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Communication-Avoiding Symmetric-Indefinite Factorization

GREY BALLARD1, DULCENEIA BECKER2, JAMES DEMMEL1, JACK DONGARRA2,3,4, ALEX
DRUINSKY5, INON PELED5, ODED SCHWARTZ1, SIVAN TOLEDO5, AND ICHITARO YAMAZAKI2

Abstract. We describe and analyze a novel symmetric triangular factorization algorithm.
The algorithm is essentially a block version of Aasen’s triangular tridiagonalization. It fac-
tors a dense symmetric matrix A as the product A = PLTLTPT where P is a permutation
matrix, L is lower triangular, and T is block tridiagonal and banded. The algorithm is the
first symmetric-indefinite communication-avoiding factorization: it performs an asymptot-
ically optimal amount of communication in a two-level memory hierarchy for almost any
cache-line size. Adaptations of the algorithm to parallel computers are likely to be com-
munication efficient as well; one such adaptation has been recently published. The current
paper describes the algorithm, proves that it is numerically stable, and proves that it is
communication optimal.

1. Introduction

The running time of algorithms is mostly determined by the amount of arithmetic (or
other primitive data transformations) and by the amount and types of data movements that
are required. Early analyses of algorithms focused on the amount of arithmetic and early
algorithmic optimizations focused on attempts to reduce this amount. These analyses are
good predictors of actual running times only on computers with a flat fine-grained memory,
in which bringing a word to an arithmetic unit costs about the same for all words.

Modern computers have multiple processors and memory systems that are far from flat
and fine-grained. These architectural features have been used for decades now, but their
effect on running times is becoming more and more significant [2]. In particular, communi-
cation between nodes in distributed-memory computers and communication between levels
in memory hierarchies have become major determinants of performance.

The focus of this paper is a symmetric factorization algorithm that minimizes these com-
munication costs. The algorithm is a block variant of Aasen’s triangular tridiagonalization
algorithm [1]. We designed the algorithm so that it can be implemented by a sequence of op-
erations, each involving a constant number of b-by-b index-contiguous submatrices (blocks),
where b is a tunable parameter. Most of these block operations perform Θ(b3) arithmetic
operations, which implies that the computation to communication ratio of the algorithm is
Θ(b). Furthermore, since blocks are always contiguous in the row/column index space, they
can be stored contiguously in memory, implying that each block operation only requires O(1)
data transfers that move Θ(b2) words, which we refer to as messages.
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Matrix algorithms with such a structure usually perform well when implemented on se-
quential or shared-memory parallel computers. They can usually be adapted to distributed-
memory parallel computers, but these adaptations are often intricate and far from trivial.
The focus of this paper is on the block algorithm and its memory-hierarchy performance. A
companion conference paper [4] described a shared-memory parallel implementation and its
performance.1 We do not discuss distributed-memory parallelization in this paper.

Models of Computation and Communication. Many computational models have been used
in the literature for analyzing the communication efficiency of algorithms [9, 12, 17, 31, 32,
33]. In this paper we use a model that includes a processor connected to a fast memory
containing M words that is too small to store all the algorithm’s data structures. Data
structures that do not fit within fast memory are stored in a slower, larger memory. Data
transfers between the two memories occur in groups of nCL contiguous aligned words (cache
lines). Some algorithms are efficient only when cache lines are short (the so-called tall-cache
assumption [12]). Because our algorithm transfers data using messages that each transfers
Θ(b2) contiguous words and because we can choose b, our algorithm does not rely on such
assumptions. If we choose b = Θ(

√
M), the algorithm is efficient even when nCL is close

to M ; more formally, we assume only that M = cnCL where c ≥ 4. Algorithms that are
asymptotically optimal in terms of the amount of data transferred between these memories
are called communication-avoiding [5] (there is also a generalization for distributed-memory
computations that we do not use in this paper). Algorithms that are efficient in this model
are also efficient when cache lines are small (nCL is small), and they do not depend on a
fully-associative cache; a 4-way set associative cache is sufficient.

Factorizations of Symmetric Indefinite Matrices. Aasen’s algorithm [1] factors
A = P TLTLTP ,

where P is a permutation matrix selected for numerical stability, L is lower triangular (with
ones on the diagonal and |Lij| ≤ 1), and T is symmetric and tridiagonal. The algorithm
performs n3/3+o(n3) arithmetic operations; it improves upon an earlier algorithm by Parlett
and Reid that computes the same factorization in 2n3/3 + o(n3) operations [22]. Neither
algorithm is used extensively; a few years later Kaufman and Bunch discovered a similar
factorization that proved to be more popular, one in which the tridiagonal T is replaced by
a matrix that is block diagonal with 2-by-2 and 1-by-1 blocks [8].

Like other early factorizations, the algorithms of Aasen and of Parlett and Reid are not
communication efficient even for very simple memory hierarchies. If M < n2/8, both algo-
rithms transfer Θ(n3) words between fast and slow memory (even if cache lines are short).
This is very inefficient. An implementation of the Bunch-Kaufman factorization that trans-
fers only O(min(n3, n2

M
·n2) = O(n4/M) words was later discovered2, and this implementation

was included in LAPACK [3]. More recently, Rozlozník, Shklarski and Toledo discovered
how to compute the Parlett-Reid-Aasen factorization with the same communication effi-
ciency [25].

1The main contributions of this paper relative to the companion conference paper [4] are complete nu-
merical and complexity analyses of the algorithm; these did not appear in the conference paper.

2The O(n4/M) bound is attained when M ≥ n. In this regime, the algorithm factors panels of roughly
M/n columns. Updating a trailing submatrix of dimension Θ(n) after the factorization of Θ(n/(M/n)) such
panels transfers Θ(n4/M) words. When M < n, the algorithm transfers O(n3) words; in this regime the fast
memory has no significant beneficial effect.
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In this paper, we describe and analyze a stable symmetric factorization algorithm that is
communication avoiding; it generates O(n3/

√
M) cache misses even for nCL = Θ(M). In

terms of communication, this is much more efficient than any existing symmetric indefinite
factorization. However, the algorithm produces a T that is banded rather than tridiagonal.
To achieve this communication efficiency, the half bandwidth of T is Θ(

√
M). We also show

that the resulting T can be factored further in a way that is communication-avoiding, and
the resulting factorization allows linear systems of equations to be solved quickly.

Our algorithm is fundamentally a block version of Aasen’s algorithm. While the method-
ology of producing block matrix algorithms from element-by-element algorithms is well un-
derstood, applying it to this case proved to be challenging. The first block Aasen algorithm
that we designed proved highly unstable. In Aasen’s original algorithm, diagonal elements
of T are computed by solving a scalar equation. In the block version, this scalar equation
transforms into a linear system of equations whose solution is a diagonal block of T , which
is symmetric. But the system itself is unsymmetric and the symmetry of the solution is
implicit. When the system is solved in floating-point arithmetic, the computed block of T
can have a non-negligible skew-symmetric component in addition to its symmetric part, and
this excites an instability. To address this difficulty, we designed an algorithm that produces
a symmetric T even in floating point.

The rest of the paper is organized as follows. We present the algorithm in Section 2.
Section 3 analyzes the stability of the algorithm, and Section 4 its computation and com-
munication complexity. We present a communication lower bound for the algorithm in Sec-
tion 5; this lower bound, along with the upper bound presented in Section 4, establishes the
asymptotic communication optimality of the algorithm. Numerical experiments presented in
Section 6 provide additional insights into the behavior of the algorithm. Section 7 presents
our conclusions from this research.

2. The Algorithm

To keep the notation simple, we initially ignore pivoting in the description of the algorithm.
The algorithm factors the n-by-n matrix A into

A = LTLT ,

where L is unit lower triangular and T is symmetric and banded with half bandwidth b (i.e.,
Tij = 0 if |i− j| > b). The algorithm processes the matrices in aligned blocks of size b-by-b
(except for the trailing blocks which might be smaller). The algorithm is a block version of
Aasen’s algorithm, so we view T as a block tridiagonal matrix with triangular blocks in the
positions immediately adjacent to the main diagonal.

To describe the algorithm we must specify three auxiliary matrices. The first is a block
upper-triangular matrix with symmetric diagonal blocks R that we require to satisfy

RT +R = T .

