execution time. Thus, if GameTime correctly finds the worst-case
path, it accurately computes the WCET.

More specifically, if the worst-case path timing is larger than the timing of any other
path by a margin ρ, which is also O(bµmax), then GameTime is guaranteed to find the
worst-case path with probability 1− δ by timing a number of tests that is polynomial
in the program size, in ln

(
1
δ

)
, and in µmax.

2.2 Basis Paths

We explain the basis path generation process using the modular exponentiation code given in
Figure 2.2(a). The unrolled version of the code of Figure 2.2(a) for a 2-bit exponent is given
in Figure 2.2(b), and is the version of the code used for analysis, but not for measurement.

Modular exponentiation is a necessary primitive for implementing public-key encryption
and decryption. In this operation, a base b is raised to an exponent e modulo a large prime
number. In this particular example, we use the square-and-multiply method to perform the
modular exponentiation, based on the observation that

be =

{
(b2)e/2 = (be/2)2, e is even,

(b2)(e−1)/2 · b = (b(e−1)/2)2 · b, e is odd.
(2.1)

In the CFG extracted from a program, nodes correspond to program counter locations,
and edges correspond to basic blocks or branches. Figure 2.3(a) denotes the control-flow
graph for the code in Figure 2.2(b). Each source-sink path in the CFG can be represented
as a 0-1 vector with m elements, where m is the number of edges in the CFG. The ith entry
of the path vector is 1 iff the ith edge is on the path; otherwise, the entry is 0.
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1 int modexp(int base , int exponent) {

2 int result = 1;

3 for(int i=EXP_BITS; i>0; i--) {

4 // EXP_BITS = 2

5 if (( exponent & 1) == 1) {

6 result = (result * base) % p;

7 }

8 exponent >>= 1;

9 base = (base * base) % p;

10 }

11 return result;

12 }

(a) Original code P

1 int modexp(int base , int exponent) {

2 int result = 1;

3 if (( exponent & 1) == 1) {

4 result = (result * base) % p;

5 }

6 exponent >>= 1;

7 base = (base * base) % p;

8 // unrolling below

9 if (( exponent & 1) == 1) {

10 result = (result * base) % p;

11 }

12 exponent >>= 1;

13 base = (base * base) % p;

14 return result;

15 }

(b) Unrolled code Q

Figure 2.2: Modular exponentation. Both programs compute the value of baseexponent modulo p.

Figure 2.3: CFG and Basis Paths for Code in Fig. 2.2(b).
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For example, in the graph of Figure 2.3(a), each edge is labeled with its index in the
vector representation of the path. Edges 2 and 3 respectively correspond to the else-branch,
valid when the rightmost bit of exponent is 0, and the then-branch, valid when the rightmost
bit of exponent is 1, of the conditional statement at line 3 in the code. Edge 5 corresponds
to the basic block that comprises lines 6 and 7. Let P denote the subset of {0, 1}m that
corresponds to valid program paths. Note that this set can be exponentially large in m.

A key feature of GameTime is the ability to exploit correlations between paths, which
allow the estimation of program timings along any path, by testing a relatively small subset
of paths. This subset is a basis of the path-space P , with two valuable properties: any
path in the graph can be written as a linear combination of the paths in the basis, and the
coefficients in this linear combination are bounded in absolute value.

The first property implies that the basis is a good representation for the exponentially-
large set of possible paths; the second says that timings of some of the basis paths will be
of the same order of magnitude as that of the longest path. These properties enable us to
repeatedly sample timings of the basis paths to reconstruct the timings of all paths.

Figure 2.3(b) shows the basis paths for the graph of Figure 2.3(a). Here p1, p2, and p3 are
the paths that correspond to exponent taking the integer values with binary representations
01, 10, and 00 respectively. Figure 2.3(c) shows the fourth path p4, expressible as the linear
combination p1 + p2− p3 (see Figure 2.3(d)). This path corresponds to exponent taking the
integer value with binary representation 11.

The number of feasible basis paths is bounded by m − n + 2, where n is the number of
nodes in the CFG. Note that our example graph has a “2-diamond” structure, with 4 feasible
paths, any 3 of which make up a basis. In general, an “N-diamond” graph with 2N feasible
paths has at most N + 1 basis paths.
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Chapter 3

Implementation

In this chapter, we discuss the implementation of the GameTime toolflow as presented
in Chapter 2. We emphasize the strategies and complications that arise in the discovery
of candidate basis paths, and in the modeling of the paths as SMT queries to test their
feasibilities. We also briefly describe the other components within GameTime.

For this chapter, the terms expression and statement are defined as they are convention-
ally [27], [37]: An expression represents, and evaluates to, a piece of data, such as a number
or a character. A statement expresses side effects, such as a function call or the evaluation of
an expression, and can direct control flow. We also assume that the starting platform state
is fixed and known.

GameTime operates in the five stages enumerated below, which will be further detailed
in the sections that follow:

1. Preprocess the program.

2. Extract the CFG of the program.

3. Generate candidate basis paths.

4. Generate test cases.

5. Estimate the weights on the edges of the CFG and the lengths of different paths.

3.1 Preprocessing

Before any analysis is conducted, GameTime preprocesses the program using the CIL (C
Intermediate Language) front-end for C [37, 36]. This preprocessed program will be used for
the GameTime analysis, but the original program will be used for the measurement of the
test cases produced by this analysis.

CIL performs several source-to-source transformations, which reduce the set of all possible
constructs in C programs to a smaller, “cleaner” subset. These transformations provably [37]
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convert a program to an equivalent program that is easier to analyze. For all benchmarks
presented in Chapter 4, this phase is very fast, completing in less than a minute.

The transformations performed by CIL [36] that are relevant to GameTime are:

1. Explicit casting. CIL inserts explicit casts for all type promotions and conversions.

2. Function inlining. As noted in the beginning of Section 2.1, function calls are inlined:
the call is replaced with the body of the callee function, and the variables local to the
callee are appropriately renamed. This is particularly useful for recursive calls.

3. Loop detection and unrolling. Loop detection can already be performed by a submodule
within CIL, but not loop unrolling. A custom submodule to perform loop unrolling was
thus written for GameTime using the OCaml interface to CIL. GameTime employs
the loop detection submodule to generate a loop configuration file, wherein each line
is the line number of a loop header, followed by the number of times the loop should
be unrolled. Once the user edits this second column of numbers, GameTime uses the
custom loop unrolling submodule to replace these loops with equivalent loop-free code.

This extra step of loop detection and unrolling is only performed if GameTime detects
loops in the program. The process of loop detection and unrolling is further simplified
by the CIL transformation of all looping constructs to the equivalent while loops.

4. Conversion of switch statements. CIL transforms a switch statement to an equivalent
if-statement. As a result, every branching point in the transformed code leads to
exactly two possibilities. This permits GameTime to compress path representations
through the introduction of default edges, which will be elaborated upon in Section 3.3.

5. Conversion to pointer dereferences. CIL transforms all array expressions and pointer
expressions to equivalent expressions that dereference appropriately shifted pointer
variables. In the transformed code, the dereference is done on a non-shifted pointer, so
a temporary pointer variable is created to store a shifted pointer. For example, if a is
the name of an array of int values, and b is an int variable, the assignment statement

b = a[3];

is transformed to the equivalent statements

mem3 = a + 3;

b = *mem3;

The newly created temporary variable mem3 has the type of a pointer to an int variable.

Also, as part of this transformation, statements that dereference pointers more than
once are transformed to statements that dereference temporary pointers exactly once.

For example, the assignment statement
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b = **a;

is transformed to

mem3 = *a;

b = *mem3;

As before, the newly created temporary variable mem3 is a pointer to an int variable.

Finally, syntactic sugar is eliminated: for example, the expression c->d is converted to
the equivalent expression (*c).d, where c is a pointer to a struct that has a field d.

A summary of examples of these transformations is provided in Table 3.1. All of these
transformations ensure that pointers are either shifted once or dereferenced once in
the analyzed code, which enables easier analysis. The modeling and analysis of these
pointer expressions will be elaborated upon in Section 3.4.

Original C statement Statement as modified by CIL
b = a[3]; mem3 = a + 3; b = *mem3;

b = **a; mem3 = *a; b = *mem3;

b = *(a + 4); mem3 = a + 4; b = *mem3;

c->d = 3; (*c).d = 3;

Table 3.1: Summary of some CIL transformations of pointer and array expressions.

3.2 Extraction of CFG

Once the program has been preprocessed by CIL, the control-flow graph (CFG) can then be
extracted using any compiler front-end. Currently, GameTime uses the C# API provided
by the Microsoft Phoenix compiler front-end [34].

The CFG that is produced is slightly different from the standard representation: nodes
correspond to the starts of basic blocks of the program, while edges indicate flow of control,
and are labeled by either a conditional statement or a basic block.

The extraction results in a file that contains the CFG of the program, represented in the
DOT language [17], a language maintained by Graphviz [18], open-source graph visualization
software. This allows us to visualize the graph, if needed. In our experiments, this phase is
also quick, taking less than a minute on the benchmarks used.
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3.3 Generation of basis paths

Algorithm

The algorithm to generate a basis for the path space P was introduced in [2] and described
in the context of GameTime in [46, 47]. It is reiterated in Algorithm 1, where it has also
been annotated and expanded to include details relevant to the implementation.

The result of the algorithm is a set of basis paths for P , as introduced in Section 2.2. By
definition, the set is a spanner: every path in P can be represented as a linear combination
of paths in this set. The set produced is also 2-barycentric, a term introduced in [2]: a set of
b paths {b1, . . . , bb} ⊆ P is 2-barycentric if any path x ∈ P can be written as x =

∑b
i=1 αibi

with |αi| ≤ 2. This ensures that, as discussed in Section 2.2, the timings of some of the basis
paths will be of the same order of magnitude as that of the longest path.

Algorithm 1 Finding a 2-Barycentric Spanner Set for P [46, 47].

1: (b1, . . . , bm)← (e1, . . . , em)
2: for i = 1 to m do Compute a basis for P .
3: if there are no more candidate paths to replace row i of B then
4: Go to the next iteration
5: end if
6: pi ← argmaxx∈P | det(Bx,i)| Select a candidate path.
7: if pi is feasible then Test feasibility using SMT solver.
8: Generate corresponding test case
9: bi ← pi

10: else Select another candidate path.
11: Exclude pi Add constraint to ILP formulation where

the edges of pi are never taken together.
12: Go to line 3
13: end if
14: end for
15: while ∃x ∈ P , i ∈ {1, . . . ,m} such that
| det(Bx,i)| > 2| det(B)| do Transform B into a 2-barycentric spanner.

16: Generate test case
17: bi ← x
18: end while

In Algorithm 1, m is the number of edges in the CFG of the program under analysis. It
can be shown that the running time of the algorithm is quadratic in m [2].

B = [b1, . . . , bm]T is known as the basis matrix. B is initialized such that its ith row is ei,
the m-dimensional vector with 1 in the ith position and 0 in the other positions. GameTime
also supports an option that permits a user to randomly swap the rows of the basis matrix
after initialization and before the replacement of rows. For the purposes of this description,
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however, we do not consider this option, although the algorithm is still applicable in the
presence of this randomization.

The ith iteration of the for-loop in lines 2 through 14 attempts to replace the ith row of
the basis matrix with a path that is linearly independent of the other vectors in the matrix,
including the previous i − 1 basis paths identified so far. In line 6, Bx,i is (a copy of) the
basis matrix B, where the ith row has been replaced with the vector x. Formally, Bx,i =
[b1, . . . , bi−1, x, bi+1, . . . , bm]T. The algorithm attempts to find a vector x that will maximize
the determinant of Bx,i, which is then assigned as candidate path pi. As explained in a
later subsection, finding this vector is equivalent to solving an integer linear program. The
intuition behind this step arises from viewing determinant computation as the computation
of the volume of a polytope. Maximizing the determinant is equivalent to spreading the
vertices of this polytope as far as possible to obtain a “diverse” set of basis paths [47].

There might not be such a candidate path pi, which could arise in three cases:

(a) All paths in the path space P have already been considered.

(b) The quantity det |Bx,i| is zero, or below some specified (small) threshold.

(c) The number of candidate paths that have been attempted as replacements for the row
has exceeded some specified (large) threshold.

In these cases, as per lines 4 and 5, the algorithm skips the current iteration of the for-
loop, and the row is labeled as a “bad” row. In the implementation, the row is also moved to
the bottom of the basis matrix, and the for-loop bounds are modified to ignore these “bad”
rows. This movement does not, however, change the absolute value of the determinant of
the matrix. As will be discussed in Section 3.5, the movement also does not change the
predicted lengths of different paths in the CFG.

Otherwise, if there does exist a candidate path pi, the statements along the path are
collected and modeled as an SMT query. A SMT solver is then invoked to check the satis-
fiability of the SMT query and thus the feasibility of the candidate path. The modeling of
the path as an SMT query will be described in Section 3.4.

If the path pi is infeasible, then it is excluded from consideration, and the ith iteration is
repeated, as depicted in lines 10 through 12. If the SMT solver supports the generation of an
unsatisfiable core, or a subset of clauses in the query whose conjunction is still unsatisfiable,
then the portion of the path that is associated with this subset of clauses is excluded instead.
The exclusion of a path (or a portion thereof) will be elaborated upon in a later subsection,
when the formulation of the integer linear program is detailed.

If the path is feasible, however, the ith row of B is replaced by pi. The SMT solver also
produces a satisfying assignment of variables in the SMT query, which is converted into a
test case that drives program execution along pi.

After the for-loop, we are left with a spanner set that may not be 2-barycentric. Lines
15 through 18 refine this set into a 2-barycentric spanner. As described, if there is any row
in the basis matrix that can be replaced with a candidate path x, such that the determinant
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of the new basis matrix is more than twice the determinant of the current basis matrix,
then the row is replaced with this path. As implemented, a while-loop iterates over the
rows of the basis matrix, attempting this replacement of each row. The loop finishes when
one pass over the basis matrix does not result in any replacement. In our experiments, this
while-loop completes the refinement in at most 3 passes. GameTime provides an option
to disable this refinement.

The runtime of this phase is dependent on the program under analysis, and the runtimes
for various benchmarks are summarized in Chapter 4.

Basis Matrix Compression

The definition of the basis matrix in the previous subsection indicates that the matrix is an
m ×m matrix. However, for larger programs, the size of this matrix can be unnecessarily
and prohibitively large, and we can optimize the matrix through one observation: all of the
paths in the graph share many edges in common.

For example, in Figure 2.3(a), which portrays the CFG of the modular exponentiation
code in Figure 2.2(b), all paths contain the edges 1, 5 and 9. This implies that the entries
that correspond to these edges will be 1 for each row in the basis matrix, allowing the
“compression” of the matrix by removing the resulting columns whose entries are all 1.

We can further optimize by modifying the path representation to use the edges along
the path that are taken at each branch point, which is defined to be a node with more than
one outgoing edge. As noted in Section 3.1, the preprocessing ensures that every branch
point is incidental to exactly two outgoing edges. We designate one of these two edges as
the default edge. This designation is arbitrary: in the current implementation, the edge that
corresponds to the then-branch is designated the default edge.

Formally, let ei be the ith edge in the CFG. Let B be the set of branch points in the
CFG, labeled P1 through P|B|. We represent a path p as a 0-1 vector with |B| elements. The
ith entry of this vector is 1 iff the default edge of P1 is on the path; otherwise, the entry is
0. Hence, if Pi is incidental to edges j and k, and edge j has been designated as its default
edge, then an entry of 1 at the ith position indicates that edge j is on the path; otherwise,
edge k is on the path.

This permits the compression of the path representations in Figure 2.3. If edge 3 is
designated as the default edge for the first branch point and edge 6 is designated as the
default edge for the second branch point, then the paths are represented as p1 = (1, 1),
p2 = (1, 0), p3 = (0, 0), and p4 = (1, 1). The relationships between the paths are maintained:
p4 can still be expressed as p1 + p2 − p3.

However, this new representation is a flawed replacement for the original. The basis
matrix B = [p1, p2, p3]

T is no longer a square matrix. Also, the presence of a zero vector
in the matrix indicates that linear independence of the basis is no longer preserved. In the
original representation, the zero vector did not translate to any legal path in the CFG; in
this new representation, however, the zero vector does.
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To correct for this, we first modify the CFG in a particular way: if the source node is a
branch point, we add a dummy source node, along with an edge directed from the dummy
source node to the original source node. We can now prepend each vector with an extra
entry that denotes if the sole edge from the source node is taken; in other words, the edge
from the source node is the designated default edge for the source node. Since there is now
only one edge from the source node in the CFG, this entry is always 1. This ensures that
the zero vector does not translate to any valid path in the CFG.

Figure 3.1: CFG and Basis Paths for Code in Fig. 2.2(b), modified. This demon-

strates the path representation employed by the GameTime implementation, which is equivalent to the

representation depicted in Figure 2.3.

This is the path representation used by the current implementation of GameTime: one
entry for each branch point, and one for the source node. Continuing with the example of
modular exponentiation, the basis paths are now represented as p1 = (1, 1, 0), p2 = (1, 0, 1),
p3 = (1, 0, 0), and p4 = (1, 1, 1). This is summarized in Figure 3.1, which is a modified
version of Figure 2.3 that demonstrates the new representation. The relationships between
the paths are still maintained, and the basis matrix remains a square matrix, although its
dimensions have now been reduced from m×m to (|B|+ 1)× (|B|+ 1).

