
Synthesis for Human-in-the-Loop Control Systems

Wenchao Li
Dorsa Sadigh
S. Shankar Sastry
Sanjit A. Seshia

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-134

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-134.html

July 17, 2013

Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work was supported in part by the TerraSwarm Research Center, one
of six centers supported by the STARnet phase of the Focus Center
Research Program (FCRP) a Semiconductor Research Corporation
program sponsored by MARCO and DARPA. This work was also supported
by the NSF grants CCF-1116993 and CCF-1139138.

Synthesis for Human-in-the-Loop Control Systems
Wenchao Li, Dorsa Sadigh, S. Shankar Sastry, Sanjit A. Seshia

University of California, Berkeley {wenchaol, dsadigh, sastry, sseshia}@eecs.berkeley.edu

Abstract—Several control systems in safety-critical applications
involve the interaction of an autonomous controller with one
or more human operators. Examples include pilots interacting
with an autopilot system in an aircraft, and a driver interacting
with automated driver-assistance features in an automobile.
The correctness of such systems depends not only on the
autonomous controller, but also on the actions of the human
controller. In this paper, we present a formalism for human-in-
the-loop control systems. Particularly, we focus on the problem
of synthesizing a semi-autonomous controller from high-level
temporal specifications that expect occasional human intervention
for correct operation. We present an algorithm for this problem,
and demonstrate its operation on problems related to driver
assistance in automobiles.

I. INTRODUCTION

Many safety-critical systems are interactive, i.e., they in-
teract with a human being, and the human operator’s role is
central to the correct working of the system. Examples of such
systems include fly-by-wire aircraft control systems (interact-
ing with a pilot), automobiles with driver assistance systems
(interacting with a driver), and medical devices (interacting
with a doctor, nurse, or patient). We refer to such interactive
control systems as human-in-the-loop control systems. The
costs of incorrect operation in the application domains served
by these systems can be very severe. Human factors are often
the reason for failures or “near failures”, as noted by several
studies (e.g., [7], [10]).

One alternative to human-in-the-loop systems is to synthe-
size a fully autonomous controller from a high-level mathe-
matical specification. The specification typically captures both
assumptions about the environment and correctness guarantees
that the controller must provide, and can be specified in a
formal language such as linear temporal logic [16]. While
this correct-by-construction approach looks very attractive, the
existence of a fully autonomous controller that can satisfy the
specification is not always guaranteed. For example, in the
absence of adequate assumptions constraining its behavior,
the environment can be modeled as being overly adversarial,
causing the synthesis algorithm to conclude that no controller
exists. Additionally, the high-level specification might abstract
away from inherent physical limitations of the system, such as
insufficient range of sensors, which must be taken into account
in any real implementation. Thus, while full manual control
puts too high a burden on the human operator, some element
of human control is desirable. However, at present, there is no
systematic methodology to synthesize a combination of human
and autonomous control from high-level specifications. In this
paper, we address this limitation of the state of the art. Specif-
ically, we consider the question: Can we devise a controller

that is mostly automatic and requires only occasional human
interaction for correct operation? We formalize this problem
of human-in-the-loop (HuIL) synthesis and establish formal
criteria for solving it.

A particularly interesting domain is that of automobiles
with “self-driving” features, otherwise also termed as “driver
assistance systems”. Such systems, already capable of au-
tomating tasks such as lane keeping, navigating in stop-and-go
traffic, and parallel parking, are being integrated into high-end
automobiles. However, these emerging technologies also give
rise to concerns over the safety of an ultimately driverless
car. Recognizing the safety issues and the potential benefits
of vehicle automation, the National Highway Traffic Safety
Administration (NHTSA) recently published a statement that
provides descriptions and guidelines for the continual devel-
opment of these technologies [14]. Particularly, the statement
defines five levels of automation ranging from vehicles without
any control systems automated (Level 0) to vehicles with full
automation (Level 4). In this paper, we focus on Level 3 which
describes a mode of automation that requires only limited
driver control:

“Level 3 - Limited Self-Driving Automation: Vehicles
at this level of automation enable the driver to
cede full control of all safety-critical functions under
certain traffic or environmental conditions and in
those conditions to rely heavily on the vehicle to
monitor for changes in those conditions requiring
transition back to driver control. The driver is ex-
pected to be available for occasional control, but
with sufficiently comfortable transition time. The
vehicle is designed to ensure safe operation during
the automated driving mode.” [14]

Essentially, this mode of automation stipulates that the
human driver can act as a fail-safe mechanism and requires
the driver to take over control should something go wrong.
Based on the NHTSA statement, we identify four important
criteria required for a human-in-the-loop controller to achieve
this level of automation.

• Monitoring. The controller should be able to determine if
human intervention is needed based on monitoring past and
current information about the system and its environment.

• Minimally Intervening. The controller should only invoke
the human operator when it is necessary, and does so in a
minimally intervening manner.

• Prescient. The controller can determine if a specification
may be violated ahead of time, and issues an advisory to
the human operator in such a way that she has sufficient

time to respond.
• Conditionally Correct. The controller should operate cor-

rectly until the point when human intervention is deemed
necessary.

We further elaborate and formally define these concepts later
in Section III. In general, a human-in-the-loop controller, as
shown in Figure 1 is a controller consists of three components:
an automatic controller, a human operator, and an advisory
control mechanism that orchestrates the switching between the
auto-controller and the human operator.1 In this setting, the
auto-controller and the human operator can be viewed as two
separate controllers, each capable of producing outputs based
on inputs from the environment, while the key responsibility
of the advisory controller is to determine precisely when
the human operator should assume control, while giving her
enough time to respond.

Fig. 1: Human-in-the-Loop Controller: Component Overview
and Synthesis from Specification

In this paper, we study the construction of such controller in
the context of reactive synthesis from temporal logic. Reactive
synthesis is the process of automatically synthesizing a discrete
controller (finite-state transducer) that reacts to environment
changes in such a way that the given specification (in temporal
logic) is satisfied. There has been growing interest recently in
the control and robotics communities (e.g., [22], [9]) to apply
this approach to automatically generate embedded control
software.

In summary, the main contributions of this paper are:
• A formalization of human-in-the-loop control systems and

the problem of synthesizing such controllers from high-
level specifications, including four key criteria these con-
trollers must satisfy.

• An algorithm for synthesizing human-in-the-loop con-
trollers that satisfy the afore-mentioned criteria.

• An application of the proposed technique to examples
motivated by driver-assistance systems for automobiles.

1In this paper, we do not consider explicit dynamics of the plant. Therefore
it can be considered as part of the environment also.

The paper is organized as follows. Section II describes
an motivating example discussing a car following example.
Section III provides a formalism and characterization of the
human-in-the-loop controller synthesis problem. Section IV
reviews material on reactive controller synthesis from temporal
logic. Section V describes our algorithm for the problem. We
then present case studies of safety critical driving scenarios in
Section VI. Finally, we discuss related work in Section VII
and conclude in Section VIII.