The blocks above the diagonal in R are the same as the corresponding blocks in T , the
diagonal blocks of R are scaled copies of those of T (with scaling 1/2), and the subdiagonal
blocks in R are zero (unlike in T , which is symmetric). The other two matrices are denoted
by W and H and are required to satisfy

W = RLT

H = TLT .
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W R L
T

 =

Figure 2.1. An illustration of computing superdiagonal blocks of W via ma-
trix multiplication in Equation (AA1). Here N = 6 and J = 4. The blocks
that participate in the equation are enclosed in thick rectangles, and the blocks
that are computed using this equation are crossed. The same notation is used
in other diagrams in this section.

Aasen’s original algorithm also computes H (forming it was the key step that allowed Aasen
to eliminate half the arithmetic operations from Parlett and Reid’s algorithm), but it does
not compute W .

We present the algorithm in the form of block-matrix equations each of which defines one
or two sets of blocks in these matrices. The blocks that are computed from each equation
are underlined. We use capital I and capital J to denote block indices, and we denote
the block dimension of all the matrices by N = dn/be. We denote blocks of matrices
using indexed notation with block indices. For example, the submatrix that is specified by
A1+(I−1)b:Ib,1+(J−1)b:Jb in scalar-index colon notation is denoted AI,J .

The initialization step of the algorithm assigns

L1:N,1 = (identity matrix)1:N,1 .

That is, the first b columns of L have ones on the diagonal and zeros everywhere else. After
this initialization, the algorithm computes a block column of each of the matrices in every
step. Step J computes column J + 1 of L and columns J of T , H, and W (diagonal blocks
of W are never needed so they are not computed) according to the formulas:

W1:J−1,J = R1:J−1,1:J(LJ,1:J)T(AA1)
AJ,J = LJ,1:J−1W1:J−1,J + (W1:J−1,J)T (LJ,1:J−1)T + LJ,JTJ,J(LJ,J)T(AA2)
H1:J,J = T1:J,1:J(LJ,1:J)T(AA3)

AJ+1:N,J = LJ+1:N,1:JH1:J,J + LJ+1:N,J+1 HJ+1,J(AA4)
HJ+1,J = TJ+1,J(LJ,J)T .(AA5)

2.1. Correctness. We now show that the algorithm is correct. Verifying that the blocks
that are computed in each equation only depend on blocks that are already known is trivial.
Therefore, we focus on showing that A = LTLT whenever L and T are computed in exact
arithmetic. The analysis also constitutes a more detailed presentation of the algorithm.

Equation (AA1) computes a column of W by multiplying two submatrices, using the
equation W = RLT , as shown in Figure 2.1. This guarantees that WI,J = (RLT )I,J for
all I < J . The diagonal blocks of W are not computed and we define for convenience
WJ,J = (RLT )J,J for all J . Because all other blocks of W and RLT are zero, W = RLT .
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W R L
T

 =

Figure 2.2. An expression for the diagonal blocks of W .

Equation (AA2) computes a diagonal block of T by solving a two-sided triangular linear
system. This linear system can be solved by one of the existing solvers which we describe
below. The right-hand side matrix in this system,

AJ,J − LJ,1:J−1W1:J−1,J − (LJ,1:J−1W1:J−1,J)T ,

must be computed symmetrically; this is done using the BLAS routine syr2k [11]. The
equation guarantees that

AJ,J = LJ,1:J−1W1:J−1,J + (LJ,1:J−1W1:J−1,J)T + LJ,JTJ,J(LJ,J)T .

By noting that
LJ,JTJ,J(LJ,J)T = LJ,J(RJ,J + (RJ,J)T )(LJ,J)T

= LJ,JRJ,J(LJ,J)T + (LJ,JRJ,J(LJ,J)T )T

and that the diagonal blocks of W = RLT are WJ,J = RJ,J(LJ,J)T , as shown in Figure 2.2,
we can transform (AA2) into

AJ,J = LJ,1:J−1W1:J−1,J + (LJ,1:J−1W1:J−1,J)T + LJ,JWJ,J + (LJ,JWJ,J)T

= LJ,1:JW1:J,J + (LJ,1:JW1:J,J)T

= (LW + (LW )T )J,J .

Substituting W = RLT we obtain
AJ,J = (LRLT + (LRLT )T )J,J

= (L(R +RT )LT )J,J

= (LTLT )J,J .

Equation (AA3) computes a block column of H, except for the subdiagonal block, by
multiplying matrices, as shown in Figure 2.4. Equation (AA4) multiplies blocks of L and
H, subtracts the product from a block of A, and factors the difference using an LU factor-
ization. Equation (AA5) solves a triangular linear system with a triangular right-hand side
to compute a subdiagonal block of T .

Equations (AA3) and (AA5) guarantee that HI,J = (TLT )I,J for all I ≤ J and for all
I = J + 1 respectively, and because all other blocks of H and TLT are zero, H = TLT .
Equation (AA4) makes sure that AI,J = (LH)I,J for all I > J , and substituting H = TLT

shows that AI,J = (LTLT )I,J for all I > J . Because both A and LTLT are symmetric, this
holds for all I < J as well and thus A = LTLT .
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A L W

 =

WT LT

 +

L LTT

+

Figure 2.3. Computing a diagonal block of T in Equation (AA2) by updating
the corresponding block of A and solving a two-sided triangular system. The
letters below each matrix describe only the matrices involved in the expression
for AJ,J ; they do not constitute a matrix equation.

H T L
T

 =

Figure 2.4. Computing blocks of H via matrix multiplication in Equation (AA3).

A L H

 =

Figure 2.5. Computing a block column of L and a subdiagonal block of H
in Equation (AA4) via the LU factorization of an updated submatrix of A.

2.2. Solving Two-Sided Triangular Linear Systems. We now describe the procedure
that solves the two-sided triangular linear system in Equation (AA2). The method is not
new; it is used to reduce symmetric generalized eigenproblems to standard eigenproblems
and is available in LAPACK and ScaLAPACK under the name sygst [7, 27]. Even though
we are focused on sygst in this paper, other solvers that produce a symmetric solution
would also be suitable for the task. Examples of such solvers are the subroutine reduc
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H T L
T

 =

Figure 2.6. Computing a block of T by solving a triangular system in Equation (AA5).

in EISPACK [21, 28] and the algorithms implemented in the Elemental library [23, 24].
Because we apply the solver to block-sized problems, its flops and communications costs do
not have a substantial impact on the overall costs of the algorithm. The stability of the
solver is important, but as long as it satisfies a bound similar to the one we prove for sygst
in Section 3, the impact on the overall algorithm is limited to the size of the constant in the
backward stability bound.

To the best of our knowledge the stability of sygst has not been previously analyzed.
In order to analyze the algorithm we will now describe the relevant details of how it works.
The equation that defines TJ,J is of the form LXLT = B with a symmetric right-hand side
B.3 A trivial way to solve such systems is using a conventional triangular solver twice. That
is, to first solve for L−1B and to then solve for X = (L−1B)L−T . This method produces a
solution X that is not exactly symmetric, and is thus not suitable for use in the block Aasen
algorithm. Another approach, which leads to an exactly symmetric X and which performs
only half the arithmetic, is an algorithm that we now describe. We partition all of the
matrices that we introduce in this section such that they are all 2-by-2 block matrices with
first diagonal blocks of dimensions b-by-b and second diagonal blocks of dimensions (n− b)-
by-(n−b). To describe the algorithm we must define an auxiliary matrix Y , which we require
to be a block upper triangular matrix with symmetric diagonal blocks that satisfies

X = Y T + Y .

Such a matrix must have the form Y11 Y12

Y21 Y22

 =
 0.5X11 X12

0 0.5X22

 .

We also need two additional auxiliary matrices H and W , which we will require to satisfy

H = XLT , W = Y LT .

3This section uses self-contained notation, for simplicity. The matrix that we call L here is a diagonal block
of the lower-triangular factor in the overall block Aasen factorization. In addition, the auxiliary matrices H
and W , the dimension of the problem n and the block size b, all of which we define later in this section, are
also distinct.
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B

=

L
T

L X

Figure 2.7. Computing the first diagonal block of X by solving a smaller
two-sided triangular system in Step (ST1).

B

=

L H

Figure 2.8. Solving a triangular system to compute the superdiagonal block
of H in Step (ST2).

The algorithm works by solving for the underlined blocks in the following equations:
B11 = L11X11(L11)T(ST1)
B12 = L11H12(ST2)
H12 = 0.5X11(L21)T +W12(ST3)
W12 = 0.5X11(L21)T +X12(L22)T(ST4)
B22 = L21W12 + (L21W12)T + L22X22(L22)T .(ST5)

The key in this algorithm is to compute B22 − L21W12 − (L21W12)T in (ST5) symmetri-
cally, which allows the algorithm to compute X22 symmetrically as well. Note that the
block 0.5X11(L21)T is computed twice; the algorithm trades off additional computation for
a reduction in workspace requirements.

