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Abstract

Teaching People and Machines to Enhance Images

by

Floraine Berthouzoz

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Maneesh Agrawala, Chair

Procedural tasks such as following a recipe or editing an image are very common. They require
a person to execute a sequence of operations (e.g. chop onions, or sharpen the image) in order
to achieve the goal of the task. People commonly use step-by-step tutorials to learn these tasks.
We focus on software tutorials, more specifically photo manipulation tutorials, and present a set of
tools and techniques to help people learn, compare and automate photo manipulation procedures.
We describe three different systems that are each designed to help with a different stage in acquiring
procedural knowledge.

Today, people primarily rely on hand-crafted tutorials in books and on websites to learn photo
manipulation procedures. However, putting together a high quality step-by-step tutorial is a time-
consuming process. As a consequence, many online tutorials are poorly designed which can lead
to confusion and slow down the learning process. We present a demonstration-based system for
automatically generating succinct step-by-step visual tutorials of photo manipulations. An author
first demonstrates the manipulation using an instrumented version of GIMP (GNU Image Manip-
ulation Program) that records all changes in interface and application state. From the example
recording, our system automatically generates tutorials that illustrate the manipulation using im-
ages, text, and annotations. It leverages automated image labeling (recognition of facial features
and outdoor scene structures in our implementation) to generate more precise text descriptions of
many of the steps in the tutorials. A user study finds that our tutorials are effective for learning
the steps of a procedure; users are 20–44% faster and make 60–95% fewer errors when using our
tutorials than when using screencapture video tutorials or hand-designed tutorials.

We also demonstrate a new interface that allows learners to navigate, explore and compare
large collections (i.e. thousands) of photo manipulation tutorials based on their command-level
structure. Sites such as tutorialized.com or good-tutorials.com collect tens of thousands
of photo manipulation tutorials. These collections typically contain many different tutorials for the
same task. For example, there are many different tutorials that describe how to recolor the hair of
a person in an image. Learners often want to compare these tutorials to understand the different
ways a task can be done. They may also want to identify common strategies that are used across
tutorials for a variety of tasks. However, the large number of tutorials in these collections and their
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inconsistent formats can make it difficult for users to systematically explore and compare them.
Current tutorial collections do not exploit the underlying command-level structure of tutorials, and
to explore the collection users have to either page through long lists of tutorial titles or perform
keyword searches on the natural language tutorial text. We present a new browsing interface to help
learners navigate, explore and compare collections of photo manipulation tutorials based on their
command-level structure. Our browser indexes tutorials by their commands, identifies common
strategies within the tutorial collection, and highlights the similarities and differences between
sets of tutorials that execute the same task. User feedback suggests that our interface is easy to
understand and use, and that users find command-level browsing to be useful for exploring large
tutorial collections. They strongly preferred to explore tutorial collections with our browser over
keyword search.

Finally, we present a framework for generating content-adaptive macros (programs) that can
transfer complex photo manipulation procedures to new target images. After learners master a
photo manipulation procedure, they often repeatedly apply it to multiple images. For example,
they might routinely apply the same vignetting effect to all their photographs. This process can
be very tedious especially for procedures that involve many steps. While image manipulation pro-
grams provide basic macro authoring tools that allow users to record and then replay a sequence
of operations, these macros are very brittle and cannot adapt to new images. We present a more
comprehensive approach for generating content-adaptive macros that can automatically transfer
operations to new target images. To create these macro, we make use of multiple training demon-
strations. Specifically, we use automated image labeling and machine learning techniques to to
adapt the parameters of each operation to the new image content. We show that our framework is
able to learn a large class of the most commonly-used manipulations using as few as 20 training
demonstrations. Our content-adaptive macros allow users to transfer photo manipulation proce-
dures with a single button click and thereby significantly simplify repetitive procedures.

Together these tools provide an automated system to create high quality step-by-step tutorials,
allow users to explore and compare large collections of online tutorials, and facilitate repetitive
procedures by automating the transfer of photo manipulations. As more and more instructional
material appears online, we believe that providing such tools for learning, comparing and automat-
ing procedures will be essential to help people work efficiently with software tools.
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Chapter 1

Introduction

Many of the tasks that we perform are procedural tasks. Examples include cooking, driving, read-
ing or even manipulating an image. Procedural tasks involve a sequence of operations that one
has to execute in order to achieve the goal of the task. For example, making a caprese salad is a
procedural task that involves three consecutive steps. People first cut the tomatoes and mozzarella,
then layer alternating slices of tomatoes and mozzarella on a plate while adding a leaf of basil
between each, and finally drizzle the salad with oil and season it. People share instructions in the
form of step-by-step tutorials for many different kinds of procedural tasks. For example, the site
food.com has collected almost half a million cooking recipes. People are also sharing numerous
tutorials for assembling and repairing physical objects, for making crafts, and to teach people how
to use software. Table 1.1 lists a few example sites and the number of tutorials shared on each site.

Given the importance of procedural tasks in our everyday life and the large quantity of instruc-

Domain Number of Tutorials
Recipes

Food.com 475,000
Foodnetwork.com 49,000

Assembly and Repair
Wikihow.com 150,000
Instructables.com 60,000

Crafts
Cutoutandkeep.com 59,000
Craftgossip.com 2,000

Software
Good-tutorials.com 33,000
Psd.tutsplus.com 20,000

Table 1.1: Tutorial sharing sites and number of tutorials shared on each site.
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tional material shared online, it is crucial to understand the learning process, and the challenges
that people encounter when acquiring procedural skills. Educators and psychologists have studied
this question since the 1960s. They have developed several different models for how people ac-
quire procedural skills [35, 37, 25, 79, 9, 6, 87, 101]. We consider one of these models that involves
three consecutive learning stages.

1.1 Three Stages of Learning Procedural Tasks
Acquiring a new procedural skill requires a lot of practice. However, simply repeating the same
task over and over again, does not ensure learning. Skill acquisition is a mental process that
requires learners to fully comprehend the underlying structure of the procedure. For example, to
master a new skill learners need to understand the effect that different types of inputs have on the
result, and be able to adapt the operations of the procedure to new input. They also need to be able
to recognize common strategies used when the procedure is applied in different contexts.

Several researchers have studied the process that learner’s go through when acquiring a new
procedural skill. The model proposed by Fitts et al. [35] distinguishes between three consecutive
learning stages: the cognitive, associative and autonomous stages. Several other researchers [1,
2, 91, 101] further developed this theory. We define each of these three stages and illustrate them
using cooking as an example of a procedural skill.

Cognitive Stage. In the cognitive stage, learners follow step-by-step instructions that describe
the sequence of actions necessary to complete the task. Typically, the instructions are in the form
of a static step-by-step tutorial that combines text and images. Alternatively, a person might also
learn from a video tutorial or a life demonstration. Figure 1.1a shows instructions for making a
carrot soup. In this recipe, each step necessary to make the soup is clearly described. Following
these steps requires conscious effort and leads to high levels of cognitive activity. When reading
the recipe, learners examine how the steps come together as a whole so as to correctly execute the
procedure. Learners organize their newly acquired knowledge into parts known as schemas [8].
Schemas can be seen as “units” of knowledge, each relating to one particular aspect or concept of
the procedure. In well-designed tutorials the schemas often correspond to the steps of the tutorial.

Associative Stage. In the associative stage, learners start comparing and synthesizing informa-
tion across multiple recipes. In our cooking example, learners make a conscious effort to under-
stand the similarities and differences between multiple carrot soup recipes (Figure 1.1b). They also
start identifying common patterns or strategies in the procedures. For example, all soup recipes
first heat up the carrots with butter and onions before blending them. However, some recipes add
curry powder, others add ginger or even coconut milk. In this stage, people learn which steps of
the recipe are optional and how parameters (e.g. cooking time) affect the result. Learners build a
model in their head of the different ways the task can be done.
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1 Melt the butter in a soup pot 
over medium heat and cook 
the onions and carrot, stirring 
occasionally, until the onions 
soften, about 5 to 8 minutes. 
Do not let the onions or 
carrots brown. Sprinkle a 
teaspoon of salt over the 
carrots and onions as they 
cook.

2 Add the stock and water and 
the ginger and the strips of 
orange zest. Bring to a simmer, 
cover, and cook until the carrots 
soften, about 20 minutes.

3 Remove the strips of orange zest and discard. 
Working in small batches, pour the soup into a 
blender and purée until completely smooth. 
Only !ll the blender bowl a third full with the hot 
liquid and keep one hand pressing down on the 
cap of the blender to keep it from popping o". 
Add more salt to taste.  (You will need more salt 
if you are using homemade unsalted stock or 
unsalted butter.) Garnish with chopped chives, 
parsley, or fennel fronds.

Carrot Soup Recipe
[Simplyrecipe.com]
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Alternative Carrot Soup Recipes First Step of Six Recipes
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[Simplyrecipe.com, foodnetwork.com, about.com, 
epicurious.com,che!nyou.com, allrecipes.com]

Melt the butter in a soup pot over 
medium heat and cook the onions and 
carrot, [...]
[Simplyrecipe.com]

In a 6-quart pan, over medium high 
heat, add butter and onions and cook, 
stirring often, until onions are limp. Add 
broth, carrots, and ginger. [...]
[Foodnetwork.com] 

Melt butter in large saucepan over 
medium-high heat. Add onion; sauté 
2 minutes. Mix in carrots. [...]
[Epicurious.com]

Preheat medium pot over medium 
high heat. Add olive oil, butter, onions 
and carrots and saute 5 minutes. Add 
curry and cayenne, and about 1 
teaspoon salt to the pot. [...]
[Allrecipes.com]

Heat butter in a large pot over medium 
heat. Saute onion until tender and 
translucent. Stir in the curry powder. 
Add the chopped carrots, [...]
[Che!nyou.com]

Melt butter in a large Dutch oven over 
medium heat. Stir and cook the chili 
paste, cumin, and 1 tablespoon of 
cilantro until fragrant, about 1 minute. 
Add the ginger, onion, and garlic;  add 
coconut milk, [...]
[About.com]

1
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3

4
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6

1 2 3

4 5 6

1 Melt the butter in a soup pot 
over medium heat and cook 
the onions and carrot, stirring 
occasionally, until the onions 
soften, about 5 to 8 minutes. 
Do not let the onions or 
carrots brown. Sprinkle a 
teaspoon of salt over the 
carrots and onions as they 
cook.

2 Add the stock and water and 
the ginger and the strips of 
orange zest. Bring to a simmer, 
cover, and cook until the carrots 
soften, about 20 minutes.

3 Remove the strips of orange zest and discard. 
Working in small batches, pour the soup into a 
blender and purée until completely smooth. 
Only !ll the blender bowl a third full with the hot 
liquid and keep one hand pressing down on the 
cap of the blender to keep it from popping o". 
Add more salt to taste.  (You will need more salt 
if you are using homemade unsalted stock or 
unsalted butter.) Garnish with chopped chives, 
parsley, or fennel fronds.

Zucchini Tomato

PotatoEggplant

Pea

Pumkin
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Carrot Soup Recipe Adapting Steps to New Ingredients

Figure 1.1: (a) Cognitive Stage. Learners follow step-by-step the instructions described in the
carrot soup recipe. (b) Associative Stage. Learners compare six tutorials for cooking carrot soup.
Step 1 of all six recipes first describes how to heat up the carrots with butter and onions. However,
some recipes also add ginger (2,3), curry powder (5,6), chili paste and coconut milk (3), or cayenne
(6). (c) Autonomous Stage. Learners do the task fluently, and can adapt the steps of the recipe to
new ingredients such as zucchinis, tomatoes, peas etc.
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Autonomous Stage. In the autonomous stage, learners have acquired the procedure and can
transfer their knowledge to different tasks. For example, after learning how to cook a carrot soup,
they can apply the same sequence of operations to other ingredients like tomatoes, peas or zucchi-
nis (Figure 1.1c). In this stage, learners also become experts. They can perform the task fluently,
without effort, and can adapt it as necessary to new ingredients. For example, they know how to
adapt the recipe if they have a larger or smaller quantity of vegetables, and they know how to make
the soup spicier or milder.

This three stage learning process applies to all types of procedural tasks. However, for each of
these three stages, there are some open challenges that should be addressed to further facilitate the
learning process.

• Challenge 1: Facilitating the Authoring of High Quality Instructions. For the cognitive
stage, a major challenge is to facilitate the authoring of high quality instructions. Step-
by-step visual tutorials are currently hand-designed and are very time consuming to create.
Tutorial authors often do not take the time necessary to craft high quality tutorials. As a
consequence, many of the tutorials shared online are poorly designed which can slow down
or even prevent learning.

• Challenge 2: Enabling the Comparison and Browsing of Multiple Instructions. For the
associate stage, a challenge is to enable the comparison and browsing of multiple procedural
instructions (e.g. two different recipes for carrot soup). Currently there are no interfaces that
help learners compare sequences of operations. Doing this comparison in one’s head can be
very difficult or even impossible if the procedure involves many steps. As a consequence,
learners need a lot more practice to recognize patterns in similar procedures or may never be
able to generalize the task to different types of inputs.

• Challenge 3: Automating the Transfer of Procedures. After learning a procedure, people
often apply it over and over again. Repeatedly applying the same steps can be tedious for
procedures that are complex and time-consuming. So a challenge for the autonomous stage
is to automate the transfer of procedures. This challenge requires teaching the steps of the
procedure to a machine and learning how to automatically adapt each step to new input.

The first two challenges arise when people are learning procedural knowledge. The third challenge
arises when we try to teach a procedure to a computer. In this work, we address all three challenges
in the context of photo manipulation procedures.

1.2 Photo Manipulations
Digital cameras, cell phones, or head-mounted cameras like the Google Glass make it easy to cap-
ture the world around us. About 380 billion photos are taken each year and 300 million photos are
uploaded to Facebook every day [38]. As cameras become more and more ubiquitous and versatile,
this number is predicted to further increase. Yet the images we capture directly in the camera often
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fail to depict our intended interpretation of the scene. Good photographs usually require some
editing of the raw images to highlight important elements and de-emphasize unimportant features.

As a result, more and more people use image processing software such as Adobe Photoshop or
the GNU Image Manipulation Program (GIMP) to edit their raw imagery – to adjust contrast and
color, blur backgrounds, remove blemishes and wrinkles, etc. Such photo manipulations are ex-
amples of procedural tasks; users execute a sequence of image manipulation operations to achieve
the desired effect. Although Photoshop and GIMP provide access to many powerful image ma-
nipulation techniques, their interfaces are complex and difficult to learn and use effectively [40].
Therefore, users commonly turn to procedural instructions to learn how to use the software [90,
17].

As we saw in the previous section, learning procedural tasks, including photo manipulation
procedures, is a three stage process where learners first follow a single tutorial (cognitive stage),
then compare multiple tutorials (associative stage), and finally become fluent in the task and repeat
it over and over again (autonomous stage). This learning process is often slow and difficult, because
the instructions are poorly designed, learners need to compare tutorials in their head, and learners
also need to manually apply repetitive procedures. In this thesis, our goal is to improve the learning
process for photo manipulation procedures by addressing the three core challenges, i.e. by (1)
facilitating the authoring of high quality tutorials, (2) enabling the comparison and browsing of
multiple tutorials, and (3) automatically transferring procedures.

We address the challenges (1) and (3) in the context of face, landscape, and global manip-
ulations, because when users take pictures, they often capture people and outdoor scenes. We
informally analyzed 151 tutorials from three popular online photo tutorial sites (chromasia.com,
tripwiremagazine.com, good-tutorials.com) and found that 30% (45/151) of the tutorials
were global manipulations (i.e., manipulations that affect the entire image and are not tied to a
specific object in the scene), 26% (40/151) were face manipulations, and 18% (27/151) were land-
scape manipulations. The remaining 26% (39/151) of the tutorials were applied to a wider variety
of objects (e.g hair, body parts, cars). Therefore, face, landscape and global manipulations indeed
make out most of the photo manipulations described in online tutorials. We address challenge (2)
as part of a more general framework that is not dependent on any particular type of manipulation.

1.2.1 Facilitating the Authoring of High Quality Tutorials
In the cognitive stage, many users rely on visual tutorials to help them learn and work with photo
manipulation applications. Visual tutorials are step-by-step depictions of the sequence of image
processing operations required to produce specific effects. Figure 1.2 shows an example tuto-
rial that teaches users how to correct for red eyes in an image as well as recolor eyes. Previous
work [15, 59, 4, 81, 45] suggests that several characteristics make these visual tutorials partic-
ularly effective and thereby facilitate the cognitive stage of the learning process. For example,
well-designed tutorials use screenshots to visually show the relevant interface widgets, the param-
eters required to invoke each operation and the resulting image after each step. In Figure 1.2a, the
eye recoloring tutorial shows a screenshot of the toolbar in step 1 to help the user select the Red
Eye Tool. Text descriptions, highlights, arrows and other annotations further guide users through
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a

b

Figure 1.2: A tutorial taken from a book by Huggins [49] that teaches users how to correct for red
eyes in an image as well as recolor eyes. The tutorial is well designed. It organizes the operations
into steps, combines text descriptions with annotated screenshots of the application, and merges
repetitive steps.

the tutorial. Good tutorials are also succinct; they eliminate unnecessary steps and condense repet-
itive steps. For example, step 2 (Figure 1.2b) groups two repetitive steps where the user first has
to select the “Midtones” radio button and change the Cyan/Red slider, and then select the “Shad-
ows” radio button and change the Cyan/Red slider again. As users manually perform each step
from the tutorial, they learn the underlying image processing operations, and they can develop new
techniques that adapt the operations to other instances of similar problems.

A variety of books [49, 102, 56] and websites contain thousands of such tutorials. Yet authoring
tutorials is a tedious process in which the author must remember to save the relevant screenshots,
add in the arrows and highlighting, write the text descriptions, and then lay out the screenshots in a
step-by-step manner. As a result, many websites provide poorly designed tutorials with few or no
screenshots and annotations. The eye recoloring tutorial of Figure 1.3 that we downloaded from
the Web only shows the before and after images of the manipulation, but does not show images for
the intermediary steps or the widgets that a person has to manipulate in each step. Alternatively,
many websites simply provide screencapture videos of the manipulation instead of static tutorials.
However, prior studies have shown that video-based instructions are far less effective than static
tutorials because they force users to work at the pace of the video rather than working at their
own pace [83, 42]. Users typically need to rewind the tutorial several times and do not retain their
learnings a week later [83].
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Figure 1.3: An eye recoloring tutorial that we downloaded from the web [100]. This tutorial is
poorly designed. It does not show images for the intermediary steps or the widgets that a person
has to manipulate in each step.

