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Abstract

In 1965 Klyuev and Kokovkin-Shcherbak proved that that n3

3 + O(n2) multiplications are
necessary to solve an n-by-n system of linear equations. In 1969 Strassen proved O(nlog2 7)
multiplications are sufficient. They could both be right because they considered different models
of permitted algorithms. Here we propose yet another algorithmic model, closer in spirit to
Klyuev and Kokovkin-Shcherbak, but sufficiently more general to be able to provide lower
bounds on the number of arithmetic operations required to perform dense, sparse or “structured”
one-sided matrix factorizations: The simplest (and overly restrictive) version of our assumption
is that each scalar result is computed using only the data on which it depends mathematically.
We compare these lower bounds with a variety of algorithms and matrix sparsity patterns and
algebraic structures (such as Vandermonde). Depending on the sparsity patterns and structures,
conventional algorithms may or may not attain the lower bounds. In some cases when they do
not, we present new algorithms that do. These bounds are based on a simple, general lower
bound for the arithmetic complexity of computing rational functions.

1 Introduction

Consider computing a rational function z = f(x), where x ∈ Fn, z ∈ F and F is a field, which
may be R or C. A simple lower bound on the number of binary arithmetic operations required to
compute f(x) may be derived by considering the dimension d of the manifold F = {∇f(x)|x ∈ Fn}
[14, 39] determined by the Jacobian ∇f of f : If we perform M binary operations (±, · or /) to
compute f(x), then it can depend on at most M + 1 different inputs. If f(x) depended on fewer
than d inputs, then the dimension of F could not equal d. Therefore d− 1 is a lower bound on the
number of arithmetic operations.

We apply this idea to algorithms from linear algebra. In particular, we want a simple charac-
terization of “non-Strassen-like” matrix algorithms that we can use to prove lower bounds on the
number of arithmetic operations required to perform matrix multiplication, or one-sided matrix
operations like LU and QR decomposition, for dense, sparse or structured matrices (i.e. matrices
whose entries depend on parameters, like Vandermonde matrices Vij = xi−1

j ). With few assump-
tions (on the size of the constants appearing in the algorithm, and no divisions allowed), the best
lower bound for dense, unstructured n-by-n matrix multiplication is Ω(n2 log n) operations [34],
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which no existing algorithm comes close to attaining [42]. In contrast, our bounds will be attained
(within a factor of 2) by conventional dense algorithms. Furthermore, depending on the sparsity
pattern or algebraic structure, they may or may not be attained by conventional algorithms. In
some cases when conventional algorithms do not attain the lower bound, we present new algorithms
that do.

The first attempt at such lower bounds (predating Strassen’s paper [40]) was for solving dense
unstructured linear systems [21, 22] where algorithms were limited to adding multiples of rows (or

columns) to other rows (or columns). Under this assumption, a lower bound of n3

3 + O(n2) multi-
plications for dense, full rank, n-by-n matrices was proven. This bound is attained by conventional
algorithms.

We weaken this assumption as much as possible in order to generalize to other matrix fac-
torizations and sparsity patterns: Our main assumption is that the only data used to compute a
particular component of the final answer is the data on which it mathematically depends.

For example, in the case of matrix multiplication C = A ·B, we will assume that the operations
that lead to computing C(:, i) (the i-th column of C) only depend on A and B(:, i). This means
that we only need a lower bound for matrix-vector multiplication, since C(:, i) = A ·B(:, i). Clearly
Strassen’s algorithm and others like it [42] do not satisfy this, since they form linear combinations
of submatrices of B that combine entries of different columns.

Similarly, the i-th columns of L and U in the factorization A = LU only depend on the leading
i columns of A. In particular, the i-th columns of L and U can be expressed by applying a linear
operator (that depends only on the leading i − 1 columns of A) to A(:, i). QR factorization is
similar.

We also need to make assumptions about the algebraic independence of the matrix entries.
For example, if we know that A is a rank-1 matrix, then multiplication by A can be done with
fewer operations than for a general A. The simplest situation will be when all the nonzero matrix
entries are algebraically independent. For example, in the case of LU factorization of a dense n-
by-n matrix with n2 algebraically independent entries, one of our lower bounds (see Corollary 5)

is n3

3 −
n2

2 + n
6 multiplications and divisions (abbreviated m/d), which omits only the n2−n

2 m/d’s
required to divide by all the pivots. However, in the case of LU applied to a (possibly sparsified)
Vandermonde matrix, with algebraically independent columns, our approach also leads to nontrivial
lower bounds.

The other work most closely related to our is due to Winograd [43, 44], who also provided
arithmetic lower bounds on matrix-vector multiplication and related operations. We will see that
our lower bounds apply to more general situations, and can in fact be much larger (stronger) than
his lower bounds.

The rest of this paper is organized as follows. Section 2 presents our 3 models of computation in
detail, and uses them to get lower bounds for applying a linear operator to a vector. Section 3 applies
this to derive lower bounds for matrix-matrix multiplication, section 4 for LU decomposition, and
section 5 for QR decomposition. Section 6 discusses related work, and section 7 lists open problems.