We derived the equations in (ST1)–(ST5) by considering specific blocks of the equations
B = LXLT , B = LH , B = LW + (LW )T , H = Y TLT +W , W = Y LT .

The derivation is described by diagrams in Figures 2.7–2.11.
We will now verify the correctness of the algorithm, meaning that LXLT = B whenever

X is computed in exact arithmetic. The algorithm computes the diagonal and superdiagonal
blocks of X and the superdiagonal blocks of H and W . The subdiagonal block of X is not
computed because X is symmetric and thus that block is not needed. The diagonal and
subdiagonal blocks of H and W are also not computed, and thus we are free to define them
so that our notation is simplified. We define the uncomputed blocks of H and W such that
the corresponding blocks of the equations H = XLT and W = Y LT hold.

We start by verifying that (LXLT )12 = B12. Step (ST4) makes sure that W12 = (Y LT )12
and thus W = Y LT , due to the way we defined the uncomputed blocks of W . Step (ST3)
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H

=

LT

+

WYT

Figure 2.9. Computing the superdiagonal block of W in Step (ST3) by up-
dating the corresponding block of H.

W

=

LTY

Figure 2.10. Computing the superdiagonal block of Y in Step (ST4) by
updating the corresponding block of W and solving a triangular system.

+

B

= +

LTL W WT

LTL X

Figure 2.11. Computing the second diagonal block of X in Step (ST5) by
updating the corresponding block of B and solving a smaller two-sided trian-
gular system.

guarantees that H12 = (Y TLT + W )12. Substituting W = Y LT and noting that Y TLT +
Y LT = XLT shows that H12 = (XLT )12 and thus H = XLT , again due to our definition
of the uncomputed blocks of H. Finally, Step (ST2) makes sure that B12 = (LH)12, and
substituting H = XLT shows that B12 = (LXLT )12.
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Next we verify that (LXLT )22 = B22 by transforming the equation in Step (ST5):
B22 = L21W12 + (L21W12)T + L22X22(L22)T

= L21W12 + (L21W12)T + L22Y22(L22)T + (L22Y22(L22)T )T

= L21W12 + (L21W12)T + L22W22 + (L22W22)T

= (LW + (LW )T )22

= (LY LT + LY TLT )22

= (L(Y + Y T )LT )22

= (LXLT )22 .

Finally, Step (ST1) explicitly makes sure that (LXLT )11 = B11 and thus LXLT = B.
We did not specify the dimensions of the blocks; different choices yield different algorithms.

If we choose b = 1, we end up with an algorithm that computes the columns of X one at
a time, in which (ST5) iterates over remaining columns. This version is called sygs2 in
LAPACK and ScaLAPACK. The costs in this partitioning are dominated by the triangular
solve in (ST4) and the symmetric update in (ST5) which require (n− i)2 and 2(n− i)2 flops,
respectively. Thus, the leading term in flop cost is given by

F1(n) =
n−1∑
i=1

3(n− i)2 = 3
n−1∑
i=1

i2 = n3 + o(n3) .

If instead of b = 1 we choose some fixed b > 1, we obtain sygst, which works by computing
a total of b columns of X at a time. Step (ST1) here corresponds to a call to sygs2 and
Step (ST5) iterates over remaining block columns. As long as n � b, the costs are again
dominated by the triangular solve in (ST4) and the symmetric update in (ST5) which require
(n− ib)2b and 2(n− ib)2b flops, respectively (here i iterates over block columns). Thus, the
leading term in the flop cost is given by

Fb(n) =
n/b−1∑

i=1
3(n− ib)2b = 3b3

n/b−1∑
i=1

i2 = n3 + o(n3) .

We can also formulate the algorithm recursively, with X11 being
⌊

n
2

⌋
×
⌊

n
2

⌋
. This recursive

version is new and it is communication avoiding and cache oblivious even for large matrices
(we use it only on blocks, so this is not useful for the blocked Aasen algorithm). Steps (ST1)
and (ST5) are recursive calls. The triangular solves in steps (ST2) and (ST4) and the block
multiplications in steps (ST3), (ST4) and (ST5) all contribute to the leading term in the
flop cost. The product X11(L21)T is a symm BLAS which costs 2(n/2)3. The triangular
solves are trsm calls that cost (n/2)3 each, and the product L21W12 is a gemm call that
costs 2(n/2)3 (can subtract the transpose after computing and subtracting the product). If
we store the X11(L21)T and reuse it in both step (ST3) and step (ST4), the recurrence is

FR(n) = 2FR

(
n

2

)
+ 6

(
n

2

)3

which again solves to

FR(n) = 3
4n

3
log n−1∑

i=0

(1
4

)i

= 3
4 ·

4
3n

3 + o(n3) = n3 + o(n3) .
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If we chose to recompute X11(L21)T in order to run the algorithm in place, the flop count
increases but is still O(n3).

2.3. Pivoting. Without pivoting, the algorithm can break down or become unstable, just
like the classical elementwise Aasen algorithm. In the new algorithm, blocks LJ+1:N,J+1 and
HJ+1,J are computed using an LU factorization, and without pivoting, the factorization may
fail to exist or may be unstable. Clearly, we need to pivot in Equation (AA4). It turns out
that this stabilizes the algorithm, as in elementwise Aasen.

We use row pivoting, meaning that step J factors
LJ+1:N,J+1HJ+1,J = PJ (AJ+1:N,J − LJ+1:N,1:JH1:J,J) ,

where PJ is a permutation matrix. From the numerical-stability point of view, we can use
partial pivoting. There are several ways to compute this LU factorization in a way that
ensures that the overall algorithm is communication avoiding; we list and analyze them in
Section 4.2.2 below.

Once the LU factorization is computed, we also apply PJ to LJ+1:N,1:J and to the trailing
submatrix AJ+1:N,J+1:N . Applying the permutation to L and to the trailing submatrix is
not trivial to do in a communication-avoiding way, especially since only the upper or lower
triangle of the trailing submatrix is stored. The details are explained below, in Section 4.2.3.

2.4. Computing W and H. As we show in Section 4, the arithmetic and communication
costs of our algorithm are asymptotically dominated by the computation that corresponds to
Equation (AA4). Nevertheless, if optimizing the computation that corresponds to the other
equations can yield any savings, then pursuing such optimizations would be desirable from a
practical standpoint. It turns out that savings are possible in Equations (AA1) and (AA3).
These equations state that individual blocks of H and W are computed according to the
formulas:

HI,J = TI,I−1 (LJ,I−1)T + TI,I (LJ,I)T + TI,I+1 (LJ,I+1)T

and
WI,J = RI,I (LJ,I)T +RI,I+1 (LJ,I+1)T

= 0.5 TI,I (LJ,I)T + TI,I+1 (LJ,I+1)T

for all I < J . (We encourage the reader to review Figures 2.1 and 2.4 for a visualization of
these relations.) The blocks TI,I (LJ,I)T and TI,I+1 (LJ,I+1)T appear in these equations twice
but need to be computed only once. Avoiding the recomputation of these blocks reduces the
number of b-by-b matrix products required to compute W and H by a ratio of 5:3, thereby
making the computation of W essentially free.

2.5. The Second Phase of the Algorithm: Factoring T . There are several single-
pass algorithms that efficiently factor a banded symmetric matrix. All of these algorithms
process O(b) rows and columns at a time, so if we choose a small enough b = Θ(

√
M) , the

total number of cache misses that these algorithms generate is O(bn/M), which makes them
communication avoiding (because the size of input and output is O(bn)).

Algorithms with these properties include the unsymmetric banded LU factorization with
partial pivoting, Kaufman’s retraction algorithm [19], and Irony and Toledo’s snap-back
algorithm [18]. All three produce a factorization that is essentially banded with bandwidth
O(b). All of these factorizations can be used to solve linear systems of equations using O(bn)
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arithmetic per right-hand side and O(bn/M) cache misses (for up to O(
√
M) right-hand

sides).

3. Numerical Stability

We analyze the stability of the factorization of PAP T where P is the permutation matrix
generated by the selection of pivots. We assume in the analysis that the matrix has been
pre-permuted so the algorithm is applied directly to PAP T (rather than to A) and that it
never pivots. The sequence of arithmetic operations in such a run of the algorithm is identical
to that of the pivoting version applied to A, except perhaps for the order of summation in
inner products. Our analysis does not depend on this ordering so our results apply to the
pivoting version.