II. MOTIVATING EXAMPLE

(a) A’s Sensing Range. (b) Failed to Follow.

Fig. 2: Controller Synthesis – Car A Following Car B

Consider the example in Figure 2. In this example, car A
is the autonomous vehicle, car B and C are two other cars
on the road. We assume that the road has been divided into
discretized regions that encode all the legal transitions for the
vehicles on the map, similar to the discretization setup used in
receding horizon temporal logic planning [23]. The objective
of car A is to follow car B. Note that car B and C are part
of the environment and cannot be controlled. The notion of
following can be stated as follows. We assume that car A
is equipped with sensors that allows it to see two squares
ahead of itself if its view is not obstructed, as indicated by the
enclosed region by blue dashed lines in Figure 2a. In this case,
car B is blocking the view of car A, and thus car A can only
see regions 3, 4, 5 and 6. Car A is said to be able to follow
car B if it can always move to a position where it can see
car B. Furthermore, we assume that car A and C can move at
most 2 squares forward, but car B can move at most 1 square
ahead, since otherwise car B can out-run or out-maneuver car
A.

Given this objective, and additional safety rules such as cars
not crashing into one another, our goal is to automatically
synthesize a controller for car A such that

1) car A follows car B whenever possible;
2) and in situations where the objective may not be achiev-

able, switches control to the human driver but also

allowing sufficient time for the driver to respond and
take control.

In general, it is not always possible to come up with a fully
automatic controller that satisfies all requirements. Figure 2b
illustrates such a scenario where car C blocks the view as
well as the movement path of car A after two time steps. The
brown arrows indicate the movements of the three cars in the
first time step, and the purple arrows indicate the movements
of car B and C in the second time step. Positions of a car
X at time t is indicated by Xt. In this failure scenario, the
autonomous vehicle needs to notify the human driver since it
has lost track of car B.

Hence, a human-in-the-loop synthesis approach is tasked
with producing an autonomous controller along with advi-
sories for the human driver in situations where her attention is
required. Our challenge, however, is to identify the conditions
that we need to monitor and notify the driver when they may
fail. In the next section, we discuss how human constraints
such as response time can be simultaneously considered in
the solution, and mechanisms for switching control between
the auto-controller and the human driver.

III. FORMAL MODEL OF HUIL CONTROLLER

A. Preliminaries

Consider a Booleanized space over the input and output
alphabet I = 2I and O = 2O, where I and O are the
variables for input and output respectively, a trace τ is an
infinite sequence (i, o)ω = (i0, o0)(i1, o1) . . . such that ik ∈ I
and ok ∈ O for all k ≥ 0. To characterize the correctness of
a trace, we assume we are given a function F that labels
a trace to {true,false}. We say a trace τ is a failure
trace if F(τ) = true. In this paper, we model a discrete
controller as a finite-state transducer. A finite-state (Moore)
transducer is a tuple M = (Q̃, q̃0, I,O, δ, θ), where Q̃ is the
set of states, q̃0 ∈ Q̃ is the initial state, δ : Q̃ × I → Q̃
is the transition function, and θ : Q̃ → O is the state
output function. Given a word ī = i0i1 . . ., a run of M is
the sequence q̄ = q0q1 . . . of states such that q̄0 = q0, and
qk+1 = δ(qk, ik) for all k ≥ 0. The run q̄ on ī produces
the word M (̄i) = θ(q0)θ(q1) The language of M is then
denoted by the set L(M) = {(i, o)ω |M (̄i) = ō}. Intuitively,
if the language of a controller M does not contain any failure
trace, then the controller functions correctly. For convenience,
we also say a state q is failure-prone if a run of M containing
q given some ī produces a failure trace.

B. Agents as Automata

We model each of the three agents in a human-in-the-loop
controller – the human operator HC, the automatic controller
AC, and the advisory controller VC, as finite-state transducers
(FSTs). The overall controller HIL is a composition of the
models of HC, AC and VC, and is also modeled as a finite-
state transducer HIL.

We represent the four FSTs as follows:

HC = (IHC ,OHC , Q̃HC , q̃HC0 , δHC , θHC)

AC = (IAC ,OAC , Q̃AC , q̃AC0 , δAC , θAC)

VC = (IVC ,OVC , Q̃VC , q̃VC0 , δVC , θVC)

HIL = (IHIL,OHIL, Q̃HIL, q̃HIL0 , δHIL, θHIL)

where IHIL = I, OHIL = OHC = OAC = O. We use
the binary variable auto to denote the internal advisory signal
that VC sends to both AC and HC. Hence, IHC = IAC =
I ∪ {auto}, and OVC = {auto}. When auto = false, it
means the advisory controller is requiring the human operator
to take over control, and the auto-controller can have control
otherwise. HC can be viewed as a hierarchical state machine
as shown in Figure 3.

Fig. 3: Human Controller as a Hierarchical State Machine

We assume that the human operator (driver behind the
wheel) can take control at any time by transitioning from
the “Non-Active” state to the “Active” state, e.g. by hitting
a button on the dashboard or simply pressing down the gas
pedal or the brake. When HC is in the active state, the
human operator essentially acts as the automaton that produces
outputs to the plant (e.g. a car) based on environment inputs.
We use a binary variable active to denote if HC is in the
“Active” state. When active = true, the output of HC can
overwrite the output of AC. Similarly, when active = false,
the output of HIL is the output of AC. Note that even though
the human operator is modeled as a FST here, since we do
not have direct control of the human operator, it can in fact
be any arbitrary relation mapping I to O.

C. Criteria for Human-in-the-loop Controllers

One key distinguishing factor of a human-in-the-loop con-
troller from traditional controller is the involvement of a
human operator. Hence, human factors such as response time
cannot be disregarded. In addtion, we would like to minimize
the need to engage the human operator. Based on the NHSTA
statement, we derive four criteria for any effective human-in-
the-loop controller, as described below.

1. Monitoring. An advisory auto is issued to the human
operator under specific conditions. These conditions in turn
need to be determined at runtime. Hence, a HuIL controller
must be able to monitor the input and output signals needed
to evaluate these conditions, i.e. IVC = I ∪ O.

2. Minimally intervening. Our mode of interaction requires
only selective human intervention. An intervention occurs
when HC transitions from the “Non-Active” state to the
“Active” state (we discuss mechanisms for suggesting a
transition from “Active” to “Non-Active” in Section V-C,
after prompted by the advisory signal auto (being false).
However, frequent transfer of control would mean constant
attention is required from the human operator, thus nulli-
fying the benefits of having the auto-controller. In order
to reduce the overhead of human participation, we want
to minimize a joint objective function C that combines
two elements: (i) the probability that when auto is set to
false, the environment will eventually force AC into a
failure scenario, and (ii) the cost of having the human op-
erator taking control. We formalize this objective function
in Sec. V-A. The condition under which auto remains true
is termed as the environment assumption and denoted by
ϕenv .