In Chapter 3, we present a system for automatically generating high-quality static tutorials by
demonstration. We design the tutorials based on guidelines in the domain of instruction design [15,
59, 4] and cognitive science [81, 45], so as to facilitate the cognitive stage of the learning process.
We generate the tutorials from a single demonstration and thereby make them as easy to create as
screencapture video tutorials.

1.2.2 Comparison and Browsing of Multiple Tutorials
Photo manipulation programs often provide many different alternative procedures to achieve the
same end goal. For example, there are many different ways to recolor the hair of a person in
an image using Photoshop. In the associative stage, learners compare the procedures of multiple
tutorials. After users learn one photo manipulation procedure for hair recoloring, they compare
their learned procedure to other ones that accomplish the same task. As they understand more and
more about their similarities and differences, they build a model in their head of the different ways
the task can be completed. Learners may also compare procedures across different tasks (e.g. hair
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Photoshop Commands
File>Open

Select>Edit in Quick 
Mask Mode

Brush Preset Picker>
Soft Round
Set Foreground Color>
Black
Brush Tool

Set Foreground Color>
White

Figure 1.4: Step 1 from an online tutorial on hair recoloring, and a list of the corresponding
Photoshop commands described in this step. The user has to very carefully read the text to identify
the six Photoshop commands that he/she has to execute to accomplish the task. Furthermore, some
commands such as the reference to the “soft black brush” command in the text description, actually
correspond to three different Photoshop commands that a user has to execute in the application.
Identifying the commands in such online tutorials can be very difficult.

recoloring and eye recoloring) to identify common strategies that are useful for many different
types of manipulations. For example, the sequence of Photoshop operations “Quick Mask, Brush
Tool, Invert, Hue-Saturation” can be used to recolor hair, but also appears in tutorials for car and
garment recoloring. It is therefore a common strategy used to recolor many different types of
objects. Identifying these strategies allows learners to generalize procedures beyond the specific
task described in the tutorial.

Users often search online photo manipulation tutorial collections such as tutorialized.com
or good-tutorials.com to find multiple tutorials to compare. These sites collect tens of thou-
sands of tutorials and provide access to a very large and diverse collection of photo manipulation
procedures. However, the large number and inconsistent formats can make it difficult for users to
systematically explore and compare these tutorial collections. Current websites simply organize
tutorials by high-level categories such as Photo Effects or Web Layouts. To explore the collection
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users must either page through long lists of tutorial titles within each category or perform keyword
searches on the natural language tutorial text.

Furthermore, each photo manipulation procedure is defined by its sequence of commands.
These commands are crucial; properly following the tutorial requires executing them correctly.
However, even identifying the sequence of commands in a single online tutorial can be challeng-
ing. Online tutorials use narrative text along with interface screenshots to describe the commands
necessary to achieve a specific manipulation (Figure 1.4). But the user has to very carefully read
the natural text to identify the commands. For example, in Figure 1.4 the first step of recoloring
the hair of a person describes six different commands within two paragraphs. Similarly, when
comparing multiple tutorials, the user also has to carefully identify the command sequence of each
tutorial and then manually align the sequences. Current websites simply do not exploit the under-
lying command-level structure (i.e., the sequence of software commands) of the tutorials to help
users navigate a single tutorial, explore collections of tutorials, or compare multiple tutorials.

In Chapter 4, we present a new browser interface to help learners explore and compare collec-
tions of photo manipulation tutorials based on their command-level structure. Our browser indexes
tutorials by their commands, identifies common strategies within the tutorial collection, and high-
lights the similarities and differences between sets of tutorials that execute the same task. These
tools facilitate the associative stage of learning by helping users better understand the underlying
structure of photo manipulation programs.

1.2.3 Automatically Transferring Procedures
In the autonomous stage, after users master a photo manipulation procedure, they often repeatedly
apply it to multiple images. For example, a photographer might routinely apply the same procedure
to enhance the orange hues of sunsets, create a lomography-style vignetting effect, or improve
skin-tones. This process is very tedious and time-consuming especially for photo manipulation
procedures that involve many steps.

To facilitate repetitive procedures, Photoshop and GIMP provide basic macro authoring tools
that allow users to record and then replay a sequence of operations. Yet, the macros authored
today are extremely brittle; they are limited to executing exactly the same operations as in the
recording and cannot adapt to new target images. Thus they are inappropriate for many common
photo manipulations. For example, a macro designed to correct skin-tone for one image will likely
fail for new images simply because the skin is in a different location. In addition, the parameter
values of the skin-tone color adjustment operation depend on both the color of the skin and the
overall color cast of the target image. The parameters used to correct the skin-tone of a dark-
skinned person in a photograph with a blue cast ruin the skin-tone of a light-skinned person in a
photograph with an orange cast (Figure 1.5).

In Chapter 5, we present a more comprehensive approach for generating content-adaptive
macros that can automatically transfer the operations to new target images. We use machine
learning to adapt the parameters of each operation to the new image content. In the example
of Figure 1.5, our macro automatically adapts the skin-tone correction manipulation to the new
location of the skin, and accounts for the light skin of the subject when adjusting the parameters.
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(a) Demonstration Image

(b) Demonstration Result (e) Macro Result

(c) Target Image

(d) Demonstration 
Parameters

Figure 1.5: A user demonstrates a skin-tone correction manipulation on a photograph of a dark-
skinned person with a blue cast (a-b). Directly copying the same color adjustment parameters to
correct the skin-tone of a light-skinned person turns his skin orange (c-d). Our content-adaptive
macro learns the dependency between skin color, image color cast and the color adjustment pa-
rameters to successfully transfer the manipulation (e).

Our content-adaptive macros allow users to transfer photo manipulation procedures with a single
button click and thereby significantly simplify repetitive procedures.

1.2.4 Computerized Tools for Facilitating the Learning Process
Together these tools facilitate the learning process and address the three core challenges by allow-
ing users to automatically create high quality step-by-step tutorials by demonstration, providing an
interface for exploring and comparing large collections of online tutorials, and facilitating repeti-
tive procedures by automating the transfer of photo manipulations. As more and more people share
software instructions online, providing tools for learning, comparing and automating procedures
will be essential to teach people new procedures and help them work efficiently with software tools.
We believe that there are many possible directions for future work that build on the ideas presented
in this thesis. In Chapter 6, we describe how computerized tools can play a large role in facilitating
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the learning process for many domains beyond photo manipulation procedures and many differ-
ent types of instructions beyond procedural instructions. The focus of this thesis, however, is to
describe computerized tools that teach people and machines to enhance images
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Chapter 2

Related Work

We facilitate the learning process by automatically generating step-by-step tutorials by demon-
stration, and by building new interfaces to help learners compare multiple photo manipulation
procedures. We also present a framework for automatically transferring photo manipulation pro-
cedures to new images. For each of these three components, we build on several areas of related
work.

2.1 Generating Tutorials
The step-by-step tutorials that are featured in books and online are typically hand-designed. Creat-
ing high-quality instructions is a very tedious process, where the tutorial author has to take all the
relevant screenshots, annotate them, write the text descriptions and lay out the tutorial. Only very
few prior approaches attempt to automatically generate such instructions. The prior work in this
domain is limited to generating graphical histories and interactive tutorials.

2.1.1 Graphical Histories
Graphical histories depict the operation history as a user is demonstrating a task. Although they
are not designed to be used as instructions, they provide a step-by-step representation of the pro-
cedure. Early work on the visual depiction of these histories visualizes each operation using a
screenshot and text in a comic-strip style [63, 70, 77, 76]. These techniques present snapshots of
the main application window in each panel of the strip. Some of these systems crop and compose
together multiple screenshots into a single panel to further emphasize the important operations in
the history. More recent work has added richer annotations, such as arrows and highlights, to the
visual depictions of the application state [10, 98, 78]. Such visualizations and annotations are also
crucial for instructional material as they illustrate the task the user must perform. We build on
these techniques and visualize procedures using storyboard-style annotations when automatically
generating tutorials for photo manipulations.



CHAPTER 2. RELATED WORK 13

Many of the approaches [63, 76, 98] used to generate graphical histories are designed to help
users selectively undo their work. As a result they include rules for grouping operations into
semantically meaningful undo units. This grouping also reduces the length of the comic-strip style
history visualizations. In the context of learning, it is important to group similar steps to provide
learners with succinct instructions that omit unnecessary operations. We therefore use similar
grouping rules to generate step-by-step photo manipulation instructions that are easy to understand
and follow. However, unlike graphical histories our end goal is to produce instructional material.
We thus also include text descriptions and other semantic information to help users follow the
instructions.

2.1.2 Interactive Tutorials
Interactive tutorials such as Kelleher and Pausch’s Stencils [57] can be very effective, as they al-
low users to stay in the context of the application and execute steps directly from the tutorial.
But generating effective interactive tutorials like Stencils can be a very manual and tedious pro-
cess. Bergman et al. [10] solve this problem with a demonstration-based approach for authoring
interactive tutorials or wizards. However, their wizards are designed for the Eclipse programming
environment and are presented primarily as text scripts with limited support for graphical high-
lighting. In contrast, our work focuses on facilitating the learning process of photo manipulation
procedures. Our goal is to generate static instructional tutorials for novice users. Our tutorials are
generated fully automatically and combine text descriptions with visual annotations to guide a user
through the steps of the tutorial.

2.2 Comparing Instructions
Online tutorial collections provide access to thousands of photo manipulation tutorials. Each tu-
torial describes the sequence of operations required to complete the manipulation. To compare
multiple tutorials, users need to compare their command sequences. However, online tutorials are
typically written in natural text and therefore the command sequences are not readily available.
Prior work explores several approaches to extract the command-level structure from tutorial. Once
the command sequences are available, researches have also suggested new interfaces for tutorial
search and comparison that make use of this underlying structure.

2.2.1 Extracting Command-Level Structure
To help learners compare multiple tutorials and understand the similarities and differences in their
steps, our goal is to extract the command-level structure from pre-existing text-based tutorials.
Our extraction algorithm is inspired by earlier work on using string matching [88], grammar pro-
cessing [67], and machine learning techniques [36, 65] to identify text references to commands
in software tutorials. Laput et al. [65] achieve the best precision/recall rates using a Conditional
Random Field classifier. However, their method requires a relatively large set of 400 training tuto-
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rials. Fourney et al. [36] focus on command extraction with sparse training data. They use a Naı̈ve
Bayes classifier with Witten-Bell smoothing and require only 35 training tutorials while still main-
taining good precision/recall. Both methods require exact string matches between the command
name (as specified in the Photoshop interface) and the text description in the tutorial. However,
many tutorials use colloquial references to commands. For example, a tutorial might say “Draw
a stroke” instead of naming the actual Paint Brush command. When extracting the sequence of
commands from text-based online tutorials, our work extends the approach of Fourney et al. [36]
to identify colloquial references with sparse training data. Having access to this command-level
structure allows us to build new interfaces for tutorial comparisons that are designed to facilitate
the associative stage of learning.

Users also share software tutorials as screencapture video recordings. Sikuli [104], Prefab [23]
and Pause-and-Play [86] apply computer vision techniques to reconstruct GUI-level interface oper-
ations (e.g. menu navigation, button presses, widget clicks, etc.) from such screenshots. However,
methods that rely solely on visual GUI output may not be able to robustly identify commands like
keyboard shortcuts that do not have visual effects. Our work focuses on text-based tutorials. In
contrast to screencapture videos, text-based tutorials usually describe every command that must be
executed.

2.2.2 Using Command-Level structure to Improve Tutorial Search and
Comparison

Several previous methods use command execution histories to provide more effective applica-
tion help and tutorial comparison. Ekstrand et al. [30] use the execution history and currently
active tools to augment Web search and help users find more relevant tutorials. IP-QAT [74] and
LemonAid [20] use recent commands and application context to recommend entries in application-
specific question answering systems. CommunityCommands [75] recommends commands for de-
sign software based on collaborative filtering algorithms. Unlike our work, these tools do not ex-
tract information from existing text-based tutorials and they do not enable browsing or comparing
large collections of tutorials.

Closest to our work is Delta [60], an interactive tool that summarizes and compares tutorials
based on their command-level structure. Delta does not extract the commands automatically and
relies instead on manual transcription. It is also explicitly designed for a small corpus (30 tutori-
als) and can therefore not handle the large tutorial collections on the Web. In contrast, our work
provides automatic command extraction and includes a browsing and tutorial comparison interface
that scales to a much larger corpus (2500 tutorials). Unlike previous methods, our interface allows
users to directly compare the command-level structure of a set of tutorials and identify patterns
within the command sequences of the entire tutorial collection. Our interfaces are designed to
facilitate the associative stage of learning by allowing learners to better understand the similarities
and differences between multiple tutorials.
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2.3 Automating Procedures
Many different techniques exist to transfer procedures to new input. They range from general pur-
pose programming by demonstration techniques that can transfer a demonstrated software proce-
dure to new input, to methods specifically designed for transferring photo manipulation procedures.
We review the most relevant transfer algorithms.

2.3.1 Programming by Demonstration
Researchers have developed demonstration-based techniques for creating scripts or programming
macros for a variety of application contexts [21, 69] including desktop [77, 66], web [71, 14], and
2D graphics [63, 70]. A challenge common to many programming by demonstration techniques is
to generalize the resulting program so that it can automatically work with new inputs. While many
of these systems force users to manually describe how program parameters and arguments should
generalize, there are some notable exceptions. Chimera [63] uses rules and heuristics to automat-
ically generalize demonstrations, while DocWizards [10] learns the generalization from multiple
example demonstrations. However, these techniques are not designed to help users transfer photo
manipulation procedures.

2.3.2 Image-Based Transfer of Visual Properties
A recent trend in image manipulation research has been to develop algorithms for transferring
certain visual properties of an example image to a target image. For example, image analogy
methods [46, 28, 26] take a neighborhood-based approach to transferring low-level texture prop-
erties and can imitate non-photorealistic rendering styles. Bae et al. [7] use a histogram-based
approach to transfer contrast and thereby replicate the overall look of the example image. Rein-
hard et al. [89] adjust the statistics of the color distributions of the target image to match those of
the example. Flash/no-flash techniques [29, 84, 62] transfer lighting and detail between an image
taken with a flash and one without. While these techniques inspire our work, each of them was
designed for one specific type of photo manipulation procedure. Our goal is to build a more gen-
eral framework that can automatically transfer most photo manipulation procedures. Furthermore,
these approaches deal with pixel-level models of the images and do not have access to higher-level
information such as the content of the image or the set of commands an author used to create the
example image. As a result they cannot adapt operation-level macros to work with new content.

2.3.3 Content-Specific Transfer Algorithms
Researchers have also developed techniques to transfer visual properties for specific types of im-
ages. For example, human faces are important elements of many photographs, and researchers
have explored image-based techniques to transfer expressions and lighting [72], makeup [41],
beards [80] and entire faces [13] from one image to another. These techniques typically rely
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on identifying corresponding facial regions (e.g. mouth, eyes, skin, etc.) between the two im-
ages either manually or using face-recognition algorithms, and then applying manipulation spe-
cific pixel-level transfer algorithms to these regions. Our work also takes advantage of automatic
image labeling, including face and outdoor scene recognition in our implementation, to transfer
photo manipulation procedures to new content. However, our goal is to build a framework that is
designed to work with generic labels and landmark points, so that users can transfer any manipu-
lation that they have learned. Our algorithmic techniques are therefore not specific to a particular
type of object such as the face.

2.3.4 Operation Transfer Algorithms
A number of researchers have developed algorithms that transfer operations rather than pixel-level
properties. Kang et al. [54] present a technique to transfer color and contrast adjustment opera-
tions. Given a new target image, they find the nearest neighbor amongst a set of 5000 training
images and then apply the corresponding adjustment parameters to the new target. A drawback
of their approach is that learning a new manipulation requires a new set of 5000 training exam-
ples. Hasinoff et al. [43] use an image-based approach to transfer clone brush operations. They
rely on finding pixel-level matches between the training and target images. Thus, their approach
is designed primarily for use with image collections from the same photo shoot. Compared with
these methods, our framework is more comprehensive as it learns to adapt a wide variety of photo
manipulations comprised of selections, strokes and image adjustment operations. Our approach
usually requires about 20 training demonstrations and can transfer local edits such as partial se-
lections and brush strokes across images from different photo shoots. Thus, our content-adaptive
macros are more suitable for sharing and reuse by other photographers.
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Chapter 3

Authoring Tutorials

In the cognitive stage, learners acquire new skills by following step-by-step the instructions that
they are given. They primarily rely on visual tutorials to learn photo manipulation procedures.
Tutorials in books and on websites are typically hand-crafted by a tutorial author. However, putting
together a high quality step-by-step tutorial is a time-consuming process that requires a lot skill.
As a consequence, many online tutorials are poorly designed.

We present a system for automatically generating high-quality static visual tutorials by demon-
stration. We design the tutorials based on guidelines in the domain of instruction design [15, 59,
4] and cognitive science [81, 45], so as to facilitate the cognitive stage of the learning process.
Figure 3.1 shows an eye recoloring tutorial generated with our system. We generate these tutori-
als from a single demonstration and thereby make them as easy to create as screencapture video
tutorials. As users demonstrate a manipulation technique, our system records their actions in the
interface (e.g., clicking buttons, moving sliders, etc.) and the corresponding image processing
operations in the application (e.g., blur region, set brush width parameter, etc.). In addition, our
system applies automated image labeling to identify semantically important regions (e.g., eyes,
mouth, sky, ground, etc.) in the photograph. Finally our system combines information from the
recordings and the image labeling to produce succinct, step-by-step, visual tutorials that include
images, annotations, and content-specific text descriptions.

One limitation of our tutorials is that they cannot explain why users must perform each op-
eration. Our automatically generated tutorials are closer to annotated descriptions or histories of
the operations the users must conduct to complete the manipulation. In contrast, hand-designed
tutorials found in books often explain why each step must be performed. Nevertheless, a user
study comparing our automatically generated tutorials to hand-designed tutorials and screencap-
ture video recordings with voiceover explanations, finds that users are 20–44% faster and make
60–95% fewer errors using our tutorials. Moreover, our tutorials are generated in a fraction of the
time required to manually capture, annotate and layout screenshots, or record voiceovers. Thus,
our automatically generated tutorials could also serve as a first step that authors could supplement
with further explanations describing the reasoning behind each step.



CHAPTER 3. AUTHORING TUTORIALS 18

Figure 3.1: As a user demonstrates an eye recoloring portrait manipulation technique, our system
records his actions in the interface and the corresponding image processing operations in the appli-
cation. It then combines information from the recordings with image recognition to automatically
generate a succinct, step-by-step visual tutorial that others can use to learn the technique.