Our model of floating-point arithmetic is:

(FL1) fl (x op y) = (x op y) (1 + δ) , |δ| ≤ u , op = +, −, ×, ÷ ,

where u is unit roundoff [16, Section 2.2]. We also assume that 0.5 is a floating-point number
and that

(FL2) fl (0.5x) = 0.5x .

3.1. Known Stability Results. We begin by citing a few lemmas of floating-point error
analysis, all of which are either well known or can be easily derived from well-known results.

We use the notation γn = nu/ (1− nu) for any positive n. The following lemma provides
a rule for manipulating expressions involving γn or quantities bounded by it.

Lemma 1 ([16, Lemma 3.3]). The bound

γm + γn + γmγn ≤ γm+n

holds. Furthermore, if θm and θn are such that |θm| ≤ γm and |θn| ≤ γn then

(1 + θm) (1 + θn) = 1 + θm+n , |θm+n| ≤ γm+n .

The following lemma provides a bound on the accuracy of matrix-matrix products. In our
analysis we assume that matrices are multiplied using the conventional method, as opposed
to Strassen’s algorithm or any related scheme.

Lemma 2 ([16, Section 3.5]). Let A and B be m-by-p and p-by-n matrices respectively. If
the product X = AB is formed in floating-point arithmetic, then

X = AB + ∆ , |∆| ≤ γp |A| |B| .

The following two lemmas also deal with matrix-matrix multiplication. Their proofs are
similar to the proof of Lemma 8.4 in [16], with the only difference stemming from the possible
scaling by 0.5 in Lemma 3. The assumption (FL2) in our model guarantees that this scaling
has no effect on the ultimate bound.

Lemma 3. Let A, B and C be matrices of dimensions m-by-p, p-by-n and m-by-n respec-
tively, and let α be one of the scalars 0.5 and 1. If the matrix X = C − αAB is formed in
floating-point arithmetic then

C = αAB +X + ∆ , |∆| ≤ γp (α |A| |B|+ |X|) .
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Lemma 4. Let A, B and C be matrices of dimensions m-by-p, p-by-m and m-by-m respec-
tively. If the matrix X = C − AB − (AB)T is formed in floating-point arithmetic then

C = AB + (AB)T +X + ∆ , |∆| ≤ γ2p

(
|A| |B|+ (|A| |B|)T + |X|

)
.

Finally, the following two lemmas provide bounds on the accuracy of triangular solves and
of the LU factorization.

Lemma 5 ([16, Section 8.1]). Let T and B be matrices of dimensions m-by-m and m-by-n
respectively, and assume that T is triangular. If the m-by-n matrix X is computed by solving
the system TX = B using substitution in floating-point arithmetic then

TX = B + ∆ , |∆| ≤ γm |T | |X| .
Furthermore, if the system being solved is XT = B and the dimensions of X and B are
n-by-m then

XT = B + ∆ , |∆| ≤ γm |X| |T | .

Lemma 6 ([16, Section 9.3]). Let A be an m-by-n matrix and let r = min {m,n}. If L and
U are the LU factors of A, computed in floating-point arithmetic, then

A = LU + ∆ , |∆| ≤ γr |L| |U | .

3.2. The Stability of the Overall Algorithm. We now show that the block Aasen al-
gorithm is backward stable. The analysis relies on lemmas from Section 3.1 above and on
Lemma 10 which we prove in the next section (without relying on any result from this
section). The reader is invited to review the statement of Lemma 10 before proceeding.

We use the symbols L, T , H and W to denote the corresponding floating-point matrices
and not their abstract exact equivalents. The exception to this is the diagonal blocks of
W , which are not computed by the algorithm and which we define for convenience as being
exactly

WJ,J = (RLT )J,J = RJ,JL
T
J,J .

Similarly, R is also not computed by the algorithm due to the optimization described in
Section 2.4. We define R as the block upper-triangular matrix with symmetric diagonal
blocks that satisfies RT +R = T . Its superdiagonal blocks are exactly those of the computed
T and its diagonal blocks are obtained from those of the computed T by scaling them by 0.5.

Theorem 7. The computed factors satisfy A = LTLT + ∆, where
|∆| ≤ γ2n−b−1|L||T ||LT |

if n > 3b and
|∆| ≤ γn+2b|L||T ||LT |

otherwise.

Proof. Lemmas 8 and 9 state that
|∆I,J | ≤ γn+2b(|L||T ||LT |)I,J

whenever I 6= J , and
|∆I,J | ≤ γ2n−b−1(|L||T ||LT |)I,J

whenever I = J , and therefore the bound
|∆I,J | ≤ max {γn+2b, γ2n−b−1} (|L||T ||LT |)I,J
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holds for all I and J . The quantity γn increases monotonically with n (so long as nu < 1) and
therefore γ2n−b−1 ≥ γn+2b whenever 2n− b− 1 ≥ n+ 2b, which occurs whenever n > 3b. �

Lemma 8. The computed factors satisfy A = LTLT + ∆, where
|∆I,J | ≤ γn+2b(|L||T ||LT |)I,J

whenever I 6= J .

Proof. Let the matrices ∆(1) and ∆(2) be such that
A = LH + ∆(1) , H = TLT + ∆(2) .

Substituting the second expression into the first one yields
A = LTLT + L∆(2) + ∆(1) ,

and thus
(3.1) ∆ = ∆(1) + L∆(2) .

Bounding ∆ requires that we obtain bounds on ∆(1) and ∆(2).
Let us bound the subdiagonal blocks of ∆(1) by considering the computation that cor-

responds to Equation (AA4). In that equation we form the matrix X = AJ+1:N,J −
LJ+1:N,1:JH1:J,J and then compute its LU factorization X = LJ+1:N,J+1HJ+1,J . Let Γ(1)

and Γ(2) be such that
AJ+1:N,J = LJ+1:N,1:JH1:J,J +X + Γ(1)(3.2)

X = LJ+1:N,J+1HJ+1,J + Γ(2) .(3.3)
Substituting the second expression into the first one yields

AJ+1:N,J = LJ+1:N,1:JH1:J,J + LJ+1:N,J+1HJ+1,J + Γ(1) + Γ(2)

= LJ+1:N1:J+1H1:J+1,J + Γ(1) + Γ(2) ,

because HJ+2:N,J is zero,

AJ+1:N,J = (LH)J+1:N,J + Γ(1) + Γ(2) ,

and therefore
(3.4) ∆(1)

J+1:N,J = Γ(1) + Γ(2) .

We analyze the accuracy of forming X using Lemma 3, which yields the bound
|Γ(1)| ≤ γJb(|LJ+1:N,1:J ||H1:J,J |+ |X|) .

However, because L2:N,1 is zero, the inner dimension of the product LJ+1:N,1:JH1:J,J is effec-
tively (J − 1)b instead of Jb, and therefore

(3.5) |Γ(1)| ≤ γ(J−1)b(|LJ+1:N,1:J ||H1:J,J |+ |X|) .
The accuracy of the LU factorization of X can be analyzed using Lemma 6, which yields
(3.6) |Γ(2)| ≤ γb|LJ+1:N,J+1||HJ+1,J | .
Substituting (3.5) and (3.6) into (3.4) yields

|∆(1)
J+1:N,J | ≤ γ(J−1)b(|LJ+1:N,1:J ||H1:J,J |+ |X|) + γb|LJ+1:N,J+1||HJ+1,J | ,



Communication-Avoiding Symmetric-Indefinite Factorization 15

and further substituting (3.3) and using (3.6) again yields

|∆(1)
J+1:N,J | ≤ γ(J−1)b|LJ+1:N,1:J ||H1:J,J |+ (γ(J−1)b + γb + γ(J−1)bγb)|LJ+1:N,J+1||HJ+1,J | .

Bounding the constants in this expression according to
γ(J−1)b ≤ γJb

γ(J−1)b + γb + γ(J−1)bγb ≤ γJb ,

where the second bound is justified by Lemma 1, yields

|∆(1)
J+1:N,J | ≤ γJb|LJ+1:N,1:J ||H1:J,J |+ γJb|LJ+1:N,J+1||HJ+1,J |

= γJb(|L||H|)J+1:N,J

and therefore
(3.7) |∆(1)

I,J | ≤ γJb(|L||H|)I,J

for all I > J .
We bound the diagonal and superdiagonal blocks of ∆(2) by considering the computation

that corresponds to Equation (AA3). In that equation we compute blocks of H by forming
the corresponding blocks of TLT , and as we discuss in Section 2.4, these blocks are formed
according to the formula

HI,J = TI,I−1(LJ,I−1)T + TI,I(LJ,I)T + TI,I+1(LJ,I+1)T .