3. Prescient. It may be too late to seek the human operator’s
attention when failure is imminent. We also need to allow
extra time for the human to respond and study the situ-
ation. Hence, an advisory should be issued ahead of any
failure scenario. In the discrete setting, we parameterize the
controller by a non-negative integer T , which is minimum
number of transitions it takes to get to a state that is failure-
prone.

4. Conditionally-Correct. The auto-controller is responsible
for correct operation until the human operator takes over
control (assuming that she does so within T time steps after
auto bcomes false). We formalize this as the following
guarantees provided by the auto-controller:

• For any trace τ that starts from a valid initial state
and satisfies the environment assumption ϕenv (auto
is always true), HIL satisfies the specification (i.e.,
F(τ) = false).

• For any trace τ , if ϕenv is violated at some point in
the trace, then the safety component of the specification
(formalized in Sec. IV) remains true for the next T
time steps (until the human controller takes over).

While other criteria may be desirable, we believe that at
least the above four are necessary.

Now we are ready to state the controller synthesis problem.
HuIL controller Synthesis Problem: Given a model of the
system and its specification expressed in a formal language,
synthesize a HuIL controller HIL that is, by construction,
monitoring, minimally intervening, presicent, and condition-
ally correct.

In this paper, we study the synthesis of a HuIL controller
in the setting of synthesis of reactive systems from linear
temporal logic (LTL). We give background on this setting in
Section IV, and propose an algorithm for solving the HuIL
controller synthesis problem in Section V.

IV. SYNTHESIS FROM TEMPORAL LOGIC

The idea of temporal logic synthesis is to automatically
construct an implementation that is guaranteed to satisfy a
behavioral description of the system expressed in temporal
logic [16]. First formulated by Church in 1962 [5], it has been
used to synthesize designs in a variety of applications, such as
digital circuits [3] and embedded software [22]. In this section,
we give an overview on synthesizing reactive modules from
a specification given in Linear Temporal Logic (LTL) [17].
In general, the problem can be viewed as a two-player game
between the system sys and the environment env.

A. Linear Temporal Logic

Given a finite set of propositional (Boolean) variables P ,
which is the disjoint union I ∪̇O, formulas in linear temporal
logic (LTL) are constructed as follows.

ψ ::= p | ¬ψ |ψ ∨ ψ |X ψ |ψ1U ψ2

where p ∈ P is a propositional variable, X is the temporal
operator next (used to indicate that a property ψ holds from the
next state in a trace) and U is the temporal operator until (used
to indicate that some property ψ2 holds in a trace eventually,
while another ψ1 holds until ψ2 becomes true). Other temporal
operators can be derived using these two temporal operators
and Boolean operators: the formula “eventually ψ holds” is
written as Fψ = trueUψ, and the formula “ψ holds globally
(at all time points)” is written as Gψ = ¬F¬ψ. LTL formulas
are usually interpreted over infinite words (traces) w ∈ Σω ,
where Σ = 2P . Then the language of a LTL formula ψ is the
set of infinite words that satisfy ψ, given by L(ψ) = {w ∈
Σω |w |= ψ}. One classic example is the LTL formula G(p→
F q), which means every occurrence of p in a trace must be
followed by some q in the future.

Properties are usually classified as being safety or liveness
properties. Informally, safety properties are those that specify
that “nothing bad happens in the trace” and their violation can
be demonstrated on a finite-length trace. Liveness properties
on the other hand specify that “something good happens
in the future” and their violation can only be shown with
an infinite-length trace. As stated in the preceding section,
the conditional-correctness guarantees state that, when the
environment assumption ϕenv does not hold, we require that
the auto-controller guarantees that the safety component of the
specification is satisfied for T steps until the human controller
takes over.

B. Satisfiability and Realizability

A LTL formula ψ is satisfiable if there exists an infinite
word that satisfies ψ, i.e., ∃w ∈ (2P)ω such that w |=
ψ. A Moore transducer M satisfies a LTL formula ψ if
L(M) ⊆ L(ψ). We write this as M |= ψ. Then realizability
is the problem of checking whether there exists a Moore
transducer M that satisfies the LTL specification ψ. Informally,
satisfiability means that there exists some behavior of the
environment that makes it satisfy the property ψ, whereas

realizability means that M satisfies ψ for all environment
behaviors.

C. Synthesis Complexity and GR(1) Specification

The complexity of LTL synthesis can be prohibitively high
(2EXPTIME-complete [18]). However, Piterman et. al [15]
describe an approach for synthesizing a subclass of LTL prop-
erties, known as Generalized Reactivity (1) [GR(1)] formulas.
Their algorithm runs in time O(N3) where N is the size
of the system to be synthesized. A GR(1) formula has the
form ψ = ψenv → ψsys, where ψenv is the environment
assumption and ψsys is the system guarantee. The syntax
of GR(1) formulas is given as follows. We require ψl for
l ∈ {env, sys} to be rewritten as a conjunction of sub-
formulas in the following forms:
• ψi

l : a Boolean formula that characterizes the initial states
• ψt

l : a LTL formula that characterizes the transition, in
the form G B, where B is a Boolean combination of
variables in I ∪ O and expression X u where u ∈ I if
l = env and u ∈ I ∪O if l = sys.

• ψf
l : a LTL formula that characterizes fairness, in the form

GFB, where B is a Boolean formula over variables in
I ∪O.

In this paper, we consider (unrealizable) specifications given
in the GR(1) subclass. For certain properties, even if they are
not originally syntactically in the GR(1) subclass described
above, it is easy to rewrite them into this form; see [15] for
more details.

D. Games and Strategies

A finite-state two-player game is defined by its game graph,
represented by the tuple G = (Q,Σ, T, q0,Win), where
Σ = I × O, T : Q × Σ → Q is a deterministic and
complete transition function, q0 ∈ Q is the initial state, and
Win : Qω → {false,true} is the winning condition. We
refer the readers to [8] for the construction of G from GR(1)
specifications. Note that each q ∈ Q can be marked by the
last tuple (i, o) (for i ∈ I and o ∈ O) that lead to q (with
the exception of q0, which is marked by a set of (i, o)s that
satisfy the initial conditions of the specification). A play π of
G is an infinite sequence π = q0q1 . . . ∈ Qω of states with
qi+1 = T (qi, σi) for all i ≥ 0. In each step of the play, the
letter σi = (xi, yi) is chosen in such a way that env first
chooses xi ∈ I and then sys chooses yi ∈ O. A play is won
by the system iff Win(π) = true.