Finally, we compute the value of |B|. Let n be the number of nodes in the CFG. Only
n− 1 of these nodes have outgoing edges. From m, the number of edges, we subtract 1 for
each of the n− 1 nodes. If a node has two outgoing edges, the second (non-default) one will
be counted in the quantity m−(n−1), or m−n+1, which is thus the number of branch points
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in the CFG, or |B|. Hence, the dimensions of the basis matrix are (m−n+ 2)× (m−n+ 2),
and the maximum number of basis paths is (m−n+ 2). In practice, since a basis path must
be feasible, the number of basis paths b can be less than (m−n+ 2). In fact, the non-“bad”
rows of the basis matrix, of which there must be b, represent these basis paths.

Optimization Formulation

As remarked in the previous subsection, the problem of finding candidate paths that max-
imize the determinant of a basis matrix can be cast as an integer linear program. In this
subsection, we detail the formulation of this integer linear program, as discussed in [31, 30],
in the context of GameTime.

As defined before, let m be the number of edges in the CFG of a program, modified
slightly as specified in the previous subsection, and let n be the number of nodes. We
number the nodes from 1 through n and the edges from 1 through m; in particular, let the
sole edge from the source node be edge 1. Let B be the set of branch points in the CFG,
labeled P1 through P|B|.

Let ei be an integer variable that denotes the number of times edge i is traversed along a
path. Alternatively, to use the terminology of the theory of network flow, let ei be the flow
through edge i. Since the CFG is an acyclic graph, ei can only take on the values of 0 and
1. To find a candidate path in the CFG, we enforce flow constraints on these variables ei.
These constraints arise from the structure of the CFG and from the paths that have already
been considered.

1. Unit flow at source. There is unit flow along the edge from the source of the CFG. If
this edge is k, then this constraint is expressed as the equality

ek = 1.

For example, for the CFG presented in Figure 2.3(a), this constraint would be

e1 = 1.

2. Conservation of flow. For each node i, the amount of flow that enters must equal the
amount of flow that leaves. This constraint is expressed as the set of equalities

∀i, 1 ≤ i ≤ n
∑
k∈Ii

ek =
∑
`∈Oi

e`,

where Ii is the (possibly empty) set of the numbers of the edges that enter node i
and Oi is the (possibly empty) set of the numbers of the edges that leave node i. For
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example, for the CFG presented in Figure 2.3(a), these constraints would be

e1 = e2 + e3

e3 = e4

e2 + e4 = e5

e5 = e6 + e7

e7 = e8

e6 + e8 = e9

3. Path-exclusive constraints. If a path (or a portion of a path) is excluded, then the
edges in the path (or a portion) should not be taken together. Let Eex be a set of the
numbers of these edges that cannot be taken together. This implies that no valuation
of the variables ei, i ∈ Eex, should set all of these variables to 1. This constraint is
expressed as the inequality ∑

i∈Eex

ei ≤ |Eex| − 1.

For example, for the CFG presented in Figure 2.3(a), if the path p2, defined in Fig-
ure 2.3(b), were to be excluded, perhaps because either it is infeasible or another
candidate path needs to be furnished, then edges 1, 2, 5, 7, 8 and 9 should not be
taken together. This is ensured by the constraint

e1 + e2 + e5 + e7 + e8 + e9 ≤ 5.

Note that if all edges were taken together, the total flow on the left-hand side of the
constraint would be 6, which violates the constraint.

We note that these flow constraints are linear in the integer variables ei, and are thus the
constraints of an integer linear program. To complete the formulation, we need an objective
function. Since we need to maximize | det(Bx,i)| for each row i of the basis matrix, we
construct an objective function from this quantity.

Let x = (1, eP1 , eP2 , . . . , eP|B|), where ePi
is the variable that represents the flow through

the default edge for branch point Pi. The entry of 1 in the first position indicates that the
sole edge from the source is always taken, as noted in the previous subsection. With this
definition, the quantity | det(Bx,i)| results in a linear expression in (a subset of) the variables
ei. This expression is the objective function that we choose to maximize.

A solution of this integer linear program is a valuation of the variables ei that translates
to a (not necessarily feasible) path in the CFG of the program. As will be discussed in
Section 3.4, the statements along this path will be collected and converted into the clauses
of an SMT query, and an SMT solver will be used to determine the satisfiability of the query,
and hence the feasibility of the path itself.

For example, for the CFG presented in Figure 2.3(a), say that we need to find a re-
placement for the first row of the basis matrix: in other words, we need to maximize the
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quantity | det(Bx,1)|. In this case, x = (1, e3, e7), where e3 and e7 are the default edges for
the two branch points in the CFG. The quantity | det(Bx,1)| evaluates to the function 1− e7,
which is the quantity we choose to maximize. Given the constraints due to the structure
of the CFG, the maximum value of this function occurs when e7 is 0, and the value of e3
is irrelevant. Hence, there are two possible solutions, represented by the paths p1 and p3
defined in Figure 2.3(b).

The current implementation of GameTime uses the PuLP Python package [52] to inter-
face with many well-known integer linear programming solvers, including the GNU Linear
Programming Kit (GLPK) [41], the Gurobi Optimizer [40] and the IBM CPLEX Opti-
mizer [25]. The package is used to create and solve the integer linear program.

3.4 Generation of test cases

Once a candidate path has been selected, its feasibility needs to be determined. This is done
in three steps, which are briefly described below and detailed in the subsections that follow:

1. Collect the statements along the candidate path.

2. Convert the intermediate expressions to the clauses of an SMT query.

3. Use an SMT solver to check the satisfiability of the SMT query. If the query is satisfiable,
parse the resulting model and create a test case that drives execution along the path.

Step 1: Path statement collection

Microsoft Phoenix internal representation

This step is performed using the Microsoft Phoenix front-end [34], which permits many dif-
ferent kinds of C program analyses. The current implementation of GameTime uses the C#
API of Phoenix to traverse the internal representation used by the front-end. An example of
this internal representation is presented in Figure 3.16, which depicts the (unrolled) modular
exponentiation code given in Figure 2.2(b). We note some features:

1. Each line of the internal representation is an instruction, which may have an operator
and operands.

2. Each operand maintains type and size information about the corresponding variable
or expression in the original C program. Each instruction maintains the number of the
associated line in the C program.

3. The representation is in static single assignment (SSA) form [1], where each operand
is assigned to exactly once. If an operand is assigned to more than once, a new
“version” of the operand is created for each new assignment after the first. Each
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new operand is suffixed with a number. For example, in Figure 3.16, the destination
operand result<4> on line 8 is a new version of the operand result. This makes
def-use information explicit: each operand is defined in exactly one instruction (the
def-instruction) and used in at most one instruction (the use-instruction).

4. An operand that corresponds to a C variable is named the same as the variable, with
an underscore prefix. Temporary operands, whose names are numbers prefixed with
t, are assigned the results of instructions that correspond to sub-expressions within a
complex C expression.

5. Operands also exist for dereferenced pointers. As an example, if t283 is an operand
that represents a pointer, then the operand [t283]* represents the dereferenced pointer.

6. There are many kinds of instructions, as described in the documentation for Microsoft
Phoenix [33], a few of which are relevant to GameTime:

(a) Value instructions are instructions that compute a value. They correspond to sub-
expressions in a C program. The value is stored in a destination operand. For
example, in Figure 3.16, line 22 is a value instruction:

t287 = MULTIPLY _base<2>, _base<2>

As indicated, the two source operands, both of which are the operand base<2>,
are multiplied, and the product is assigned to the destination operand, which is the
temporary operand t287. This corresponds to the sub-expression (base * base)

on line 7 of Figure 2.2(b). For our purposes, we define an assignment instruction
as a value instruction whose destination operand is not a temporary operand.
This includes instructions whose operator is ASSIGN. An example of an assignment
instruction is the instruction on line 21:

_exponent<6> = SHIFTRIGHT t286, 1

We treat these instructions specially since they directly correspond to assignments
in the code. In this case, the instruction corresponds to line 6 of Figure 2.2(b):

exponent >>= 1;

(b) Conditional instructions are instructions that determine the truth value of a con-
dition. They correspond to the conditional expressions of if-statements in a C
program, and the value is also stored in a destination operand. For example, in
Figure 3.16, line 10 is a conditional instruction:

t283 = COMPARE(EQ) t282, 1

As indicated, the equality of the values of the source operands, which here are t282
and 1, is tested, and the truth value is stored in the temporary operand t283. This
corresponds to the condition ((exponent & 1) == 1) on line 3 of Figure 2.2(b),
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where the value of the sub-expression (exponent & 1) is stored in the temporary
operand t282, as defined on line 9 of Figure 3.16.

(c) Label instructions designate the start of a basic block, and provide a destination
for branch instructions. For example, in Figure 3.16, the instruction on line 18 is
a label instruction:

$L6: (references=2)

It heads the basic block that contains the C statements between the two if-
statements in Figure 2.2(b), from lines 6 through 10. The references annotation
indicates the number of the branch instructions this label is the destination of.

(d) Branch instructions account for the control flow in the program, and allows pro-
gram execution to jump to different basic blocks, based on the truth value of an
operand. For example, in Figure 3.16, the instruction on line 11 of Figure 3.16 is
a branch instruction:

CONDITIONALBRANCH(True) t283, $L7, $L6

As indicated, if the value of the temporary source operand t283 is true, then the
next basic block executed will be the one headed by the label $L7 (on line 12);
otherwise, it will be the one headed by the label $L6 (on line 18).

Branch instructions include GOTO-instructions, which cause a direct jump to an-
other basic block without checking the truth value of any condition. For example,
the instruction GOTO $L8 on line 34 causes a jump to the basic block headed by
the label $L8 (on line 35).

(e) The SSA form introduces PHI-instructions, which represent φ-functions. These
PHI-instructions, like the φ-functions they represent, provide a distinction between
the possible values of a variable that result along different control flow paths. For
example, in Figure 3.16, the instruction

_result<11> = PHI _result<4>, _result<5>

on line 19 indicates that the operand result<11> can be assigned the value of
either the operand result<4>, defined on line 8, or the operand result<5>,
defined on line 15, based on whether the branch instruction on line 11 caused
program execution to jump to label $L7 or to label $L6, respectively.

GameTime intermediate expressions

GameTime performs a symbolic execution of the instructions in the Phoenix internal rep-
resentation that represent the statements along the candidate path. In particular, Phoenix
exposes an API that allows the backward symbolic execution of the operands in these in-
structions. When presented with each of these instructions, GameTime uses this API to
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trace each operand to its def-instruction, and to construct its own intermediate expression
that represents the instruction. This algorithm will be detailed later in this subsection.

The intermediate expressions produced by GameTime closely resemble expressions in
C, but also permit a simple conversion to the clauses of an SMT query, while providing an
accurate and logical memory model. The Backus-Naur Form grammar of these expressions
is shown in Figure A.1 of Appendix A.

1 int modexp(int base , int exponent) {

2 int result = 1;

3 if ((exponent & 1) == 1) {
4 result = (result * base) % p;

5 }
6 exponent >>= 1;

7 base = (base * base) % p;

8 if ((exponent & 1) == 1) {
9 result = (result * base) % p;

10 }
11 exponent >>= 1;

12 base = (base * base) % p;

13 return result;

14 }

(a)

result == 1

(exponent & 1) == 1

result <1> == (result * base) % p

exponent <1> == (exponent >> 1)

base <1> == (base * base) % p

!(( exponent <1> & 1) == 1)

exponent <2> == (exponent <1> >> 1)

base <2> == (base <1> * base <1>) % p

(b)

Figure 3.2: Examples of GameTime intermediate expressions. (a) Modular exponen-

tiation code of Figure 2.2, where the statements along one path are highlighted. (b) The GameTime

intermediate expressions that correspond to these statements.

An example of these intermediate expressions is presented in Figure 3.2. Figure 3.2(a)
shows the (unrolled) modular exponentiation code from Figure 2.2(b), with the statements
along the path p1, as defined in Figure 2.3(b), highlighted with a light gray background.
The body of the second if-statement (on line 8) has not been highlighted, since the edge
that corresponds to the then-branch is not included in the path. Figure 3.2(b) depicts the
GameTime intermediate expressions that correspond to the statements along the path. This
example demonstrates two characteristics of these intermediate expressions:

1. As with the intermediate representation of Microsoft Phoenix, the intermediate ex-
pressions generated by GameTime are in SSA form. As a result, since every variable
in these expressions is assigned exactly once, assignments are converted into equalities.
For example, in line 6 of Figure 3.2(a),

exponent >>= 1;
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the variable exponent is assigned the result of a right-shift by 1 bit. This statement
is converted to the GameTime intermediate expression

(exponent<1> == exponent >> 1)

with a new version of the variable exponent.

2. If a path does not contain the edge that corresponds to the then-branch of an if-
statement, the condition must evaluate to false. To enforce this, GameTime inverts the
intermediate expression that represents the condition. For example, in Figure 3.2(a),
the then-branch of the second if-statement (on line 8) does not lie along the path. As
a result, its condition (exponent & 1) == 1 is converted to the GameTime interme-
diate expression

!((exponent<1> & 1) == 1)

where the ! operator serves to invert the Boolean result of its argument expression.
Note that the appropriate version of the variable exponent has been used, since it has
already been assigned once.

Definitions

For the rest of this subsection, we define the function type(·), which maps a GameTime
intermediate expression to the C data type of the corresponding C expression in the original
program. If the corresponding C expression has a primitive type, such as char or int, this
function evaluates to that type. For example, in Figure 3.2(a), if exponent is an integer
variable, then both type(exponent) and type((exponent >> 1)) evaluate to int.

If, however, the corresponding C expression is a pointer, type(·) evaluates to int → τ ,
where τ is the type of the variable that the pointer points to. For example, if p is declared
with the type int*, then type(p) = int→ int. This definition is recursive: if p is declared
with the type char**, then type(p) = int→ int→ char. This definition indicates that a
pointer can be considered a function that maps an integer (the address) to another variable,
which can itself be a pointer [8].

We also define the function sizeof(·), which maps a GameTime intermediate expres-
sion to the number of bits that the value of the corresponding C expression would occupy
in memory. For example, on a machine where integers occupy 4 bytes of memory, both
sizeof(exponent) and sizeof((exponent >> 1)) evaluate to 32.1 We similarly define the
function sizeoft(·), which maps a type, as returned by the function type, and returns the
number of bits that a variable of that type would occupy in memory. For example, on the
same machine, sizeoft(int) = 32. By definition, we note that, for some variable v,

sizeoft(type(v)) = sizeof(v)

1This function is different from the sizeof function in C, which returns the byte-size.
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The types and sizes of the expressions are obtained from the type and size information
maintained by the corresponding Phoenix operands. As a result, the domains of these
functions are extended to include Phoenix operands.

Finally, we define the semantics of the offset operator (.). The syntax of an intermediate
expression that uses this operator is

expr.offset

where expr and offset are themselves intermediate expressions. If the size of this expression
is s, then this expression evaluates to the value whose bit representation is located between,
and including, bits offset and offset + s − 1, where bit 0 is the least significant bit. This
definition proves useful, as we shall describe, in the modeling of arrays and structs. If the
size of expr is also s, then the expressions expr.0 and expr evaluate to the same value.

Modeling and translation of C constructs

An overview of the symbolic execution algorithm that GameTime uses to construct its
intermediate expressions is presented in Algorithm 2. Though the algorithm as described
is specific to the internal representation employed by Microsoft Phoenix, it can be easily
adapted to any other internal representation used by other compiler front-ends, such as CIL
itself and the LLVM compiler infrastructure [49].

Algorithm 2 Constructing GameTime intermediate expressions for a path.

1: function ConstructExpressions(p)
2: return [ConstructExpression(inst, p) for each instruction inst along p]
3: end function

The input to Algorithm 2 is the path that results from solving the integer linear program
formulated in the previous step, but in an alternate representation. The solution of the
program is a list of edges along the path: GameTime maps this list to a list of the IDs of
the corresponding Microsoft Phoenix basic blocks, which is the representation used. This
enables Algorithm 2 to collect the instructions along the input path p, merely by sequentially
collecting the instructions that these basic blocks comprise. Line 2 of Algorithm 2 borrows
the list comprehension notation from Python: as depicted, the output is a list of the non-null
outputs of the function ConstructExpression when applied to each instruction.

Algorithm 3 defines the function ConstructExpression, with details omitted for the
sake of brevity. The input is a Microsoft Phoenix instruction and the path p that contains
the instruction inst, and the output is either a GameTime intermediate expression that
represents the input instruction or a null value. The function heavily uses a helper recursive
function TraceOperand, which is defined in Algorithm 4. This helper function takes an
operand o of an instruction and the path p that contains the instruction as inputs, and
returns the GameTime intermediate expression that corresponds to the operand.
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Algorithm 3 Constructing a GameTime intermediate expression.