This is equivalent to multiplying the b-by-3bmatrix TI,I−1:I+1 by the 3b-by-bmatrix (LJ,I−1:I+1)T ,
and the accuracy of this computation is bounded in Lemma 2, which guarantees that

|∆(2)
I,J | ≤ γ3b(|T ||LT |)I,J

for all I ≤ J . The blocks ∆(2)
J+1,J correspond to Equation (AA5), which solves the triangular

system HJ+1,J = TJ+1,J(LJ,J)T . This is analyzed in Lemma 5, which guarantees that

|∆(2)
J+1,J | ≤ γb(|T ||LT |)J+1,J .

All other blocks of ∆(2) are zero, and thus
(3.8) |∆(2)| ≤ γ3b|T ||LT | .

Substituting (3.7) and (3.8) into (3.1) yields
|∆I,J | ≤ γJb(|L||H|)I,J + γ3b(|L||T ||LT |)I,J

for all I > J . Further substituting H = TLT + ∆(2) and using (3.8) once again yields
|∆I,J | ≤ (γJb + γ3b + γJbγ3b)(|L||T ||LT |)I,J

≤ γJb+3b(|L||T ||LT |)I,J .

The constant γJb+3b is maximized when J = N − 1, which yields the required bound for all
I > J . As for I < J, the same bound holds because ∆ is the difference of the two symmetric
matrices A and LTLT and is thus itself symmetric. �

Lemma 9. The computed factors satisfy A = LTLT + ∆, where
|∆J,J | ≤ γ2n−b−1(|L||T ||LT |)J,J

for J = 1, 2, . . . , N .
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Proof. Let the matrices ∆(1) and ∆(2) be such that
A = LW + (LW )T + ∆(1) , W = RLT + ∆(2) .

Substituting the second expression into the first one yields
A = LRLT + (LRLT )T + L∆(2) + (L∆(2))T + ∆(1)

= L(R +RT )LT + L∆(2) + (L∆(2))T + ∆(1)

= LTLT + L∆(2) + (L∆(2))T + ∆(1)

and therefore
(3.9) ∆ = ∆(1) + L∆(2) + (L∆(2))T .

Equation (AA2) computes TJ,J by formingX = AJ,J−LJ,1:J−1W1:J−1,J−(LJ,1:J−1W1:J−1,J)T

and then solving LJ,JTJ,J(LJ,J)T = X. Let Γ(1) and Γ(2) be such that
AJ,J = LJ,1:J−1W1:J−1,J + (LJ,1:J−1W1:J−1,J)T +X + Γ(1)(3.10)
X = LJ,JTJ,J(LJ,J)T + Γ(2) .(3.11)

Substituting (3.11) into (3.10) yields
AJ,J = LJ,1:J−1W1:J−1,J + (LJ,1:J−1W1:J−1,J)T + LJ,JTJ,J(LJ,J)T + Γ(1) + Γ(2) .

Rewriting the term LJ,JTJ,J(LJ,J)T according to
LJ,JTJ,J(LJ,J)T = LJ,J(RJ,J + (RJ,J)T )(LJ,J)T

= LJ,JRJ,J(LJ,J)T + (LJ,JRJ,J(LJ,J)T )T

= LJ,JWJ,J + (LJ,JWJ,J)T

gives
AJ,J = LJ,1:J−1W1:J−1,J + (LJ,1:J−1W1:J−1,J)T + LJ,JWJ,J + (LJ,JWJ,J)T + Γ(1) + Γ(2)

= LJ,1:JW1:J,J + (LJ,1:JW1:J,J)T + Γ(1) + Γ(2)

= (LW + (LW )T )J,J + Γ(1) + Γ(2)

and thus
(3.12) ∆(1)

J,J = Γ(1) + Γ(2) .

The accuracy of forming X and then solving for TJ,J can be bounded using Lemmas 4 and 10,
which guarantee that

|Γ(1)| ≤ γ2(J−2)b(|LJ,1:J−1||W1:J−1,J |+ (|LJ,1:J−1||W1:J−1,J |)T + |X|)
|Γ(2)| ≤ γ3b−1|LJ,J ||TJ,J ||LJ,J |T .

Substituting these bounds into (3.12), further substituting (3.11) and bounding again yields

|∆(1)
J,J | ≤ γ2(J−2)b(|LJ,1:J−1||W1:J−1,J |+ (|LJ,1:J−1||W1:J−1,J |)T )

+ (γ2(J−2)b + γ3b−1 + γ2(J−2)bγ3b−1)|LJ,J ||TJ,J ||LJ,J |T

≤ γ2(J−2)b(|LJ,1:J−1||W1:J−1,J |+ (|LJ,1:J−1||W1:J−1,J |)T )
+ γ2(J−2)b+3b−1|LJ,J ||TJ,J ||LJ,J |T ,(3.13)

which is the bound we require for ∆(1).
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The superdiagonal blocks of ∆(2) correspond to Equation (AA1). That equation states
that blocks of W are computed by forming the corresponding blocks of the product RLT ,
which are formed according to the formula

WI,J = 0.5(TI,I(LJ,I)T ) + TI,I+1(LJ,I+1)T ,

as we explain in Section 2.4. Because of the scaling by 0.5 we cannot apply Lemma 2 directly
to this formula. Instead we must bound the errors resulting from forming the two single-
block products separately, and then use assumptions (FL2) and (FL1) to account for the
effects of scaling and summation respectively. We skip the details; the resulting bound is

(3.14) |∆(2)
I,J | ≤ γb+1(|R||LT |)I,J

for all I < J .
Next we return to bounding (3.9), starting with the last two terms. The diagonal and

subdiagonal blocks ofW are defined such that the corresponding blocks of ∆(2) are zero, and
therefore

(|L||∆(2)|+ (|L||∆(2)|))J,J = |LJ,1:J−1||∆(2)
1:J−1,J |+ (|LJ,1:J−1||∆(2)

1:J−1,J |)T .

Substituting (3.14) yields

(|L||∆(2)|+ (|L||∆(2)|))J,J ≤ γb+1(|LJ,1:J−1||R1:J−1,1:J ||LJ,1:J |T

+ (|LJ,1:J−1||R1:J−1,1:J ||LJ,1:J |T )T ) ,
which can be further simplified according to
|LJ,1:J−1||R1:J−1,1:J ||LJ,1:J |T + (|LJ,1:J−1||R1:J−1,1:J ||LJ,1:J |T )T

= 2
J−1∑
I=1
|LJ,I ||RI,I ||LJ,I |T +

J−1∑
I=1
|LJ,I ||RI,I+1||LJ,I+1|T +

J−1∑
I=1
|LJ,I+1||RI,I+1|T |LJ,I |T

=
J−1∑
I=1
|LJ,I ||TI,I ||LJ,I |T +

J−1∑
I=1
|LJ,I ||TI,I+1||LJ,I+1|T +

J−1∑
I=1
|LJ,I+1||TI+1,I ||LJ,I |T

= (|L||T ||L|T )J,J − |LJ,J ||TJ,J ||LJ,J |T ,
yielding
(3.15) (|L||∆(2)|+ (|L||∆(2)|)T )J,J ≤ γb+1((|L||T ||LT |)J,J − |LJ,J ||TJ,J ||LJ,J |T ) .
To bound the first term in (3.13) we substitute W = RLT + ∆(2) and apply the same
arguments we used to produce (3.15), obtaining

|LJ,1:J−1||W1:J−1,J |+ (|LJ,1:J−1||W1:J−1,J |)T ≤ (1 + γb+1)((|L||T ||LT |)J,J

− |LJ,J ||TJ,J ||LJ,J |T ) .(3.16)
Finally, substituting (3.16) into (3.13) and then substituting the result together with (3.15)
into (3.9) yields

|∆J,J | ≤ (γ2(J−2)b + γb+1 + γ2(J−2)bγb+1)((|L||T ||LT |)J,J − |LJ,J ||TJ,J ||LJ,J |T )
+ γ2(J−2)b+3b−1|LJ,J ||TJ,J ||LJ,J |T .