2 Lower Bounds for Applying a Linear Operator to a Vector

We begin with a lower bound for matrix-vector multiplication, or more generally applying a linear
operator to a vector. We state our results over a field F, which could be either the real or complex
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numbers.

2.1 Arithmetic lower bound on z = B(x) · y for independent yi.

Suppose we want to compute a linear transformation z = B(x) · y where z ∈ Fm, x ∈ Fr, y ∈ Fn

and B(x) is a linear operator that depends on x. Assume that all the entries of x and of y are
algebraically independent (we weaken the assumption about y in section 2.2). B(x) may or may
not be represented explicitly as an m-by-n matrix, but thinking of B : Fr → Fm×n as a (possibly
piecewise-smooth) map, its image B = B(Fr) is a manifold (or union of manifolds). Let d be the
dimension of this manifold (or highest dimension of any manifold in the union); d will determine
our lower bound below.

Now we need to be more specific about our models of computation: Consider the DAG (Directed
Acyclic Graph) describing the algorithm for computing z. There may be branches (including
implicit ones if abs/min/max are used), so we consider only the (sub)DAG executed when B(x)
lies in the d-dimensional part of B. This DAG has input nodes (labeled x or y), output nodes
(labeled z), and computational nodes (±, ·, /, and perhaps unary operations like sqrt). If we write
zi =

∑n
j=1 bij(x) · yj , then each bij(x) is determined (perhaps implicitly) by the DAG.

We distinguish three models of computation, with different assumptions about the DAG and/or
counting goals:

Model 1. The operations performed by the DAG must obey the following rules: Computational
nodes are only allowed to do the following: (1) perform arbitrary operations when both inputs
are labeled c) (meaning a constant in F), in which case the output is labeled c, (2) perform
arbitrary operations when one input is labeled x and the other input is either labeled x or c (in
which case the output is labeled x), and otherwise (3) compute linear homogeneous functions
of y with coefficients that can depend on x or constants, i.e. of the same functional form
as the output z (in which case the output is labeled yhomo). In other words, the operations
{y, yhomo}±{y, yhomo}, {y, yhomo} · {x, c} and {y, yhomo}/{x, c} are allowed, but the following
operations are forbidden: {y, yhomo}·{y, yhomo}, {c, x, y, yhomo}/{y, yhomo}, {x, c}±{y, yhomo},√
{y, yhomo}, etc. Using this model our goal will be to lower bound the number of m/d’s.

Model 2. The operations performed by the DAG may be arbitrary. Our goal will be to lower bound
the number of multiplications, divisions, additions and subtractions (abbreviated m/d/±).

Model 3. The operations performed by the DAG may again be arbitrary. Our goal will be to
lower bound just the number of m/d’s.

Model 1 is most limited in the operations it permits the algorithm to perform, but captures the
behavior of the most commonly used algorithms, and allows the largest lower bound to be proven
on the number of m/d’s: d (see Lemma 1 below). Model 1 is the closest of our three models to
[21, 22]. Model 2 allows the most general algorithms, but only allows us to bound the number of
m/d/±’s below by d (see Lemma 2). Model 3 also allows the most general algorithms, and allows
us to prove a lower bound of dd/2e on the number of m/d’s (see Lemma 3). This is a significant
strengthening of the results in [43, 44], which we discuss further in section 6.

Lemma 1 Under the assumptions of Model 1, the number M1 of m/d’s needed to compute z =
B(x) · y is at least d.
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Proof: In this simple case we look at all the computational nodes whose outputs are yhomo,
and have one input labeled x. Thus all such nodes must perform {y, yhomo} {·, /}x. The number
q of such nodes is a lower bound on the total number of m/d’s M1. Let {f1(x), ..., fq(x)} be
the set of all x inputs to these computational nodes. Thus the final output nodes z can only
depend on these q (possibly different) functions of x. This means we can write the mapping
B(x) as the composition B(x) = H(G(x)), where G : Fr → Fq maps all the inputs to the set
{f1(x), ..., fq(x)}, and H : Fq → Fm×n maps {f1(x), ..., fq(x)} to the (implicitly defined) matrix
entries {b11(x), ..., bmn(x)}. This means that the dimension d of the set {B(x) : x ∈ Fr} can be at
most the dimension of {G(x) : x ∈ Fr} which is at most q, since all the arithmetic operations are
(piecewise) smooth. Altogether, we have M1 ≥ q ≥ d as desired. �

Lemma 2 Under the assumptions of Model 2, the number M2 of m/d/±’s needed to compute
z = B(x) · y is at least d.

Proof: The proof is very similar to that of Lemma 1. The outputs of the computational nodes
are labeled as follows: (1) If both inputs of the computational node are labeled c, then its output
is labeled c. (2) If both inputs of the computational node are labeled x, or one is x and the other
c, then its output is labeled x. (3) If at least one input of the computational node is labeled y,
then the output is labeled y. Let M2 be the number of computational nodes with one input labeled
x and one input labeled y. By the same argument as in Lemma 1, M2 is bounded below by the
number of x inputs to these computational nodes, which is in turn bounded below by the dimension
d of the set B. �

Lemma 3 Under the assumptions of Model 3, the number M3 of m/d’s needed to compute
z = B(x) · y is at least dd/2e.