1: function ConstructExpression(inst, p)
2: if inst is a branch instruction then
3: conditional expr← TraceOperand(source operand, p)
4: if basic block headed by the second (false) label is in p then
5: conditional expr← !(inst)
6: end if
7: return conditional expr
8: else if inst is an assignment instruction then
9: src exprs← [TraceOperand(s, p) for each source operand s]

10: Construct expression e using src exprs and operator of inst
11: dest expr← TraceOperand(destination operand, p)
12: if destination operand is a pointer or a struct then
13: AddToAliasTable(dest expr, e)
14: return null
15: end if
16: return equality expression between dest expr and e
17: else
18: return null
19: end if
20: end function

The function TraceOperand “expands” an operand into the approriate sub-expression
in the C program. It traces a temporary operand back to its def-instruction, and recursively
traces other temporary operands that may appear in this def-instruction. The base case
occurs when the operand is not temporary: the operand represents a variable in the C
program. In this case, the function returns an expression with the original variable name.

The function ConstructExpression returns a null value if the input instruction is
neither a branch instruction nor an assignment instruction. If, however, the instruction is a
branch instruction, the source operand of the instruction is traced backwards, as noted on
line 3 of Algorithm 3, which results in a conditional expression. If the conditional expression
were false, then program execution would jump to the basic block headed by the second label.
Hence, if this basic block were in p, then the condition should be falsified. As specified earlier,
this is achieved by using the ! operator to invert the value of the conditional expression.

If, however, the instruction is an assignment instruction, the intermediate expressions for
the source operands are obtained, as on line 9 of Algorithm 3, and the larger intermediate
expression that is associated with the right-hand side is constructed, as on line 10. This
construction is straightforward for many kinds of C statements present in embedded systems
code. In particular, arithmetic expressions, expressions with bitwise operators, and Boolean
expressions afford a direct translation to their GameTime expression counterparts. A ta-
ble that maps different Phoenix operators to their GameTime counterparts is provided in
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Algorithm 4 Tracing an operand of an instruction.

1: function TraceOperand(o, p)
2: def inst← def-instruction of o
3: if o is not a temporary operand then
4: result← original name of variable
5: else if o represents the dereference of pointer operand ptr then
6: pointer expr← TraceOperand(ptr)
7: deref expr← pointer expr[0].0
8: result← Lookup(Normalize(deref expr), o)
9: else if o represents a field in a struct s with offset offset then

10: field expr← s.offset
11: result← Lookup(Normalize(field expr), o)
12: else
13: src exprs← [TraceOperand(s, p) for each source operand s of def inst ]
14: result← expression constructed using src exprs and operator of def inst
15: end if
16: type(result)← type(o)
17: sizeof(result)← sizeof(o)
18: return result
19: end function

Table A of Appendix A. Finally, as on line 16, an equality expression is then constructed be-
tween this intermediate expression and the expression obtained for the destination operand.

Nonetheless, there are a few special cases of C expressions that need to be handled
differently in these two functions. We describe these below:

(a) Expressions with division and remainder. If a C expression is a division expression, it
can either be a signed division or an unsigned division. This distinction is made clearer
in the intermediate expressions produced by GameTime: if the division performed is
unsigned, the operator /u is used; otherwise, the operator /s is used.

Also, if a C expression is either a division expression or a remainder expression, an
additional intermediate expression is constructed to ensure that the second operand is
not zero. For example, the intermediate expressions for the C expression a % b are

a % b

b != 0

(b) Expressions with casting between primitive data types. As mentioned in the preprocess-
ing described in Section 3.1, CIL supplies explicit casts for all type conversions and
promotions. If a statement contains a cast from a variable of one primitive data type
to another, the associated Phoenix instruction uses the CONVERT operator. GameTime
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translates instructions with this operator into either a bit extraction expression or a bit
extension expression: if a variable a is cast to a variable b, and sizeof(a) > sizeof(b),
the result is a bit extraction expression; if sizeof(a) < sizeof(b), the result is a bit
extension expression. This translation allows GameTime to represent the variables as
bitvectors, when the expressions are converted to the clauses of an SMT query. It also
helps GameTime model the C semantics of casting between primitive types.

For example, let a be an int variable that is cast to a char variable, as in the C statement

char b = (char)a;

If char variables occupy 1 byte on a little-endian machine, while int variables occupy
4 bytes, this statement is converted into a bit extraction expression:

(b<1> == bitExtract(7, 0, a))

This expression indicates that bits 0 through 7, where 0 is the position of the least
significant bit, of the int variable a are assigned to (a new version of) the smaller char
variable b. GameTime supports an option that allows a user to specify the endianness
of the environment where the test cases will be measured: on a big-endian machine, this
expression would extract bits 24 through 31 instead.

For another example, let a be a char variable that is cast to an int variable, as in the
C statement

int b = (int)a;

This statement is converted into a bit extension expression:

(b<1> == signExtend(a, 24))

This expression signifies that the variable a should be sign-extended by 24 bits before
its assignment to (a new version of) the variable b. This bit extension can be a zero-
extension if the smaller variable is unsigned: in this case, the expression would be

(b<1> == zeroExtend(a, 24))

(c) Expressions with arrays and pointers.

Assumptions : We do not consider statements and expressions where a pointer has been
cast to a primitive type. For example, if p is an int variable and q is a pointer to an int

variable, we discount statements such as p = (int)q; or comparison expressions such
as q > 3, the latter of which CIL transforms to the equivalent expression (int)q > 3

when making casts explicit. This ensures that pointers do not appear in the intermediate
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expressions produced by GameTime, although dereferenced pointers, whose value is of
a primitive type, may appear. We also do not consider dynamic memory allocation.

Modeling and translation: As described in Section 3.1, the preprocessing performed by
CIL reduces array expressions and pointer expressions to equivalent expressions where
a pointer variable is either shifted once or dereferenced once. Thus, a statement such
as b = *(a + 3); or b = a[3]; where a is a pointer to an integer variable and b is an
integer variable, is converted to the equivalent statements

mem3 = a + 3;

b = *mem3;

The newly created temporary variable mem3 has the type of a pointer to an int variable.

We can thus assume that subscription expressions, such as a[b], do not show up in the
preprocessed code.2

As demonstrated above and by the semantics of C, the dereference of a pointer variable
p is equivalent to the access of the first element of an array named p. In other words,
the expression *p, which returns the value of the variable whose address is stored in p,
evaluates to the same value as the subscription expression p[0]. GameTime can thus
treat array expressions and pointer expressions equivalently.

With the introduction of the pointer transformations conducted by CIL, and with the
possibility of pointer arithmetic, we are now faced with the challenge of pointer aliasing,
whereby two or more pointers can point to the same location in memory, and the same
location can thus be accessed and modified using any of the pointers.

1 int* q = p;

2 *q = 3;

3 if (*p == 3) {

4 return 1;

5 } else {

6 return 0;

7 }

8 }

Figure 3.3: Example of pointer aliasing. In this example, the variables p and q point to the same

memory location, after the assignment statement on line 3.

2CIL keeps subscription expressions if the array that is indexed has a fixed size. These expressions can
be replaced either by passing the program through a new custom CIL submodule, or during the symbolic
execution conducted in Microsoft Phoenix. The latter is done in the current implementation of GameTime.
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Consider the code sample presented in Figure 3.3. The first line of the function foo

assigns the argument p, which is a pointer variable, to another pointer variable q. This
implies that the variables p and q now contain the address of the same integer variable.
Hence, when q is dereferenced and assigned a value, the memory location that q points
to is assigned the integer value 3. This also implies that the expression *p evaluates to
3, and that the function foo will always return 1, no matter what the input.

The analysis of pointer aliasing, or alias analysis, has been the subject of a large number
of studies in the field of program analysis, a survey of which is provided in [22]. Since
only one path through a program is being traced, GameTime performs a path-sensitive,
context-insensitive, intraprocedural alias analysis.

For the description of this analysis, we first assume assignment statements that adhere
to the BNF grammar presented in Figure 3.4. In the grammar, the destination of the
assignment statements is a pointer: 〈expression〉 represents a pointer, and the statements
assign one (maybe shifted) pointer to another, which results in pointer aliasing. Notice
that the shifts are constant values.

〈constant〉 ::= [0-9]+
| ‘-’ 〈constant〉

〈assignment stmt〉 ::= 〈expression〉 ‘=’ 〈expression〉 ‘+’ 〈constant〉 ‘;’
| 〈expression〉 ‘=’ 〈expression〉 ‘-’ 〈constant〉 ‘;’
| 〈expression〉 ‘=’ 〈expression〉 ‘;’

Figure 3.4: BNF grammar of assignment statements with pointers as destinations.
These assignment statements result in pointer aliasing.

We demonstrate the analysis using the example presented in Figure 3.5(a). In the ex-
ample, a, b and c are pointer variables that point to int variables. The path that
is being traced is highlighted. The assignments on lines 2 and 3 are made to pointer
variables. On line 2, the pointer b is pointed to a location defined in relation to the
location that a points to. As a result, any expression of the form b[ ], where de-
notes any GameTime intermediate expression used as an index, is actually an alias for
the expression a[ + 1]. This information is recorded in an alias table, as shown in
Figure 3.5(b).

An alias table maintains information about expressions that can be replaced by other,
equivalent expressions. Hence, any expression of the form b[ ].0 can be replaced by
an equivalent expression a[ + 1].0, with any appropriate expression in place of .
The pointer a is called the base (or canonical) pointer for the pointer b. This approach
allows GameTime to assume that a memory location can be referenced using only one
expression, which affords simpler analysis. The role of the offset is irrelevant for this
example, but will be clarified in a later example.
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1 int foo(int* a) {

2 int* b = a + 1;

3 int* c = b + 2;

4 if (*b > *c) {
5 return 1;

6 } else {

7 return 0;

8 }

9 }

(a) Example code with pointer aliasing.

Expression Replacement Expression

b[ ].0 a[ + 1].0

c[ ].0 a[ + 3].0

(b) Alias table.

(a[1] > a[3])

(c) GameTime intermediate expressions
that correspond to the statements along
the highlighted path.

Figure 3.5: Demonstration of the GameTime alias analysis.

On line 3, the pointer variable c is pointed to a location defined in relation to the location
that b points to. Again, this implies that any expression of the form c[ ] is an alias
for the expression b[ + 2], where denotes any GameTime intermediate expression.
However, since the expression b[ ] is itself an alias for the expression a[ + 1], the
expression c[ ] is transitively an alias for the expression a[( + 2) + 1], or a[ + 3].
This information is also recorded in the alias table, as shown in Figure 3.5(b).

Finally, the intermediate expression that corresponds to the condition on line 4 of Fig-
ure 3.5(a) is obtained. Since *b is equivalent to b[0], and *c is equivalent to c[0], the
intermediate expression for the condition is b[0] > c[0]. The alias table is then used
to “correct” the pointer dereferences to produce the expression (a[1] > a[3]).

We now provide a more formal description of this analysis. Recall that in Algorithm 3,
the intermediate expressions that correspond to the destination operand and to the right-
hand side of an instruction are constructed. If the destination operand is a pointer, as
detected on line 12 of Algorithm 3, the function AddToAliasTable is invoked to add
an entry to the alias table. ConstructExpression itself returns a null value.

The function AddToAliasTable is defined in Algorithm 5. The two arguments are
the intermediate expression that corresponds to the destination operand and the expres-
sion assigned to the destination. Lines 2 through 6 convert the latter into an addition
expression, if it is not one already: this ensures that the augend is an expression that
represents the base pointer, and that the addend is a constant expression. Line 7 breaks
this addition expression into the base pointer expression and the constant expression.

Line 13 checks if the base pointer expression is already in the alias table; if already
present, the replacement expression is used as the base pointer expression instead. This
is useful in the case, as demonstrated in Figure 3.5, where a pointer is defined in relation
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Algorithm 5 Adding an assignment to the alias table.

1: function AddToAliasTable(dest expr, src expr)
2: if src expr is base expr - constant then
3: src expr is base expr + (−1× constant)
4: else if src expr is base expr then
5: src expr is base expr + 0

6: end if

7: base expr + constant← src expr
8: if base expr is a pointer then
9: base expr← base expr[ ].0

10: else
11: base expr← base expr.
12: end if

13: if base expr is in the alias table then
14: base expr← Replacement expression from the alias table
15: end if

16: if dest expr is a pointer then
17: expr.offset← base expr
18: (int→ τsrc)← type(expr)
19: (int→ τdest)← type(dest expr)
20: offset← offset + (constant× sizeof(τdest)) % sizeof(τsrc)
21: Replace in expr with + b(constant× sizeof(τdest)) / sizeof(τsrc)c
22: Simplify expr and offset
23: end if

24: if dest expr is a pointer then
25: Add dest expr[ ].0 to the alias table, with replacement expr.offset
26: else
27: Add dest expr. to the alias table, with replacement expr.offset
28: end if

29: end function

to another pointer, which itself is defined in relation to another. The rest of the algorithm
creates the new replacement expression for the destination expression, and adds an entry
between these two expressions to the alias table. Any previously added entry for the
destination expression is overwritten.

When a pointer is dereferenced, as on line 5 of Algorithm 4, the intermediate expression
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that corresponds to the pointer itself is obtained first, as on line 6. For example, if the
operand is [t283]*, then the expression for the operand t283 is obtained. An index
of 0 and an offset of 0 are attached to this expression to indicate that the pointer is
now dereferenced. The function Normalize, to borrow from the terminology of [51],
replaces this expression using an entry in the alias table. An overview of this function
is provided in Algorithm 6.

Algorithm 6 Normalizing a dereferenced pointer.

1: function Normalize(expr)
2: Pattern-match expr against the keys in the alias table
3: if matching expression is found then
4: return replacement expression, with replaced appropriately
5: else
6: return expr
7: end if
8: end function

The final step in the trace of an operand that represents a dereferenced pointer is to
look up the variable present at the offset in the normalized expression. For this purpose,
we define a function Lookup, to once again borrow from the terminology of [51]. This
function is invoked on the output of the Normalize function, as on line 8 of Algorithm 4.
An overview of this function is provided in Algorithm 7.

Algorithm 7 Looking up the variable at an offset.

1: function Lookup(expr.offset, o)
2: if offset is 0 and sizeof(expr) = sizeof(o) then
3: return expr
4: else if expr is a struct then
5: fields← Fields of expr between offsets offset and offset + sizeof(o)
6: if fields has only one field f then
7: return bit-adjusted FieldAsArray(expr.f)
8: else
9: subscript exprs← [bit-adjusted FieldAsArray(expr.f) for each f in fields ]

10: return concatenation of expressions in subscript exprs
11: end if
12: else
13: return bitExtract(offset + sizeof(o)− 1,offset,expr)
14: end if
15: end function

As defined, Lookup(expr.offset, operand), for some Phoenix operand operand and ex-
pression expr.offset, returns an expression whose value has a bit representation that
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spans positions offset through offset + sizeof(operand)− 1 of the bit representation of
expr. The simplifying assumption is made that offset+sizeof(operand) ≤ sizeof(expr).

In the examples so far, the operand and its intermediate expression have the same size,
and the offset has always been zero. Hence, Lookup(expr.0, operand) evaluates to expr,
as reiterated on lines 2 and 3 of Algorithm 7. This indicates that the bits from position
0 through position sizeof(operand)− 1 of the bit representation of expr is trivially the
bit representation of expr.

The role of the offset is clarified through this example:

b = (char*)a + 2;

c = *b;

where a is a pointer to an int variable, b is a pointer to a char variable, and c is a
char variable. Here, a is cast to be a pointer to a char variable, before being shifted
and assigned to b. On a little-endian machine where char variables occupy 1 byte and
int variables occupy 4 bytes, this results in b pointing to the third byte of the variable
that a points to. Specified alternatively, the expression *b (and also b[0]) evaluates to
the third byte of a[0].

This case is handled by lines 16 through 23 of Algorithm 5. On lines 20 and 21, the algo-
rithm employs C pointer arithmetic to calculate the new index and bit offset introduced
by the addend. In many cases, τsrc = τdest, and 0 is thus added to the offset on line
20. In this example, the destination pointer (b) points to variables of type τdest = char,
while the source pointer (a) points to variables of type τsrc = int. The total bit offset
(16 bits) is the addend (2) multiplied by the bit-size of char variables. The pointer b

thus points to a location 16 bits away from the location that the pointer a points to.
Since this location is still within the int variable (of size 32 bits) that a points to, the
expression b[ ] and its replacement expression a[ ].16 are added to the alias table.

When the pointer b is dereferenced, the dereference expression b[0].0 is normalized to
the expression a[0].16. As shown on line 6 of Algorithm 7, the Lookup function then
converts this expression to the intermediate expression

bitExtract(23, 16, a[0])

As a result, the assignment to the variable c is converted to the equivalence expression

(c<1> == bitExtract(23, 16, a[0]))

If, however, the pointer b were dereferenced and then assigned to, as in the statements

b = (char*)a + 2;

*b = c;
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the resulting equivalence expression

bitExtract(23, 16, a<1>[0]) == c

does not enforce the constraint that the other bits of a<1>[0] should remain the same.
Without this constraint, the SMT solver could arbitrarily assign the other bits. To
prevent this, the complementary expression of the bit-extraction expression is also con-
structed. A complementary expression concatenates the bits that are not present in the
bit-extraction expression. For the example above, this additional equivalence expression
is constructed:

concat(bitExtract(31, 24, a<1>[0]), bitExtract(15, 0, a<1>[0])) ==

concat(bitExtract(31, 24, a[0]), bitExtract(15, 0, a[0]))

The process of translating a Phoenix operand for a dereferenced pointer is summarized
in Figure 3.6, using the dereferenced pointer b in line 4 of Figure 3.5(a) as an example.