Because b ≥ 1, we can bound
γ2(J−2)b + γb+1 + γ2(J−2)bγb+1 ≤ γ2(J−2)b+b+1 ≤ γ2(J−2)b+3b−1 ,
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which allows us to cancel the two instances of |LJ,J ||TJ,J ||LJ,J |T and obtain
|∆J,J | ≤ γ2(J−2)b+3b−1(|L||T ||LT |)J,J .

The constant γ2(J−2)b+3b−1 is maximized when J = N , which yields the required bound. �

3.3. The Stability of the Two-Sided Triangular Solver. Our notation in this section
is the same as in Section 2.2. The matrix X and the superdiagonal blocks of H and W
represent the actually computed floating-point matrices. We use Y to denote the exact
matrix

Y =
 0.5X11 X12

0 0.5X22


and we define the diagonal and subdiagonal blocks of H and W such that the corresponding
blocks of H = XLT and W = Y LT hold.

Lemma 10. If the two-sided triangular system LXLT = B is solved in floating-point arith-
metic then

LXLT = B + ∆ , |∆| ≤ γ3n−1|L||X||LT | .

Proof. The proof is by induction on n. In the base case we are solving a 1-by-1 system and the
bound clearly holds. To make the inductive step we let the matrices ∆(t) for t = 1, 2, . . . , 5
be such that
B = LH + ∆(1) , H = Y TLT +W + ∆(2) , W = Y LT + ∆(3) , B = LW + (LW )T + ∆(4)

and
H = XLT + ∆(5) .

Substituting the third formula into the second one, and then substituting the result into the
first formula yields

H = XLT + ∆(2) + ∆(3)

B = LXLT + ∆(1) + L(∆(2) + ∆(3)) ,
and substituting the third formula into the fourth one yields

B = LXLT + L∆(3) + (L∆(3))T + ∆(4) ,

and thus
∆(5) = ∆(2) + ∆(3)(3.17)

∆ = ∆(1) + L∆(5)(3.18)
∆ = L∆(3) + (L∆(3))T + ∆(4) .(3.19)

Applying the lemmas of rounding-error analysis and the inductive hypothesis to equations
(ST1)–(ST5) allows us to derive the bounds

|∆11| ≤ γ3b−1(|L||X||L|T )11(3.20)

|∆(1)
12 | ≤ γb(|L||H|)12(3.21)

|∆(2)| ≤ γb(|Y T ||LT |+ |W |)(3.22)
|∆(3)| ≤ γn|Y ||LT |(3.23)

|∆(4)
22 | ≤ γ2b(|L21||W12|+ (|L21||W12|)T ) + γ2b+3(n−b)−1|L22||X22||L22|T .(3.24)
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We omit the derivation because it is based on the same arguments as those we have used in
the proofs of the previous lemmas.

Applying (3.22) and (3.23) to (3.17), substituting W = Y LT + ∆(3) and then bounding
again yields

|∆(5)| ≤ γb|Y T ||LT |+ (γb + γn + γbγn)|Y ||LT |
and bounding γb ≤ γn+b and γb + γn + γbγn ≤ γn+b yields
(3.25) |∆(5)| ≤ γn+b|X||LT | .

Substituting (3.21) and (3.25) into (3.18), further substituting H = XLT + ∆(5) and then
applying (3.25) again yields

|∆12| ≤ (γb + γn+b + γbγn+b)(|L||X||LT |)12

≤ γn+2b(|L||X||LT |)12 .(3.26)

Next we bound ∆22 using (3.19), starting with the first two terms in that equation. We
defined W such that ∆(3)

22 is zero and thus

(|L||∆(3)|+ (|L||∆(3)|)T )22 = |L21||∆(3)
12 |+ (|L21||∆(3)

12 |)T .

Further applying (3.23) yields

(|L||∆(3)|+ (|L||∆(3)|)T )22 ≤ γn|L21||Y1,:||L2,:|T + γn(|L21||Y1,:||L2,:|T )T

= γn((|L||X||LT |)22 − |L22||X22||L22|T ) .(3.27)

Substituting W = Y LT + ∆(3) in the first two terms of (3.24) and using the same argument
that we used to produce (3.27) yields
(3.28) |L21||W12|+ (|L21||W12|)T ≤ (1 + γn)((|L||X||LT |)22 − |L22||X22||L22|T ) .
Substituting (3.28) into (3.24), and then substituting the result together with (3.27) into (3.19)
yields

|∆22| ≤ (γn + γ2b + γ2bγn)((|L||X||LT |)22 − |L22||X22||L22|T )
+ γ2b+3(n−b)−1|L22||X22||L22|T .

Because 1 ≤ b ≤ n− 1,
γn + γ2b + γ2bγn ≤ γn+2b ≤ γ3n−2

γ2b+3(n−b)−1 = γ3n−b−1 ≤ γ3n−2 ,

and thus
(3.29) |∆22| ≤ γ3n−2(|L||X||LT |)22 .

Combining bounds (3.20), (3.26) and (3.29) we see that |∆I,J | ≤ CI,J(|L||X||LT |)I,J , where

C =
 γ3b−1 γn+2b

γn+2b γ3n−2

 ,

and because CI,J ≤ γ3n−2 for all I and J , we conclude that |∆| ≤ γ3n−2(|L||X||LT |). The
exception to this is the case n = 1, which requires the larger constant γ3n−1 in the statement
of the lemma. �
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3.4. Growth. The stability of the factorization algorithm depends on the magnitude of L
and T relative to that of A. How large can L and T get? In the elementwise Aasen algorithm,
the magnitude of elements of L is bounded by 1 (because the algorithm uses partial pivoting),
and it is easy to show that |Tij| ≤ 4n−2 maxij |Aij| [15]; the argument is essentially the same
as the one that establishes the bound on |Uij| in Gaussian elimination with partial pivoting.
Furthermore, this bound is attained by a known matrix of order n = 3, although larger
matrices that attain the bound are not known [16, p. 224].

It is important to interpret this bound correctly. The actual expression (4n−2) is not
important, because it does not indicate the growth that is normally attained. The same is
true for LU with partial pivoting; it is stable in spite of the fact that the growth factor bound
is as large as 2n−1, not because this bound is small (it is not; it is huge). Two other things are
important. One is that the bound shows that growth is not related to the condition number
of A. The second is that growth in practice is small. The reasons for this are complex
and not completely understood even in LU with partial pivoting, but this is the reality; for
deeper analyses and discussion, see [26, 30] and [16, Section 9.4].

If we compute the factorization in Equation (AA4) using LU with partial pivoting (GEPP),
essentially the same bounds hold for our block algorithm. The block columns of the L factor
are generated by Gaussian elimination with partial pivoting, so the same two-sided doubling-
up argument shows that the growth factor for T is bounded by 4n−b−1 (since the first columns
of L are unit vectors and additions/subtractions start only in column b+ 1).

When the factorization in Equation (AA4) is computed in a communication-avoiding way
using the tall-and-skinny LU factorization [13] (TSLU), L is still bounded, but the bound is
2bh, where h is a parameter of TSLU that normally satisfies h = O(log n). This can obviously
be much larger than 1, although experiments indicate that L is usually much smaller. This
implies that growth in T is still bounded, but the bound is now 4nbh. This is worse than with
GEPP, but as we explained above, this theoretical bound is not what normally governs the
stability of the algorithm. The recently-developed panel rank-revealing LU factorization [20]
may improve the growth bounds in our algorithm, but we have not fully explored this.

4. Complexity Analyses

In this section we analyze the costs of algorithm. We begin with an analysis of the
computational complexity (asymptotic number of machine instructions, including arithmetic
operations). We then analyze the communication costs of the algorithm.

4.1. Computational Cost. Our goal in this subsection is to show that the new blocked
algorithm performs the same number of arithmetic operations as the elementwise one, up to
low order terms.

In order to determine the arithmetic complexity of the algorithm, we consider only Equa-
tions (AA1)–(AA5) (the computational cost of pivoting is negligible). Letting J denote the
index of the outermost loop of the algorithm and b be the block size, the arithmetic cost of
Equations (AA1)–(AA3) is O(Jb3) flops. This is because each equation involves O(J) block
multiplications of b× b blocks (some of which are triangular). Note that in Equation (AA2),
the dominant cost is in computing the product of the block row of L with the block column of
W ; the arithmetic cost of the two-sided symmetric solve is O(b3). Similarly, Equation (AA5)
is a triangular solve involving one block and has an arithmetic cost of O(b3). The dominant
arithmetic cost for the overall algorithm comes from Equation (AA4), which consists of two
sub-computations: a matrix multiplication involving L and H and an LU decomposition
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of a block column. The arithmetic cost of the LU decomposition is O(Jb3). The matrix
multiplication step multiplies an (N − J)b× Jb submatrix of L by a Jb× b submatrix of H.
At the Jth step of the algorithm, this arithmetic cost is 2(N − J)Jb3 flops, ignoring lower
order terms. Summing over the outermost loop and using the fact that N = n/b, we have a
total arithmetic cost of

N∑
J=2

(
2(N − J)Jb3 +O(Jb3)

)
= 1

3n
3 + o(n3).