Proof: We want to upper bound the number of possibly different functions of x on which inter-
mediate results depend, as a function of the number of m/d’s. In particular, we care about terms
that depend both on x and y variables, i.e. we will say that x1 · y1 and x1 · y1 + x2 both depend on
one function of x, namely x1. This is because ultimately we want B(x) · y, a linear homogeneous
function of y, so until x2 is (possibly) multiplied by a term depending on y, we will not count
it. This means that we will count the introduction of a function of x only when a m/d occurs.
But it is possible that a m/d introduces dependencies on 2 different functions of x. For example,
(y1 + x1) · (y2 + x2) = y1 · y2 + y1 · x2 + y2 · x1 + x1 · x2 depends on both x1 and x2. In other words,
the number q of independent functions of x on which all the outputs can depend will be bounded
above by twice the number of m/d’s 2M3, which in turn is bounded below by d: 2M3 ≥ q ≥ d.

More formally, we may label and count all the nodes of the computational graph as follows. We
label the inputs of the computational graph of the program by one of c(onstant), x or y, and the
outputs of each computational node as described in the following table. Note that we introduce
a new label y+, to refer to intermediate results like y1 + x1 which are “carrying” a function of x
that could be counted in a subsequent operation. The integer associated with each operation is the
number of new functions of x on which the output could possibly depend.
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c x y y+

c m/d c 0 x 0 y 0 y+ 0
± c 0 x 0 y 0 y+ 0

x m/d x 0 x 0 y 1 y+ 1
± x 0 x 0 y+ 0 y+ 0

y m/d y 0 y 1 y 0 y 1
± y 0 y+ 0 y 0 y+ 0

y+ m/d y+ 0 y+ 1 y 1 y+ 2
± y+ 0 y+ 0 y+ 0 y+ 0

This table describes the counting argument in the first paragraph of this proof in more detail:
Note that no ± can introduce a dependence (the associated table entries are all zero), and the
largest integer is otherwise 2. After labeling the computational graph, we add all the integers
associated with node, which is at most 2M3. We note that cancellation is possible, eg subtracting a
y+ argument from itself yields the constant 0. But at worst this will overcount the possible number
of dependencies on functions of x that are introduced, which does not change validity of the lower
bound. �

We note that the use of unary operations like sqrt does not change the conclusions of Lemmas 2
or 3 because these cannot introduce any new dependencies (

√
z depends on the same functions of

x as does z).

2.2 Arithmetic lower bound on z = B(x) · y for algebraically related yi.

Suppose we want to compute a linear transformation z = B(x) · y where the entries of y are not
algebraically independent, but “independent enough” to be able to extract the bij(x) from z. For
example, if yi = ti where t is a single variable that is algebraically independent of x, then each
entry of z = B(x) · y is a polynomial in t with coefficients bij(x) that are uniquely determined by
z. Obviously many other choices of vectors y have this property. We now extend the lower bounds
of Models 2 and 3 to this situation.

Lemma 4 Assume that the function zi(x, y) =
∑n

j=1 bij(x) ·yi uniquely determines the coefficients
bij(x). Let d be the dimension of B as before. Then the number M4 of m/d/±’s needed to compute
z = B(x) · y is at least d.

Proof: The proof is nearly identical to that of Lemma 2. As before, the outputs of the compu-
tational nodes are labeled as follows: (1) If both inputs of the computational node are labeled c,
then its output is labeled c. (2) If both inputs of the computational node are labeled x, or one is
x and the other c, then its output is labeled x. (3) If at least one input of the computational node
is labeled y, then the output is labeled y. Let M4 be the number computational nodes with one
input labeled x and one input labeled y. By the same argument as in Lemma 2, M4 is bounded
below by the number of x inputs to this last set of computational nodes, which is in turn bounded
below by the dimension d of the set B. �

Similarly, Model 3 is extended as follows:

Lemma 5 Assume that the function zi(x, y) =
∑n

j=1 bij(x) ·yi uniquely determines the coefficients
bij(x). Let d be the dimension of B as before. Then the number M5 of m/d’s needed to compute
z = B(x) · y is at least dd/2e.
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2.3 Examples

Polynomial Evaluation. Computing z =
∑n

i=0 xit
i is a special case of our result.

Corollary 1 Under the assumptions of Model 2, the number of m/d/±’s needed to compute z =∑n
i=0 xit

i is at least n − 1. Under the assumptions of Model 3, the number of m/d’s needed to
compute z =

∑n
i=0 xit

i is at least dn/2e.

Proof: To apply Model 2, we consider
∑n

i=1 xit
i, i.e. we drop the i = 0 term. Then Lemma 4

applies immediately, and we get a lower bound of n m/d/±’s. Then clearly at least n− 1 m/d/±’s
are needed for

∑n
i=0 xit

i. Similarly for Model 3, the number of m/d needed to compute
∑n

i=1 xit
i

is dn/2e, and the same lower bound holds for
∑n

i=0 xit
i. �

In section 6 we compare this to prior results by Motzkin [29] and Pan [31], also described in
[43, 44].