Tutorial
generator

Image
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OperationsDemo.
recorder

Image
labeler

Input
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Figure 3.2: System overview.

3.1 System Overview
Our system consists of three main components shown in Figure 3.2:

Demonstration recorder. We have instrumented the GIMP open source photo manipulation
application to record the state of both the interface and the application during an image manipu-
lation session. While the ingimp project [99] also instruments GIMP to record such actions and
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operations, we could not adopt ingimp as our recorder because ingimp is explicitly designed to
prevent reconstruction of user work sessions from the usage data it records.

Image labeler. Many photo manipulation techniques involve localized edits to semantically
important regions of an image. We use automated image labeling techniques to detect such re-
gions and combine this information with the recorded sequence of user interactions to generate
descriptive text instructions for each step of our tutorials.

Tutorial generator. Using both the recorder and labeler output, our tutorial generator auto-
matically creates step-by-step tutorials of the demonstrated manipulation techniques. Each step
includes text descriptions, screenshots of the user interface, and in some cases, visual annotations
such as highlights, arrows, and callouts.

Although our implementation is based on GIMP, our approach builds on a higher-level repre-
sentation that treats photo manipulations as a sequences of selection, image processing and brush
stroke operations. In Section 3.2 we describe this general representation that is common to many
photo manipulation applications. We then describe each component of our system in Sections 3.3–
3.5.

3.2 Photo Manipulation Software Structure
In most photo manipulation applications, including Photoshop and GIMP, users can apply a wide
variety of operations to select a subregion of the image and then filter, transform, or edit the selec-
tion. We distinguish between two types of operations. Global operations affect the entire selection,
or the entire image if no region is selected. They consist of image processing operations such as
adjusting the hue-saturation or applying a Gaussian filter. Local operations are all operations that
users apply directly on the active layer by using a tool and clicking and dragging the tool in the
desired image area. They consist of brush stroke operations such as the paint brush or the healing
brush, and selection operations such as the lasso select or by color select. Users can change the
application state in three ways and we must record all three to capture a complete representation
of a photo manipulation demonstration.

Set operations. To operate on an image, users must first set the operation. Setting a global
operation usually requires traversing the menu hierarchy, while setting a local operation usually
requires clicking on a tool in the toolbar.

Set parameters. After setting the operation, users can adjust its parameters via interface wid-
gets that appear in dialog windows spawned when the operation is first set or in toolbars located
around the edges of the main window. The primary difference between global operations and local
operations is that local operations treat the pointer position as a parameter that is set whenever the
pointer is in the selection region and the mouse-button is down.

Commit operations. Committing a global operation usually requires clicking the OK button
in the operation dialog. In contrast, a local operation is committed whenever the pointer is in
the selection region and the mouse-button is down. Thus, dragging a tool across the active layer
corresponds to both setting the position parameter for the local operation and simultaneously com-
mitting the local operation. Performing an undo operation cancels the previous commit operation.
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3.3 Demonstration Recorder
Our demonstration recorder is designed to record all changes in the interface state (e.g., moving
sliders, clicking menu options, entering text, etc.), as well as the resulting changes in the applica-
tion state (e.g., setting the hue-saturation operation, setting the saturation parameter, etc.) during
an image manipulation session. Our system requires both types of state information to properly
interpret and depict the demonstrated photo manipulation. We capture interface state in a GIMP
specific manner and use it to show users how to adjust the widgets in GIMP to produce the de-
sired effect. We capture the application state using the higher-level representation presented in
Section 3.2 and interpret this representation to generate succinct tutorials. As the user demon-
strates a manipulation, we record the following information on every mouse-click, mouse-drag,
mouse-release or keypress:

Interface state. We record information about the widget the user is manipulating, including the
window name of the window that has focus, widget type (e.g. slider, button, radio button, checkbox,
drop-down list, menu item, toolbar item, etc.), widget position, widget size and the widget state.
We also record a screenshot of the window that has focus. Because taking screenshots is relatively
slow, we only capture them at the beginning and end of a mouse-drag and not at every mouse
position during the drag.

Application state. Whenever a new operation is set, we record the name and a description
of the operation. For the description, we use the tooltip text associated with toolbar buttons and
menu items. Whenever an operation parameter is set, we record the parameter value. Finally,
whenever an operation is committed, we record a few important application-level state variables
including the active layer the user is working with, the selection mask within the layer (by default,
the selection mask is the entire image), the foreground paint color, the background erase color,
etc.

Figure 3.3 shows an example recording. After the demonstration is complete, our system im-
mediately cleans the raw recording. First, it associates the changes in interface state with the
corresponding changes in application state. Usually, there is a one-to-one correspondence between
interface- and application-level state changes. For example, moving the saturation slider in lines 3,
6 and 10 in the interface corresponds to setting the saturation parameter of the hue-saturation op-
eration. However, some changes in application state, such as setting an operation via the menubar,
require multiple interface actions. In lines 1–2 and 8–9, the user performs two interface actions
to navigate to the hue-saturation menu item. The first action, clicking on the color item in the
menubar, does not change the application state. However, our tutorial must depict such naviga-
tional interface actions so that the user can see how to set the hue-saturation operation. Thus,
our system associates both of these navigational interface actions with setting the hue-saturation
operation.

Our system handles undo operations by eliminating the previous commit operation. Finally it
removes any changes in application state that do not affect a committed operation. Users often
make mistakes, such as setting the wrong operation when demonstrating a manipulation. For
example, in line 12 the user accidentally sets the pencil tool operation by clicking on the pencil
tool in the toolbar. However, he never commits a pencil stroke. Instead, he selects the paintbrush
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Interface State

Click Menubar: Color
Click Color Menu: Hue-Sat
Move Slider: Saturation 0A5
Move Slider: Lightness  0A6
Move Slider: Lightness  6A12
Move Slider: Saturation 5A15
Click Button: Ok
Click Menubar: Color
Click Color Menu: Hue-Sat
Move Slider: Saturation: 0A15
Click Button: Ok
Click Toolbar: Pencil
Click Toolbar: Paintbrush
Drag Mouse:(0,0)A(125,164)
Move Slider: Radius 9A7
Drag Mouse:(20,45)A(85,20) 
Drag Mouse:(96,21)A(20,18)

Application State

null
Set Global Op: Hue-Sat
Set Param: Saturation 0A5
Set Param: Lightness  0A6
Set Param: Lightness  6A12
Set Param: Saturation 5A15
Commit Global Op: Hue-Sat
null
Set Global Op: Hue-Sat
Set Param: Saturation 0A15
Commit Global Op: Hue-Sat
Set Tool Op: Pencil
Set Tool Op: Paintbrush
Commit Tool Op:(0,0)A(125,164)
Set Param: Brush Radius 9A7
Commit Tool Op:(20,45)A(85,20) 
Commit Tool Op:(96,21)A(20,18)
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Figure 3.3: Our demonstration recorder captures and associates interface-state information (col-
umn 1) with application-state information (column 2). Gray lines indicate wherever more than
one interface-level state change is associated with a single application-level state change. The
application-level state changes are color-coded: green for changes that set operations, blue for
parameter setting changes and red for commit operations.

in line 13 and commits a paint stroke in line 14. As a result, our system eliminates the pencil
operation in line 12.

3.4 Image Labeler
We leverage existing computer vision-based techniques to automatically label semantically impor-
tant regions in images. We currently apply two recognition techniques to every input image: one
for face detection and one for sky detection. Labeling facial areas (lips, eyes, etc.) and the sky
allows us to generate descriptive text descriptions for many global, face and landscape manipula-
tions. While our results depend on the quality of the labeling, our approach is designed to work in
general with any labeled images and could work with other detectors or even hand-labeled images.

Faces are important features in many photographs, and portraits are commonly edited in photo
manipulation tools. To detect facial features we use the Bayesian Tangent Shape Model of Zhou et
al. [105]. This algorithm detects the 2D positions of 83 landmark points that define the eyes, eye-
brows, nose, lips, and face contour (Figure 3.4a,b). Based on these landmark points, we compute
the positions of the iris, pupil, and teeth. To detect the iris, we search within the eye for a circular
region with minimum average luminance. We approximate the pupil as a circle half the diameter
of the iris and co-located at the center of the iris. To find the teeth, we look for pixels within
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(a) Input (b) Regions (c) Input (d) Regions

Figure 3.4: For a given input image (a) we detect the following facial features: eyes, iris, pupil,
eyebrows, nose, lips, teeth, and face contour (b). For outdoor scenes (c), we automatically detect
the sky and the ground (d).

the boundary of the lips that are nearly white. For outdoor scenes, we use the implementation of
Hoiem et al. [48] to automatically detect the sky and the ground (Figure 3.4c,d).

Our system uses the image labels to produce more precise, human-understandable text descrip-
tions of the spatial regions in which users must perform the operations in each step (Figure 3.7 in
Section 3.5.2). For example, in Figure 3.1(left) step 2 explains that the user should select “the right
iris, the right pupil, the left iris and the left pupil” in order to recolor the eyes. Similarly, suppose
the user is demonstrating how to add blush to a face and paints a red tinted brushstroke on a cheek
to the right of the nose. Since our face recognizer cannot identify cheeks, if the stroke is close
enough to the nose the text description will explain that user should “paint a stroke to the right of
the nose”. If no labeled feature is near the selected region or stroke our system produces a more
generic text description such as “paint a stroke” and relies on the annotated screenshot to provide
enough context for the user to perform the operation properly.

We compute the spatial context for a local operation by first generating a mask corresponding
to the selection or the brush strokes. We then intersect this mask with the labeled segmentation
generated by both the face and outdoor scene recognizers. For selection operations, if the selection
mask covers at least 70% of the pixels of a labeled area, we set the location of the selection
to the name of the labeled region. For brush strokes, if the stroke mask falls entirely within a
labeled area, we set the location of the stroke to the name of the labeled region. If there is little
or no overlap between either mask and a labeled area but they are close to one another, we use
the relative locations of the bounding boxes of the labeled area and the mask to specify if the
stroke or selection is above, below, to the side, or surrounding the labeled area. In some cases the
recognizers may give the same pixel multiple labels (e.g. face contour and sky). In such cases our
system uses all of the labels to describe the location of the operation and relies on the screenshot
to help the user further disambiguate where the operation should be performed. However, we have
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never encountered such multi-labeled pixels using our current combination of face and outdoor
scene recognizers.

3.5 Tutorial Generator
Our goal in generating photo manipulation tutorials is to produce a set of instructions that people
can easily understand, and that facilitate the cognitive stage of the learning process. We base the
visual design of our tutorials on previous work in instruction design [15, 59, 4] and cognitive sci-
ence [81, 45] that suggest guidelines for creating effective instructional material. These guidelines
are based on human-subject experiments studying the way people understand diagrammatic depic-
tions of how to assemble furniture, open packaging, or prepare a recipe. We summarize the most
relevant design guidelines.

Step-by-step. People mentally break processes into a sequence of steps, and well-designed
instructions present each major step in a separate panel.

Succinct. People prefer succinct instructions. Unnecessary steps should be eliminated and
repetitive sequences of steps should be condensed and shown only once.

Annotations. People better understand the operations required in each step when arrows, high-
lights, callouts and other annotations are used to visually show how the step should be performed.

Text and images. People prefer instructions that combine text descriptions of each step with
images visually depicting the steps. Images alone are less preferable and harder to use. Text
descriptions alone are least preferable and most difficult to use.

Grid-based layout. People prefer grid-based tutorial layouts that clearly indicate the sequence
of steps and place text and annotated images describing each step near one another.

To create a tutorial from a demonstration, the user specifies the title of the tutorial. Our system
then processes the demonstration in three stages that are based on the design guidelines. First, it
groups together consecutive changes to application state to build a succinct sequence of steps, each
involving one major image processing operation. Next, it annotates the screenshots that correspond
to each step with arrows and highlights that indicate the interface-level actions required for the user
to perform each step. It also composes text descriptions describing each step. Finally, our system
lays out the annotated screenshots and the corresponding text for each step using a simple grid-
based design to form a complete tutorial that is designed to be printed or accessed via the web.

3.5.1 Grouping Operations Into Steps
When demonstrating a photo manipulation technique our experience is that users invariably tweak
operation parameters repeatedly until they achieve the desired result. In order to produce clear and
succinct step-by-step tutorials, our grouping stage processes the raw recordings to merge repetitive
operations. Such grouping is similar to previous work on aggregating input events into higher level
actions [63, 61, 78]. In our system, grouping requires two passes through our recordings (columns
2 and 3 in Figure 3.5).
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Application State
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Figure 3.5: The first column shows the application-state information after clean-up (Section 3.3).
Our tutorial generator groups parameter changes within an operation (column 2) and then groups
multiple commit operations for the same operation (column 3).

Pass 1: Parameter grouping. Within an operation, parameter changes are order independent
until the operation is committed. We therefore group together all changes to the same parameter
that occur between setting the operation and each commit of the operation. The second column of
Figure 3.5 shows how this pass merges changes to the saturation and lightness parameters in the
first execution of the hue-saturation operation (lines 3–6).

Pass 2: Operation grouping. Users sometimes commit the same operation multiple times
consecutively to test the effects of various parameters. In the example of Figure 3.5, the user
committed the global hue-saturation operation twice consecutively (lines 7,11). The operation
grouping pass merges such consecutive sequences of the same operation. For local operations we
only group together consecutive commits if all operation parameters other than the pointer position
remain fixed (lines 16–17). We cannot group the paintbrush commit operations in lines 16–17 with
the first paintbrush commit in line 14 because of the change in brush radius between them.

When grouping parameter changes we must distinguish between absolute and relative param-
eter changes. Absolute changes replace the old value of a parameter with the new value. For
example, when using the color picker tool to set the foreground color, we only save the last color
that was picked and discard intermediate values of the color parameter. Relative changes add a
new value to the current value of the parameter. When grouping together relative parameters, we
accumulate the values of all intermediate changes. For example, consider the image rotation op-
eration. If we execute a 30� rotation followed by a 60� rotation, we must accumulate the rotation
angle parameter to 90�. In GIMP, many parameters are absolute when they are changed within an
operation dialog before a commit but become relative when changed across commits. In our ex-
ample, saturation is an absolute parameter within an operation (lines 3, 6) that becomes a relative
parameter across the commit of the hue-saturation operation (lines 6, 10).
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(g) Brush Tool

(e) Sliders (!nal state)

(f) Sliders (initial state)

(c) Drop-Down

(d) Checkbox(a) Local Operation (b) Global Operation

Figure 3.6: We annotate screenshots to highlight the tasks the user must perform. The style of the
annotation depends on whether a user sets an operation (a,b), sets a parameter (c-f) or commits an
operation (g).

After operation grouping, each line of the final representation (3rd column of Figure 3.5) can
be rendered as a step in the output tutorial. Our system can also more aggressively group together
all parameter changes for the same operation, which would merge the changes to the saturation and
lightness parameters into a single step rather than treating them as two separate steps. We leave
this aggressive grouping as an option to the user.

3.5.2 Screenshot Annotations and Text Generation
Our tutorials are comprised of annotated screenshots and descriptive text illustrating the tasks the
user must perform. We render the annotations based on the position and size information of the
interface elements we record with each interface state. The style of the annotation depends on
whether a user sets an operation, sets a parameter or commits an operation.

Set operations. Navigating through the menu hierarchy or the toolbar can be challenging,
especially for novice users. Therefore we annotate operation setting steps with arrows, circular
highlights and larger icons that indicate how users should traverse the interface (Figure 3.6a,b).
After adding annotations we crop the screenshots to further emphasize the location of the operation.
For example, the GIMP toolbar window includes a set of local tool operations at the top and an area
for setting the operations’ parameters below. When depicting how to navigate to a local operation
we crop the toolbar image to only show the relevant operation area at the top of the window.

Set parameters. We annotate parameter updates by highlighting the change in state of the
corresponding interface widget so that users can better understand how to set the parameter (Fig-
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Set Operations

Select <tool name|menu path> from the <toolbar|image menubar> to <description>.

Set Parameters

Slider: Set the <param name> slider from <param value before> to <param value after> 

in the <dialog name> dialog.

Radiobuttons, Drop-down lists: Select <param value> in the <param name> field in the 

<dialog name> dialog.

Checkboxes: [Select | Unselect] <param value> in the <dialog name> dialog.

Commit Operations

Paint: Paint using the <op name> [on <location>].

Selection: Use the <op name> tool to select [region |<location>].

Figure 3.7: Templates used to generate text instructions. Green variables are based on interface-
and application-level information. Blue location variables are optional and refer to labeled image
areas that are produced by our image labeler.

ure 3.6c,d,e). After grouping relative parameters, we usually do not have a screenshot that shows
the accumulated state of the parameters. In this case, we show a screenshot of the initial state and
use arrows to indicate the final state (Figure 3.6f).

Commit operations. When a user commits a global operation, there is usually a noticeable
change within the selected region of the image. As a result, we simply present a screenshot of
the window containing the image without any annotation. However, we commit local operations
whenever the tool is dragged across the image. For brush strokes (paintbrush, pencil, healing-
brush, clone-brush, etc.) the path of mouse-drag affects the local operation, so we annotate the
exact path (Figure 3.6g). For selections (free-select, ellipse-select, by-color-select, etc.) the outline
of the selection region is more important than the location of the mouse-drag so we do not annotate
the screenshot so that users can see the selection outline.

We use a template-based approach to generate the text descriptions for each step (Figure 3.7).
Our approach is designed for extensibility so that additional templates can be easily added to the
system as necessary to support other widgets. As explained in Section 3.4, we use automated
image labeling techniques and a set of heuristics to identify the location of selection regions and
brush stroke operations.
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Figure 3.8: Night from day tutorial (first of 3 pages). This tutorial shows users how to make a
daytime photograph look as if it was taken at night. Operations are organized into steps that are
stacked into columns. Each step includes text descriptions and annotated screenshots.

3.5.3 Layout
The final stage is to lay out the tutorials so that users can easily follow the sequence of steps. We
surveyed a variety of books containing photo-manipulation tutorials and chose to adopt the grid-
based layout of Huggins [49]. For each step in the tutorial we place the text description on the left
and the annotated screenshots next to it on the right. If there is an immediate visual consequence
to the action/operation, we add a second screenshot depicting the consequence. Some operations,
such as selections with the path-tool, require two interface actions: drawing the path and turning
the path into a selection. For such operations we show a screenshot of both actions instead of the
action and its consequence.

Given a target page size, we stack the steps vertically in columns starting at the top of the
page and add as many columns as possible to fill the horizontal space on the page. To help users
immediately see the effect of the manipulations shown in the tutorial, we present the image before
and after the manipulation in the first column of the tutorial (Figure 3.1 and 3.8). While this simple
layout algorithm allows some adaptation to different page sizes, we do not provide any controls
for resizing annotated screenshots or the text areas. As a result, some pages may contain more
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white space than necessary. We leave it to future work to explore the use of more sophisticated
grid-based layout algorithms [33, 50].

