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Regularization-Based Identification for

Level Set Equations

Insoon Yang ∗ Claire J. Tomlin †

Abstract

An optimization-based method for identifying the speed profile of a moving surface from
image data is studied. If the dynamic surface motion is modeled by a level set equation, the
identification problem can be formulated as an optimization problem constrained with the level
set equation whose (viscosity) solution, in general, has kinks. The non-differentiable solution
prevents us from having a bounded gradient of the cost function of the optimization problem.
To overcome this difficulty, we develop a novel identification approach using a regularized level
set equation. The regularization guarantees the differentiability of the cost function and the
boundedness of the gradient. Using numerical optimization techniques with the adjoint-based
gradient, we solve the identification problem. We perform a numerical test to validate that
the solution of an optimization problem with a regularized level set equation converges to
the solution of the same optimization problem with an unregularized level set equation as
the regularization factor tends to zero. The performance and usefulness of the method are
demonstrated by a biological example in which we estimate the forces (per density) of actin
and myosin in cell polarization.

1 Introduction

The level set equation has been recognized as one of the most popular partial differential equation
(PDE) models due to its many applications [21, 25, 22]. In particular, the level set equation provides
a good modeling framework for the motion of a surface (or a curve). More precisely, the surface
can be represented by the zero level set of the solution to the level set equation. Several level set
equation-based models that describe surface motions are used in computer vision [19], computer
graphics [11], multi-phase physics [23] and spatial systems biology [31]. One of the most important
basic level set equation models is a Hamilton-Jacobi equation that describes the evolution of the
surface in the normal direction of its boundary with the speed profile distributed over the boundary
[25, 22]: it models, for example, the balance between the adhesion and the normal protrusion (or
contraction) forces in a biological cell boundary [31, 26].

Given image data or video of a surface motion, it is often important to identify the speed profile
of the surface. For example, the speed profile of cell surfaces has drawn great interests in the study
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of cancer, as the role of cell morphological changes in malignant transformations is investigated [29].
The identification of the speed profile when the cell surface is changing in its normal direction (e.g.,
the motion under the balance between the adhesion and normal protrusion forces) is a preliminary
step for identifying it in more complicated cell morphology changes in carcinogenesis or metastasis.
If we describe the dynamics of the surface with a level set equation, then the speed profile of the
surface motion can be identified by solving a PDE-constrained optimization problem. The cost
function of the optimization problem represents the difference between the solution of the level set
equation and the given data, and the constraint of the problem is the level set equation.

In general, PDE-constrained optimization problems can be efficiently solved with nonlinear pro-
gramming algorithms if an analytic form of the gradient of the cost function is provided [10]. A
popular approach for deriving an analytic formula for the gradient is an adjoint-based method, and
this method is also a classical method for the parameter optimization of ordinary differential equa-
tion (ODE) models [15]. The adjoint-based method for PDE-constrained optimization problems
requires more careful analysis than ODE-constrained optimization problems because the solution
of the PDEs does not always have enough differentiability and regularity to guarantee the existence
of a well-defined gradient. Furthermore, the differentiability and regularity of the solution highly
depend on the type of the PDE: therefore, the method has been customized to several types of
PDEs and used in relevant applications [1, 16, 14, 3, 13, 30].