Dense and Sparse Matrix-Vector Multiplication. We now apply Lemmas 1 through 3 to a
number of basic examples.

Corollary 2 Consider multiplying z = B ·y where B is a m-by-n matrix of nnz ≤ m·n algebraically
independent entries, the remaining m · n − nnz entries being zero (nnz is short for “number of
nonzeros”). Suppose the entries of y are also algebraically independent of one another and of B.
Then

• Under Model 1, nnz m/d’s are needed to compute z.

• Under Model 2, nnz m/d/±’s are needed to compute z.

• Under Model 3, dnnz/2e m/d’s are needed to compute z.

Proof: These results follow immediately from Lemmas 1 through 3, since B defines a manifold of
dimension nnz. �

We emphasize that the proof applies to a matrix B in the interior of the region where it
defines a manifold of dimension d. For example, if the algorithm checked for the special case of
B = 0, and returned z = 0 without doing any arithmetic (but nnz comparisons!) this would not
invalidate the result. (It is an open question as to whether counting comparisons in addition to the
usual arithmetic operations would eliminate this small set of exceptions.) Analogously, if B is any
constant matrix (like the DFT), so that d = 0, our lower bound is zero.

These lower bounds are attained (within a factor of 2) by the straightforward algorithm. We
note that the same lower bound and proof holds when computing z = A−1 · y or z = f(A) · y for
any f(A) that defines a manifold of dimension nnz. More generally, when f is not bijective, the
dimension of the manifold determined by f(A) depends both on f and the sparsity structure of A;
for example f(A) = A2 may be sparser than A, and even identically zero. These lower bounds are
generally not thought to be attainable except in special cases, for example z = A−1 ·y for triangular
A.

6



Low rank matrices.

Corollary 3 Consider multiplying z = B · y where B is a m-by-n matrix of rank k. Suppose y is
algebraically independent as before. Then

• Under Model 1, k(m + n− k) m/d’s are needed to compute z.

• Under Model 2, k(m + n− k) m/d/±’s are needed to compute z.

• Under Model 3, dk(m + n− k)/2e m/d’s are needed to compute z.

Proof: The dimension of the manifold defined by rank-k matrices of dimension m-by-n is k(m +
n − k), most easily derived by counting the number of independent nonzero entries in the LU
decomposition of such a matrix. The rest follows from Lemmas 1 through 3. �

We note that an algorithm that “attains” this bound in the counting arguments of Lemmas 1
through 3 would factor B = LU and then multiply B · y = L · (U · x). The counting arguments do
not count any of the work to compute the LU factorization. We return to the complexity of LU
factorization in the next section.

It is possible to get closer to the lower bound by using a randomized (Las Vegas-style) algorithm:
Given k, randomly choose k rows and k columns (or a few more for safety); suppose wlog that they
are the first k rows and columns. Factor B as

B =

[
B11 B12

B21 B22

]
=

[
B11

B21

]
·B−1

11 ·
[
B11 B12

]
where B11 is k-by-k and assumed nonsingular. Then one could straightforwardly multiply

B · y =

[
B11

B21

]
· (B−1

11 · (
[
B11 B12

]
· y))

in kn+ k3

3 +O(k2) +mk multiplications, which is close to the lower bound when k is small enough.
For a survey of randomized algorithms for matrix factorizations, see [18]. (Note that the above very
simple algorithm cannot always be guaranteed to run in expected polynomial time, for example if
B is very sparse.)

Structured matrices. Now we briefly discuss structured matrices, i.e. n-by-n matrices whose
entries depend on few, typically O(n), parameters. The literature on fast algorithms for such
matrices is large (eg [20, 11]) so we mention just a few examples. Vandermonde matrices are
given by Vij = xi−1

j , Cauchy matrices are given by Cij = 1/(xi + x̂j), and Toeplitz matrices
are given by Tij = xi−j . All three are examples of low displacement rank matrices [15], and
depend on n or 2n algebraically independent parameters. So by Lemmas 1 through 3, we need
Ω(n) operations to multiply them (or their inverses) by a vector. In fact there are O(n log n) or
O(n log2 n) algorithms for multiplying a vector by V , T , C or their inverses; see [17, 16, 1] for the
algorithms and generalizations.

In section 6 we compare these results to prior work of Winograd [43, 44].
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3 Lower bounds on matrix-matrix multiplication

As we said in the introduction, our goal is to give a complexity lower bound for “non-Strassen-like”
matrix operations like matrix multiplication C = A · B. In order to apply Models 1, 2 or 3 from
section 2, we need to make the following assumptions:

Assumption 0MM. The entries of A are algebraically independent of the entries of B.

Assumption 1MM. If i 6= j, columns i and j of B are algebraically independent.

Assumption 2MM. The only data used to compute column j of C are A and column j of B.

Assumption 0MM is a natural generalization of the assumption of the last section that x and y
are algebraically independent. Both Assumptions 0MM and 1MM are implied by the stronger
assumption that each (nonzero) entry of A and B is algebraically independent. Assumption 2MM

eliminates the possibility of Strassen-like algorithms. Assumption 2MM is implied by the stronger
assumption that each Cij is computed using only the data on which it mathematically depends,
namely the data needed to compute the i-th row of A and j-th column of B. Note that by
considering CT = BT · AT , Assumption 2MM can be modified to assume that the only data used
to compute row j of C are B and row j of A.