3.6 Results and Discussion
We have used our system to generate eight visual tutorials1 including six portrait retouching tech-
niques – changing eye color (Figure 3.1), whitening eyes, whitening teeth, removing eye bags,
blemish removal, and adding lip gloss – and two methods for editing outdoor scenes – enhancing
sunsets, converting day to night (Figure 3.8). We have also asked first-time users in our lab to pro-
duce these eight tutorials using our system. Each manipulation technique required 5-10 minutes to
demonstrate. Both the face and outdoor scene recognizers took under a second on each input image
and our tutorial generator required between 1 and 3 seconds to produce the tutorials, depending on
the number of steps.

As shown in Figures 3.1 and 3.8, our tutorials succinctly describe the major operations required
to perform the manipulation. Our system omits unnecessary operations and condenses repetitive
ones. For example, Step 5 of Figure 3.8 summarizes several slider updates in a single panel.
Our tutorials also include annotations that clarify how to perform individual steps, such as finding
specific operations (Figure 3.8, Step 1) and navigating menus (Figure 3.8, Step 3).

Our image labeler identified all of the facial features and sky regions in the demonstration im-
ages of our eight tutorials. As a result the text descriptions often contain good location information
describing where a selection or brush stroke operation should be performed. However, image rec-
ognizers can produce two kinds of errors; false-negatives and false-positives. Our tutorials are less
sensitive to false-negatives. If a feature is not found in the image our system simply produces a
more generic text description for the operation such as “select a region” rather than “select the lip”.
The system relies on the annotated screenshot to provide enough information for users to properly
perform the selection. In contrast if recognition falsely finds a feature, the text description will
mislead users by asking them to “select the lip” even though there is no lip at that location in the
image. While it may not be possible to eliminate false-positives, many recognition techniques in-
clude a parameter that allows users to tradeoff more false negatives for fewer false positives. We
leave it to future work to explore good settings for managing this tradeoff.

A limitation of our tutorials is that they cannot explain why users must perform each operation.
In some cases the explanations are especially important for users to understand how to apply the
technique to their own images. For example, one of the steps in the creating black and white
from color tutorial in the Photoshop Retouching Cookbook [49] involves multiplying the image
by its red color channel. The reason for this step is that red is the highest contrast color channel
in the example image and the multiplication increases the contrast for the conversion. While our
system would include a step showing that the red channel should be multiplied, it would not be
able to explain that the user should choose the highest contrast color channel to multiply. Without
the explanation the user would likely pick the red channel instead of the highest contrast color
channel. In most cases however, such explanations are not critical for users to properly follow the

1Additional tutorials generated with our system can be found at http://vis.berkeley.edu/papers/tutgen/
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tutorial and adapt it to their own images. Users can often figure out how to adapt the tutorial to
their own image from knowing the goal of the tutorial which is often stated in the title and looking
at the screenshots.

We have manually examined all 116 tutorials in Huggins’ [49] book and determined that our
system could fully reproduce all of the relevant information including images and text for 85 of
them. Of the remaining 31 tutorials, 23 required labeling of objects (e.g. hair, foreground objects,
light sources) or image features (e.g. highlights, shadows) that our current recognizers could not
provide. Our system would produce a more generic description of the location of an operation
as in the false-negative case for labeling errors. We found that 8 of the book tutorials including
creating black and white from color provided critical explanations for one or more steps that our
system would not be able to infer.

3.7 User Study: Tutorial Effectiveness
We conducted a user study to evaluate the effectiveness of our automatically generated tutorials
compared to hand-designed tutorials from a book and video-based tutorials. We hypothesized that
users would be faster and make fewer errors using our tutorials than the other types, for the fol-
lowing reasons. Book tutorials often leave out a number of low-level steps required to successfully
complete a manipulation as they usually assume users are experienced with the photo manipula-
tion software. Novice users often have to spend time navigating menus and trying several options
to complete a step. Video-based tutorials on the other hand force users to work at the pace of
the video and users typically have to rewind several times to replay steps they missed or did not
understand.

3.7.1 Study Design
Our experiment investigates the effects of two independent variables on user performance: tutorial
type (book, video, ours) and tutorial content (eye recoloring, adding lip gloss and converting day
to night). The tutorial content increased in complexity from eye recoloring which contains 4 steps
to converting day to night which contains 17 steps. We initially found these tutorials in a book
containing Photoshop tutorials [49]. To produce GIMP-specific versions of these book tutorials
we manually replaced the Photoshop-specific screenshots and text instructions with GIMP equiv-
alents. To produce video tutorials we screencaptured GIMP while demonstrating the manipulation
and then manually added an audio voiceover explaining each step. Finally, we used our tutorial
generation system to generate our tutorials. Thus, our study included a total of nine conditions (3
types ⇥ 3 contents).

Using Craigslist we recruited 18 subjects (10 women, 8 men) ranging in age from 20 to over
55 years old. Ten subjects had some experience with Photoshop and eight subjects had never
used a photo-editing software before. None of the subjects had used GIMP before. We used a
within subjects study design. We first gave the subjects a 10 minute introduction to GIMP showing
them how to use the software. Each subjects then used our instrumented version of GIMP to
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Figure 3.9: Average time (left) and average number of errors (right) required for each tutorial con-
tent in our user study. All differences between our tutorials and the book and videos are significant.

perform three different photo manipulations. To mitigate learning effects we fixed the ordering
of the content across all subjects giving them the simplest eye recoloring manipulation first, then
the more complex lip gloss manipulation, and finally the most complex day to night manipulation.
Thus, each subject experienced three combinations of tutorial type ⇥ tutorial content, where the
ordering of the tutorial type was fully counterbalanced across subjects and the ordering of tutorial
content was always the same. Each of the nine conditions was performed by six subjects.

We recorded the time it took the subjects to complete each manipulation. To determine the
number of errors made by each subject we manually examined the traces produced by our demon-
stration recorder. We counted an error each time the subjects selected the wrong tool, wrong menu
item, manipulated the wrong parameter or missed a step. We also counted an error each time a
subject selected an incorrect region in the image. For example, if the tutorial asked the subject to
select the lips and the subject selected an area that did not include any part of the lips we marked
it as an error. We did not count alternative ways to perform an operation as errors. For example,
some subjects preferred to use shortcut keys to set an operation. We also did not penalize subjects
that adjusted the parameters to better match the input image instead of using exactly the parameter
settings indicated in the tutorial.

3.7.2 Study Results
The average performance time and errors for each tutorial content are shown in Figure 3.9. Overall
we find that our tutorials are 20-44% faster and reduce errors by 60-95% compared to the book and
video. We allowed subjects up to 20 minutes to complete each manipulation. While most subjects
finished in much less time, 3 subjects failed to complete the converting day to night manipulation
and 1 subject failed to complete the adding lip gloss manipulation using either the book or the
video. No subject failed to complete a manipulation using our tutorials. We have excluded the data
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from the failed manipulations from our analysis.
Considering each content separately, an ANOVA across tutorial type reveals a significant main

effect for both time and errors (p < 0.02 in all six cases). Subsequent pairwise T-tests show signif-
icant differences between our tutorials and both the book and video tutorials with respect to time
and errors across the three content types (p < 0.04 in all cases). However, the only significant dif-
ference for the book-video pair is for number of errors in the eye recoloring content (p < 0.043).
All other differences in time and errors between the book and video tutorials were not significant.

These results indicate that our automatically generated tutorials are more effective than hand-
designed book and video tutorials at helping users complete the depicted photo manipulation tasks.
However, our study did not examine how well users could generalize the operations they used to
new manipulation tasks. Hand-designed book or video tutorials may be more effective for such
generalization because they usually explain why the user needs to perform each step in the tutorial.
We leave it to future work to study how well users can generalize from automatically generated
tutorials.

3.8 Next Steps
In this chapter, we have presented a demonstration-based system for automatically generating suc-
cinct step-by-step visual tutorials that facilitate the cognitive stage of the learning process. Our
user study shows that our tutorials are effective for learning the steps of a procedure; users are
faster and make fewer errors when using our tutorials than when using screencapture videos or
hand-designed tutorials. As future work, we plan to add additional editing and feedback interfaces
to our system, and study if learners can use our automatically generated tutorials for transfer.

Interfaces for additional explanations. One limitation of our tutorials is that they do not pro-
vide any explanations for the steps. As we saw in Section 3.6, these explanations can be critical to
help users properly follow the tutorial and adapt it to their own images. However, our tutorials are
generated in a fraction of the time required to manually capture, annotate and layout screenshots,
or record voiceovers. Therefore, tutorial authors could use our automatically generated tutorials
as an initial draft, and supplement them with further explanations describing the reasoning behind
each step. We plan to add such interactive authoring interfaces to our system, so that tutorial au-
thors can further edit the resulting text descriptions.

Using automatically generated tutorials for transfer. We plan to study how people can use
our tutorials for transfer. For example, we would like to give people an eye whitening tutorial and
study if they can then complete a similar task like teeth whitening. Doing this type of transfer with
our automatically generated tutorials may be challenging, as our text descriptions do not provide
any explanations for why a user needs to perform each step. We would like to study for what type
of manipulations this transfer is possible, despite the lack of explanations in the text descriptions.
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Feedback mechanism. We plan to implement a feedback mechanism, so that we can let users
know if they deviate from the instructions. Such a feedback mechanism would require us to track
the users as they are performing the task, and use the operation history to then decide on the fly
whether each step was executed correctly or incorrectly. It may also require modeling the kind
of errors that users typically make when performing the task, so that we can recognize each error
when it occurs. Our feedback mechanism could then help users get back on track.
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Chapter 4

Comparing Tutorials

In the associative stage, learners compare different procedures for executing the same task, and
identify sequences of commands that are useful in different contexts (e.g. the command sequence
“Quick Mask, Brush Tool, Invert, Hue-Saturation” is useful for recoloring hair, eyes, cars, gar-
ments, etc.). Sites such as tutorialized.com collect tens of thousands of photo manipulation
tutorials. However, exploring and comparing tutorials within these collections is very difficult, be-
cause these sites do not exploit the underlying command-level structure (i.e. sequence of software
commands) of the tutorials. To explore the collection users must either read through long lists of
tutorial titles or perform keyword searches on the natural language tutorial text. Even identifying
the sequence of commands in a single online tutorial can be challenging. Online tutorial use nar-
rative text and often refer to commands using colloquial terms rather than the actual Photoshop
command name (Figure 4.1).

We present a new browser interface that allows users to navigate, explore, and compare image
manipulation tutorials based on their command-level structure. Our system includes a Command
Extractor that identifies command sequences in natural language software tutorials. To build this
tool we extend the machine learning approach of Fourney et al. [36] to automatically identify direct
and colloquial references to commands (e.g. the tutorial says “make a mask” instead of referencing
the command name “Layer Mask”, Figure 4.1). We apply this command extractor to a collection
of 2500 Photoshop tutorials we obtained from the Web and achieve an average precision of 90%
and recall of 99%.

Our browser provides an interface for exploring tutorial collections based on three different
views of the command-level structure (Figure 4.2). The (1) Faceted Browser View allows users to
organize and filter the collection. Filtering facets include high-level tutorial categories (e.g. Photo
Effects, 2D Drawing, Web Layout), the length of command subsequences (N-Gram length) and
command names of interest. The Category facet allows users to only explore tutorials within their
domain of interest. Using the N-Gram facet, users can quickly identify command sequences that
are useful in different contexts. For instance, a user can find the most common multi-command
strategies in the Photo Effects category by selecting N-Gram lengths 1 through 4 and the Photo Ef-
fects facet (Figure 4.2a). Finally, the Command Name facet allows users to familiarize themselves
with how the same Photoshop command is used for different tasks. When a user selects a tutorial
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Step 3
Now make a mask on the Girl Stock layer. Erase all the 
unnecessary space around her using a black round brush. Now
apply a brightness/contrast adjustment and use the settings 
shown below. Then, apply a Hue/Saturation adjustment using 
( Command/Ctrl + U ) and lower Saturation a bit -- to lower some 
of the values of colors on this stock. 

Figure 4.1: A step from an example online tutorial. Tutorials use direct references to commands
(i.e. exact string matches to the command name, shown in green) and colloquial/indirect references
to commands (e.g. tutorial says “make a mask” rather than writing the command name “Layer
Mask”, shown in blue)

in the faceted browser the tutorial webpage appears in the (2) Tutorial View along with a table of
commands that serves as both a summary of the tutorial and an index into the webpage. The (3)
Alignment View graphically depicts the similarities and differences in the command structure of a
subset of tutorials. It can be used to compare multiple alternative procedures that achieve the same
goal. Together these views allow users to explore tutorial collections and better understand the
underlying structure of photo manipulation procedures.

In an informal evaluation of our browser interface we asked nine first-time participants to com-
plete a series of tutorial browsing and comparison tasks using our interface as well as standard key-
word search. Qualitative user feedback indicates that our browser is easy for newcomers to learn
and understand and that users find faceted command-level browsing to be useful for exploring large
tutorial collections. Moreover, participants successfully completed a variety of novel browsing and
comparison tasks. We show that these tasks are difficult to accomplish with keyword search. Par-
ticipants strongly preferred to explore tutorial collections with our browser over keyword search.
These results suggest that our interface is an effective tool for browsing and comparing large col-
lections of image manipulation tutorials. It facilitates the associative stage of learning by helping
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 Faceted Browser Viewa

c

 Tutorial Viewb  Alignment Viewc

Sort ButtonsBrowser Facets

Table of Commands

Figure 4.2: Our browser interface allows users to explore our collection of 2500 Photoshop tuto-
rials based on their command-level structure. In the (a) Faceted Browser View users can organize
tutorials using the Category, the N-Gram length (i.e. command sequences of length N) and the
Command Name facets. Clicking on a tutorial title loads the tutorial webpage and its table of
commands into the (b) Tutorial View. Users can also align the command sequences of multiple
tutorials to see the similarities and differences between them in the (c) Alignment View.
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Figure 4.3: System Overview.

users better understand the underlying structure of photo manipulation programs.

4.1 System Overview
We collected a corpus of tutorials by scraping 2500 Photoshop tutorials from eight websites. We
then process every tutorial from this collection through the three consecutive components of our
system (Figure 4.3). The command extractor takes a set of text-based tutorials as input and out-
puts the command-level structure of each one into a database of command sequences. The ana-
lyzer provides algorithmic tools to reveal the underlying structure within the database of command
sequences. More specifically, it compares command sequences in the database and identifies fre-
quently occurring subsequences. Finally, the browser interface builds on the analyzer and gives
users access to the algorithmic analysis tools. It provides three different views that allow users
to navigate, explore and compare the photo manipulation procedures stored in the database. The
Faceted Browser View allows users to filter the collection and identify commonly used subse-
quences of commands within the tutorial collection. The Tutorial View highlights the commands
used in each tutorial and provides a table of commands that indexes and summarizes the tuto-
rial. The Alignment View aligns command sequences from multiple tutorials and highlights their
similarities and differences.

In Section 4.2, we describe the features of the browser interface and its three views. We then
describe the two technical components, the extractor and analyzer, in Section 4.3.

4.2 Browser Interface
We designed a browser interface that allows users to navigate, explore, and compare the tutorials
in our collection using three different views: the Faceted Browser View, the Tutorial View and the
Alignment View.
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d e

a cb

Figure 4.4: Frequently occurring subsequences in our database of command sequences: (a) 1-
grams across the entire collection of tutorials, (b) 1-grams within Web Layouts category, (c) 1-
grams that are unique to the Web Layouts Category, (d) 3-grams and (e) 4-grams for Web Layouts.

4.2.1 Faceted Browser View
The Faceted Browser View (Figure 4.2a) is designed to help learners explore tutorial collections.
To achieve this goal, it provides three facets that allow users to organize and filter tutorials. The
Category facet filters the collection by a high-level tutorial category (e.g. Photo Effects, Illustra-
tions, Web Layouts etc.). These categories describe the higher-level purpose of the tutorial and
are given by the original tutorial website. The N-Gram facet filters the collection by the length
of command subsequences. It sorts the N-Grams by their occurrence frequency, so that the most
common command subsequences appear first. Such frequent subsequences often represent higher-
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level strategies that are used in many different procedures. Optionally, users can also sort command
subsequences by uniqueness to a selected tutorial category. This sorting criterion allows users to
identify frequently occurring subsequences of commands that are specific to a tutorial category.
Finally, the Command Name facet allows users to filter the collection to only include tutorials
that contain specific commands as chosen from a list. The order in which the user selects facets
determines the hierarchical organization of the tutorials that appear in the faceted browser view.

Figure 4.4 shows examples of different filters that a learner might apply to the tutorial collec-
tion. When setting the N-Gram facet to select single commands (N-Gram length=1), the browser
shows the most frequently used commands across all photo manipulation procedures in the database
(Figure 4.4a). The top three commands are “New Layer”, “Opacity” and “Duplicate Layer”. The
“New Layer” command appears almost fifty thousand times and is thereby the most versatile and
perhaps useful Photoshop command.

Photoshop is commonly used to mock up web layouts. When filtering all the N-Grams of
length 1 within the Web Layouts tutorial category, the list now includes the “Rounded Rectangle
Tool” and “Gradient Overlay” (Figure 4.4b). In the context of Web Layouts, these commands are
often used to draw buttons and give widgets the appearance of 3D depth. We can also specifically
list all commands that are frequently used in Web Layouts, but infrequently in the rest of the
corpus by selecting the “Most unique to category” sort option. Figure 4.4c shows this list. The
“Paragraph” command appears first and is commonly used in web layout tutorials to format text
while the “Contract” command is often used to shrink selections and create borders on text boxes
(Figure 4.4c). These commands are far less common in the other Photoshop tutorial categories.

Figure 4.4d-e filters for Web Layouts N-Grams of lengths 3 and 4. Many of the frequent three-
command sequences involve a selection command followed by a fill command such as “Rectan-
gular Marquee Tool, Fill, Color”, “New Layer, Rectangular Marquee Tool, Fill” or “New Layer,
Elliptical Marquee Tool, Fill” (Figure 4.4d). When examining some of the tutorials for each of
these three-command sequences, we find that they all describe ways to create buttons of various
shapes. In the list of four-command sequences, there are several sequences that include styling
commands such as “Drop Shadow”, “Blending Mode”, and “Blur” (Figure 4.4e). These command
sequences all apply specific styles to buttons. For example the 4-gram “Drop Shadow, Color, Inner
Shadow, Color” adds a drop shadow and inner shadow to a button to give it a 3D appearance.