In this paper, we study the identification problem of the speed profile such that the level set
equation best matches the desired data. The most relevant work is [17], in which particle markers
on the surface are employed to estimate the speed profile. However, the particle marker-based
method is not able to compute the speed in the normal direction when marker paths cross. An
optical flow velocity based on image gradients is used in [7] when topological changes of the surface
do not occur. The method proposed in this paper is a fully Eulerian method that does not use
particle markers and is robust to topological changes of the surface; it solves a PDE-constrained
optimization problem to identify the speed profile. To the best of our knowledge, an optimization-
based identification method for the level set equation that describes the surface motion in its normal
direction has not been explored. The cost function of the optimization problem is not differentiable
with respect to the speed function because the (viscosity) solution is not differentiable everywhere:
the non-differentiability of the cost function prevents us from employing a gradient-based algorithm.
To overcome this limitation, we develop a novel identification approach utilizing a regularized level
set equation. Our method has two important features. First, we use a regularized level set equation
whose solution converges to the viscosity solution of the original level set equation; this approach
permits us to employ the boundedness of the regularized solution and its first derivatives. Both
the differentiability and the regularity of the regularized solution play a critical role in ensuring
the differentiability of the cost function. Second, we propose an adjoint equation of the regularized
level set equation that is associated with the optimization problem under consideration. The regu-
larization also allows the adjoint equation to have a square-integrable weak solution. We derive an
analytic formula for the gradient of the cost function utilizing the adjoint equation and show that
the gradient is bounded. Furthermore, we perform a numerical test to validate that the solution
of an optimization problem that uses a regularized level set equation converges to the solution
of the original optimization problem as the regularization factor tends to zero. An example that
identifies the forces (per density) of actin and myosin in cell morphology change demonstrates the
performance of the proposed method and the potential usefulness of the method in the estimation
of cellular mechanical properties from image data or movies.
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Figure 1: The subdomain Ω−(t) is the region enclosed by the surface Γ(t); and Ω+(t) = Ω\(Ω−(t)∪
Γ(t)).

2 Level Set Equation for a Dynamic Surface Moving in Its
Normal Direction

Consider a surface Γ(t) that moves over time for t ∈ [0, T ] in a bounded and open domain Ω ⊂ R3.
Suppose that the surface separates one region from another, and evolves in the direction that is
normal to its boundary with the speed F : Ω → R. If the surface moves in the outward normal
direction at x := (x, y, z) ∈ Ω, then F (x) is positive; however, if it moves in the inward normal
direction at x, then F (x) is negative. Let Ω−(t) and Ω+(t) be open subsets of the domain Ω that
represent the volumes inside and outside of the surface Γ(t), respectively. Note that Ω is a disjoint
union of Ω−(t), Γ(t) and Ω+(t) for all t ∈ [0, T ]. An example that depicts Γ(t), Ω−(t) and Ω+(t) is
shown in Fig. 1. We choose a level set function φ0 : Ω→ R as

φ0(x)

 < 0 if x ∈ Ω−(0)
= 0 if x ∈ Γ(0)
> 0 if x ∈ Ω+(0).

For the sake of simplicity, suppose that φ0 is a smooth function.
We now consider the following Hamilton-Jacobi PDE with φ : Ω× [0, T ]→ R:

φt +H(∇φ, F ) = 0 in Ω× [0, T ], (1a)

φ(x, 0) = φ0(x) in Ω× {t = 0}, (1b)

with the Hamiltonian
H(∇φ, F ) = F‖∇φ‖. (2)

We call (1) the level set equation [21], and we assume periodic boundary conditions. An important
feature of the level set equation is that the zero-level set of φ(·, t) corresponds to the surface Γ(t)
that moves in the normal direction with the speed function F for all time t. More precisely, the
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level set function has the following property:

x ∈

 Γ(t) if φ(x, t) = 0
Ω−(t) if φ(x, t) < 0
Ω+(t) if φ(x, t) > 0.

The level set equation implicitly tracks the motion of the surface Γ by computing the evolution of
the level set function φ rather than explicitly track the motion of Γ, as in the Lagrangian framework.
Computational modeling of the dynamic surface motion with the level set equation has practical
advantages: first, the level set method for solving (1) does not result oscillation of the surface
unlike Lagrangian methods (e.g. particle marker); second, the level set method naturally handles
topological changes of the surface [25, 22].

The fact that the solution of (1) is not generally differentiable everywhere motivates weak
solutions of (1). Among these weak solutions, the viscosity solution is sophisticatedly designed so
that it has the properties of uniqueness and consistency. For a detailed definition and investigation
of viscosity solutions, we refer the reader to [6, 5]. We seek to identify the speed function F of the
surface in the Hamiltonian such that the level set equation models the given data of the surface
motion well. Our approach minimizes a cost function that measures the difference between Γ and
the given data by using the gradient of this cost function with respect to F . Although we can
fully benefit from the properties of uniqueness and consistency when we use the viscosity solution,
its non-differentiability could be problematic in defining and computing the gradient of the cost
function. To overcome this limitation, we utilize a regularized level set equation.