A finite-memory strategy for env in G is a tuple S =
(Γ, γ0, ρ), where Γ is a finite set representing the memory,
γ0 ∈ Γ is in the initial memory content, and ρ ⊆ Q×Γ×I×Γ
is a relation mapping a state in G and the memory content
to a set of possible next inputs and an updated memory
content. A play π conforms to a strategy ρ if and only if there
exists sequences (x0, y0)(x1, y1) . . . ∈ Σω and γ0γ1 . . . ∈
Γω such that, for all i ≥ 0, (qi, γi, xi, γi+1) ∈ ρ and
qi+1 = T (qi, (xi, yi)). Note that here S is the strategy for
env, so the environment chooses only xi. S is winning for
env from a state q if all plays starting in q and conforming

to S are won by env. W env ⊆ Q is called the winning
region for env, denoting the set of states from which such a
winning strategy exists for env. Dually, the winning region
for sys is W sys = Q \ W env . The winning strategy for
the environment is called a counterstrategy and it exists if
q0 ∈W env . Könighofer et al. [8] show that a counterstrategy
for the environment can be derived from intermediate results
in the computation of the winning region W env for GR(1)
specifications.

E. Illustrative Example

In this section, we give a simple example of synthesis
from GR(1) specifications. We will use the same example to
illustrate our HuIL controller synthesis algorithm in Section V
as well. Consider the following specification with I = {r} and
O = {g}:
• ψ0 = GF (r = 0) (Environment fairness)
• ψ1 = G

(
(r = 1)↔ (g = 1)

)
(System transition)

• ψ2 = F (g = 1) (System reachability)
where ψ2 can be rewritten in GR(1) format. The environment
assumption ψenv is comprised of ψ0, while the system guar-
antees ψsys includes ψ1 and ψ2. It is easy to see that the
specification is satisfiable; simply consider an environment
that toggles r between 1 and 0. However, it is not realizable
because an adversarial environment can always force violation
of ψsys by setting r to 0 at all times, and the system cannot
both satisfy ψ1 and ψ2.

V. HUIL CONTROLLER SYNTHESIS

Given an unrealizable specification, a counterstrategy exists
for env. In fact, the counterstrategy summarizes all the moves
by env such that it can force a violation of the system
guarantees. Our algorithm for synthesizing a HuIL controller
thus relies on the insight that we can synthesize an advisory
controller that monitors these moves and prompts the human
operator with sufficient time ahead of any danger. Jointly,
we can also obtain an auto-controller that is correct if the
environment turns out to be not as adversarial and not make
these moves. The challenge, however, is to decide when an
advisory should be sent to the human operator, in a way that
it is also minimally intervening to the human operator.

A. Weighted Counterstrategy Graph

We consider a representation of the counterstrategy S as a
transition system V = (S, S0, θ). S = Q × Γ × I defines the
state space, S0 ⊆ S is the set of initial states, θ : S×O → 2S

is the (nondeterministic) transition relation mapping a state in
V given a system output o to a set of possible next states.
Intuitively, the states in V corresponds to a move by the
environment given a current state in G, and the transitions
correspond to all the possible ways that the system can respond
to this move without violating any system guarantees yet.
Figure 4 shows V for the GR(1) specifications described in
Section IV-E. For convenience, we use assignments to primed
variables to represent the moves that env makes next, and do
not show the memory content Γ. For a state s = (q, γ, i),

we use cs to denote the number of possible next-inputs that
the environment can choose without violating ψenv , including
i. In this example, both states have two possible next-inputs
(while the counterstrategy only allows one).

Fig. 4: Summarization of Counterstrategy for the GR(1) Spec-
ifications in Section IV-E

V is a directed graph. We call a node s failure-imminent
if θ(s, o) = ∅ for all o ∈ O, or s is a part of a strongly
connected component (SCC)2 in V . Intuitively, if there is no
outgoing transition from s, it means that sys cannot make a
move without violating any ψt

sys (transition guarantee). If s is
part of a SCC, then env is able to force violation of some ψf

sys

(fairness guarantee). In this example, observe that starting at
the left state, it takes one time step to reach a failure-imminent
state, assuming env adheres to the counterstrategy. We use T ,
as described in Section III-C, to parameterize the minimum
number of time steps for a state to reach a failure-imminent
state.

In practice, it is not always the case that the environment
will behave in the most adversarial way. For example, a car in
front may yield if it is blocking our path. Hence, even though
the specification is not realizable, it is still important to assess,
at any given state, whether it will actually lead to a violation.
For simplicity, we assume that the environment will adhere
to the counterstrategy once it enters a state belonging to one
of the SCCs. Hence, we can convert V to a directed acyclic
graph V ′ = (S′, S′0, θ

′) by collapsing each SCC to a single
node, i.e. V ′ is the condensation of V . In this case, S′ is the
set of SCCs in V , and we label a node in S′ failure-imminent
if the corresponding SCC in V contains an failure-imminent
node. We further augment V ′ with a function $: S′ → Q to
encode how likely the state s ∈ S′ will lead to a state that is
failure-imminent.

Recall from Section III-C that the notion of minimally-
intervening involves minimizing C, which involves the proba-
bility that auto is set to false, Thus far, we have not associ-
ated any probabilities with transitions taken by the system or
environment. While our approach can be adapted to work with
any assignment of probabilities, for ease of presentation, we
make a particular choice in this paper. Specifically, we assume
that at any step, the environment can pick an action uniformly
at random from the set of possible legal actions — those that

2 We consider SCCs that contain more than one nodes or one node with
an edge to itself.

do not violating any environment assumptions. In our running
example, this means that it is equally likely for env to choose
r′ = 0 or r′ = 1. The reason that r′ = 1 is absent in the
counterstrategy graph shown in Figure 4 is that sys would
be able to choose g′ = 1 to satisfy the system guarantees. In
addition, we need to take into account of the cost of having
the human operator performing the maneuver instead of the
auto-controller. In general, this cost increases with increasing
human engagement. Based on these two notions, we define $
recursively as follows.

$(s) =

{
1 if s is failure-imminent
ps(ls+1)

cs
Otherwise

where ps ∈ Q is a user-defined penalty parameter, and ls is
the length (number of edges) of the shortest path from s to
any failure-imminent node in the DAG. Intuitively, a state far
away from any failure-imminent state is less likely to cause
an error since the environment would have to make multiple
consecutive moves all in an adversarial way. However, if we
transfer control at this state, the human operator will have
to spend more time controlling the plant. Hence, the penalty
term ps(ls + 1) is used to reflect this potential overhead.
Typically, ps is chosen in such a way that $(s) ≤ 1. In the
next section, we describe how to use this node-weighted DAG
representation of a counterstrategy to derive a HuIL controller
that satisfies the criteria established in Section III-C.