Therefore, by listing frequently used commands within and across tutorial categories, the
faceted browser view allows learners to identify patterns in the procedures and explore how the
same higher-level strategies can be used in different contexts.

4.2.2 Tutorial View
The Tutorial View is designed to provide learners with a command-level overview of the photo
manipulation procedure described in the tutorial, and give them quick access to any particular
step of the procedure. It shows the original webpage for any selected tutorial as well as a table
of commands that lists the commands in the tutorial (Figure 4.2b). The table and webpage are
linked so that clicking on a command in the table scrolls the tutorial webpage to the corresponding
location, while clicking a command in the webpage highlights it in the table.
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Figure 4.5: Clicking on the “Pen Tool” command in the table of commands scrolls the tutorial to
this command and highlights it in the tutorial.

Figure 4.5 shows an example of clicking on the Pen Tool command in the table of commands.
It scrolls the tutorial webpage to show how the command is used in context. In this case, the
tutorial describes how to use the Pen Tool to draw paths. Thus, the table of commands can serve as
a reference as users work through the tutorial and allows them to quickly access more information
about any commands as necessary.

Users can also select a subsequence of commands in the table and perform a selection search
to retrieve all tutorials containing the chosen subsequence. For example, in the tutorial “How
to Design a Web Layout in Photoshop” shown in Figure 4.6a, the tutorial uses the “Rounded
Rectangle Tool, Fill, Color” commands to create a box for holding pictures and text within the
page layout. When selecting this sequence of commands and clicking on the Selection Search
button, the browser returns other tutorials that also contain the sequence (Figure 4.6b). Each of
these tutorials has examples of additional styles for content boxes (Figure 4.6c). Thus, the selection
search allows learners to better understand how the parameters of command sequences affect the
resulting style of the drawn object.

4.2.3 Alignment View
The Alignment View is designed to help learners understand the similarities and differences in the
command-level structure of a subset of tutorials. Users can select a set of tutorials in the faceted
browser and generate an Alignment View in which each column represents the sequence of com-
mands for a single tutorial and lines connect matching commands (Figure 4.2c). Sibling commands
in the Photoshop menu hierarchy are given the same color (e.g. Colorize and Hue/Saturation are
both colored white because they both appear within the set of Image>Adjustment commands).

To align the tutorials, we first establish an ordering between them. The user may select the
first tutorial in this ordering which we call the base tutorial. If the user does not select a base
then we automatically set the most representative tutorial as the base, which we compute as the
centroid of the tutorial set based on the edit distance described in Section 4.3.2. Once the base
tutorial is set, a user can choose between the one-to-all layout that orders the tutorials (left-to-
right) by their similarity to the base tutorial, or the pairwise layout that builds the ordering by
incrementally choosing the next tutorial as the one that is most similar to the previous tutorial
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Fill the rectangle with any color then 
add the following layer styles.

c2
Select the rounded rectangle tool 
with a radius of 10px.

c3
Using the rounded rectangle tool with a 
radius of 10px create boxes.

c5Use Rounded Rectangle Tool to create a 
rectangle with dimensions of 930px by 
610px and radius of 30px. Fill it with color 
#38301f and  rename it to Background.

c4

Figure 4.6: The command sequence “Rounded Rectangle Tool, Fill, Color” is used to create a
content box. After highlighting this sequence and clicking on the Selection Search button in the
Tutorial View (a), the browser returns a list of tutorials that contain this sequence of commands
(b). This list of tutorials can be used to find additional styles for content boxes (c1-c5).

starting from the base tutorial. Figure 4.2c shows an example of the pairwise layout. The edit
distance (Section 4.3.2) also provides correspondences between commands (either exact matches
or substitutions). Our visualization connects matching commands with lines.

In Figure 4.7, we use the alignment view to compare seven different hair recoloring tutorials
in our database. We set the “Hair Recoloring in Photoshop” tutorial as the base tutorial and show
both, the one-to-many and pairwise layouts. The pairwise layout immediately reveals that there
are three different ways to recolor hair. Tutorials a and b primarily use the “Brush Tool” and
“Hue/Saturation” to complete the task. Tutorials e, f and d all use a similar four-command sub-
sequence of “Invert, New Layer, Fill, Blending Mode, Soft Light”. Tutorial c is a combination of
these two approaches, while tutorial g is completely different from the others. This view directly
highlights the command-level similarities and differences between the set of tutorials and thereby
allows learners to quickly build a model in their head of the different ways a task can be done.
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Figure 4.7: Comparison of seven hair recoloring tutorials using the Alignment View, which dis-
plays correspondence lines between the matching commands. The one-to-all layout (top) orders
the tutorials (left-to-right) by their similarity to the first tutorial. The pairwise layout (bottom)
builds the ordering by incrementally choosing the next tutorial as the one that is most similar to
the previous tutorial.
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4.3 Implementation
The browser interface relies on two technical components, the command extractor and the analyzer.
The extractor takes all the downloaded tutorials as input and outputs the command-level structure
of each one into a database of command sequences. The analyzer provides algorithmic tools to
compare the command sequences in the database and identify common command subsequences
within the tutorial collection.

4.3.1 Command Extractor
To extract commands from natural language tutorials we build on the classifier of Fourney et
al. [36]. Their approach is designed to identify direct references to commands (i.e., exact string
matches to the command name). We extend their approach to also handle colloquial references to
commands (e.g., the tutorial says to “make a mask” rather than writing the command name “Create
Layer Mask”, Figure 4.1). In a survey of 60 randomly selected tutorials we manually identified
about 18% of the command references as colloquial rather than direct. Thus, accounting for such
colloquial references is essential for correctly extracting commands from text-based tutorials.

Fourney et al.’s algorithm first compares each word in a tutorial to a list of command names
in the Photoshop menu hierarchy using exact string matching. Photoshop directly provides this
list via Edit>Keyboard Shortcuts>Summarize. We then manually extend the list to include the
colloquial references we identified in the survey of 60 tutorials. We also apply word stemming
to automatically derive indirect references to commands. For example, applying stemming to
the command name “Scale” produces the derived words “Scaling”, “Scaled”, etc. The final list
contains direct, colloquial and indirect references to commands.

After the first stage of exact string matching, we follow the approach of Fourney et al. and apply
a Naı̈ve Bayes classifier with Witten-Bell smoothing to further eliminate false positive matches.
As training data we again use the 60 tutorials for which we manually marked all true command
references (direct, colloquial and indirect). Using leave-one-out cross validation we obtain an
average precision of 90% and recall of 99%. Applying Fourney et al.’s approach without the
additional entries for colloquial and indirect references, causes the recall to drop by 14%.

We use the command extractor to identify the sequence of commands used in each of the
2500 Photoshop tutorials in our collection. We save the extracted command sequences and their
corresponding tutorials in a database.

4.3.2 Analyzer
The analyzer provides algorithmic tools to compare command sequences and reveal patterns within
the database of photo manipulation procedures. More specifically, it provides a distance metric for
comparing command sequences, and techniques for identifying common subsequences of com-
mands.
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Comparing Command Sequences

To reveal the underlying structure of photo manipulation procedures, we need to compare the com-
mand sequences stored in our database and determine their similarities and differences. We use
the Needleman-Wunsch edit distance [73] to compare two sequences of tutorial commands. In-
formally, it computes an alignment score between the two sequences and measures the number
of commands that need to be inserted, deleted or substituted to change one sequence into another
one. Therefore, it requires a scoring matrix that encodes the penalties for inserting, deleting and
substituting commands. We use a constant penalty for insertion and deletion, and build a spe-
cialized penalty matrix for substitutions based on two objectives; (1) we increase the penalty for
substituting commands that differ significantly in functionality and (2) we increase the penalty for
substituting commands that are most important to the tutorial.

To identify commands with similar functionality we adopt the approach of Kong et al. [60]
who observed that the Photoshop menu hierarchy groups together similar commands (e.g., all
filters appear in the same part of the hierarchy). Therefore, we set the functional similarity penalty
PFS to the distance between commands in the menu hierarchy. To compute the importance of a
command we use term-frequency-inverse document frequency (tf?idf ) which is commonly used
in information retrieval to determine the most descriptive words within a document (i.e., words
that appear multiple times in the document but rarely appear in other documents). We set the
importance penalty PI to its tf?idf value where we treat each tutorial as a document. Then given
any two commands we compute the total penalty as PFS ·PI .

Computing Frequency of Subsequences

Subsequences of commands that occur frequently within the whole tutorial collection or within
tutorials of a certain category (e.g. Photo Effects, Design, Painting) often encode higher-level
strategies that users employ widely across tutorials and in many different contexts. To identify
these frequently occurring subsequences, we first collect every command subsequence N-Gram
of length 1 to 15 for each tutorial in the collection. We then build a frequency table by hashing
each resulting N-Gram and incrementing the count each time we visit the same bin. However,
some Photoshop commands can be executed in arbitrary order and produce the same results. We
use distance-based matching to account for such swaps. For each subsequence of length N we
compute the edit distance to all other subsequences of length N�2 to length N+2 (we limit the
computation to this range for efficiency). If the distance is less than a small threshold we increment
the frequencies of both subsequences.

To identify subsequences that occur frequently within a specific tutorial category, but less fre-
quently when considering the whole collection, we compute the term-frequency-inverse document
frequency (tf?idf ) on the subsequence frequency. More specifically, we compute the number of
times a subsequence occurs within a category, normalized by the total number of times it occurs
across the collection.
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Evaluation Tasks

1. Find a common command in the category of Web Layouts.
(Find a common command)

2. Find a command used more often in Photo Editing than in Web Layouts.
(Compare single commands between categories)

3. Find a command unique to the category of Photo Editing.
(Find a unique command)

4. Find two uses for the Gradient Overlay command.
(Find different uses of a command)

5. Given one tutorial with the subsequence Round Rectangle, Fill, Color for creating a content box, find
two more examples of this task.
(Find multiple examples of a 3-Gram command sequence)

6. Given a task, list tutorials that follow the most common method for this task.“Method” refers to a
series of commands shared by one or more tutorials as shown in the Alignment View.
(Find the most common method to perform a task)

7. Given a task, list tutorials with the three most different command flows.
(Find different methods for a task)

Table 4.1: The evaluation tasks asked users to perform a variety of browsing and analysis tasks based on
the command-level structure of tutorials.

4.4 Evaluation
We conducted an informal user evaluation of our browser interface with three goals: (1) to gain
feedback on the usability and utility of its features, (2) to gauge user interest in exploring the un-
derlying command-level structure of tutorial collections and (3) to compare task performance and
user preference between our browser interface and keyword search – today’s status quo technique
for exploring online tutorial collections.

4.4.1 Method
We recruited nine participants (age range 20-35), who self-rated their Photoshop expertise on a
5-point scale from novice to expert. Three rated themselves as Photoshop novices, three as inter-
mediates and three as in-between. We first led a 7-minute walk-through of the interface to briefly
explain each feature to the participants. Then, we asked the participants to complete a series of
exploration and analysis tasks using our browsing interface. We told them that they could abandon
any task if they estimated it would take over 10 minutes to complete. We designed the tasks to
exercise the four main interface elements: browser facets, the table of commands, the selection
search, and the alignment view. The complete set of tasks is listed in Table 4.1.

We asked participants to answer 5-point Likert-scale questions on their understanding of the
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Figure 4.8: (a) Participants were asked to rate if they understood each interface element, and (b)
if each element was easy to use on a scale from 1 - Strongly Disagree to 5 - Strongly Agree. (c)
Number of participants leaving positive or negative comments in the open responses.

interface elements and the ease of use of these elements. We also asked about the usefulness of
a variety of exploration tasks enabled by our browser. Finally, participants could provide longer
open-ended feedback and we manually categorized each response about an interface element as
positive or negative.

4.4.2 User Feedback
Browser Interface is Easy to Understand and Use. Participants understood the interface elements
and found them easy to use, giving relatively high ratings to all four of them (Figure 4.8a-b). How-
ever, the browser facets ranked lower than the other three elements in both understanding and ease
of use. Nevertheless, eight of nine participants mentioned positive aspects of the faceted browser in
the open-ended feedback (Figure 4.8c). The three participants who left negative comments in the
open feedback mentioned low-level usability concerns; they thought the term “N-Gram” was too
technical and found that filtering by facets was somewhat slow. This data suggests that participants
found using facets more complex than the other interface elements. However, they recognized that
facets also enable more powerful analysis and exploration of the tutorial collection.

Tasks Enabled by Browser Interface are Useful. Participants generally rated the exploration



CHAPTER 4. COMPARING TUTORIALS 46

1 2 3 4 5

Compare frequency across categories

Find commands unique to a category

             Find the most di!erent
methods with the alignment view

Find N-Gram uses with selection search

            Find the most common 
method with the alignment view

Explore command uses

View commonly used N-grams
          

Compare tutorials with alignment view

Explore a collection of tutorials 
with facets 

Navigate tutorials with the 
table of commands 

4.67

4.44

4.43

4.11

4.00

3.89

3.56

3.56

3.44

2.89

Strongly
Disagree

Strongly 
Agree 

Figure 4.9: Participants were asked to rate usefulness of different browsing tasks on a scale from
1 - Strongly Disagree to 5 - Strongly Agree.

and comparison tasks enabled by our browser to be useful (Figure 4.9). In the open responses
many participants mentioned that analyzing and comparing tutorials based on command structure
gave them a new way to approach and learn Photoshop. Seven users mentioned they would like
to use the Alignment View for assessing the similarities and differences between tutorials, finding
the most common command flow to complete a task, and previewing the command flows to gauge
familiarity. Five users wanted to use the browser facets to find more examples of unfamiliar com-
mands and to refine tutorial search by command or category. As one user suggested, “Sometimes I
just want to know how to use one tool and I can’t find a good tutorial just by Googling it”. A single
user was not interested in command structure as they only wanted to search by task. Nevertheless
eight of the nine participants explicitly stated that they would use our browser if they could.

4.4.3 Comparison of Browser Interface and Keyword Search
The evaluation of our browser was designed to assess performance on tasks we believe to be diffi-
cult with current tutorial browsing tools. To verify this intuition, we also asked our participants to
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Figure 4.11: Percentages of correct answers for our browser and keyword search tasks.

execute each task (Table 4.1) with a keyword search interface limited to the tutorials in our corpus.
By comparing task accuracy between interfaces, we evaluated whether our browser provides addi-
tional functionality over keyword search. To create a keyword search interface we used the Google
Custom Search tool [39]. We ran a within subject evaluation so that each participant performed
the same set of tasks using both our browser and keyword search interfaces. However we changed
either the concrete tutorial category or the command name mentioned in the task so that subjects
could not directly reuse their work. To measure task accuracy we first enumerated all possible
correct answers for each task. If the participant gave an answer in this set, we marked it as correct.
We again told users that they could abandon tasks that would take longer than 10 minutes. Finally,
we asked users to rate interface preference for each task.

Participants are More Successful and Accurate with our Browser. Participants completed all
tasks with our browser, but only 70% of the tasks with keyword search (Figure 4.10). They were
also far more accurate with our browser (97% vs 35% using keyword search). A one-way ANOVA
finds that this difference is significant (F(1,12) = 15.12, p = 0.0029).

In the keyword search condition, participants only performed well on two of the tasks: Find
different uses of a command (Task 4) and Find multiple examples of a 3-Gram command sequence
(Task 5) with 100% and 89% accuracy, respectively (Figure 4.11). For these tasks participants
directly entered either a single command or a command subsequence as the query and keyword
search usually returned a set of matching tutorials. Participants then opened each tutorial and used
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Figure 4.12: Number of N-Grams that appear at each frequency greater than one for N equals two
to five.

text search within the page to find the command locations in the tutorial. All but one user preferred
to use our browser over keyword search for the evaluation tasks, even for tasks where keyword
search performed well.

In aggregate, our results suggest that our browser’s interactions are accessible, useful, and
provide the preferred interface for exploration and comparison tasks such as the ones used in
the evaluation. However, we believe a larger-scale longitudinal evaluation would be necessary to
rigorously verify these findings for daily work.

4.5 Corpus Analysis and UI Design Implications
While our analysis tools and browser interface are best used for exploration starting from a specific
tutorial, a tutorial category, an N-Gram length or a set of commands, we have also used them to
more globally analyze the command-level patterns in our database. Our analysis leads to several
implications for designing image manipulation software.

We have found that each tutorial category contains some commands that appear more fre-
quently within that category (Table 4.2). For example, 79% of the uses of the “Clone Stamp Tool”
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Command(s) Drawing/ Web Photo Text
Painting Layouts Manipulation Effects

Clone Stamp Tool 9 9 79 3
Perspective 22 14 61 4

Adjustment Layers,
Clipping Mask,
Black & White 0 0 100 0

Copy, Paste,
New Layer 15 18 55 12

Select, Rounded
Rectangle Tool, Fill 0 100 0 0

New Layer,
Pen Tool, Fill 10 40 50 0

Table 4.2: Examples command sequences and their distribution across the different tutorial categories.

appear in tutorials within the Photo Manipulation category, but only 9% appear within the Web
Layouts category. This tool enables photo retouching and is therefore less useful in the context
of web design. Similarly, some command subsequences occur primarily within particular cate-
gories. For example, the three-command subsequence “Adjustment Layers, Clipping Mask, Black
& White” occurs only within the Photo Manipulation category and does not appear in any other
category. This subsequence selectively desaturates the image and thereby highlights the remaining
colored region. This data suggests that it may be beneficial to group the most important commands
for each high-level category in the Photoshop interface. Alternatively, one could also design cus-
tom UI panels for each category. Since users typically only work within one category per Photo-
shop session, quick access to these common commands and command strategies could speed up
and simplify their workflows.

We have also analyzed the frequency of all N-Grams of length 2 to 5 across the complete
tutorial corpus. In Figure 4.12 we plot the number of N-Grams that appear at each frequency
greater than one. For example, 75 different 2-grams appear 134 times. Not surprisingly, the
rightmost tails of these plots are low, indicating that there are few command subsequences that
appear at high frequency. Since these are the most common N-Grams and there are relatively few
of them, learners could focus on these command subsequences first to quickly become proficient
with Photoshop. We also find that the number of N-Grams that appear at the lowest frequencies
is relatively small, indicating that if an N-Gram appears in a tutorial, it is likely to appear many
times in other tutorials. Since many command patterns occur frequently, it may be possible to
watch users as they execute commands in Photoshop and infer the command-level strategies they
are applying. The Photoshop interface could then highlight the next commands in the sequence, or
notify users if they deviate from a sequence.
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4.6 Next Steps
We have presented a new browser interface that allows users to navigate, explore and compare
the command-level structure of a large collection of image manipulation tutorials. This interface
helps learners better grasp the underlying structure of photo manipulation procedures and thereby
facilitates the associative stage of learning. We plan to further extend our command extraction
algorithm and browser interface.