2.1 Regularization

Consider the regularized level set equation of the form [8]

φεt +H(∇φε, F ) = ε∆φε in Ω× [0, T ], (3a)

φε(x, 0) = φ0(x) in Ω× {t = 0}, (3b)

with the same Hamiltonian as (2), where ε > 0 is the regularization factor. For the sake of
simplicity, we assume that ε ∈ (0, 1). Then, there exists a unique bounded solution φε such that its
first derivatives are bounded for any T > 0, i.e.,

sup
Ω×[0,T ]

|φε|, ‖∇φε‖, |φεt| ≤ C (4)

for some constant C [8]. In addition, this regularized solution also converges to the viscosity solution
φ of (1) locally uniformly [6], i.e.,

φε → φ as ε→ 0. (5)

This convergence result justifies the use of the regularized level set equation (3) with a very small
ε > 0 instead of (1) to identify F . Although φε converges to φ locally uniformly, the regularization
factor ε > 0 could be a source of numerical errors in the identification of F . By performing numerical
experiments in Section 4, we validate that the optimal F in the regularized equation (3) converges
to the optimal F in the original equation (1) as ε approaches zero. This regularization has two
major advantages: first, the cost function with the regularized solution is differentiable as we will
show in Section 3.3. Therefore, the gradient of this cost function exists and is unique. Second,
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the boundedness of the regularized solution and its derivatives guarantees the boundedness of the
gradient of the cost function, as we will show in the next section. The bounded gradient plays a
critical role in optimization algorithms because it prevents the termination of the algorithms before
an optimum is found. Therefore, regularization eventually allows us to solve optimization problems
without a potential failure caused by unbounded gradients.

3 Variational Method For Identification

Recall that the speed F = F (x) that we want to identify is a function of space. We choose the
space of feasible speed functions as F = L∞(Ω) because in practice the function must be essentially
bounded. Let ΓD(t), t ∈ [0, T ] be the position data of the surface and let ΩD−(t) and ΩD+(t) be
the inner and outer volumes of the surface ΓD(t), respectively. Then, we can numerically construct
a level set function φD( · , t) whose zero level set and zero sublevel set coincide with ΓD(t) and
ΩD−(t), respectively [24, 27]. Our goal is to find the speed function F ∈ F such that the zero
level set of the solution of (3) matches ΓD as well as possible. To this end, we pose the following
optimization problem:

min
F∈F

Jε(F ) =
1

2

∫ T

0

∫
Ω

[S(φε)− S(φD)]2 dxdt (6a)

subject to regularized level set equation (3) (6b)

FL ≤ F (x) ≤ FU , ∀x ∈ Ω, (6c)

where S : R→ [0, 1] is a smooth approximation of the Heaviside step function. As in [30], we set

S(p) =
1

2
+

1

2
tanh

(p
τ

)
, (7)

for a small τ > 0. As we showed in [30], the cost function measures the volume of the non-
overlapping regions between Ω− and ΩD−.

Lemma 1. As τ → 0+, we have∫
Ω

[
S(φ(x, t))− S(φD(x, t))

]2
dx→ |Ω−(t)− ΩD−(t)| = |Ω+(t)− ΩD+(t)|.

We refer to [30] for the proof of the lemma. Lemma 1 implies that the optimal solution to (6)
minimizes the difference between Ω− and ΩD− when τ → 0+. Using τ > 0 may introduce errors
in the optimal solution because we minimize the approximated difference between Ω− and ΩD−.
However, a sufficiently small τ > 0 does not significantly deteriorate the accuracy of the optimal
solution in our numerical tests. The primary reason why we use a positive τ is that it allows the dif-
ferentiability of the cost function Jε; in contrast, τ = 0 renders the cost function non-differentiable.
If the cost function is differentiable, then we can use its gradient to solve the optimization problem
with efficient nonlinear programming algorithms that allow super-linear convergence by utilizing
approximate Hessian matrix information. To demonstrate the differentiability of the cost function
and to derive the formula for the gradient, we will use the variational approach that we propose
below.