B. Counterstrategy-Guided Synthesis

Given an unrealizable GR(1) specification, we can obtain
a modified counterstrategy graph V ′, which summarizes all
possible ways for the environment to force a violation of the
system guarantees (reaching a failure-imminent node). Hence,
if we can eliminate this counterstrategy, then we will obtain
an auto-controller that is correct-by-construction. However,
since we cannot control how the environment behaves, we
would need to actively monitor its changes, and notify the
human operator in case the environment behaves according
to the counterstrategy. This responsiblity is delegated to an
advisory controller. In this section, we describe in detail how
we make use of V ′ to synthesize the auto-controller, the
advisory controller, as well as their interaction with the human
operator.

Consider a non-failure-imminent node s in S′, s encodes
a particular condition where the environment makes a next-
move given some last move made by the environment and
the system. Assume that some of these next-moves by the
environment are disallowed, such that none of the failure-
imminent nodes are reachable from any initial state (or source
node), then we have effectively eliminated the counterstrategy.
This means that if we assert the negation of the corresponding
conditions as additional ψt

env (environment transition assump-
tions), then we can obtain a realizable specification. Formally,
we mine assumptions of the form ψa = G (B1 → ¬X B2),
where B1 is a Boolean formula describing a set of assignments
over I ∪ O, and B2 is a Boolean formula describing a set of

assignments over I , such that (ϕenv ∧ψenv)→ ψsys is realiz-
able, where ϕenv is a conjunction of ψas. Intuitively, contin-
gent upon env not making any of the moves characterized by
ϕenv (in addition to ψenv), we can automatically synthesize
an auto-controller that satisfies the system guarantees ψsys.
In addition, computing ϕenv is equivalent to finding a set of
nodes in V ′ such that, if these nodes are removed from V ′,
then none of the failure-imminent nodes is reachable from
any initial state (source node). We denote such set of nodes
as S∗ ⊆ S′, and the corresponding assumption for each node
s ∈ S∗ as ψs

a
3.

Recall that we also require a HuIL controller to be prescient
and minimally intervening. Hence, we want to find nodes that
reflect these criteria as well. The notion of prescient essentially
requires that none of the failure-imminent nodes is reachable
from any s ∈ S∗ with less than T steps (edges). We use
the weight assignment function $ to characterize the cost
of any failing condition resulting in the advisory controller
prompting the human operator to take over control by setting
auto to false. Formally, we seek S∗ such that

∑
s∈S∗ $(s)

is minimized. We can formulate this problem as a s-t min-
cut problem for directed acyclic graphs. We first compute the
subset of nodes S− in S′ that are within T edges of some
of the failure-imminent nodes (including the failure-imminent
nodes themselves). Then we remove any node in S− from
V ′ to form a new DAG V∗. After that, we modify V∗ by
adding a new source node that has an outgoing edge to all
the source nodes in V∗, and a new terminal node that has an
incoming edge from all the sink nodes in V∗. The problem now
becomes the s-t min-cut problem for node-weighted directed
acyclic graph, which can be solved by standard techniques [6].
Figure 5 illustrates this algorithm, and the result of applying
it to the running example is shown in Figure 6. The overall
approach is summarized in Algorithm 1.

Fig. 5: Advisory Synthesis Formulated as s-t Min-Cut in V∗

Theorem 5.1: Given a GR(1) specification ψ and a response
time parameter T , Algorithm 1 is guaranteed to either pro-
duce a fully autonomous controller satisfying ψ, or a HuIL
controller, modeled as a composition of an auto-controller, a

3Each node can correspond to one ψa or a conjunction of ψas.

Fig. 6: Illustration of Algorithm for the Running Example

Algorithm 1 Algorithm for Counterstrategy-Guided HuIL
Controller Synthesis

Input: GR(1) temporal logic specification ψ.
Input: T : parameter for minimum human response time.
Output: HIL.

if ψ is realizable then
Synthesize transducer M |= ψ (using standard GR(1)
synthesis);
HIL := M (fully autonomous).

else
Generate counterstrategy V from ψ;
Convert V to V∗ by removing S− — nodes that are within
T steps of failure-imminent nodes;
Compute node-weighted min-cut S∗ in V∗;
Add assumptions ϕenv corresponding to S∗ to ψ gener-
ating new specification ψ′ = ϕenv → ψ;
Synthesize AC so that M |= ψ′;
Synthesize VC as a program that outputs auto = false
iff the assumption ϕenv is violated
HIL is then a composition of AC, VC and the human
operator as described in Section III-B.

end if

human operator and an advisory controller, that is monitor-
ing, prescient (with parameter T), minimally intervening, and
conditionally correct.4

Proof: (Sketch) When ψ is realizable, a fully autonomous
controller is synthesized that unconditionally satisfies ψ.

When ψ is not realizable, Algorithm 1 produces a HuIL
controller that is conditionally correct since the algorithm
produces an assumption ϕenv and an auto-controller that
satisfies ψ′ .= ϕenv → ψ and the additional assumptions ϕenv

guarantee that there does not exist a path from any valid initial
state to a failure-imminent state.

The HuIL controller is monitoring as ϕenv only comprises
a set of transitions — expressions involving input and output
variables that can be evaluated at run time based on input and

4We assume that all failure-imminent nodes are at least T steps away from
any initial node. This condition can be checked easily and if it is not satisfied,
human should take control immediately.

output values.5

It is prescient by construction as the auto flag advising the
human operator to take over control is set to false at least
T time steps ahead of any potential failure.

Finally, the HuIL controller is minimally-intervening, since
auto is set to false only when ϕenv is violated. ϕenv in turn
is constructed based on the minimum node-weighted cut in the
counterstrategy graph, which minimizes the cost of switching
control from AC to HC, i.e.

∑
s∈S∗ $(s) is minimized and

ϕenv =
∧

s∈S∗ ψs
a.

�

C. Switching from Human Operator to Auto-Controller

Once control has been transferred to the human operator,
when should the human yield control to the autonomous
controller again? We outline here an approach one can take to
address this question, while noting that alternative approaches
may exist.

The basic idea in our approach is for the HuIL controller to
continue to monitor the environment after the human operator
has taken control, checking if a state is reached from which
the auto-controller can ensure that it satisfies the specification
under assumption ϕenv , and then take back control.

Recall that the original temporal logic specification ψ
is of the form ψenv → ψsys where ψenv is the original
set of assumptions on the environment, including on initial
states. Algorithm 1 augments ψenv with an additional assump-
tion ϕenv , to obtain the combined environment assumption
ϕenv ∧ ψenv . Under this combined assumption, the GR(1)
synthesis algorithm is able to extract a winning strategy for the
system, which forms the auto-controller. While extracting the
winning strategy, we record the set of all states from which the
“system” (autonomous controller) can win the game no matter
what the environment does for the next T steps (where T is
the human response time, as before). This set can be recorded
in terms of its characteristic Boolean function, denoted W .

Thus, the HuIL controller continues to monitor the envi-
ronment and check whether W becomes true. If so, the
auto-controller notifies the human operator that it is ready to
take back control. As long as W remains true, the human
operator then may return control to the autonomous system,
and the auto-controller executes as before.