[t283]* −→ b[0].0
Normalize−−−−−−→ a[1].0

Lookup−−−−→ a[1]

Figure 3.6: Translation of the Phoenix operand for a dereferenced pointer. The

pointer is b, dereferenced in line 4 of Figure 3.5(a). The Phoenix temporary operand t283 represents b.

(d) Expressions with fixed-length arrays. If an array is declared to have a fixed length,
additional intermediate expressions are generated to constrain the indices in array sub-
scription expressions, to ensure that the array initializations in test cases are “safe”, or
are performed within the bounds of the array. This is particularly useful if the index is
an expression. For example, in the C statements

int a[10], b;

if (a[b] > 0) { ... }

a is declared to be a fixed-length array that can hold 10 int variables. As a result,
GameTime constructs two expressions that constrain the value of b, along with the
intermediate expression for the condition itself:

a[b] > 0

b >= 0

b < 10
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(e) Expressions with structs. In C, structured type objects, or structs, are aggregates of a
fixed set of named objects, which are possibly of different types [27]. An example is
presented in Figure 3.7(a): a new struct type named my struct is defined with two int

fields a and b. The argument to the function foo is a variable s with type my struct.
The C expressions s.a and s.b are employed to access the values of the two int fields
of s. Fields can themselves also have a struct type.

1 typedef struct {

2 int a;

3 int b;

4 } my_struct;

5

6 int foo(my_struct s) {

7 if (s.a > s.b) {
8 return 1;

9 } else {

10 return 0;

11 }

12 }

(a) Example code with structs.

(_gtF_a[_gtA_s] > _gtF_b[_gtA_s ])

(b) GameTime intermediate expression
that corresponds to the conditional expres-
sion along the highlighted path.

Figure 3.7: Demonstration of the GameTime modeling of structs.

We demonstrate the GameTime modeling of structs using the conditional expression
along the path highlighted in Figure 3.7(a). In Phoenix and GameTime, a field of
a struct is represented by its bit-offset from the start of the struct. For example,
GameTime converts the C expression s.a to the intermediate expression s.0, and s.b

to s.32, on a machine where integer variables occupy 32 bits. The expressions them-
selves have sizes of 32 bits each. In general, when tracing an operand that represents
the access of a field f in a struct s, as depicted in line 9 of Algorithm 4, GameTime
generates an intermediate offset expression s.offset, where offset is the bit-offset of f .
The size of this offset expression is the size of the operand that is being traced. This
representation is one of the few suggested in [51], and allows GameTime to handle many
kinds of struct aliasing, as detailed later.

The definitions of the functions Normalize and Lookup, shown earlier in the context
of arrays and pointers, are expanded to account for field access expressions. These
field access expressions, as shown in the previous paragraph, are offset expressions. In
particular, the function Lookup uses the input offset and the size of the input operand
to determine the field, or fields, of a struct that are being accessed.

For now, we consider the case where exactly one field of a struct is accessed. GameTime
models a struct field access expression as an array subscription expression, using the
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recursive function FieldAsArray defined in Algorithm 8. In the model, fields are
represented by arrays, and structs are represented by integer indices into these arrays.
As an example, the expression s.a is converted into the expression gtF a[ gtA s],
where gtF and gtA are prefixes that are added to prevent possible name collisions:
the gtA prefix is added to struct type names3 and the gtF prefix is added to the
names of the fields within a struct.

Algorithm 8 Modeling a struct field access as an array access.

1: function FieldAsArray(field expr)
2: if field expr is expr.f then
3: τf ← type(f)
4: if τf is a struct type then
5: τf ← int

6: end if
7: Create array variable gtF f with type int→ τf
8: return gtF f[FieldAsArray(expr)]
9: else

10: return int variable with the same name as field expr, prefixed with gtA

11: end if
12: end function

As discussed in the modeling of arrays, the type of an array is defined to be int → τ ,
where τ is the type of the array elements: this definition is maintained for the arrays that
represent fields. The type τ of each element of these arrays is the same as the type of the
corresponding field, as instructed by line 7 of Algorithm 8. Each struct is represented by
an int variable, which is the base case of Algorithm 8. Any inner structs, or structs that
are themselves fields of another struct, are also represented by int variables, as shown
on line 5 of Algorithm 8. Table 3.2 shows examples of field access expressions and the
associated GameTime intermediate expressions. The third column declares the types
of the variables that appear in the intermediate expressions.

The representation of fields in a struct as numerical offsets from the start of the struct
enables GameTime to deal with struct aliasing. Consider the code sample presented in
Figure 3.8. Two structured types, my struct and my other struct are defined, and a
global variable p, of the type my struct, is created. In the function foo, a pointer to the
variable p is created (&p). This pointer, which points to a variable of type my struct,
is cast as a pointer that points to a variable of type my other struct. This casted
pointer is then dereferenced and assigned to a variable q of type my other struct.
The net outcome of this assignment statement, on line 14 of Figure 3.8, is that the
struct variables p and q are aliases for the same (64-bit) region of memory, although the
expressions employed to access the values contained in that region is different for either

3The A in the gtA prefix signifies that a structured type is an aggregate data type.
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C expression Intermediate expression Expression types

a.b gtF b[ gtA a]
type( gtA a) = int

type( gtF b) = int→ int

a.b[0] gtF b[ gtA a][0]
type( gtA a) = int

type( gtF b) = int→ (int→ int)

a[0].b gtF b[ gtA a[0]]
type( gtA a) = int→ int

type( gtF b) = int→ int

a.b.c gtF c[ gtF b[ gtA a]]

type( gtA a) = int

type( gtF b) = int→ int

type( gtF c) = int→ int

a.b.c[0] gtF c[ gtF b[ gtA a]][0]

type( gtA a) = int

type( gtF b) = int→ int

type( gtF c) = int→ (int→ int)

a.b[0].c gtF c[ gtF b[ gtA a][0]]

type( gtA a) = int

type( gtF b) = int→ (int→ int)
type( gtF c) = int→ int

a[0].b.c gtF c[ gtF b[ gtA a[0]]]

type( gtA a) = int→ int

type( gtF b) = int→ int

type( gtF c) = int→ int

Table 3.2: Examples of GameTime modeling of struct field accesses. The first col-

umn shows a struct field access expression, while the second column shows its corresponding GameTime

intermediate expression. The third column shows the type of each variable in the intermediate expression.

variable. Here, the expressions p.a and q.c are aliases for the same location in memory,
as are the expressions p.b and q.d. Nonetheless, the fields b and d, for example, are
at the same location of structs p and q respectively, and so the C expression p.b is
represented by the intermediate expression p.32 (before lookup) and the C expression
q.d by the intermediate expression q.32. This is also true for the fields a of p and c

of q. This observation permits GameTime to use an alias table to convert accesses of
fields in q to accesses of fields in p.

Struct aliasing is employed in many C programs that run on embedded systems. One of
their major uses, as seen in a few benchmarks described in Chapter 4, is to allow different
functions in a program to access the contents of the same buffer, but to interpret the
contents in different ways and to ignore irrelevant parts of the buffer.

We now demonstrate how GameTime uses an alias table to analyze programs that
include struct aliasing. For this demonstration, we assume C statements of the form

τdest q = *((τdest *) &p);

where τdest is the (structured) type of q and τsrc is the (structured) type of p.
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1 typedef struct {

2 int a;

3 int b;

4 } my_struct;

5

6 typedef struct {

7 int c;

8 int d;

9 } my_other_struct;

10

11 my_struct p;

12

13 int foo(void) {

14 my_other_struct q = *(( my_other_struct *) &p);

15 if (q.c > q.d) {

16 return 1;

17 } else {

18 return 0;

19 }

20 }

Figure 3.8: Example of struct aliasing. In this example, the variables p and q refer to the same

region of memory, after the assignment statement on line 14.

We also assume that if two structured types have the same numbers and types of fields,
which are declared in the same order, then the fields of variables of these structured
types are laid out in the same way in memory.

We use the example presented in Figure 3.9(a), which is the same as the code sample
shown in Figure 3.8, but with one path highlighted. GameTime uses Algorithm 3, which
defines the function ConstructExpression, to construct the intermediate expressions
for the statements along the highlighted path.

The assignment on line 14 is made to a struct variable. Since the destination is a struct,
as detected on line 12 of Algorithm 3, the function AddToAliasTable is invoked
to add an entry to the alias table. As instructed on line 11 of Algorithm 5, where
the function is defined, it uses the base (or canonical) struct variable p to generate
the replacement expression p. . On line 27, the function uses the destination struct
variable q to produce the alias expression q. . An entry is then added to the alias table,
as shown in Figure 3.9(b), which signifies that q. is an alias for p. : any expression
that matches q. can be swapped out for the expression p. , for some appropriate
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1 typedef struct {

2 int a;

3 int b;

4 } my_struct;

5

6 typedef struct {

7 int c;

8 int d;

9 } my_other_struct;

10

11 my_struct p;

12

13 int foo(void) {

14 my other struct q = *((my other struct *) &p);

15 if (q.c > q.d) {
16 return 1;

17 } else {

18 return 0;

19 }

20 }

(a) Example code with struct aliasing.

Expression Replacement Expression

q. p.

(b) Alias table.

(_gtF_a[_gtA_p] > _gtF_b[_gtA_p ])

(c) GameTime intermediate expressions
that correspond to the statements along
the highlighted path.

Figure 3.9: Demonstration of the GameTime struct alias analysis.

replacement of the placeholder . This approach allows GameTime to assume that a
field in a struct can be referenced using only one expression, affording simpler analysis.

Now, when the operand that represents a field access is traced, as detected on line 9
of Algorithm 4, where the function TraceOperand is defined, the appropriate offset
expression is first constructed, as on line 10. For example, the field access expression
q.c is converted to the offset expression q.0. The Normalize function, defined in
Algorithm 6, attempts to find a replacement for this expression in the alias table. In
this case, it does, and produces the expression p.0, where the expression 0 replaces the
placeholder .

The Lookup function, defined in Algorithm 7, uses the offset in the expression (0) and
the size of the expression (32 bits) to determine the field of the struct that is being
accessed. Here, it determines that the field a of the struct p is being accessed, and
the function uses the FieldToArray function, defined in Algorithm 8, to produce the
array subscription expression gtF a[ gtA p]. The final intermediate expression for
the conditional expression on line 15 of Figure 3.9(a) is shown in Figure 3.9(c).

The process of translating a Phoenix operand for a struct field access is summarized in
Figure 3.10, using the field access q.c in line 15 of Figure 3.9(a) as an example.

However, the struct type that is aliased, and its aliasing struct type, need not necessarily
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t283 −→ q.0
Normalize−−−−−−→ p.0

Lookup−−−−→ gtF a[ gtA p]

Figure 3.10: Translation of the Phoenix operand for a struct field access. The field

access is q.c, used in line 15 of Figure 3.9(a). The Phoenix temporary operand t283 represents q.c.

have the same number, type, or even order of fields. In the code sample presented in
Figure 3.11, the four eight-bit char fields of the struct variable p occupy the same 32
bits of memory as the one 32-bit int field of the struct variable q. This struct aliasing
implies that the bit representation of q.f is a concatenation of the bit representations
of the four char fields of p. The order of concatenation depends on the endianness of
the machine on which the test cases will be timed: this endianness can be specified as a
configuration option for GameTime.

1 typedef struct {

2 char a;

3 char b;

4 char c;

5 char d;

6 } my_struct;

7

8 typedef struct {

9 int f;

10 } my_other_struct;

11

12 my_struct p;

13

14 int foo(void) {

15 my_other_struct q = *(( my_other_struct *) &p);

16 if (q.f > 0) {

17 return 1;

18 } else {

19 return 0;

20 }

21 }

Figure 3.11: Example of struct aliasing where the structs have fields of different
types. In this example, the variables p and q refer to the same region of memory, after the assignment

statement on line 15. However, p has four char fields and q has one int field.

This case is recognized in the function Lookup, as defined in Algorithm 7. The
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GameTime offset expression q.f, used in line 16 of Figure 3.12, corresponds to the
field access expression q.0. This expression is normalized to p.0. As instructed on line
5 of Algorithm 7, the function Lookup uses the offset (0) and the size of the operand
(32 bits) to look up the fields between offsets 0 and 32 of the struct type of p, or of
my struct. The four access expressions for these fields — p.a, p.b, p.c and p.d —
are converted into array subscription expressions using the function FieldAsArray,
as per line 9. Assuming a little-endian machine, the array subscription expressions are
concatenated to produce the following GameTime intermediate expression for the field
access expression q.f:

concat(_gtF_d[_gtA_p],

concat(_gtF_c[_gtA_p],

concat(_gtF_b[_gtA_p], _gtF_a[_gtA_p])))

The nested concatenation accounts for the fact that the concat operator is binary.

Another case arises when the definitions are swapped, as in Figure 3.12. In this example,
the one 32-bit int field of the struct variable p occupies the same 32 bits of memory
as the four char fields of the struct variable q. This struct aliasing implies that the bit
representation of q.a is merely eight bits of the bit representation of p.f. If the machine
on which the test cases are timed is little-endian, then the bits of q.a are the first eight
bits, from positions 0 through 7. If the machine is big-endian, however, then the bits of
q.a are the last eight bits, from positions 24 through 31.

This case is also recognized in the function Lookup. The GameTime offset expression
q.a, used in line 16 of Figure 3.12, corresponds to the field access expression q.0. This
expression is normalized to p.0. As instructed on line 5 of Algorithm 7, the function
Lookup uses the offset (0) and the size of the operand (8 bits) to look up the fields
between offsets 0 and 8 of the struct type of p, or of my struct. One field a overlaps this
specified region, but the field is not fully contained in this region. The access expression
for this field, p.a, is converted into an array subscription expression using the function
FieldAsArray, as per line 9. The expression is then bit-adjusted, as also specified on
line 9: here, the appropriate bits are extracted. Assuming a little-endian machine, the
GameTime intermediate expression for the field access expression q.a is

bitExtract(7, 0, gtF a[ gtA p])

A variety of such expressions are constructed for a variety of different cases of struct
aliasing that arise in embedded systems code, as long as the field access expressions are
converted to the appropriate intermediate offset expression.

(f) Expressions with unions. In C, a union is an object that contains, at different times, any
one of several members of different types [27]. An example is presented in Figure 3.13:
a new union type named my union is defined with an int field a and a char field b. A
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1 typedef struct {

2 int f;

3 } my_struct;

4

5 typedef struct {

6 char a;

7 char b;

8 char c;

9 char d;

10 } my_other_struct;

11

12 my_struct p;

13

14 int foo(void) {

15 my_other_struct q = *(( my_other_struct *) &p);

16 if (q.a == q.d) {

17 return 1;

18 } else {

19 return 0;

20 }

21 }

Figure 3.12: Another example of struct aliasing where the structs have fields of
different types. In this example, the variables p and q refer to the same region of memory, after the

assignment statement on line 15. However, p has one int field and q has four char fields.

global variable u is then defined to have this union type. This indicates that the same
region of memory (4 bytes) can be accessed either using u.a or u.b at different times
during the program execution. In other words, the C expressions u.a and u.b are aliases
for the same four bytes of memory, although the latter refers to only one byte, while the
former expression refers to all four bytes.

This case is treated as a version of struct aliasing. GameTime treats unions as structs
that are aliases for the same region of memory, and there are as many structs as there
are fields in the union. This implies that one field of the union is the base (or canonical)
field, just as one struct can be an alias for a base (or canonical) struct.

To demonstrate this, we refer again to the example in Figure 3.13. The field access
expression u.a is converted to the normalized offset expression u.0, whose size is 4
bytes. As a result, the Lookup function returns the array subscription expression
gtF a[ gtA u]. However, the field access expression u.b is also converted to the
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1 typedef union {

2 int a;

3 char b;

4 } my_union;

5

6 my_union u;

Figure 3.13: Example code with a union.

normalized offset expression u.0, whose size is 1 byte. In this case, on a little-endian
machine, the Lookup function returns the array subscription expression

bitExtract(7, 0, gtF a[ gtA u])

For this example, the field a is the base field for the union type my union.

(g) Expressions with address-taken variables. Here, we consider C statements of the form

p = &q;

where the address of the variable q is stored in the pointer variable p. In general, q can
be replaced by any lvalue, or any C expression that names a region of storage [27, 37].
However, an equivalent set of statements can be made where the lvalue is assigned to a
temporary variable. We can thence assume that q is a variable.

Hardekopf and Lin [20] describe an approach that models these statements in the con-
text of the LLVM internal representation. We reiterate this approach in the context
of GameTime and the Microsoft Phoenix internal representation. In the terminology
of [20], the variable q, whose address is being stored in p, is designated as an address-
taken variable.