Extracting parameters in text-based tutorials. We have applied supervised machine learning
to identify the command sequence described in each tutorial. A challenging task is to also extract
the parameter values for these command sequences. Identifying parameter values is difficult as
they are often not specified, or only available within the screenshots of the application that were
used to illustrate the step. However, access to these parameters would allow us to extend our in-
terface so that users can compare the range and effect of possible values for a particular operation.
Furthermore, for certain manipulations, it may be possible to also automatically apply the sequence
of operations with their corresponding parameter values to new input images.

Naming multi-command strategies. Our faceted browser allows users to identify subsequences
of commands that appear frequently in our database. These subsequences often represent success-
ful higher-level strategies. However, to identify the higher-level strategy that corresponds to a par-
ticular subsequence, users need to browse through tutorials that contain this N-Gram. While our
browser provides quick access to all such tutorials, a user still has to read through them to identify
and name them. This process can be tedious and time-consuming. As future work, we plan to use
plan recognition techniques [18, 12, 103, 16] to automatically name and describe multi-command
strategies. Users could then more quickly gauge their interest in learning a particular strategy, and
they could also use keyword search to find relevant strategies.

Suggesting related tutorials. We plan to track users as they are executing a task and compare
the operation history with the command sequences in our database. We may then be able to recog-
nize the task the user is performing. Using our command sequence edit distance, we may also be
able to suggest related tutorials for the task. Having access to related tutorials would allow learners
to better understand how they can use similar sequences of operations in different contexts.
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Chapter 5

Transferring Procedures

In the autonomous stage, after users master a photo manipulation procedure, they often repeatedly
apply it to collections of images. Current macro authoring tools facilitate this process by allowing
users to record and replay sequences of operations. Such sequences are composed of global and
local operations (as defined in Section 3.2). Together, they allow users to perform three types of
low-level operations: 1) select a region, 2) draw a brush stroke and 3) apply an image processing
operation within the selected region or along the brush stroke. To properly apply photo manipu-
lations, users must adapt the location of the selection region, the paths of the brush strokes, and
the parameters of the image processing operations to the content of the underlying image. Current
macros cannot automatically adapt such content-dependent operations to new target images and
are thus inappropriate for many common photo manipulations.

We present a more comprehensive approach for generating content-adaptive macros that can
automatically transfer selection regions, brush strokes and operation parameters to new target im-
ages. Our approach is a framework in the sense that we can apply these transfer mechanisms inde-
pendently of the class of photo manipulations that we consider. We demonstrate our framework on
the three classes of the most commonly-used photo manipulations (Section 1.2): face, landscape
and global manipulations, but also consider extensions to other classes of manipulations.

Our key idea is to learn the dependencies between image features (e.g. color, gradients, labels
from object recognition, etc.) and the locations of selection regions, the paths of brush strokes
and the parameters of image processing operation. To learn a photo manipulation, we require
multiple operation-level training demonstrations of the manipulation. We exploit knowledge of the
low-level operations to more robustly adapt the manipulation to new target images.

One important advantage of our framework is that it supports a practical workflow for author-
ing and applying content-adaptive macros. Users create our macros the same way that they create
traditional macros in Photoshop – by recording a demonstration of a sequence of image editing op-
erations. While this recorded macro can automatically apply the manipulation to new target images
after just one demonstration, the results usually require some corrections or modifications. Often
the errors are due to either incorrect labeling from our automated image labelers or insufficient
data for our learning algorithms. To help users detect and correct such errors, we provide visual
feedback and interactive correction interfaces. Our system then uses each corrected transfer as an
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Target Images

Macro Results

Figure 5.1: After demonstrating a snow manipulation on 20 landscape images, our content-adaptive
macro transfers the effect to several target images.

additional demonstration that improves the quality and robustness of the macro. Thus, authoring a
content-adaptive macro is a continuous, incremental process that is simply a by-product of apply-
ing the recorded manipulation to new images. We show that after about 20 training demonstrations,
corrections are rarely required and our framework has enough training data to successfully transfer
many common face, landscape and global manipulations. Figure 5.1 shows an example of auto-
matically transferring a snow manipulation to two new target images. The macro correctly added
snow to the new mountain and desert scenes. By allowing users to create macros in this incremen-
tal fashion and to easily modify or correct macro transfers, our framework enables a significantly
more complete and usable workflow compared to purely automated techniques.

To evaluate the quality of our macro results, we ask viewers to compare images generated us-
ing our content-adaptive macros with and without interactive corrections to manually generated
ground-truth images. We find that they consistently rate both our automatic and corrected results
as close in visual appearance to the ground-truth. We also conduct a small informal study with pro-
fessional photographers, to evaluate our proposed macro authoring workflow. The results from this
study suggest that the visual feedback and interactive correction features of our user interface are
effective and practical in the context of real world image editing workflows. While our framework
does not facilitate the learning process for a person, it successfully teaches photo manipulation
procedures to computers and thereby removes most of the tedium of having to manually execute
the same sequence of operations over and over again.
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Figure 5.2: System overview.

5.1 System Overview
Our framework for generating content-adaptive macros contains three main components (Fig-
ure 5.2). The demonstration recorder captures example manipulations as authors demonstrate
them in Photoshop (Section 5.2). The macro generator takes one or more example demonstra-
tions as input and produces a content-adaptive macro as output (Section 5.3), while the macro
applicator executes the macro on new target images. Our framework also provides visual feed-
back and interactive controls for correcting errors that may arise as the macro is demonstrated or
applied. These interfaces enable an incremental workflow where each time a macro is applied and
corrected it becomes a new training demonstration (Section 5.4).

Like the tutorial generator presented in Chapter 3, our framework for generating macros also
relies on automated image labeling to segment input images (both example and target images)
into labeled regions. Our image labeler currently applies the same face recognizer [105] and
outdoor scene recognizer [48] as described in Section 3.4 to automatically detect such regions. In
addition, the labeler also applies a skin recognizer [51]. We use the default parameter values for
these recognizers, and together they label a 600 ⇥ 900 image in about 10 seconds. Our framework
is extensible and can incorporate new recognizers as they become available (see Section 5.7).

5.2 Demonstration Recorder
When a person demonstrates a manipulation, we record the sequence of operations and the parame-
ters for each operation. As described in Section 3.2, image manipulation applications provide local
and global operations. Together, they allow users to perform three low-level operations: selections,
brush strokes and image processing operations. Each low-level operation includes user-specified
parameters that affect how they operate. We define in more detail the low-level operations and give
example parameters in parentheses.

• Selections: These operations allow users to select a region of the image. The default se-
lection is the entire image. Subsequent operations affect only the pixels within the selection
region. Examples: free-select (location of the selection), by-color-select (range of colors to
select).
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• Brush strokes: These operations affect all pixels that lie within a brush region surrounding
a stroke path. The stroke path and diameter parameters control the location and size of the
stroke. Brushes may also include parameters specific to the adjustment. Examples: color
brush (brush color), blur brush (blur strength).

• Image processing operations: These operations modify the pixels within the selection
region by applying a filter, a color adjustment, or a spatial transform to them. Examples:
sharpening filter (sharpening radius), contrast adjustment (strength), and rotating the selec-
tion region (angle).

The recorder used for generating content-adaptive macros is similar to the one presented in
Chapter 3. However, our macro framework only requires recording changes to the application
state, i.e. the sequence of operation settings and their parameters. We thus simply leverage the
action recording capabilities of Photoshop’s built-in ScriptListener plug-in. We then apply the
clean-up and grouping techniques described in Section 3.3 and 3.5.1 to simplify the raw record-
ings by eliminating unnecessary operations and merging repetitive operations. Our framework
requires that users perform all of the example demonstrations for a particular manipulation using
the same sequence of operations, so that after clean-up and grouping the sequences are in one-to-
one correspondence with one another. In Section 5.4 we present an interface designed to help users
demonstrate the operations in the same order.

5.3 Macro Generator
To generate content-adaptive macros, our framework learns the dependencies between image fea-
tures and the parameters of the selections, brush strokes and image processing operations com-
prising a manipulation. We first present the set of image features our framework considers (Sec-
tion 5.3.1) and then describe the algorithms for transferring selection regions (Sections 5.3.2),
adapting the locations of brush strokes (Section 5.3.3) and learning non-spatial adjustment param-
eters for the operations (Section 5.3.4).

5.3.1 Features
For machine learning algorithms to adapt photo manipulation macros, it is essential to identify
features that correlate with the parameters of the selections, brush strokes and image processing
operations. We analyzed the relationship between parameter settings and image features in com-
mon photo manipulations [49, 56] and found that users often set parameters based on the following
features.

Pixel-level features. These features are local descriptors of the image that are based on pixel
values. Such features include color, contrast, saturation, luminosity, texture, etc. Selections, brush
strokes and image processing operations frequently depend on such features. For example, a user
might increase the contrast of a region based on its current contrast or apply the healing brush to
a dark (low luminosity) region under the eyes to remove bags. Many pixel-level features encode
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redundant information since they are all based on pixel values. We have found that color features
(L*a*b* space pixel value), contrast features (L* gradient magnitude) and luminosity histogram
features (range, peak and median of histogram of L* values) are sufficient for learning pixel-
level dependencies. Although the luminosity histogram features are partially redundant with the
L* color feature, we include them because many image processing operations (e.g. color curve
adjustment, luminance levels) are designed to directly modify aspects of the luminosity histogram.
Therefore these features are better predictors of many image processing parameters than the L*
color feature alone.

Label-based features. They describe the semantic content of an image. The location of se-
lections and brush strokes often depend on such image content. For example, a user might select
the forehead of a person to reduce its shininess or brush along the horizon of the sky to intensify
a sunset. Similarly, parameters like the brush diameter often depend on the size of the object that
the user brushes over. To capture these dependencies, we use label features, landmark offset fea-
tures and size features. Our image labeler (Section 5.1) applies recognizers to compute a set of
labels (e.g. eyes, skin, sky, ground, null) for every pixel in the image. The label feature is a bit
vector representing the labels associated with each pixel. Some recognizers also provide landmark
correspondence points that can serve as references for location parameters. For example, Zhou et
al.’s [105] face recognizer detects the 2D positions of 83 landmark points (e.g. the outside corner
of the left eye) that correspond across images of different faces. However, our skin [51] and out-
door scene [48] recognizers do not provide landmark points. Since the shapes of skin and outdoor
regions like sky, ground, etc. can vary drastically from one image to another, it is unclear how
to put such shapes in correspondence. We therefore use a weak shape descriptor and treat the 4
corner vertices of the axis-aligned bounding box of each labeled region as landmarks. We leave it
as future work to identify more appropriate shape descriptors when landmarks are not available.

p
d , Fp=[d1x, 1y d83y, ...d83x ]

d1 d1y
d1x

We compute landmark offset features as the offset x� and
y�coordinates between the pixel and each landmark point returned
by our labeler (see inset). To better capture spatial relationships
between selection or brush stroke locations and the image, we also
include the 4 corner vertices of the image and of the axis aligned
bounding box of the selection region as landmarks in computing
the landmark offset features. We normalize the landmark offsets
by the width and height of the labeled region, selection region or
the entire image depending on the region the landmark point be-
longs to. Although the offset distance to a single landmark point may be weakly correlated with
location, the offset distances to a collection of landmark points can be very discriminative. We
compute the size features as the width and height of the bounding box of each labeled region.

Operation-based features. These features are characteristics that are specific to a given oper-
ation. We include two such features that are characteristic of brush stroke operations; the stroke
length feature describes the length of the stroke in pixels and is stored as a single value for each
stroke, while the stroke orientation feature encodes the local orientation of the strokes as a discrete
value from 1 to 8 indicating for each pixel on a stroke, the position of the next pixel on the stroke.
Together these features enable our framework to transfer strokes that have approximately the same
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Figure 5.3: (Left) Forehead Selection. The color and contrast features cannot discriminate be-
tween the forehead and skin area on the face. However, landmark offset features accurately predict
the location of the selection. (Right) Sky Selection. In this case the color and contrast features
are better predictors of the selection than the landmark offset features.

length and shape as the strokes in the demonstration.

5.3.2 Adapting Selections
Users typically select a set of pixels in the image that have a common property; e.g., they belong
to the same object, they are similar in color, etc. To adapt selections to new target images, we
model the selection regions of the training images using a feature vector Fj = [Fj,1, ...Fj,N ] where
j denotes a selected pixel in a demonstration image and 1...N are the features computed for each
such pixel. We then apply this model to classify each pixel i of the target image into two categories,
selected (Sel = 1) or not selected (Sel = 0), based on its feature vector Fi = [Fi,1, ...Fi,N ].

We use Naı̈ve Bayes for this classification task, because it is simple and flexibly allows adding
new features. Although Naı̈ve Bayes assumes features to be conditionally independent given a
class, it is known to work surprisingly well in object categorization and information retrieval, even
when this assumption is violated [68]. We determine whether pixel i is part of the selection region
by computing P(Sel = 1|Fi) =
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P(Fi|Sel = 1)P(Sel = 1)
P(Fi|Sel = 1)P(Sel = 1)+P(Fi|Sel = 0)P(Sel = 0)

. (5.1)

Because of the independence assumption, the likelihood of a feature vector for a selected pixel
is given by

P(Fi|Sel = 1) =
N

’
k=1

P(Fi,k|Sel = 1). (5.2)

Rewriting equation 5.1 we obtain P(Sel = 1|Fi) =

’k P(Fi,k|Sel = 1)P(Sel = 1)
’k P(Fi,k|Sel = 1)P(Sel = 1)+’k P(Fi,k|Sel = 0)P(Sel = 0)

. (5.3)

To compute P(Fi,k|Sel = 1) and P(Fi,k|Sel = 0) we build histograms of all observed values of
the kth feature within either the selected or unselected pixels of the demonstration images. The
prior probability P(Sel = 1) corresponds to the percentage of selected pixels across all training
examples. We then include all pixels of the target image where P(Sel = 1|Fi)> tsel in the selection
region for that image. We set the selection threshold tsel = 0.27 for all examples in this chapter.
Finally, we apply morphological operators to the selection mask to eliminate thin strips and isolated
pixels.

The feature vector Fi is a 5+2N+L-dimensional vector composed of the 5 pixel-level features
(3 for color, 2 for contrast), 2N landmark offset features where N is the number of landmarks in
the image and L label features, where L is the number of detected labels in the demonstrations.
Figure 5.3 shows how all the features are necessary to adapt selections to new target images.

5.3.3 Adapting Brush Strokes

Start
End

Brush region
Stroke path

A brush stroke is composed of a brush region and a stroke path
(see inset). Brush regions are equivalent to selection regions, and
we use the same kind of Naı̈ve Bayes classifier as in Section 5.3.2
to adapt the brush region to a new target image. A stroke path is
a curve representing the centerline of each brush stroke. We com-
pute stroke paths using a Markov Chain model in which the next
point on the stroke depends only on the state of the previous point
on the stroke P(Si|Si�1). Markov Chains are commonly used to
model time-varying processes and have been successfully applied
to example-based synthesis problems in many domains including
music [92], text [22], and curves [47, 52, 94]. While our approach
is similar to previous example-based curve synthesis techniques, unlike the earlier methods which
only consider geometric features of the example curves, our approach takes advantage of both ge-
ometric features as well as image-based features of the underlying example images. In our stroke
model, we define three types of states: Sstart = (x,y) is the stroke start point in image coordinates,
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Si = (x,y) is the i-th point on the stroke and Send is a state marking the end of a stroke. We proceed
in three steps:

Step 1: Initialize stroke start point. For each brush region we determine the position of
the stroke start point. Since the start point is not preceded by any other state, we pick the point
p = (x,y) within the brush region that maximizes P(Sstart = p). In our model a point p is fully
characterized by its feature vector Fp = [Fp,1, ...Fp,N ] and P(Sstart = p) = P(Fp). We assume that
each feature Fp,k in the feature vector is independent so that P(Fp) = ’N

k=1 P(Fp,k). To compute
P(Fp,k) we build a histogram for all observed values of the kth feature across the set of known
stroke start points in the demonstration brush strokes.

Step 2: Choose next stroke point. Once we have computed the start position, we treat the
stroke path as a process where the location of the next stroke point is based on the location of the
previous stroke point. The state Si of the i-th point on the stroke can either specify the position
of the point in image coordinates Si = (x,y), or specify that the stroke should end Si = Send . To
determine the next state, we compute

argmax
Si+1,q2N(p)

{P(Si+1 = q|Si = p),P(Si+1 = Send|Si = p)} (5.4)

where p = (x,y) is the position of the previous point on the stroke and q is chosen from the set
of points in the neighborhood N(p) of p. In practice we set N(p) = {(x±1,y±1)}, which is the
8-connected pixel neighborhood of p = (x,y).

Since points are characterized by their feature vectors, we compute P(Si+1 = q|Si = p) as
P(Fq|Fp). We assume that the individual features Fp,k of each feature vector Fp = [Fp,1, ...Fp,N ],
are conditioned only on themselves and independent of the other features, so that P(Fq|Fp) =
’N

k=1 P(Fq,k|Fp,k). To compute P(Fq,k|Fp,k) we build histograms of the transition probabilities for
each feature k in the training demonstrations. Similarly we compute P(Si+1 = Send|Si = p) =
’N

k=1 P(Send|Fp,k) by building a histogram of the feature vectors for the last point of each stroke in
our training data.

To reduce the number of training examples needed, it is often assumed that the markov chain
is time homogeneous, such that P(Si+1|Si) = P(Si+t+1|Si+t) for all t > 0. To better capture the
variation of each feature along the path, we assume that the process is time-homogeneous within a
limited number of timesteps. We have found that t = 5 works well for color, contrast and landmark
offset features, while t = 1 is necessary for stroke orientation and stroke length, since these features
vary more quickly along the stroke path. While our approach requires more training data than
setting t = 0, we have found it to result in better transfers because it more accurately captures the
evolution of each feature along the path.

The resulting stroke path gives a greedy estimate of maximizing the likelihood. There are a
variety of algorithms that could be used to refine the curve if desired [55, 5], but we have found
our approach to work well in practice.

Step 3: Update brush region. After computing the stroke path, we dilate the path by the brush
diameter d (we compute d using the approach of Section 5.3.4) and subtract the dilated stroke
from the brush region mask. We then repeat this process and start a new stroke, until the area of
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(a) Excluding Color & ContrastTarget Image

Automatic Labeling (b) Including All Features

Macro Result

Macro Result

Figure 5.4: Landmark offset features provide a rough estimate of the location of the stroke path (a).
But because the image labeler slightly mislabeled the eye, color and contrast features are necessary
to correctly adapt the strokes to the contour of the eye (b).

the brush region mask is too small (< 10% of the brush area of the smallest stroke in the training
data).