4.2. Communication Costs. To determine the communication complexity of the algo-
rithm, we must consider Equations (AA1)–(AA5) as well as the cost of applying symmetric
permutations to the trailing matrix. We analyze the three parts of the algorithm separately:
block operations (all of the computations described in Equations (AA1)–(AA5) with the ex-
ception of the LU decomposition), LU decomposition of block columns, and application of
the permutations to the trailing matrix. We assume the matrix is stored in block-contiguous
format with block size b, the same as the algorithmic block size. In block contiguous format,
b× b blocks are stored contiguously in memory. The ordering of elements within blocks and
the ordering of the blocks do not affect communication costs; we use column-major ordering.
In the following analysis, we assume b ≤

√
M/3 so that three blocks fit simultaneously in

fast memory.

4.2.1. Block Operations. By excluding the LU decomposition, all the other computations in
Equations (AA1)–(AA5) involve block operations–either block multiplication (sometimes in-
volving triangular or symmetric matrices), block triangular solve, or block two-sided symmet-
ric triangular solve. For example, in Equation (AA3), we compute HI,J as TI,I−1(LJ,I−1)T +
TI,I(LJ,I)T + (TI+1,,I)T (LI+1,J)T (assuming only the lower halves of T and L are stored).
Each of the three multiplications involve b× b blocks, so by the assumption that b ≤

√
M/3,

the operations can be performed by reading contiguous input blocks of size b2 words into fast
memory, performing O(b3) floating point operations, and then writing the output block back
to slow memory. This implies that the number of messages is proportional to the number of
block operations, which is O((computational cost)/b3) = O(n3/b3) and the number of words
moved is O((computational cost)/b) = O(n3/b).

4.2.2. Panel Decomposition. We now consider algorithms for the LU decomposition of the
column panel. Note that the O(N) LU factorizations, each involving O(Nb3) flops, con-
tribute altogether only an O(n2b) term to the arithmetic complexity of the overall algo-
rithm, a lower order term. Thus, attaining the communication lower bound for the overall
algorithm does not require minimizing communication within panel factorizations. For ex-
ample, using a naive algorithm and achieving only constant re-use of data during the LU
factorization translates to a total of O(n2b) words moved during LU factorizations, which is
dominated by the communication complexity of the block operations, O(n3/b) words, in the
case where n � b2. However, to ensure that both bandwidth and latency costs of the LU
factorizations do not asymptotically exceed the costs of the rest of the overall algorithm for
all matrix dimensions, we need algorithms that achieve better than constant re-use (though
the algorithms need not be asymptotically optimal).

We choose to use the recursive algorithm (RLU) of [14, 29] for panel factorizations, updated
slightly to match the block-contiguous data layout. The algorithm works by splitting the
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Table 1. Communication costs of LU decomposition algorithms applied to
an n× b matrix stored in b× b block contiguous storage, assuming b ≤

√
M/3.

Algorithm Words Messages

RLU O
(

nb2
√

M
+ nb log b

)
O
(
min

(
n, n2

M

))
SMLU [6] O

(
nb2
√

M
+ nb log b log nb

M

)
O
(

nb2

M3/2 + nb
M

log b log nb
M

)
TSLU [13] O

(
nb2
√

M

)
O
(

nb2

M3/2

)

matrix into left and right halves, factoring the left half recursively, updating the right half,
and then factoring the trailing matrix in the right half recursively. In order to match the
block-contiguous layout, the update of the right half (consisting of a triangular solve and
matrix multiplication) should be performed block by block. The bandwidth cost of this
algorithm for n× b matrices is analyzed in [29], and the latency cost can be bounded by the
recurrence L(n, b) ≤ 2L(n, b/2) +O(N). The O(N) term comes from the update of the right
half of the matrix, which involves reading contiguous chunks of each of the O(N) blocks in
the panel. The base case occurs either when the sub-panel fits in memory (nb < M) or
when b = 1. The cost of the recursive algorithm is dominated by its leaves, each of which
requires O(N) messages. Depending on the relative sizes of n and M , there are either nb/M
or b leaves starting with an n × b matrix. The latency cost becomes the minimum of two
terms: O(n) or O(n2/M). The bandwidth and latency costs are summarized in the first row
of Table 1.

In order to determine the contribution of LU factorizations to the costs of the overall
algorithm, we must multiply the cost of the n × b factorization by N , the number of panel
factorizations. Using the RLU algorithm, this yields a bandwidth cost of O(n2b/

√
M +

n2 log b) words and a latency cost of O(min(n2/b, n3/(bM)) messages. With the exception of
the O(n2 log b) term in the bandwidth cost, these costs are always asymptotically dominated
by the costs of the block operations.

While the RLU algorithm is sufficient for minimizing communication in the overall al-
gorithm, there are algorithms which require fewer messages communicated. The Shape-
Morphing LU algorithm (SMLU) [6] is an adaptation of RLU that changes the matrix layout
on the fly to reduce latency cost. The algorithm and its analysis are provided in [6], and the
communication costs are given in the second row of Table 1. SMLU uses partial pivoting
and incurs a slight bandwidth cost overhead compared to RLU (an extra logarithmic factor).
Another algorithm which reduces latency cost even further is the communication-avoiding
tall-skinny LU algorithm (TSLU) [13]. The algorithm can be applied to general matrices,
but the main innovation focuses on tall-skinny matrices. TSLU uses tournament pivoting, a
different scheme than partial pivoting, which has slightly weaker theoretical numerical sta-
bility properties. The algorithm and analysis are provided in [13], and the communication
costs are given in the third row of Table 1. The communication costs of TSLU are optimal
with respect to each panel factorization.

4.2.3. Applying Symmetric Permutations. After each LU decomposition of a block column,
we apply the internal permutation to the rest of the matrix. This permutation involves
back-pivoting, or swapping rows of the already factored L matrix, and forward-pivoting of
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Table 2. Communication costs of symmetric pivoting schemes

Algorithm Words Messages

Direct O(nb) O(nb)
Blocked O(n2) O

(
n2

b2

)

k l

b
ac

k
-p

iv
o
ti

n
g
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ard pivoting

Figure 4.1. Exchanging rows and columns k and l. The second (dark) block
column is the block column of the reduced matrix whose LU factorization was
just computed. The first block column is a block column of L; the algorithm
applies back pivoting to it. Block columns 3 to 6 are part of the trailing subma-
trix; the algorithm applies forward pivoting to them. The trailing submatrix
is square and symmetric, but only its lower triangle is stored, so a row that
needs to be exchanged is represented as a partial row (up to the diagonal) and
a partial column, as shown here.

the trailing symmetric matrix. Applying the symmetric permutations to the trailing matrix
includes swapping elements within a given set of rows and columns, as shown in Figure 4.1.
For example, applying the transposition (k, l) implies that the L-shaped set of elements in
the kth row and kth column (to the left and below the diagonal) is swapped with the L-shaped
set of elements in the lth row and lth column, such that element akk is swapped with element
all and element akl stays in place.

Since there are at most b swaps that must be performed for a given LU decomposition, and
each swap consists of O(n) data, the direct approach of swapping L-shaped sets of elements
one at a time has a bandwidth cost of O(nb) words. However, no matter how individual
elements within blocks are stored, because the permutations involve accessing both rows and
columns, at least half of the elements will be accessed non-contiguously, so the latency cost of
the direct approach is also O(nb) messages. Since there are N = n/b symmetric permutations
to be applied, these costs amount to a total of O(n2) words and O(n2) messages. While the
bandwidth cost is a lower order term with respect to the rest of the algorithm, the latency
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Figure 4.2. Exchanging a pair of rows in the blocked approach. Numbers
indicate sets of blocks that are held simultaneously in fast memory: all the
blocks marked “1” are held in fast memory simultaneously, later all the blocks
marked “2”, and so on.

cost of the permutations exceeds the rest of the algorithm, except when n � M3/2. This
approach is the symmetric analogue of Variant 1 in [13].