When translating the assignment statement to an intermediate expression, GameTime
adds q to an internally maintained list of address-taken variables. Then, the expression
&q is replaced by a temporary pointer variable:

p = _gtPTR0;

Here, the pointer variable gtPTR0 has the same type as the pointer variable p. The
name is arbitrarily assigned and prefixed with gt to avoid name collision with existing
pointer variables.
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Effectively, gtPTR0 is now an alias for the pointer &q. This further implies that a deref-
erence of gtPTR0 will produce the value q. GameTime thus produces the intermediate
equivalence expressions

gtPTR0[0] == q

p<1> == gtPTR0[0]

for the original assignment statement.

To complete the modeling, every occurrence of the variable q in subsequent statements
will be replaced with the dereference gtPTR0[0]. In general, any occurrence of an
address-taken variable, after its address has been taken, is replaced by a dereference of
the associated temporary pointer variable. An equality expression is generated between
the address-taken variable and the dereferenced temporary pointer variable.

(h) Assume-statements. GameTime provides assume-statements as a mechanism for user-
supplied assumptions about program points. For example, in Figure 3.14, line 2 is
an assume-statement, which notifies GameTime that the only values that should be
assigned to the variable a should be less than 3.

1 int foo(int a) {

2 __gt_assume(a < 3);

3 if (a > 0) {

4 return 1;

5 } else {

6 return 0;

7 }

8 }

Figure 3.14: Example of assume-statements.

Assume-statements can be useful in a few cases: For example, this enables a user to
specify any constraints on variables or the arguments to a function, such as the argument
variable a in Figure 3.14, without having to explicitly supply a new branch point. Also,
this enables the study of data-dependent timing: Though a range of values can drive a
program along a certain path, the timing of the path can vary within this range. The
assume-statements permit a user to constrain the values that can be assigned in a test
case, and therefore to study the timing variations along the same path.

When constructing the intermediate expressions, GameTime detects a call to the C
function gt assume and traces the operand that represents the argument to the
function. The resulting intermediate expression is added to the list of intermediate
expressions returned by the function ConstructExpressions.



CHAPTER 3. IMPLEMENTATION 44

Step 2: Conversion to SMT query

GameTime uses the QF AUFBV logic [4], defined as part of the SMT-LIB v2.0 standard [5],
to construct and solve an SMT query. The QF AUFBV logic works with closed quantifier-
free (‘QF’) formulas over the theory of fixed-size bitvectors (‘BV’) and bitvector arrays (‘A’),
extended with support for uninterpreted functions (‘UF’).

The Microsoft Phoenix API is used to generate a SMT query for each intermediate
expression produced. As a result, any solver that supports the QF AUFBV logic can work
with GameTime: the current implementation supports Z3 [13], the theorem prover from
Microsoft Research, and Boolector [7].

The result of ConstructExpressions is a list of GameTime intermediate expressions
that correspond to the statements along a path. The construction detailed in the previous
step, and the BNF grammar presented in Figure A.1, indicate that these expressions are built
up from fixed-size variable expressions and array subscription expressions. The conversion of
the intermediate expressions to the assertions of a SMT query is thus straightforward: Each
variable v is represented as a bitvector, whose size is sizeof(v), while the arrays defined in
the QF AUFBV logic represent the arrays in the intermediate expressions.

The SMT query that corresponds to the statements along the path highlighted in Fig-
ure 3.2(a), through the exemplar modular exponentiation code, is shown in Figure 3.15,
presented in the SMT-LIB v2.0 input format [5]. The query starts with the declarations of
the variables used in the assertions of the query, followed by the assertions themselves. We
note that, along with the variables in the SMT query that represent variables in the inter-
mediate expressions, Boolean constraint variables with the prefix gtCONSTRAINT are also
declared. These constraint variables serve a dual purpose: First, these variables are asserted
to be equivalent to each converted statement, and the final assertion uses an and expression
to ensure that all of these constraint variables, and thus the converted statements, are true
in a satisfying assignment. Second, and more important, if a satisfying assignment cannot
be found, some solvers, such as Z3, return a (not necessarily strict) subset of these constraint
variables as the unsatisfiable core. This subset helps GameTime determine which intermedi-
ate expressions are the causes for infeasibility. The tool then finds the relevant C statements,
the basic blocks that contain them, and thus the constraint edges in the CFG that should not
be taken together along any path. This set of edges is added as a path-exclusive constraint
in the ILP formulation.

The translation of most GameTime intermediate expressions into the corresponding
SMT-LIB expressions is straightforward. Table A in Appendix A maps the operators avail-
able in intermediate expressions to their SMT-LIB equivalents, permitting a simple conver-
sion. However, array subscription expressions are treated differently. A sample SMT-LIB
declaration of an array a, whose elements are 32-bit int values, is

(declare-fun a () (Array (_ BitVec 32) (_ BitVec 32)))

The declaration states that a has the set of 32-bit bitvectors as its domain and range:
the domain is the set of indices, while the range is the set of possible values in the array.
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1 (declare -fun __gtCONSTRAINT0 () Bool)
2 (declare -fun __gtCONSTRAINT1 () Bool)
3 (declare -fun __gtCONSTRAINT2 () Bool)
4 (declare -fun __gtCONSTRAINT3 () Bool)
5 (declare -fun __gtCONSTRAINT4 () Bool)
6 (declare -fun __gtCONSTRAINT5 () Bool)
7 (declare -fun __gtCONSTRAINT6 () Bool)
8 (declare -fun __gtCONSTRAINT7 () Bool)
9 (declare -fun __gtCONSTRAINT8 () Bool)

10 (declare -fun __gtCONSTRAINT9 () Bool)
11 (declare -fun __gtCONSTRAINT10 () Bool)
12 (declare -fun result () (_ BitVec 32))
13 (declare -fun result <1> () (_ BitVec 32))
14 (declare -fun exponent () (_ BitVec 32))
15 (declare -fun base () (_ BitVec 32))
16 (declare -fun p () (_ BitVec 32))
17 (declare -fun result <2> () (_ BitVec 32))
18 (declare -fun exponent <1> () (_ BitVec 32))
19 (declare -fun base <1> () (_ BitVec 32))
20 (declare -fun exponent <2> () (_ BitVec 32))
21 (declare -fun base <2> () (_ BitVec 32))
22 (assert (= __gtCONSTRAINT0 (= result <1> (_ bv1 32))))
23 (assert (= __gtCONSTRAINT1 (= (bvand exponent (_ bv1 32)) (_ bv1 32))))
24 (assert (= __gtCONSTRAINT2 (= result <2> (bvsmod base p))))
25 (assert (= __gtCONSTRAINT3 (= exponent <1> (bvlshr exponent (_ bv1 32)))))
26 (assert (= __gtCONSTRAINT4 (= base <1> (bvsmod (bvmul base base) p))))
27 (assert (= __gtCONSTRAINT5 (not (= (bvand exponent <1> (_ bv1 32)) (_ bv1 32)))))
28 (assert (= __gtCONSTRAINT6 (= exponent <2> (bvlshr exponent <1> (_ bv1 32)))))
29 (assert (= __gtCONSTRAINT7 (= base <2> (bvsmod (bvmul base <1> base <1>) p))))
30 (assert (= __gtCONSTRAINT8 (not (= p (_ bv0 32)))))
31 (assert (= __gtCONSTRAINT9 (not (= p (_ bv0 32)))))
32 (assert (= __gtCONSTRAINT10 (not (= p (_ bv0 32)))))
33 (assert (and __gtCONSTRAINT0 __gtCONSTRAINT1 __gtCONSTRAINT2 __gtCONSTRAINT3
34 __gtCONSTRAINT4 __gtCONSTRAINT5 __gtCONSTRAINT6 __gtCONSTRAINT7
35 __gtCONSTRAINT8 __gtCONSTRAINT9 __gtCONSTRAINT10 ))
36 (check -sat)
37 (exit)

Figure 3.15: Example of a SMT query. This SMT query, presented in the SMT-LIB v2.0 input

format, asserts the conditions that would drive program execution along the path highlighted in Figure 3.2(a).

If an array subscription expression is being assigned a value, as in the example expression
a<1>[0] == 2, the translated SMT-LIB expression uses the store function, defined in the
QF AUFBV logic:

(= a<1> (store a __gtINDEX0 (_ bv2 32)))

(= __gtINDEX0 (_ bv0 32))

The store function takes an array, an index, and a value to insert at that index, and
returns a new array with a modified value at the given index [11]. This new array is as-
signed to a new array variable, maintaining the SSA form of the GameTime intermediate
expressions.
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If an array subscription expression is not assigned a value, as in the example expression
a[0] > 3, the translated SMT-LIB expression uses the select function, also defined in the
QF AUFBV logic:

(bvsgt (select a __gtINDEX0) (_ bv3 32)))

(= __gtINDEX0 (_ bv0 32))

The select function takes an array and an index, and returns the value stored in the
array at that index [11].

We note that, in the example SMT-LIB expressions shown so far, the index used is itself
a variable: these variables are temporary, with the prefix gtINDEX. Once the GameTime
intermediate expressions have been constructed, all indices in array subscription expressions
are replaced with these temporary variables. Additional expressions are added, which estab-
lish equivalences between these temporary index variables and the index expressions they
replace. This post-processing is conducted to replace the possibly complex expressions that
can be used as array indices, such as in the expression a[(2 * j) + (3 * k)]. In such
cases, only the value of the index expression is needed, not the expression itself. This re-
placement thus aids the next step, where the satisfying model returned by a SMT solver is
parsed: in a model, assignments are made to numerical indices of an array. The temporary
indices prevent the parser from needing to evaluate the possibly complex index expressions.

Another caveat arises during the conversion of array subscription expressions. The
QF AUFBV logic only permits arrays whose domain and range are bitvectors. This poses
an issue with expressions such as a[2][1][7], where a[2] and a[2][1] themselves evaluate
to arrays: the logic does not allow a direct conversion of these inner subscriptions directly
to select expressions [4]. The current GameTime approach is to convert such expressions
into single-dimensional array subscription expressions where the indices are concatenated.
The intermediate expression a[2][1][7] > 8 is thus converted to the SMT-LIB expressions

(bvsgt (select a (concat __gtINDEX0 __gtINDEX1 __gtINDEX2)) (_ bv8 32))

(= __gtINDEX0 (_ bv2 32))

(= __gtINDEX1 (_ bv1 32))

(= __gtINDEX2 (_ bv7 32))

The temporary indices replace 2, 1, and 7, respectively. a is now declared to be an
array variable whose domain is the set of 96-bit bitvectors, each made from the concatena-
tion of three 32-bit bitvectors. Storage into arrays is similar: the intermediate expression
(a<1>[2][1][7] == 8) is converted to the SMT-LIB expressions

(= a<1> (store a (concat __gtINDEX0 __gtINDEX1 __gtINDEX2) (_ bv8 32)))

(= __gtINDEX0 (_ bv2 32))

(= __gtINDEX1 (_ bv1 32))

(= __gtINDEX2 (_ bv7 32))
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This concatenation of indices is turned on in GameTime by default. However, an option
is provided to the user to turn this off. This is useful for SMT solvers such as Z3, which
supports an extension [35] to the QF AUFBV logic where the select function can also return
arrays. Accordingly, the declaration of a is

(declare-fun a () (Array (_ BitVec 32) (Array (_ BitVec 32) (_ BitVec 32))))

The intermediate expression a[2][1] > 7 is then translated to the SMT-LIB expressions

(bvsgt (select (select a __gtINDEX0) __gtINDEX1) (_ bv7 32))

(= __gtINDEX0 (_ bv2 32))

(= __gtINDEX1 (_ bv1 32))

The select expressions are nested: the innermost select expression, for example, pro-
duces an array as its output, which is the input to another select expression.

Storage into arrays is similar: the intermediate expression (a<1>[2][1] == 8) is con-
verted to the SMT-LIB expressions

(= a<1> (store a __gtINDEX0

(store (select a __gtINDEX0) __gtINDEX1 (_ bv8 32))))

(= __gtINDEX0 (_ bv2 32))

(= __gtINDEX1 (_ bv1 32))

In the above SMT-LIB expression, the array at index gtINDEX0 (or 2) of array a is
selected. This array is re-stored into the same index, but only after the index gtINDEX1

(or 1) has been updated with the value to be stored.

Step 3: Model parsing

Once the SMT query is constructed, it is provided as input to an SMT solver. A path is
feasible if, and only if, the corresponding SMT query is satisfiable. If the query is satisfiable,
the SMT solver outputs a model, which supplies values for the variables in the query. The
query presented in Figure 3.15 is satisfiable: Figure 3.17(a) shows an example of a model
produced by Z3, and Figure 3.18(a) shows an example produced by Boolector.

These models are parsed to construct the test cases that will be measured. These test
cases contain the assignments present in the model, but in the format of C statements. As-
signments to temporary variables, such as the Boolean constraint variables and the different
“versions” of a variable, are ignored. Figure 3.17(b) shows the test case that corresponds to
the model produced by Z3, and Figure 3.18(b) shows the test case for the model produced by
Boolector. We observe that different solvers can produce different values to drive program
execution along the same path; for example, the value for the variable base is different. In
both test cases though, the variable exponent is assigned 1, as expected.
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3.5 Edge weight and path length estimation

After the basis paths have been generated and the corresponding test cases obtained, we use
the test cases to measure the lengths of these paths on the environment under analysis. For
our experiments, we used deterministic processor simulators from a fixed initial hardware
state as the environments. We estimate the weights on the edges of the graph using the
GameTime algorithm presented in [46, 47], which is modified to account for the different
path representation used by the implementation of GameTime.

More formally, we define the estimated weight vector w̃ = (w̃1, w̃P1 , w̃P2 , . . . , w̃P|B|), where
w̃1 is the weight of the sole edge (edge 1) from the source node, and where w̃Pi

is the weight
of the default edge of branch point Pi. Let vi be the length (or timing) of the ith basis path.
We define the vector v ∈ R(|B|+1) as the vector (v1, v2, . . . , vb, 0, . . . , 0). The extra entries of 0
account for the rows of the basis matrix that are “bad” rows, or rows that do not correspond
to basis paths.

According to the GameTime algorithm, we can compute the estimated weights with the
equation Bw̃ = v, or w̃ = B+v, where B+ is the Moore-Penrose pseudo-inverse of B, defined
as B+ = BT(BBT)−1. Since Algorithm 1 ensures that the determinant of B is never zero,
B is invertible, and hence B+ is also B−1, the inverse of the matrix B.

Intuitively, the equation Bw̃ = v allows GameTime to estimate weights on the default
edges of the source node and the branch points of the CFG. Since a path is represented using
these edges, GameTime is now able to predict the length `p of any path p in the graph with
the equation `p = w̃pT.

The invertibility of B ensures that the equation w̃ = B+v will always have a solution.
In the context of timing analysis, the weights estimated on the default edges do not neces-
sarily represent the timings of the corresponding basic blocks. Intuitively, since all program
executions traverse a path in the CFG that starts from the source and ends at the sink,
the timings of each individual basic block along a path does not matter, but the sum of the
timings yields the timing (or length) of the path.

The additional entries of 0 added for the “bad” rows (if any) of the basis matrix indicate
that these rows do not represent valid basis paths, and their lengths cannot thus be obtained
through measurement. If the spanner set were to include the paths represented by these rows,
any feasible path expressed as a linear combination of elements in this larger set can have
zeros as the coefficients associated with these paths. As a result, the lengths of these paths
can be arbitrarily chosen, and have been chosen to be zero for the current implementation.
The need for these additional entries can be elided by removing these rows from B, rendering
the basis matrix as a b×(|B|+1) matrix. However, the matrix would not always be invertible,
although the Moore-Penrose pseudoinverse B+ would always exist.

Longest (or shortest) path prediction

Once the weights have been estimated, the longest (or shortest) feasible path can be pre-
dicted, and its length estimated. This problem can again be cast as an integer linear program.
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This integer linear program is similar to the program presented in Section 3.3. The two
problems have the same constraints, which ensure that a valuation of the variables ei trans-
lates to valid, though not necessarily feasible, paths. The sole difference is in the objective
function used. Let x be the longest path in the CFG, defined as x = (1, eP1 , eP2 , . . . , eP|B|),
where ePi

is the variable that represents the flow through the default edge for branch point Pi.
As discussed earlier in this section, its length is given by w̃xT, which results in an expression
that is linear in (a subset of) the variables ei. This expression is the objective function for
the integer linear program. Since x is the longest path, we choose to maximize this function.
The solution of this integer linear program will be used to construct the path x.

As in Algorithm 1, we determine the feasibility of this path using an SMT solver. If the
path is infeasible, it is excluded, and the new integer linear program is solved. If the path is
feasible, however, GameTime returns the path as the predicted longest feasible path in the
CFG, and the quantity w̃xT is its estimated length.