Let Costk(A, b) be the cost lower bound of multiplying A times b, according to Lemma k,
where k ∈ {1, 2, 3, 4, 5}. Note that Costk may be a lower bound on the number of different kinds
of operations, depending on k.

Theorem 1 Suppose we want to multiply C = A · B, where A is m-by-k, B is k-by-n, and C
is m-by-n. Then under Assumptions 0MM, 1MM and 2MM, and the further assumptions about the
algorithm of Lemma k, k ∈ {1, 2, 3, 4, 5}, the number of operations required to compute C = A · B
is at least

∑n
i=1Costk(A,B(:, i)).

Proof: It suffices to prove that the operations counted by Lemma k applied to A · B(:, i) are
disjoint, for all i, so we can simply add the lower bounds. In the proofs of Lemmas 1 through 5,
we only counted computational nodes whose outputs were labeled y (or yhomo). Recall that y is
a function of the vector being multiplied, or B(:, i) in this case. Thus the computational nodes
associated with different columns i and j have different labels, and can only be counted once, as
desired. �

It is easy to extend all the examples of section 2.3 to matrix-matrix multiplication, adding the
lower bounds for each column. For example, multiplying a sparse A with nnz nonzeros times an
n-by-m dense matrix B, where all entries are algebraically independent, costs at least m ·nnz m/d’s
using Model 1, and m ·dnnz/2e m/d’s using Model 3. The latter bound is attainable asymptotically
for dense matrices (see section 6).

More interesting is when B is sparse, because then Costk(A,B(:, i)) depends only on the di-
mension of the manifold defined by the columns of A that correspond to nonzero entries of B(:, i).
We return to this in the next section when we consider sparse LU decomposition.

Finally, we consider an example of n-by-n structured-matrix-matrix multiplication, say A · V
where each Aij is nonzero and algebraically independent, and V is Vandermonde: Vij = xi−1

j .
Here each column of V depends on the algebraically independent variable xj , so by Theorem 1 we
expect a lower bound of Ω(n3). But in fact we can compute A · V in O(n2 log2 n) operations, by
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instead computing each column of V T · AT as a product of a (transposed) Vandermonde matrix
and a column vector, i.e. evaluating a degree n − 1 polynomial at n points, which can be done
in O(n log2 n) operations, as mentioned in the previous section. In other words there is a big
advantage to not computing with each column of V independently, as assumed by Theorem 1.

4 Lower bounds on LU decomposition

We reduce this to the problem of matrix-multiplication as follows. Write

( i 1

i A11 A12

m− i A21 A22

)
=

( i m− i

i L11 0
m− i L21 I

)
·

( i 1

i U11 U12

m− i 0 S

)
where S is the Schur complement. Rewrite this as

( 1

i U12

m− i S

)
=

( i m− i

i L−1
11 0

m− i −A21 ·A−1
11 I

)
·

( 1

i A12

m− i A22

)

=

( i

i L−1
11

m− i −A21 ·A−1
11

)
·
( 1

i A12

)
+

( 1

i 0
m− i A22

)
≡ Xi ·A12 +

[
0

A22

]
(1)

In other words, computing the (i + 1)-st columns of the U factor and the Schur complement S
requires applying a linear operator Xi (which depends only on the first i columns of A) to a vector
A21 = A(1 : i, i + 1). To get a lower bound, we make assumptions analogous to those of the last
section:

Assumption 1LU Columns i and j of A are algebraically independent, for all i 6= j.

Assumption 2LU The only data used to compute column i of U and the Schur complement S will
be columns 1 through i of A, i.e. the data on which U and S mathematically depends.

Theorem 2 Suppose we compute the LU decomposition (with or without row pivoting) of the m-
by-n matrix A, where m ≥ n. Then

• if LU does not complete early because the matrix is not full rank,

• under Assumptions 1LU and 2LU, and

• under the further assumptions about the algorithm of Lemma k, k ∈ {1, 2, 3, 4, 5},

the number of operations required to compute L and U is at least

n−1∑
i=1

Costk(Xi, A(1 : i, i + 1))

where Xi is defined in equation (1).
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To apply this theorem when each A(1 : i, i + 1) is dense, we need to compute the dimension of
the manifold defined by the matrix Xi. When A(1 : i, i + 1) is sparse, so that only some columns
of Xi are needed, it is the dimension of the manifold they determine that we need.

4.1 Examples

We start with the simplest possible example, to make sure that our lower bound make sense in an
extreme case:

Corollary 4 Suppose A is upper triangular or lower triangular. Then at least 0 operations are
needed to compute its LU factorization.