5



3.1 First variation

We begin by considering the variation F + F̃ ∈ F of the speed function F such that

‖F̃‖ :=

∫
Ω

|F̃ (x)|2 dx ≤ C,

for some constant C. We use the notation φε[F ] to denote the solution of (3) with the speed
function F . Let φ̃ε := φε[F + F̃ ]−φε[F ]. Then, it solves the following nonlinear PDE: in Ω× [0, T ],

φ̃εt + F
∇φε

‖∇φε‖
· ∇φ̃ε + F̃‖∇φε‖+ f ε = ε∆φ̃ε, (8)

where f ε absorbs the higher-order terms in the Taylor expansion of the Hamiltonian H, i.e.,

f ε :=

∫ 1

0

(1− s)
(
ṽ>D2H(v + sṽ)ṽ

)
ds

due to the mean value theorem, where v := (∇φε, F ) and ṽ := (∇φ̃ε, F̃ ). The initial value is zero,
i.e., φ̃ε( · , 0) = 0. Intuitively, φ̃ tends to zero as F̃ approaches zero in F . In fact, we have obtained
a stronger estimate, which is presented in the following proposition.

Proposition 1. Let φ̃ε := φε[F + F̃ ]− φε[F ]. Then,∫ T

0

∫
Ω

|φ̃ε(x, t)|2 dxdt ≤ K
∫

Ω

|F̃ (x)|2 dx (9)

for some constant K that is independent of F̃ .

Proof. Fix s ∈ (0, T ]. Multiply both sides of (8) by φ̃ε and integrate them over Ω× (0, s) to obtain∫ s

0

∫
Ω

φ̃ε
(
φ̃εt + F

∇φε

‖∇φε‖
· ∇φ̃ε + F̃‖∇φ̃ε‖+ f ε

)
dxdt = −ε

∫ s

0

∫
Ω

‖∇φ̃ε‖2 dxdt. (10)

On the right-hand side of the above equation, we used the divergence theorem
∫

Ω
φ̃ε∆φ̃ε dx =

−
∫

Ω
∇φ̃ε · ∇φ̃ε dx with the periodic boundary condition. Using the Schwartz inequality, we obtain

the following inequalities∣∣∣∣φ̃εF ∇φε‖∇φε‖
· ∇φ̃ε

∣∣∣∣ ≤ 1

4δ1
|F |2|φ̃ε|2 + δ1‖∇φ̃ε‖2,

|φ̃εF̃‖∇φ̃ε‖| ≤ 1

2
|φ̃ε|2 +

1

2
‖∇φ̃ε‖2|F̃ |2,

|φ̃εf ε| ≤ 1

4δ2
|φ̃ε|2 + δ2|f ε|2

≤ 1

4δ2
|φ̃ε|2 + C̄0δ2(‖∇φ̃ε‖2 + |F̃ |2)

for any δ1, δ2 > 0. In general, C̄0 depends on F̃ . Instead of C̄0, we use C0 := sup‖F̃‖≤C,F+F̃∈F C̄0,

which is independent of F̃ . By substituting the second, third and fourth terms in (10) with these
inequalities, we obtain

1

2

∫
Ω

φ̃ε(x, s)2 dx ≤
∫ s

0

∫
Ω

C1|φ̃ε|2 + C2|F̃ |2 + (δ1 + C0δ2 − ε)‖∇φ̃ε‖2 dxdt, (11)

6



for some constants C1, C2 that are independent of F̃ . If we choose δ1, δ2 > 0 such that δ1+C0δ2 ≤ ε,
then

1

2

∫
Ω

φ̃ε(x, s)2 dx ≤
∫ s

0

∫
Ω

C1|φ̃ε|2 + C2|F̃ |2 dxdt. (12)

Using the Bellman-Gronwall’s lemma, we obtain the following: for any s ∈ [0, T ],∫
Ω

φ̃ε(x, s)2 dx ≤ C∗(1 + 2C1s exp(2C1s)),

where C∗ := 2
∫ s

0

∫
Ω
C2|F̃ |2 dxdt. Therefore, we have∫ T

0

∫
Ω

|φ̃ε|2 dxdt ≤ K
∫

Ω

|F̃ |2 dx,

for some constant K that is independent of F̃ , as desired.