The current implementation of GameTime supports the generation of the k longest (or
shortest) feasible paths in the CFG. For example, the predicted second longest feasible path
in the CFG can be obtained by excluding the predicted longest feasible path, and then solving
the resulting integer linear program, progressively excluding infeasible paths until a feasible
path is obtained. Shorter and shorter paths can be obtained by progressively excluding
the longest paths, and solving the resulting integer linear programs. The predicted shortest
feasible path in the CFG can be obtained by minimizing the objective function, instead of
maximizing.
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1 {* StaticTag}, {* NotAliasedTag}, {* UndefinedTag}<1> = START _modexp_simple(T)
2 _modexp_simple: (references =1)
3 _base <2>, _exponent <3> = ENTERFUNCTION
4 ENTERBLOCK ScopeSymbol276
5 ENTERBLOCK ScopeSymbol278
6 ENTERBLOCK ScopeSymbol281
7 ENTERBLOCK
8 _result <4> = ASSIGN 1
9 t282 = BITAND _exponent <3>, 1

10 t283 = COMPARE(EQ) t282 , 1
11 CONDITIONALBRANCH(True) t283 , $L7 , $L6
12 $L7: (references =1)
13 ENTERBLOCK
14 t285 = REMAINDER* _base <2>, _p
15 _result <5> = ASSIGN t285
16 EXITBLOCK
17 GOTO $L6
18 $L6: (references =2)
19 _result <11> = PHI _result <4>, _result <5>
20 t286 = ASSIGN _exponent <3>
21 _exponent <6> = SHIFTRIGHT t286 , 1
22 t287 = MULTIPLY _base <2>, _base <2>
23 t288 = REMAINDER* t287 , _p
24 _base <7> = ASSIGN t288
25 t289 = BITAND _exponent <6>, 1
26 t290 = COMPARE(EQ) t289 , 1
27 CONDITIONALBRANCH(True) t290 , $L9 , $L8
28 $L9: (references =1)
29 ENTERBLOCK
30 t291 = MULTIPLY _result <11>, _base <7>
31 t292 = REMAINDER* t291 , _p
32 _result <8> = ASSIGN t292
33 EXITBLOCK
34 GOTO $L8
35 $L8: (references =2)
36 _result <12> = PHI _result <11>, _result <8>
37 t293 = ASSIGN _exponent <6>
38 _exponent <9> = SHIFTRIGHT t293 , 1
39 t294 = MULTIPLY _base <7>, _base <7>
40 t295 = REMAINDER* t294 , _p
41 _base <10> = ASSIGN t295
42 RETURN _result <12>, $L12(T)
43 EXITBLOCK
44 EXITBLOCK ScopeSymbol281
45 EXITBLOCK ScopeSymbol278
46 EXITBLOCK ScopeSymbol276
47 $L11: (references =0)
48 GOTO {* StaticTag}, $L5
49 $L5: (references =1)
50 UNWIND
51 $L12: (references =1)
52 GOTO {* StaticTag}, $L3
53 $L3: (references =1)
54 EXITFUNCTION
55 $L2: (references =0)
56 END

Figure 3.16: Example of the Microsoft Phoenix internal representation. This is the

internal representation of the (unrolled) modular exponentiation code given in Figure 2.2(b).
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(define -fun result <2> () (_ BitVec 32)

#x00000000)

(define -fun p () (_ BitVec 32)

#x00000001)

(define -fun base <1> () (_ BitVec 32)

#x00000000)

(define -fun __gtCONSTRAINT1 () Bool

true)

(define -fun __gtCONSTRAINT2 () Bool

true)

(define -fun base <2> () (_ BitVec 32)

#x00000000)

(define -fun __gtCONSTRAINT0 () Bool

true)

(define -fun __gtCONSTRAINT8 () Bool

true)

(define -fun __gtCONSTRAINT3 () Bool

true)

(define -fun __gtCONSTRAINT9 () Bool

true)

(define -fun exponent () (_ BitVec 32)

#x00000001)

(define -fun result <1> () (_ BitVec 32)

#x00000001)

(define -fun __gtCONSTRAINT4 () Bool

true)

(define -fun __gtCONSTRAINT7 () Bool

true)

(define -fun __gtCONSTRAINT6 () Bool

true)

(define -fun exponent <2> () (_ BitVec 32)

#x00000000)

(define -fun __gtCONSTRAINT10 () Bool

true)

(define -fun __gtCONSTRAINT5 () Bool

true)

(define -fun exponent <1> () (_ BitVec 32)

#x00000000)

(define -fun base () (_ BitVec 32)

#x02007db7)

(a) Model produced by Z3

base = 0x2007db7;

exponent = 0x1;

p = 0x1;

(b) Corresponding test case

Figure 3.17: Example of a Z3 model and the corresponding test case. The model is

produced by the SMT solver Z3, v4.3.0, in response to the SMT query presented in Figure 3.15. The values

in the model and in the test case are supplied in hexadecimal notation.
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__gtCONSTRAINT0 1

__gtCONSTRAINT1 1

__gtCONSTRAINT2 1

__gtCONSTRAINT3 1

__gtCONSTRAINT4 1

__gtCONSTRAINT5 1

__gtCONSTRAINT6 1

__gtCONSTRAINT7 1

__gtCONSTRAINT8 1

__gtCONSTRAINT9 1

__gtCONSTRAINT10 1

result xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

result <1> 00000000000000000000000000000001

exponent 00000000000000000000000000000001

base 10101101100101101110110100000101

p 11111111111111111111001000010100

result <2> 11111111111111111111001101001001

exponent <1> 00000000000000000000000000000000

base <1> 11111111111111111111010001101001

exponent <2> 00000000000000000000000000000000

base <2> 11111111111111111111001000011101

(a) Model produced by Boolector

base = 0xad96ed05;

exponent = 0x1;

p = 0xfffff214;

(b) Corresponding test case

Figure 3.18: Example of a Boolector model and the corresponding test case. The

model is produced by the SMT solver Boolector, v1.5.118, in response to the SMT query presented in

Figure 3.15. The values in the model are supplied in binary notation, while those in the test case are

supplied in hexadecimal notation.
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Chapter 4

Experimental Results

The goal of the first set of experiments presented in this chapter is to demonstrate that, by
measuring only a small subset of the paths in the control-flow graph of a function under
analysis, GameTime can predict the execution time of any arbitrary program path, in a
collection of environments and fixed starting states. Another experiment aims to demonstrate
that GameTime can also predict the energy consumption of any arbitrary program path.

4.1 Benchmarks

The benchmark suite for these sets of experiments comprises either loop-free programs,
or programs where the loops have statically-known finite bounds and function calls have
known finite recursion depths. In the latter case, the loops are unrolled and the function
calls are inlined. Both the GameTime toolkit and the benchmark suite are located at
http://uclid.eecs.berkeley.edu/gametime.

Benchmark Lines of Code
CFG Characteristics

Basis Paths, b
Nodes, n Edges, m Total Number

of Paths

modexp 44 28 31 16 5

altitude 223 36 40 11 6

bs 146 70 80 120 9

toyota-1 812 232 266 744 17

toyota-2 157 146 166 648 20

irobot 160 234 268 3521 36

cnt 1949 612 711 1.2× 1030 101

statemate 990 1088 1268 7.1× 1016 157

Table 4.1: Characteristics of benchmarks.

Some of the characteristics of these benchmarks are shown in Table 4.1. For each bench-
mark, the second column shows the number of lines of C code in the function under analysis.

http://uclid.eecs.berkeley.edu/gametime
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The next three columns provide numerical characteristics of the control-flow graph (CFG)
of the function. The total number of paths is calculated using a dynamic programming
algorithm that, however, does not exclude infeasible paths.

The last column shows the number of basis paths, b, in the CFG, as discovered by
GameTime. We note that the total number of paths in the CFG grows exponentially in the
size of the graph, reaching a size of 1.2× 1030 for the cnt benchmark. However, the number
of basis paths grows polynomially in the size of the graph: this arises from the fact that the
number of basis paths has an upper bound of m− n+ 2. The benchmarks in Table 4.1 are
arranged in ascending order of the number of basis paths identified by GameTime.

The benchmarks include a variety of programs, ranging from small toy programs to several
real programs run on embedded systems. An example of the former is the modexp benchmark
is a variant of the modular exponentiation code, presented in Figure 2.2(b), but modified to
use 4-bit exponents instead of 2, with a base of 2 and a prime modulus of 1048583.

The altitude benchmark is a task in the open-source PapaBench software for an un-
manned aerial vehicle [38]. The two toyota benchmarks are functions obtained from the
software used in the engine control systems of Toyota vehicles.

The irobot benchmark is used to control an iRobot Create autonomous robot plat-
form [12]. The benchmark is the body of an infinite sense-compute-actuate loop that en-
codes a state machine, which maintains the state of an iRobot Create as it attempts to move
forward until it senses an obstacle, in which case it will try to move around the obstacle.

The other three benchmarks are supplied as part of the Mälardalen benchmark suite [19].
The bs benchmark performs a binary search for an integer in an array of 15 integer elements.
The cnt benchmark counts the number of non-negative numbers in a 10 × 10 matrix. Fi-
nally, the statemate benchmark is code that has been generated from a Statemate [21]
Statecharts model for an automotive window control system.

4.2 Execution Time: Experiments and Results

The execution time analysis experiments were conducted in three different environments: the
PTARM simulator, the SimIt-ARM simulator, and the RTE-2000H-TP In-Circuit Emulator.
These environments, the experiments and the results are described below.

PTARM simulator

Simulator Description and Experimental Setup

The PTARM simulator v1.0 is a simulator of a Precision Timed (PRET) machine [24] devel-
oped by Liu et al. [32] that is based on a subset of the ARMv4 instruction set architecture.
The simulator was designed as part of an effort to introduce predictable and repeatable
timing to real-time embedded processor architectures [23]. This particular simulator was
chosen because of its cycle accuracy, its ease of availability and its timing repeatability,
the third of which helps to ensure that there are no spurious variations in the execution
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time measurements of test cases. The experiments were run in the simulator through its
command-line interface, in a Cygwin [43] terminal on a 64-bit Windows machine. The GNU
ARM toolchain [15], recommended by the simulator documentation [23], was used to compile
the test cases.

Experiment Description and Results

Table 4.2 summarizes the measurements conducted for different benchmarks on the PTARM
simulator v1.0. It is divided into six sub-tables, one for each combination of two SMT solvers
and three integer linear programming (ILP) solvers. The two SMT solvers used were Z3 [13],
the theorem prover from Microsoft Research, and Boolector [7]. The three ILP solvers used
were the GNU Linear Programming Kit (GLPK) [41], the Gurobi Optimizer [40], and the
default solver that accompanies the PuLP Python package [52], which is a version of CBC
(Coin Branch and Cut) [9].

For each benchmark and combination of SMT solvers and ILP solvers presented in Ta-
ble 4.2, the runtimes (or execution times) of the basis paths were measured on the PTARM
simulator, from the same initial state of the simulator. Then, the runtimes of arbitrarily se-
lected paths were predicted by GameTime, using the runtimes collected for the basis paths.
The runtimes for these paths were then measured on the simulator, and the predictions were
compared against the measurements.

In the table, the second column shows the number of arbitrarily selected paths whose
runtimes were predicted and measured. The next two columns show the maximum and min-
imum measured runtimes of any basis path, while the next two columns show the maximum
and minimum runtimes of all the paths that have been measured. The maximum absolute
and relative errors of the predicted runtime, with respect to the measured runtime, are dis-
played in the next two columns: note that these two errors need not necessarily be for the
same path. The last-but-one column displays the amount of time taken by GameTime to
perform its analysis of a benchmark and to generate its basis paths.

Finally, the last column has an entry of ‘Yes’ if the path that is measured to have the
maximum execution time, among all of the paths measured, is also the path that is predicted
to have the maximum execution time. Otherwise, a numerical entry denotes the relative
position of the path among all of the paths measured: for example, an entry of ‘7’ indicates
that the path that is measured to have the maximum execution time is actually predicted
to have an execution time that is the seventh longest.

We observe that, for the PTARM simulator, predictions and measurements match with a
very small relative error: the maximum relative error (3.74%) arises for the experiment that
uses the altitude benchmark, with Z3 as the SMT solver and Gurobi as the ILP solver.
The cnt benchmark exhibits the least variability in its very low error rate: this could be
attributed to its neat branch structure, which consists of a repeated if-statement that tests
if a number is non-negative before incrementing a counter. We note that the timings of
the basis paths are of the same order of magnitude as those of the arbitrarily chosen paths,
which was one of the desired features of a basis, as presented in Chapter 2.
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The variability in predictions across the combinations of SMT solvers and ILP solvers
seems to arise for two reasons: First, different ILP solvers provide different solutions to the
same integer linear program, especially in the first few iterations of producing candidate basis
paths, where the integer linear programs have multiple possible solutions. This is borne out
by the various bases produced by different ILP solvers. Second, the runtime of a path can
depend on the values used to drive program execution along the path, especially if the path
involves operations such as multiplication. Since these experiments were conducted with no
constraints on the variables besides those enforced by the statements along a path, data-
dependent variability was not explicitly considered and could manifest itself in the tolerance
(ε, described in Chapter 2) and error. Further study of such data dependency is needed.

We also observe that in most cases, GameTime is able to predict the path with the
longest runtime. The anomalously high rankings in the last column for the bs benchmark
can be explained by the fact that, when the paths are arranged in descending order of
runtimes, the first 24 paths are within a mere two cycles of each other. In the other cases,
data-dependent runtime variation could account for the inability of GameTime to predict
the path with the longest runtime, since a change in the combination of SMT solvers and
ILP solvers, and hence the resulting test cases, changes the entries in the last column.
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Figure 4.1: Runtimes of the modexp benchmark on the PTARM simulator. Z3 and

GLPK were, respectively, the SMT solver and the ILP solver used for this analysis.

The graphs in Figures 4.1 and 4.2 present alternative views of these results. Figure 4.1
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displays the runtimes, both predicted and measured, of the modexp benchmark for different
values of the exponent. These measurements were conducted on the PTARM simulator, and
the analysis was performed with Z3 as the SMT solver and GLPK as the ILP solver. The
five basis paths have also been labeled.

As corroborated by Table 4.2, the error margin is very small, with the GameTime
predictions within 5 cycles of the measurements. Since the graph depicts all of the possible
values for the exponent, we can also conclude that GameTime accurately predicts the path
with the worst-case execution time (WCET) and the WCET itself.
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Figure 4.2: Runtimes of the statemate benchmark on the PTARM simulator. Z3

and GLPK were, respectively, the SMT solver and the ILP solver used for this analysis.

Figure 4.2 displays the runtimes, both predicted and measured, of the statemate bench-
mark, for the fifty predicted longest feasible paths in the CFG of the benchmark. These
measurements were also made on the PTARM simulator, and the analysis was performed
with Z3 as the SMT solver and GLPK as the ILP solver. None of the basis paths have run-
times in the range presented in Figure 4.2 and have thus not been labeled. As corroborated
by Table 4.2, the error margin is still very small, with the GameTime predictions within
0.5% of the measurements. GameTime is thus able to predict runtimes using fewer than
200 basis paths, without needing to exhaustively enumerate the 7.1 × 1016 possible paths.
Also, while GameTime does not accurately estimate the path with the worst-case execution
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time, the measured runtime of the estimated longest path is within 0.2% of the measured
runtime of the actual longest path. Once again, data dependency can be investigated as a
possible reason for the misprediction.

SimIt-ARM simulator

Simulator Description and Experimental Setup

SimIt-ARM is a cycle-accurate simulator for the StrongARM-1100 processor. It is based on
the Operation State Machine formalism presented in [42]. As with the PTARM simulator,
the simulator was chosen for its ease of availability, its cycle accuracy and its ability to
simulate an entire system, including the memory management unit [44]. The simulator was
installed on a 64-bit machine running the Ubuntu operating system. The experiments were
conducted in the simulator through its command-line interface. The programs were compiled
using the arm-linux-gcc compiler, as recommended by the simulator documentation [44].

Experiment Description and Results

A subset of the experiments performed on the PTARM simulator were also conducted on
the SimIt-ARM simulator, with the results summarized in Table 4.4. We observe that, for
the SimIt-ARM simulator, the modexp benchmark exhibits a small relative error across all
available combinations of SMT solvers and ILP solvers. The maximum relative errors for
the altitude and bs benchmarks, however, vary significantly across the combinations. As
described before, this could be due to the data dependency of timing: the altitude and bs

benchmarks have a relatively small amount of paths, yet there is a large range of values that
can drive a benchmark along a particular path. A study of this data dependency can drive
future work on the GameTime toolkit.

RTE-2000H-TP In-Circuit Emulator

Emulator Description and Experimental Setup

Experiments analogous to those conducted on the PTARM simulator and SimIt-ARM sim-
ulator were also performed on the RTE-2000H-TP In-Circuit Emulator (ICE). This ICE,
created by the Midas Lab [29], was the emulator employed by Toyota, for its own research
purposes, when these experiments were performed. The ICE was used to communicate with
industrial control software.

The two benchmarks used for the experiments were obtained from control software. The
test cases for each benchmark were supplied to the ICE through a custom front-end on a
Windows workstation. The front-end was capable of printing out timing information and
inserting breakpoints, both useful for debugging the engine control software. Breakpoints
were placed before and after each benchmark: When the first breakpoint was reached, the
test case was inserted, the system time was recorded, and execution was resumed; when the
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second breakpoint was reached, the time was once again recorded, and the difference was
designated as the execution time of the benchmark.

Experiment Description and Results

Table 4.2 aggregates the results of the runtime experiments conducted on the RTE-2000H-
TP ICE. GameTime used Z3 as the SMT solver and GLPK as the ILP solver to generate
the basis paths and the corresponding test cases.