Proof: When A is upper triangular, the matrix Xi is constant (the first i columns of the iden-
tity matrix) and so defines a manifold of dimension 0. When A is lower triangular, the vector
A(1 : i, i + 1) is zero, and again the cost of multiplying by it is 0. �

The next example is more interesting:

Corollary 5 Suppose A is a dense, nonsingular n-by-n matrix whose entries are all algebraically
independent. Then under Assumption 2LU, and the further assumptions about the algorithm of
Model k, k ∈ {1, 2}, the cost of computing L and U in A = LU is at least n3

3 −
n2

2 + n
6 . Under

Assumption 2LU and the further assumptions of Model 3, the cost of computing L and U in A = LU
is at least 1

2(n
3

3 −
n2

2 + n
6 ).

Proof: We need to compute the dimension of the manifold defined by the matrix in equation (1).
Since A11 consists of i2 algebraically independent parameters, the subdiagonal entries of unit lower
triangular matrix L11 can take on arbitrary values, so it defines a manifold of dimension i(i− 1)/2.
A21 consists of another i(n − i) free parameters, so A21A

−1
11 can also takes on arbitrary values,

leading to a total dimension of i(i − 1)/2 + i(n − i). Summing i(i − 1)/2 + i(n − i) from i = 1 to
n− 1 yields the result. �

Applying this corollary for Model k = 1, we get a lower bound of n3

3 −
n2

2 + n
6 multiplications and

divisions to compute the LU decomposition of a dense n-by-n matrix. This is exactly how many
multiplications conventional Gaussian Elimination performs, excluding dividing the left column of
the Schur complement by the pivot at each step. Note that our lower bound does not include this
cost of scaling the Schur complement to get L.

Corollary 6 Let A be an n-by-n nonsingular matrix with bandwidth b, i.e. there are b nonzero
diagonals above and below the main diagonal. Then assuming that all the entries of A within the
band are algebraically independent, that we do not pivot, that Assumption 2LU holds, and under the
further assumptions about the algorithm of Model k, k ∈ {1, 2, 3}, the number of operations required
to compute L and U in A = LU is at least nb2 −O(b3).

Proof: Computing

Costk(

( i

i L−1
11

n− i −A21 ·A−1
11

)
, A(1 : i, i + 1))

must be done slightly differently than before, to take the sparsity of A(1 : i, i + 1) into account:
We only need to compute the dimension of the columns of the n-by-i matrix Xi which correspond
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to nonzero entries of A(1 : i, i + 1). Excluding the first b steps of the process, the relevant nonzero
entries are A(i− b + 1 : i, i + 1) i.e. the rightmost b columns of Xi. To make it easier to count the
dimension of the manifold defined by these columns, we write Xi = [L−1

11 ;−L21 · L−1
11 ], to make it

easier to see that the dimension is the sum of the free parameters in L−1
11 , namely b(b + 1)/2, plus

the number of free parameters in L21, also b(b + 1)/2, since L21 is upper triangular. Altogether
there are b(b+ 1) free parameters, and summing from i = b to n, we get nb2−O(b3) as claimed. �

Again, nb2 + O(b3) is the number of multiplications actually performed by conventional band
Gaussian elimination.

One can imagine applying Theorem 2 for an arbitrary sparsity structure. In general, fill-in
(which does not occur in the above example of band matrices without pivoting) will cause more
operations to be performed than the lower bound.

To illustrate the potential gap between the lower bound and conventional sparse LU, and how
this suggests better algorithms, we consider two examples.

LU of an Arrow Matrix. This n-by-n matrix has nonzeros only on the main diagonal, first
row and first column. Thus the first step of Gaussian elimination causes the entire matrix to fill-in,
and remain filled in throughout the rest of the algorithm, thus doing as much work as on a dense
matrix, n3/3 multiplications.

Let us evaluate the lower bound from Theorem 2: Since A(1 : i, i+ 1) is only nonzero in its first
entry, we only care about the dimension of the manifold defined by the first column of Xi, namely
n− 1. Thus the lower bound is (n− 1)2, much smaller than n3/3.

But the lower bound is (nearly) attainable, by an algorithm that appropriately exploits the spar-
sity structure of the original matrix, which guarantees that every off diagonal block
L(i : n, 1 : i − 1) of L or off diagonal block U(1 : i − 1, i : n) of U is rank-one. This suggests
the following algorithm, which starts by computing rank-1 representations of subdiagonal entries
of Lij = c(i) · y(j) and superdiagonal entries of Ui,j = x(i) · r(j):

... LU factorization of an arrow matrix in O(n2) operations

... inputs:

... d(1:n) = diagonal of A

... r(2:n) = A(1,2:n) = first row of A

... c(2:n) = A(2:n,1) = first column of A
DU(1) = d(1), x(1) = 1, y(1) = 1/d(1), s(1) = y(1),
for i=2:n,

DU(i) = d(i) - c(i)*r(i)*s(i-1),
x(i) = -c(i)*s(i-1),
y(i) = -r(i)*s(i-1)/DU(i),
s(i) = s(i-1) + x(i)*y(i),

end for
U(1,1) = DU(1),
for i=2:n,

U(i,i) = DU(i),
for j=1:i-1,

L(i,j) = c(i)*y(j),
U(j,i) = r(i)*x(j),

11



end for
end for

Clearly, if we had only computed the rank-1 representations of L and U , the cost would have
dropped to O(n), but as long as we ask for an explicit representation of the dense matrices L and
U , the lower bound must be Ω(n2).