In order to reduce the latency cost, we use a blocked approach which will require greater
bandwidth cost than the direct approach but will not increase the asymptotic bandwidth
cost of the overall algorithm. The blocked approach accesses contiguous b × b blocks, but
it may permute only a few rows or columns of the blocks. This approach is the symmetric
analogue of Variant 2 in [13].

The algorithm works as follows: for each block in the LU factorization panel that in-
cludes a permuted row, we update the N pairs of blocks shown in Figure 4.2. The updates
include back-pivoting (updating parts of the L matrix that have already been computed)
and forward-pivoting (updating the trailing matrix). Nearly all the updates involve pairs of
blocks, which fit in fast memory simultaneously. Pairs of blocks involved in back-pivoting
are not affected by column permutations and swap only rows. Some pairs of blocks involved
in forward-pivoting are not affected by row permutations and swap only columns. Because
only half of the matrix is stored, some pairs of blocks in the trailing matrix will swap columns
for rows. The more complicated updates involve blocks which are affected by both row and
column permutations: the two diagonal blocks and the corresponding off-diagonal block,
shown in Figure 4.2. In order to apply the two-sided permutation to these blocks, all three
blocks are read into fast memory and updated at once. Since there are O(N) blocks in each
LU factorization panel, and each block with a permuted row requires accessing O(N) blocks
to apply the symmetric permutation, for a given LU factorization, the number of words
moved in applying the associated permutation is O(N2b2) = O(n2), and the total number of
messages moved is O(N2) = O(n2/b2).

The communication costs of the two approaches are summarized in Table 2.

5. A Communication Lower Bound

To claim that our algorithm is communication optimal, we need to show a lower bound
on the number of cache misses that any schedule for executing the algorithm must generate.
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Inspecting the algorithm, we note that all the elements of L are computed using the following
expressions:

lii = 1 for 1 ≤ i ≤ n

lij = 0 for 1 ≤ j ≤ b, i > j

lij = 1
hj,j−b

(
ai,j−b −

∑j−b
k=b+1 likhk,j−b

)
for b < j < i ≤ n.

The lower bound assumes that elements of L are computed using these expressions, and
that elements of L and H are computed only once. The bound does not depend on how
elements of H and T are computed and it does not depend on the order of summations in the
computation of Lij. Similar assumptions are made in virtually all the communication lower
bounds for matrix algorithms [5]. These assumptions admit a wide range of algorithms and
schedules, but they do not admit completely different ways of computing the factorization,
such as Strassen-like algorithms. We now state this lower bound formally:

Theorem 11. Any algorithm that computes the symmetric banded factorization A = LTLT

while computing L using the expressions above and while computing elements of L and H at
most once must transfer at least

n3

48
√
M
−M − n2

2 − nb

words between slow and fast memory. The number of cache misses must be at least this bound
divided by M . For large n, this lower bound is Ω

(
n3
√

M

)
.

Proof: To derive the lower bound, we use Theorem 2.2 in Ballard et al. [5]. The prod-
ucts likhk,j−b constitute the gijk operations in that theorem, and the summations that are
subtracted from aij constitute the fij functions. To use the theorem, we need to count the
overall number of gijk multiplications, which is

n∑
i=b+1

i−1∑
j=b+1

j−b∑
k=b+1

1 = 1
6n

3 +O(n2b) .

To apply the theorem, none of the quantities is allowed to be computed and discarded without
being written to slow memory. The output of our algorithm does not need to output H and
therefore it may compute and discard elements of H, but for the sake of the proof, we will
assume that the algorithm also outputs H; we will later argue that this assumption does not
change the asymptotic lower bound. In the language of the theorem, this means that none
of the quantities is R2/D2.

These assumptions, together with Theorem 2.2 in Ballard et al., imply that the algorithm
must transfer

G

8
√
M
−M ≥ n3

48
√
M
−M

words between slow and fast memory. Therefore, the number of cache misses must be at
least n3/48

√
M − 1. An algorithm that does not output H can perform less communication,

but the difference is at most 1
2n

2 + nb words, an upper bound on the number of elements in
H.
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6. Numerical Experiments

Next we describe a set of numerical experiments that provide further insight into the
numerical behavior of the algorithm. We used a block size b = 16 in all the experiments.

We carried out two sets of experiments: one set involving random matrices and another
involving matrices from the University of Florida Sparse Matrix Collection [10]. In the
first set of experiments we generated a sequence of random square symmetric matrices of
order n for 100 distinct values of n, linearly spaced in the interval 100 ≤ n ≤ 5,000. The
elements of these matrices are distributed normally and independently (preserving symmetry,
of course) with mean 0 and standard deviation 1. In all of our experiments we used GEPP
for panel factorizations. Experiments using the tall-and-skinny communication-avoiding LU
(TSLU) algorithm will be described in the journal version of this report. For each matrix
we measured three parameters: the growth factor, the backward error of the factorization,
and the backward error in the solution of a linear system of equations Ax = b, where b is
the sum of the columns of A (so x is the vector of all ones).

We define the growth factor as the number∥∥∥|L| |T | |L|T ∥∥∥
∞

‖A‖∞
,

a definition that is justified by Theorem 7. The factorization error is defined as

max
i,j

∣∣∣PAP T − LTLT
∣∣∣
i,j(

|L| |T | |L|T
)

i,j

,

using the convention 0/0 = 0. We compute the backward error of the floating-point solution
x̂ to the system Ax = b according to

‖Ax̂− b‖∞
‖A‖∞ ‖x̂‖∞ + ‖b‖∞

.

The factorizations of random matrices were completely backward stable, with backward
errors between 1.1u and 2.4u, with a median of 1.9u. The stability of solutions to linear
systems and the growth factors are shown in Figure 6.1. The backward errors are moderate,
varying between 1.7 × 10−15 and 1.7 × 10−14. The backward error is increasing with n but
at a rate that is clearly slower than linear. The growth factor is strongly correlated with
the error, which is consistent with the bound in Theorem 7. The error does not seem to
depend on n outside of the implicit dependence through the growth factor, in contrast with
the bound in Theorem 7.

The second set of experiments factored 180 matrices from the University of Florida Sparse
Matrix Collection. We chose for this experiment all of the symmetric, real, non-pattern
matrices of order 64 ≤ n ≤ 8,192, with the exception of matrices with bandwidth b or
less. Matrices with low bandwidth were omitted because they are their own T factors and
therefore do not require factorization. This set of 180 matrices is further described in Table 3.
The experiment was conducted according to the same scheme as the experiment involving
the random matrices.

The algorithm experienced difficulties on 14 of the matrices; they are discussed later in
this section.
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Figure 6.1. Backward errors in the solution of Ax = b and the growth factors
in the factorization of random matrices.

Table 3. Statistics of the University of Florida matrix set.

n κ nnz/n

minimum 64 5.0× 100 0.46
1st quartile 800 8.4× 103 6.81
median 2,000 2.5× 106 12.94
3rd quartile 4,581 3.2× 1010 23.93
maximum 8,140 inf 378.19

On the 166 matrices on which the algorithm produced good results, we obtained stable
factorizations with backward errors of less than 11u. The stability of the linear solver and
the growth are shown in Figure 6.2. The linear-solver backward errors are in the interval
[1.8× 10−18, 2.0× 10−13] with a median of 2.1× 10−15.

On 14 matrices, the linear solver that we used to solve banded systems involving T failed
to produce a solution. For solving such systems we use the LAPACK subroutine gbsv, which
is a banded implementation of GEPP. The source of the problem is that when T is rank
deficient, gbsv produces a U factor with zeros on the diagonal, and this factor cannot be used
to solve linear systems. In all 14 matrices the root cause was structural or numerical rank
deficiency of A (Matlab reported condition numbers larger than 1020). Our factorization
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Figure 6.2. Backward errors and growth factors on matrices from the Uni-
versity of Florida Collection. The matrices are ordered by growth.

algorithm produced stable factorizations, with backward errors of order u, well conditioned
L’s, and mild growth (up to 1.2× 106).

7. Conclusions

We have shown that a block variant of Aasen’s factorization algorithm can reduce a sym-
metric matrix into a symmetric banded form in a communication-avoiding way. A compan-
ion conference paper showed that the algorithm performs well in practice on a multi-core
machine; here we focused on complete analyses of the algorithm’s communication costs,
arithmetic costs, and numerical stability. No prior symmetric reduction algorithm achieves
similar efficiency bounds.
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