Benchmark
Number of Basis Path Times Measured Times Prediction Error Analysis Predicted
Predictions Max Min Max Min Abs Rel Time (s) Longest

toyota-1 27 78 77 81 80 2 2.5% < 120 Yes
toyota-2 30 97 96 98 97 2 2.04% < 120 Yes

Table 4.2: Measurements performed on RTE-2000H-TP In-Circuit Emulator. The

runtimes of the paths, as shown in columns 3 through 6, are presented in nanoseconds, as is the absolute

prediction error. The last-but-one column shows the time for the GameTime analysis in seconds.

We observe that the timings of the basis paths differ from each other by at most one
nanosecond. Nonetheless, GameTime is able to predict the runtimes of other arbitrary
paths with a small relative error of less than 2.5%. Also, for both benchmarks, GameTime
accurately predicted the path with the WCET and the WCET itself.

4.3 Energy Consumption: Experiments and Results

In work conducted in collaboration with Dorsa Sadigh, the GameTime toolkit was also
employed to estimate the energy consumption of a program, in an attempt to extend the
theory and utility of GameTime to other quantitative properties besides execution time.

Physical Apparatus

The energy consumption measurements were made on a TelosB mote, as shown in Fig-
ure 4.3(a). The mote was developed at University of California, Berkeley, and has a TI
MSP430 microcontroller with 10kB of RAM. Data is collected from the mote via its USB
interface, and programs are also sent to the mote through this interface. The operating
system, TinyOS [48], is open-source, and programs written for the TinyOS are written in a
dialect of C called nesC [16]. The MSP430 microcontroller, developed by Texas Instruments,
is a RISC processor with a 16-bit architecture, and has no data or instruction cache [26].

The mote already allows us to determine the runtime of a program: we merely reset a
timer and start it just before running a program, polling the value of the timer when the
program is completed. However, to measure the energy usage of a program, we attach an
iCount adapter, as shown in Figure 4.3(b). The design of the iCount adapter is explained in
[14]: Its energy measurements have an error rate of ±20%.
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(a) TelosB mote. (b) TelosB mote with the iCount Adapter.

Figure 4.3: TelosB mote used for energy consumption measurements.

Experiment Description and Results

Only one benchmark was used for this experiment: a variant of the modular exponentiation
code, presented in Figure 2.2(b), which has been modified to use 5-bit exponents instead of 2,
with a prime modulus of 1048583. In this experiment, the basis paths of the benchmark were
first discovered by GameTime. The energy consumptions of these basis paths on the TelosB
mote were then measured: to obtain one measurement, an interface to the TelosB mote, with
the iCount adapter attached, was polled to obtain the energy consumed by 10000 iterations
of each basis path, and thus the average energy consumed by each basis path. GameTime
then used these measurements to predict the average energy consumptions of all 32 possible
paths through the benchmark code. These predictions were then compared against the
energy consumption values measured on the mote, averaged across 10000 iterations.

Figure 4.4 shows the energy consumption values for different values of the exponent, when
2 is used as the base for the benchmark. The six basis paths have also been labeled. The error
margin between the measured and predicted values is very small, with a maximum relative
error of less than 1%. Since all the possible values for the exponent have been measured, we
also observe that, as with execution time, GameTime can also predict the path with the
worst-case energy consumption and the energy consumption itself.

Figure 4.5 shows the energy consumption values for different values of the exponent, when
15 is used as the base for the benchmark instead of 2. Again, the error margin between the
measured and predicted values is very small, with a maximum relative error of less than 5%.
GameTime also predicts the path with the worst-case energy consumption and the energy
consumption itself. This experiment provides credence to the possible usage of GameTime
as an energy estimation tool, although further experiments need to be conducted.
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Benchmark
Number of Basis Path Times Measured Times Prediction Error Analysis Predicted
Predictions Max Min Max Min Abs Rel Time (s) Longest

Z3 (SMT) and GLPK (ILP)

modexp 16 847 684 925 600 5 0.67% 5.43 Yes
altitude 9 806 107 806 107 3 0.38% 6.15 Yes
bs 31 738 270 740 270 6 0.82% 27.34 7
irobot 82 543 146 543 146 6 1.27% 71.57 Yes
cnt 201 15954 15954 15954 15954 1 0.01% 879.73 Yes
statemate 257 4644 3175 5160 3032 24 0.47% 2311.02 2

Z3 (SMT) and Gurobi (ILP)

modexp 16 847 600 925 600 6 0.88% 5.36 Yes
altitude 9 806 109 806 107 16 3.74% 5.55 Yes
bs 31 739 270 740 270 7 0.95% 25.66 7
irobot 56 543 146 543 466 5 1.06% 56.27 Yes
cnt 201 15954 15954 15954 15954 1 0.01% 920.11 Yes

Z3 (SMT) and PuLP Default (ILP)

modexp 16 847 600 925 600 9 1.06% 5.36 Yes
altitude 9 804 109 804 107 2 0.94% 5.55 Yes
bs 31 739 270 740 270 4 0.68% 32.30 11
irobot 57 517 146 543 465 6 1.27% 59.69 Yes
cnt 201 15954 15954 15954 15954 1 0.01% 949.56 Yes

Boolector (SMT) and GLPK (ILP)

modexp 16 847 684 925 600 5 0.67% 5.82 Yes
altitude 9 809 107 809 107 6 0.76% 7.73 Yes
bs 31 741 270 741 270 5 0.68% 101.79 2
cnt 201 15873 15382 15951 15304 14 0.09% 1453.71 2

Boolector (SMT) and Gurobi (ILP)

modexp 16 847 600 925 600 6 0.88% 5.91 Yes
altitude 9 809 109 809 107 6 0.76% 7.60 Yes
bs 31 738 270 741 270 3 0.41% 90.39 3
cnt 201 15766 15483 15951 15304 35 0.23% 989.17 Yes

Boolector (SMT) and PuLP Default (ILP)

modexp 16 842 678 925 600 9 1.06% 5.85 Yes
altitude 9 809 107 809 109 6 0.76% 16.34 Yes
bs 31 741 270 740 270 5 0.68% 121.79 3
cnt 201 15607 15590 15951 15307 13 0.08% < 900 Yes

Table 4.3: Measurements performed on PTARM Simulator v1.0. The runtimes of the

paths, as shown in columns 3 through 6, are presented in number of cycles, as is the absolute prediction

error. The last-but-one column shows the time for the GameTime analysis in seconds.
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Benchmark
Number of Basis Path Times Measured Times Prediction Error Analysis Predicted
Predictions Max Min Max Min Abs Rel Time (s) Longest

Z3 (SMT) and GLPK (ILP)

modexp 16 975 861 1032 805 0 0% 8.74 Yes
altitude 9 1489 264 1489 264 277 22.97% 6.86 Yes
bs 31 1545 772 1576 771 611 39.55% 29.08 5

Z3 (SMT) and Gurobi (ILP)

modexp 16 976 805 1032 793 12 1.51% 6.54 Yes
altitude 9 1489 264 1489 264 139 29.26% 6.30 Yes
bs 31 1436 772 1576 771 356 23.88% 25.68 2

Z3 (SMT) and PuLP Default (ILP)

modexp 16 975 861 1032 793 12 1.41% 6.17 Yes
altitude 9 1489 264 1491 264 188 19.37% 7.47 Yes
bs 31 1545 772 1576 771 358 26.55% 9.74 6

Boolector (SMT) and GLPK (ILP)

modexp 16 975 861 1032 805 0 0% 6.45 Yes
altitude 9 1396 264 1396 264 6 0.52% 11.14 Yes
bs 31 1484 772 1576 759 327 28.26% 99.88 7

Boolector (SMT) and Gurobi (ILP)

modexp 16 976 805 1032 805 1 0.11% 6.85 Yes
altitude 9 1396 264 1396 264 6 1.26% 7.13 Yes
bs 31 1368 772 1564 759 334 21.82% 108.11 16

Boolector (SMT) and PuLP Default (ILP)

modexp 16 975 861 1032 805 1 0.12% 10.14 Yes
altitude 9 1396 264 1396 264 6 1.26% 10.31 Yes
bs 31 1484 772 1576 771 335 28.96% 38.31 Yes

Table 4.4: Measurements performed on SimIt-ARM Simulator v3.0. The runtimes of

the paths, as shown in columns 3 through 6, are presented in number of cycles, as is the absolute prediction

error. The last-but-one column shows the time for the GameTime analysis in seconds.
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Figure 4.4: Energy consumed by the modexp benchmark (base 2) on the TelosB
mote. The energy consumption values are averaged across 10000 iterations. Z3 and GLPK were,

respectively, the SMT solver and the ILP solver used for this analysis.
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Figure 4.5: Energy consumed by the modexp benchmark (base 15) on the TelosB
mote. The energy consumption values are averaged across 10000 iterations. Z3 and GLPK were,
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Chapter 5

Conclusions and Future Work

In this thesis, the different parts of the GameTime timing analysis toolkit are described.
In particular, the challenges that arise when encoding different constructs in embedded C
programs as clauses in SMT queries are presented, and the algorithms and heuristics that
are used to address these challenges are detailed.

The results of experiments that involve the GameTime toolkit are also summarized.
The experimental benchmark suite comprises either loop-free programs, or programs where
the loops have statically-known finite bounds and function calls have known finite recursion
depths. Experimental evidence shows that GameTime is able to predict the runtime of
any program path within a small error margin, without the need to exhaustively enumerate
and measure all program paths, using only the measurements of a small number of basis
paths. These measurements are sufficient to predict the measurements of paths that are
not sampled, and also, within a small error margin, the path with the worst-case execution
time and the execution time itself. One experiment also invites the possibility of using
GameTime as an energy estimation tool.

Extensions and improvements can be made to the GameTime toolkit to tackle differ-
ent problems. For example, as suggested in Chapter 4, GameTime could be improved to
account for the data-dependency of timing. The current implementation also has a few
numerical optimization issues: for example, the threshold below which a row is considered
“bad” is arbitrarily chosen. A more programmatic choice for this threshold would be useful.
GameTime could also be extended to encode other C constructs, such as function pointers.

The GameTime learning algorithm, which predicts edge weights, could be improved by
relaxing the restriction that measurements must be made end-to-end. The current imple-
mentation provides rudimentary support for “snipping”, whereby a user can attach C labels
to two different statements, and GameTime only generates basis paths for the “snipped”
portion of the code between the two labels. This mechanism could be employed to measure
certain portions of the program under analysis; these measurements can then be used to
improve edge weight predictions and thus path length predictions.

There is also ongoing work to use GameTime for termination analysis, for detection of
potential timing attacks, and for timing analysis of interrupt-driven programs [28].
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Appendix A

Assorted Implementation Details

Microsoft Phoenix instruction operator GameTime intermediate expression operator

ADD +

SUBTRACT -

NEGATE -

MULTIPLY *

DIVIDE /s, /u

REMAINDER %

ASSIGN ==

SHIFTLEFT <<

SHIFTRIGHT >>, >>>

BITAND &

BITOR |

BITXOR ^

BITCOMPLEMENT ~

COMPARE(GT) >

COMPARE(UGT) >u

COMPARE(GE) >=

COMPARE(UGE) >=u

COMPARE(LT) <

COMPARE(ULT) <u

COMPARE(LE) <=

COMPARE(ULE) <=u

COMPARE(EQ) ==

COMPARE(NE) !=

Table A.1: GameTime intermediate expression operators. This table shows the oper-

ators in GameTime intermediate expressions that correspond to different operators of Microsoft Phoenix

instructions.
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GameTime intermediate expression operator SMT-LIB v2.0 expression operator

+ bvadd

- bvsub

- (negation) bvneg

* bvmul

/s bvsdiv

/u bvudiv

% bvsmod

== =

<< bvshl

>> bvashr

>>> bvlshr

& bvand

| bvor

^ bvxor

~ bvnot

concat concat

zeroExtend zero extend

signExtend sign extend

bitExtract extract

! not

> bvsgt

>u bvugt

>= bvsge

>=u bvuge

< bvslt

<u bvult

<= bvsle

<=u bvule

ite ite

Table A.2: SMT-LIB v2.0 expression operators. This table shows the operators in SMT-LIB

v2.0 expressions that correspond to different operators of GameTime intermediate expressions.
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〈constant〉 ::= [0-9]+
| ‘-’ 〈constant〉

〈identifier〉 ::= [a-zA-Z_](a-zA-Z0-9_)*

〈variable〉 ::= 〈identifier〉
| 〈variable〉 ‘<’ 〈constant〉 ‘>’

〈expression〉 ::= 〈constant〉
| 〈variable〉
| ‘(’ 〈expression〉 ‘)’
| 〈arith expr〉
| 〈array expr〉
| 〈bitwise expr〉
| 〈Boolean expr〉
| 〈compare expr〉
| 〈offset expr〉

〈arith expr〉 ::= 〈expression〉 ‘+’ 〈expression〉
| 〈expression〉 ‘-’ 〈expression〉
| 〈expression〉 ‘*’ 〈expression〉
| 〈expression〉 ‘/s’ 〈expression〉
| 〈expression〉 ‘/u’ 〈expression〉
| 〈expression〉 ‘%’ 〈expression〉

〈array expr〉 ::= 〈variable〉 ‘[’ 〈expression〉 ‘]’
| 〈array expr〉 ‘[’ 〈expression〉 ‘]’

〈bitwise expr〉 ::= ‘~’ 〈expression〉
| 〈expression〉 ‘&’ 〈expression〉
| 〈expression〉 ‘|’ 〈expression〉
| 〈expression〉 ‘^’ 〈expression〉
| 〈expression〉 ‘<<’ 〈expression〉
| 〈expression〉 ‘>>’ 〈expression〉
| 〈expression〉 ‘>>>’ 〈expression〉
| ‘concat’ ‘(’ 〈expression〉 ‘,’ 〈expression〉 ‘)’
| ‘zeroExtend’ ‘(’ 〈expression〉 ‘,’ 〈expression〉 ‘)’
| ‘signExtend’ ‘(’ 〈expression〉 ‘,’ 〈expression〉 ‘)’
| ‘bitExtract’ ‘(’ 〈expression〉 ‘,’ 〈expression〉 ‘,’ 〈expression〉 ‘)’

〈Boolean expr〉 ::= ‘true’
| ‘false’
| 〈expression〉 ‘and’ 〈expression〉
| 〈expression〉 ‘or’ 〈expression〉
| ‘!’ 〈expression〉

〈compare expr〉 ::= 〈expression〉 ‘==’ 〈expression〉
| 〈expression〉 ‘>’ 〈expression〉
| 〈expression〉 ‘<’ 〈expression〉
| 〈expression〉 ‘>=’ 〈expression〉
| 〈expression〉 ‘<=’ 〈expression〉
| 〈expression〉 ‘!=’ 〈expression〉
| ‘ite’ ‘(’ 〈expression〉 ‘,’ 〈expression〉 ‘,’ 〈expression〉 ‘)’

〈offset expr〉 ::= 〈expression〉 ‘.’ 〈expression〉

Figure A.1: Backus-Nauf Form Grammar of the GameTime intermediate expres-
sions. These intermediate expressions are meant to resemble C expressions as closely as possible.
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Appendix B

Package Overview

The GameTime toolkit is located at http://uclid.eecs.berkeley.edu/gametime. A
Python interface to the tool is currently available through the gametime package. An example
Python program that imports this package and uses its API is shown in Listing B.1. The
class Analyzer provides many of the commonly used functions of GameTime, including the
generation of basis paths and the generation of the longest feasible paths.

Listing B.1: Example file that uses the Python interface to GameTime.
1 import os

2

3 from gametime import Analyzer , GameTime , PathType

4 from gametime.fileHelper import createDir

5 from gametime.projectConfiguration import readProjectConfigFile

6

7

8 def generateBasisPaths(projectConfigXmlFile , analyzerLocation ):

9 """ This sample function demonstrates how to initialize a GameTime project

10 with the XML file provided , and how to generate the Path objects that

11 represent the basis paths of the code specified in the XML file.

12

13 The function saves the information from the Path objects , and the Analyzer

14 object used for analysis itself , to different files.

15

16 @param projectConfigXmlFile XML file used to initialize and configure

17 a GameTime project.

18 @param analyzerLocation Location of the saved Analyzer object.

19 """

20 # Initialize the GameTime project with the contents of the XML file.

21 projectConfig = readProjectConfigFile(projectConfigXmlFile)

22

23 # Create a new Analyzer object for this analysis.

24 analyzer = GameTime.analyze(projectConfig)

25

26 # Generate a list of the Path objects that represent the basis paths of

27 # the code specified in the XML file.

http://uclid.eecs.berkeley.edu/gametime
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28 basisPaths = analyzer.generateBasisPaths ()

29

30 # To keep the filesystem clean , create a directory for the basis paths

31 # in the temporary directory created by GameTime for its analysis.

32 # Write the information contained in the Path objects to this directory.

33 basisDir = os.path.join(projectConfig.locationTempDir , "basis")

34 createDir(basisDir)

35 analyzer.writePathsToFiles(basisPaths , writePerPath=False ,

36 rootDir=basisDir)

37

38 # Save the analyzer for later use.

39 analyzer.saveToFile(analyzerLocation)

40

41 def generatePaths(analyzerLocation , basisValuesLocation , numPaths , pathType ):

42 """ This sample function demonstrates how to load an Analyzer object ,

43 saved from a previous analysis , from a file , and how to load the values

44 to be associated with the basis Path objects from a file.