We use slightly different feature vectors Fp in steps 1 and 2. In step 1, Fp includes only three
image-based features; color, contrast and landmark offset. For the color and contrast features, we
use the median feature values across all pixels that lie within the brush diameter d of stroke point p
in the training data. In step 2, Fp includes two additional geometric features; stroke orientation and
stroke length. Through informal tests we have found that all features provide useful information to
the model. For example, Figure 5.4 shows a brush stroke transfer for an eye makeup manipulation.
Because of the color and contrast features, we can correctly transfer strokes even when the eye is
slightly mislabeled.

5.3.4 Adapting Adjustment Parameters
To adapt the numerical image processing parameters to new target images, we must learn how
the parameter values depend on the underlying image features. Our goal is to learn a function
that maps the image features to a parameter value. Suppose yi are observations of a parameter
y we wish to learn and F = [F1, ...,FN ] are a set of image features. Under a linear model, yi =
c1 ⇤F1 + ...+ cN ⇤FN , we must compute the set of regression coefficients ci that best explain our
observations. Linear regression is a simple technique for computing these coefficients, but it can
lead to overfitting. To avoid such overfitting, we use Least Angle Regression (LARS) [27] which
is a variant of linear regression that constrains the sum of the absolute regression coefficients ci
and thereby causes many coefficients to be zero. This property ensures that only a small set of
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Target Image Macro Result
(Least Squares)

Macro Result
(LARS)

Figure 5.5: Adapting the skin-tone manipulation (illustrated in Figure 1.5). The 20 training ex-
amples contain many images that require shifting the color balance towards yellow. Least Squares
overfits the data and exhibits a yellow cast. LARS avoids overfitting and produces a better result.

image features are used for the prediction of a parameter. With 20 training examples we observe
that LARS produces better results than least squares for many manipulations including the skin
tone manipulation (Figure 5.5).

Image processing operations are applied to an active selection region or brush region. Often the
intent is to strengthen or weaken the characteristics of this region with respect to the surrounding
pixels. We therefore compute the pixel-level features for the active region and its complement. We
use the median color and contrast features computed over the corresponding regions. However,
several adjustment parameters (e.g. brush diameter, scale factor) depend on the size of objects in
the image and so we include size features for all labeled regions that overlap the active region.
To summarize, F is a 18+ 2N-dimensional vector composed of 18 pixel-level features (9 for the
selection region and 9 for its complement, consisting of 3 for color, 2 for contrast and 4 for the
luminosity histogram) and 2N size features, where N is the number of labeled regions that overlap
with the active region.

5.4 Workflow: Feedback and Correction
In our framework, the user can create a content-adaptive macro by recording a single demonstration
of a manipulation. However, with only one training example, the macro cannot robustly adapt to
new target images. Typically, the user needs to demonstrate the manipulation using the same
sequence of steps on about 20 different examples to produce a robust macro. To help the user
demonstrate and apply the manipulation to new target images, our framework provides two visual
feedback and interactive correction panels. The macro application panel applies the macro to a new
image and then allows the user to correct the transferred selections, brush strokes and adjustment
parameters as necessary (Figure 5.6). The labeling correction panel helps macro authors correct
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Photoshop Macro Application Panel

Figure 5.6: Macro Application. The panel shows the target image after each step of the macro.
Selection steps show the selection region in gray. Brush stroke steps show the brush stroke in
green. Users can click on any step in the panel to load the corresponding images in Photoshop and
modify parameters as necessary and then re-executing the remaining steps.

errors due to our automated image labelers (Figure 5.7).

5.4.1 Macro Application Panel

Example Image Result

Suppose an author demonstrates a lip gloss manipulation. After the
first demonstration (see inset), our framework generates a macro
application panel. Given a new target image, the panel presents the
six steps comprising the manipulation and the image that results
after applying each step to the new target (Figure 5.6). The visual
feedback allows the author to quickly identify and correct errors in
individual steps of the macro. Since the sequence of steps is fixed
in the panel, it also prevents the author from forgetting steps or
changing the order of steps when adding additional demonstrations.
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In the example of Figure 5.6, the panel immediately reveals an error in adapting the selection
region in the first step – our image labeler incorrectly labeled the lips. The user can click on any
step in the panel and our framework executes all of the operations up to that step. The user can
then take over and fix any incorrect parameters. In this case, the user clicks on the first selection
step, manually selects the correct lip region and then uses our labeling correction panel to mark
his new selection as lips (Figure 5.7). Although such manual labeling is not strictly necessary
and our framework can learn a macro without it, more accurate labels yield more accurate macro
adaptation. Similarly if the automatically generated red lip color were undesirable, the user could
adjust the parameters of the color curve that reddens the lips by clicking on step four. After
each such correction, our framework automatically executes and re-evaluates the parameters of all
remaining steps. Once the user has finished correcting the image, our framework treats the target
image with the corrected parameter settings as an additional demonstration.

5.4.2 Labeling Correction Panel
The labeling correction panel has three components. The top left image shows the current selection
region in green, overlayed on the target image (Figure 5.7a). The top right image visualizes the la-
beled regions detected by our image labelers (Figure 5.7b). Below, the list of checkboxes indicates
which of the detected labels correspond to the current selection (Figure 5.7c). Figure 5.7 shows
the state of the panel after the user has noticed the error in step 1of Figure 5.6 and selected the
correct lip region using Photoshop’s selection tool. To label the current selection as lips, the user
simply marks the upper and lower lip checkboxes; our framework then associates these labels with
the current selection. Some labelers, such as our face labeler, also provide landmark correspon-
dence points. Although our labeling correction panel does not automatically update such landmark
points, we allow users to manually update the location of these points.

5.4.3 Macro Robustness
One challenge for a macro author is to evaluate when the macro is robust enough to distribute
to other users. Thus, our macro application panel provides feedback on the robustness of the cur-
rent macro. After every new demonstration, we run a leave-one-out cross-validation on the existing
demonstration dataset. That is, we use one demonstration as the test data and the remaining demon-
strations as the training data. We repeat this process for several rounds until every demonstration
has been used once as test data.

For each round, we estimate how well the content-adaptive macro is able to adapt the param-
eters for the test image. For each step of the manipulation, we compute the mean squared error
(MSE) between the image generated by our adapted macro and the ground truth image that we
obtained with the original demonstration. Since many steps modify only a small region of the
image, we avoid excessively low MSEs by including only the set of pixels modified in either the
adapted image or ground-truth image. Furthermore, selections do not modify the image and we
simply compute MSE on the selection mask for selection steps.
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a b

c

L i  a

Labeling Correction PanelPhotoshop

Figure 5.7: Labeling Correction. The panel shows the set of facial features detected. The eyes,
nose and lips are clearly mislabeled (b). After the user selects the lips, the current selection is
drawn in green (a). To correct the lip labels, the user can check the upper and lower lip in the list
below; our framework associates the selection region with all checked labels (c).

The macro application panel displays the average MSE across all rounds for each step. Al-
though MSE does not capture the perceived difference of pixel values, it indicates the level of
similarity between the learned result and the ground truth demonstration. Uniformly low MSE
values for all steps suggest that the macro is relatively robust and can be shared with other users.
We typically observe low MSEs with 15-20 demonstrations. Note that this MSE measure only
indicates robustness with respect to the demonstration images. It remains the task of the author to
collect a training set that contains enough variety.
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Figure 5.8: Twenty manipulations (face – gray, landscape – green, global – pink) and the number of
selections, brush strokes and adjustment parameters adapted for each one. The dataset size column
reports the number of images used in the evaluation, followed by the number of images for which
we hand-corrected the labeling.

5.5 Results
We have used our framework to generate content-adaptive macros for the 20 manipulations de-
scribed in Figure 5.8, some of which are shown in Figures 5.1, 5.9, 5.10 and 5.12. All of these
results were generated using our fully automated approach without any corrections through our
application or labeling panels. We chose 7 face manipulations, 8 landscapes adjustments, and
5 global manipulations from popular photo editing books [49] and websites. The manipulations
range from adding eye makeup to smoothing waterfalls to making the image look as if it were
taken with a Lomo camera. In total the manipulations require adapting between 3 and 36 selec-
tions, brush strokes and adjustment parameters. For example, the smooth waterfall manipulation
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(b) Mustache (c) Eye makeup

(d) Smooth waterfall (e) Dark sky

(f) Lomo

Mustache Eye makeup Smooth waterfall Dark sky Lomo Re!ections
(a) Demonstration manipulations

(g) Re!ections

Figure 5.9: Six example manipulations. (a) Representative demonstration input image and result
pairs. (b)–(g) Our content-adaptive macro results on new target images.
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has the following steps (see project website1 for descriptions of the other manipulations):

1. Select waterfalls and copy them onto a new layer (1-5 selections).

2. Apply motion blur filter on waterfall layer (2 parameters).

3. Create a layer mask and paint over areas where blur effect goes outside the waterfall regions
(3-5 brush strokes).

4. Adjust opacity of waterfall layer (1 parameter).

5. Use warp tool to emphasize shape of waterfall (8 parameters).

(a) Target images

(b) “Artistic” HDR result

(c) “Realistic” HDR result

Figure 5.10: High dynamic range (HDR) results. Our
system successfully transfers both “artistic” (b) and
“realistic” (c) HDR manipulations based on the train-
ing demonstrations.

To find suitable images for each ma-
nipulation we asked photographers and
searched the Web (flickr.com) to build
a dataset of high-quality images that pho-
tographers would want to manipulate.

As shown in Figures 5.1, 5.9 and 5.10,
in most cases our content-adaptive macros
successfully adapt the manipulation to new
target images. Figure 5.9 includes 2 face
manipulations (b-c), 2 landscape manipu-
lations (d-e) and 2 global manipulations (f-
g). The makeup and mustache manipula-
tions (b-c) demonstrate the precise trans-
fer of brush strokes when our labeler rec-
ognizes the faces. The waterfall manip-
ulation (d) edits a semantic region of the
image – namely the water. Although our
framework does not include a water detec-
tor, it is still able to successfully transfer the manipulation to many images using the white color
of the water (color feature) and the relative location of the water below the sky (landmark offset
feature). The snow manipulation (Figure 5.1) includes up to 28 adjustment parameters. When
correctly transferred, these parameters cause the ground, trees and even the reflected trees in the
lake to appear as if they have snow on them. We include two versions of the same HDR manipu-
lation, one trained with examples that produce an “artistic” look and the other trained to produce
a “realistic” look. Figure 5.10 shows that our framework can learn the appropriate parameters for
both looks.

All of these results were generated using 20 training demonstrations, except for the mustache
manipulation. Because adding a mustache only involves brush strokes and does not include adjust-
ment parameters, we trained the macro using just 10 demonstrations. Figure 5.11 shows a few less

1All supplemental materials are at http://vis.berkeley.edu/papers/macros/
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Figure 5.11: Less successful adaptations. Poor parameter estimation results in a washed out image
(a). Incorrect selection transfer causes blurring in the region below the waterfall (b). Incorrect
labeling results in misplaced brush strokes for the mustache (c) and eye makeup (d) manipulations.

successful examples that include misplaced brush strokes and poor parameter estimation. Both
types of errors could be corrected using our application panel.

Timings. Each manipulation initially takes about 5-15 minutes to demonstrate, but with prac-
tice and using our macro application panel this authoring time usually reduces to about 1-5 minutes
per demonstration. With 20 training demonstrations and images of size 600 ⇥ 900, our system re-
quires about 3 minutes to learn how to adapt each selection, and about 1 minute to adapt each
brush stroke or adjustment parameter. Thus, the training time for our manipulations is between 5
and 40 minutes depending on the number of operations. Applying the resulting macro to a new
target image requires a few seconds to adapt each selection region and brush stroke operation, and
significantly less than a second to adapt each adjustment parameter. These timings are based on
our unoptimized MATLAB implementation.

5.6 Evaluation
To determine the effectiveness of our framework as a whole, we evaluate both the quality of the
images generated by our content-adaptive macros, as well as the utility of our proposed macro
authoring workflow.
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5.6.1 Macro Results
To evaluate the quality of our macro results, we chose seven representative manipulations: bag
removal, contrast, dark sky, eye makeup, film noir, lomo, and sunset enhancement. For each
manipulation, we compare four different methods for adapting the manipulation with a dataset of
50–100 images:

1. Ground-truth. We generate ground-truth images by adapting the manipulation manually
for each image in the dataset.

2. Average. As a baseline, we generate average images by averaging adjustment parameters
across all training demonstrations and copying any selection regions and brush strokes (re-
normalized to account for differences in image size) from the demonstration image closest
in size to the target image2.

3. Automatic. We generate automatic images using our content-adaptive macros without any
manual correction using our correction interfaces.

4. Corrected. To factor out the effect of errors due to incorrect image labeling, we also compare
against corrected images that we generate by manually correcting poor labeling from our
automated labelers using our labeling correction panel. Note that we did not use the macro
application panel to correct any other parameter adaptations.

Figure 5.12 shows these adaptations for the film noir manipulation. We do not show our cor-
rected result because the image labels were correct and thus the corrected and automatic results
are identical.

As described in Section 5.3.4, the regression technique we use for learning adjustment param-
eters requires 20 demonstrations to work robustly. Thus, we train our macros on a random subset
of 20 images. In addition, to investigate how our macro results vary with the number of train-
ing demonstrations, we choose five of the manipulations (bag removal, contrast, eye makeup, film
noir, and sunset enhancement) and compare results with random subsets of 1, 10, 20 and 30 train-
ing demonstrations. We use the average parameter values to generate our automatic and corrected
results when we have only 1 or 10 training demonstrations.

We compare the four adaptation methods using an Amazon Mechanical Turk study in which
participants rate the differences between the manipulated images. We chose to run a user-based
evaluation because most standard image difference metrics such as mean squared error (MSE), are
not perceptual measures. We also compute the absolute difference in parameter space between
ground-truth and our macro results. Across 11 manipulations we find that 79 out of 89 parameters
generated by our automatic and corrected methods are closer to the ground-truth parameters than
those generated by the average method.

Finally, to get a sense for the overall quality of our macro results, we manually counted the
number of successful and less successful automatic results for all 20 manipulations. With 20

2We designed this baseline as a relatively straightforward extension to existing macro systems such as Adobe
Photoshop’s Actions.
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Ground Truth Macro Result
(Automatic)

AverageTarget Image

Figure 5.12: Three adaptation methods for the film noir manipulation. We do not show our cor-
rected result, because the image labels were correct and therefore it is identical to the automatic
result.

training demonstrations, our overall success rate is 82%, ranging from 95% (for lip gloss, skin
tone, black & white, and lomo) to 60% (for eye makeup). Our eye makeup macro is less successful
because the face labeler did not find any face in 15 of the 80 test images. We report the MSE and
parameter difference results on the project page. Our project website3 also includes success rates
and sample macro results for all 20 manipulations.

5.6.2 Mechanical Turk Study Design
We used the Amazon Mechanical Turk to test how well the automatic, average and corrected
images match the ground-truth. We simultaneously showed Mechanical Turk workers four images
marked A, B, C, and D; we asked them to rate the differences between images B, C and D, and
image A on a scale of 1 (”indistinguishable from image A”) to 5 (”very different from image
A”). In our first study, we labeled the ground-truth as A and counterbalanced the ordering of the
ground-truth, average or automatic images with respect to labels B, C, and D. In a second study, we
replaced the automatic images with the corrected images. Each task was completed by 5 different
workers, and we paid 3 cents per task.

Findings
There are four notable findings from our user-based evaluation:

1. Macro results are better than average results. The mean difference ratings for all seven
manipulations indicate that, in general, our automatic images (mean: 2.2 range: 1.8-2.6) and cor-

3All supplemental materials are at http://vis.berkeley.edu/papers/macros/
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Figure 5.13: (Top) The mean difference ratings from the Mechanical Turk experiments, where a
low difference rating indicates greater similarity to ground truth. With 20 training demonstrations,
our automatic and corrected macro results consistently received lower difference ratings than the
average images and were close to ground-truth. (Bottom) The distribution of difference ratings for
the film noir manipulation as the number of training demonstrations increases. With one demon-
stration, the distributions for automatic and corrected closely match the distribution for average.
As the number of training demonstrations increase, the distributions for automatic and corrected
shift to match that of the ground truth, while the average distribution remains unchanged.

rected images (mean: 2.0 range: 1.8-2.3) match the ground-truth (mean: 1.7 range: 1.5-2) more
closely than the average images (mean: 3.7 range: 2.9-4.7) (Figure 5.13 top). We find all of the
differences in ratings across the four conditions to be significant (p < 0.0001) using Friedman’s
nonparameteric test for differences in ranks. Subsequent pairwise comparisons also find significant
differences for all pairs of conditions (p < 0.0001).

2. Macro results improve with up to 20 training examples. The difference ratings for
our automatic and corrected results decrease as the number of training demonstrations increases.
Furthermore, the most significant decrease in the difference ratings occurs at 20 training demon-
strations for the two manipulations that primarily involve adjustment parameters – contrast and film
noir (Figure 5.13 bottom). For the other manipulations, our results are already noticeably better
than the average images after 1 demonstration and show little improvement after 10 demonstra-
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tions. This data suggests that 20 demonstrations are sufficient for learning adjustment parameters
and that 10 demonstrations are enough to adapt most selection and brush stroke operations.

3. Corrected results are slightly better than automatic results. The automated labelers
produced poor labels for 23% of faces and 31% of skies in our image datasets. However, the mean
difference ratings for our corrected results are only slightly better (i.e., smaller) than the ratings for
our fully automatic results; with 20 training demonstrations, the discrepancy between the corrected
and automatic ratings ranges from 0 (for the contrast manipulation) to 0.53 (for eye makeup), with
an average discrepancy of 0.18 across the six manipulations that required corrections (lomo did
not require any corrections).

4. Macro results often indistinguishable from ground-truth. Because we include the
ground-truth image as one of the images in the difference rating task, workers could rate our
macro results as a closer match to ground-truth, than the ground-truth image itself. We count the
number of times at least 3 out of 5 workers gave our result a rating less than or equal to their rating
for the ground-truth image. In such cases it is likely that workers could not visually distinguish
our images from ground-truth. We also count the number of images for which at least 3 out of 5
workers gave our result a rating greater than or equal to their rating for the average image. These
images are the ones for which our approach performs poorly. With 20 training demonstrations,
47% of the automatic and 56% of the corrected images were rated better than or equal to ground-
truth while just 6% of the automatic and 2% of the corrected were rated either no better or worse
than average.