LU of a Broken Arrow Matrix. This n-by-n matrix is nearly the same as the last example,
except that A(2, 2) = 0. One may confirm that A is still generically nonsingular, and there is perfect
cancellation when computing the subdiagonal entries of L in columns 3:n-1, so they are identically
zero. Similarly the superdiagonal columns of U in rows 3:n-1 are also identically zero. This follows
from the fact that if the 3rd through n-th diagonal entries of A were also zero, A would have rank
2, so the first two steps of Gaussian elimination would result in the trailing (n−2)-by-(n−2) Schur
complement being identically zero. For the general broken arrow matrix, this means that after
the first two steps of Gaussian elimination, the Schur complement simply consists of the original
diagonal submatrix of A, and no further work is required to factor it.

In other words, we can simply alter the above algorithm for the arrow matrix by stopping after
two steps, lowering the cost to O(n). Let us confirm that our lower bound similarly drops to Ω(n):
One may confirm that the first column of the Xi matrix is nonzero only in its first 2 entries, and
so defines a manifold of dimension at most 2, so the sum of all these dimensions is at most 2n.

Of course the ordering of rows and columns for the above examples is pessimal, maximizing
the fill in. Reversing the order of rows and columns of the arrow matrix results in no fill-in during
conventional sparse LU factorization, and so a linear time algorithm. Nevertheless, these examples
motivate us to compare the lower bound to the work done by sparse solvers on other sparse matrices
of interest.

LU of a Vandermonde matrix. A Vandermonde matrix with entries Vij = xi−1
j has alge-

braically independent columns, each of which depends on a single parameter xj . Because of the
structure of each column, Lemma 4 can be used to bound Costk(Xi, V (1 : i, i + 1)) below. Since
Xi only depends on i parameters x1, ..., xi, we get that this cost is i, making the total lower bound∑n−1

i=1 i = n(n + 1)/2. See [20] for a survey of algorithms and their generalizations that attain this
bound.

5 Lower bounds on QR Decomposition

Let A = Q · R be the QR decomposition of A, where A is m-by-n with m ≥ n, Q is m-by-n, and
R is n-by-n. Then R = QT · A, and so R(1 : i, i + 1) = (Q(:, 1 : i))T · A(:, i + 1). Here we consider
only versions of QR that form R in this (potentially numerically stable) way, by multiplying part
of Q in some explicit or implicit way by trailing columns of A, i.e. we exclude forming R by the
Cholesky factor of ATA (to which our previous lower bounds may be applied). In other words,
the top i entries of column i of R are gotten by applying a linear operator (Q(:, 1 : i))T , that only
depends on the first i columns of A, to the (i + 1)-st column of A.

This is all we need to apply our previous techniques to get a lower bound on part of the QR
decomposition, which is then also a lower bound on the entire decomposition:
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Theorem 3 If A is m-by-n with m ≥ n, and

1. Columns i and j of A are algebraically independent for i 6= j;

2. The only data use to compute column i of R will be columns 1 through i of A, i.e. the data
on which R mathematically depends;

3. QR does not complete early because the matrix is not full rank; and

4. under the further assumptions about the algorithm of Lemma k, k ∈ {1, 2, 3, 4, 5},

the cost computing R is at least

n−1∑
i=1

Costk((Q(:, 1 : i))T , A(1 : i, i + 1))

The proof is analogous to that of Theorems 1 and 2.
We illustrate just for the case of dense matrices:

Corollary 7 Suppose A is m-by-n and dense, with m ≥ n, and all algebraically independent en-
tries. Then the cost to compute R is at least (3mn2−n3− 3mn+n)/6 m/d/±’s, and half as many
m/d’s.

Proof: The dimension of the real Stiefel manifold [14, 39] defined by the m-by-i orthogonal matrix
Q(:, 1 : i) is mi− i(i + 1)/2. Summing from i = 1 to n− 1 yields the desired bound. �

Since we are only bounding the number of operations to compute R, this bound underestimates
the number of multiplications in conventional algorithms by a factor of 2. Since there are a large
number of implicit ways to represent Q (eg Householder and Givens rotations blocked in a variety
of ways) as well as explicit, it appears difficult to state general lower bounds without further
assumptions on the representation.

6 Related Work

Besides Klyuev and Kokovkin-Shcherbak [21, 22], work close in spirit to ours is due to Winograd
[43, 44]. Theorem 1 in [43] gives a lower bound u on m/d’s for Φ · y (we have changed his notation
slightly to match our own B(x) ·y and so avoid confusion). Here Φ is an m-by-n matrix with entries
in the infinite field F , which contains the infinite subfield G ⊂ F . For example, F could be rational
functions of x over R, and G could be R. Winograd’s lower bound u is related to the notion of
column rank: u is the largest number of columns of Φ such that no nontrivial linear combination of
them over G is in Gm. In our case, that would mean the largest number of columns of B(x) such
that no linear combination of them with coefficients from R lies in Rm.