45

46 Once these values are loaded , the function generates as many feasible paths

47 as possible , upper -bounded by the "numPaths" argument. This argument is

48 ignored if the function is called to generate all of the feasible paths

49 of the code being analyzed.

50

51 The type of paths that will be generated is determined by

52 the "pathType" argument , which is a class variable of

53 the "PathType" class. For a description of the types , refer to

54 the documentation of the "PathType" class.

55

56 The function saves the information from the Path objects , and the Analyzer

57 object used for analysis itself , to different files.

58

59 @param analyzerLocation Location of the saved Analyzer object.

60 @param basisValuesLocation Location of the file that contains

61 the values to be associated with the basis Path objects.

62 @param pathType Type of paths to generate , represented by a class

63 variable of the "PathType" class. The different types of paths are

64 described in the documentation of the "PathType" class.

65 @param numPaths Upper bound on the number of paths to generate.

66 """

67 # Load an Analyzer object from a file saved from a previous analysis.

68 analyzer = Analyzer.loadFromFile(analyzerLocation)

69

70 # Load the values to be associated with the basis Path objects

71 # from the file specified.

72 analyzer.loadBasisValuesFromFile(basisValuesLocation)

73

74 # Generate the list of the Path objects that represent

75 # the feasible paths requested.

76 paths = analyzer.generatePaths(numPaths , pathType)

77
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78 # To keep the filesystem clean , create a directory for these feasible

79 # paths in the temporary directory created by GameTime for its analysis.

80 # Write the information contained in the Path objects to this directory.

81 projectConfig = analyzer.projectConfig

82 pathsDirName = PathType.getDescription(pathType)

83 pathsDir = os.path.join(projectConfig.locationTempDir , pathsDirName)

84 createDir(pathsDir)

85 analyzer.writePathsToFiles(paths , writePerPath=False , rootDir=pathsDir)

86

87 # Save the analyzer for later use.

88 analyzer.saveToFile(analyzerLocation)

GameTime can be configured using either the Configuration class of the gametime

package or the configuration XML file presented in Listing B.2.

Listing B.2: Example GameTime configuration XML file.
1 <?xml version="1.0" ?>

2

3 <!-- This is the XML file that configures GameTime for all projects. -->

4 <gametime -config >

5 <!-- Information about the memory layout of the target machine. -->

6 <memory >

7 <!-- Word size on the machine that GameTime is being run on. -->

8 <bitsize >32</bitsize >

9 <!-- Endianness of the target machine. This configuration

10 recognizes two options: "big" for big -endian and

11 "little" for little -endian. -->

12 <endianness >little </endianness >

13 </memory >

14

15 <!-- Annotations that can be added to the code under analysis. -->

16 <annotations >

17 <!-- Annotation that is used when additional conditions need to be

18 provided to GameTime , without adding more branches to the code

19 under analysis. This is used , for example , to control the values

20 that GameTime assigns certain variables in the test cases that

21 it produces. -->

22 <assume >__gt_assume </assume >

23 </annotations >

24

25 <!-- Identifiers that will be appended to different "special"

26 variables that will be sent to the underlying SMT solver. -->

27 <identifiers >

28 <!-- Identifier that gets prepended to the name of either an

29 aggregate type or an aggregate object. -->

30 <aggregate >__gtAGG__ </aggregate >

31 <!-- Identifier that gets prepended to the name of a Boolean

32 variable that is true if, and only if, a constraint is true. -->

33 <constraint >__gtCONSTRAINT </constraint >

34 <!-- Identifier that gets prepended to the names of functions
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35 that have not been inlined. -->

36 <efc>__gtEFC__ </efc>

37 <!-- Identifier that gets prepended to a field reference. -->

38 <field>__gtFIELD__ </field>

39 <!-- Identifier that gets prepended to the names of variables that

40 replace indices within array accesses. -->

41 <tempindex >__gtINDEX </tempindex >

42 <!-- Identifier that gets prepended to the names of temporary

43 pointers. -->

44 <tempptr >__gtPTR </tempptr >

45 <!-- Identifier used for temporary variables. -->

46 <tempvar >__gt</tempvar >

47 </identifiers >

48

49 <!-- Names for temporary files and folders that are generated during

50 the GameTime toolflow. -->

51 <temps>

52 <!-- Name for temporary files that store project configuration

53 information. -->

54 <project -config >project -config </project -config >

55 <!-- Name for temporary files that store the locations of

56 other files to be included in the source file. -->

57 <included >included </included >

58 <!-- Name for temporary loop configuration files , which store

59 the location of loop headers , generated during the process of

60 loop unrolling. -->

61 <loop -config >loop -config </loop -config >

62

63 <!-- Suffix for general purposes , such as to append to the name

64 of the temporary file to be analyzed by GameTime , and to the

65 name of the temporary directory that stores the temporary

66 files generated during the GameTime toolflow. -->

67 <suffix >-gt</suffix >

68

69 <!-- Name for the GameTime mode when the Phoenix section of

70 the toolflow is used to create the DAG containing the basic

71 blocks of a function unit. -->

72 <phx -create -dag>create -dag</phx -create -dag>

73 <!-- Name for temporary files that store a directed acyclic graph

74 (in DOT format ). -->

75 <dag>dag</dag>

76 <!-- Name for temporary files that store a mapping between

77 the IDs of the basic blocks in the control -flow graph and

78 their "adjusted" IDs. -->

79 <dag -id -map>dag -id -map</dag -id -map>

80

81 <!-- Name for temporary files that store the Phoenix intermediate

82 representation of the function being analyzed. -->

83 <phx -ir>ir</phx -ir>

84 <!-- Name for the GameTime mode when the Phoenix section of
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85 the toolflow is used to find the conditions along paths. -->

86 <phx -find -conditions >find -conditions </phx -find -conditions >

87

88 <!-- Name for temporary files that each store the integer linear

89 programming problem that , when solved , produced a path. -->

90 <path -ilp -problem >path -ilp -problem </path -ilp -problem >

91 <!-- Name for temporary files that each store the IDs of the nodes

92 in a directed acyclic graph along a path. -->

93 <path -nodes>path -nodes</path -nodes>

94 <!-- Name for temporary files that each store the line numbers

95 of the statements along a path. -->

96 <path -line -numbers >path -line -numbers </path -line -numbers >

97 <!-- Name for temporary files that each store the conditions

98 along a path. -->

99 <path -conditions >path -conditions </path -conditions >

100 <!-- Name for temporary files that each store information about

101 the edges that are associated with the conditions and

102 assignments along a path. -->

103 <path -condition -edges>path -condition -edges</path -condition -edges>

104 <!-- Name for temporary files that each store information about

105 the line numbers and truth values of the conditional points

106 along a path. -->

107 <path -condition -truths >path -condition -truths </path -condition -truths >

108 <!-- Name for temporary files that each store information about

109 all the array accesses made in conditions and assignments

110 along a path. -->

111 <path -array -accesses >path -array -accesses </path -array -accesses >

112 <!-- Name for temporary files that each store the expressions

113 associated with the temporary index variables of aggregate

114 accesses along a path. -->

115 <path -agg -index -exprs>path -agg -index -exprs</path -agg -index -exprs>

116 <!-- Name for temporary files that each store the value associated

117 with a path. -->

118 <path -value>path -value</path -value>

119 <!-- Name for temporary files that store information about

120 all of the paths traced during analysis. -->

121 <path -all>path -all</path -all>

122

123 <!-- Prefix for temporary files that store the SMT queries

124 corresponding to different paths. -->

125 <path -query>path -query</path -query>

126 <!-- Name for temporary files that contain the models for

127 satisfiable SMT queries. -->

128 <smt -model>smt -model</smt -model>

129 <!-- Name for temporary files that store all of the SMT queries

130 that have been made during analysis. -->

131 <path -query -all>path -query -all</path -query -all>

132

133 <!-- Prefix for temporary files that store information about

134 a case , an assignment to variables that would drive an
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135 execution of the code along a path. -->

136 <case>case</case>

137

138 <!-- Name for files that store the basis matrix after analysis

139 has been conducted to determine feasible basis paths. -->

140 <basis -matrix >basis -matrix </basis -matrix >

141 <!-- Name for files that store the quantities (for example , execution

142 times) associated with running or simulating the program under

143 analysis on inputs that drive it along its basis paths. -->

144 <basis -values >basis -values </basis -values >

145 <!-- Name for temporary files that store a directed acyclic graph

146 (in DOT format), where the edges are annotated with weights. -->

147 <dag -weights >dag -weights </dag -weights >

148 <!-- Name for temporary files that store the distribution of quantities

149 (for example , execution times) associated with each path in the

150 control -flow graph of the program being analyzed. -->

151 <distribution >distribution </distribution >

152 </temps>

153

154 <!-- Locations of useful tools. -->

155 <tools>

156 <!-- Location of the main Phoenix DLL. -->

157 <phoenix >bin/GameTime.dll</phoenix >

158 <!-- Location of the main Cilly driver. -->

159 <cil>cil/bin/cilly</cil>

160 </tools>

161

162 <!-- Locations of SMT solvers. -->

163 <smt -solvers >

164 <!-- Location of the Boolector executable. If the absolute

165 location is not provided (as is the case by default),

166 and Boolector is used for a query , the location is assumed

167 to be present in the PATH environment variable. -->

168 <boolector >boolector.exe</boolector >

169 <!-- Location of the Python interface of Z3 , the SMT solver

170 from Microsoft. If the absolute location is not provided

171 (as is the case by default), and Z3 is used for a query ,

172 the location is assumed to be present in either

173 the PYTHONPATH environment variable or

174 the PATH environment variable. -->

175 <z3>z3.pyc</z3>

176 </smt -solvers >

177 </gametime -config >

A GameTime project can be configured using either the ProjectConfiguration class of
the gametime package or a project configuration XML file, an example of which is displayed
in Listing B.3. A GameTime project specifies, among other things, the function to be
analyzed and the path to the file that contains the function. The example XML file configures
GameTime to analyze the modular exponentiation code from Figure 2.2(b).
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Listing B.3: Example GameTime project configuration XML file.
1 <?xml version="1.0" ?>

2

3 <!-- This is the XML file that configures GameTime for a specific project. -->

4 <gametime -project >

5 <!-- Information about the function to analyze. -->

6 <file>

7 <!-- Location of the file containing the function to analyze. -->

8 <location >modexp_simple.c</location >

9 <!-- Function to analyze. -->

10 <analysis -function >modexp_simple </analysis -function >

11 <!-- Label in the function to start analysis from.

12 If left empty , GameTime will start analysis of the function

13 from its beginning. -->

14 <start -label></start -label>

15 <!-- Label in the function to end analysis at.

16 If left empty , GameTime will end analysis of the function

17 at its end. -->

18 <end -label></end -label>

19 </file>

20

21 <!-- Information to preprocess the file using source -to -source

22 transformations before analysis. -->

23 <preprocess >

24 <!-- Locations of other files to be included in the source file.

25 More than one file can be specified , and the names must be

26 separated by whitespaces. -->

27 <include ></include >

28 <!-- Functions to inline , if any. More than one function

29 can be specified , and the names must be separated

30 by whitespaces. -->

31 <inline ></inline >

32 <!-- Uncomment this tag to ask GameTime to detect loops. -->

33 <!-- <detect -loops/> -->

34 <!-- Uncomment this tag to ask GameTime to unroll loops. -->

35 <!-- <unroll -loops/> -->

36 </preprocess >

37

38 <!-- Configuration options for various features of the analysis. -->

39 <analysis >

40 <!-- Uncomment this tag to randomize the basis that GameTime

41 starts the analysis with. Without randomization ,

42 the initial basis is the standard basis. -->

43 <!-- <randomize -initial -basis/> -->

44 <!-- Uncomment this tag to model multi -dimensional arrays

45 as nested arrays , or arrays whose elements can also

46 be arrays , in an SMT query. If commented out ,

47 a multi -dimensional array will be modeled as

48 a one -dimensional array , and the indices

49 of an access will be concatenated. -->
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50 <!-- <model -as -nested -arrays/> -->

51 <!-- Uncomment this tag to prevent the refinement of the basis

52 into a 2-barycentric spanner. -->

53 <!-- <prevent -basis -refinement/> -->

54 <!-- Integer linear programming solver used to solve integer linear

55 programs to generate candidate paths. The following options are

56 recognized: "cbc" for CBC; "cbc -pulp" for the version of CBC

57 provided with the PuLP package; "cplex" for CPLEX;

58 "glpk" for GLPK; "gurobi" for Gurobi; "xpress" for Xpress.

59 If no solver is specified , the default solver of the PuLP package

60 will be used. -->

61 <ilp -solver ></ilp -solver >

62 <!-- SMT solver that GameTime uses to check the satisfiability

63 of an SMT query. The following options are recognized:

64 "boolector" (or "boolector -lingeling") for Boolector with

65 Lingeling as the SAT solver;

66 "boolector -minisat" for Boolector with MiniSAT as the SAT solver;

67 "boolector -picosat" for Boolector with PicoSAT as the SAT solver;

68 "z3" for Z3. -->

69 <smt -solver >z3</smt -solver >

70 </analysis >

71

72 <!-- Debugging options. -->

73 <debug>

74 <!-- Uncomment this tag to keep the temporary files that CIL

75 produces during its analysis. -->

76 <!-- <keep -cil -temps/> -->

77 <!-- Uncomment this tag to dump the Phoenix intermediate

78 representation of the function under analysis to a file. -->

79 <!-- <dump -ir/> -->

80 <!-- Uncomment this tag to keep debugging information and

81 files produced by the integer linear programming solver. -->

82 <!-- <keep -ilp -solver -output/> -->

83 <!-- Uncomment this tag to dump information about the path

84 being traced. -->

85 <!-- <dump -path/> -->

86 <!-- Uncomment this tag to dump information about all of the paths

87 that have been traced during analysis to a file. -->

88 <!-- <dump -all -paths/> -->

89 <!-- Uncomment this tag to dump information produced when

90 an IR -level instruction is traced backward. -->

91 <!-- <dump -instruction -trace/> -->

92 <!-- Uncomment this tag to dump information produced when

93 an SMT query is created. -->

94 <!-- <dump -smt -trace/> -->

95 <!-- Uncomment this tag to dump information about all of

96 the SMT queries that have been made during analysis

97 to a file. -->

98 <!-- <dump -all -queries/> -->

99 <!-- Uncomment this tag to keep debugging information and
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100 files produced by the parser. -->

101 <!-- <keep -parser -output/> -->

102 </debug>

103 </gametime -project >

Once the basis paths have been determined, and the corresponding test cases produced,
the measurements for each basis path can be provided through a file, where each line is the
number of the basis path followed by the measured value of the basis path, separated by
whitespace. Lines that start with the # character are ignored as comments. An example
of such a file is shown in Listing B.4, which contains cycle counts for the basis paths of (a
variant of) the modular exponentiation code from Figure 2.2(b).

Listing B.4: Example file with basis path measurements.
1 # These cycle counts were obtained on the PTARM Simulator v1.0, obtained from

2 # http://chess.eecs.berkeley.edu/pret/src/ptarm -1.0/ ptarm_simulator.html.

3 # The basis paths were generated with Z3 v4.3.0 as the backend SMT solver and

4 # the GLPK package v1.5.3 as the backend integer linear programming solver.

5

6 # Basis path 1:

7 # exponent = 0x3;

8 1 764

9

10 # Basis path 2:

11 # exponent = 0x4;

12 2 684

13

14 # Basis path 3:

15 # exponent = 0x8;

16 3 684

17

18 # Basis path 4:

19 # exponent = 0xd;

20 4 847

21

22 # Basis path 5:

23 # exponent = 0xe;

24 5 840

Currently, GameTime also has a rudimentary graphical user interface (GUI), created
with the PySide Python package [39] released by Nokia. Figure B.1 demonstrates the GUI
before a GameTime project has been started. The dialog box enables a user to specify
different options related to a project, such as the SMT solver used and the path to the file
that contains the function to be analyzed.

Figure B.2 demonstrates the GUI after it has generated the basis paths for the code under
analysis. In the example shown, the code under analysis is the modular exponentiation code
from Figure 2.2(b), modified for 4-bit exponents. The C statements along one of the basis
paths have been highlighted.



APPENDIX B. PACKAGE OVERVIEW 77

Figure B.1: GUI demonstration: New GameTime project is started.

In Figure B.3, the GUI provides the user with a dialog box to enter the measurements
for the test cases that correspond to the basis paths. These measurements can be supplied
either manually or through the import of a file in the format shown in Listing B.4.

Finally, once the measurements for the test cases that correspond to the basis paths have
been entered, the GUI allows the user to determine the longest feasible (or the worst-case)
path. In Figure B.4, the user has chosen to determine the five worst-case paths. The worst-
case path is highlighted in the middle panel and its corresponding test case and predicted
length are shown in the rightmost panel. As shown in Figure B.4, the exponent 15, with all
of the bits in its bit representation set to 1, drives the modular exponentiation code along
its worst-case path.
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Figure B.2: GUI demonstration: Basis paths have been generated.
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Figure B.3: GUI demonstration: Measurements of the test cases are entered.
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Figure B.4: GUI demonstration: Worst-case path has been determined.
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