5.6.3 Macro Authoring Workflow
To evaluate the utility of our proposed macro authoring workflow, we conducted a small compara-
tive lab study with three serious photographers who routinely use Photoshop to edit their images.
We brought each participant in for a one hour session in which we first described our frame-
work and then asked him to manipulate 5–6 images in Photoshop as if he was generating training
demonstrations for our system (i.e., by performing the same sequence of manipulation steps for
each image). We chose the lip gloss manipulation as our test case because it includes selections,
brush strokes, and adjustment parameters (see Figure 5.8). Each participant performed the demon-
strations under two different conditions: first, using Photoshop without our labeling and macro
application panels, and then using Photoshop with our panels. Finally, we asked several questions
to elicit feedback about our proposed workflow.

Feedback
All three participants agreed that the panels were a clear improvement over the no-panel workflow.
In particular, there was consensus that the macro application panel made the demonstration process
much easier by enforcing the correct sequence of steps and automatically applying each step to new
images, even if some of those steps required corrections. Participants specifically mentioned the
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Figure 5.14: Two car manipulations. Red boxes indicate cars found by Felzenswab et al.’s [2008]
detector. (a) We demonstrate 10 tilt-shift manipulations and our framework successfully learns to
blur the region above and below the car. (b) We demonstrate recoloring of 5 red cars and 5 green
cars to blue. Our content-adaptive macro correctly recolors new target cars, without recoloring
red/green elements that fall outside the car bounding box. But, it fails when red/green background
elements, like grass, fall within the bounding box.

visualization of steps and the ability to edit intermediate steps as important benefits. In addition,
they appreciated that training occurs incrementally every time they apply the macro to a new image
and correct the results. The feedback about the per-step macro robustness scores was more mixed.
While some found the MSE numbers a bit difficult to interpret, most agreed that it was useful to
have the system indicate which steps were likely to require corrections.

To get some feedback on the potential limitations of our workflow, we asked how participants
felt about performing the same sequence of steps for each image and whether they would be willing
to perform 15–20 demonstrations to train a content-adaptive macro. In response, none of the
participants were bothered by having to perform the same sequence of steps (especially given the
macro application panel), and two of three respondents said they would be willing to perform
15–20 training demonstrations to use our system — the third respondent felt that the number of
required demonstrations was reasonable but explained that he does not typically perform the same
manipulations on many different images.

Overall, the feedback from this study suggests that our proposed workflow is useful and that
our labeling correction and macro application panels make it significantly easier for users to author
content-adaptive macros.

5.7 Extensions to Other Image Labelers
Although we have demonstrated our framework on common face, landscape and global manipula-
tions, we have designed a general framework that can easily incorporate new image recognizers as
they become available. To test this extensibility we have experimented with adding Felzenszwalb
et al’s [34] car detector to our image labeler. This detector identifies a bounding box for each
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car and does not provide landmark correspondence points. We transfer two car-specific manipu-
lations: a tilt-shift manipulation that leaves the car in focus while blurring its surroundings and
a car recoloring manipulation. The tilt-shift manipulation (Figure 5.14a) performs very well for
our target images because this manipulation only requires an approximate position and size for the
car. It does not require a pixel-accurate boundary. The car recoloring manipulation (Figure 5.14b)
performs well if the pixel-level features of the car are sufficiently discriminative. For example, if
we train the macro to change red and green cars to blue it learns to recolors only pixels within the
car bounding box and does not affect pixels outside the box. However, if there are red/green pixels
within the bounding box that are not part of the car (e.g. grass in the third example) it recolors
those pixels as well. More accurate landmark points on the boundary of the car would mitigate
such problems. We leave it for future work to identify such landmark points when they are not
directly provided by the labeler.

5.8 Next Steps
While our framework is able to adapt many different types of photo manipulation macros to new
target images, we have observed a few limitations that we plan to address in future work.

Poor quality image labels. Our approach relies on high quality image labeling with consistent
landmark points. While our visual feedback and correction interfaces allow users to manually fix
incorrect labeling or landmarks, they also incur additional manual work. Moreover, many kinds
of recognizers, including our outdoor scene recognizer, do not provide landmark points. In such
cases, our approach of using the bounding box vertices as landmarks yields acceptable results for
manipulations like sunset enhancement or tilt shift because they require coarse spatial information
about the sky or car. But manipulations like car recoloring (Section 5.7) that require precise place-
ment of selection regions or brush strokes are unlikely to transfer well using such landmarks.

Target Image Macro Result

Indirect dependencies. For some image manipulations the ad-
justment parameters depend on non-local image features. Our
framework is only able to learn dependencies between adjust-
ment parameters and image features of the active selection or
brush region and its complement. For example, when applying
the mustache macro to a light haired person, the result looks un-
natural even though the location of the mustache is correct (see
inset). In this case our framework is not able to learn the depen-
dency between the color parameter of the mustache brush and
the person’s hair color because the hair is not the main element
in the brush region or its complement. An interactive machine
learning approach where users guide the algorithm by specifying relevant features or image loca-
tions containing those features could mitigate such problems. Such an interactive extension could
also reduce the number of demonstrations necessary to learn the macro, accelerate the learning
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process, and extend the number of dependencies the system could recognize.

Unaligned demonstrations. Our system requires that users perform all of the example demon-
strations for a particular manipulation using roughly the same sequence of operations. While this
operation alignment condition is satisfied for most demonstrations, some input images might re-
quire additional steps or the user might choose to demonstrate the steps in a different order. One
approach may be to use sequence alignment or tree alignment techniques to automatically align
operation sequences that differ significantly from one another. Using such alignment techniques, it
may also be possible to combine demonstrations from multiple authors and thereby distribute the
work of generating example demonstrations.
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Chapter 6

Future Work

We have presented several systems that facilitate each of the three stages of the learning process by
1) automatically generating step-by-step tutorials by demonstration, 2) providing new interfaces to
help learners compare multiple photo manipulation procedures, and 3) automatically transferring
photo manipulation procedures to new images. We believe there are many possible directions for
future work that build on the ideas presented in this thesis.

6.1 Teaching versus Automating Procedures
Chapter 3 describes a system to automatically generate photo manipulation tutorials by demon-
stration. Tutorials teach learners all the necessary steps for the manipulation, but the learners still
have to perform the operations themselves. In contrast, the content-adaptive macros presented in
Chapter 5 are fully automated. The computer executes and adapts all the operations automatically,
but the user also does not learn the procedure. Tutorials and macros are both useful depending on
the goals of the user and the context in which the tutorial/macro is used.

But there is also a tension between teaching someone a new procedure versus simply automat-
ing it. If the transfer of a procedure can be fully automated in a content-adaptive manner and
it always produces successful transfer results, teaching the procedure to users may not be neces-
sary. The software could simply provide the one-button-click macro for this procedure and the
user would never have to make corrections. However, our content-adaptive macros rely on image
recognition and machine learning techniques. These techniques are not fully robust or error-free,
and our framework generates undesirable results for a non-negligible number of transfers. While
advances in computer vision and machine learning will further improve our results, it is likely that
there will always be cases for which our content-adaptive macros produce less successful transfers.

So one research question that remains is, can we build a semi-automated system that automat-
ically identifies the steps it can transfer robustly, and provides correction interfaces or allows the
user to perform the steps that are less robust. The correction interface presented in Section 5.4 of-
fers an initial approach by allowing users to quickly correct any particular operation in the macro
and then automatically execute the remaining steps of the procedure. However, this interface
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does not provide explanations for any of the steps and assumes the user knows how to make the
necessary corrections. One direction for future work is to augment the correction panels with in-
structions on how to correctly perform each step. These additional explanations could help users
detect and correct macro errors. This direction would also require studying the usefulness of such
semi-automatic systems and the effect that they have on the learning process. One would need to
compare a user’s performance when applying a photo manipulation to new target images with such
semi-automated approaches to fully automatic macros and manual tutorials.

6.2 Instructions for Physical Procedures
Procedural tasks are very common and people share instructions for procedures within lots of dif-
ferent domains (Table 1.1). However, many of the procedural tasks are physical tasks that occur in
the real world such as cooking, assembling furniture or driving. It is still very difficult to automati-
cally generate effective instructions for such tasks. While it is straightforward for people to capture
a video of someone performing a physical task like cooking, a major challenge in generating in-
structions lies in automatically recognizing and segmenting the physical motion into operations.
Current computer vision approaches [31, 85, 32] can only recognize a very limited set of these ego-
centric activities and often assume that the objects and the environment remain constant throughout
the task demonstration. These constraints are not fulfilled for most physical tasks.

Furthermore, there is very little research on what type of tutorial format is most effective for
such tasks. While several studies [83, 42] suggest that static tutorials are better than video tutorials
for learning software procedures, some complicated physical tasks such as dancing may require
video instructions to show a 3D movement or interaction. However, video-based instructions force
users to work at the pace of the video and may thereof cause learners to make more mistakes. A
challenge is to automatically segment such videos into steps and provide tools to help users follow
and navigate these video tutorials. If on the other hand the goal is to make a static tutorial a related
challenge is to choose the most representative frames from the video recording to show for each
step in the tutorial.

An important future research direction is to classify these physical procedural tasks according
to the complexity of their 3D interactions, and study what tutorial type (static versus video) is most
effective for each category. Furthermore, developing tools to help tutorial authors create static and
video tutorials for physical tasks could significantly facilitate their production and improve their
quality. In addition to using computer vision techniques to recognize activities in the scene, one
could use cues such as the video narration or the speed of the motion in the video to segment the
procedure into steps. Finally, it is also important to explore ways to annotate the motion in the
video (equivalent to the annotation in Section 3.5.2 for static tutorials) so as to highlight the task
the user must perform.
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6.3 Automatically Parsing Instructions
One of the recent trends in graphics has been to exploit big datasets. For example, sites such as
flickr.com contain tens of thousands of images. Researchers have used these image databases
for automatic scene completion [44], photo tourism [97] and many other image manipulation ap-
plications [64, 95, 96, 3, 93, 24]. More recently, sites like Google Trimble 3D Warehouse have put
very large collections of 3D models online. Similarly, in graphics, we have used these databases
to develop many new applications for part-based modeling [19, 53, 58] as well as parametrizing
and clustering similar shapes [82]. Not surprisingly, having access to large collections enables new
research. However, building such collections can be difficult.

As we saw in Chapter 1, people share hundreds of thousands of instructions for many differ-
ent tasks: recipes for cooking, assembly instructions for building furniture and sewing patterns
for clothing. These instructions are designed by humans and for humans. The tutorials are often
written in natural text and use inconsistent formats. As a consequence, computers do not know
how to interpret them. However, an important research direction is to develop algorithms that can
automatically parse these documents, identify the commands, and apply them. Such algorithms
would enable computers to automatically follow instructions, and allow researchers to exploit on-
line collections of tutorials to build large databases of structured data. As with images and 3D
models, analyzing these new collections could lead to new advances in graphics. For example, it
could allow us to synthesize new elements within these domains (e.g. food, furniture, clothes),
generate instructions from an end result (rather than a demonstration), or provide feedback to a
user who is following the instructions.

We have recently started pursuing this goal by interpreting sewing patterns to build a large col-
lection of 3D garment models [11]. Sewing patterns are composed of a set of panels and implicitly
describe the cutting, folding and stitching operations that a human tailor must perform to phys-
ically fabricate clothing (Figure 6.1a). Thousands of these patterns are now available online on
sites like burdastyle.com. We have developed an algorithm that processes the patterns to extract
the panels, and automatically applies the assembly operations to generate a 3D model of the gar-
ment (Figure 6.1b). The challenge is that the assembly operations are not explicitly stated. Human
tailors apply their domain experience to correctly interpret them. We have worked with tailors to
identify the rules they use, and have developed a parser that applies these rules automatically.

As future work, we will build a large database of sewing pattern/3D model pairs. We can
apply data-driven techniques to this collection to pursue our goals of synthesizing new garments,
generating sewing patterns from 3D models, and providing users with feedback when they are
following a pattern. The challenge in generating new garments is to combine the panels from
different patterns so as to create a valid garment. Parameterizing the space of garments could
allow us to achieve this goal. In animation and game studios, modelers often create surface models
of garments. They may want to fabricate the corresponding physical garment for commercial
purposes. However they cannot easily convert the 3D models into physical garments because they
do not have the underlying patterns. We plan to build a mapping between the 3D model to a set
of 2D panels while preserving common panel design characteristics (e.g. correct usage of darts).
Finally, we could help users create the physical garment. Sewing is not an easy skill and it can
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(a) 2D Sewing Pattern (b) Corresponding 3D Model
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Figure 6.1: We parse sewing patterns (a) to generate the corresponding 3D models (b).

be difficult for a person to follow the patterns. We could physically extend the sewing machine
to provide step-by-step instructions and feedback when the person makes mistakes. We could
possibly even go so far as correct the mistake. For example, when the person is deviating from
the seam line, we could develop a motorized mechanism that readjusts the needle position so that
it snaps back in place. Therefore, by instantiating domain-specific design principles in algorithms
and interfaces, we ultimately hope to create physical tools that are smarter and safer.

6.4 Beyond Procedural Instructions
Over the last couple of years, people have started sharing many types of instructions online. In
particular, sites like the Khan Academy or other platforms for Massive Open Online Courses
(MOOCs) offer thousands of online courses and millions of students take them. These sites have
fundamentally changed the way people use instructional material by providing free access to a very
large collection of high quality video instructions. A well known benefit of MOOCs is that they
make education accessible all around the world.

These online courses are designed to teach all forms of knowledge. They combine procedure
knowledge with other types of knowledge such as factual or conceptual knowledge. Similar to
procedural step-by-step tutorials, these video instructions are very time-consuming to produce.
Authors are forced to edit them at the frame level rather than based on their semantic content.
Furthermore, it is difficult to make a class engaging for an online viewer. Most videos simply
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show a teacher in front of a whiteboard, but the teacher’s whiteboard writing may be difficult to
read or not use space effectively.

An important direction for future work is to study how to create more effective online instruc-
tions beyond procedural tasks. In particular, a challenge is to help teachers author video instruc-
tions like the ones on the MOOC platforms. One could apply the same approach that we have
used for step-by-step procedural tutorials to online courses. This approach would require studying
what characteristics make online classes effective and then developing new tools and techniques to
help people create video instructions that facilitate the learning process. For example, one could
build a special-purpose video editing tools that allow teachers to change the layout of the notes,
add highlights, and add or remove content from the video.
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Chapter 7

Conclusion

In this work, we have presented three different systems that are each designed to help with a
different stage in acquiring procedural knowledge, more specifically the knowledge of how to ma-
nipulate an image.

In Chapter 3, we have presented a demonstration-based system for automatically generating
succinct step-by-step visual tutorials that facilitate the cognitive stage of the learning process. An
author first demonstrates the manipulation using an instrumented version of GIMP that records
all changes in interface and application state. From the example recording, our system automati-
cally generates tutorials that illustrate the manipulation using images, text, and annotations. A key
feature of our approach is that we combine application-level information about the operations con-
ducted by the user with image recognition techniques (recognition of facial features and outdoor
scene structures in our implementation) that label semantically meaningful elements in the pho-
tographs. We leverage the automated labeling to generate more precise text descriptions of many
of the steps in the tutorials. One limitation of our tutorials is that they cannot explain why users
must perform each operation. Without explanations, it can be more difficult for users to transfer
the operations to their images or different tasks. Nevertheless, a user study comparing our auto-
matically generated tutorials to hand-designed tutorials and screencapture video recordings with
voiceover explanations, finds that users are 20–44% faster and make 60–95% fewer errors using
our tutorials. Moreover, our tutorials are generated in a fraction of the time required to manually
design a tutorial. Thus, our automatically generated tutorials could also serve as a first step that
authors could supplement with further explanations.

In Chapter 4, we have presented a new browser interface that allows users to navigate, explore
and compare the command-level structure of a large collection of image manipulation tutorials.
This interface helps learners better grasp the underlying structure of photo manipulation proce-
dures and thereby facilitates the associative stage of learning. To build this interface, we first col-
lect 2500 Photoshop tutorials that we download from the Web. We then apply supervised machine
learning to identify the command sequence described in each tutorial from our collection. We also
provide algorithmic tools to compare the command sequences in our database as well as identify
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common patterns of command sequences within the tutorial collection. Finally, we have presented
a new browser interface with three views; a (1) Faceted Browser View for organizing and filtering
the tutorials by their commands, a (2) Tutorial View for examining individual tutorials and an (3)
Alignment View for comparing the similarities and differences in the command structure between
a subset of tutorials. User feedback suggests that our interface is easy to understand and use, and
that users find command-level browsing to be useful for exploring large tutorial collections. They
strongly preferred to explore tutorial collections with our browser over keyword search.

In Chapter 5, we have presented a framework for generating content-adaptive macros that can
transfer complex photo manipulations to new target images. While our framework does not fa-
cilitate the learning process for a person, it successfully teaches photo manipulation procedures
to computers and thereby removes some of the tedium of having to manually execute the same
procedure over and over again. To create a content-adaptive macro, we make use of multiple
training demonstrations. Specifically, we use automated image labeling and machine learning
techniques to learn the dependencies between image features and the parameters of each selection,
brush stroke and image processing operation in the macro. Although our approach is limited to
learning manipulations where there is a direct dependency between image features and operation
parameters, we show that our framework is able to learn a large class of the most commonly-used
manipulations using as few as 20 training demonstrations. Our framework also provides interac-
tive controls to help macro authors and users generate training demonstrations and correct errors
due to incorrect labeling or poor parameter estimation. Using our interactive panels, applying a
photo manipulation procedure to new images becomes effortless and does not require the user to
perform repetitive actions. Finally, our evaluation shows that our framework can produce effective
content-adaptive macros for a wide range of image manipulations and that our macro feedback and
correction interfaces are both effective and practical in the context of real image editing workflows.

Together these tools allow users to automatically create high quality step-by-step tutorials by
demonstration, provide an interface for exploring and comparing large collections of online tuto-
rials, and facilitate repetitive procedures by automating the transfer of photo manipulations. As
more and more instructional material appears online, providing such tools for learning, comparing
and automating procedures will be crucial to help people work efficiently with software tools. Fur-
thermore, we identify several research challenges for future work. As machine learning algorithms
become more robust and many procedures can be automated, we believe that it will be essential to
explore the trade-offs between tutorials and macros. We also discuss how researchers may lever-
age the large online collections of tutorials to automatically build databases of structured data in
different domains. Finally, another open research challenge is to build tutorial authoring tools for
physical procedures as well as other non-procedural tasks. We believe that computerized tools can
play a large role in facilitating the learning process for many domains beyond photo manipulation
procedures.
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