VI. EXPERIMENTAL RESULTS

In this section, we present several scenarios in the context
of autonomous driving and demonstrate the usefulness of our
approach in synthesizing human-in-the-loop controllers that
satisfy the criteria established in Section III-C. Details of
the LTL specifications for each scenario can be found in the
Appendices. Our algoritm is implemented on top of the GR(1)
synthesis tool RATSY [2].

5We assume that the controller can monitor the next assignment of the input
variables that the environment is about to make.

A. Car-Following

Recall the car-following example shown in Section II. We
describe some of the more interesting specifications below
and their corresponding LTL formulas. pA, pB , pC are used
to denote the positions of car A, B and C respectively.

• Any position can be occupied by at most one car at a
time (no crashing):

G
(
pA = x→ (pB 6= x ∧ pC 6= x)

)
where x denotes a position on the discretized space. The
cases for B and C are similar, but they are part of ψenv .

• Car A is required to follow car B:

G
(
(vAB = true ∧ pA = x)→ X (vAB = true)

)
where vAB = true iff car A can see car B.

• Two cars cannot cross each other if they are right next
to each other. For example, when pC = 5, pA = 6 and
p′C = 8 (in the next cycle), p′A 6= 7. In LTL,

G
(
((pC = 5)∧(pA = 6)∧(XpC = 8))→ (X(pA 6= 7))

)
The same requirement for the other positions are similarly
specified.

The other specifications can be found in the link described
at the beginning of this section. Observe that car C can in
fact force a violation of the system guarantees in one step
under two situations – when pC = 5, pB = 8 and pA = 4, or
pC = 5, pB = 8 and pA = 6. Both are situations where car C
is blocking the view of car A, causing it to lose track of car
B. The second failure scenario is illustrated in Figure 2b.

Applying our algorithm to this (unrealizable) specification
with T = 1, we obtain the following ϕenv .

ϕenv = G
(
((pA = 4) ∧ (pB = 6) ∧ (pc = 1))→

X ((pB 6= 8) ∧ (pC 6= 5))
) ∧

G
(
((pA = 4) ∧ (pB = 6) ∧ (pc = 1))→

X ((pB 6= 6) ∧ (pC 6= 3))
) ∧

G
(
((pA = 4) ∧ (pB = 6) ∧ (pc = 1))→

X ((pB 6= 6) ∧ (pC 6= 5))
) ∧

In fact, ϕenv corresponds to three possible evolutions of the
environment from the initial state. In general, ϕenv can be a
conjunction of conditions at different time steps as env and
sys progress. The advantage of our approach is that it can
produce ϕenv such that we can synthesize an auto-controller
that is guaranteed to satisfy the specification if ϕenv is not
violated, together with an advisory controller that prompts the
driver (at least) T (T = 1 in this case) time step ahead of a
potential failure when ϕenv is violated.

1 2 3 4 5

8 9 10 11 12 13

6 7

14

I G
G

E

Fig. 7: Gridworld Hallway Example.

B. Gridworld Hallway

This example is a modified version of the grid world hallway
example used in [12]. The controllable vehicle (car A) starts
from position I as shown in Figure 7. We use pA the position
of car A. We would like to guarantee that car A eventually
visits the two goal states G.

F (pA = 2) ∧ F (pA = 14)

We restrict car A to only move in one direction to the right
side of the grid, so as it approaches to the right, it won’t be
able to back up. For example if car A is at position 4, it cannot
backup to position 3:

G ((pA = 4)→ X (pA = 4 ∨ pA = 5 ∨ pA = 11))

The uncontrollable vehicle (car B) can only move in the
shaded area (regions {4, 5, 6, 11, 12, 13}) and must leave po-
sition E infinitely often. We use pB to denote position of car
B.

G (F (pB 6= 4))

There is also a fixed obstacle at position 10. The controllable
vehicle cannot synthesize a controller for this example as it has
to pass the shaded region to visit its goal at position 14, and
the uncontrollable vehicle can mirror the controllable vehicle’s
movement. For instance, if car A moves into the shaded area
at position 4, car B already located at 5 can block its path by
staying at 5. If car A moves to 11, then car B can move to
12. The different scenarios in ϕenv are depicted in Figure 8.
Notice that car B can stay in 6 to block car A’s path later as
car A moves closer to the goal.

Fig. 8: Illustration of ϕenv: arrows indicate all possible move-
ments of car B from the current position to the next position.

VII. RELATED WORK

In this paper, we consider the problem of “reactive syn-
thesis” from temporal logic specifications [17], [15] —-

generating autonomous machines that satisfy temporal logic
specifications for desired output and any given environment
input. A major obstacle to adoption of synthesis techniques
arises from uncertain or unspecified environment assumptions.
In this paper, we consider the problem of detecting unreal-
izability of a specification and leveraging the presence of a
human operator to design a controller that requests human
intervention for correct operation. We use assumption mining
approaches to extract environment assumptions that make the
system realizable and we notify the human user whenever such
assumptions are violated. To our knowledge, our work is the
first to consider the problem of synthesizing interventions to
combine an autonomous controller with a human operator.

Kress-Gazit et al. [9] study synthesis of fully autonomous
hybrid controllers that guarantee a desired high level task given
a class of admissible environments. In this work, the authors
synthesize a discrete controller that satisfies a Linear Temporal
Logic formula, and they use the synthesized discrete controller
to guide their sensor based controller that results in a hybrid
system satisfying the specification.

Livingston et al. [12] and [13] have also studied the synthe-
sis problem for hybrid systems with exploiting the notion of
locality that allows “patching” a nominal solution. They update
the local parts of the strategy as new data accumulates. This
approach allows incremental synthesis and prevents global
resynthesis if the nominal plan fails. The patching algorithm
considers changes (addition and deletion of edges) in the
game graph, and identifies the affected nodes for each system
goal and modifies the game graph locally. In our approach,
we do not start with a synthesized game graph, and we
mine assumptions from counter-strategies and counter-traces
instead. Also, the uncertainties we consider are not limited to
the topological changes in the system’s environment.

In the area of assumption mining, Chatterjee et al. [4] con-
struct a minimal environment assumption based on removing
edges from the game graph to ensure safety assumptions and
then compute liveness assumptions to put additional fairness
constraints on the remaining edges. Finding this minimal
set can be shown to be NP-Hard. Our approach in mining
environment assumptions is different and is based on removing
edges from the counter-strategy. These assumptions are easier
to mine and more practical since they can simply be mapped to
monitoring real sensors. We also have the freedom of choosing
which edges to be removed from the counter-strategy. This
flexibility gives us a measure of how conservative we would
like to be in our control. Removing edges closer to the source
node of the counter-strategy graph prevents any violations in
the further future moves and removing edges towards the sink
node is less conservative.