Note that the positivity of ε does not merely guarantee the boundedness of ‖∇φ̃ε‖; it also yields
the inequality (12), which is essential to the proof. The ε-regularization and Proposition 1 allow us
to go beyond the estimate for φ̃ε: we have the additional estimate for ∇φ̃ε, which is proposed in
the next proposition.

Proposition 2. Let φ̃ε := φε[F + F̃ ]− φε[F ]. Then,∫ T

0

∫
Ω

‖∇φ̃ε(x, t)‖2 dxdt ≤ K
∫

Ω

|F̃ (x)|2 dx, (13)

for some constant K that is independent of F̃ .

Proof. Let s := T , which is found in the proof of Proposition 1. Then, we can rewrite the inequality
(11) as follows: ∫ T

0

∫
Ω

(ε− δ1 − C0δ2)‖∇φ̃ε‖2 dxdt

≤
∫ T

0

∫
Ω

C1|φ̃ε|2 + C2|F̃ |2 dxdt−
1

2

∫
Ω

φ̃ε(x, T )2 dx

≤
∫ T

0

∫
Ω

C1|φ̃ε|2 + C2|F̃ |2 dxdt.

Recall that δ1 and δ2 can be arbitrarily chosen as long as they are positive. If we choose δ1, δ2 > 0
such that ε− δ1 − C0δ2 > 0, then the following inequality holds:∫ T

0

∫
Ω

‖∇φ̃ε‖2 dxdt

≤ 1

ε− δ1 − C0δ2

∫ T

0

∫
Ω

C1|φ̃ε|2 + C2|F̃ |2 dxdt

≤ K
∫

Ω

|F̃ |2 dx,

for some constant K that is independent of F̃ . The last inequality is due to Proposition 1.
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Propositions 1 and 2 play a critical role in proving the differentiability of Jε and in deriving
the formula for ∇FJε. Roughly speaking, these propositions control the higher-order terms of
Jε(F + F̃ )− Jε(F ) in φ̃ε and ∇φ̃ε in the derivation of ∇FJε. Before we examine the gradient, we
introduce an adjoint equation for the optimization problem (6).

3.2 Adjoint equation

We define the adjoint equation of the regularized level set equation (3) that is associated with the
optimization problem (6) as

−µεt −∇ ·
(
F
∇φε

‖∇φε‖
µε
)

= ε∆µε +G in Ω× [0, T ], (14a)

µε(x, T ) = 0 in Ω× {t = 0}, (14b)

where G := −(S(φε) − S(φD))S′(φε) and the boundary condition is periodic. In addition, the
adjoint state µε can be interpreted as the dual variable of the solution to the regularized level set
equation (3). The adjoint equation will be used in the derivation of the gradient ∇FJε in the
following section.

We note that the condition (14b) is the terminal condition. Thus, we need to solve the equation
backward in time. If we perform a change of variable as ζ(·, t) = µ(·, T − t), then we can interpret
the equation as an reaction-advection-diffusion equation with the velocity field −F∇φε/‖∇φε‖, the
diffusion coefficient ε, and the reaction function G. It is well known that the reaction-advection-
diffusion type equation has a unique weak solution such that∫ T

0

∫
Ω

|µε|2 dxdt ≤ C (15)

for some constant C [9].

3.3 Gradient

We are ready to show the differentiability of the cost function Jε and to derive an expression for
∇FJε using the estimate result in Section 3.1 and the adjoint equation in Section 3.2. Note that
we study the differentiability of a functional (Jε) with respect to a function (F ) in a Banach space
(F = L∞(Ω)). The Fréchet differentiability provides a bound of the variation of the functional with
respect to an arbitrary variation of the function, while the Gâteaux differentiability does so only
if the function varies in a certain direction. Therefore, we examine the Fréchet differentiability to
allow an arbitrary variation of F in a numerical algorithm to solve (6).