We see that Winograd’s lower bound u is a related concept to the dimension of the manifold
d defined by all the entries of Φ, but can be arbitrarily smaller, i.e. weaker than our bound. In
particular u ≤ n, whereas the dimension of the manifold can be as large as mn.

Winograd goes on in Corollary 2 to analyze X · y, by rewriting it as X · y = Φ · z, where z is
mn-by-1, containing the rows of X stacked from top to bottom, and Φ is m-by-mn and sparse with
copies of yT on each row arranged so that X · y = Φ · z. Assuming that the yi are algebraically
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independent, Corollary 2 says the lower bound u from Theorem 1 is mn, the expected answer.
But apparently left unstated is the assumption that the entries of X are algebraically independent
(enough), since otherwise we know we can compute X · y much faster.

Pan [31] and Motzkin [29] both consider polynomial evaluation
∑n

i=0 xit
i, which can be thought

of as the matrix-vector product [x0, ..., xn] · [1, t, ..., tn]T . Pan’s lower bound on m/d’s is n (attained
by Horner’s rule), and Motzkin’s is d(n+1)/2e. Motzkin’s bound is also attainable, because Motzkin
does not count operations required for “preconditioning of coefficients” [43], i.e. operations involving
only the xi variables.

Our lower bound from Corollary 1 on m/d’s is dn/2e. Note that our proof also does not
count operations that only combine expressions depending on x, i.e. “preconditioning”. This also
generalizes and strengthens Theorem 2 in [43], replacing the lower bound du/2e by dd/2e.

As another example of preconditioning, our lower bound is n3/2 m/d’s for dense n-by-n matrix
multiplication using Model 3, half the standard algorithm. An algorithm using n3/2+O(n2) m/d’s
is given in [43, section 5].

There is of course a great deal of other related work on arithmetic lower bounds, for a variety
of different problems (eg. matrix multiplication, DFTs, convolutions, multiplying polynomials, and
dividing polynomials with remainder), with a variety of assumptions about the algorithms (eg.
bilinear circuits, bounded coefficients) [35, 10, 3, 27, 28, 13, 12, 26, 24, 30, 33, 41, 8, 23, 9, 5, 4, 6,
38, 19, 36, 32, 37, 25]. For example, by assuming bounded coefficients in the algorithm, [35] shows a
lower bound of Ω(n2 log n) for matrix multiplication, and [10] shows a lower bound of Ω(n log n) for
multiplying and dividing polynomials with remainder. In general, our computational model is less
restrictive than this other work by making no assumptions about constants, more restrictive in the
sense of excluding “Strassen-like” algorithms, and correspondingly provides larger lower bounds.

7 Conclusions and Open Problems

We have reasoned using the dimensions of manifolds to provide lower bounds on the number of
arithmetic operations required to perform a variety of linear algebra operations, including matrix
multiplication, LU factorization and QR factorization. By assuming that the computation only
uses the data on which the answer mathematically depends (an apparently reasonable assumption,
but violated by fast algorithms like Strassen’s method), we show that conventional dense algorithms
are optimal, or within a constant of optimal.

Our bounds extend naturally to symmetric matrix factorizations such as Cholesky by consid-
ering the formulation that only accesses the upper triangular part of the matrix.

Our bounds extend to sparse and structured matrices (like Vandermonde matrices) where al-
gorithms like Strassen’s may not provide useful speedups. Our lower bounds are more complicated
functions of the sparsity and structure than the general dense case, and provide metrics by which
to evaluate existing algorithms. We illustrated this by some (extremely) sparse examples where the
lower bounds were significantly lower than what a sparse solver would do (given a fixed, and poor,
row and column ordering), and presented algorithms that did attain the lower bounds.

There are a number of open problems this work suggests:

• We should compare our lower bounds to the work done by conventional sparse solvers on other
sparse matrices of interest, with better ordering of rows and columns; if the work performed
greatly exceeds the lower bound, this provides motivation to look for a better algorithm.
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• We illustrated our lower bounds for the simplest cases of structured matrices (Toeplitz, Van-
dermonde and Cauchy), and showed they were attainable (modulo polylogarithmic factors).
There are many more kinds of structured matrices to which our bounds could be applied, and
compare to available algorithms. In particular, we need to generalize our assumption about
the algebraic independence of matrix columns (true for Vandermonde, but not Toeplitz) in
order to extend our lower bounds to the factorization of more such structured matrices.

• Our examples of arrow matrices are special cases of hierarchically semiseparable (HSS) ma-
trices [7], which have the property that off-diagonal blocks have low rank. There has been a
great deal of recent work in developing fast solvers for such matrices. Again, these matrices
do not satisfy our assumption that columns are algebraically independent, so it would again
be of interest to modify this assumption to accommodate HSS matrices.

• We only gave one illustration of our lower bound for dense QR factorization. The above
proposed extensions to sparse and structured LU also apply to QR.

Finally, we note that it is possible to prove lower bounds on communication, i.e. data movement,
which are proportional to the number of arithmetic operations performed [2]. Data movement is
increasingly important because it is much more expensive than arithmetic. Thus our lower bounds
on arithmetic, combined with results in [2], also provide lower bounds on communication for any
algorithm satisfying the assumptions in this paper.
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