Li et al. [11] focus on mining environment assumptions for
GR(1) specifications. We base our work on this paper, and
use a similar approach for human-in-the-loop control systems.
In addition to using the same approach — counter-strategy
guided assumption mining — we guarantee to choose the
minimal environment assumption for every counter-strategy
and we provide formal guarantees on a reasonable advance

warning to the human user about potential failures.
In recent years, there has been an increasing interest in

human-in-the-loop systems in the control systems community.
The current human-in-the-loop control paradigm studies and
learns human models and takes action whenever it concludes
that the human user is not capable of controlling the system.
Anderson et al. [1] study obstacle avoidance and lane keeping
for semiautonomous cars, which is a common example of
human-in-the-loop control. The control input of the semiau-
tonomous vehicle is a weighted sum of control input of driver
and control input of the autonomous system with weights
representing threat functions that only depend on sideslip
angles of the vehicle. The autonomous control in this work is
a model predictive control which is an iterative, finite-horizon
optimization of the plant model. Our approach, unlike this
one, seeks to provide correctness guarantees in the form of
temporal logic properties.

Verma et al. [20], [21] consider safety and collision avoid-
ance in multivehicle systems, where a human driven vehicle
is not communicating with a fully autonomous system. In this
scenario, the autonomous vehicle finds the least restrictive safe
control action by modeling the human driven car as a hidden
mode hybrid system (HMHS) and estimating the state of the
human driver. The control of the autonomous vehicle is less
conservative and least restrictive since this model does not
assume an adversarial human driven car. This approach finds
a safe control for a fully autonomous vehicle in a multivehicle
situation with non-communicating human driven cars, which
is a different situation from the HuIL control in this work.

Vasudevan et al. [19] focus on learning and predicting a
human model based on prior observations (past states of the
driver, past vehicle trajectories and past generated optimal
vehicle trajectories) and current state of the environment. The
learned human model is then used in a “vehicle intervention
function”. Based on the measured level of threat, the controller
intervenes and overwrites the driver’s input. However, we
believe that this paradigm, where the autonomous controller is
capable of overriding the human inputs is unsafe in scenarios
where the environment is not fully modeled. For that reason,
we propose a different paradigm where we allow the human to
take control of the vehicle if the autonomous system predicts
failure, and for the autonomous vehicle to request back control
when it is certain of safe operation.

VIII. CONCLUSIONS

In this paper, we propose a synthesis approach for
designing human-in-the-loop controllers. We consider a mode
of interaction where the controller is mostly autonomous but
requires occasional intervention by a human operator, and
study important criteria for devising such controllers. Further,
we study the problem in the context of controller syntehsis
from (unrealizable) temporal-logic specifications. We propose
an algorithm based on mining monitorable conditions from the
counterstrategy of the unrealizable specifications. Preliminary
results on applying this approach to driver assistance in
automobiles are encouraging, where useful conditions are

generated automatically to ensure the autonomous controller
interacts with the human driver in a safe and timely manner.
One limitation of the current approach is the use of an
explicit counterstrategy graph, while GR(1) synthesis(if the
specification is realizable) can be done symbolically. We plan
to improve the efficiency of our algorithms for the HuIL
controller synthesis problem in the future.

Acknowledgement. This work was supported in part by the
TerraSwarm Research Center, one of six centers supported by
the STARnet phase of the Focus Center Research Program
(FCRP) a Semiconductor Research Corporation program spon-
sored by MARCO and DARPA. This work was also supported
by the NSF grants CCF-1116993 and CCF-1139138.

REFERENCES

[1] S. J. Anderson, S. C. Peters, T. E. Pilutti, and K. Iagnemma. An optimal-
control-based framework for trajectory planning, threat assessment, and
semi-autonomous control of passenger vehicles in hazard avoidance sce-
narios. International Journal of Vehicle Autonomous Systems, 8(2):190–
216, 2010.

[2] R. Bloem, A. Cimatti, K. Greimel, G. Hofferek, R. Knighofer,
M. Roveri, V. Schuppan, and R. Seeber. Ratsy - a new requirements
analysis tool with synthesis. In CAV’10, pages 425–429, 2010.

[3] R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and
M. Weiglhofer. Automatic hardware synthesis from specifications: A
case study. In Design, Automation Test in Europe Conference Exhibition,
2007. DATE ’07, pages 1 –6, Apr. 2007.

[4] K. Chatterjee, T. A. Henzinger, and B. Jobstmann. Environment
assumptions for synthesis. In Proceedings of the 19th international
conference on Concurrency Theory, CONCUR ’08, pages 147–161,
Berlin, Heidelberg, 2008. Springer-Verlag.

[5] A. Church. Logic, arithmetic and automata. In Proceedings of the 1962
International Congress of Mathematicians.

[6] M.-C. Costa, L. Léocart, and F. Roupin. Minimal multicut and maximal
integer multiflow: A survey. European Journal of Operational Research,
162(1):55 – 69, 2005.

[7] F. A. A. (FAA). The interfaces between flight crews and modern flight
systems. http://www.faa.gov/avr/afs/interfac.pdf, 1995.

[8] R. Könighofer, G. Hofferek, and R. Bloem. Debugging formal specifi-
cations using simple counterstrategies. In Formal Methods in Computer-
Aided Design, 2009. FMCAD 2009, pages 152 –159, Nov. 2009.

[9] H. Kress-Gazit, G. Fainekos, and G. Pappas. Temporal-logic-based
reactive mission and motion planning. IEEE Transactions on Robotics,
25(6):1370 –1381, dec. 2009.

[10] L. T. Kohn and J. M. Corrigan and M. S. Donaldson, editors. To err
is human: Building a safer health system. Technical report, A report
of the Committee on Quality of Health Care in America, Institute of
Medicine, Washington, DC, 2000. National Academy Press.

[11] W. Li, L. Dworkin, and S. Seshia. Mining assumptions for synthesis.
In Formal Methods and Models for Codesign (MEMOCODE), 2011 9th
IEEE/ACM International Conference on, pages 43–50, 2011.

[12] S. C. Livingston, R. M. Murray, and J. W. Burdick. Backtracking
temporal logic synthesis for uncertain environments. In IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 5163–
5170. IEEE, 2012.

[13] S. C. Livingston, P. Prabhakar, A. B. Jose, and R. M. Murray. Patching
task-level robot controllers based on a local µ-calculus formula. 2012.

[14] National Highway Traffic Safety Administration. Preliminary statement
of policy concerning automated vehicles, May 2013.

[15] N. Piterman and A. Pnueli. Synthesis of reactive(1) designs. In In Proc.
Verification, Model Checking, and Abstract Interpretation (VMCAI06,
pages 364–380. Springer, 2006.

[16] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science (FOCS), pages 46–57, 1977.