Theorem 1. The cost function Jε is Fréchet differentiable. Furthermore, the gradient of Jε with
respect to the speed function F is given by

∇FJε =

∫ T

0

∫
Ω

‖∇φε‖µε dxdt, (16)

where φε and µε are solutions of (3) and (14), respectively. Furthermore, the gradient is bounded.
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Proof. We introduce the notation O := O(‖F̃‖2) + O(‖φ̃ε‖2L2(Ω×(0,T ))) + O(‖∇φ̃ε‖2L2(Ω×(0,T ))) to

represent any higher-order terms in F̃ , φ̃ε, and ∇φ̃ε. Propositions 1 and 2 suggest that O/‖F̃‖ → 0
as F̃ → 0 in F . First, we consider the difference

Jε(F + F̃ )− Jε(F ) =

∫ T

0

∫
Ω

(S(φε)− S(φD))S′(φε)φ̃ε dxdt+ O, (17)

as F̃ → 0 in F , which is the result of a Taylor expansion. Note that this Taylor expansion is valid
because the approximate Heaviside step function S is differentiable. Multiply the left-hand side of
(8) by the adjoint state µ, integrate this product over Ω × (0, T ), and add this integral, which is
zero, to the difference (17). Then, as F̃ → 0 in F , we have

Jε(F + F̃ )− Jε(F ) =

∫ T

0

∫
Ω

(S(φε)− S(φD))S′(φε)φ̃ε dxdt+ O

+

∫ T

0

∫
Ω

µε
(
φ̃εt + F

∇φε

‖∇φε‖
· ∇φ̃ε + F̃‖∇φε‖ − ε∆φ̃ε

)
dxdt.

Using integration by parts and the divergence theorem with periodic boundary conditions, we obtain∫ T

0

µεφ̃εtdt = −
∫ T

0

µεtφ̃dt,

∫
Ω

µε∆φ̃εdx =

∫
Ω

∆µεφ̃εdx,

∫
Ω

µεF
∇φε

‖∇φε‖
· ∇φ̃ε dx = −

∫
Ω

∇ ·
(
µεF

∇φε

‖∇φε‖

)
φ̃ε dx.

By substituting these equations into the previous formula for the difference, we obtain

Jε(F + F̃ )− Jε(F ) =

∫ T

0

∫
Ω

µε‖∇φε‖F̃ dxdt+ O

+

∫ T

0

∫
Ω

[
−µεt −∇ ·

(
µεF

∇φε

‖∇φε‖

)
− ε∆µε + (S(φε)− S(φD))S′(φε)

]
φ̃ε dxdt.

Note that, due to the adjoint equation (14), the second integral in the above equation is zero. Let

DFJ
ε(F : F̃ ) :=

∫ T
0

∫
Ω
µε‖∇φε‖F̃ dxdt. Recall that O/‖F̃‖ → 0 as F̃ → 0. Consequently, we

obtain
‖Jε(F + F̃ )− Jε(F )−DFJ

ε(F : F̃ )‖
‖F̃‖

→ 0,

as F̃ → 0 in F , which implies that Jε is Fréchet differentiable and that DFJ
ε(F : F̃ ) is indeed

the Fréchet derivative of Jε with respect to F . Therefore, we conclude that the gradient can be
obtained as (16). Recall the estimates (4) and (15) of the primal and the adjoint states, respectively.
Using these estimates, we have the boundedness of the gradient.

Note that Propositions 1 and 2 control all of the higher-order terms in φ̃ε and∇φε, and therefore,
O/‖F̃‖ approaches zero as F̃ tends to zero in F . This fact guarantees the differentiability of the
cost function. Furthermore, in the difference Jε(F + F̃ )−Jε(F ), the adjoint equation transfers the
effect of φ̃ε to the adjoint state µε.
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3.4 Algorithm

When we numerically optimize F , we should discretize F ∈ F over space and optimize its value
on the resulting nodes, distributed over Ω. It is convenient to introduce the basis functions
{βm(·)}Mm=1 ∈ L∞(Ω) for F (·), i.e., for x ∈ Ω,

F (x) :=

M∑
m=1

wmβm(x),

where wm ∈ R is the basis weight for βm : Ω → R+. Let w := (w1, · · · , wM )> and let β :=
(β1, · · · , βM )>. If we want to evaluate F at all of the nodes as in finite element methods or finite
difference methods, for example, we can use the piecewise linear basis functions {βm(·)}Mm=1 such
that

βm(xi) =

{
1 if i = m,
0 otherwise.

These basis functions are defined at each node, i.e., M is the number of nodes. Given the basis
functions β, we identify the basis weights such that the level set equation best describes the evolution
of a surface, which is given in the form of data. Due to Theorem 1, we can derive the gradient of
the cost function with respect to the basis weight as

∇wJε =

∫ T

0

∫
Ω

β‖∇φε‖µε dxdt. (18)

The differentiability of the cost function and the analytic formula for its gradient allow us to
use gradient-based nonlinear programming methods. In general, methods that use the gradient
information are more efficient than those methods that do not use the gradient information [20].
Because the gradient formula (16) depends on both the primal and the adjoint states, we need to
evaluate both states by numerically solving (3) and (14) to compute the gradient. The pseudo-
algorithm to solve the optimization problem (6) using the gradient information is as follows:

1. Initialize w.

2. Numerically solve the regularized level set equation (3) to obtain the primal state φε.

3. Numerically solve the adjoint equation (14) to obtain the adjoint state µε.

4. Evaluate the gradient ∇wJε at w using (18).

5. Evaluate the gradients of the inequality constraints (6c).

6. Compute the descent direction and the step size using the gradients obtained in Steps 4 and
5 with an appropriate nonlinear programming method.

7. Update w using the descent direction and step size. Return to Step 2 if the convergence
criteria do not hold.

In Step 2, we use numerical methods called the level set methods [21, 25, 22] to solve the
(regularized) level set equation. These methods accurately approximate the surface motion with
an entropy-satisfying numerical scheme for Hamilton-Jacobi PDEs, and they also conveniently use
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Figure 2: The data for the surface evolution Γ(t), t = 0, 2, 4, 6, 8.

a Cartesian grid. For the adjoint equation, we use the upwind approximation of the advection
term and the centered difference for the diffusion term [12]. Note that we must solve the adjoint
equation backward in time. To determine the descent direction and the step size in Step 6, we can
employ a number of nonlinear programming methods such as interior-point methods, sequential
quadratic programming (SQP) methods, conjugate-gradient methods, and trust-region methods.
In our numerical tests, an interior-point algorithm that hybridizes the line search and conjugate
gradient trust-region methods is used [4, 28].

4 Numerical Tests

4.1 Convergence test

We have shown that the ε-regularization in (3) plays a critical role in proving the differentiability
of the cost function. The gradient ∇Jε is the key ingredient of the algorithm that solves the
optimization problem (6). Let w∗ε denote the numerical solution of the problem that is obtained
using the algorithm in the previous section with the gradient ∇Jε. Although φε converges to φ as
ε tends to zero, it is unclear whether w∗ε converges to w∗, which is the solution of the optimization
problem (6) with ε = 0. In this section, we perform the test for the numerical convergence of w∗ε

to w∗. To that end, we first set the ground truth weight w∗ = (−0.0782, 0.4157, 0.2922, 0.4595) for
the radial basis functions βk(x) = exp(−‖x − xk‖2/10), where x1 = (−5,−5, 0), x2 = (−5, 5, 0),
x3 = (5,−5, 0), and x4 = (5, 5, 0). By numerically solving the level set equation (1) with the
function F that is constructed by the basis functions and the ground truth weights, we obtain the
synthetic data φD and ΓD for t ∈ [0, 8]. In Fig. 2, ΓD(t), t = 0, 2, 4, 6, 8 are displayed. In the
numerical simulation, we choose the grid spacing as h = 0.4 and the time step as ∆t = 0.08.

To study the effect of ε, we vary ε from 10−2 to 10−10 and compute the solution w∗ε of the
optimization problem (6) where (wL, wU ) = (−0.5, 0.5). The smoothing factor τ in the smooth
Heaviside step function (7) is selected as 0.01h. Let e denote the numerical error of the solution,
i.e.,

eε := ‖w∗ε − w∗‖, (19)

where w∗ is the ground truth weight. We compute the errors in the 1- and ∞-norms. As shown
in Fig. 3, the error converges to zero in both norms with the convergence rate 1. This conver-
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Figure 3: The errors in the 1- and ∞-norms with respect to the regularization factor ε. The dotted
line is the reference line with a slope of 1 in the log-log scale.

gence result suggests that the solution obtained by the regularization-based approach is a good
approximation of the solution to the unregularized problem: furthermore, the sequence {w∗ε} is a
converging sequence to w∗. This convergence property will be analytically studied in the future
work.

4.2 Example: cell polarization via an actin-myosion system

The actin-myosin system is one of the critical factors that govern the dynamics of cell morphology.
Actin cytoskeletons and actomyosin networks exert protrusive and contractile forces on the cell
membrane, and these forces depend upon the cell’s expansive and contractile movements, respec-
tively. Despite a number of experiments, the relationship between the density of actin, V and the
protrusive force, Fp is still arguable, as is the relationship between the density of myosin, W and
the contractile force Fc. Several models for mapping from the density of actin and myosin (or the
concentration of the proteins that are related to them) to these protrusive and retraction forces
have been suggested [18, 26]. We use a simplified model [26] in which the forces are exerted in the
direction that is normal to the cell boundary, i.e.,

Fp = aV ν = aV
∇φ
‖∇φ‖

, Fc = −bWν = −bW ∇φ
‖∇φ‖

,

where a and b denote the magnitude of the force per density of actin and myosin, respectively. If
we normalize the friction coefficient between the cell and its substrate to 1, then the following level
set equation describes the dynamics of the cell boundary [31]:

φt + (aV − bW )‖∇φ‖ = 0.

Note that we can naturally set the basis weights and basis functions as w = (a,−b) and β = (V,W ),
respectively.
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Figure 4: (a)–(c) The data from the cell morphology change ΓD(t), t = 0, 4, 8. (d)–(f) The cell
morphology change Γ(t), t = 0, 4, 8 that is predicted by the level set equation with identified
parameters.

Our goal is to identify a and b such that the level set model accurately describes the experimental
data. In this example, we use synthetic data of cell morphology as shown in Figure 4 (a)–(c).
To synthesize these data, we chose w = (0.1,−0.8) and βk(x) = exp(−‖x − xk‖2/10), where
x1 = (−3.5, 0, 0) and x2 = (3.5, 0, 0). We corrupt the solution values with the i.i.d. Gaussian
noise N (0, 0.05). These synthetic data mimic the experimental data from the polarization of a cell
due to an actin-myosin system [2]. To identify the parameters a and b, we solve the optimization
problem (6) with ε = 10−6. We have tested several initial guesses of the parameters. The optimal
solution that is obtained by the algorithm is quite robust with respect to the initial guesses (the
errors ‖w∗ε−w∗‖1 are all on the order of 10−3). The comparison between the data and the dynamic
surface with the identified speed profile is shown in Fig. 4.

5 Conclusion And Future Work

We have presented a novel regularization-based approach for identifying the speed function in a
level set equation. The ε-diffusion term in the regularized level set equation played an essential
role in ensuring both the differentiability of the cost function of the optimization problem and
the boundedness of the gradient. The adjoint-based gradient allows us to efficiently solve the
identification problem with a nonlinear programming algorithm. The numerical solution of the
regularized problem converges to the solution of the unregularized problem as the regularization
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factor ε tends to zero. The regularization-based method successfully estimated the forces per
density of actin and myosin that induces the dynamic change of a cell shape. We believe that the
method will be very useful to estimate the mechanical properties of cells when direct experimental
measurements of them are not tractable.

We plan to generalize our regularization-based method to any convex and non-convex Hamilton-
Jacobi equations. This generalization will be useful in the sensitivity analysis of the value functions
of optimal control and differential game problems.
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