[17] A. Pnueli and R. Rosner. On the synthesis of a reactive module.
In Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’89, pages 179–190, New
York, NY, USA, 1989. ACM.

http://www.faa.gov/avr/afs/interfac.pdf

[18] R. Rosner. Modular synthesis of reactive systems. Ph.D. dissertation,
Weizmann Institute of Science, 1992.

[19] R. Vasudevan, V. Shia, Y. Gao, R. Cervera-Navarro, R. Bajcsy, and
F. Borrelli. Safe semi-autonomous control with enhanced driver model-
ing. In American Control Conference (ACC), 2012, pages 2896 –2903,
june 2012.

[20] R. Verma and D. Del Vecchio. Semiautonomous multivehicle safety.
IEEE Robotics Automation Magazine, 18(3):44–54, 2011.

[21] R. Verma and D. Del Vecchio. Safety control of hidden mode hybrid
systems. IEEE Transactions on Automatic Control, 57(1):62 –77, jan.
2012.

[22] T. Wongpiromsarn, U. Topcu, and R. Murray. Receding horizon temporal
logic planning for dynamical systems. In Decision and Control, 2009
held jointly with the 2009 28th Chinese Control Conference. CDC/CCC
2009. Proceedings of the 48th IEEE Conference on, pages 5997–6004,
Dec. 2009.

[23] T. Wongpiromsarn, U. Topcu, and R. Murray. Receding horizon temporal
logic planning. IEEE Transactions on Automatic Control, 57(11):2817–
2830, 2012.

APPENDIX A
CAR FOLLOWING

We reproduce the discretized regions with the starting
positions of car A, B and C in Figure 9. Recall that the task
of the controller is to enable car A to continuously follow car
B, even if car C intervenes.

Fig. 9: Car Following Example

A. Input Variables:

1) Position of car B: pB ∈ {1 . . . 10}.
2) Position of car C: pC ∈ {1 . . . 10}.

B. Output Variables:

1) Position of car A: pA ∈ {1 . . . 10}.
2) Visibility of car A: vA ⊆ {1 . . . 10}.
3) follow = true iff car A can see the region where car

B is in.

C. Environment Assumptions:

1) Initially, car B is in region 6 and car C is in region 1.

pB = 6 ∧ pC = 1

2) Car B can only move at most one square up at each
time step. For example, starting at 6, car B can move
to 7 or 8, or stay at 6.

G
(
(pA = 6→ X (pA = 6 ∨ pA = 7 ∨ pA = 8)

)
3) Car C can move at most two squares up at each time

step. For example, starting at 1, car C can move to 3, 4
or 5, or stay at 1.

G
(
(pC = 1→ X (pC = 3 ∨ pC = 4 ∨

pC = 5 ∨ pC = 1)
)

4) Car C does not purposely collide into car A. For
example, if car A is at 4, then car C should not move
to 4 in the next cycle.

G
(
(pA = 4→ X (pC 6= 4)

)
D. System Guarantees:

1) Initially, car A is in region 4.

pA = 4

2) Car A must not collide with car B or C.

G (pA 6= pB ∧ pA 6= pC)

3) Car A can move at most two squares up at each time
step. For example, starting at 4, car A can move to 5, 6
or 8, or stay at 4.

G
(
(pA = 4→ X (pA = 5 ∨ pA = 6 ∨

pA = 8 ∨ pA = 4)
)

4) Constraints on the visibility regions of car A. When
the view of car A is not obstructed by another vehicle
directly in front, car A can see squares ahead include
the current position on both lanes. This specification
simulates the potential limitation on the sensing capa-
bilities on the vehicle. For example, starting at 4, car A
is supposed to be able to see 3, 4, 5, 6, 7 and 8, but due
to car B being at 6 (thus partially blocking the view of
A), car A can only see regions 3, 4, 5 and 6.

G
(
(pA = 4 ∧ (pB = 6 ∨ pC = 6))→

(vA = {3, 4, 5, 6})
)

5) Constraints on follow. Basically, car A is said to be able
to “follow” car B if it can always move into a position
where it can see where car B is at.

G
(
(track = true)↔ (pB ∈ vA)

)
We further require that G (follow = true).

6) Car A cannot change lane if another car parallel to it
is changing lane as well. For example, if car A is at 4
and car C is at 3, and car C is moving to 6, then car A
cannot move to 5.

G
(
(pA = 4 ∧ pC = 3 ∧ (X pC = 6))→ (X pA 6= 5)

)
APPENDIX B

GRIDWORLD HALLWAY

Here we discuss the details of the LTL specifications of
the Gridworld Hallway problem described in Section VI.
Recall that car A is the controllable vehicle and car B is the
uncontrollable vehicle. The goal of this example is for car A
to start at position I in Figure 7, and eventually visit the two
goal states G while car B can only move in the shaded area,
and has to leave E infinitely often.

A. Input Variables:

1) Position of car B: pB ∈ {4, 5, 6, 11, 12, 13}.
2) Position of the obstacle O: pO ∈ {1 . . . 14}.

B. Output Variables:

1) Position of car A: pA ∈ {1 . . . 14}.

C. Environment Assumptions:

1) The obstacle O is at a fixed position.

G (pO = 10)

2) Car B can only move at most one square in each
direction in the shaded area. For example, starting at
12, car B can move to 11, 13 or 5, or stay at 12.

G
(
(pA = 12→ X (pA = 12 ∨ pA = 11

∨ pA = 13 ∨ pA = 5)
)

3) Car B must leave position E infinitely often.

G (F (pB 6= 4))

D. System Guarantees:

1) Initially, car A is in region 1.

pA = 1

2) Car A must eventually visit the goal states.

F (pA = 2) ∧ F (pA = 14)

3) Car A must not collide with car B.

G (pA 6= pB)

4) Car A must not collide with the obstacle O.

G (pA 6= pO)

5) Car A can move at most one squares to the right side
of the grid at each time step, or move one square up or
down. For example, given that car A is at 5, it can move
to 6, 12, or stay at 5.

G
(
(pA = 5→ X (pA = 5 ∨ pA = 6 ∨ pA = 12)

)

	Introduction
	Motivating Example
	Formal Model of HuIL Controller
	Preliminaries
	Agents as Automata
	Criteria for Human-in-the-loop Controllers

	Synthesis from Temporal Logic
	Linear Temporal Logic
	Satisfiability and Realizability
	Synthesis Complexity and GR(1) Specification
	Games and Strategies
	Illustrative Example

	HuIL Controller Synthesis
	Weighted Counterstrategy Graph
	Counterstrategy-Guided Synthesis
	Switching from Human Operator to Auto-Controller

	Experimental Results
	Car-Following
	Gridworld Hallway

	Related Work
	Conclusions
	References
	Appendix A: Car Following
	Input Variables:
	Output Variables:
	Environment Assumptions:
	System Guarantees:

	Appendix B: Gridworld Hallway
	Input Variables:
	Output Variables:
	Environment Assumptions:
	System Guarantees:

