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Abstract

Efficient learning algorithms with limited information

by

Anindya De

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Umesh V. Vazirani, Co-chair

Professor Luca Trevisan, Co-chair

The thesis explores efficient learning algorithms in settings which are more restrictive than
the PAC model of learning [144] in one of the following two senses: (i) The learning algorithm
has a very weak access to the unknown function, as in, it does not get labeled samples for the
unknown function (ii) The error guarantee required from the hypothesis is more stringent than the
PAC model.

Ever since its introduction, the PAC model of learning is considered as the standard model of
learning. However, there are many situations encountered in practice in which the PAC model does
not adequately model the learning problem in hand. To meet this limitation, several other models
have been introduced for e.g. the agnostic learning model [65, 88], the restricted focus of attention
model [12], the positive examples only model [35] amongst others. The last two models are the
ones which are most relevant to the work in this thesis.

Beyond the motivation of modeling learning problems, another reason to consider these alter-
nate models is because of the rich interplay between the questions arising here and other areas like
computational complexity theory and social choice theory. Further, the study of these models lead
to interesting questions in discrete Fourier analysis and probability theory. In fact, the connections
forged between these learning questions and Fourier analysis and probability theory are key to the
results in this thesis.

Part 1 of this thesis is motivated by an easy theorem of C.K. Chow [23] who showed that over
the uniform distribution on the hypercube, a halfspace is uniquely identified (in the space of all
Boolean functions) by its expectation and correlation with the input bits. Rephrased in the language
of Fourier analysis, if f : {−1, 1}n → {−1, 1} is a halfspace and g : {−1, 1}n → {−1, 1} is
any other Boolean function, such that the degree 0 and 1 Fourier coefficients of f and g are the
same, then f and g are identical over the hypercube. The degree 0 and 1 Fourier coefficients
of f are sometimes called the Chow parameters of f . Chow’s result immediately gives rise to
two questions: The first is whether this characterization is robust i.e. if the Chow parameters
of f and g are close to each other and f is halfspace, then are f and g close to each other in
Hamming distance? The second question is whether Chow’s characterization is algorithmic. In
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other words, is there an efficient algorithm which given the Chow parameters of a halfspace f , can
reconstruct the halfspace f (exactly or approximately)? Chapter 2 answers both these questions in
the affirmative and in fact shows a strong connection between the answers to the two questions.

In Chapter 3, we consider a different generalization of the theorem of Chow. It is easy to extend
the theorem of Chow that show over any distribution D on the hypercube {−1, 1}n (which has
full support), a halfspace f is completely characterized within the space of all Boolean functions
by its expectation and correlation with the input bits. Similar to Chapter 2, one can ask if this
characterization can be made algorithmic and robust. While the question is interesting in its own
right, for specific choices of distribution D, this problem has been investigated intensively in the
social choice literature where it is known as Inverse power index problem. Informally speaking, the
function f is viewed as a voting function and the correlation between f and an input bit is viewed
as the influence of that input bit (The distribution D is dependent on the definition of influence
that is used). Arguably the most popular choice for power indices in social choice literature is
the Shapley-Shubik indices [130]. Despite much interest in the Inverse power index problem for
Shapley-Shubik indices, prior to our work, there was no rigorous algorithm for this problem. In
Chapter 3, we give the first polynomial time approximation scheme for the Inverse power index
problem for Shapley-Shubik indices.

Part 2 of this thesis is motivated by the problem of learning distributions over the hypercube.
While the problem of learning distributions has a rich history in statistics and computer science,
there has not been much work in learning distributions over the hypercube which are interesting
from the point of view of Boolean functions. While most natural learning problems that can be
framed in this context can easily shown to be hard (under cryptographic assumption), a sweet spot
comes from the following kind of learning problems: Let C be an interesting class of Boolean func-
tions (say halfspaces). Given an unknown f ∈ C, the distribution learning problem we consider is
to learn the uniform distribution over f−1(1) provided we have access to random samples from this
set. This question has interesting connections to questions in complexity theory like sampling NP
solutions among others. In Chapter 3, we consider this problem for many different instantiations of
the class C. While we give efficient algorithms for classes like halfspaces and DNFs, we show that
classes like CNFs and degree-d polynomial threshold functions which are learnable in the standard
PAC model, are cryptographically hard to learn in this context.



i

To Maa and Baba who taught me the importance of hard work, honesty and perseverance.

And to Sachin Tendulkar for making the impossible look so routine.



ii

Contents

Contents ii

1 Introduction 1
1.1 Deviations from the PAC model . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Our results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Chow Parameters problem 9
2.1 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 On the Exact Chow Parameters Problem . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Proof overview of main structural result: Theorem 7 . . . . . . . . . . . . . . . . . 19
2.4 Proof of Theorem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 The Algorithm and its Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6 The Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.7 Applications to learning theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Inverse Shapley value problem 39
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Analytic Reformulation of Shapley values . . . . . . . . . . . . . . . . . . . . . . 45
3.3 A Useful Anti-concentration Result . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4 A Useful Algorithmic Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 Our Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Inverse approximate uniform generation 67
4.1 Preliminaries and Useful Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 A general technique for inverse approximate uniform generation . . . . . . . . . . 77
4.3 Linear Threshold Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4 DNFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.5 Negative results for inverse approximate uniform generation . . . . . . . . . . . . 99
4.6 Efficient inverse approximate uniform generation when approximate uniform gen-

eration is infeasible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5 Future work 121



iii

5.1 Research directions for the Chow parameters problem . . . . . . . . . . . . . . . . 121
5.2 Research directions for the Inverse Shapley value problem . . . . . . . . . . . . . 121
5.3 Research directions for Inverse approximate uniform generation . . . . . . . . . . 122

Bibliography 123

A Missing proofs from Chapter 2 132
A.1 Near-Optimality of Lemma 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
A.2 Useful extensions of Goldberg’s theorems . . . . . . . . . . . . . . . . . . . . . . 133
A.3 Proof of Claim 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

B Missing proofs from Chapter 3 141
B.1 LTF representations with “nice” weights . . . . . . . . . . . . . . . . . . . . . . . 141
B.2 Estimating correlations and Shapley values . . . . . . . . . . . . . . . . . . . . . . 144

C Missing proofs from Chapter 4 146
C.1 Proofs from Section 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
C.2 Proofs from Section 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151



iv

Acknowledgments

Acknowledgments are often somewhat clichéd. And yet, as I start writing mine, I realize it is going
to look no less clichéd. Probably the only reason this is so is because of how incredibly lucky I
have been to have such an enormous number of incredibly nice and helpful people in my life and
it is very important to me that I thank all these people.

I would like to begin by thanking my advisor Luca Trevisan for his help, guidance and the
freedom he gave me to pursue my ideas throughout the last five years. During the beginning of my
graduate career, when I was scared and had no idea of how to do research, Luca helped me take
my first steps and when the time came that I do things on my own, Luca could take a step back as
well. Besides his understanding of extractors, I hope his indefatigable spirit of pursuing a proof
until he sees it as series of logically inevitable steps has rubbed off on me.

I would like to thank my other advisor, Umesh Vazirani for all his advice during these years
and for convincing me to come to Berkeley in the first place. It took Umesh all of ten minutes
during his first phone conversation with me to convince me to come to Berkeley and five years in
hindsight, I am convinced that there is no better place to come for graduate school than Berkeley.
While it will be naive to think that Umesh’s uncanny ability to look at the bigger picture can be
inculcated, I sincerely hope that I have taken a leaf off it.

To say that theory group at Berkeley is a great place to do theory is stating the obvious. What
probably is not so obvious is how incredibly supportive the group is. Elchanan, thanks for inviting
me to work with you and having the patience to continue working with me even when I was
“only” a 100 times slower than you. Thanks for your cheerfulness when we discuss math (or
anything else) and for always having some problem to talk about. Prasad and Satish, thanks for all
the countless conversations we had about different problems and for the energy you show during
these conversations. Alistair, Christos and Dick, thanks for always having the time to listen to
any problems (academic or administrative) and the incredible hard work you put to solve these
problems. I would like to acknowledge Prasad, Satish and Umesh for funding me during the last
two years of my graduate school. I would also like to thank Lauren Williams and David Aldous
for agreeing to be on my candidacy exam and dissertation committees respectively.

Not just that the theory students at Berkeley are incredibly smart, but the intense sense of
camaraderie made Soda Hall a wonderful place to spend time. I am thankful to Grant for the
time we spent thinking about monotone codes and telling me why owning a car is more important
than a house; Lorenzo for all the conversations we had about India, Italy and cricket and for his
friendship; Madhur for encouraging me about research and help me take my first steps when I
was not so sure of things and also making me realize that cooked in the right way, tofu is not all
that bad; Alexandre for all the time we spent gossiping and telling me about the only useful thing
that can be purchased in Sau Paulo; Greg for feeding me the gossip which I could discuss with
Alexandre and once, getting me a large sum of money from the department (even though till date,
I am not quite sure of its source); James for listening to me while I griped about the world and
made fun of Canada; Thomas for all the conversations and collaborating with me on “quantum
extractors” knowing fully well that I have no idea about the first word and a vague one about the
second. Isabelle and Raf, thanks for being incredible officemates and putting up with me while



v

the stuff on my desk piled on; Anand, Piyush, Siu-Man, Siu-On and Tom for all the dinners we
had or making fun of Siu-Man when we went for dinners and he started taking photographs of
the food; Urmila for the times she drove me to Berkeley bowl and being a reliable (albeit creepy)
source of gossip ; Andrew, Chris, George, Guoming, Henry, Ma’ayan, Nima, Omid, Antonio, Di,
Woo, Jonah, Andrew, Paul, Alex, Aviad, Tselil, Rishi, Jarett, Jonah, Ben and other current and past
Berkeley theory students, thanks for making the theory group here such a wonderful place. Also,
thanks to Neha for bringing the delicious food in the theory lunches.

I would like to thank my co-authors Costis Daskalakis, Ilias Diakonikolas, Omid Etesami, Vi-
taly Feldman, Piyush Kurur, Ankur Moitra, Elchanan Mossel, Joe Neeman, Christopher Portmann,
Renato Renner, Chandan Saha, Ramprasad Saptharishi, Rocco Servedio, Luca Trevisan, Madhur
Tulsiani, Thomas Vidick and Tom Watson for all the things I learnt from them and for the patience
they showed while I was learning these things.

I would like to thank Debkishore and Piyush for putting up with me as a housemate for all
these years and for all the delightful times we shared. My social life at Berkeley (outside the
EECS department) revolved around Ajith, Arka, Aastha, Debkishore, Devi, Himanshu, Piyush,
Raj, Momo and Shaunak and I am thankful for all the birthday celebrations, dinners and above all
sharing the experience of India’s world cup win in 2011.

The material in this thesis is the result of my collaboration with Ilias Diakonikolas and Rocco
Servedio. Ilias, thanks for initiating collaboration with me on linear threshold functions when I
did not know that they are alternately called halfspaces. Thanks for all the fun times we spent
collaborating, having dinners and above all for your friendship.

Rocco, I can go on and on about how much I have enjoy collaborating with you but you know
all that. So, all I will say is that when I was very uncertain about my future in research and things
looked very dark, thanks for making me believe in myself. Thanks for your friendship and the
dinners I had with your family. And before I forget to say it, thanks for always letting me know,
through your actions, that you have my back.

I would like to thank Cynthia Dwork for hosting me during the summer of 2010 and introduc-
ing me to the area of differential privacy. I spent two summers and countless visits at Columbia
University and I would like to thank the faculty and the students in the theory group for the great
time I had during these visits. I would especially like to thank Clement, Dimitris, Eva and Igor
for the lunches, dinners and the fun conversations I had during the time I spent there. I am grate-
ful to Oded Regev for hosting me during the summer of 2013 and to Oded and Jop for all the
conversations about planted clique.

Looking back further, the time I spent during my undergraduate years at IIT Kanpur was un-
doubtedly the most amazing time of my life. I had a great time and made an amazing number of
friends who continue to be my closest confidants. If I started naming all the friends I made and
how much they have helped me, I very much doubt that I will ever be able to finish this thesis. So,
let me just say that I am really really thankful for all you guys and all that you have done for me.

Much before I came to graduate school, some exceptional people inspired me to do research
and theoretical computer science. I would like to thank S. A. Soman for showing faith in my
abilities to do research when there was no just reason to do so and for introducing me to the
term NP-completeness. Words are not enough to express what I owe to Manindra Agrawal and



vi

Somenath Biswas but had it not been for them, I would have never come to graduate school. I
am grateful to all the other teachers I had at IIT Kanpur especially Surender Baswana and Piyush
Kurur for the mathematics I learnt from them. Thanks to Chandan, Piyush and Ramprasad for
collaborating with me on my first theory paper and keeping me as a co-author even though it was
very quickly evident that I had no idea of what was going on. Thanks to Ashish Goel for inviting
me to spend a summer at Stanford and giving me the first taste of research in grad school.

I would like to thank Somnath for being a steadfast friend for the last sixteen years and remind-
ing me how much fun growing up in Ranchi was and the fact that after all this separation in time
and space, we are still on the same page. I am grateful to Soham for being a friend since the time I
did not know what being a friend meant. Thanks for telling me about primality testing when I was
in high school, and yes, when I grow up, I would like to be like you.

Mudra, thanks for the countless hours you spent listening to me on the phone while I was
complaining about something or the other. I know I don’t make it easy. Also, thanks for the time
you feigned attention when I was talking about Malliavin calculus and the time you were genuinely
interested when I was talking about Majority is Stablest.

Thanks to Boudi for the gifts I get from her on my birthday. Thanks to my niece Katyayani for
her constant entertainment and I hope you’re happy now that you have replaced me as the youngest
in the family.

Manu, thanks for all the fights we had growing up and the time I tried to break your knee by
banging my nose against it; thanks for all the cricket matches we played in our living room and
ended up pretty much shattering every single thing made of glass; thanks for the time when we
thought that we thought we have really old stamps because we confused the date of the people
pictured on the stamps with how old the stamps were; thanks for all the old memories and the new
ones we will continue to create.

In spite of my many tantrums, my mother took great pains in ensuring that I go to school. And
my father, through his actions, taught me the importance of hard work and perseverance. They
gave me a happy childhood and the foundations on which all that I have ever learnt is based. While
no words can do justice, I hope these come close: with lots of fondness and love, this thesis is
dedicated to Baba and Maa.



1

Chapter 1

Introduction

The task of learning is amongst the most fundamental tasks of human existence. The ability to
learn, in other words, the ability to infer from observations is the most important reason for the
success of human species. While learning or inference is performed routinely in all sciences, the
problem of learning was first rigorously put under the scanner of theoretical computer science by
the seminal work of Valiant [144].

In this work, Valiant defined the Probably Approximately Correct (PAC) model of learning.
The model is parameterized by a domain X , a distribution D over X and a subset of functions C
which map X to {0, 1}. The class C is referred to as the concept class. The algorithmic problem
is as follows : An adversary fixes an f ∈ C and the learner only access to samples of the form
(x, f(x)) where x ∼ D. The learner is said to be a (T, ε, δ) learner if after time T , the learner
outputs a hypothesis h (of complexity bounded by T ) such that over the randomness of samples,
with probability 1− δ, the hypothesis h satisfies Prx∈D[f(x) 6= h(x)] ≤ ε.

From the perspective of computer science, probably the most natural domain to consider is
X = {0, 1}n. In this setting, we would ideally like the learner to be efficient i.e. we would like the
time complexity of the learner to be T = poly(n, 1/ε, log(1/δ)). As a result, it makes sense to only
consider classes C with limited expressive abilities like halfspaces, DNFs, decision trees etc. Even
with this simple definition, there are a couple of classifications possible depending on the nature
of the learner and the hypothesis. In particular, if the learner depends on the distribution D, it is
said to be a distribution dependent learner whereas if the learner is independent of the distribution,
then the learner is said to be a distribution independent learner. Likewise, if the hypothesis h ∈ C,
then the learner is said to be proper, else its said to be improper.

1.1 Deviations from the PAC model

Agnostic learning model
Soon after the introduction of the PAC model, it was realized that it does not adequately model
all learning situations encountered in practice. A particularly well known variant of the model is
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the agnostic learning model the agnostic learning model introduced by Haussler [65] and Kearns
et. al. [88]. In this model, similar to the PAC model, the learner gets access to random samples
(x, f(x)) for an unknown f ∈ C. However, an (adversarially chosen) η-fraction of samples are
corrupted as in the value of f(x) gets flipped (but x remains unchanged). The task of the learner
is to produce a hypothesis h such that Prx∼D[h(x) 6= f(x)] ≤ ε + η for any ε > 0. This model
of learning proves to be much more challenging than the PAC learning model. An evidence of
this is the fact that while halfspaces are learnable in the PAC model under any distribution (using
linear programming), halfspaces are not known to be efficiently learnable in the agnostic learning
model except for the uniform distribution where the running time is nÕ(1/ε2) [78]. In fact, under
standard assumptions, this problem is known to be hard under arbitrary distributions [62]. Still, it
remains of interest to get better algorithms for specific distributions of interest or under additional
assumptions on the structure of the hidden halfspace.

k-Restricted Focus of Attention model of learning
Ben-David and Dichterman [12] introduced the “Restricted Focus of Attention” (RFA) learning
framework to model the phenomenon (common in the real world) of a learner having incomplete
access to examples. This model is parameterized by a number k. In this model, similar to the PAC
models, random samples x are chosen from an underlying distribution D. However, instead of
giving the learner access to (x, f(x)), the learner is shown f(x) and k indices of x (of the learner’s
choice). To get an intuition as to why such a model might be helpful in real life applications, note
that this models a learning problem where observing an attribute degenerates the sample and after
k of the attributes are observed, the sample might get degenerated to the point such that observation
of the (k + 1)th attribute might be a very noisy process. This of course, can be the situation with
experiments in natural sciences like biology and chemistry.

It is easy to observe (using a random sampling algorithm) that in the k-RFA model, the learner
can compute Ex∼D[f(x) ·

∏
i∈S xi] for any S ⊆ [n] of size bounded by k up to an error ε in time

poly(n · k/ε). In fact, the converse can also be shown i.e. we can simply assume that the learner
has been given the value of Ex∼D[f(x) ·

∏
i∈S xi] for any S ⊆ [n] of size bounded by k (up to

polynomialy small error). Given this equivalent description of the k-RFA model of learning, it is
clear that not every class is learnable in this model. This is because two very different functions
can be identical with respect to the statistics on any k-sized set of coordinates. An easy example
are two different parity functions χS1 : {0, 1}n → {0, 1} and χS2 : {0, 1}n → {0, 1} where χS1

computes the parity on the set S1 ⊆ [n] and χS2 computes the parity on set S2 ⊆ [n]. If both
|S1|, |S2| > k and the underlying distribution D is uniform on {0, 1}n, then it is easy to see that
Ex∼D[χS1(x) ·

∏
i∈S xi] is the same for any given S for both f = χS1 and f = χS2 .

While not every function is learnable in this model (even with unlimited number of examples),
it remains of interest to ask if there are specific classes of interest which might be learnable in
this model. As we will see in Chapter 2, halfspaces are a class of functions which are learnable
in the 1-RFA model. In contrast to the PAC model, where the sample complexity for learning a
class can easily be deduced from its VC-dimension [17], getting non-trivial upper bounds on the
sample complexity of learning in the k-RFA model is a formidable challenge. To give a flavor of
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this problem, in Chapter 2, we show that in the 1-RFA model, poly(n) · (1/ε)O(log2(1/ε)) samples
suffices to learn halfspaces (with an ε-accuracy) in the 1-RFA model. On the other hand, we only
have a weak lower bound of O(poly(n/ε)) on the sample complexity required to learn halfspaces
in this model. To see an even more stark contrast, it can be shown that the class of polynomial
threshold functions (PTFs) of degree d are learnable in the d-RFA model of learning but the only
known upper bound on the sample complexity is O(nd · 2n). On the other hand, the only known
lower bound on the sample complexity of learning is the trivial bound of poly(nd/ε).

Learning from positive examples
Another interesting model of learning is when only kind of examples are available to the learning
model. This model was considered explicitly in the paper [35] but was implicitly considered in
many earlier works in practical machine learning. Besides the intrinsic appeal of the model, a
large part of the motivation comes from the following kind of situation encountered in practice:
Consider the problem of a child learning a language. In this setting, the learner (i.e. the child) has
only positive samples available to him/her (the positive examples being the legitimate words). The
learner explicitly does not explicitly get negative examples. Many other real-life situations have a
similar flavor where the learner has access to just the positive examples.

As said earlier, previous papers like [35] have considered this model. In these papers, they
show that with access to positive samples and unlabeled samples, one can simulate the execution
of any SQ learner (the definition is given later). As most learning algorithm are in fact SQ learn-
ing algorithms, this implies that all concept classes which are learnable in the SQ model can be
learnt using just positive example (we assume that the underlying distribution is something easy
and hence the learner can itself sample unlabeled examples). While this seems to be a compre-
hensive answer, unfortunately, there is an important caveat in this solution. The caveat comes
from the precise definition of error that is used. The paper [35] produces a hypothesis h such that
Prx∼D[h(x) 6= f(x)] ≤ ε where D is the underlying distribution and f is the target function and
the running time of their algorithm has a polynomial dependence on ε. Now, consider a situation
in which Prx∼D[f(x) = 1] is negligible (say exponentially small). In these situations, it is con-
ceivable that the hypothesis h can be identically zero. Now, while it is certainly true that h and
f are equal with all but negligible probability, in a sense, this is a very uninteresting hypothesis
as it is completely wrong on the interesting part of the distribution. Another way to quantify the
issue is that Prx∼D|f(x)=1[f(x) 6= h(x)] = 1 in this case. In other words, what we would like is
that the hypothesis has an error which is small compared to the density of the positive part. Again,
from a practical point of view, this is the guarantee that is desirable. For example, in the context
of learning language, it is true that a random string is not a legitimate word and we would like the
learner to have a small error with respect to the size of the lexicon as opposed to the size of all
possible strings (of a certain length) in a given alphabet. To remedy this situation, the type of error
guarantee that we would like the hypothesis to satisfy is that Prx∼D|f(x)=1[f(x) 6= h(x)] ≤ ε.

While not exactly equivalent, another way to capture the kind of guarantee that we want is to
consider the problem of learning the distribution over positive examples. In other words, since
the learner gets x ∼ D conditioned on f(x) = 1, one can consider the task of learning the
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conditional distribution {x ∼ D|f(x) = 1}. In other words, the learner needs to output a circuit
C : {0, 1}m → Supp(D) such that if the distribution of the input is uniform on {0, 1}m, then the
output C is ε-close to {x ∼ D|f(x) = 1} in total variation distance. To see the correspondence
between the task of learning f such that Prx∼D|f(x)=1[f(x) 6= h(x)] ≤ ε and the task of learning
the distribution {x ∼ D|f(x) = 1}, note that the distribution {x ∼ D|h(x) = 1} is ε close in
total variation distance to the distribution {x ∼ D|f(x) = 1}. Of course, it might be the case that
even though we learn h explicitly, sampling from {x ∼ D|h(x) = 1} is a hard problem. However,
leaving aside this complication, one can see why learning a hypothesis h meeting the condition
stated above is related to the problem of learning the distribution D.

1.2 Our results
We now discuss the various results which constitute this thesis. Chapter 2 contains results from
[30] which is a joint work with Ilias Diakonikolas, Vitaly Feldman and Rocco Servedio. Chapter 3
contains results from [32] which is a joint work with Ilias Diakonikolas and Rocco Servedio.
Chapter 4 contains results from as yet unpublished work [29] which is a joint work with Ilias
Diakonikolas and Rocco Servedio.

Chow parameters problem
We begin by recalling that halfspaces are Boolean functions f : Rn → {−1, 1} of the form f(x) =
sign(w ·x−θ) where w ∈ Rn and θ ∈ R. Alternatively known as linear threshold functions, linear
separators, Boolean perceptrons (of order 1) and weighted majority games, this class of functions
has been extensively studied in computational complexity theory, learning theory and social choice
theory amongst many other disciplines. As mentioned earlier, because linear programming is in
P, learning halfspaces in the PAC model is easy (in fact, the learner is distribution independent).
However, learnability of halfspaces remains open in many other settings of interest. To define
the model we are interested in, we begin by defining the Chow parameters of a function f :
{−1, 1}n → R as the n+ 1 values

f̂(0) = E[f(x)], f̂(i) = E[f(x)xi] for i = 1, . . . , n,

i.e. the n + 1 degree-0 and degree-1 Fourier coefficients of f . (Here and throughout the chapter,
all probabilities and expectations are with respect to the uniform distribution over {−1, 1}n unless
otherwise indicated.) It is easy to see that in general the Chow parameters of a Boolean function
may provide very little information about f ; for example, any parity function on at least two
variables has all its Chow parameters equal to 0. However, in a surprising result, C.-K. Chow
[23] showed that the Chow parameters of an LTF f uniquely specify f within the space of all
Boolean functions mapping {−1, 1}n → {−1, 1}. Chow’s proof (given in Section 2.2) is simple
and elegant, but is completely non-constructive; it does not give any clues as to how one might
use the Chow parameters to find f (or an LTF that is close to f ). This naturally gives rise to the
following algorithmic question, which we refer to as the “Chow Parameters Problem:”
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The Chow Parameters Problem (rough statement): Given (exact or approximate)
values for the Chow parameters of an unknown LTF f , output an (exact or approxi-
mate) representation of f as sign(v1x1 + · · ·+ vnxn − θ′).

In Chapter 2, we give a partial resolution to this question. In particular, we prove the following
theorem.

[Main theorem] There is an Õ(n2) · (1/ε)O(log2(1/ε)) · log(1/δ)-time algorithmA with
the following property: Let f : {−1, 1}n → {−1, 1} be an LTF and let 0 < ε, δ < 1/2.
If A is given as input ε, δ and (sufficiently precise estimates of) the Chow parameters
of f , then A outputs integers v1, . . . , vn, θ such that with probability at least 1 − δ,
the linear threshold function f ∗ = sign(v1x1 + · · · + vnxn − θ) satisfies Prx[f(x) 6=
f ∗(x)] ≤ ε.

Thus we obtain an efficient randomized polynomial approximation scheme (ERPAS) with a
quasi-polynomial dependence on 1/ε. For the subclass of LTFs with integer weights of magnitude
at most poly(n), our algorithm runs in poly(n/ε) time, i.e. it is a fully polynomial randomized
approximation scheme (FPRAS).

An interesting feature of our algorithm is that it outputs an LTF with integer weights of mag-
nitude at most

√
n · (1/ε)O(log2(1/ε)). Hence, as a corollary of our approach, we obtain essentially

optimal bounds on approximating arbitrary LTFs using LTFs with small integer weights. It has
been known since the 1960s that every n-variable LTF f has an exact representation sign(w ·x−θ)
in which all the weights wi are integers satisfying |wi| ≤ 2O(n logn), and Håstad [64] has shown
that there is an n-variable LTF f for which any integer-weight representation must have each
|wi| ≥ 2Ω(n logn). However, by settling for an approximate representation (i.e. a representation
f ′ = sign(w ·x−θ) such that Prx[f(x) 6= f ′(x)] ≤ ε), it is possible to get away with much smaller
integer weights. As a consequence of our algorithm, we show that one can always construct such
an approximate representation with integer weights of magnitude at most

√
n · (1/ε)O(log2(1/ε)). In

fact, we show in Chapter 2, this is nearly optimal as in there exists a LTF f such that any LTF
g with integer weights bounded by

√
n · (1/ε)O(log log(1/ε)) must differ from f at ε fraction of the

points.

Inverse Shapley value problem
A very important problem in Social choice theory is the scenario where n different parties are trying
to arrive at an outcome by voting for or against a proposal. Translating this problem to the language
of Boolean functions, we can assume that each party/voter casts a vote +1 or −1 indicating their
choice. Further, there is a voting function f : {−1, 1}n → {−1, 1} which aggregates the opinions
of n voters to arrive at an outcome. The most popular kind of voting function (or scheme) used
in practice is a weighted voting game in which the proposal passes if a weighted sum of yes-votes
exceeds a predetermined threshold. In the language of computer science, these voting schemes are
nothing but linear threshold functions (or halfspaces) over n Boolean variables (where the weights
associated with different variables are all non-negative).
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An important problem that arises in the design of good voting schemes is to quantify the influ-
ence of various voters. There have been several measures put forward by social choice theorists
but the most popular one used in practice is the Shapley-Shubik index [130], which is also known
as the index of Shapley values (we shall henceforth refer to it as such). The Shapley values (which
we define shortly) have the property that given any weighted voting game, the Shapley values of
the voters can be estimated to ε-accuracy in time poly(n/ε) using a standard random sampling
approach. On the other hand, the inverse problem i.e. given a set of Shapley values, constructing a
weighted voting game with (approximately) the same set of Shapley values, is significantly more
challenging. In fact, despite much interest in the inverse problem from social choice theory and
economics, prior to our work, there was no efficient algorithm for the inverse problem. Without
further ado, we first define the Shapley values of a Boolean function f : {−1, 1}n → {−1, 1}.

First, we will assume that the function f is monotone in all the coordinates. This can be done
because from the point of view of social choice theory, this is the only interesting case. Further,
we assume that f is not the constant function, and hence f(−1) = −1 and f(1) = 1 where
−1 = (−1, . . . ,−1) and 1 = (1, . . . , 1). For any permutation π ∈ Sn, consider the following
thought experiment : Flip the inputs from−1 to 1 in the order defined by π i.e. flip xπ(1), . . . , xπ(n)

in order. Let π(j) be the input such that when xπ(j) flips from−1 to 1, the value of f changes from
−1 to 1. The index π(j) is said to be the pivotal input for the permutation π. The ith Shapley index
of f (denoted by f̃(i)) is defined to be

f̃(i) = Pr
π∈Sn

[xi is pivotal for π]

While unlike Chow parameters, the Shapley values of a weighted voting game do not uniquely
identify it, it almost does the job in the sense that only one additional parameter (namely its expec-
tation under the uniform distribution) uniquely identifies the function. Informally, the following
algorithmic question is referred to as the inverse Shapley value problem.

The inverse Shapley value problem (rough statement): Given (exact or approximate)
values for the Shapley values of an unknown monotone LTF f , output a LTF g which
has (approximately) the same Shapley values as f .

In Chapter 3, we give a partial resolution to this question. In particular, we prove the following
theorem.

[Main theorem] There is an Õ(n2) · 2poly(1/ε)) · log(1/δ)-time algorithm A with the
following property: Let f : {−1, 1}n → {−1, 1} be a monotone LTF and let 0 <
ε, δ < 1/2. IfA is given as input ε, δ and (sufficiently precise estimates of) the Shapley
values of f , thenA outputs integers v1, . . . , vn, θ such that with probability at least 1−
δ, the linear threshold function f ∗ = sign(v1x1 + · · ·+vnxn−θ) satisfies

∑n
i=1(f̃(i)−

f̃ ∗(i))2 ≤ ε.

Thus we obtain an efficient randomized polynomial approximation scheme (ERPAS) with a
exponential dependence on 1/ε. For the subclass of LTFs with integer weights of magnitude at
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most poly(n), our algorithm runs in poly(n/ε) time, i.e. it is a fully polynomial randomized
approximation scheme (FPRAS).

The machinery in this chapter bears some resemblance to the machinery in Chapter 2 though
we prove new anti-concentration bounds for exchangeable distributions which are likely to be of
further interest. Further, our techniques can potentially be extended to other inverse problems in
social-choice theory.

Inverse approximate uniform generation
Over the past two decades, there has been substantial progress in the learning of Boolean functions.
Compared to this, there has not been much progress in setting of learning distributions over {0, 1}n
since the work of Kearns et al. [87]. Part of the reason for this is that even very simple distributions
over the hypercube are hard to learn (compared to the function learning version for the same class).
In Chapter 4, we initiate the study of learning distributions on the hypercube which can be seen
as the inverse of uniform generation of satisfying assignments of Boolean functions. We focus on
specific classes of Boolean function which are interesting from learning theory point of view like
halfspaces, CNFs, DNFs etc.

In such an inverse problem, the algorithm is given uniform random satisfying assignments of an
unknown function f belonging to a class C of Boolean functions (such as linear threshold functions
or polynomial-size DNF formulas), and the goal is to output a probability distribution D which is
ε-close, in total variation distance, to the uniform distribution over f−1(1). Problems of this sort
comprise a natural type of unsupervised learning problem in which the unknown distribution to be
learned is the uniform distribution over satisfying assignments of an unknown function f ∈ C.

Positive results: We prove a general positive result establishing sufficient conditions for ef-
ficient inverse approximate uniform generation for a class C. We define a new type of algorithm
called a densifier for C, and show (roughly speaking) how to combine (i) a densifier, (ii) an approx-
imate counting / uniform generation algorithm, and (iii) a Statistical Query learning algorithm, to
obtain an inverse approximate uniform generation algorithm. We apply this general result to obtain
a poly(n, 1/ε)-time inverse approximate uniform generation algorithm for the class of n-variable
linear threshold functions (halfspaces); and a quasipoly(n, 1/ε)-time inverse approximate uniform
generation algorithm for the class of poly(n)-size DNF formulas.

Negative results: We prove a general negative result establishing that the existence of certain
types of signature schemes in cryptography implies the hardness of certain inverse approximate
uniform generation problems. We instantiate this negative result with known signature schemes
from the cryptographic literature to prove (under a plausible cryptographic hardness assumption)
that there are no subexponential-time inverse approximate uniform generation algorithms for 3-
CNF formulas; for intersections of two halfspaces; for degree-2 polynomial threshold functions;
and for monotone 2-CNF formulas.

Finally, we show that there is no general relationship between the complexity of the “forward”
approximate uniform generation problem and the complexity of the inverse problem for a class C
– it is possible for either one to be easy while the other is hard. In one direction, we show that
the existence of certain types of Message Authentication Codes (MACs) in cryptography implies
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the hardness of certain corresponding inverse approximate uniform generation problems, and we
combine this general result with recent MAC constructions from the cryptographic literature to
show (under a plausible cryptographic hardness assumption) that there is a class C for which the
“forward” approximate uniform generation problem is easy but the inverse approximate uniform
generation problem is computationally hard. In the other direction, we also show (assuming the
GRAPH ISOMORPHISM problem is computationally hard) that there is a problem for which
inverse approximate uniform generation is easy but “forward” approximate uniform generation is
computationally hard.



9

Chapter 2

Chow Parameters problem

We begin this chapter by recalling that a linear threshold function, or LTF, over {−1, 1}n is a
Boolean function f : {−1, 1}n → {−1, 1} of the form

f(x) = sign

(
n∑
i=1

wixi − θ
)
,

where w1, . . . , wn, θ ∈ R. The function sign(z) takes value 1 if z ≥ 0 and takes value −1 if z < 0;
the wi’s are the weights of f and θ is the threshold. Throughout this chapter we shall refer to them
simply as LTFs.

The Chow parameters of a function f : {−1, 1}n → R are the n+ 1 values

f̂(0) = E[f(x)], f̂(i) = E[f(x)xi] for i = 1, . . . , n,

i.e. the n + 1 degree-0 and degree-1 Fourier coefficients of f . (Here and throughout the chapter,
all probabilities and expectations are with respect to the uniform distribution over {−1, 1}n unless
otherwise indicated.) It is easy to see that in general the Chow parameters of a Boolean function
may provide very little information about f ; for example, any parity function on at least two
variables has all its Chow parameters equal to 0. However, in a surprising result, C.-K. Chow
[23] showed that the Chow parameters of an LTF f uniquely specify f within the space of all
Boolean functions mapping {−1, 1}n → {−1, 1}. Chow’s proof (given in Section 2.2) is simple
and elegant, but is completely non-constructive; it does not give any clues as to how one might
use the Chow parameters to find f (or an LTF that is close to f ). This naturally gives rise to the
following algorithmic question, which we refer to as the “Chow Parameters Problem:”

The Chow Parameters Problem (rough statement): Given (exact or approximate)
values for the Chow parameters of an unknown LTF f , output an (exact or approxi-
mate) representation of f as sign(v1x1 + · · ·+ vnxn − θ′).

Motivation and Prior Work. We briefly survey some previous research on the Chow Parameters
problem (see Section 1.1 of [120] for a more detailed and extensive account). Motivated by ap-
plications in electrical engineering, the Chow Parameters Problem was intensively studied in the
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1960s and early 1970s [45, 115, 150, 117]; several researchers suggested heuristics of various sorts
[83, 152, 80, 36] which were experimentally analyzed in [151]. See [149] for a survey covering
much of this early work and [10, 69] for some later work from this period.

Researchers in game theory and voting theory rediscovered Chow’s theorem in the 1970s [99],
and the theorem and related results have been the subject of study in those communities down
to the present [123, 9, 42, 44, 136, 55, 103, 21, 53, 135, 6]. Since the Fourier coefficient f̂(i)
can be viewed as representing the “influence” of the i-th voter under voting scheme f (under
the “Impartial Culture Assumption” in the theory of social choice, corresponding to the uniform
distribution over inputs x ∈ {−1, 1}n), the Chow Parameters Problem corresponds to designing
a set of weights for n voters so that each individual voter has a certain desired level of influence
over the final outcome. This natural motivation has led practitioners to implement and empirically
evaluate various heuristics for the Chow parameters problem, see [100, 102, 104, 89, 97, 98].

In the 1990s and 2000s several researchers in learning theory considered the Chow Parame-
ters Problem. Birkendorf et al. [14] showed that the Chow Parameters Problem is equivalent to
the problem of efficiently learning LTFs under the uniform distribution in the “1-Restricted Focus
of Attention (1-RFA)” model of Ben-David and Dichterman [11] (we give more details on this
learning model in Section 2.7). Birkendorf et al. showed that if f is an LTF with integer weights
of magnitude at most poly(n), then estimates of the Chow parameters that are accurate to within
an additive ±ε/poly(n) information-theoretically suffice to specify the halfspace f to within ε-
accuracy. Other information-theoretic results of this flavor were given by [57, 129]. In complexity
theory several generalizations of Chow’s Theorem were given in [20, 126], and the Chow parame-
ters play an important role in a recent study [22] of the approximation-resistance of linear threshold
predicates in the area of hardness of approximation.

Despite this considerable interest in the Chow Parameters Problem from a range of different
communities, the first provably effective and efficient algorithm for the Chow Parameters Problem
was only obtained fairly recently. [120] gave a poly(n) · 22Õ(1/ε2)-time algorithm which, given
sufficiently accurate estimates of the Chow parameters of an unknown n-variable LTF f , outputs
an LTF f ′ that has Pr[f(x) 6= f ′(x)] ≤ ε.

Our results.
In this chapter we give a significantly improved algorithm for the Chow Parameters Problem,
whose running time dependence on ε is almost doubly exponentially better than the [120] algo-
rithm. Our main result is the following:

Theorem 1 (Main, informal statement). There is an Õ(n2) · (1/ε)O(log2(1/ε)) · log(1/δ)-time algo-
rithm A with the following property: Let f : {−1, 1}n → {−1, 1} be an LTF and let 0 < ε, δ <
1/2. If A is given as input ε, δ and (sufficiently precise estimates of) the Chow parameters of f ,
then A outputs integers v1, . . . , vn, θ such that with probability at least 1− δ, the linear threshold
function f ∗ = sign(v1x1 + · · ·+ vnxn − θ) satisfies Prx[f(x) 6= f ∗(x)] ≤ ε.

Thus we obtain an efficient randomized polynomial approximation scheme (ERPAS) with a
quasi-polynomial dependence on 1/ε. We note that for the subclass of LTFs with integer weights
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of magnitude at most poly(n), our algorithm runs in poly(n/ε) time, i.e. it is a fully polynomial
randomized approximation scheme (FPRAS) (see Section 2.6 for a formal statement). Even for
this restricted subclass of LTFs, the algorithm of [120] runs in time doubly exponential in 1/ε.

Our main result has a range of interesting implications in learning theory. First, it directly
gives an efficient algorithm for learning LTFs in the uniform distribution 1-RFA model. Second,
it yields a very fast agnostic-type algorithm for learning LTFs in the standard uniform distribution
PAC model. Both these algorithms run in time quasi-polynomial in 1/ε. We elaborate on these
learning applications in Section 2.7.

An interesting feature of our algorithm is that it outputs an LTF with integer weights of mag-
nitude at most

√
n · (1/ε)O(log2(1/ε)). Hence, as a corollary of our approach, we obtain essentially

optimal bounds on approximating arbitrary LTFs using LTFs with small integer weights. It has
been known since the 1960s that every n-variable LTF f has an exact representation sign(w ·x−θ)
in which all the weights wi are integers satisfying |wi| ≤ 2O(n logn), and Håstad [64] has shown
that there is an n-variable LTF f for which any integer-weight representation must have each
|wi| ≥ 2Ω(n logn). However, by settling for an approximate representation (i.e. a representation
f ′ = sign(w · x − θ) such that Prx[f(x) 6= f ′(x)] ≤ ε), it is possible to get away with much
smaller integer weights. Servedio [129] showed that every LTF f can be ε-approximated using in-
teger weights each at most

√
n · 2Õ(1/ε2), and this bound was subsequently improved (as a function

of ε) to n3/2 · 2Õ(1/ε2/3) in [38]. (We note that ideas and tools that were developed in work on low-
weight approximators for LTFs have proved useful in a range of other contexts, including hardness
of approximation [51], property testing [110], and explicit constructions of pseudorandom objects
[40].)

Formally, our approach to proving Theorem 1 yields the following nearly-optimal weight
bound on ε-approximators for LTFs:

Theorem 2 (Low-weight approximators for LTFs). Let f : {−1, 1}n → {−1, 1} be any LTF.
There is an LTF f ∗ = sign(v1x1 + · · · + vnxn − θ) such that Prx[f(x) 6= f ∗(x)] ≤ ε and the
weights vi are integers that satisfy

n∑
i=1

v2
i = n · (1/ε)O(log2(1/ε)).

The bound on the magnitude of the weights in the above theorem is optimal as a function
of n and nearly optimal as a function of ε. Indeed, as shown in [64, 57], in general any ε-
approximating LTF f ∗ for an arbitrary n-variable LTF f may need to have integer weights at
least max{Ω(

√
n), (1/ε)Ω(log log(1/ε))}. Thus, Theorem 2 nearly closes what was previously an al-

most exponential gap between the known upper and lower bounds for this problem. Moreover, the
proof of Theorem 2 is constructive (as opposed e.g. to the one in [38]), i.e. there is a randomized
poly(n) · (1/ε)O(log2(1/ε))-time algorithm that constructs an ε-approximating LTF.

Techniques. We stress that not only are the quantitative results of Theorems 1 and 2 dramatically
stronger than previous work, but the proofs are significantly more self-contained and elementary
as well. The [120] algorithm relied heavily on several rather sophisticated results on spectral
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properties of linear threshold functions; moreover, its proof of correctness required a careful re-
tracing of the (rather involved) analysis of a fairly complex property testing algorithm for linear
threshold functions given in [110]. In contrast, our proof of Theorem 1 entirely bypasses these
spectral results and does not rely on [110] in any way. Turning to low-weight approximators,
the improvement from 2Õ(1/ε2) in [129] to 2Õ(1/ε2/3) in [38] required a combination of rather del-
icate linear programming arguments and powerful results on the anti-concentration of sums of
independent random variables due to Halász [63]. In contrast, our proof of Theorem 2 bypasses
anti-concentration entirely and does not require any sophisticated linear programming arguments.

Two main ingredients underlie the proof of Theorem 1. The first is a new structural result
relating the “Chow distance” and the ordinary (Hamming) distance between two functions f and
g, where f is an LTF and g is an arbitrary bounded function. The second is a new and simple
algorithm which, given (approximations to) the Chow parameters of an arbitrary Boolean function
f , efficiently construct a “linear bounded function” (LBF) g – a certain type of bounded function
– whose “Chow distance” from f is small. We describe each of these contributions in more detail
below.

The main structural result.
In this subsection we first give the necessary definitions regarding Chow parameters and Chow
distance, and then state Theorem 7, our main structural result.

Chow parameters and distance measures.

We formally define the Chow parameters of a function on {−1, 1}n:

Definition 3. Given any function f : {−1, 1}n → R, its Chow Parameters are the rational numbers
f̂(0), f̂(1), . . . , f̂(n) defined by f̂(0) = E[f(x)], f̂(i) = E[f(x)xi] for 1 ≤ i ≤ n. We say that the
Chow vector of f is ~χf = (f̂(0), f̂(1), . . . , f̂(n)).

The Chow parameters naturally induce a distance measure between functions f and g:

Definition 4. Let f, g : {−1, 1}n → R. We define the Chow distance between f and g to be

dChow(f, g)
def
= ‖~χf − ~χg‖2, i.e. the Euclidean distance between the Chow vectors.

This is in contrast with the familiar L1-distance between functions:

Definition 5. The distance between two functions f, g : {−1, 1}n → R is defined as dist(f, g)
def
=

E[|f(x)− g(x)|]. If dist(f, g) ≤ ε, we say that f and g are ε-close.

We note that if f, g are Boolean functions with range {−1, 1} then dist(f, g) = 2Pr[f(x) 6=
g(x)] and thus dist is equivalent (up to a factor of 2) to the familiar Hamming distance.
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The main structural result: small Chow-distance implies small distance.

The following fact can be proved easily using basic Fourier analysis (see Proposition 1.5 in [120]):

Fact 6. Let f, g : {−1, 1}n → [−1, 1]. We have that dChow(f, g) ≤
√

2 · dist(f, g).

Our main structural result, Theorem 7, is essentially a converse which bounds dist(f, g) in
terms of dChow(f, g) when f is an LTF and g is any bounded function:

Theorem 7 (Main Structural Result). Let f : {−1, 1}n→ {−1, 1} be an LTF and g : {−1, 1}n →
[−1, 1] be any bounded function. If dChow(f, g) ≤ ε then

dist(f, g) ≤ 2
−Ω

(
3
√

log(1/ε)
)
.

Chow’s theorem says that if f is an LTF and g is any bounded function then dChow(f, g) = 0
implies that dist(f, g) = 0. In light of this, Theorem 7 may be viewed as a “robust” version of
Chow’s Theorem. Note that the assumption that g is bounded is necessary for the above state-
ment, since the function g(x) =

∑n
i=0 f̂(i)xi (where x0 ≡ 1) satisfies dChow(f, g) = 0, but has

dist(f, g) = Ω(1). Results of this sort but with weaker quantitative bounds were given earlier in
[14, 57, 129, 120]; we discuss the relationship between Theorem 7 and some of this prior work
below.

Discussion. Theorem 7 should be contrasted with Theorem 1.6 of [120], the main structural result
of that paper. That theorem says that for f : {−1, 1}n → {−1, 1} any LTF and g : {−1, 1}n →
[−1, 1] any bounded function1, if dChow(f, g) ≤ ε then dist(f, g) ≤ Õ(1/

√
log(1/ε)). Our new

Theorem 7 provides a bound on dist(f, g) which is almost exponentially stronger than the [120]
bound.

Theorem 7 should also be contrasted with Theorem 4 (the main result) of [57], which says that
for f an n-variable LTF and g any Boolean function, if dChow(f, g) ≤ (ε/n)O(log(n/ε) log(1/ε)) then
dist(f, g) ≤ ε. Phrased in this way, Theorem 7 says that for f an LTF and g any bounded function,
if dChow(f, g) ≤ εO(log2(1/ε)) then dist(f, g) ≤ ε. So our main structural result may be viewed
as an improvement of Goldberg’s result that removes its dependence on n. Indeed, this is not a
coincidence; Theorem 7 is proved by carefully extending and strengthening Goldberg’s arguments
using the “critical index” machinery developed in recent studies of structural properties of LTFs
[129, 120, 40].

It is natural to wonder whether the conclusion of Theorem 7 can be strengthened to “dist(f, g) ≤
εc” where c > 0 is some absolute constant. We show that no such strengthening is possible,
and in fact, no conclusion of the form “dist(f, g) ≤ 2−γ(ε)” is possible for any function γ(ε) =
ω(log(1/ε)/ log log(1/ε)); we prove this in Section 2.6.

1The theorem statement in [120] actually requires that g have range {−1, 1}, but the proof is easily seen to extend
to g : {−1, 1}n → [−1, 1] as well.
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The algorithmic component.
A straightforward inspection of the arguments in [120] shows that by using our new Theorem 7
in place of Theorem 1.6 of that paper throughout, the running time of the [120] algorithm can be
improved to poly(n) · 2(1/ε)O(log2(1/ε))

. This is already a significant improvement over the poly(n) ·
22Õ(1/ε2) running time of [120], but is significantly worse than the poly(n) · (1/ε)O(log2(1/ε)) running
time which is our ultimate goal.

The second key ingredient of our results is a new algorithm for constructing an LTF from
the (approximate) Chow parameters of an LTF f . The previous approach to this problem [120]
constructed an LTF with Chow parameters close to ~χf directly and applied the structural result to
the constructed LTF. Instead, our approach is based on the insight that it is substantially easier to
find a bounded real-valued function g that is close to f in Chow distance. The structural result can
then be applied to g to conclude that g is close to f in L1-distance. The problem with this idea is,
of course, that we need an LTF that is close to f and not a general bounded function. However, we
show that it is possible to find g which is a “linear bounded function” (LBF), a type of bounded
function closely related to LTFs. An LBF can then be easily converted to an LTF with only a small
increase in distance from f . We now proceed to define the notion of an LBF and state our main
algorithmic result formally. We first need to define the notion of a projection:

Definition 8. For a real value a, we denote its projection to [−1, 1] by P1(a). That is, P1(a) = a if
|a| ≤ 1 and P1(a) = sign(a), otherwise.

Definition 9. A function g : {−1, 1}n → [−1, 1] is referred to as a linear bounded function (LBF)
if there exists a vector of real values w = (w0, w1, . . . , wn) such that g(x) = P1(w0 +

∑n
i=1wixi).

The vector w is said to represent g.

We are now ready to state our main algorithmic result:

Theorem 10 (Main Algorithmic Result). There exists a randomized algorithm ChowReconstruct
that for every Boolean function f : {−1, 1}n → {−1, 1}, given ε > 0, δ > 0 and a vector
~α = (α0, α1, . . . , αn) such that ‖~χf − ~α‖ ≤ ε, with probability at least 1 − δ, outputs an LBF g
such that ‖~χf−~χg‖ ≤ 6ε. The algorithm runs in time Õ(n2ε−4 log (1/δ)). Further, g is represented
by a weight vector κv ∈ Rn+1, where κ ∈ R and v is an integer vector with ‖v‖ = O(

√
n/ε3).

We remark that the condition on the weight vector v given by Theorem 10 is the key for the
proof of Theorem 2.

The way we use ChowReconstruct is to construct an LBF g whose Chow distance from
f is small enough to ensure that dist(f, g) is at most ε. For general LTFs, this upper bound on
dist(f, g) is given by Theorem 7; however in special cases other structural results may give even
stronger bounds. In particular, a structural result of [14] gives that if f is an LTF with integer
weights of magnitude bounded by poly(n), then as long as the Chow distance between f and g
is ε/poly(n), it must be the case that dist(f, g) ≤ ε. Hence our algorithm performs extremely
well for such LTFs f : given the (approximate) Chow parameters of an LTF f with poly(n) integer
weights, it outputs an LBF g with dist(f, g) ≤ ε. Given g, it is trivial to obtain a LTF f ∗ such
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that dist(f, f ∗) ≤ 2ε. Thus, for poly(n)-weight LTFs, we obtain a FPRAS. (See Theorem 34 for a
detailed statement of this result.

Discussion. It is interesting to note that the approach underlying Theorem 10 is much more ef-
ficient and significantly simpler than the algorithmic approach of [120]. The algorithm in [120]
roughly works as follows: In the first step, it constructs a “small” set of candidate LTFs such that
at least one of them is close to f , and in the second step it identifies such an LTF by searching over
all such candidates. The first step proceeds by enumerating over “all” possible weights assigned to
the “high influence” variables. This brute force search makes the [120] algorithm very inefficient.
Moreover, its proof of correctness requires some sophisticated spectral results from [110], which
make the approach rather complicated.

In this work, our algorithm is based on a boosting-based approach, which is novel in this con-
text. Our approach is much more efficient than the brute force search of [120] and its analysis is
much simpler, since it completely bypasses the spectral results of [110]. We also note that the algo-
rithm of [120] crucially depends on the fact that the relation between Chow distance and distance
has no dependence on n. (If this was not the case, the approach would not lead to a polynomial
time algorithm.) Our boosting-based approach is quite robust, as it has no such limitation. This
fact is crucial for us to obtain the aforementioned FPRAS for small-weight LTFs.

While we are not aware of any prior results similar to Theorem 10 being stated explicitly, we
note that weaker forms of our theorem can be obtained from known results. In particular, Trevisan
et. al. [139] describe an algorithm that given oracle access to a Boolean function f , ε′ > 0, and a
set of functions H = {h1, h2, . . . , hk}, efficiently finds a bounded function g that for every i ≤ n
satisfies |E[f ·hi]−E[g ·hi]| ≤ ε′. One can observe that if H = {1, x1, . . . , xn}, then the function
g returned by their algorithm is in fact an LBF and that the oracle access to f can be replaced with
approximate values of E[f · hi] for every i. Hence, the algorithm in [139], applied to the set of
functions H = {1, x1, x2, . . . , xn}, would find an LBF g which is close in Chow distance to f . A
limitation of this algorithm is that, in order to obtain an LBF which is ∆-close in Chow distance
to f , it requires that every Chow parameter of f be given to it with accuracy of O(∆/

√
n). In

contrast, our algorithm only requires that the total distance of the given vector to ~χf is at most
∆/6. In addition, the bound on the integer weight approximation of LTFs that can be obtained
from the algorithm in [139] is linear in n3/2, whereas we obtain the optimal dependence of

√
n.

The algorithm in [139] is a simple adaptation of the hardcore set construction technique of
Impagliazzo [71]. Our algorithm is also based on the ideas from [71] and, in addition, uses ideas
from the distribution-specific boosting technique in [49].

Our algorithm can be seen as an instance of a more general approach to learning (or approxi-
mating) a function that is based on constructing a bounded function with the given Fourier coeffi-
cients. Another instance of this new approach is the recent algorithm for learning a certain class of
polynomial threshold functions (which includes polynomial-size DNF formulae) from low-degree
Fourier coefficients [50]. We note that the algorithm in [50] is based on an algorithm similar to
ours. However, like the algorithm in [139], it requires that every low-degree Fourier coefficient be
given to it with high accuracy. As a result it would be similarly less efficient in our application.
Organization. In Section 2.1 we record some mathematical preliminaries that will be used through-
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out the chapter. In Section 2.2 we present some observations regarding the complexity of solving
the Chow parameters problem exactly and give an LP–based 2O(n)-time algorithm for it. Sec-
tions 2.3 and 2.4 contain the proof of our main structural result (Theorem 7). In Section 2.5 we
present our main algorithmic ingredient (Theorem 10). Section 2.6 puts the pieces together and
proves our main theorem (Theorem 1) and our other main result (Theorem 2), while Section 2.7
presents the consequences of our results to learning theory. Finally, in Section ?? we conclude the
chapter and present a few interesting research directions.

2.1 Mathematical Preliminaries

Probabilistic Facts.
We require some basic probability results including the standard additive Hoeffding bound:

Theorem 11. Let X1, . . . , Xn be independent random variables such that for each j ∈ [n], Xj is
supported on [aj, bj] for some aj, bj ∈ R, aj ≤ bj . Let X =

∑n
j=1Xj . Then, for any t > 0,

Pr
[
|X − E[X]| ≥ t

]
≤ 2 exp

(
−2t2/

∑n
j=1(bj − aj)2

)
.

The Berry-Esséen theorem (see e.g. [52]) gives explicit error bounds for the Central Limit Theo-
rem:

Theorem 12. (Berry-Esséen) LetX1, . . . , Xn be independent random variables satisfying E[Xi] =
0 for all i ∈ [n],

√∑
iE[X2

i ] = σ, and
∑

iE[|Xi|3] = ρ3. Let S = (X1 + · · ·+ Xn)/σ and let F
denote the cumulative distribution function (cdf) of S. Then supx |F (x)−Φ(x)| ≤ ρ3/σ

3 where Φ
denotes the cdf of the standard gaussian random variable.

For us, the most important consequence of the Berry-Esséen theorem is its application in prov-
ing anti-concentration for a weighted sum of Bernoulli random variables. To describe the applica-
tion, we need to define the notion of regularity for a vector in Rn.

Definition 13 (regularity). Fix τ > 0. We say that a vector w = (w1, . . . , wn) ∈ Rn is τ -regular
if maxi∈[n] |wi| ≤ τ‖w‖ = τ

√
w2

1 + · · ·+ w2
n. A linear form w · x is said to be τ -regular if w is

τ -regular, and similarly an LTF is said to be τ -regular if it is of the form sign(w · x− θ) where w
is τ -regular.

Regularity is a helpful notion because if w is τ -regular then the Berry-Esséen theorem (stated
below) tells us that for uniform x ∈ {−1, 1}n, the linear form w · x is “distributed like a Gaussian
up to error τ .” This can be useful for many reasons; in particular, it will let us exploit the strong
anti-concentration properties of the Gaussian distribution. The next fact states this precisely.

Fact 14. Let w = (w1, . . . , wn) be a τ -regular vector in Rn and write σ to denote ‖w‖2. Then
for any interval [a, b] ⊆ R, we have

∣∣Pr[∑n
i=1wixi ∈ (a, b]] − Φ([a/σ, b/σ])

∣∣ ≤ 2τ , where
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Φ([c, d])
def
= Φ(d)− Φ(c). In particular, it follows that

Pr
[ n∑
i=1

wixi ∈ (a, b]
]
≤ |b− a|/σ + 2τ.

Useful inequality.
We will need the following elementary inequality.

Fact 15. For a, b ∈ (0, 1), (ab)log(1/a)+log(1/b) ≥ a2 log(1/a) · b2 log(1/b).

Proof.

(ab)log(1/a)+log(1/b) = 2− log2(1/a)−log2(1/b)−2 log(1/a)·log(1/b)

≥ 2−2 log2(1/a)−2 log2(1/b)

= a2 log(1/a) · b2 log(1/b),

where the inequality is the arithmetic-geometric mean inequality.

Useful facts about affine spaces.
A subset V ⊆ Rn is said to be an affine subspace if it is closed under affine combinations of vectors
in V . Equivalently, V is an affine subspace of Rn if V = X + b where b ∈ Rn and X is a linear
subspace of Rn. The affine dimension of V is the same as the dimension of the linear subspace X .
A hyperplane in Rn is an affine space of dimension n − 1. Throughout the chapter we use bold
capital letters such as H to denote hyperplanes.

In this chapter whenever we refer to a “subspace” we mean an affine subspace unless explicitly
otherwise indicated. The dimension of an affine subspace V is denoted by dim(V ). Similarly, for
a set S ⊆ Rn, we write span(S) to denote the affine span of S, i.e.

span(S) = {s+
m∑
i=1

wi(x
i − yi) | s, xi, yi ∈ S,wi ∈ R,m ∈ N}.

The following very useful fact about affine spaces was proved by Odlyzko[118].

Fact 16. [118] Any affine subspace of Rn of dimension d contains at most 2d elements of {−1, 1}n.

2.2 On the Exact Chow Parameters Problem
In this section we make some observations regarding the complexity of the exact version of the
Chow parameters problem and present a simple (albeit exponential time) algorithm for it, that
beats brute-force search.
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Proof of Chow’s Theorem.
For completeness we state and prove Chow’s theorem here:

Theorem 17 ([23]). Let f : {−1, 1}n → {−1, 1} be an LTF and let g : {−1, 1}n → [−1, 1] be a
bounded function such that ĝ(j) = f̂(j) for all 0 ≤ j ≤ n. Then g = f .

Proof. Write f(x) = sign(w0 + w1x1 + · · · + wnxn), where the weights are scaled so that∑n
j=0 w

2
j = 1. We may assume without loss of generality that |w0 + w1x1 + · · · + wnxn| 6= 0

for all x. (If this is not the case, first translate the separating hyperplane by slightly perturbing w0

to make it hold; this can be done without changing f ’s value on any point of {−1, 1}n.) Now we
have

0 =
n∑
j=0

wj(f̂(j)− ĝ(j))

= E[(w0 + w1x1 + · · ·+ wnxn)(f(x)− g(x))]

= E[|f(x)− g(x)| · |w0 + w1x1 + · · ·+ wnxn|].

The first equality is by the assumption that f̂(j) = ĝ(j) for all 0 ≤ j ≤ n, the second equality is
linearity of expectation (or Plancherel’s identity), and the third equality uses the fact that

sign(f(x)− g(x)) = f(x) = sign(w0 + w1x1 + · · ·+ wnxn)

for any bounded function g with range [−1, 1]. But since |w0 + w1x1 + · · · + wnxn| is always
strictly positive, we must have Pr[f(x) 6= g(x)] = 0 as claimed.

An exact 2O(n)–time algorithm.
Let us start by pointing out that it is unlikely that the Chow Parameters problem can be solved
exactly in polynomial time. Note that even checking the correctness of a candidate solution is ]P -
complete, because computing f̂(0) is equivalent to counting 0-1 knapsack solutions. This suggests
(but does not logically imply) that the exact problem is intractable; characterizing its complexity
is an interesting open problem (see Section ??).

The naive brute-force approach (enumerate all possible n-variable LTFs, and for each one
check whether it has the desired Chow parameters) requires 2Θ(n2) time. The following proposition
gives an improved (albeit exponential time) algorithm:

Proposition 18. The Chow parameters problem can be solved exactly in time 2O(n).

Proof. Let αi, i = 0, 1, . . . , n be the target Chow parameters; we are given the promise that there
exists an LTF f : {−1, 1}n → {−1, 1} such that f̂(i) = αi for all i. Our goal is to output
(a weights-based representation of) the function f . Let g : {−1, 1}n → [−1, 1] be a bounded
function that has the same Chow parameters as f . We claim that there exists a linear program
with 2n variables and O(2n) constraints encoding the truth-table of g. Indeed, for every x ∈
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{−1, 1}n we have a variable g(x) and the constraints are as follows: For all x ∈ {−1, 1}n we
include the constraint −1 ≤ g(x) ≤ 1. We also include the (n + 1) constraints Ex[g(x)xi] ≡
2−n

∑
x∈{−1,1}n g(x)xi = αi, i = 0, 1, . . . , n (where x0 ≡ 1). Chow’s theorem stated above

implies that the aforementioned linear program has a unique feasible solution, corresponding to
the truth table of the target LTF f . That is, the unique solution of the linear program will be
integral and is identical to the target function. Since the size of the linear program is 2O(n) and
linear programming is in P, the truth table of f can thus be computed in time 2O(n).

A weight-based representation of f as sign(w · x − θ) can then be obtained straightforwardly
in time 2O(n) by solving another linear program with variables (w, θ) and 2n constraints, one for
each x ∈ {−1, 1}n.

We point out that our main algorithmic result also yields an algorithm for the exact Chow
parameters problem that beats brute-force search, in particular it runs in time 2O(n logn). (See The-
orem 34 and the remark following its statement.)

2.3 Proof overview of main structural result: Theorem 7
In this section we provide a detailed overview of the proof of Theorem 7, restated here for conve-
nience:

Theorem 7 (Main Structural Result). Let f : {−1, 1}n → {−1, 1} be an LTF and g : {−1, 1}n →
[−1, 1] be any bounded function. If dChow(f, g) ≤ ε then dist(f, g) ≤ 2

−Ω
(

3
√

log(1/ε)
)
.

We give an informal overview of the main ideas of the proof of Theorem 7 in Section 2.3, and
then proceed with a detailed outline of Theorem 7 in Section 2.3.

Informal overview of the proof.
We first note that throughout the informal explanation given in this subsection, for the sake of
clarity we restrict our attention to the case in which g : {−1, 1}n → {−1, 1} is a Boolean rather
than a bounded function. In the actual proof we deal with bounded functions using a suitable
weighting scheme for points of {−1, 1}n (see the discussion before Fact 26 near the start of the
proof of Theorem 7).

To better explain our approach, we begin with a few words about how Theorem 1.6 of [120]
(the only previously known statement of this type that is “independent of n”) is proved. The key to
that theorem is a result on approximating LTFs using LTFs with “good anti-concentration”; more
precisely, [120] shows that for any LTF f there is an LTF f ′(x) = sign(v · x − ν), ‖v‖ = 1, that
is extremely close to f (Hamming distance roughly 2−1/ε) and which has “moderately good anti-
concentration at radius ε,” in the sense that Pr[|v · x − ν| ≤ ε] ≤ Õ(1/

√
log(1/ε)). Given this,

Theorem 1.6 of [120] is proved using a modification of the proof of the original Chow’s Theorem.
However, for this approach based on the original Chow proof to work, it is crucial that the Ham-
ming distance between f and f ′ (namely 2−1/ε) be very small compared to the anti-concentration
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radius (which is ε). Subject to this constraint it seems very difficult to give a significant quantitative
improvement of the approximation result in a way that would improve the bound of Theorem 1.6
of [120].

Instead, we hew more closely to the approach used to prove Theorem 4 of [57]. This approach
also involves a perturbation of the LTF f , but instead of measuring closeness in terms of Hamming
distance, a more direct geometric view is taken. In the rest of this subsection we give a high-level
explanation of Goldberg’s proof and of how we modify it to obtain our improved bound.

The key to Goldberg’s approach is a (perhaps surprising) statement about the geometry of
hyperplanes as they relate to the Boolean hypercube. He establishes the following key geometric
result (see Theorem 21 for a precise statement):

If H is any n-dimensional hyperplane such that an α fraction of points in {−1, 1}n lie
“very close” in Euclidean distance (essentially 1/quasipoly(n/α)) to H, then there is
a hyperplane H′ which actually contains all those α2n points of the hypercube.

With this geometric statement in hand, an iterative argument is used to show that if the Hamming
distance between LTF f and Boolean function g is large, then the Euclidean distance between the
centers of mass of (the positive examples for f on which f and g differ) and (the negative examples
for f on which f and g differ) must be large; finally, this Euclidean distance between centers of
mass corresponds closely to the Chow distance between f and g.

However, the 1/quasipoly(n) closeness requirement in the key geometric statement means that
Goldberg’s Theorem 4 not only depends on n, but this dependence is superpolynomial. The heart
of our improvement is to combine Goldberg’s key geometric statement with ideas based on the
“critical index” of LTFs to get a version of the statement which is completely independent of n.
Roughly speaking, our analogue of Goldberg’s key geometric statement is the following (a precise
version is given as Lemma 22 below):

If H is any n-dimensional hyperplane such that an α fraction of points in {−1, 1}n
lie within Euclidean distance αO(log(1/α)) of H, then there is a hyperplane H′ which
contains all but a tiny fraction of those α2n points of the hypercube.

Our statement is stronger than Goldberg’s in that there is no dependence on n in the distance
bound from H, but weaker in that we do not guarantee H′ passes through every point; it may miss
a tiny fraction of points. We are able to handle the effect of missing points in the subsequent
analysis. Armed with this improvement, a careful sharpening of Goldberg’s iterative argument (to
get rid of another dependence on n, unrelated to the tiny fraction of points missed by H′) lets us
prove Theorem 7.

Detailed outline of the proof.
As discussed in Section 2.3, the key to proving Theorem 7 is an improvement of Theorem 3 in [57].
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Definition 19. Given a hyperplane H in Rn and β > 0, the β-neighborhood of H is defined as the
set of points in Rn at Euclidean distance at most β from H.

We recall the following fact which shows how to express the Euclidean distance of a point from
a hyperplane using the standard representation of the hyperplane:

Fact 20. Let H = {x : w · x − θ = 0} be a hyperplane in Rn where ‖w‖ = 1. Then for any
x ∈ Rn, the Euclidean distance d(x,H) of x from H is |w · x− θ|.

Theorem 21 (Theorem 3 in [57]). Given any hyperplane in Rn whose β-neighborhood contains a
subset S of vertices of {−1, 1}n, where |S| = α · 2n, there exists a hyperplane which contains all
elements of S provided that

0 ≤ β ≤
(
(2/α) · n5+blog(n/α)c · (2 + blog(n/α)c)!

)−1
.

Before stating our improved version of the above theorem, we define the set U = ∪ni=1ei ∪{0}
where 0 ∈ Rn is the all zeros vector and ei ∈ Rn is the unit vector in the ith direction.

Our improved version of Theorem 21 is the following:

Lemma 22. There exist a constantC1 such that for every hyperplane H in Rn whose β-neighborhood
contains a subset S of vertices of {−1, 1}n, where |S| = α · 2n and any 0 < κ < α/2, there exists
a hyperplane H′ in Rn that contains a subset S∗ ⊆ S of cardinality at least (α − κ) · 2n provided
that

0 < β ≤ β0
def
= (log(1/κ))−1/2 · 2−

√
log log(1/κ) · αC1·log(1/α).

Moreover, the coefficient vector defining H′ has at most

C1 · (1/α2) · (log log(1/κ) + log2(1/α))

nonzero coordinates. Further, for any x ∈ U , if x lies on H then x lies on H′ as well.

Discussion. We note that while Lemma 22 may appear to be incomparable to Theorem 21 because
it “loses” κ2n points from the set S, in fact by taking κ = 1/2n+1 it must be the case that our S∗

is the same as S, and with this choice of κ, Lemma 22 gives a strict quantitative improvement of
Theorem 21. (We stress that for our application, though, it will be crucial for us to use Lemma 22
by setting the κ parameter to depend only on α independent of n.) We further note that in any
statement like Lemma 22 that does not “lose” any points from S, the bound on β must necessarily
depend on n; we show this in Appendix A.1. Finally, the condition at the end of Lemma 22 (that
if x ∈ U lies on H, then it lies on H′ as well) allows us to obtain an analogous result in any affine
subspace of Rn instead of Rn. This is necessary for the iterative application of Lemma 22 in the
proof of Theorem 7.

We give the detailed proof of Lemma 22 in Section 2.4. We now briefly sketch the main idea
underlying the proof of the lemma. At a high level, the proof proceeds by reducing the number of
variables from n down to m = O ((1/α2) · log(1/β)) followed by an application of Theorem 155,
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a generalization of Theorem 21 proved in Appendix A.2, in Rm. (As we will see later, we use
Theorem 155 instead of Theorem 21 because we need to ensure that points of U which lie on H
continue to lie on H′.) The reduction uses the notion of the τ -critical index applied to the vector w
defining H. (See Section 2.4 for the relevant definitions.)

The idea of the proof is that for coordinates i in the “tail” of w (intuitively, where |wi| is small)
the value of xi does not have much effect on d(x,H), and consequently the condition of the lemma
must hold true in a space of much lower dimension than n. To show that tail coordinates of x
do not have much effect on d(x,H), we do a case analysis based on the τ -critical index c(w, τ)
of w to show that (in both cases) the 2-norm of the entire “tail” of w must be small. If c(w, τ)
is large, then this fact follows easily by properties of the τ -critical index. On the other hand, if
c(w, τ) is small we argue by contradiction as follows: By the definition of the τ -critical index and
the Berry-Esséen theorem, the “tail” of w (approximately) behaves like a normal random variable
with standard deviation equal to its 2-norm. Hence, if the 2-norm was large, the entire linear form
w · x would have good anti-concentration, which would contradict the assumption of the lemma.
Thus in both cases, we can essentially ignore the tail and make the effective number of variables
be m which is independent of n.

As described earlier, we view the geometric Lemma 22 as the key to the proof of Theorem 7;
however, to obtain Theorem 7 from Lemma 22 requires a delicate iterative argument, which we
give in full in the following section. This argument is essentially a refined version of Theorem 4
of [57] with two main modifications: one is that we generalize the argument to allow g to be a
bounded function rather than a Boolean function, and the other is that we get rid of various factors
of
√
n which arise in the [57] argument (and which would be prohibitively “expensive” for us).

We give the detailed proof in Section 2.4.

2.4 Proof of Theorem 7
In this section we provide a detailed proof of our main structural result (Theorem 7).

Useful Technical Tools.
As described above, a key ingredient in the proof of Theorem 7 is the notion of the “critical index”
of an LTF f . The critical index was implicitly introduced and used in [129] and was explicitly used
in [38, 40, 120] and other works. To define the critical index we need to first recall the definition
of “regularity” (see Definition 13). Intuitively, the critical index of w is the first index i such that
from that point on, the vector (wi, wi+1, . . . , wn) is regular. A precise definition follows:

Definition 23 (critical index). Given a vector w ∈ Rn such that |w1| ≥ · · · ≥ |wn| > 0, for k ∈ [n]
we denote by σk the quantity

√∑n
i=k w

2
i . We define the τ -critical index c(w, τ) ofw as the smallest

index i ∈ [n] for which |wi| ≤ τ · σi. If this inequality does not hold for any i ∈ [n], we define
c(w, τ) =∞.
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The following simple fact states that the “tail weight” of the vector w decreases exponentially
prior to the critical index:

Fact 24. For any vector w = (w1, . . . , wn) such that |w1| ≥ · · · ≥ |wn| > 0 and 1 ≤ a ≤ c(w, τ),
we have σa < (1− τ 2)(a−1)/2 · σ1.

Proof. If a < c(w, τ), then by definition |wa| > τ · σa. This implies that σa+1 <
√

1− τ 2 · σa.
Applying this inequality repeatedly, we get that σa < (1 − τ 2)(a−1)/2 · σ1 for any 1 ≤ a ≤
c(w, τ).

Proof of Lemma 22.
Let H = {x ∈ Rn | w · x = θ} where we can assume (by rescaling) that ‖w‖2 = 1 and (by
reordering the coordinates) that |w1| ≥ |w2| ≥ . . . ≥ |wn|. Note that the Euclidean distance of any
point x ∈ Rn from H is |w · x− θ|. Let us also define V def

= H ∩ U . Set τ def
= α/4 (for conceptual

clarity we will continue to use “τ” for as long as possible in the arguments below). We note that
we can assume that all weights are non-zero since we can project the problem to coordinates where
H has non-zero weights. This does not affect distances or our bounds. We can therefore define the
τ -critical index c(w, τ) of the vector w ∈ Rn.

Fix the parameter K0
def
= C2 · (1/τ 2) · log(1/β) for a constant C2 to be chosen later and let

K1 = min{c(w, τ), K0}. We partition [n] into a set of “head” coordinates H = [K1] and a
complementary set of “tail” coordinates T = [n] \H . Writing w as (wH , wT ) and likewise for x.
(We can assume that K1 ≤ n since otherwise the lemma follows immediately from Theorem 21.)
We now prove by case analysis that ‖wT‖2 must be small.

Claim 25. We have ‖wT‖2 ≤ 8β/α.

Proof.
Case I: c(w, τ) > K0. In this case, |H| = C2 · (1/τ 2) · log(1/β) and it follows from Fact 24 that
for large enough constant C2, ‖wT‖ ≤ β ≤ 8β/α.
Case II: c(w, τ) ≤ K0. In this case, |H| = c(w, τ). We use the fact that wT is τ -regular to deduce
that the norm of the tail must be small.

Suppose for the sake of contradiction that

‖wT‖2 > 2β/(α− 3τ) = 8β/α.

By the Berry-Esséen theorem (Theorem 12, or more precisely Fact 14), for all δ > 0 we have

supt∈R Pr
xT

[|wT · xT − t|<δ] ≤
2δ

‖wT‖
+ 2τ.

By setting δ def
= (α− 3τ)‖wT‖/2 > β we get that

supt∈RPr
xT

[|wT · xT − t|<δ] < α,
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and consequently

Pr
x

[|w · x− θ| ≤ β] ≤ sup
t∈R

Pr
xT

[|wT · xT − t| ≤ β]

≤ sup
t∈R

Pr
xT

[|wT · xT − t|<δ]

< α

which contradicts the existence of the set S in the statement of the lemma.

By the Hoeffding bound, for 1− κ fraction of x ∈ {−1, 1}n we have

|wH · xH − θ| ≤ |w · x− θ|+ |wT · xT | ≤ |w · x− θ|+ β′

where β′ = C3 · (β/α) ·
√

log(1/κ) for a sufficiently large constant C3.
By the assumption of the lemma, there exists a set S ⊆ {−1, 1}n of cardinality at least α · 2n

such that for all x ∈ S we have |w ·x− θ| ≤ β. A union bound and the above inequality imply that
there exists a set S∗ ⊆ S of cardinality at least (α − κ) · 2n with the property that for all x ∈ S∗,
we have

|wH · xH − θ| ≤ β + β′.

Also, any x ∈ U satisfies ‖xT‖ ≤ 1. Hence for any x ∈ V , we have that

|wH · xH − θ| ≤ |w · x− θ|+ |wT · xT | = |wT · xT |
≤ ‖wT‖ · ‖xT‖ ≤ 8β/α ≤ β′.

Define the projection mapping φH : Rn → R|H| by φH : x 7→ xH and consider the image of
S∗, i.e. S ′ def

= φH(S∗). It is clear that |S ′| ≥ (α− κ) · 2|H| and that for all xH ∈ S ′, we have

|wH · xH − θ| ≤ β + β′ ≤ 2β′.

Similarly, if V ′ is the image of V under φH , then for every xH ∈ V ′ we have |wH · xH − θ| ≤ β′.
It is also clear that ‖wT‖ < 1/2 and hence ‖wH‖ > 1/2. Thus for every xH ∈ (S ′ ∪ V ′) we have∣∣∣∣wH · xH‖wH‖

− θ

‖wH‖

∣∣∣∣ ≤ 4β′.

We now define the |H|-dimensional hyperplane HH as HH
def
= {xH ∈ R|H| | wH ·xH = θ}. As

all points in S ′ ∪ V ′ are in the 4β′-neighborhood of HH , we may now apply Theorem 155 for the
hyperplane HH over R|H| to deduce the existence of an alternate hyperplane H′H = {xH ∈ R|H| |
vH · xH = ν} that contains all points in S ′ ∪V ′. The only condition we need to verify in order that
Theorem 155 may be applied is that 4β′ is upper bounded by

β1
def
=

(
2

α− κ
· |H|5+blog(|H|/(α−κ))c · (2 + blog(|H|/(α− κ))c)!

)−1

.
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Recalling that, |H| ≤ K0 and κ < α/2, we obtain that β1 ≤ (α/K0)C4 log(K0/α) for some large
enough constant C4. Using K0 = C2 · (4/α)2 · log(1/β) and β′ = C3β

√
log(1/κ)/α, we need to

verify that

β ≤ β1α/(4C3·
√

log(1/κ)) ≤
(
α/(4C3 ·

√
log(1/κ))

)
·
(

α3

16 · C2 · log(1/β)

)C4 log(16C2·log(1/β)/α3)
.

Using Fact 15, we get that, for a sufficiently large constant C5, it sufficient to ensure that

β ≤ (log(1/κ))−1/2 · αC5 log(1/α) · log(1/β)−C5 log log(1/β).

For a sufficiently small β, 2−
√

log(1/β) ≤ log(1/β)−C5 log log(1/β) giving sufficient condition:

β ≤ (log(1/κ))−1/2 · αC5 log(1/α) · 2−
√

log(1/β). (2.1)

Let
β0

def
= (log(1/κ))−1/2 · 2−

√
log log(1/κ) · αC1 log(1/α) ,

for C1 to be chosen later. Then using concavity of the square root function we get

2−
√

log(1/β0) ≥ 2−
√
C1 log2(1/α)+log log(1/κ) ≥ 2−

√
C1 log(1/α) · 2−

√
log log(1/κ)

and therefore for a sufficiently large constant C1 it holds that

(log(1/κ))−1/2 ·αC5 log(1/α) · 2−
√

log(1/β0) ≥ (log(1/κ))−1/2 · 2−
√

log log(1/κ) ·αC5 log(1/α)+
√
C1 ≥ β0.

Hence we obtained that condition (2.1) holds for β = β0 and so also for any β ≤ β0. This implies
the desired upper bound on 4β′.

Thus, we get a new hyperplane H′H = {xH ∈ R|H| | vH · xH = ν} that contains all points in
S ′ ∪ V ′. It is then clear that the n-dimensional hyperplane H′ = {x ∈ Rn | vH · xH = ν} contains
all the points in S∗ = (φH)−1(S ′) and the points in V , and that the vector vH defining H′ has the
claimed number of nonzero coordinates, concluding the proof of Lemma 22.

Proof of Theorem 7.
As mentioned earlier, our proof is essentially a refined version of the proof of Theorem 4 of
[57]. The proof establishes the contrapositive of Theorem 7; it shows that if dist(f, g) is large
then dChow(f, g) must also be large.

To aid the reader in understanding our proof, let us recall the high level structure of Goldberg’s
argument (which our argument follows quite closely). The first step in the argument is to show that
the Chow distance dChow(f, g) corresponds to a Euclidean distance between two points µ+ and µ−
in Rn which are the “centers of mass” of the “false positive” points V 0

+ and the “false negative”
points V 0

− respectively (see Proposition 27). Hence, in order to show that the Chow distance is
large, it is enough to show that µ+ and µ− are far apart, and to do this it is enough to lower bound
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(µ+ − µ−) · η for any unit vector η. The proof attempts to do this in a sequence of stages; if any
stage succeeds then we get the desired conclusion, and a dimension argument is used to show that
after not too many stages, one of the stages must succeed.

In more detail, the analysis of the first stage works as follows: Fix a separating hyperplane A0

and consider the unit vector `0 which is normal to A0. If many points in V 0 := V 0
+ ∪ V 0

− lie far
from A0 then it is not hard to lower bound (µ+ − µ−) · η (see Claim 30). On the other hand, if
very few points in V 0 lie far from A0, then since |V 0| is large (essentially of size at least ε2n; recall
that by assumption dist(f, g) is large) it must be the case that almost all the points in V 0 lie very
close to the hyperplane A0. This means that we may apply the key geometric lemma, Lemma 22,
to conclude that there is a hyperplane A1 which passes through almost all of the points in V0.

In the next stage, essentially the same argument as above is carried out in the affine space
spanned by the hyperplane A1. As above, it is argued that either a large set of points lies far from
a separating hyperplane (in which case the Euclidean distance between µ+ and µ− can be lower
bounded as above, see Claim 31), or else we can again apply Lemma 22 to conclude that there is
a hyperplane A2 – which is an (n− 2)-dimensional affine subspace of Rn – which passes through
almost all of the points in V0. Continuing this reasoning forO(log(1/ε)) stages, the argument gives
that there is an (n−O(log(1/ε)))-dimensional affine subspace of Rn that contains Ω(ε) · 2n points
of V0; but this contradicts a well-known upper bound on the number of points in {−1, 1}n that any
affine subspace of Rn of a given dimension can contain (see Fact 16). This contradiction concludes
the argument.

The arguments sketched above are those used by Goldberg in the proof of his Theorem 4, and
indeed we follow the same high level steps in our proof; however there are two significant ways in
which our proof differs from that of Goldberg. One of these ways is that we generalize Goldberg’s
arguments to allow g to be a bounded function rather than a Boolean function (this is why our
detailed arguments given below use the weight function W(x)). The second is that we carefully
get rid of various factors of

√
nwhich arise in the [57] argument (and which would be prohibitively

“expensive” for us). Lemma 156 (see Appendix A.3) is useful for this purpose.
We are now ready to prove Theorem 7.

Proof of Theorem 7. Let f : {−1, 1}n → {−1, 1} be an LTF and g : {−1, 1}n → [−1, 1] be an
arbitrary bounded function. Assuming that dist(f, g) = ε, we will prove that dChow(f, g) ≥ δ =
δ(ε)=εO(log2(1/ε)).

Let us define V+ = {x ∈ {−1, 1}n | f(x) = 1, g(x) < 1} and V− = {x ∈ {−1, 1}n | f(x) =
−1, g(x) > −1}. Also, for every point x ∈ {−1, 1}n, we associate a weightW(x) = |f(x)−g(x)|
and for a set S, we defineW(S)

def
=
∑

x∈SW(x).
It is clear that V+∪V− is the disagreement region between f and g and that thereforeW(V+)+

W(V−) = ε · 2n. We claim that without loss of generality we may assume that (ε − δ) · 2n−1 ≤
W(V+),W(V−) ≤ (ε + δ) · 2n−1. Indeed, if this condition is not satisfied, we have that |f̂(0) −
ĝ(0)| > δ which gives the conclusion of the theorem.

We record the following straightforward fact which shall be used several times subsequently.

Fact 26. ForW as defined above, for all X ⊆ {−1, 1}n, |X| ≥ W(X)/2.
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We start by defining V 0
+ = V+, V 0

− = V− and V 0 = V 0
+ ∪V 0

−. The following simple proposition
will be useful throughout the proof, since it characterizes the Chow distance between f and g
(excluding the degree-0 coefficients) as the (normalized) Euclidean distance between two well-
defined points in Rn:

Proposition 27. Let µ+ =
∑

x∈V+W(x)·x and µ− =
∑

x∈V−W(x)·x. Then
∑n

i=1(f̂(i)−ĝ(i))2 =

2−2n · ‖µ+ − µ−‖2.

Proof. For i ∈ [n] we have that f̂(i) = E[f(x)xi] and hence f̂(i) − ĝ(i) = E[(f(x) − g(x))xi].
Hence 2n(f̂(i)− ĝ(i)) =

∑
x∈V+W(x)·xi−

∑
x∈V−W(x)·xi = (µ+−µ−)·ei where (µ+−µ−)·ei

is the inner product of the vector µ+−µ− with the unit vector ei. Since e1, . . . , en form a complete
orthonormal basis for Rn, it follows that

‖µ+ − µ−‖2 = 22n
∑
i∈[n]

(f̂(i)− ĝ(i))2

proving the claim.

If η ∈ Rn has ‖η‖ = 1 then it is clear that ‖µ+ − µ−‖ ≥ (µ+ − µ−) · η. By Proposition 27, to
lower bound the Chow distance dChow(f, g), it suffices to establish a lower bound on (µ+−µ−) · η
for a unit vector η of our choice.

Before proceeding with the proof we fix some notation. For any line ` in Rn and point x ∈ Rn,
we let `(x) denote the projection of the point x on the line `. For a set X ⊆ Rn and a line ` in Rn,
`(X)

def
= {`(x) : x ∈ X}. We use ̂̀to denote the unit vector in the direction of ` (its orientation is

irrelevant for us).

Definition 28. For a functionW : {−1, 1}n → [0,∞), a set X ⊆ {−1, 1}n is said to be (ε, ν)-
balanced if (ε− ν)2n−1 ≤ W(X) ≤ (ε+ ν)2n−1.

Whenever we say that a set X is (ε, ν)-balanced, the associated function W is implicitly as-
sumed to be the one defined at the start of the proof of Theorem 7. Recall that as noted above, we
may assume that the sets V+ and V− are balanced since otherwise the conclusion of the theorem
follows easily.

The following technical proposition will be useful during the course of the proof; later we will
apply it taking X1 to be V 0

+ and X2 to be V 0
−. Intuitively, it says that that if balanced sets X1 and

X2 are (a) separated by a point q after projection onto a line `, and (b) contain many points which
(after projection onto `) lie far from q, then the unit vector in the direction of ` “witnesses” the fact
that the centers of mass of X1 and X2 are far from each other.

Proposition 29. Let X1, X2 ⊆ {−1, 1}n be (ε, ν)-balanced sets where ν ≤ ε/8. Let ` be a line in
Rn and q ∈ ` be a point on ` such that the sets `(X1) and `(X2) lie on opposite sides of q. Suppose

that S
def
= {x | x ∈ X1 ∪X2 and ‖`(x)− q‖ ≥ β}. IfW(S) ≥ γ2n, then for µ1 =

∑
x∈X1

W(x) ·x
and µ2 =

∑
x∈X2

W(x) · x, we have

|(µ1 − µ2) · ̂̀| ≥ (βγ − ν
√

2 ln(16/ε))2n.
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In particular, for ν
√

2 ln(16/ε) ≤ βγ/2, we have |(µ1 − µ2) · ̂̀| ≥ (βγ/2)2n.

Proof. We may assume that the projection `(x) of any point x ∈ X1 on ` is of the form q + λx̂̀
where λx > 0, and that the projection `(x) of any point x ∈ X2 on ` is of the form q − λx̂̀where
λx > 0. We can thus write

(µ1 − µ2) · ̂̀ =
∑
x∈X1

W(x)(q · ̂̀+ λx)−
∑
x∈X2

W(x)(q · ̂̀− λx)
= (W(X1)−W(X2)) q · ̂̀+

∑
x∈X1∪X2

W(x) · λx.

By the triangle inequality we have∣∣∣(µ1 − µ2) · ̂̀∣∣∣ ≥ ∑
x∈X1∪X2

W(x) · λx − |q · ̂̀| |(W(X1)−W(X2))|

so it suffices to bound each term separately. For the first term we can write∑
x∈X1∪X2

W(x) · λx ≥
∑
x∈S
W(x) · λx ≥ βγ2n.

To bound the second term, we first recall that (by assumption) |W(X1)−W(X2)| ≤ ν2n. Also,
we claim that |q·̂̀| <√2 ln(16/ε). This is because otherwise the Hoeffding bound implies that the
function defined by g(x) = sign(x· ̂̀−q · ̂̀) will be ε/8 close to a constant function on {−1, 1}n. In
particular, at least one of |X1|, |X2| must be at most (ε/8)2n. However, by Fact 26, for i = 1, 2 we
have that |Xi| ≥ W(Xi)/2 ≥ (ε/4− ν/4)2n > (ε/8)2n resulting in a contradiction. Hence it must
be the case that |q · ̂̀| <√2 ln(16/ε). This implies that |(µ1 − µ2) · ̂̀| ≥ (βγ − ν

√
2 ln(16/ε))2n

and the proposition is proved.

We consider a separating hyperplane A0 for f and assume (without loss of generality) that A0

does not contain any points of the unit hypercube {−1, 1}n. Let A0 = {x ∈ Rn | w · x = θ},
where ‖w‖ = 1, θ ∈ R and f(x) = sign(w · x− θ).

Consider a line `0 normal to A0, so w is the unit vector defining the direction of `0 that points
to the halfspace f−1(1). As stated before, the exact orientation of `0 is irrelevant to us and the
choice of orientation here is arbitrary. Let q0 ∈ Rn be the intersection point of `0 and A0. Then we
can write the line `0 as `0 = {p ∈ Rn | p = q0 + λw, λ ∈ R}.

Define β
def
= εC2·log(1/ε) for a constant C2 to be chosen later and consider the set of points

S0 = {x : x ∈ V 0 | ‖`0(x)− q0‖ ≥ β}.

The following claim states that ifW(S0) is not very small, we get the desired lower bound on
the Chow distance. It follows from the geometric characterization of Chow distance, Proposi-
tion 27, and Proposition 29.
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Claim 30. Suppose thatW(S0) ≥ γ0 ·2n where γ0
def
= β4 log(1/ε)−2 · ε. Then dChow(f, g) ≥ δ, where

δ
def
= β4 log(1/ε).

Proof. To prove the desired lower bound, we will apply Proposition 27. Consider projecting every
point in V 0 on the line `0. Observe that the projections of V 0

+ are separated from the projections
of V 0

− by the point q0. Also, we recall that the sets V 0
+ and V 0

− are (ε, δ) balanced. Thus, for
µ+ =

∑
x∈V 0

+
W(x) · x and µ− =

∑
x∈V 0

−
W(x) · x, we can apply Proposition 29 to get that

|(µ+ − µ−) · w| ≥ (βγ0 − δ
√

2 ln(16/ε))2n ≥ δ2n. This implies that ‖µ+ − µ−‖2 ≥ δ222n and
using Proposition 27, this proves that dChow(f, g) ≥ δ.

If the condition of Claim 30 is not satisfied, then we have thatW(V 0 \ S0) ≥ (ε − γ0)2n. By
Fact 26, we have |V 0 \S0| ≥ (ε−γ0)2n−1. We now apply Lemma 22 to obtain another hyperplane
A1 which passes through all but κ1·2n points (κ1

def
= γ0/2) in V 0\S0. We note that, for a sufficiently

large constant C2, the condition of the lemma is satisfied, as log(1/κ1) = poly(log(1/ε)) and
|V 0 \ S0| > (ε/4) · 2n.

From this point onwards, our proof uses a sequence of blog(1/ε)c cases, each of which follows
along essentially the same lines as the “zeroth” case analyzed above. To this end, we define γj =
β4 log(1/ε)−2(j+1) · ε. At the beginning of case j, we will have an affine space Aj of dimension n− j
such thatW(V 0∩Aj) ≥ (ε− 2(

∑j−1
`=0 γ`))2

n. We note that this is indeed satisfied at the beginning
of case 1. To see this, recall thatW(V 0 \ S0) > (ε− γ0)2n. Also, we have that

W((V 0 \ S0) \ (V 0 ∩A1)) ≤ 2|(V 0 \ S0) \ (V 0 ∩A1)|
≤ 2κ12n = γ02n.

These together imply thatW(V 0 ∩A1) ≥ (ε− 2γ0)2n confirming the hypothesis for j = 1.
We next define V j = V 0 ∩Aj , V j

+ = V j ∩ V+ and V j
− = V j ∩ V−. Let A′j+1 = Aj ∩A0. Note

that Aj 6⊆ A0. This is because Aj contains points from {−1, 1}n as opposed to A0 which does
not. Also, Aj is not contained in a hyperplane parallel to A0 because Aj contains points of the unit
hypercube lying on either side of A0. Hence it must be the case that dim(A′j+1) = n − (j + 1).
Let `j be a line orthogonal to A′j+1 which is parallel to Aj . Again, we observe that the direction of
`j is unique.

Our aim is essentially to establish that the conditions of Proposition 29 hold so that we may
apply it to the line `j and thus obtain an analogue of Claim 30 (recall that Proposition 29 played a
key role in the proof of Claim 30). Towards that end, we observe that all points in A′j+1 project to
the same point in `j , which we call qj . Let us define Λj

+ = `j(V
j

+) and Λj
− = `j(V

j
−). We observe

that the sets Λj
+ and Λj

− are separated by qj . Next, we define Sj as :

Sj = {x ∈ V j | ‖`j(x)− qj‖2 ≥ β}.

The next claim is analogous to Claim 30. It says that if W(Sj) is not too small, then we get the
desired lower bound on the Chow distance. The underlying ideas are the same as Claim 30 but
the proof is slightly more technical; we postpone it to Appendix A.3.
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Claim 31. For j ≤ log(8/ε), suppose that W(Sj) ≥ γj · 2n where γj is as defined above. Then
dChow(f, g) ≥ δ.

If the hypothesis of Claim 31 fails, then we construct an affine spaceAj+1 of dimension n−j−1
such thatW(V 0 ∩ Aj+1) ≥ (ε − 2

∑j
`=0 γ`)2

n as described next. We recall that U = ∪ni=1ei ∪ 0.
It is obvious there is some subset Yj ⊆ U such that |Yj| = j and span(Aj ∪ Yj) = Rn. Now, let us
define H′j

def
= span(Yj ∪ A′j+1). Clearly, H′j is a hyperplane and every point x ∈ (V 0 ∩ Aj) \ Sj is

at a distance at most β from H′j . This is because every x ∈ (V 0 ∩ Aj) \ Sj is at a distance at most
β from A′j+1 and A′j+1 ⊂ H′j . Also, note that all x ∈ Yj lie on H′j .

Note thatW((V 0 ∩ Aj) \ Sj) ≥ (ε − 2
∑j−1

`=0 γ` − γj)2n. As prior calculation has shown, for
j ≤ log(8/ε) we haveW((V 0 ∩ Aj) \ Sj) ≥ (ε − 2

∑j−1
`=0 γ` − γj)2n ≥ (ε/2)2n. Using Fact 26,

we get that |(V 0 ∩ Aj) \ Sj| ≥ (ε/4)2n. Thus, putting κj = γj/2 and applying Lemma 22, we get
a new hyperplane Hj such that |((V 0 ∩Aj) \ Sj) \ (Hj ∩ V 0)| ≤ (γj/2) · 2n. Using that the range
of W is bounded by 2, we get W(((V 0 ∩ Aj) \ Sj) \ (Hj ∩ V 0)) ≤ γj · 2n. Thus, we get that
W(Hj ∩ V 0 ∩ Aj) ≥ (ε− 2

∑j
`=0 γ`)2

n. Also, Yj ⊂ Hj .
Let us now define Aj+1 = Aj ∩Hj . It is clear thatW(Aj+1 ∩ V 0) ≥ (ε− 2

∑j
`=0 γ`)2

n. Also,
dim(Aj+1) < dim(Aj). To see this, assume for contradiction that dim(Aj) = dim(Aj+1). This
means that Aj ⊆ Hj . Also, Yj ⊂ Hj . This means that span(Aj ∪ Yj) ⊂ Hj . But span(Aj ∪ Yj) =
Rn which cannot be contained in Hj. Thus we have that dim(Aj+1) = dim(Aj)− 1.

Now we observe that taking j = blog(8/ε)c, we have a subspace Aj of dimension n− j which
hasW(Aj ∩ V 0) ≥ (ε− 2

∑j−1
`=0 γ`)2

n > (ε/2)2n. By Fact 26, we have that |Aj ∩ V 0| ≥ (ε/4)2n.
However, by Fact 16, a subspace of dimension n− j can contain at most 2n−j points of {−1, 1}n.
Since j = blog(8/ε)c, this leads to a contradiction. That implies that the number of cases must
be strictly less than blog(8/ε)c. In particular, for some j < blog(8/ε)c, it must be the case that
|Sj| ≥ γj2

n. For this j, by Claim 31, we get a lower bound of δ on dChow(f, g). This concludes
the proof of Theorem 7.

2.5 The Algorithm and its Analysis

Algorithm and Proof Overview.
In this section we give a proof overview of Theorem 10, restated below for convenience. We give
the formal details of the proof in the following subsection.

Theorem 10 (Main Algorithmic Result). There exists a randomized algorithm ChowReconstruct
that for every Boolean function f : {−1, 1}n → {−1, 1}, given ε > 0, δ > 0 and a vector
~α = (α0, α1, . . . , αn) such that ‖~χf − ~α‖ ≤ ε, with probability at least 1 − δ, outputs an LBF g
such that ‖~χf−~χg‖ ≤ 6ε. The algorithm runs in time Õ(n2ε−4)·log(1/δ). Further, g is represented
by a weight vector κv ∈ Rn+1, where κ ∈ R and v is an integer vector with ‖v‖ = O(

√
n/ε3).

We now provide an intuitive overview of the algorithm and its analysis. Our algorithm is
motivated by the following intuitive reasoning: since the function α0 +

∑
i∈[n] αi · xi has the
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desired Chow parameters, why not just use it to define an LBF g1 as P1(α0 +
∑

i∈[n] αi · xi)? The
answer, of course, is that as a result of applying the projection operator, the Chow parameters of
g1 can become quite different from the desired vector ~α. Nevertheless, it seems quite plausible to
expect that g1 will be better than a random guess.

Given the Chow parameters of g1 we can try to correct them by adding the difference between
~α and ~χg1 to the vector that represents g1. Again, intuitively we are adding a real-valued function
h1 = α0− ĝ1(0) +

∑
i∈[n](αi− ĝ1(i)) · xi that has the Chow parameters that we would like to add

to the Chow parameters of g1. And, again, the projection operation is likely to ruin our intention,
but we could still hope that we got closer to the vector ~α, and that by repeating this operation we
will converge to an LBF with Chow parameters close to ~α.

While this might appear too naive, this is almost exactly what we do in ChowReconstruct.
The main difference between this naive proposal and our actual algorithm is that at step t we
actually add only half the difference between ~α and the Chow vector of the current hypothesis ~χgt .
This is necessary in our proof to offset the fact that ~α is only an approximation to ~χf and the
fact that we can only approximate the Chow parameters of gt. An additional minor modification is
required to ensure that the final weight vector is a multiple of an integer weight vector of length
O(
√
n/ε3).

The proof of correctness of this algorithm proceeds roughly as follows. If the difference vector
is sufficiently large (namely, more than a small multiple of the difference between ~χf and ~α) then
the linear function ht defined by this vector can be easily shown to be correlated with f − gt,
namely E[(f − gt)ht] ≥ c‖~χgt − ~α‖2 for a constant c > 0. As was shown in [139] and [49]
this condition for a Boolean ht can be used to decrease a simple potential function measuring
E[(f − gt)2], the l22 distance of the current hypothesis to f . One issue that arises is this: while the
l22 distance is only reduced if ht is added to gt, in order to ensure that gt+1 is an LBF, we need to
add the vector of difference (used to define ht) to the weight vector representing gt. To overcome
this problem the proof in [139] uses an additional point-wise counting argument from [71]. This
counting argument can be adapted to the real valued ht, but the resulting argument becomes quite
cumbersome. Instead, we augment the potential function in a way that captures the additional
counting argument from [71] and easily generalizes to the real-valued case.

Proof of Theorem 10.
We begin by describing the ChowReconstruct algorithm. The algorithm builds g through the
following iterative process. Let g′0 ≡ 0 and let g0 = P1(g′0). Given gt, the algorithm approximates
each Chow parameter of gt to accuracy ε/(4

√
n+ 1); let (β0, β1, . . . , βn) denote the results. For

each 0 ≤ i ≤ n, define g̃t(i) to be the closest value to βi that ensures that αi − g̃t(i) is an integer
multiple of ε/(2

√
n+ 1). Let χ̃gt = (g̃t(0), . . . , g̃t(n)) denote the resulting vector of coefficients.

Note that

‖χ̃gt − ~χgt‖ ≤

√√√√ n∑
i=0

(ε/(2
√
n+ 1))2 = ε/2.
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Define ρ = ‖~α − χ̃gt‖. If ρ ≤ 4ε then the algorithm stop s and output s gt. By the triangle
inequality,

‖~χf − ~χgt‖ ≤ ‖~χf − ~α‖+ ‖~α− χ̃gt‖+ ‖χ̃gt − ~χgt‖
≤ ε(1 + 4 + 1/2) < 6ε,

so gt satisfies the claimed condition.
Otherwise ( if ρ > 4ε), let g′t+1 = g′t + ht/2 and gt+1 = P1(g′t+1) where ht is defined by

ht ,
n∑
i=0

(αi − g̃t(i))xi.

Note that this is equivalent to adding the vector (~α−χ̃gt)/2 to the degree 0 and 1 Fourier coefficients
of g′t (which are also the components of the vector representing gt). This concludes the description
of the ChowReconstruct algorithm.

To prove the convergence of this process we define a potential function at step t as

E(t) = E[(f − gt)2] + 2E[(f − gt)(gt − g′t)]
= E[(f − gt)(f − 2g′t + gt)].

The key claim in the proof of Theorem 10 is the following:

Claim 32. We have E(t+ 1)− E(t) ≤ −2ε2.

Proof. To prove Claim 32 we first prove that

E[(f − gt)ht] ≥ ρ

(
ρ− 3

2
ε

)
. (2.2)

To see this, observe that by the Cauchy-Schwarz inequality, we have

E[(f − gt)ht] =
n∑
i=0

(f̂(i)− ĝt(i))(αi − g̃t(i))

=
n∑
i=0

[
(f̂(i)− αi)(αi − g̃t(i)) +

(g̃t(i)− ĝt(i))(αi − g̃t(i)) + (αi − g̃t(i))2
]

≥ −ρε− ρε/2 + ρ2 ≥ ρ2 − 3

2
ρε.

In addition, by Parseval’s identity,

E[h2
t ] =

n∑
i=0

(αi − g̃t(i))2 = ρ2 . (2.3)
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Now,

E(t+ 1)− E(t) = E[(f − gt+1)(f − 2g′t+1 + gt+1)]− E[(f − gt)(f − 2g′t + gt)]

= E
[
(f − gt)(2g′t − 2g′t+1) + (gt+1 − gt)(2g′t+1 − gt − gt+1)

]
= −E[(f − gt)ht] + E

[
(gt+1 − gt)(2g′t+1 − gt − gt+1)

]
. (2.4)

To upper-bound the expression E
[
(gt+1 − gt)(2g′t+1 − gt − gt+1)

]
we prove that for every

point x ∈ {−1, 1}n,

(gt+1(x)− gt(x))(2g′t+1(x)− gt(x)− gt+1(x)) ≤ ht(x)2/2. (2.5)

We first observe that

|gt+1(x)− gt(x)| = |P1(g′t(x) + ht(x)/2)− P1(g′t(x))| ≤ |ht(x)/2|,

where the equality is by definition of gt+1 and gt and the inequality holds because a projection
operation does not increase the distance. Now the triangle inequality gives

|2g′t+1(x)− gt(x)− gt+1(x)| ≤ |g′t+1(x)− gt(x)|+ |g′t+1(x)− gt+1(x)|.

We shall argue that either each of the two summands above on the right-hand size is at most
|ht(x)/2|, or else the left-hand side of (2.5) is zero.

For the first summand, we have that |g′t+1(x)−gt(x)| = |ht(x)/2+g′t(x)−gt(x)|. This can be
larger than |ht(x)/2| in only two ways: the first of these is that g′t(x)−gt(x) 6= 0 and g′t(x)−gt(x)
has the same sign as ht(x). By the definition of P1, this implies that gt(x) = sign(g′t(x)) and
sign(ht(x)) = sign(g′t(x) − gt(x)) = gt(x). However, in this case |g′t+1(x)| ≥ |g′t(x)| > 1 and
sign(g′t+1(x)) = sign(g′t(x)) = gt(x). As a result gt+1(x) = gt(x) and (gt+1(x)−gt(x))(2g′t+1(x)−
gt(x)− gt+1(x)) = 0.

The second way in which it is possible to have |ht(x)/2+g′t(x)−gt(x)| > |ht(x)/2| is if g′t(x)−
gt(x) 6= 0, g′t(x) − gt(x) has the opposite sign from ht(x)/2, and |g′t(x) − gt(x)| > 2|ht(x)/2|.
In this case we have that |g′t+1(x)| > 1 and gt+1(x) = sign(g′t+1(x)) = sign(g′t(x)) = gt(x), so
(gt+1(x)− gt(x))(2g′t+1(x)− gt(x)− gt+1(x)) = 0 as above.

Similarly, for the second summand, |g′t+1(x) − gt+1(x)| > |ht(x)/2| implies that gt+1(x) =
sign(g′t+1(x)) and |g′t+1(x)| ≥ |ht(x)/2|+ 1. This implies that |g′t(x)| ≥ |g′t+1(x)| − |ht(x)/2| > 1
and gt(x) = sign(g′t(x)) = sign(g′t+1(x)) = gt+1(x), which means (gt+1(x)− gt(x))(2g′t+1(x)−
gt(x)− gt+1(x)) = 0.

Altogether we obtain that

(gt+1(x)− gt(x))(2g′t+1(x)− gt(x)− gt+1(x)) ≤ max{0, |ht(x)/2|(|ht(x)/2|+ |ht(x)/2|)}
= ht(x)2/2,

establishing (2.5) as desired. This pointwise inequality implies that

E
[
(gt+1 − gt)(2g′t+1 − gt − gt+1)

]
≤ E[h2

t ]/2 = ρ2/2, (2.6)
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where we used (2.3) for the equality. By substituting equations (2.2) and (2.6) into equation (2.4),
we obtain the claimed decrease in the potential function,

E(t+ 1)− E(t) ≤ −ρ2 +
3

2
ρε+ ρ2/2 = −(ρ− 3ε)ρ/2 ≤ −2ε2,

and Claim 32 is proved.

We now observe that

E(t) = E[(f − gt)2] + 2E[(f − gt)(gt − g′t)] ≥ 0 (2.7)

for all t. This follows from noting that for every x and f(x) ∈ {−1, 1}, if gt(x)−g′t(x) is non-zero
then, by the definition of P1, gt(x) = sign(g′t(x)) and sign(gt(x)− g′t(x)) = −gt(x). In this case,
either f(x) − gt(x) = 0 or else sign(f(x) − gt(x)) = −gt(x) and hence (f(x) − gt(x))(gt(x) −
g′t(x)) ≥ 0. Therefore

E[(f − gt)(gt − g′t)] ≥ 0

(and, naturally, E[(f − gt)2] ≥ 0).
It is easy to see that E(0) = 1 and consequently (2.7) and Claim 32) imply that the process

will stop after at most 1/(2ε2) steps.
We now establish the claimed weight bound on the LBF output by the algorithm and the bound

on the running time. Let T denote the number of iterations of the algorithm. By our construction,
the function gT = P1(

∑
t<T ht/2) is an LBF represented by weight vector ~w such that wi =∑

j<T (αi − g̃j(i))/2. Our rounding of the estimates of Chow parameters of gt ensures that each
(αi − g̃j(i))/2 is an integer multiple of κ = ε/(2

√
n+ 1). Hence gT can be represented by a

vector ~w = κ~v, where vector ~v has only integer components. At every step j,√√√√ n∑
i=0

(αi − g̃j(i))2 ≤ 2 + ε+ ε/2 = O(1).

Therefore, by the triangle inequality, ‖~w‖ = O(ε−2) and hence ‖~v‖ = ‖~w‖/κ = O(
√
n/ε3).

The running time of the algorithm is essentially determined by finding χ̃gt in each step t.
Finding χ̃gt requires estimating each ĝt(i) = E[gt(x) · xi] to accuracy ε/(4

√
n+ 1). Chernoff

bounds imply that, by using the empirical mean of gt(x) · xi on O((n/ε2) · log (n/(εδ)) random
points as our estimate of ĝt(i), we can ensure that, with probability at least 1 − δ, the estimates
are within ε/(4

√
n+ 1) of the true values for all n + 1 Chow parameters of gt for every t ≤ T =

O(ε−2).
Evaluating gt on any point x ∈ {−1, 1}n takes O(n · log(n/ε)) time and we need to evaluate it

on O((n/ε2) · log (n/(εδ)) points in each of O(ε−2) steps. This gives us the claimed total running
time bound, and the proof of Theorem 10 is complete.
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2.6 The Main Results

Proofs of Theorems 1 and 2.
In this subsection we put the pieces together and prove our main results. We start by giving a
formal statement of Theorem 1:

Theorem 33 (Main). There is a function κ(ε)
def
= 2−O(log3(1/ε)) such that the following holds: Let

f : {−1, 1}n → {−1, 1} be an LTF and let 0 < ε, δ < 1/2. Write ~χf for the Chow vector of f and
assume that ~α ∈ Rn+1 is a vector satisfying ‖~α− ~χf‖ ≤ κ(ε). Then, there is an algorithm A with
the following property: Given as input ~α, ε and δ, algorithm A performs Õ(n2 · poly(1/κ(ε))) ·
log(1/δ) bit operations and outputs the (weights-based) representation of an LTF f ∗ which with
probability at least 1− δ satisfies dist(f, f ∗) ≤ ε.

Proof of Theorem 33. Suppose that we are given a vector ~α ∈ Rn+1 that satisfies ‖~α−~χf‖ ≤ κ(ε),
where f is the unknown LTF to be learned. To construct the desired f ∗, we run algorithm
ChowReconstruct (from Theorem 10) on input ~α with its “ε” parameter set to κ(ε). The
algorithm runs in time Õ(n2 ·poly(1/κ(ε))) · log(1/δ) and outputs an LBF g such that with proba-
bility at least 1−δ we have dChow(f, g) ≤ 6κ(ε). Applying Theorem 7 we get that with probability
at least 1 − δ we have dist(f, g) ≤ ε/2. (We can set the constants appropriately in the definition
of the function κ(ε) above, so that the conclusion of applying Theorem 7 is “dist(f, g) ≤ ε/2”.)
Writing the LBF g as g(x) = P1(v0 +

∑n
i=1 vixi), we now claim that f ∗(x) = sign(v0 +

∑n
i=1 vixi)

has dist(f, f ∗) ≤ ε. This is simply because for each input x ∈ {−1, 1}n, the contribution that x
makes to to dist(f, f ∗) is at most twice the contribution x makes to dist(f, g). This completes the
proof of Theorem 33.

As a simple corollary, we obtain Theorem 2.

Proof of Theorem 2. Let f : {−1, 1}n → {−1, 1} be an arbitrary LTF. We apply Theorem 33
above, for δ = 1/3, and consider the LTF f ∗ produced by the above proof. Note that the weights vi
defining f ∗ are identical to the weights of the LBF g output by the algorithm ChowReconstruct.
It follows from Theorem 10 that these weights are integers that satisfy

∑n
i=1 v

2
i = O(n · κ(ε)−6),

and the proof is complete.

As pointed out in Section 2 our algorithm runs in poly(n/ε) time for LTFs whose integer weight
is at most poly(n). Formally, we have:

Theorem 34. Let f = sign(
∑n

i=1wixi − θ) be an LTF with integer weights wi such that W
def
=∑n

i=1 |wi|. Fix 0 < ε, δ < 1/2. Write ~χf for the Chow vector of f and assume that ~α ∈ Rn+1

is a vector satisfying ‖~α − ~χf‖ ≤ ε/(12W ). Then, there is an algorithm A′ with the following
property: Given as input ~α, W ′, ε and δ, where W ′ ≥ W and W ′ = poly(W ), algorithm A′
performs poly(nW/ε) · log(1/δ) bit operations and outputs the (weights-based) representation of
an LTF f ∗ which with probability at least 1− δ satisfies dist(f, f ∗) ≤ ε.
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Before we proceed with the proof, we remark that the above theorem implies an algorithm for
the exact problem with running time 2O(n logn). This follows by applying the theorem for ε = 2−n−1

recalling that any LTF has an exact integer-weight representation with W = 2O(n logn).

Proof. As stated before, both the algorithm and proof of the above theorem are essentially identi-
cal to the ones in Theorem 33. The details follow.

Given a vector ~α ∈ Rn+1 satisfying ‖~α−~χf‖ ≤ ε/(12W ), where f is the unknown LTF, we run
algorithm ChowReconstruct on input ~α with its “ε” parameter set to ε/(12W ′). The algorithm
runs in time poly(nW ′/ε)·log(1/δ), which is poly(nW/ε)·log(1/δ) by our assumption onW , and
outputs an LBF g such that with probability at least 1 − δ, dChow(f, g) ≤ 6ε/(12W ′) ≤ ε/(2W ).
At this point, we need to apply the following simple structural result of [14]:

Fact 35. Let f = sign(
∑n

i=1 wixi− θ) be an LTF with integer weights wi, where W
def
=
∑n

i=1 |wi|,
and let g : {−1, 1}n → [−1, 1] be an arbitrary bounded function. Fix 0 < ε < 1/2. If
dChow(f, g) ≤ ε/W , then dist(f, g) ≤ ε.

The above fact implies that, with probability at least 1− δ, the LBF g output by the algorithm
satisfies dist(f, g) ≤ ε/2. If g(x) = P1(v0 +

∑n
i=1 vixi), then as in the proof of Theorem 33 we

have that the LTF f ∗(x) = sign(v0 +
∑n

i=1 vixi) has dist(f, f ∗) ≤ ε. This completes the proof.

Near-optimality of Theorem 7.
Theorem 7 says that if f is an LTF and g : {−1, 1}n → [−1, 1] satisfy dChow(f, g) ≤ ε then
dist(f, g) ≤ 2−Ω( 3

√
log(1/ε)). It is natural to wonder whether the conclusion can be strengthened to

“dist(f, g) ≤ εc” where c > 0 is some absolute constant. Here we observe that no conclusion of
the form “dist(f, g) ≤ 2−γ(1/ε)” is possible for any function γ(1/ε) = ω(log(1/ε)/ log log(1/ε)).

To see this, fix γ to be any function such that

γ(1/ε) = ω(log(1/ε)/ log log(1/ε)).

If there were a stronger version of Theorem 7 in which the conclusion is “then dist(f, g) ≤
2−γ(1/ε),” the arguments of Section 2.6 would give that for any LTF f , there is an LTF f ′ =
sign(v · x − ν) such that Pr[f(x) 6= f ′(x)] ≤ ε, where each vi ∈ Z satisfies |vi| ≤ poly(n) ·
(1/ε)o(log log(1/ε)). Taking ε = 1/2n+1, this tells us that f ′ must agree with f on every point in
{−1, 1}n, and each integer weight in the representation sign(v · x − ν) is at most 2o(n logn). But
choosing f to be Håstad’s LTF from [64], this is a contradiction, since any integer representation
of that LTF must have every |vi| ≥ 2Ω(n logn).

2.7 Applications to learning theory
In this section we show that our approach yields a range of interesting algorithmic applications in
learning theory.
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Learning threshold functions in the 1-RFA model.
Ben-David and Dichterman [11] introduced the “Restricted Focus of Attention” (RFA) learning
framework to model the phenomenon (common in the real world) of a learner having incomplete
access to examples. We focus here on the uniform-distribution “1-RFA” model. In this setting each
time the learner is to receive a labeled example, it first specifies an index i ∈ [n]; then an n-bit
string x is drawn from the uniform distribution over {−1, 1}n and the learner is given (xi, f(x)).
So for each labeled example, the learner is only shown the i-th bit of the example along with the
label.

Birkendorf et al. [14] asked whether LTFs can be learned in the uniform distribution 1-RFA
model, and showed that a sample ofO(n·W 2·log(n

δ
)/ε2) many examples is information-theoretically

sufficient for learning an unknown threshold function with integer weightswi that satisfy
∑

i |wi| ≤
W. The results of Goldberg [57] and Servedio [129] show that samples of size (n/ε)O(log(n/ε) log(1/ε))

and poly(n) · 2Õ(1/ε2) respectively are information-theoretically sufficient for learning an arbitrary
LTF to accuracy ε, but none of these earlier results gave a computationally efficient algorithm.
[120] gave the first algorithm for this problem; as a consequence of their result for the Chow Pa-
rameters Problem, they gave an algorithm which learns LTFs to accuracy ε and confidence 1 − δ
in the uniform distribution 1-RFA model, running in 22Õ(1/ε2) · n2 · log n · log(n

δ
) bit operations. As

a direct consequence of Theorem 1, we obtain a much more time efficient learning algorithm for
this learning task.

Theorem 36. There is an algorithm which performs Õ(n2) · (1/ε)O(log2(1/ε)) · log(1
δ
) bit-operations

and properly learns LTFs to accuracy ε and confidence 1 − δ in the uniform distribution 1-RFA
model.

Agnostic-type learning.
In this section we show that a variant of our main algorithm gives a very fast “agnostic-type”
algorithm for learning LTFs under the uniform distribution.

Let us briefly review the uniform distribution agnostic learning model [86] in our context.
Let f : {−1, 1}n → {−1, 1} be an arbitrary boolean function. We write opt = dist(f,H)

def
=

minh∈HPrx[h(x) 6= f(x)], where H denotes the class of LTFs. A uniform distribution agnostic
learning algorithm is given uniform random examples labeled according to an arbitrary f and
outputs a hypothesis h satisfying dist(h, f) ≤ opt + ε.

The only efficient algorithm for learning LTFs in this model [77] is non-proper and runs in
time npoly(1/ε). This motivates the design of more efficient algorithms with potentially relaxed
guarantees. [120] give an “agnostic-type” algorithm, that guarantees dist(h, f) ≤ optΩ(1) + ε and
runs in time poly(n)·2poly(1/ε). In contrast, we give an algorithm that is significantly more efficient,
but has a relaxed error guarantee.

Theorem 37. There is an algorithm B with the following performance guarantee: Let f be any
Boolean function and let opt = dist(f,H). Given 0 < ε, δ < 1/2 and access to independent
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uniform examples (x, f(x)), algorithm B outputs the (weights-based) representation of an LTF f ∗

which with probability 1 − δ satisfies dist(f ∗, f) ≤ 2−Ω( 3
√

log(1/opt)) + ε. The algorithm performs
Õ(n2) · (1/ε)O(log2(1/ε)) · log(1/δ) bit operations.

Proof. We describe the algorithm B in tandem with a proof of correctness. We start by estimat-
ing each Chow parameter of f (using the random labeled examples) to accuracy O(κ(ε)/

√
n);

we thus compute a vector ~α ∈ Rn+1 that satisfies ‖~α − ~χf‖ ≤ κ(ε). We then run algorithm
ChowReconstruct (from Theorem 10) on input ~α, with its “ε” parameter set to κ(ε). The
algorithm runs in time poly(1/κ(ε)) · Õ(n2) · log(1/δ) and outputs an LBF g such that with
probability at least 1 − δ we have dChow(f, g) ≤ 6κ(ε). By assumption, there exists an LTF
h∗ such that dist(h∗, f) ≤ opt. By Fact 6 we get dChow(h∗, f) ≤

√
2opt. An application of

the triangle inequality now gives dChow(g, h∗) ≤
√

2opt + 6κ(ε). By Theorem 7, we thus obtain
dist(g, h∗) ≤ 2−Ω( 3

√
log(1/opt)) + ε/2. Writing the LBF g as g(x) = P1(v0 +

∑n
i=1 vixi), as above

we have that f ∗(x) = sign(v0 +
∑n

i=1 vixi) has dist(f, f ∗) ≤ 2−Ω( 3
√

log(1/opt)) + ε. It is easy to see
that the running time is dominated by the execution of ChowReconstruct, and the proof of
Theorem 37 is complete.
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Chapter 3

Inverse Shapley value problem

In this chapter we consider the common scenario in which each of n voters must cast a binary vote
for or against some proposal. What is the best way to design such a voting scheme? Throughout
the chapter we consider only weighted voting schemes, in which the proposal passes if a weighted
sum of yes-votes exceeds a predetermined threshold. Weighted voting schemes are predominant
in voting theory and have been extensively studied for many years, see [46, 153] and references
therein. In computer science language, we are dealing with linear threshold functions (henceforth
abbreviated as LTFs) over n Boolean variables.

If it is desired that each of the n voters should have the same “amount of power” over the
outcome, then a simple majority vote is the obvious solution. However, in many scenarios it may
be the case that we would like to assign different levels of voting power to the n voters – perhaps
they are shareholders who own different amounts of stock in a corporation, or representatives of
differently sized populations. In such a setting it is much less obvious how to design the right
voting scheme; indeed, it is far from obvious how to correctly quantify the notion of the “amount
of power” that a voter has under a given fixed voting scheme. As a simple example, consider
an election with three voters who have voting weights 49, 49 and 2, in which a total of 51 votes
are required for the proposition to pass. While the disparity between voting weights may at first
suggest that the two voters with 49 votes each have most of the “power,” any coalition of two voters
is sufficient to pass the proposition and any single voter is insufficient, so the voting power of all
three voters is in fact equal.

Many different power indices (methods of measuring the voting power of individuals under a
given voting scheme) have been proposed over the course of decades. These include the Banzhaf
index [9], the Deegan-Packel index [34], the Holler index [68], and others (see the extensive survey
of de Keijzer [90]). Perhaps the best known, and certainly the oldest, of these indices is the Shapley-
Shubik index [130], which is also known as the index of Shapley values (we shall henceforth refer
to it as such). Informally, the Shapley value of a voter i among the n voters is the fraction of all n!
orderings of the voters in which she “casts the pivotal vote” (see Definition 38 in Section 3.1 for a
precise definition, and [125] for much more on Shapley values). We shall work with the Shapley
values throughout this chapter.

Given a particular weighted voting scheme (i.e., an n-variable linear threshold function), stan-
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dard sampling-based approaches can be used to efficiently obtain highly accurate estimates of the n
Shapley values (see also the works of [101, 8]). However, the inverse problem is much more chal-
lenging: given a vector of n desired values for the Shapley values, how can one design a weighted
voting scheme that (approximately) achieves these Shapley values? This problem, which we refer
to as the Inverse Shapley Value Problem, is quite natural and has received considerable attention;
various heuristics and exponential-time algorithms have been proposed [6, 47, 91, 96], but prior to
our work no provably correct and efficient algorithms were known.

Our Results. We give the first efficient algorithm with provable performance guarantees for the
Inverse Shapley Value Problem. Our results apply to “reasonable” voting schemes; roughly, we
say that a weighted voting scheme is “reasonable” if fixing a tiny fraction of the voting weight does
not already determine the outcome, i.e., if the threshold of the linear threshold function is not too
extreme. (See Definition 39 in Section 3.1 for a precise definition.) This seems to be a plausible
property for natural voting schemes. Roughly speaking, we show that if there is any reasonable
weighted voting scheme that approximately achieves the desired input vector of Shapley values,
then our algorithm finds such a weighted voting scheme. Our algorithm runs in fixed polynomial
time in n, the number of voters, for any constant error parameter ε > 0. In a bit more detail, our
first main theorem, stated informally, is as follows (see Section 3.5 for Theorem 63 which gives a
precise theorem statement):

Main Theorem (arbitrary weights, informal statement). There is a poly(n)-time algorithm
with the following properties: The algorithm is given any constant accuracy parameter ε > 0
and any vector of n real values a(1), . . . , a(n). The algorithm has the following performance
guarantee: if there is any monotone increasing reasonable LTF f(x) whose Shapley values are
very close to the given values a(1), . . . , a(n), then with very high probability the algorithm outputs
v ∈ Rn, θ ∈ R such that the linear threshold function h(x) = sign(v · x − θ) has Shapley values
ε-close to those of f .

Our second main theorem gives an even stronger guarantee if there is a weighted voting scheme
with small weights (at most poly(n)) whose Shapley values are close to the desired values. For
this problem we give an algorithm which achieves 1/poly(n) accuracy in poly(n) time. An in-
formal statement of this result is (see Section 3.5 for Theorem 64 which gives a precise theorem
statement):

Main Theorem (bounded weights, informal statement). There is a poly(n,W )-time algorithm
with the following properties: The algorithm is given a weight bound W and any vector of n real
values a(1), . . . , a(n). The algorithm has the following performance guarantee: if there is any
monotone increasing reasonable LTF f(x) = sign(w · x− θ) whose Shapley values are very close
to the given values a(1), . . . , a(n) and where each wi is an integer of magnitude at most W , then
with very high probability the algorithm outputs v ∈ Rn, θ ∈ R such that the linear threshold
function h(x) = sign(v · x− θ) has Shapley values n−1/8-close to those of f .

Discussion and Our Approach. At a high level, the Inverse Shapley Value Problem that we
consider is similar to the “Chow Parameters Problem” that has been the subject of several recent
papers [58, 119, 31]. The Chow parameters are another name for the n Banzhaf indices; the Chow
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Parameters Problem is to output a linear threshold function which approximately matches a given
input vector of Chow parameters. (To align with the terminology of the current paper, the “Chow
Parameters Problem” might perhaps better be described as the “Inverse Banzhaf Problem.”)

Let us briefly describe the approaches in [119] and [31] at a high level for the purpose of
establishing a clear comparison with this chapter. Each of the papers [119, 31] combines structural
results on linear threshold functions with an algorithmic component. The structural results in [119]
deal with anti-concentration of affine forms w · x− θ where x ∈ {−1, 1}n is uniformly distributed
over the Boolean hypercube, while the algorithmic ingredient of [119] is a rather straightforward
brute-force search. In contrast, the key structural results of [31] are geometric statements about
how n-dimensional hyperplanes interact with the Boolean hypercube, which are combined with
linear-algebraic (rather than anti-concentration) arguments. The algorithmic ingredient of [31] is
more sophisticated, employing a boosting-based approach inspired by the work of [138, 70].

Our approach combines aspects of both the [119] and [31] approaches. Very roughly speaking,
we establish new structural results which show that linear threshold functions have good anti-
concentration (similar to [119]), and use a boosting-based approach derived from [138] as the
algorithmic component (similar to [31]). However, this high-level description glosses over many
“Shapley-specific” issues and complications that do not arise in these earlier works; below we
describe two of the main challenges that arise, and sketch how we meet them in this work.

First challenge: establishing anti-concentration with respect to non-standard distributions.
The Chow parameters (i.e., Banzhaf indices) have a natural definition in terms of the uniform dis-
tribution over the Boolean hypercube {−1, 1}n. Being able to use the uniform distribution with
its many nice properties (such as complete independence among all coordinates) is very useful in
proving the required anti-concentration results that are at the heart of [119]. In contrast, it is not
a priori clear what is (or even whether there exists) the “right” distribution over {−1, 1}n corre-
sponding to the Shapley values. Here we derive such a distribution µ over {−1, 1}n, but it is much
less well-behaved than the uniform distribution (it is supported on a proper subset of {−1, 1}n,
and it is not even pairwise independent). Nevertheless, we are able to establish anti-concentration
results for affine forms w · x − θ corresponding to linear threshold functions under the distribu-
tion µ as required for our results. This is done by showing that any reasonable linear threshold
function can be expressed with “nice” weights (see Theorem 40 of Section 3.1), and establishing
anti-concentration for any “nice” weight vector by carefully combining anti-concentration bounds
for p-biased distributions across a continuous family of different choices of p (see Section 3.3 for
details).

Second challenge: using anti-concentration to solve the Inverse Shapley problem. The main
algorithmic ingredient that we use is a procedure from [138]. Given a vector of values (E[f(x)xi])
for i = {1, . . . , n} (correlations between the unknown linear threshold function f and the indi-
vidual input variables), it efficiently constructs a bounded function g : {−1, 1}n → [−1, 1] which
closely matches these correlations, i.e., E[f(x)xi] ≈ E[g(x)xi] for all i. Such a procedure is very
useful for the Chow parameters problem, because the Chow parameters correspond precisely to
the values E[f(x)xi] – i.e., the degree-1 Fourier coefficients of f – with respect to the uniform dis-
tribution. (This correspondence is at the heart of Chow’s original proof [24] showing that the exact
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values of the Chow parameters suffice to information-theoretically specify any linear threshold
function; anti-concentration is used in [119] to extend Chow’s original arguments about degree-1
Fourier coefficients to the setting of approximate reconstruction.)

For the inverse Shapley problem, there is no obvious correspondence between the correlations
of individual input variables and the Shapley values. Moreover, without a notion of “degree-1
Fourier coefficients” for the Shapley setting, it is not clear why anti-concentration statements with
respect to µ should be useful for approximate reconstruction. We deal with both these issues by
developing a notion of the degree-1 Fourier coefficients of f with respect to distribution µ and
relating these coefficients to the Shapley values 1. (We actually require two related notions: one
is the “coordinate correlation coefficient” Ex∼µ[f(x)xi], which is necessary for the algorithmic
[138] ingredient, and one is the “Fourier coefficient” f̂(i) = Ex∼µ[f(x)Li], which is necessary for
Lemma 52, see below.) We define both notions and establish the necessary relations between them
in Section 3.2.

Armed with the notion of the degree-1 Fourier coefficients under distribution µ, we prove a
key result (Lemma 52) saying that if the LTF f is anti-concentrated under distribution µ, then any
bounded function g which closely matches the degree-1 Fourier coefficients of f must be close to
f in `1 distance with respect to µ. (This is why anti-concentration with respect to µ is useful for
us.) From this point, exploiting properties of the [138] algorithm, we can pass from g to an LTF
whose Shapley values closely match those of f .

Organization. Useful preliminaries are given in Section 3.1, including the crucial fact (Theo-
rem 40) that all “reasonable” linear threshold functions have weight representations with “nice”
weights. In Section 3.2 we define the distribution µ and the notions of Fourier coefficients and
“coordinate correlation coefficients,” and the relations between them, that we will need. At the end
of that section we prove a crucial lemma, Lemma 52, which says that anti-concentration of affine
forms and closeness in Fourier coefficients together suffice to establish closeness in `1 distance.
Section 3.3 proves that “nice” affine forms have the required anti-concentration, and Section 3.4
describes the algorithmic tool from [138] that lets us establish closeness of coordinate correlation
coefficients. Section 3.5 puts the pieces together to prove our main theorems. Finally, in Section ??
we conclude the chapter and present a few open problems.

3.1 Preliminaries
Notation and terminology. For n ∈ Z+, we denote by [n]

def
= {1, 2, . . . , n}. For i, j ∈ Z+, i ≤ j,

we denote [i, j]
def
= {i, i+ 1, . . . , j}.

Given a vector w = (w1, . . . , wn) ∈ Rn we write ‖w‖1 to denote
∑n

i=1 |wi|. A linear threshold
function, or LTF, is a function f : {−1, 1}n → {−1, 1} which is such that f(x) = sign(w · x− θ)
for some w ∈ Rn, θ ∈ R.

1We note that Owen [121] has given a characterization of the Shapley values as a weighted average of p-biased
influences (see also [79]). However, this is not as useful for us as our characterization in terms of “µ-distribution”
Fourier coefficients, because we need to ultimately relate the Shapley values to anti-concentration with respect to µ.
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Our arguments will also use a variant of linear threshold functions which we call linear bounded
functions (LBFs). The projection function P1 : R→ [−1, 1] is defined by P1(t) = t for |t| ≤ 1 and
P1(t) = sign(t) otherwise. An LBF g : {−1, 1}n → [−1, 1] is a function g(x) = P1(w · x− θ).

Shapley values. Here and throughout the chapter we write Sn to denote the symmetric group of
all n! permutations over [n]. Given a permutation π ∈ Sn and an index i ∈ [n], we write x(π, i) to
denote the string in {−1, 1}n that has a 1 in coordinate j if and only if π(j) < π(i), and we write
x+(π, i) to denote the string obtained from x(π, i) by flipping coordinate i from −1 to 1. With this
notation in place we can define the generalized Shapley indices of a Boolean function as follows:

Definition 38. (Generalized Shapley values) Given f : {−1, 1}n → {−1, 1}, the i-th generalized
Shapley value of f is the value

f̃(i)
def
= Eπ∼RSn [f(x+(π, i))− f(x(π, i))] (3.1)

(where “π ∼R Sn” means that π is selected uniformly at random from Sn).

A function f : {−1, 1}n → {−1, 1} is said to be monotone increasing if for all i ∈ [n],
whenever two input strings x, y ∈ {−1, 1}n differ precisely in coordinate i and have xi = −1,
yi = 1, it is the case that f(x) ≤ f(y). It is easy to check that for monotone functions our
definition of generalized Shapley values agrees with the usual notion of Shapley values (which are
typically defined only for monotone functions) up to a multiplicative factor of 2; in the rest of the
chapter we omit “generalized” and refer to these values simply as the Shapley values of f.

We will use the following notion of the “distance” between the vectors of Shapley values for
two functions f, g : {−1, 1}n → [−1, 1]:

dShapley(f, g)
def
=

√
n∑
i=1

(f̃(i)− g̃(i))2,

i.e., the Shapley distance dShapley(f, g) is simply the Euclidean distance between the two n-dimensional
vectors of Shapley values. Given a vector a = (a(1), . . . , a(n)) ∈ Rn we will also use dShapley(a, f)

to denote
√∑n

i=1(f̃(i)− a(i))2.

The linear threshold functions that we consider. Our algorithmic results hold for linear threshold
functions which are not too “extreme” (in the sense of having a very skewed threshold). We will
use the following definition:

Definition 39. (η-reasonable LTF) Let f : {−1, 1}n → {−1, 1}, f(x) = sign(w · x − θ) be an
LTF. For 0 < η < 1 we say that f is η-reasonable if θ ∈ [−(1− η)‖w‖1, (1− η)‖w‖1].

All our results will deal with η-reasonable LTFs; throughout the chapter η should be thought
of as a small fixed absolute constant (such as 1/1000). LTFs that are not η-reasonable do not seem
to correspond to very interesting voting schemes since typically they will be very close to constant
functions. (For example, even at η = 0.99, if the LTF f(x) = sign(x1 + · · · + xn − θ) has a
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threshold θ > 0 which makes it not an η-reasonable LTF, then f agrees with the constant function
−1 on all but a 2−Ω(n) fraction of inputs in {−1, 1}n.)

Turning from the threshold to the weights, some of the proofs in our chapter will require us
to work with LTFs that have “nice” weights in a certain technical sense. Prior work [129, 120]
has shown that for any LTF, there is a weight vector realizing that LTF that has essentially the
properties we need; however, since the exact technical condition that we require is not guaranteed
by any of the previous works, we give a full proof that any LTF has a representation of the desired
form. The following theorem is proved in Appendix B.1:

Theorem 40. Let f : {−1, 1}n → {−1, 1} be an η-reasonable LTF and k ∈ [2, n]. There exists
a representation of f as f(x) = sign(v0 +

∑n
i=1 vixi) such that (after reordering coordinates so

that condition (i) below holds) we have: (i) |vi| ≥ |vi+1|, i ∈ [n− 1]; (ii) |v0| ≤ (1− η)
∑n

i=1 |vi|;
and (iii) for all i ∈ [0, k − 1] we have |vi| ≤ (2/η) ·

√
n · k k2 · σk, where σk

def
=
√∑

j≥k v
2
j .

Tools from probability. We will use the following standard tail bound:

Theorem 41. (Chernoff Bounds) Let X be a random variable taking values in [−a, a] and let
X1, . . . , Xt be i.i.d. samples drawn from X . Let X =

∑t
i=1 Xi/t. Then for any γ > 0, we have

Pr
[∣∣X − E[X]

∣∣ ≥ γ
]
≤ 2 exp(−γ2t/(2a2)).

We will also use the Littlewood-Offord inequality for p-biased distributions over {−1, 1}n.
One way to prove this is by using the LYM inequality (which can be found e.g. as Theorem 8.6 of
[76]); for an explicit reference and proof of the following statement see e.g. [1].

Theorem 42. Fix δ ∈ (0, 1) and let Dδ denote the δ-biased distribution over {−1, 1}n (under
which each coordinate is set to 1 independently with probability δ.) Fix w ∈ Rn and define S =
{i : |wi| ≥ ε}. If |S| ≥ K, then for all θ ∈ R we have Prx∼Dδ [|w · x− θ| < ε] ≤ 1√

Kδ(1−δ)
.

Basic Facts about function spaces. We will use the following basic facts:

Fact 43. The n + 1 functions 1, x1, . . . , xn are linearly independent and form a basis for the
subspace V = {f : {−1, 1}n → R and f is linear }.

Fact 44. Fix any Ω ⊆ {−1, 1}n and let µ be a probability distribution over Ω such that µ(x) > 0

for all x ∈ Ω. We define 〈f, g〉µ
def
= Eω∼µ[f(ω)g(ω)] for f, g : Ω → R. Suppose that f1, . . . , fm :

Ω → R is an orthonormal set of functions, i.e., 〈fi, fj〉µ = δij for all i, j ∈ [m]. Then we have

〈f, f〉2µ ≥
∑m

i=1〈f, fi〉2µ. As a corollary, if f, h : Ω→ {−1, 1} then we have
√∑m

i=1〈f − h, fi〉2µ ≤
2
√

Prx∼µ[f(x) 6= h(x)].
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3.2 Analytic Reformulation of Shapley values
The definition of Shapley values given in Definition 38 is somewhat cumbersome to work with.
In this section we derive alternate characterizations of Shapley values in terms of “Fourier coef-
ficients” and “coordinate correlation coefficients” and establish various technical results relating
Shapley values and these coefficients; these technical results will be crucially used in the proof of
our main theorems.

There is a particular distribution µ that plays a central role in our reformulations. We start by
defining this distribution µ and introducing some relevant notation, and then give our results.

The distribution µ. Let us define Λ(n)
def
=
∑

0<k<n
1
k

+ 1
n−k ; clearly we have Λ(n) = Θ(log n),

and more precisely we have Λ(n) ≤ 2 log n. We also define Q(n, k) as Q(n, k)
def
= 1

k
+ 1

n−k for
0 < k < n, so we have Λ(n) =

∑n−1
k=1 Q(n, k).

For x ∈ {−1, 1}n we write wt(x) to denote the number of 1’s in x. We define the set Bn to be
Bn

def
= {x ∈ {−1, 1}n : 0 < wt(x) < n}, i.e., Bn = {−1, 1}n \ {1,−1}.
The distribution µ is supported onBn and is defined as follows: to make a draw from µ, sample

k ∈ {1, . . . , n − 1} with probability Q(n, k)/Λ(n). Choose x ∈ {−1, 1}n uniformly at random
from the k-th “weight level” of {−1, 1}n, i.e., from {−1, 1}n=k

def
= {x ∈ {−1, 1}n : wt(x) = k}.

Useful notation. For i = 0, . . . , n we define the “coordinate correlation coefficients” of a function
f : {−1, 1}n → R (with respect to µ) as:

f ∗(i)
def
= Ex∼µ[f(x) · xi] (3.2)

(here and throughout the chapter x0 denotes the constant 1).
Later in this section we will define an orthonormal set of linear functions L0, L1, . . . , Ln :

{−1, 1}n → R. We define the “Fourier coefficients” of f (with respect to µ) as:

f̂(i)
def
= Ex∼µ[f(x) · Li(x)]. (3.3)

An alternative expression for the Shapley values. We start by expressing the Shapley values in
terms of the coordinate correlation coefficients:

Lemma 45. Given f : {−1, 1}n → [−1, 1], for each i = 1, . . . , n we have

f̃(i) =
f(1)− f(−1)

n
+

Λ(n)

2
·

(
f ∗(i)− 1

n

n∑
j=1

f ∗(j)

)
,

or equivalently,

f ∗(i) =
2

Λ(n)
·
(
f̃(i)− f(1)− f(−1)

n

)
+

1

n

n∑
j=1

f ∗(j).
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Proof. Recall that f̃(i) can be expressed as follows:

f̃(i) = Eπ∼RSn [f(x+(π, i))− f(x(π, i))]. (3.4)

Since the i-th coordinate of x+(π, i) is 1 and the i-th coordinate of x(π, i) is −1, we see that f̃(i)
is a weighted sum of {f(x)xi}x∈{−1,1}n . We now compute the weights associated with any such
x ∈ {−1, 1}n.

• Let x be a string that has wt(x) coordinates that are 1 and has xi = 1. Then the total number
of permutations π ∈ Sn such that x+(π, i) = x is (wt(x) − 1)!(n − wt(x))!. Consequently
the weight associated with f(x)xi for such an x is (wt(x)− 1)! · (n− wt(x))!/n!.

• Now let x be a string that has wt(x) coordinates that are 1 and has xi = −1. Then the
total number of permutations π ∈ Sn such that x(π, i) = x is wt(x)!(n − wt(x) − 1)!.
Consequently the weight associated with f(x)xi for such an x is wt(x)!·(n−wt(x)−1)!/n!.

Thus we may rewrite Equation (3.4) as

f̃(i) =
∑

x:{−1,1}n:xi=1

(wt(x)− 1)!(n− wt(x))!

n!
f(x) · xi +

∑
x:{−1,1}n:xi=−1

wt(x)!(n− wt(x)− 1)!

n!
f(x) · xi.

Let us now define ν(f)
def
= (f(1)− f(−1))/n. Using the fact that x2

i = 1, it is easy to see that one
gets

2f̃(i) = 2ν(f) +

2

(∑
x∈Bn

f(x) · (wt(x)− 1)!(n− wt(x)− 1)!

n!
· ((n/2− wt(x)) + (nxi)/2)

)

= 2ν(f) +
∑
x∈Bn

(
f(x) · (wt(x)− 1)!(n− wt(x)− 1)!

(n− 1)!
· xi+

f(x) · (wt(x)− 1)!(n− wt(x)− 1)!

n!
· (n− 2wt(x))

)
= 2ν(f) +

∑
x∈Bn

(
f(x) · n

wt(x)(n− wt(x))
(

n
wt(x)

) · xi+
f(x) · 1

wt(x)(n− wt(x))
(

n
wt(x)

) · (n− 2wt(x))

)
. (3.5)

We next observe that n− 2wt(x) = −(
∑

j∈[n] xj). Next, let us define P (n, k) (for k ∈ [1, n− 1])
as follows :

P (n, k)
def
=
Q(n, k)(

n
k

) =
1
k

+ 1
n−k(
n
k

) .
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So we may rewrite Equation (3.5) in terms of P (n,wt(x)) as

2f̃(i) = 2ν(f) +
∑
x∈Bn

[f(x) · xi · P (n,wt(x))]−
∑
x∈Bn

[
f(x) · P (n,wt(x)) · (

n∑
i=1

xi)/n

]
.

We have

∑
x∈Bn

P (n,wt(x)) =
n−1∑
k=1

∑
x∈{−1,1}n=k

P (n,wt(x)) =
n−1∑
k=1

(
n

k

)
· P (n, k) =

n−1∑
k=1

Q(n, k) = Λ(n),

and consequently we get

2f̃(i) = 2ν(f) + Λ(n) ·
(

E
x∼µ

[f(x) · xi]− E
x∼µ

[
f(x) · (

n∑
i=1

xi)/n

])
,

finishing the proof.

Construction of a Fourier basis for distribution µ. For all x ∈ Bn we have that µ(x) > 0, and
consequently by Fact 43 we know that the functions 1, x1, . . . , xn+1 form a basis for the subspace
of linear functions fromBn → R. By Gram-Schmidt orthogonalization, we can obtain an orthonor-
mal basis L0, . . . , Ln for this subspace, i.e., a set of linear functions such that 〈Li, Li〉µ = 1 for all i
and 〈Li, Lj〉µ = 0 for all i 6= j.

We now give explicit expressions for these basis functions. We start by defining L0 : Bn → R
as L0 : x 7→ 1. Next, by symmetry, we can express each Li as

Li(x) = α(x1 + . . .+ xn) + βxi.

Using the orthonormality properties it is straightforward to solve for α and β. The following
Lemma gives the values of α and β:

Lemma 46. For the choices

α
def
=

1

n
·

(√
Λ(n)

nΛ(n)− 4(n− 1)
−
√

Λ(n)

2

)
, β

def
=

√
Λ(n)

2
,

the set {Li}ni=0 is an orthonormal set of linear functions under the distribution µ.

We note for later reference that α = −Θ
(√

logn
n

)
and β = Θ(

√
log n).

We start with the following proposition which gives an explicit expression for Ex∼µ[xixj] when
i 6= j; we will use it in the proof of Lemma 46.

Proposition 47. For all 1 ≤ i < j ≤ n we have Ex∼µ[xixj] = 1− 4
Λ(n)

.
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Proof. For brevity let us write Ak = {−1, 1}n=k, i.e., Ak = {x ∈ {−1, 1}n : wt(x) = k}, the k-th
“slice” of the hypercube. Since µ is supported on Bn = ∪n−1

k=1Ak, we have

Ex∼µ[xixj] =
∑

0<k<n

E
x∼µ

[xixj | x ∈ Ak] · Pr
x∼µ

[x ∈ Ak].

If k = 1 or n− 1, it is clear that

Ex∼µ[xixj | x ∈ Ak] = 1− 2

n
− 2

n
= 1− 4

n
,

and when 2 ≤ k ≤ n− 2, we have

Ex∼µ[xixj | x ∈ Ak] =
1(
n
k

) · (2

(
n− 2

k − 2

)
+ 2

(
n− 2

k

)
−
(
n

k

))
.

Recall that Λ(n) =
∑

0<k<n
1
k

+ 1
n−k and Q(n, k) = 1

k
+ 1

n−k for 0 < k < n. This means that we
have

Pr
x∼µ

[x ∈ Ak] = Q(n, k)/Λ(n).

Thus we may write Ex∼µ[xixj] as

Ex∼µ[xixj] =
∑

2≤k≤n−2

Q(n, k)

Λ(n)
· Ex∼µ[xixj | x ∈ Ak] +

∑
k∈{1,n−1}

Q(n, k)

Λ(n)
· Ex∼µ[xixj | x ∈ Ak].

For the latter sum, we have∑
k∈{1,n−1}

Q(n, k)

Λ(n)
· Ex∼µ[xixj | x ∈ Ak] =

1

Λ(n)

(
1− 4

n

)
· 2n

n− 1
.

For the former, we can write
n−2∑
k=2

Q(n, k)

Λ(n)
· Ex∼µ[xixj | x ∈ Ak]

=
n−2∑
k=2

1

Λ(n)

(k − 1)!(n− k − 1)!

(n− 1)!
·
(

2

(
n− 2

k − 2

)
+ 2

(
n− 2

k

)
−
(
n

k

))

=
n−2∑
k=2

1

Λ(n)
·
(

2(k − 1)

(n− 1)(n− k)
+

2(n− k − 1)

(n− 1)k
− n

k(n− k)

)

=
n−2∑
k=2

1

Λ(n)
·
(

2

n− k
− 2

n− 1
+

2

k
− 2

n− 1
− 1

k
− 1

n− k

)

=
n−2∑
k=2

1

Λ(n)
·
(

1

n− k
+

1

k
− 4

n− 1

)
.
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Thus, we get that overall Ex∼µ[xixj] equals

1

Λ(n)

(
1− 4

n

)
· 2n

n− 1
+

n−2∑
k=2

1

Λ(n)
·
(

1

n− k
+

1

k
− 4

n− 1

)

=
1

Λ(n)

(
2 +

2

n− 1
− 8

n− 1

)
+

1

Λ(n)

(
n−2∑
k=2

1

k
+

1

n− k

)
− 4

Λ(n)
+

8

Λ(n)(n− 1)

=
1

Λ(n)

(
n−1∑
k=1

Q(n, k)

)
− 4

Λ(n)
= 1− 4

Λ(n)
,

as was to be shown.

Proof of Lemma 46. We begin by observing that

Ex∼µ[Li(x)L0(x)] = Ex∼µ[Li(x)] = Ex∼µ[α(x1 + . . .+ xn) + βxi] = 0

since Ex∼µ[xi] = 0. Next, we solve for α and β using the orthonormality conditions on the set
{Li}ni=1. As Ex∼µ[Li(x)Lj(x)] = 0 and Ex∼µ[Li(x)Li(x)] = 1, we get that Ex∼µ[Li(x)(Li(x) −
Lj(x))] = 1. This gives

Ex∼µ[Li(x) · (Li(x)− Lj(x))] = Ex∼µ[Li(x) · β(xi − xj)]
= Ex∼µ[β((α + β)xi + αxj) · (xi − xj)]
= αβ + β2 − αβ − β2Ex∼µ[xjxi]

= β2(1− Ex∼µ[xixj]) = 4β2/Λ(n) = 1,

where the penultimate equation above uses Proposition 47. Thus, we have shown that β =

√
Λ(n)

2
.

To solve for α, we note that
n∑
i=1

Li(x) = (αn+ β)(x1 + . . .+ xn).

However, since the set {Li}ni=1 is orthonormal with respect to the distribution µ, we get that

Ex∼µ[(L1(x) + . . .+ Ln(x))(L1(x) + . . .+ Ln(x))] = n

and consequently

(αn+ β)2 Ex∼µ[(x1 + . . .+ xn)(x1 + . . .+ xn)] = n

Now, using Proposition 47, we get

Ex∼µ[(x1 + . . .+ xn)(x1 + . . .+ xn)] =
n∑
i=1

Ex∼µ[x2
i ] +

∑
i 6=j

Ex∼µ[xixj]

= n+ n(n− 1) ·
(

1− 4

Λ(n)

)
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Thus, we get that

(αn+ β)2 ·
(
n+ n(n− 1) ·

(
1− 4

Λ(n)

))
= n.

Simplifying further,

(αn+ β) =

√
Λ(n)

nΛ(n)− 4(n− 1)

and thus

α =
1

n
·

(√
Λ(n)

nΛ(n)− 4(n− 1)
−
√

Λ(n)

2

)
as was to be shown.

Relating the Shapley values to the Fourier coefficients. The next lemma gives a useful expres-
sion for f̂(i) in terms of f̃(i):

Lemma 48. Let f : {−1, 1}n → [−1, 1] be any bounded function. Then for each i = 1, . . . , n we
have

f̂(i) =
2β

Λ(n)
·
(
f̃(i)− f(1)− f(−1)

n

)
+

1

n
·
n∑
j=1

f̂(j).

Proof. Lemma 46 gives us that Li(x) = α(x1 + . . .+ xn) + βxi, and thus we have

f̂(i) ≡ Ex∼µ[f(x) · Li(x)] = α

(
n∑
j=1

Ex∼µ[f(x) · xj]

)
+ βEx∼µ[f(x) · xi]

= α
n∑
j=1

f ∗(j) + βf ∗(i). (3.6)

Summing this for i = 1 to n, we get that
n∑
j=1

f̂(j) = (αn+ β)
n∑
j=1

f ∗(j). (3.7)

Plugging this into (3.6), we get that

f ∗(i) =
1

β
·

(
f̂(i)− α

αn+ β
·

n∑
j=1

f̂(j)

)
(3.8)

Now recall that from Lemma 45, we have

f̃(i) = ν(f) +
Λ(n)

2
·
(

E
x∼µ

[f(x) · xi]− E
x∼µ

[
f(x) · (

n∑
i=1

xi)/n

])
= ν(f) +

Λ(n)

2
·

(
f ∗(i)−

∑n
j=1 f

∗(j)

n

)
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where ν(f) = (f(1)− f(−1))/n. Hence, combining the above with (3.7) and (3.8), we get

1

β
·

(
f̂(i)− α

αn+ β
·

n∑
j=1

f̂(j)

)
=

2

Λ(n)
· (f̃(i)− ν(f)) +

1

n(αn+ β)
·

n∑
j=1

f̂(j).

From this, it follows that

1

β
· f̂(i) =

2

Λ(n)
· (f̃(i)− ν(f)) +

1

αn+ β
·
(

1

n
+
α

β

)
·

n∑
j=1

f̂(j),

and hence

f̂(i) =
2β

Λ(n)
· (f̃(i)− ν(f)) +

1

n
·

n∑
j=1

f̂(j)

as desired.

Bounding Shapley distance in terms of Fourier distance. Recall that the Shapley distance

dShapley(f, g) between f, g : {−1, 1}n → [−1, 1] is defined as dShapley(f, g)
def
=
√∑n

i=1(f̃(i)− g̃(i))2.

We define the Fourier distance between f and g as dFourier(f, g)
def
=
√∑n

i=0(f̂(i)− ĝ(i))2.

Our next lemma shows that if the Fourier distance between f and g is small then so is the
Shapley distance.

Lemma 49. Let f, g : {−1, 1}n → [−1, 1]. Then,

dShapley(f, g) ≤ 4√
n

+
Λ(n)

2β
· dFourier(f, g).

Proof. Let ν(f) = (f(1)− f(−1))/n and ν(g) = (g(1)− g(−1))/n. From Lemma 48, we have
that for all 1 ≤ i ≤ n,

Λ(n)

2β
·

(
f̂(i)−

∑n
j=1 f̂(j)

n

)
+ ν(f) = f̃(i).

Using a similar relation for g, we get that for every 1 ≤ i ≤ n,

Λ(n)

2β
·

(
f̂(i)−

∑n
j=1 f̂(j)

n
− ĝ(i) +

∑n
j=1 ĝ(j)

n

)
+ ν(f)− ν(g) = f̃(i)− g̃(i).

We next define the following vectors: let v ∈ Rn be defined by vi = f̃(i) − g̃(i), i ∈ [n] (so our
goal is to bound ‖v‖2). Let u ∈ Rn be defined by ui = ν(f) − ν(g), i ∈ [n]. Finally, let w ∈ Rn

be defined by

wi =

(
f̂(i)−

∑n
j=1 f̂(j)

n
− ĝ(i) +

∑n
j=1 ĝ(j)

n

)
, i ∈ [n].
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With these definitions the vectors u, v and w satisfy Λ(n)
2β
· w + u = v, and hence we have

‖v‖2 ≤ ‖u‖2 +
Λ(n)

2β
· ‖w‖2.

Since the range of f and g is [−1, 1], we immediately have that

‖u‖2 =

(
f(1)− g(1)− f(−1) + g(−1)

n

)
·
√
n ≤ 4√

n
,

so all that remains is to bound ‖w‖2 from above. To do this, let us define another vector w′ ∈ Rn

by w′i = f̂(i)− ĝ(i). Let e ∈ Rn denote the unit vector e = (1/
√
n, . . . , 1/

√
n). Letting w′e denote

the projection of w along e, it is easy to see that

w′e =

(∑n
j=1(f̂(j)− ĝ(j))

n
, . . . ,

∑n
j=1(f̂(j)− ĝ(j))

n

)
.

This means that w = w′ − w′e and that w is the projection of w′ in the space orthogonal to e.
Consequently we have ‖w‖2 ≤ ‖w′‖2, and hence

‖v‖2 ≤
4√
n

+
Λ(n)

2β
‖w′‖2

as was to be shown.

Bounding Fourier distance by “correlation distance.” The following lemma will be useful for
us since it lets us bound from above Fourier distance in terms of the distance between vectors of
correlations with individual variables:

Lemma 50. Let f, g : {−1, 1}n → R. Then we have

dFourier(f, g) ≤ O(
√

log n) ·

√
n∑
i=0

(f ∗(i)− g∗(i))2.

Proof. We first observe that f̂(0) = f ∗(0) and ĝ(0) = g∗(0), so (f̂(0)− ĝ(0))2 = (f ∗(0)−g∗(0))2.
Consequently it suffices to prove that√√√√ n∑

i=1

(f̂(i)− ĝ(i))2 ≤ O(
√

log n) ·

√√√√ n∑
i=1

(f ∗(i)− g∗(i))2,

which is what we show below.
From (3.6), we get

f̂(i) = α
n∑
j=1

f ∗(j) + βf ∗(i) and ĝ(i) = α
n∑
j=1

g∗(j) + βg∗(i).
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and thus we have

(f̂(i)− ĝ(i)) = α

(
n∑
j=1

f ∗(j)−
n∑
j=1

g∗(j)

)
+ β(f ∗(i)− g∗(i)).

Now consider vectors u, v, w ∈ Rn where for i ∈ [n],

ui = (f̂(i)− ĝ(i)), vi =

(
n∑
j=1

f ∗(j)−
n∑
j=1

g∗(j)

)
, and wi = (f ∗(i)− g∗(i))

By combining the triangle inequality and Cauchy-Schwarz, we have

‖u‖2
2 ≤ 2(α2‖v‖2

2 + β2‖w‖2
2),

and moreover

‖v‖2
2 = n

(
n∑
j=1

f ∗(j)−
n∑
j=1

g∗(j)

)2

≤ n2

(
n∑
j=1

(f ∗(j)− g∗(j))2

)
= n2‖w‖2

2.

Hence, we obtain
‖u‖2

2 ≤ 2(α2n2 + β2)‖w‖2
2

Recalling that α2n2 = Θ(log n) and β2 = Θ(log n), we conclude that

dFourier(f, g) =

√√√√ n∑
i=1

(f̂(i)− ĝ(i))2 ≤ O(
√

log n) ·

√√√√ n∑
i=1

(f ∗(i)− g∗(i))2

which completes the proof.

From Fourier closeness to `1-closeness. An important technical ingredient in our work is the
notion of an affine form `(x) having “good anti-concentration” under distribution µ; we now give
a precise definition to capture this.

Definition 51 (Anti-concentration). Fix w ∈ Rn and θ ∈ R, and let the affine form `(x) be

`(x)
def
= w · x− θ. We say that `(x) is (δ, κ)-anti-concentrated under µ if Prx∼µ[|`(x)| ≤ δ] ≤ κ.

The next lemma plays a crucial role in our results. It essentially shows that for f = sign(w ·
x − θ), if the affine form `(x) = w · x − θ is anti-concentrated, then any bounded function
g : {−1, 1}n → [−1, 1] that has dFourier(f, g) small must in fact be close to f in `1 distance under
µ.

Lemma 52. Let f : {−1, 1}n → {−1, 1}, f = sign(w · x− θ) be such that w · x− θ is (δ, κ)-anti-
concentrated under µ (for some κ ≤ 1/2), where |θ| ≤ ‖w‖1. Let g : {−1, 1}n → [−1, 1] be such
that dFourier(f, g) ≤ ρ. Then we have

Ex∼µ[|f(x)− g(x)|] ≤ (4‖w‖1
√
ρ)/δ + 2κ.
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Proof. Let us rewrite `(x)
def
= w · x− θ as a linear combination of the orthonormal basis elements

L0, L1, . . . , Ln (w.r.t. µ), i.e.,

`(x) = ˆ̀(∅)L0 +
n∑
i=1

ˆ̀(i)Li.

Recalling the definitions of Li for i = 1, . . . , n and the fact that L0 = 1, we get ˆ̀(∅) = −θ.
We first establish an upper bound on θ2 +

∑n
j=1

ˆ̀(j)2 as follows :

θ2 +
n∑
j=1

ˆ̀(j)2 = Ex∼µ[(w · x− θ)2] ≤ 2Ex∼µ[(w · x)2] + 2θ2

≤ 2‖w‖2
1 + 2‖w‖2

1 = 4‖w‖2
1.

The first equality above uses the fact that theLi’s are orthonormal under µ, while the first inequality
uses (a+ b)2 ≤ 2(a2 + b2) for a, b ∈ R. The second inequality uses the assumed bound on |θ| and
the fact that |w · x| is always at most ‖w‖1.

Next, Plancherel’s identity (linearity of expectation) gives us that

Ex∼µ[(f(x)− g(x)) · (w · x− θ)] = θ(ĝ(0)− f̂(0)) +
n∑
j=1

ˆ̀(i)(f̂(i)− ĝ(i))

≤

√√√√ n∑
j=0

(f̂(j)− ĝ(j))2 ·

√√√√θ2 +
n∑
j=1

ˆ̀(i)2

≤ 2‖w‖1
√
ρ (3.9)

where the first inequality is Cauchy-Schwarz and the second follows by the conditions of the
lemma.

Now note that since f = sign(w · x− θ), for all x ∈ {−1, 1}n we have

(f(x)− g(x)) · (w · x− θ) = |f(x)− g(x)| · |w · x− θ|

Let E denote the event that |w · x − θ| > δ. Using the fact that the affine form w · x − θ is
(δ, κ)-anti-concentrated, we get that Pr[E] ≥ 1− κ, and hence

Ex∼µ[(f(x)− g(x)) · (w · x− θ)] ≥ Ex∼µ[(f(x)− g(x)) · (w · x− θ) | E]Pr[E]

≥ δ(1− κ)Ex∼µ[|f(x)− g(x)| | E].

Recalling that κ ≤ 1/2, this together with (3.9) implies that

Ex∼µ[|f(x)− g(x)| | E] ≤
4‖w‖1

√
ρ

δ
,

which in turn implies (since |f(x)− g(x)| ≤ 2 for all x ∈ {−1, 1}n) that

Ex∼µ[|f(x)− g(x)|] ≤
4‖w‖1

√
ρ

δ
+ 2κ

as was to be shown.
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3.3 A Useful Anti-concentration Result
In this section we prove an anti-concentration result for monotone increasing η-reasonable affine
forms (see Definition 39) under the distribution µ. Note that even if k is a constant the result gives
an anti-concentration probability of O(1/ log n); this will be crucial in the proof of our first main
result in Section 3.5.

Theorem 53. Let L(x) = w0 +
∑n

i=1wixi be a monotone increasing η-reasonable affine form, so
wi ≥ 0 for i ∈ [n] and |w0| ≤ (1− η)

∑n
i=1 |wi|. Let k ∈ [n], 0 < ζ < 1/2, k ≥ 2/η and r ∈ R+

be such that |S| ≥ k, where S := {i ∈ [n] : |wi| ≥ r}. Then

Pr
x∼µ

[|L(x)| < r] = O

(
1

log n
· 1

k1/3−ζ ·
(

1

ζ
+

1

η

))
.

This theorem essentially says that under the distribution µ, the random variable L(x) falls in
the interval [−r, r] with only a very small probability. Such theorems are known in the literature as
“anti-concentration” results, but almost all such results are for the uniform distribution or for other
product distributions, and indeed the proofs of such results typically crucially use the fact that the
distributions are product distributions.

In our setting, the distribution µ is not even a pairwise independent distribution, so standard
approaches for proving anti-concentration cannot be directly applied. Instead, we exploit the fact
that µ is a symmetric distribution; a distribution is symmetric if the probability mass it assigns to an
n-bit string x ∈ {−1, 1}n depends only on the number of 1’s of x (and not on their location within
the string). This enables us to perform a somewhat delicate reduction to known anti-concentration
results for biased product distributions. Our proof adopts a point of view which is inspired by the
combinatorial proof of the basic Littlewood-Offord theorem (under the uniform distribution on the
hypercube) due to Benjamini et. al. [13]. The detailed proof is given in the following subsection.

Proof of Theorem 53.
Recall that {−1, 1}n=i denotes the i-th “weight level” of the hypercube, i.e., {x ∈ {−1, 1}n :
wt(x) = i}. We view a random draw x ∼ µ as being done according to a two-stage process:

1. Draw i ∈ [n− 1] with probability q(n, i) def
= Q(n, i)/Λ(n). (Note that this is the probability

µ assigns to {−1, 1}n=i.)

2. Independently pick a uniformly random permutation π : [n]→ [n], i.e., π ∼R Sn. The string
x is defined to have xπ(1) = . . . = xπ(i) = 1 and xπ(i+1) = . . . = xπ(n) = −1.

It is easy to see that the above description of µ is equivalent to its original definition. Another
crucial observation is that any symmetric distribution can be sampled in the same way, with q(n, k)
being the only quantity dependent on the particular distribution. We next define a (r, i)-balanced
permutation.
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Definition 54 ((r, i)-balanced permutation). A permutation π : [n]→ [n] is called (r, i)-balanced
if |w0 +

∑i
j=1wπ(j) −

∑n
j=i+1 wπ(j)| ≤ r.

For i ∈ [n−1], let us denote by p(r, i) the fraction of all n! permutations that are (r, i) balanced.
That is,

p(r, i) = Pr
π∼RSn

[
|w0 +

i∑
j=1

wπ(j) −
n∑

j=i+1

wπ(j)| ≤ r

]
.

At this point, as done in [13], we use the above two-stage process defining µ to express the desired
“small ball” probability in a more convenient way. Conditioning on the event that the i-th layer is
selected in the first stage, the probability that |L(x)| < r is p(r, i). By the law of total probability
we can write:

Pr
x∼µ

[|L(x)| < r] =
n−1∑
i=1

p(r, i)q(n, i).

We again observe that p(r, i) is only dependent on the affine form L(x) and does not depend on
the particular symmetric distribution; q(n, i) is the only part dependent on the distribution. The
high-level idea of bounding the quantity

∑n−1
i=1 p(r, i)q(n, i) is as follows: For i which are “close

to 1 or n − 1”, we use Markov’s inequality to argue that the corresponding p(r, i)’s are suitably
small; this allows us to bound the contribution of these indices to the sum, using the fact that each
q(n, i) is small. For the remaining i’s, we use the fact that the pi’s are identical for all symmetric
distributions. This allows us to perform a subtle “reduction” to known anti-concentration results
for biased product distributions.

We start with the following simple claim, a consequence of Markov’s inequality, that shows
that if one of i or n− i is reasonably small, the probability p(r, i) is quite small.

Claim 55. For all i ∈ [n− 1] we have

p(r, i) ≤ (4/η) ·min{i, n− i}/n.

Proof. For i ∈ [n− 1], let Ei = {π ∈ Sn : |w0 +
∑i

j=1wπ(j) −
∑n

j=i+1wπ(j)| ≤ r}. By definition
we have that p(r, i) = Prπ∼RSn [Ei].

Let i ≤ n/2. If the event Ei occurs, we certainly have that w0 +
∑i

j=1wπ(j) −
∑n

j=i+1 wπ(j) ≥
−r which yields that

i∑
j=1

wπ(j) ≥ (1/2)(
n∑
i=1

wi − r − w0).

That is,

p(r, i) ≤ Pr
π∼RSn

[
i∑

j=1

wπ(j) ≥ (1/2)(
n∑
i=1

wi − r − w0)

]
.

Consider the random variable X =
∑i

j=1wπ(j) and denote α def
= (1/2)(

∑n
i=1 wi − r − w0). We

will bound from above the probability

Pr
π∼RSn

[X ≥ α] .
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Since π is chosen uniformly from Sn, we have that Eπ∼RSn [wπ(j)] = (1/n) ·
∑n

i=1 wi, hence

Eπ∼RSn [X] = (i/n) ·
n∑
i=1

wi.

Recalling that |w0| ≤ (1− η) ·
∑n

i=1 wi and noting that
∑n

i=1 wi ≥
∑

i∈S wi ≥ kr ≥ (2/η) · r, we
get

α ≥ (η/4) ·
n∑
i=1

wi.

Therefore, noting that X > 0, by Markov’s inequality, we obtain that

Pr
π∼RSn

[X ≥ α] ≤ Eπ∼RSn [X]

α
≤ (4/η) · (i/n)

as was to be proven.
If i ≥ n/2, we proceed analogously. If Ei occurs, we have w0 +

∑i
j=1wπ(j)−

∑n
j=i+1wπ(j) ≤ r

which yields that
n∑

j=i+1

wπ(j) ≥ (1/2)(
n∑
i=1

wi + w0 − r).

We then repeat the exact same Markov type argument for the random variable
∑n

j=i+1wπ(j). This
completes the proof of the claim.

Of course, the above lemma is only useful when either i or n − i is relatively small. Fix
i0 < n/2 (to be chosen later). Note that, for all i ≤ n/2, it holds q(n, i) ≤ 2

i·Λ(n)
. By Claim 55 we

thus get that
i0∑
i=1

p(r, i)q(n, i) ≤
i0∑
i=1

2

i · Λ(n)
· 4

η
· i
n
≤ 8i0
η · n · Λ(n)

. (3.10)

By symmetry, we get
n−1∑

i=n−i0
p(r, i)q(n, i) ≤ 8i0

η · n · Λ(n)
. (3.11)

We proceed to bound from above the term
∑n−i0−1

i=i0+1 p(r, i)q(n, i). To this end, we exploit the
fact, mentioned earlier, that the p(r, i)’s depend only on the affine form and not on the particular
symmetric distribution over weight levels. We use a subtle argument to essentially reduce anti-
concentration statements about µ to known anti-concentration results.

For δ ∈ (0, 1) let Dδ be the δ-biased distribution over {−1, 1}n; that is the product distribution
in which each coordinate is 1 with probability δ and −1 with probability 1 − δ. Denote by g(δ, i)
the probability that Dδ assigns to {−1, 1}n=i, i.e., g(δ, i) =

(
n
i

)
δi(1− δ)n−i. Theorem 5 now yields

Pr
x∼Dδ

[|L(x)| < r] ≤ 1√
kδ(1− δ)

.
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Using symmetry, we view a random draw x ∼ Dδ as a two-stage procedure, exactly as in µ, the
only difference being that in the first stage we pick the i-th weight level of the hypercube, i ∈ [0, n],
with probability g(δ, i). We can therefore write

Pr
x∼Dδ

[|L(x)| < r] =
n∑
i=0

g(δ, i)p(r, i)

and thus conclude that

n−i0−1∑
i=i0+1

g(δ, i)p(r, i) ≤
n∑
i=0

g(δ, i)p(r, i) ≤ 1√
kδ(1− δ)

. (3.12)

We now state and prove the following crucial lemma. The idea of the lemma is to bound from above
the sum

∑n−i0−1
i=i0+1 p(r, i)q(n, i) by suitably averaging over anti-concentration bounds obtained from

the δ-biased product distributions:

Lemma 56. Let F : [0, 1]→ R+ be such that q(n, i) ≤
∫ 1

δ=0
F (δ)g(δ, i)dδ for all i ∈ [i0 + 1, n−

i0 − 1]. Then,
n−i0−1∑
i=i0+1

p(r, i)q(n, i) ≤ 1√
k
·
∫ 1

δ=0

F (δ)√
δ(1− δ)

dδ.

Proof. We have the following sequence of inequalities

n−i0−1∑
i=i0+1

p(r, i)q(n, i) ≤
n−1−i0∑
i=i0+1

(∫ 1

δ=0

F (δ)g(δ, i)dδ

)
· p(r, i)

=

∫ 1

δ=0

F (δ)

(
n−i0−1∑
i=i0+1

g(δ, i)p(r, i)

)
dδ

≤ 1√
k
·
∫ 1

δ=0

F (δ)√
δ(1− δ)

dδ

where the first line follows from the assumption of the lemma, the second uses linearity and the
third uses (3.12).

We thus need to choose appropriately a function F satisfying the lemma statement which can
give a non-trivial bound on the desired sum. Fix ζ > 0, and define F (δ) as

F (δ)
def
=

1024

Λ(n)
· (n+ 1)1/2+ζ

i
1/2+ζ
0

(
1

δ1/2−ζ +
1

(1− δ)1/2−ζ

)
.

The following claim (proved in Section 3.3) says that this choice of F (δ) satisfies the conditions
of Lemma 56:

Claim 57. For the above choice of F (δ) and i0 ≤ i ≤ n− i0, q(n, i) ≤
∫ 1

δ=0
F (δ)g(δ, i)dδ.
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Now, applying Lemma 56, for this choice of F (δ), we get that

n−i0−1∑
i=i0+1

p(r, i)q(n, i)

≤ 1√
k
· 1024

Λ(n)
· (n+ 1)1/2+ζ

i
1/2+ζ
0

∫ 1

δ=0

(
1

δ1/2−ζ +
1

(1− δ)1/2−ζ

)
1√

δ(1− δ)
dδ.

= O

(
1

ζ
· 1√

k
· 1

Λ(n)
· (n+ 1)1/2+ζ

i
1/2+ζ
0

)
.

We choose (with foresight) i0 = d n
k1/3
e. Then the above expression simplifies to

n−i0−1∑
i=i0+1

p(r, i)q(n, i) = O

(
1

ζ
· 1

Λ(n)
· 1

k1/3−ζ

)
Now plugging i0 = d n

k1/3
e in (3.10) and (3.11), we get

∑
i≤i0∨i≥n−i0

p(r, i)q(n, i) = O

(
1

ηΛ(n)
· 1

k1/3

)
Combining these equations, we get the final result, and Theorem 53 is proved.

Proof of Claim 57
We will need the following basic facts :

Fact 58. For x, y ∈ R+ let Γ : R+ → R be the usual “Gamma” function, so that∫ 1

δ=0

δx(1− δ)ydδ =
Γ(x+ 1) · Γ(y + 1)

Γ(x+ y + 2)

Recall that for z ∈ Z+, Γ(z) = (z − 1)!.

Fact 59. (Stirling’s approximation) For z ∈ R+, we have Γ(z) =
√

2π
z
·
(
z
e

)z · (1 +O
(

1
z

))
. In

particular, there is an absolute constant c0 > 0 such that for z ≥ c0

1

2
·
√

2π

z
·
(z
e

)z
≤ Γ(z) ≤ 2 ·

√
2π

z
·
(z
e

)z
.

Fact 60. For x ∈ R and x ≥ 2, we have
(
1− 1

x

)x ≥ 1
4
.
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We can now proceed with the proof of Claim 57. We consider the case when i0 ≤ i ≤ n/2.
(The proof of the complementary case (n − i0 − 1 ≥ i > n/2) is essentially identical.) We have
the following chain of inequalities:∫ 1

δ=0

F (δ)g(δ, i)dδ

=
1024

Λ(n)
· (n+ 1)1/2+ζ

i
1/2+ζ
0

·
(
n

i

)
·
∫ 1

δ=0

δi(1− δ)n−i ·
(

1

δ1/2−ζ +
1

(1− δ)1/2−ζ

)
dδ

≥ 1024

Λ(n)
· (n+ 1)1/2+ζ

i
1/2+ζ
0

·
(
n

i

)
·
∫ 1

δ=0

δi−1/2+ζ(1− δ)n−i dδ

=
1024

Λ(n)
· (n+ 1)1/2+ζ

i
1/2+ζ
0

·
(
n

i

)
· Γ(n− i+ 1) · Γ(i+ 1/2 + ζ)

Γ(n+ 3/2 + ζ)
(using Fact 58)

=
1024

Λ(n)
· (n+ 1)1/2+ζ

i
1/2+ζ
0

· Γ(n+ 1)

Γ(i+ 1) · Γ(n− i+ 1)
· Γ(n− i+ 1) · Γ(i+ 1/2 + ζ)

Γ(n+ 3/2 + ζ)

=
1024

Λ(n)
· (n+ 1)1/2+ζ

i
1/2+ζ
0

· Γ(n+ 1) · Γ(i+ 1/2 + ζ)

Γ(i+ 1) · Γ(n+ 3/2 + ζ)

We now proceed to bound from below the right hand side of the last inequality. Towards that, using
Fact 59 and assuming n and i are large enough, we have

Γ(n+ 1) · Γ(i+ 1/2 + ζ)

Γ(i+ 1) · Γ(n+ 3/2 + ζ)

≥ 1

16
· (n+ 1)n+1/2

(i+ 1)i+1/2
· (i+ 1/2 + ζ)i+ζ

(n+ 3/2 + ζ)n+ζ+1

≥ 1

16
· 1

n+ 2
· (n+ 1)n+1/2

(i+ 1)i+1/2
· (i+ 1/2 + ζ)i+ζ

(n+ 3/2 + ζ)n+ζ

≥ 1

16
· 1

n+ 2
· (n+ 1)n+ζ

(n+ 3/2 + ζ)n+ζ
· (i+ 1/2 + ζ)i+ζ

(i+ 1)i+ζ
· (n+ 1)1/2−ζ

(i+ 1)1/2−ζ

≥ 1

256
· 1

n+ 2
· (n+ 1)1/2−ζ

(i+ 1)1/2−ζ ≥
1

512
· 1

(n+ 1)1/2+ζ
· 1

(i+ 1)1/2−ζ

Plugging this back, we get∫ 1

δ=0

F (δ)g(δ, i)dδ ≥ 1024

Λ(n)
· (n+ 1)1/2+ζ

i
1/2+ζ
0

· Γ(n+ 1) · Γ(i+ 1/2 + ζ)

Γ(i+ 1) · Γ(n+ 3/2 + ζ)

≥ 1024

Λ(n)
· (n+ 1)1/2+ζ

i
1/2+ζ
0

· 1

512
· 1

(n+ 1)1/2+ζ
· 1

(i+ 1)1/2−ζ

=
2

Λ(n)
· 1

i
1/2+ζ
0

· 1

(i+ 1)1/2−ζ ≥
2

Λ(n)
· 1

i
≥ q(n, i)
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which concludes the proof of the claim.

3.4 A Useful Algorithmic Tool
In this section we describe a useful algorithmic tool arising from recent work in computational
complexity theory. The main result we will need is the following theorem of [138] (the ideas go
back to [70] and were used in a different form in [31]):

Theorem 61. ([138]) Let X be a finite domain, µ be a samplable probability distribution over
X , f : X → [−1, 1] be a bounded function, and L be a finite family of Boolean functions ` :
X → {−1, 1}. There is an algorithm Boosting-TTV with the following properties: Suppose
Boosting-TTV is given as input a list (a`)`∈L of real values and a parameter ξ > 0 such that
|Ex∼µ[f(x)`(x)]− a`| ≤ ξ/16 for every ` ∈ L. Then Boosting-TTV outputs a function h : X →
[−1, 1] with the following properties:

(i) |Ex∼µ[`(x)h(x)− `(x)f(x)]| ≤ ξ for every ` ∈ L;

(ii) h(x) is of the form h(x) = P1( ξ
2
·
∑

`∈Lw``(x)) where the w`’s are integers whose absolute
values sum to O(1/ξ2).

The algorithm runs for O(1/ξ2) iterations, where in each iteration it estimates Ex∼µ[h′(x)`(x)]
to within additive accuracy ±ξ/16. Here each h′ is a function of the form h′(x) = P1( ξ

2
·∑

`∈L v``(x)), where the v`’s are integers whose absolute values sum to O(1/ξ2).

We note that Theorem 61 is not explicitly stated in the above form in [138]; in particular,
neither the time complexity of the algorithm nor the fact that it suffices for the algorithm to be
given “noisy” estimates a` of the values Ex∼µ[f(x)`(x)] is explicitly stated in [138]. So for the
sake of completeness, in the following we state the algorithm in full (see Figure 3.4) and sketch a
proof of correctness of this algorithm using results that are explicitly proved in [138].

Proof of Theorem 61. It is clear from the description of the algorithm that (if and) when the al-
gorithm Boosting-TTV terminates, the output h satisfies property (i) and has the form h(x) =
P1( ξ

2
·
∑

`∈Lw``(x)) where each w` is an integer. It remains to bound the number of iterations
(which gives a bound on the sum of magnitudes of w`’s) and indeed to show that the algorithm
terminates at all.

Towards this, we recall Claim 3.4 in [138] states the following:

Claim 62. For all x ∈ supp(µ) and all t ≥ 1, we have
∑t

j=1 fj(x) · (f(x)− hj−1(x)) ≤ (4/γ) +
(γt)/2.

We now show how this immediately gives Theorem 61. Fix any j ≥ 0, and suppose without
loss of generality that a` − a`,j > γ. We have that

|Ex∼µ[fj+1(x)hj(x)]− a`,j| ≤ ξ/16 and hence Ex∼µ[fj+1(x)hj(x)] ≤ a`,j + ξ/16,
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and similarly

|Ex∼µ[fj+1(x)f(x)]− a`| ≤ ξ/16 and hence Ex∼µ[fj+1(x)f(x)] ≥ a` − ξ/16.

Combining these inequalities with a` − a`,j > γ = ξ/2, we conclude that

Ex∼µ[fj+1(x)(f(x)− hj(x))] ≥ 3ξ/8.

Putting this together with Claim 62, we get that

3ξt

8
≤

t∑
j=1

Ex∼µ[fj(x)(f(x)− hj−1(x))] ≤ 4

γ
+
γt

2
.

Since γ = ξ/2, this means that if the algorithm runs for t time steps, then 8/ξ ≥ (ξt)/8, which
implies that t ≤ 64/ξ2. This concludes the proof.

Boosting-TTV

Parameters:
ξ := positive real number
µ := samplable distribution over finite domain X
L := finite list of functions such that all ` ∈ L maps X to {−1, 1}.

(a`)`∈L := list of real numbers with the promise that some f : X → [−1, 1] has
|Ex∼µ[f(x)`(x)]− a`| ≤ ξ/16 for all ` ∈ L.

Output:
An LBF h(x) ≡ P1(

∑
`∈Lw``(x)), where w` ∈ Z, such that Ex∼µ[h(x)`(x)]− f(x)`(x)| ≤ ξ for

all ` ∈ L.

Algorithm:

1. Let L0 def
= {` : ` ∈ L or −` ∈ L}. Fix γ def

= ξ/2.

2. Let h0
def
= 0. Set t = 0.

3. For each ` ∈ L, find a`,t ∈ R such that |Ex∼µ[ht(x)`(x)]− a`,t| ≤ ξ/16.

4. If |a` − a`,t| ≤ γ for all ` ∈ L, then stop and output ht. Otherwise, fix ` to be any element of
L such that |a` − a`,t| > γ.

• If a` − a`,t > γ then set ft+1
def
= ` else set ft+1

def
= −γ. Note that ft+1 ∈ L0.

• Define ht+1 as ht+1(x)
def
= P1(γ(

∑t+1
j=1 fj(x))).

5. Set t = t+ 1 and go to Step 3.
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3.5 Our Main Results
In this section we combine ingredients from the previous subsections and prove our main results,
Theorems 63 and 64.

Our first main result gives an algorithm that works if any monotone increasing η-reasonable
LTF has approximately the right Shapley values:

Theorem 63. There is an algorithm IS (for Inverse-Shapley) with the following properties. IS
is given as input an accuracy parameter ε > 0, a confidence parameter δ > 0, and n real values
a(1), . . . , a(n); its output is a pair v ∈ Rn, θ ∈ R. Its running time is poly(n, 2poly(1/ε), log(1/δ)).
The performance guarantees of IS are the following:

1. Suppose there is a monotone increasing η-reasonable LTF f(x) such that dShapley(a, f) ≤
1/poly(n, 2poly(1/ε)). Then with probability 1− δ algorithm IS outputs v ∈ Rn, θ ∈ R which
are such that the LTF h(x) = sign(v · x− θ) has dShapley(f, h) ≤ ε.

2. For any input vector (a(1), . . . , a(n)), the probability that IS outputs v ∈ Rn, θ ∈ R such
that the LTF h(x) = sign(v · x− θ) has dShapley(f, h) > ε is at most δ.

Proof. We first note that we may assume ε > n−c for a constant c > 0 of our choosing, for if
ε ≤ n−c then the claimed running time is 2Ω(n2 logn). In this much time we can easily enumerate all
LTFs over n variables (by trying all weight vectors with integer weights at most nn; this suffices
by [116]) and compute their Shapley values exactly, and thus solve the problem. So for the rest of
the proof we assume that ε > n−c.

It will be obvious from the description of IS that property (2) above is satisfied, so the main
job is to establish (1). Before giving the formal proof we first describe an algorithm and analysis
achieving (1) for an idealized version of the problem. We then describe the actual algorithm and
its analysis (which build on the idealized version).

Recall that the algorithm is given as input ε, δ and a(1), . . . , a(n) that satisfy dShapley(a, f) ≤
1/poly(n, 2poly(1/ε)) for some monotone increasing η-reasonable LTF f . The idealized version of
the problem is the following: we assume that the algorithm is also given the two real values f ∗(0),∑n

i=1 f
∗(i)/n. It is also helpful to note that since f is monotone and η-reasonable (and hence is

not a constant function), it must be the case that f(1) = 1 and f(−1) = −1.
The algorithm for this idealized version is as follows: first, using Lemma 45, the values f̃(i),

i = 1, . . . , n are converted into values a∗(i) which are approximations for the values f ∗(i). Each
a∗(i) satisfies |a∗(i) − f ∗(i)| ≤ 1/poly(n, 2O(poly(1/ε))). The algorithm sets a∗(0) to f ∗(0). Next,
the algorithm runs Boosting-TTV with the following input: the family L of Boolean functions is
{1, x1, . . . , xn}; the values a∗(0), . . . , a∗(n) comprise the list of real values; µ is the distribution;
and the parameter ξ is set to 1/poly(n, 2poly(1/ε)). (We note that each execution of Step 3 of
Boosting-TTV, namely finding values that closely estimate Ex∼µ[ht(x)xi] as required, is easily
achieved using a standard sampling scheme; for completeness in Appendix B.2 we describe a
procedure Estimate-Correlation that can be used to do all the required estimations with overall
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failure probability at most δ.) Boosting-TTV outputs an LBF h(x) = P1(v · x− θ); the output of
our overall algorithm is the LTF h′(x) = sign(v · x− θ).

Let us analyze this algorithm for the idealized scenario. By Theorem 61, the output func-
tion h that is produced by Boosting-TTV is an LBF h(x) = P1(v · x − θ) that satisfies the
equation

√∑n
j=0(h∗(j)− f ∗(j))2 = 1/poly(n, 2poly(1/ε)). Given this, Lemma 50 implies that

dFourier(f, h) ≤ ρ
def
= 1/poly(n, 2poly(1/ε)).

At this point, we have established that h is a bounded function that satisfies the constraint
dFourier(f, h) ≤ 1/poly(n, 2poly(1/ε)). We would like to apply Lemma 52 and thereby assert that
the `1 distance between f and h (with respect to µ) is small. To see that we can do this, we first
note that since f is a monotone increasing η-reasonable LTF, by Theorem 40 it has a representation
as f(x) = sign(w · x + w0) whose weights satisfy the properties claimed in that theorem; in
particular, for any choice of ζ > 0, after rescaling all the weights, the largest-magnitude weight
has magnitude 1, and the k def

= Θζ,η(1/ε
6+2ζ) largest-magnitude weights each have magnitude at

least r def
= 1/(n · kO(k)). (Note that since ε ≥ n−c we indeed have k ≤ n as required.) Given this,

Theorem 53 implies that the affine form L(x) = w · x+ w0 satisfies

Pr
x∼µ

[|L(x)| < r] ≤ κ
def
= ε2/(512 log(n)), (3.13)

i.e., it is (r, κ)-anticoncentrated with κ = ε2/(512 log(n)). Thus we may indeed apply Lemma 52,
and it gives us that

Ex∼µ[|f(x)− h(x)|] ≤
4‖w‖1

√
ρ

r
+ 2κ ≤ ε2/(128 log n). (3.14)

Now let h′ : {−1, 1}n → {−1, 1} be the LTF defined as h′(x) = sign(v · x− θ) (recall that h
is the LBF P1(v · x − θ)). Since f is a {−1, 1}-valued function, it is clear that for every input x
in the support of µ, the contribution of x to Prx∼µ[f(x) 6= h′(x)] is at most twice its contribution
to Ex∼µ[|f(x) − h(x)|]. Thus we have that Prx∼µ[f(x) 6= h′(x)] ≤ ε2/(64 log n). We may now
apply Fact 44 to obtain that dFourier(f, h

′) ≤ ε/(4
√

log n). Finally, Lemma 49 gives that

dShapley(f, h′) ≤ 4/
√
n+

√
Λ(n) · ε/(4

√
log n) < ε/2.

So indeed the LTF h′(x) = sign(v · x− θ) satisfies dShapley(f, h′) ≤ ε/2 as desired.

Now we turn from the idealized scenario to actually prove Theorem 63, where we are not given
the values of f ∗(0) and

∑n
i=1 f

∗(i)/n. To get around this, we note that f ∗(0),
∑n

i=1 f
∗(i)/n ∈

[−1, 1]. So the idea is that we will run the idealized algorithm repeatedly, trying “all” possibilities
(up to some prescribed granularity) for f ∗(0) and for

∑n
i=1 f

∗(i)/n. At the end of each such run we
have a “candidate” LTF h′; we use a simple procedure Shapley-Estimate (see Appendix B.2) to
estimate dShapley(f, h′) to within additive accuracy ±ε/10, and we output any h′ whose estimated
value of dShapley(f, h′) is at most 8ε/10.

We may run the idealized algorithm poly(n, 2poly(1/ε)) times without changing its overall run-
ning time (up to polynomial factors). Thus we can try a net of possible guesses for f ∗(0) and
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∑n
i=1 f

∗(i)/n which is such that one guess will be within ±1/poly(n, 2poly(1/ε)) of the the correct
values for both parameters. It is straightforward to verify that the analysis of the idealized scenario
given above is sufficiently robust that when these “good” guesses are encountered, the algorithm
will with high probability generate an LTF h′ that has dShapley(f, h′) ≤ 6ε/10. A straightforward
analysis of running time and failure probability shows that properties (1) and (2) are achieved as
desired, and Theorem 63 is proved.

For any monotone η-reasonable target LTF f , Theorem 63 constructs an output LTF whose
Shapley distance from f is at most ε, but the running time is exponential in poly(1/ε). We now
show that if the target monotone η-reasonable LTF f has integer weights that are at most W , then
we can construct an output LTF h with dShapley(f, h) ≤ n−1/8 running in time poly(n,W ); this is
a far faster running time than provided by Theorem 63 for such small ε. (The “1/8” is chosen for
convenience; it will be clear from the proof that any constant strictly less than 1/6 would suffice.)

Theorem 64. There is an algorithm ISBW (for Inverse-Shapley with Bounded Weights) with
the following properties. ISBW is given as input a weight boundW ∈ Z+, a confidence parameter
δ > 0, and n real values a(1), . . . , a(n); its output is a pair v ∈ Rn, θ ∈ R. Its running time is
poly(n,W, log(1/δ)). The performance guarantees of ISBW are the following:

1. Suppose there is a monotone increasing η-reasonable LTF f(x) = sign(u · x − θ), where
each ui is an integer with |ui| ≤ W , such that dShapley(a, f) ≤ 1/poly(n,W ). Then with
probability 1 − δ algorithm ISBW outputs v ∈ Rn, θ ∈ R which are such that the LTF
h(x) = sign(v · x− θ) has dShapley(f, h) ≤ n−1/8.

2. For any input vector (a(1), . . . , a(n)), the probability that IS outputs v, θ such that the LTF
h(x) = sign(v · x− θ) has dShapley(f, h) > n−1/8 is at most δ.

Proof. Let f(x) = sign(u · x − θ) be as described in the theorem statement. We may assume
that each |ui| ≥ 1 (by scaling all the ui’s and θ by 2n and then replacing any zero-weight ui with
1). Next we observe that for such an affine form u · x − θ, Theorem 53 immediately yields the
following corollary:

Corollary 65. Let L(x) =
∑n

i=1 uixi − θ be a monotone increasing η-reasonable affine form.
Suppose that ui ≥ r for all i = 1, . . . , n. Then for any ζ > 0, we have

Pr
x∼µ

[|L(x)| < r] = O

(
1

log n
· 1

n1/3−ζ ·
(

1

ζ
+

1

η

))
.

With this anti-concentration statement in hand, the proof of Theorem 64 closely follows the
proof of Theorem 63. The algorithm runs Boosting-TTV with L, a∗(i) and µ as before but now
with ξ set to 1/poly(n,W ). The LBF h that Boosting-TTV outputs satisfies dFourier(f, h) ≤ ρ

def
=

1/poly(n,W ). We apply Corollary 65 to the affine form L(x)
def
= u
‖u‖1 · x −

θ
‖u‖1 and get that for

r = 1/poly(n,W ), we have

Pr
x∼µ

[|L(x)| < r] ≤ κ
def
= ε2/(1024 log n) (3.15)
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where now ε
def
= n−1/8, in place of Equation (3.13). Applying Lemma 52 we get that

Ex∼µ[|f(x)− h(x)|] ≤
4‖w‖1

√
ρ

r
+ 4κ ≤ ε2/(128 log n)

analogous to (3.14). The rest of the analysis goes through exactly as before, and we get that the
LTF h′(x) = sign(v · x − θ) satisfies dShapley(f, h′) ≤ ε/2 as desired. The rest of the argument is
unchanged so we do not repeat it.
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Chapter 4

Inverse approximate uniform generation

The generation of (approximately) uniform random combinatorial objects has been an important
research topic in theoretical computer science for several decades. In complexity theory, well-
known results have related approximate uniform generation to other fundamental topics such as
approximate counting and the power of nondeterminism [74, 72, 132, 133, 134]. On the algorithms
side, celebrated algorithms have been given for a wide range of approximate uniform generation
problems such as perfect matchings [75], graph colorings (see e.g. [73, 147, 66]), satisfying as-
signments of DNF formulas [82, 72, 81], of linear threshold functions (i.e., knapsack instances)
[112, 43] and more.

Before describing the inverse problems that we consider, let us briefly recall the usual frame-
work of approximate uniform generation. An approximate uniform generation problem is defined
by a class C of combinatorial objects and a polynomial-time relation R(x, y) over C × {0, 1}∗. An
input instance of the problem is an object x ∈ C, and the problem, roughly speaking, is to output an
approximately uniformly random element y from the set Rx := {y : R(x, y) holds}. Thus an algo-
rithm A (which must be randomized) for the problem must have the property that for all x ∈ C, the
output distribution of A(x) puts approximately equal weight on every element ofRx. For example,
taking the class of combinatorial objects to be {all n × n bipartite graphs} and the polynomial-
time relation R over (G,M) pairs to be “M is a perfect matching in G,” the resulting approximate
uniform generation problem is to generate an (approximately) uniform perfect matching in a given
bipartite graph; a poly(n, log(1/ε))-time algorithm was given in [75]. As another example, taking
the combinatorial object to be a linear threshold function (LTF) f(x) = sign(w · x − θ) mapping
{−1, 1}n → {−1, 1} (represented as a vector (w1, . . . , wn, θ)) and the polynomial-time relation
R over (f, x) to be “x is a satisfying assignment for f ,” we arrive at the problem of generat-
ing approximately uniform satisfying assignments for an LTF (equivalently, feasible solutions to
zero-one knapsack). A polynomial-time algorithm was given by [112] and a faster algorithm was
subsequently proposed by [43].

The focus of this chapter is on inverse problems in approximate uniform generation. In such
problems, instead of having to output (near-)uniform elements of Rx, the input is a sample of
elements drawn uniformly from Rx, and the problem (roughly speaking) is to “reverse engineer”
the sample and output a distribution which is close to the uniform distribution over Rx. More
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precisely, following the above framework, a problem of this sort is again defined by a class C
of combinatorial objects and a polynomial-time relation R. However, now an input instance of
the problem is a sample {y1, . . . , ym} of strings drawn uniformly at random from the set Rx :=
{y : R(x, y) holds}, where now x ∈ C is unknown. The goal is to output an ε-sampler for
Rx, i.e., a randomized algorithm (which takes no input) whose output distribution is ε-close in
total variation distance to the uniform distribution over Rx. Revisiting the first example from the
previous paragraph, for the inverse problem the input would be a sample of uniformly random
perfect matchings of an unknown bipartite graph G, and the problem is to output a sampler for the
uniform distribution over all perfect matchings of G. For the inverse problem corresponding to the
second example, the input is a sample of uniform random satisfying assignments of an unknown
LTF over the Boolean hypercube, and the desired output is a sampler that generates approximately
uniform random satisfying assignments of the LTF.

Discussion. Before proceeding we briefly consider some possible alternate definitions of inverse
approximate uniform generation, and argue that our definition is the “right” one (we give a precise
statement of our definition in Section 4.1, see Definition 76).

One stronger possible notion of inverse approximate uniform generation would be that the
output distribution should be supported on Rx and put nearly the same weight on every element of
Rx, instead of just being ε-close to uniform over Rx. However a moment’s thought suggests that
this notion is too strong, since it is impossible to efficiently achieve this strong guarantee even in
simple settings. (Consider, for example, the problem of inverse approximate uniform generation
of satisfying assignments for an unknown LTF. Given access to uniform satisfying assignments of
an LTF f , it is impossible to efficiently determine whether f is (say) the majority function or an
LTF that differs from majority on precisely one point in {−1, 1}n, and thus it is impossible to meet
this strong guarantee.)

Another possible definition of inverse approximate uniform generation would be to require that
the algorithm output an ε-approximation of the unknown object x instead of an ε-sampler for Rx.
Such a proposed definition, though, leads immediately to the question of how one should measure
the distance between a candidate object x′ and the true “target” object x. The most obvious choice
would seem to be the total variation distance between URx (the uniform distribution over Rx) and
URx′ ; but given this distance measure, it seems most natural to require that the algorithm actually
output an ε-approximate sampler for Rx.

Inverse approximate uniform generation via reconstruction and sampling. While our ultimate
goal, as described above, is to obtain algorithms that output a sampler, algorithms that attempt to
reconstruct the unknown object x will also play an important role for us. Given C, R as above, we
say that an (ε, δ)-reconstruction algorithm is an algorithm Areconstruct that works as follows: for
any x ∈ C, if Areconstruct is given as input a sample of m = m(ε, δ) i.i.d. draws from the uniform
distribution over Rx, then with probability 1− δ the output of Areconstruct is an object x̃ ∈ C̃ such
that the variation distance dTV(URx ,URx̃) is at most ε. (Note that the class C̃ need not coincide with
the original class C̃, so x̃ need not necessarily belong to C.) With this notion in hand, an intuitively
appealing schema for algorithms that solve inverse approximate uniform generation problems is to
proceed in the following two stages:
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1. (Reconstruct the unknown object): Run a reconstruction algorithm Areconstruct with accu-
racy and confidence parameters ε/2, δ/2 to obtain x̃ ∈ C̃;

2. (Sample from the reconstructed object): Let Asample be an algorithm which solves the
approximate uniform generation problem (C̃, R) to accuracy ε/2 with confidence 1 − δ/2.
The desired sampler is the algorithm Asample with its input set to x̃.

We refer to this as the standard approach for solving inverse approximate uniform generation
problems. Most of our positive results for inverse approximate uniform generation can be viewed
as following this approach, but we will see an interesting exception in Section 4.6, where we
give an efficient algorithm for an inverse approximate uniform generation problem which does not
follow the standard approach.

Relation between inverse approximate uniform generation and other
problems.
Most of our results will deal with uniform generation problems in which the class C of combina-
torial objects is a class of syntactically defined Boolean functions over {−1, 1}n (such as the class
of all LTFs, all poly(n)-term DNF formulas, all 3-CNFs, etc.) and the polynomial-time relation
R(f, y) for f ∈ C is “y is a satisfying assignment for f .” In such cases our inverse approximate
uniform generation problem can be naturally recast in the language of learning theory as an un-
supervised learning problem (learning a probability distribution from a known class of possible
target distributions): we are given access to samples from Uf−1(1), the uniform distribution over
satisfying assignments of f ∈ C, and the task of the learner is to construct a hypothesis distribution
D such that dTV(Uf−1(1), D) ≤ ε with high probability. We are not aware of prior work in unsu-
pervised learning that focuses specifically on distribution learning problems of this sort (where the
target distribution is uniform over the set of satisfying assignments of an unknown member of a
known class of Boolean functions).

Our framework also has some similarities to “uniform-distribution learning from positive ex-
amples only,” since in both settings the input to the algorithm is a sample of points drawn uniformly
at random from f−1(1), but there are several differences as well. One difference is that in uniform-
distribution learning from positive examples the goal is to output a hypothesis function h, whereas
here our goal is to output a hypothesis distribution (note that outputting a function h essentially cor-
responds to the reconstruction problem described above). A more significant difference is that the
success criterion for our framework is significantly more demanding than for uniform-distribution
learning. In uniform-distribution learning of a Boolean function f over the hypercube {−1, 1}n,
the hypothesis h must satisfy Pr[h(x) 6= f(x)] ≤ ε, where the probability is uniform over all 2n

points in {−1, 1}n. Thus, for a given setting of the error parameter ε, in uniform-distribution learn-
ing the constant−1 function is an acceptable hypothesis for any function f that has |f−1(1)| ≤ ε2n.
In contrast, in our inverse approximate uniform generation framework we measure error by the to-
tal variation distance between Uf−1(1) and the hypothesis distributionD, so no such “easy way out”
is possible when |f−1(1)| is small; indeed the hardest instances of inverse approximate uniform
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generation problems are often those for which f−1(1) is a very small fraction of {−1, 1}n. Essen-
tially we require a hypothesis with small multiplicative error relative to |f−1(1)|/2n rather than
the additive-error criterion that is standard in uniform-distribution learning. We are not aware of
prior work on learning Boolean functions in which such a “multiplicative-error” criterion has been
employed.

We summarize the above discussion with the following observation, which essentially says that
reconstruction algorithms directly yield uniform-distribution learning algorithms:

Observation 66. Let C be a class of Boolean functions {−1, 1}n → {−1, 1} and let R(f, y)
be the relation “y is a satisfying assignment for f .” Suppose there exists a t(n, ε, δ)-time (ε, δ)-
reconstruction algorithm for C that outputs elements of C̃. Then there is an (O(log(1/δ)/ε2) +
O(t(n, ε, δ/3) · log(1/δ)/ε))-time uniform-distribution learning algorithm that outputs hypotheses
in C̃ (i.e., given access to uniform random labeled examples (x, f(x)) for any f ∈ C, the algorithm
with probability 1− δ outputs a hypothesis h ∈ C̃ such that Pr[h(x) 6= f(x)] ≤ ε).

Proof. The learning algorithm draws an initial set of O(log(1/δ)/ε2) uniform labeled examples to
estimate |f−1(1)|/2n to within an additive ±(ε/4) with confidence 1− δ/3. If the estimate is less
than 3ε/4 the algorithm outputs the constant−1 hypothesis. Otherwise, by drawingO(t(n, ε, δ/3)·
log(1/δ)/ε)) uniform labeled examples, with failure probability at most δ/3 it can obtain t(n, ε, δ/3)
positive examples (i.e., points that are uniformly distributed over f−1(1)). Finally the learning al-
gorithm can use these points to run the reconstruction algorithm with parameters ε, δ/3 to obtain a
hypothesis h ∈ C̃ that has dTV(Uf−1(1),Uh−1(1)) ≤ ε with failure probability at most δ/3. Such a
hypothesis h is easily seen to satisfy Pr[h(x) 6= f(x)] ≤ ε.

As described in the following subsection, in this chapter we prove negative results for the
inverse approximate uniform generation problem for classes such as 3CNF-formulas, monotone 2-
CNF formulas, and degree-2 polynomial threshold functions. Since efficient uniform-distribution
learning algorithms are known for these classes, these results show that the inverse approximate
uniform generation problem is indeed harder than standard uniform-distribution learning for some
natural and interesting classes of functions.

The problem of inverse approximate uniform generation is also somewhat reminiscent of the
problem of reconstructing Markov Random Fields (MRFs) from random samples [19, 28, 113].
Much progress has been made on this problem over the past decade, especially when the hidden
graph is a tree. However, there does not seem to be a concrete connection between this problem
and the problems we study. One reason for this seems to be that in MRF reconstruction, the task
is to reconstruct the model and not just the distribution; because of this, various conditions need to
be imposed in order to guarantee the uniqueness of the underlying model given random samples
from the distribution. In contrast, in our setting the explicit goal is to construct a high-accuracy
distribution, and it may indeed be the case that there is no unique underlying model (i.e., Boolean
function f ) given the samples received from the distribution.
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Our results.
We give a wide range of both positive and negative results for inverse approximate uniform gen-
eration problems. As noted above, most of our results deal with uniform generation of satisfying
assignments, i.e., C is a class of Boolean functions over {−1, 1}n and for f ∈ C the relationR(f, y)
is “y is a satisfying assignment for f .” All the results, both positive and negative, that we present
below are for problems of this sort unless indicated otherwise.

Positive results: A general approach and its applications. We begin by presenting a general
approach for obtaining inverse approximate uniform generation algorithms. This technique com-
bines approximate uniform generation and counting algorithms and Statistical Query (SQ) learning
algorithms with a new type of algorithm called a “densifier,” which we introduce and define in Sec-
tion 4.2. Very roughly speaking, the densifier lets us prune the entire space {−1, 1}n to a set S
which (essentially) contains all of f−1(1) and is not too much larger than f−1(1) (so f−1(1) is
“dense” in S). By generating approximately uniform elements of S it is possible to run an SQ
learning algorithm and obtain a high-accuracy hypothesis which can be used, in conjunction with
the approximate uniform generator, to obtain a sampler for a distribution which is close to the
uniform distribution over f−1(1). (The approximate counting algorithm is needed for technical
reasons which we explain in Section 4.2.) In Section 4.2 we describe this technique in detail and
prove a general result establishing its effectiveness.

In Sections 4.3 and 4.4 we give two main applications of this general technique to specific
classes of functions. The first of these is the class LTF of all LTFs over {−1, 1}n. Our main
technical contribution here is to construct a densifier for LTFs; we do this by carefully combining
known efficient online learning algorithms for LTFs (based on interior-point methods for linear
programming) [108] with known algorithms for approximate uniform generation and counting of
satisfying assignments of LTFs [112, 43]. Given this densifier, our general approach yields the
desired inverse approximate uniform generator for LTFs:

Theorem 67. (Informal statement) There is a poly(n, 1/ε)-time algorithm for the inverse prob-
lem of approximately uniformly generating satisfying assignments for LTFs.

Our second main positive result for a specific class, in Section 4.4, is for the well-studied class
DNFn,s of all size-s DNF formulas over n Boolean variables. Here our main technical contribu-
tion is to give a densifier which runs in time nO(log(s/ε)) and outputs a DNF formula. A challenge
here is that known SQ algorithms for learning DNF formulas require time exponential in n1/3. To
get around this, we view the densifier’s output DNF as an OR over nO(log(s/ε)) “metavariables”
(corresponding to all possible conjunctions that could be present in the DNF output by the densi-
fier), and we show that it is possible to apply known malicious noise tolerant SQ algorithms for
learning sparse disjunctions as the SQ-learning component of our general approach. Since ef-
ficient approximate uniform generation and approximate counting algorithms are known [72, 82]
for DNF formulas, with the above densifier and SQ learner we can carry out our general technique,
and we thereby obtain our second main positive result for a specific function class:
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Theorem 68. (Informal statement) There is a nO(log(s/ε))-time algorithm for the inverse problem
of approximately uniformly generating satisfying assignments for s-term DNF formulas.

Negative results based on cryptography. In light of the “standard approach,” it is clear that in
order for an inverse approximate uniform generation problem (C, R) to be computationally hard,
it must be the case that either stage (1) (reconstructing the unknown object) or stage (2) (sampling
from the reconstructed object) is hard. (If both stages have efficient algorithms Areconstruct and
Asample respectively, then there is an efficient algorithm for the whole inverse approximate uniform
generation problem that combines these algorithms according to the standard approach.) Our first
approach to obtaining negative results can be used to obtain hardness results for problems for which
stage (2), near-uniform sampling, is computationally hard. The approach is based on signature
schemes from public-key cryptography; roughly speaking, the general result which we prove is
the following (we note that the statement given below is a simplification of our actual result which
omits several technical conditions; see Theorem 118 of Section 4.5 for a precise statement):

Theorem 69. (Informal statement) Let C be a class of functions such that there is a parsimonious
reduction from CIRCUIT-SAT to C-SAT. Then known constructions of secure signature schemes
imply that there is no subexponential-time algorithm for the inverse problem of approximately
uniformly generating satisfying assignments to functions in C.

The secure signature schemes we require are known to exist under many different assumptions.
These include the RSA′ assumption of Micali, Rabin and Vadhan [111], the DH-DDH assumption
of Lysyanskaya [107], and the strong RSA assumption of Cramer and Shoup [25]. The same as-
sumptions can also be used in Corollary 70.

This theorem yields a wide range of hardness results for specific classes that show that our
positive results (for LTFs and DNF) lie quite close to the boundary of what classes have efficient
inverse approximate uniform generation algorithms. We prove:

Corollary 70. (Informal statement) Under known constructions of secure signature schemes,
there is no subexponential-time algorithm for the inverse approximate uniform generation prob-
lem for either of the following classes of functions: (i) 3-CNF formulas; (ii) intersections of two
halfspaces.

We show that our signature-scheme-based hardness approach can be extended to settings where
there is no parsimonious reduction as described above. Using “blow-up”-type constructions of the
sort used to prove hardness of approximate counting, we prove the following:

Theorem 71. (Informal statement) Under the same assumptions as Corollary 70, there is no
subexponential-time algorithm for the inverse approximate uniform generation problem for either
of the following classes: (i) monotone 2-CNF; (ii) degree-2 polynomial threshold functions.

It is instructive to compare the above hardness results with the problem of uniform generation
of NP-witnesses. In particular, while it is obvious that no efficient randomized algorithm can
produce even a single satisfying assignment of a given 3-SAT instance (assuming NP 6⊆ BPP),
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the seminal results of Jerrum et al. [72] showed that given access to an NP-oracle, it is possible to
generate approximately uniform satisfying assignments for a given 3-SAT instance. It is interesting
to ask whether one requires the full power of adaptive access to NP-oracles for this task, or whether
a weaker form of “advice” suffices. Our hardness results can be understood in this context as giving
evidence that receiving polynomially many random satisfying assignments of a 3-SAT instance
does not help in further uniform generation of satisfying assignments.1

Our signature-scheme based approach cannot give hardness results for problems that have
polynomial-time algorithms for the “forward” problem of sampling approximately uniform satisfy-
ing assignments. Our second approach to proving computational hardness can (at least sometimes)
surmount this barrier. The approach is based on Message Authentication Codes in cryptography;
the following is an informal statement of our general result along these lines (as before the follow-
ing statement ignores some technical conditions; see Theorem 138 for a precise statement):

Theorem 72. (Informal statement) There are known constructions of MACs with the following
property: Let C be a class of circuits such that the verification algorithm of the MAC can be
implemented in C. Then there is no subexponential-time inverse approximate uniform generation
algorithm for C.

We instantiate this general result with a specific construction of a MAC that is a slight variant of
a construction due to Pietrzak [124]. The computational assumption in this construction is a slight
variant of the standard Learning Parity with Noise (LPN) assumption. This specific construction
yields a class C for which the “forward” approximate uniform generation problem is computa-
tionally easy, but (under a plausible computational hardness assumption) the inverse approximate
uniform generation problem is computationally hard.

The above construction based on MACs shows that there are problems (C, R) for which the
inverse approximate uniform generation problem is computationally hard although the “forward”
approximate uniform generation problem is easy. As our last result, we exhibit a group-theoretic
problem (based on graph automorphisms) for which the reverse situation holds: under a plausi-
ble hardness assumption the forward approximate uniform generation problem is computationally
hard, but we give an efficient algorithm for the inverse approximate uniform generation problem
(which does not follow our general technique or the “standard approach”).

Related work. Concurrent (but independent) to our work, Anderson, Goyal and Rademacher [3]
considered the following problem : Given access to random samples drawn uniformly from an
unknown simplex X (i.e. an intersection of n+ 1 halfspaces) over Rn, estimate the simplex. More
precisely, their task is to output n+ 1 halfspaces H1, . . ., Hn such that if X ′ = H1 ∩ . . .∩Hn, then
dTV (UX ,UX′) ≤ ε. Anderson et al. give a poly(n)-time algorithm for this problem. Combining
this with an efficient algorithm for sampling from convex bodies [105], we get a poly(n)-time
algorithm to output a sampler for the distribution UX′ .

1There is a small caveat here in that we are not given the 3-SAT formula per se but rather access to random
satisfying assignments of the formula. However, there is a simple elimination based algorithm to reconstruct a high-
accuracy approximation for a 3-SAT formula if we have access to random satisfying assignments for the formula.
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Note that this is the same as inverse approximate uniform generation for the class of intersec-
tion of n + 1 halfspaces, but with one crucial difference: the underlying measure is the Lebesgue
measure on Rn as opposed to the uniform measure on {0, 1}n (as it is in our case). The distinction
between these two measures is indeed a very significant one; recall that, as we mentioned in Corol-
lary 70, an analogous result is impossible (under a cryptographic hardness assumption) even for
an intersection of two halfspaces for the uniform measure on {0, 1}n. Perhaps not too surprisingly,
the techniques of Anderson et al. are rather disjoint from the techniques in this chapter; in partic-
ular, they rely on ideas from algorithmic convex geometry, especially ideas related to Independent
Component Analysis (ICA) [56].

Structure of this chapter. After the preliminaries in Section 4.1, we present in Section 4.2 our
general upper bound technique. In Sections 4.3 and 4.4 we apply this technique to obtain efficient
inverse approximate uniform generation algorithms for LTFs and DNFs respectively. Section 4.5
contains our hardness results. In Section 4.6 we give an example of a problem for which approx-
imate uniform generation is hard, while the inverse problem is easy. Finally, in Section ?? we
conclude the chapter suggesting further directions for future work.

4.1 Preliminaries and Useful Tools

Notation and Definitions.
For n ∈ Z+, we will denote by [n] the set {1, . . . , n}. For a distribution D over a finite set W
we denote by D(x), x ∈ W , the probability mass that D assigns to point x, so D(x) ≥ 0 and∑

x∈W D(x) = 1. For S ⊆ W , we write D(S) to denote
∑

x∈S D(x). For a finite set X we
write x ∈U X to indicate that x is chosen uniformly at random from X. For a random variable
x, we will write x ∼ D to denote that x follows distribution D. Let D,D′ be distributions over
W . The total variation distance between D and D′ is dTV(D,D′)

def
= maxS⊆W |D(S)−D′(S)| =

(1/2) · ‖D−D′‖1, where ‖D−D′‖1 =
∑

x∈W |D(x)−D′(x)| is the L1–distance between D and
D′.

We will denote by Cn, or simply C, a Boolean concept class, i.e., a class of functions mapping
{−1, 1}n to {−1, 1}. We usually consider syntactically defined classes of functions such as the
class of all n-variable linear threshold functions or the class of all n-variable s-term DNF formulas.
We stress that throughout this chapter a class C is viewed as a representation class. Thus we will
say that an algorithm “takes as input a function f ∈ C” to mean that the input of the algorithm is a
representation of f ∈ C.

We will use the notation Un (or simply U , when the dimension n is clear from the context) for
the uniform distribution over {−1, 1}n. Let f : {−1, 1}n → {−1, 1}. We will denote by Uf−1(1)

the uniform distribution over satisfying assignments of f . Let D be a distribution over {−1, 1}n
with 0 < D(f−1(1)) < 1. We write Df,+ to denote the conditional distribution D restricted to
f−1(1); so for x ∈ f−1(1) we have Df,+(x) = D(x)/D(f−1(1)). Observe that, with this notation,
we have that Uf−1(1) ≡ Uf,+.
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We proceed to define the notions of approximate counting and approximate uniform generation
for a class of Boolean functions:

Definition 73 (approximate counting). Let C be a class of n-variable Boolean functions. A ran-
domized algorithm ACcount is an efficient approximate counting algorithm for class C, if for any
ε, δ > 0 and any f ∈ C, on input ε, δ and f ∈ C, it runs in time poly(n, 1/ε, log(1/δ)) and with
probability 1− δ outputs a value p̂ such that

1

(1 + ε)
· Pr
x∼U

[f(x) = 1] ≤ p̂ ≤ (1 + ε) · Pr
x∼U

[f(x) = 1].

Definition 74 (approximate uniform generation). Let C be a class of n-variable Boolean functions.
A randomized algorithm ACgen is an efficient approximate uniform generation algorithm for class
C, if for any ε > 0 and any f ∈ C, there is a distribution D = Df,ε supported on f−1(1) with

1

1 + ε
· 1

|f−1(1)|
≤ D(x) ≤ (1 + ε) · 1

|f−1(1)|

for each x ∈ f−1(1), such that for any δ > 0, on input ε, δ and f ∈ C, algorithm ACgen(ε, δ, f) runs
in time poly(n, 1/ε, log(1/δ)) and either outputs a point x ∈ f−1(1) that is distributed precisely
according to D = Df,ε, or outputs ⊥. Moreover the probability that it outputs ⊥ is at most δ.

An approximate uniform generation algorithm is said to be fully polynomial if its running time
dependence on ε is poly(log(1/ε)).

Before we define our inverse approximate uniform generation problem, we need the notion of
a sampler for a distribution:

Definition 75. Let D be a distribution over {−1, 1}n. A sampler for D is a circuit C with m =
poly(n) input bits z ∈ {−1, 1}m and n output bits x ∈ {−1, 1}n which is such that when z ∼ Um
then x ∼ D. For ε > 0, an ε-sampler for D is a sampler for some distribution D′ which has
dTV(D′, D) ≤ ε.

For clarity we sometimes write “C is a 0-sampler for D” to emphasize the fact that the outputs
of C(z) are distributed exactly according to distribution D. We are now ready to formally define
the notion of an inverse approximate uniform generation algorithm:

Definition 76 (inverse approximate uniform generation). Let C be a class of n-variable Boolean
functions. A randomized algorithm ACinv is an inverse approximate uniform generation algorithm
for class C, if for any ε, δ > 0 and any f ∈ C, on input ε, δ and sample access to Uf−1(1), with
probability 1− δ algorithm ACinv outputs an ε-sampler Cf for Uf−1(1).
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Hypothesis Testing.
Our general approach works by generating a collection of hypothesis distributions, one of which
is close to the target distribution Uf−1(1). Thus, we need a way to select a high-accuracy hypoth-
esis distribution from a pool of candidate distributions which contains at least one high-accuracy
hypothesis. This problem has been well studied, see e.g. Chapter 7 of [37]. We use the following
result which is an extension of Lemma C.1 of [26].

Proposition 77. Let D be a distribution over a finite set W and Dε = {Dj}Nj=1 be a collection
of N distributions overW with the property that there exists i ∈ [N ] such that dTV(D,Di) ≤ ε.
There is an algorithm T D, which is given access to:

(i) samplers for D and Dk, for all k ∈ [N ],

(ii) a (1 + β)–approximate evaluation oracle EVALDk(β), for all k ∈ [N ], which, on input
w ∈ W , deterministically outputs a value D̃β

k (w), such that Dk(w)/(1 + β) ≤ D̃β
k (w) ≤

(1 + β)Dk(w), where β > 0 is any parameter satisfying (1 + β)2 ≤ 1 + ε/8,

an accuracy parameter ε and a confidence parameter δ, and has the following behavior: It makes

m = O
(
(1/ε2) · (logN + log(1/δ))

)
draws from D and from each Dk, k ∈ [N ], and O(m) calls to each oracle EVALDk(β), k ∈ [N ],
performs O(mN2) arithmetic operations, and with probability 1 − δ outputs an index i? ∈ [N ]
that satisfies dTV(D,Di?) ≤ 6ε.

Before we proceed with the proof, we note that there are certain crucial differences between the
current setting and the setting of [26, 27] (as well as other related works that use versions of Propo-
sition 77). In particular, in our setting, the setW is of size 2n, which was not the case in [26, 27].
Hence, we cannot assume the distributionsDi are given explicitly in the input. Thus Proposition 77
carefully specifies what kind of access to these distributions is required. Proposition 77 is an ex-
tension of similar results in the previous works; while the idea of the proof is essentially the same,
the details are more involved. We postpone the proof to Appendix C.1.

Remark 78. As stated Proposition 77 assumes that algorithm T D has access to samplers for all
the distributions Dk, so each call to such a sampler is guaranteed to output an element distributed
according to Dk. Let D⊥k be a distribution overW∪{⊥} which is such that (i) D⊥k (⊥) ≤ 1/2, and
(ii) the conditional distribution (D⊥k )W ofD⊥k conditioned on not outputting⊥ is preciselyDk. It is
easy to see that the proof of Proposition 77 extends to a setting in which T D has access to samplers
for D⊥k rather than samplers for Dk; each time a sample from Dk is required the algorithm can
simply invoke the sampler for D⊥k repeatedly until an element other than ⊥ is obtained. (The low-
probability event that many repetitions are ever needed can be “folded into” the failure probability
δ.)
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4.2 A general technique for inverse approximate uniform
generation

In this section we present a general technique for solving inverse approximate uniform generation
problems. Our main positive results follow this conceptual framework. At the heart of our approach
is a new type of algorithm which we call a densifier for a concept class C. Roughly speaking, this
is an algorithm which, given uniform random positive examples of an unknown f ∈ C, constructs
a set S which (essentially) contains all of f−1(1) and which is such that f−1(1) is “dense” in S.
Our main result in this section, Theorem 81, states (roughly speaking) that the existence of (i) a
computationally efficient densifier, (ii) an efficient approximate uniform generation algorithm, (iii)
an efficient approximate counting algorithm, and (iv) an efficient statistical query (SQ) learning
algorithm, together suffice to yield an efficient algorithm for our inverse approximate uniform
generation problem.

We have already defined approximate uniform generation and approximate counting algo-
rithms, so we need to define SQ learning algorithms and densifiers. The statistical query (SQ)
learning model is a natural restriction of the PAC learning model in which a learning algorithm is
allowed to obtain estimates of statistical properties of the examples but cannot directly access the
examples themselves. Let D be a distribution over {−1, 1}n. In the SQ model [85], the learning
algorithm has access to a statistical query oracle, STAT(f,D), to which it can make a query of
the form (χ, τ), where χ : {−1, 1}n × {−1, 1} → [−1, 1] is the query function and τ > 0 is the
tolerance. The oracle responds with a value v such that |Ex∼D [χ (x, f(x))]− v| ≤ τ , where f ∈ C
is the target concept. The goal of the algorithm is to output a hypothesis h : {−1, 1}n → {−1, 1}
such that Prx∼D[h(x) 6= f(x)] ≤ ε. The following is a precise definition:

Definition 79. Let C be a class of n-variable Boolean functions and D be a distribution over
{−1, 1}n. An SQ learning algorithm for C under D is a randomized algorithm ACSQ that for every
ε, δ > 0, every target concept f ∈ C, on input ε, δ and with access to oracle STAT(f,D) and to
independent samples drawn from D, outputs with probability 1 − δ a hypothesis h : {−1, 1}n →
{−1, 1} such that Prx∼D[h(x) 6= f(x)] ≤ ε. Let t1(n, 1/ε, 1/δ) be the running time of ACSQ

(assuming each oracle query is answered in unit time), t2(n) be the maximum running time to
evaluate any query provided to STAT(f,D) and τ(n, 1/ε) be the minimum value of the tolerance
parameter ever provided to STAT(f,D) in the course of ACSQ’s execution. We say that ACSQ is
efficient (and that C is efficiently SQ learnable with respect to distribution D), if t1(n, 1/ε, 1/δ)
is polynomial in n, 1/ε and 1/δ, t2(n) is polynomial in n and τ(n, 1/ε) is lower bounded by
an inverse polynomial in n and 1/ε. We call an SQ learning algorithm ACSQ for C distribution
independent if ACSQ succeeds for any distribution D. If C has an efficient distribution independent
SQ learning algorithm we say that C is efficiently SQ learnable (distribution independently).

We sometimes write an “(ε, δ)–SQ learning algorithm” to explicitly state the accuracy pa-
rameter ε and confidence parameter Throughout this chapter, we will only deal with distribution
independent SQ learning algorithms.
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To state our main result, we introduce the notion of a densifier for a class C of Boolean func-
tions. Intuitively, a densifier is an algorithm which is given access to samples from Uf−1(1) (where
f is an unknown element of C) and outputs a subset S ⊆ {−1, 1}n which is such that (i) S contains
“almost all” of f−1(1), but (ii) S is “much smaller” than {−1, 1}n – in particular it is small enough
that f−1(1) ∩ S is (at least moderately) “dense” in S.

Definition 80. Fix a function γ(n, 1/ε, 1/δ) taking values in (0, 1] and a class C of n-variable
Boolean functions. An algorithm A(C,C′)

den is said to be a γ-densifier for function class C using
class C ′ if it has the following behavior: For every ε, δ > 0, every 1/2n ≤ p̂ ≤ 1, and every
f ∈ C, given as input ε, δ, p̂ and a set of independent samples from Uf−1(1), the following holds:

Let p
def
= Prx∼Un [f(x) = 1]. If p ≤ p̂ < (1 + ε)p, then with probability at least 1 − δ, algorithm

A(C,C′)
den outputs a function g ∈ C ′ such that:

(a) Prx∼Uf−1(1)
[g(x) = 1] ≥ 1− ε.

(b) Prx∼Ug−1(1)
[f(x) = 1] ≥ γ(n, 1/ε, 1/δ).

We will sometimes write an “(ε, γ, δ)–densifier” to explicitly state the parameters in the defini-
tion.

Our main conceptual approach is summarized in the following theorem:

Theorem 81 (General Upper Bound). Let C, C ′ be classes of n-variable Boolean functions. Sup-
pose that

• A(C,C′)
den is an (ε, γ, δ)-densifier for C using C ′ running in time Tden(n, 1/ε, 1/δ).

• AC′gen is an (ε, δ)-approximate uniform generation algorithm for C ′ running in time Tgen(n, 1/ε, 1/δ).

• AC′count is an (ε, δ)-approximate counting algorithm for C ′ running in time Tcount(n, 1/ε, 1/δ).

• ACSQ is an (ε, δ)-SQ learning algorithm for C such that: ACSQ runs in time t1(n, 1/ε, 1/δ)
, t2(n) is the maximum time needed to evaluate any query provided to STAT(f,D), and
τ(n, 1/ε) is the minimum value of the tolerance parameter ever provided to STAT(f,D) in
the course of ACSQ’s execution.

Then there exists an inverse approximate uniform generation algorithm ACinv for C. The run-
ning time of ACinv is polynomial in Tden(n, 1/ε, 1/δ), 1/γ, Tgen(n, 1/ε, 1/δ), Tcount (n, 1/ε, 1/δ),
t1(n, 1/ε, 1/δ), t2(n) and 1/τ(n, 1/ε) provided the dependence of Tden(·), Tgen(·), Tcount(·), t1(·),
t2(·) and τ(·) is polynomial in their input parameters. 2

Sketch of the algorithm. The inverse approximate uniform generation algorithmACinv for C works
in three main conceptual steps. Let f ∈ C be the unknown target function and recall that our
algorithm ACinv is given access to samples from Uf−1(1).

2It is straightforward to derive an explicit running time bound for AC
inv in terms of the above functions from our

analysis, but the resulting expression is extremely long and rather uninformative so we do not provide it.
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(1) In the first step, ACinv runs the densifier A(C,C′)
den on a set of samples from Uf−1(1). Let g ∈ C ′

be the output function of A(C,C′)
den .

Note that by setting the input to the approximate uniform generation algorithmAC′gen to g, we obtain
an approximate sampler Cg for Ug−1(1). The output distribution D′ of this sampler, is by definition
supported on g−1(1) and is close to D = Ug−1(1) in total variation distance.

(2) The second step is to run the SQ-algorithm ACSQ to learn the function f ∈ C under the
distribution D. Let h be the hypothesis constructed by ACSQ.

(3) In the third and final step, the algorithm simply samples from Cg until it obtains an example
x that has h(x) = 1, and outputs this x.

Remark 82. The reader may have noticed that the above sketch does not seem to use the approxi-
mate counting algorithm AC′count; we will revisit this point below.

Remark 83. The connection between the above algorithm sketch and the “standard approach”
discussed in the Introduction is as follows: The function g ∧ h essentially corresponds to the
reconstructed object x̃ of the “standard approach.” The process of sampling from Cg and doing
rejection sampling until an input that satisfies h is obtained, essentially corresponds to the Asample

procedure of the “standard approach.”

Intuition, motivation and discussion.
To motivate the high-level idea behind our algorithm, consider a setting in which f−1(1) is only a
tiny fraction (say 1/2Θ(n)) of {−1, 1}n. It is intuitively clear that we would like to use some kind
of a learning algorithm in order to come up with a good approximation of f−1(1), but we need
this approximation to be accurate at the “scale” of f−1(1) itself rather than at the scale of all of
{−1, 1}n, so we need some way to ensure that the learning algorithm’s hypothesis is accurate at
this small scale. By using a densifier to construct g such that g−1(1) is not too much larger than
f−1(1), we can use the distribution D = Ug−1(1) to run a learning algorithm and obtain a good
approximation of f−1(1) at the desired scale. (Since D and D′ are close in variation distance, this
implies we also learn f with respect to D′.)

To motivate our use of an SQ learning algorithm rather than a standard PAC learning algorithm,
observe that there seems to be no way to obtain correctly labeled examples distributed according to
D. However, we show that it is possible to accurately simulate statistical queries under D having
access only to random positive examples from f−1(1) and to unlabeled examples drawn from D
(subject to additional technical caveats discussed below). We discuss the issue of how it is possible
to successfully use an SQ learner in our setting in more detail below.

Discussion and implementation issues. While the three main conceptual steps (1)-(3) of our
algorithm may (hopefully) seem quite intuitive in light of the preceding motivation, a few issues
immediately arise in thinking about how to implement these steps. The first one concerns running
the SQ-algorithm ACSQ in Step 2 to learn f under distribution D (recall that D = Ug−1(1) and is
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close to D′). Our algorithm ACinv needs to be able to efficiently simulate ACSQ given its available
information. While it would be easy to do so given access to random labeled examples (x, f(x)),
where x ∼ D, such information is not available in our setting. To overcome this obstacle, we show
(see Proposition 85) that for any samplable distribution D, we can efficiently simulate a statistical
query algorithm under D using samples from Df,+. This does not quite solve the problem, since
we only have samples from Uf−1(1). However, we show (see Claim 88) that for our setting, i.e., for
D = Ug−1(1), we can simulate a sample from Df,+ by a simple rejection sampling procedure using
samples from Uf−1(1) and query access to g.

Some more issues remain to be handled. First, the simulation of the statistical query algorithm
sketched in the previous paragraph only works under the assumption that we are given a sufficiently
accurate approximation b̃f of the probability Prx∼D[f(x) = 1]. (Intuitively, our approximation
should be smaller than the smallest tolerance τ provided to the statistical query oracle by the
algorithm ACSQ.) Second, by Definition 80, the densifier only succeeds under the assumption that
it is given in its input an (1 + ε)-multiplicative approximation p̂ to p = Prx∈Un [f(x) = 1].

We handle these issues as follows: First, we show (see Claim 89) that, given an accurate
estimate p̂ and a “dense” function g ∈ C ′, we can use the approximate counting algorithm AC′count

to efficiently compute an accurate estimate b̃f . (This is one reason why Theorem 81 requires an
approximate counting algorithm for C ′.) To deal with the fact that we do not a priori have an
accurate estimate p̂, we run our sketched algorithm for all possible values of Prx∼Un [f(x) = 1]
in an appropriate multiplicative “grid” of size N = O(n/ε), covering all possible values from
1/2n to 1. We thus obtain a set D of N candidate distributions one of which is guaranteed to
be close to the true distribution Uf−1(1) in variation distance. At this point, we would like to
apply our hypothesis testing machinery (Proposition 77) to find such a distribution. However,
in order to use Proposition 77, in addition to sample access to the candidate distributions (and
the distribution being learned), we also require a multiplicatively accurate approximate evaluation
oracle to evaluate the probability mass of any point under the candidate distributions. We show
(see Lemma 169) that this is possible in our generic setting, using properties of the densifier and
the approximate counting algorithm AC′count for C ′.

Now we are ready to begin the detailed proof of Theorem 81. The reader who wishes to
proceed directly to the applications of Theorem 81 may skip to Section 4.3.

Simulating statistical query algorithms.
Our algorithm ACinv will need to simulate a statistical query algorithm for C, with respect to a
specific distribution D. Note, however that Ainv only has access to uniform positive examples of
f ∈ C, i.e., samples from Uf−1(1). Hence we need to show that a statistical query algorithm can
be efficiently simulated in such a setting. To do this it suffices to show that one can efficiently
provide valid responses to queries to the statistical query oracle STAT(f,D), i.e., that one can
simulate the oracle. Assuming this can be done, the simulation algorithm ASQ−SIM is very simple:
Run the statistical query algorithm ASQ, and whenever it makes a query to STAT(f,D), simulate
it. To this end, in the following lemma we describe a procedure that simulates an SQ oracle.
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(Our approach here is similar to that of earlier simulation procedures that have been given in the
literature, see e.g. Denis et al. [35].)

Lemma 84. Let C be a concept class over {−1, 1}n, f ∈ C, and D be a samplable distribution
over {−1, 1}n. There exists an algorithm Simulate-STATDf with the following properties: It is
given access to independent samples from Df,+, and takes as input a number b̃f ∈ [0, 1], a t(n)-
time computable query function χ : {−1, 1}n×{−1, 1} → [−1, 1], a tolerance τ and a confidence
δ. It has the following behavior: it uses m = O ((1/τ 2) log(1/δ)) samples from D and Df,+, runs
in time O (m · t(n)) , and if |b̃f −Prx∼D[f(x) = 1]| ≤ τ ′, then with probability 1− δ it outputs a
number v such that

|Ex∼D [χ (x, f(x))]− v| ≤ τ + τ ′. (4.1)

The proof of Lemma 84 is deferred to Appendix C.2. Given the above lemma, we can state and
prove our general result for simulating SQ algorithms:

Proposition 85. Let C be a concept class and D be a samplable distribution over {−1, 1}n. Sup-
pose there exists an SQ-learning algorithm ASQ for C under D with the following performance:
ASQ runs in time T1 = t1(n, 1/ε, 1/δ), each query provided to STAT(f,D) can be evaluated in
time T2 = t2(n), and the minimum value of the tolerance provided to STAT(f,D) in the course of
its execution is τ = τ(n, 1/ε). Then, there exists an algorithm ASQ−SIM that is given access to

(i) independent samples from Df,+; and

(ii) a number b̃f ∈ [0, 1],

and efficiently simulates the behavior of ASQ. In particular, ASQ−SIM has the following perfor-
mance guarantee: on input an accuracy ε and a confidence δ, it usesm = O ((1/τ 2) · log(T1/δ) · T1)

samples fromD andDf,+, runs in time TSQ−SIM = O (mT2), and if |b̃f−Prx∼D[f(x) = 1]| ≤ τ/2
then with probability 1−δ it outputs a hypothesis h : {−1, 1}n → {−1, 1} such that Prx∼D[h(x) 6=
f(x)] ≤ ε.

The proof of Proposition 85 is deferred to Appendix C.2. Proposition 85 tells us we can efficiently
simulate a statistical query algorithm for a concept class C under a samplable distribution D if we
have access to samples drawn from Df,+ (and a very accurate estimate of Prx∼D[f(x) = 1]). In
our setting, we have that D = Ug−1(1) where g ∈ C ′ is the function that is output by A(C,C′)

den . So,
the two issues we must handle are (i) obtaining samples from D, and (ii) obtaining samples from
Df,+.

For (i), we note that, even though we do not have access to samples drawn exactly from D, it
suffices for our purposes to use a τ ′-sampler for D for a sufficiently small τ ′. To see this we use
the following fact:

Fact 86. Let D,D′ be distributions over {−1, 1}n with dTV(D,D′) ≤ τ ′. Then for any bounded
function φ : {−1, 1}n → [−1, 1] we have that |Ex∼D[φ(x)]− Ex∼D′ [φ(x)]| ≤ 2τ ′.
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The proof of Fact 86 is deferred to Appendix C.2. The above fact implies that the statement of
Proposition 85 continuous to hold with the same parameters if instead of a 0-sampler for D we
have access to a τ ′-sampler for D, for τ ′ = τ/8. The only difference is that in Step 1 of the
subroutine Simulate-STATDf we empirically estimate the expectation Ex∼D′ [χ(x,−1)] up to
an additive ±τ/4. By Fact 86, this will be a ±(τ/4 + 2τ ′) = ±τ/2 accurate estimate for the
Ex∼D[χ(x,−1)]. That is, we have:

Corollary 87. The statement of Proposition 85 continues to hold with the same parameters if
instead of a 0-sampler for D we have access to a τ ′ = τ/8-sampler for D.

For (ii), even though we do not have access to the distribution D = Ug−1(1) directly, we note
below that we can efficiently sample from Df,+ using samples from Uf−1(1) together with evalu-
ations of g (recall again that g is provided as the output of the densifier).

Claim 88. Let g : {−1, 1}n → {−1, 1} be a tg(n) time computable function such that it satisfies
Prx∼Uf−1(1)

[g(x) = 1]≥ ε′. There is an efficient subroutine that is given ε′ and a circuit to com-
pute g as input, uses m = O((1/ε′) log(1/δ)) samples from Uf−1(1), runs in time O(m · tg(n)), and
with probability 1− δ outputs a sample x such that x ∼ Df,+, where D = Ug−1(1).

As before, we defer the proof of Claim 88 to Appendix C.2.

Getting a good estimate b̃f of Prx∼D[f(x) = 1]. The simulations presented above require an
additively accurate estimate b̃f of Prx∼D[f(x) = 1]. We now show that in our context, such an
estimate can be easily obtained if we have access to a good estimate p̂ of p = Prx∈Un [f(x) = 1],
using the fact that we have an efficient approximate counting algorithm for C ′ and thatD ≡ Ug−1(1)

where g ∈ C ′.

Claim 89. Let g : {−1, 1}n → {−1, 1}, g ∈ C ′ be a tg(n) time computable function, sat-
isfying Prx∼Ug−1(1)

[f(x) = 1] ≥ γ′ and Prx∼Uf−1(1)
[g(x) = 1] ≥ 1 − ε′. Let AC′count be an

(ε, δ)-approximate counting algorithm for C ′ running in time Tcount(n, 1/ε, 1/δ). There is a proce-
dure Estimate-Bias with the following behavior: Estimate-Bias takes as input a value
0 < p̂ ≤ 1, a parameter τ ′ > 0, a confidence parameter δ′, and a representation of g ∈ C ′.
Estimate-Bias runs in time O(tg · Tcount(n, 2/τ

′, 1/δ′)) and satisfies the following: if p
def
=

Prx∼Un [f(x) = 1] < p̂ ≤ (1 + ε′)p, then with probability 1 − δ′ Estimate-Bias outputs a
value b̃f such that |b̃f −Prx∼D[f(x) = 1]| ≤ τ ′.

The proof of Claim 89 is deferred to Appendix C.2.

An algorithm that succeeds given the (approximate) bias of f.
In this section, we present an algorithm A′Cinv(ε, δ, p̂) which, in addition to samples from Uf−1(1),
takes as input parameters ε, δ, p̂. The algorithm succeeds in outputting a hypothesis distributionDf
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satisfying dTV(Df ,Uf−1(1)) ≤ ε if the input parameter p̂ is a multiplicatively accurate approxima-
tion to Prx∼Un [f(x) = 1]. The algorithm follows the three high-level steps previously outlined
and uses the subroutines of the previous subsection to simulate the statistical query algorithm.

Algorithm A′Cinv(Uf−1(1), ε, δ, p̂):
Input: Independent samples from Uf−1(1), accuracy and confidence parameters ε, δ, and a
value 1/2n < p̂ ≤ 1.
Output: If Prx∼Un [f(x) = 1] ≤ p̂ < (1 + ε)Prx∼Un [f(x) = 1], with probability 1 − δ
outputs an ε-sampler Cf for Uf−1(1) .

1. Fix ε1
def
= ε/6 and γ

def
= γ(n, 1/ε1, 3/δ). Run the γ-densifier A(C,C′)

den (ε1, δ/3, p̂) using
random samples from Uf−1(1). Let g ∈ C ′ be its output.

2. a) Fix ε2
def
= εγ/7, τ2

def
= τ(n, 1/ε2) and m def

= Θ ((1/τ 2
2 ) · log(T1/δ) · T1), where T1 =

t1(n, 1/ε2, 12/δ).

b) Run the generator AC′gen(g, τ2/8, δ/(12m)) m times and let SD ⊆ {−1, 1}n be the
multiset of samples obtained.

c) Run Simulate-sampleDf,+(Uf−1(1), g, γ, δ/(12m)) m times and let SDf,+ ⊆
{−1, 1}n be the multiset of samples obtained.

d) Run Estimate-Bias with parameters p̂, τ ′ = τ2/2, δ′ = δ/12 , using the
representation for g ∈ C ′, and let b̃f be the value it returns.

e) Run ASQ−SIM(SD, SDf,+ , ε2, b̃f , δ/12). Let h : {−1, 1}n → {−1, 1} be the output
hypothesis.

3. Output the sampler Cf which works as follows:

For i = 1 to t = Θ ((1/γ) log(1/(δε)) do:

a) Set ε3
def
= εγ/48000.

b) Run the generator AC′gen(g, ε3, δε/(12t)) and let x(i) be its output.

c) If h(x(i)) = 1, output x(i).

If no x(i) with h(x(i)) = 1 has been obtained, output the default element ⊥.

Let D̂ denote the distribution over {−1, 1}n ∪ {⊥} for which Cf is a 0-sampler, and let
D̂′ denote the conditional distribution of D̂ restricted to {−1, 1}n (i.e., excluding ⊥).

We note that by inspection of the code for Cf , we have that the distribution D̂′ is identi-
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cal to (Dg,ε3)h−1(1), where Dg,ε3 is the distribution corresponding to the output of the approxi-
mate uniform generator when called on function g and error parameter ε3 (see Definition 74) and
(Dg,ε3)h−1(1) is Dg,ε3 conditioned on h−1(1).

We have the following:

Theorem 90. Let p
def
= Prx∈Un [f(x) = 1]. Algorithm A′Cinv(ε, δ, p̂) has the following behavior: If

p ≤ p̂ < (1 + ε)p, then with probability 1− δ the following both hold:

(i) the output Cf is a sampler for a distribution D̂ such that dTV(D̂,Uf−1(1)) ≤ ε; and

(ii) the functions h, g satisfy |h−1(1) ∩ g−1(1)|/|g−1(1)| ≥ γ/2.

The running time ofA′Cinv is polynomial in Tden(n, 1/ε, 1/δ), Tgen(n, 1/ε, 1/δ), Tcount(n, 1/ε, 1/δ),
t1(n, 1/ε, 1/δ), t2(n), 1/τ(n, 1/ε), and 1/γ(n, 1/ε, 1/δ).

Proof. We give an intuitive explanation of the pseudocode in tandem with a proof of correctness.
We argue that Steps 1-3 of the algorithm implement the corresponding steps of our high-level
description and that the algorithm succeeds with confidence probability 1− δ.

We assume throughout the argument that indeed p̂ lies in [p, (1 + ε)p). Given this, by Defini-
tion 80 with probability 1 − δ/3 the function g satisfies properties (a) and (b) of Definition 80,
i.e., Prx∼Uf−1(1)

[g(x) = 1] ≥ 1 − ε1 and Prx∼Ug−1(1)
[f(x) = 1] ≥ γ. We condition on this event

(which we denote E1) going forth.
We now argue that Step 2 simulates the SQ learning algorithmACSQ to learn the function f ∈ C

under distribution D ≡ Ug−1(1) to accuracy ε2 with confidence 1 − δ/3. Note that the goal of
Step (b) is to obtain m samples from a distribution D′′ (the distribution “Dg,τ2/8” of Definition 74)
such that dTV(D′′, D) ≤ τ2/8. To achieve this, we call the approximate uniform generator for g
a total of m times with failure probability δ/(12m) for each call (i.e., each call returns ⊥ with
probability at most δ/(12m)). By a union bound, with failure probability at most δ/12, all calls to
the generator are successful and we obtain a set SD of m independent samples from D′′. Similarly,
the goal of Step (c) is to obtain m samples from Df,+ and to achieve it we call the subroutine
Simulate-sampleDf,+ a total of m times with failure probability δ/(12m) each. By Claim 88
and a union bound, with failure probability at most δ/12, this step is successful, i.e., it gives a
set SDf,+ of m independent samples from Df,+. The goal of Step (d) is to obtain a value b̃f
satisfying |b̃f − Prx∼D[f(x) = 1]| ≤ τ2/2; by Claim 89, with failure probability at most δ/12

the value b̃f obtained in this step is as desired. Finally, Step (e) applies the simulation algorithm
ASQ−SIM using the samples SD and SDf,+ and the estimate b̃f of Prx∼D[f(x) = 1] obtained in
the previous steps. Conditioning on Steps (b), (c) and (d) being successful Corollary 87 implies
that Step (e) is successful with probability 1 − δ/12, i.e., it outputs a hypothesis h that satisfies
Prx∼D[f(x) 6= h(x)] ≤ ε2. A union bound over Steps (c), (d) and (e) completes the analysis
of Step 2. For future reference, we let E2 denote the event that the hypothesis h constructed in
Step 2(e) has Prx∼D[f(x) 6= h(x)] ≤ ε2 (so we have thatE2 holds with probability at least 1−δ/3;
we additionally condition on this event going forth). We observe that since (as we have just shown)
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Prx∼Ug−1(1)
[f(x) 6= h(x)] ≤ ε2 and Prx∼Ug−1(1)

[f(x) = 1] ≥ γ, we have Prx∼Ug−1(1)
[h(x) = 1] ≥

γ − ε2 ≥ γ/2, which gives item (ii) of the theorem; so it remains to establish item (i) and the
claimed running time bound.

To establish (i), we need to prove that the output distribution D̂ of the sampler Cf is ε-close
in total variation distance to Uf−1(1). This sampler attempts to draws t samples from a distribution
D′ such that dTV(D′, D) ≤ ε3 (this is the distribution “Dg,ε3” in the notation of Definition 74) and
it outputs one of these samples that satisfies h (unless none of these samples satisfies h, in which
case it outputs a default element ⊥). The desired variation distance bound follows from the next
lemma for our choice of parameters:

Lemma 91. Let D̂ be the output distribution ofA′Cinv(Uf−1(1), ε, δ, p̂). If Prx∼Un [f(x) = 1] ≤ p̂ ≤
(1 + ε)Prx∼Un [f(x) = 1], then conditioned on Events E1 and E2, we have

dTV(D̂,Uf−1(1)) ≤
ε

6
+
ε

6
+

4ε3
γ

+ ε1 +
ε2
2γ

+
ε2

γ − ε2
≤ ε

6
+
ε

6
+

ε

12000
+
ε

6
+

ε

14
+
ε

6
< ε.

Proof. Consider the distribution D′ = Dg,ε3 (see Definition 74) produced by the approximate uni-
form generator in Step 3 of the algorithm. Let D′|h−1(1) denote distribution D′ restricted to h−1(1).
Let S denote the set g−1(1) ∩ h−1(1). The lemma is an immediate consequence of Claims 92, 94,
95 and 96 below using the triangle inequality (everything below is conditioned on E1 and E2).

Claim 92. dTV(D̂, D̂′) ≤ ε/6.

Proof. Recall that D̂′ is simply D̂ conditioned on not outputting ⊥.
We first claim that with probability at least 1−δε/12 all t points drawn in Step 3 of the code for

Cf are distributed according to the distribution D′ = Dg,ε3 over g−1(1). Each of the t calls to the
approximate uniform generator has failure probability δε/(12t) (of outputting⊥ rather than a point
distributed according to D′) so by a union bound no calls fail with probability at least 1− δε/12,
and thus with probability at least 1 − δε/12 indeed all t samples are independently drawn from
such a distribution D′.

Conditioned on this, we claim that a satisfying assignment for h is obtained within the t samples
with probability at least 1− δε/12. This can be shown as follows:

Claim 93. Let h : {−1, 1}n → {−1, 1} be the hypothesis output by ACSQ−SIM. We have

Pr
x∼D′

[h(x) = 1] ≥ γ/4.

Proof. First recall that, by property (b) in the definition of the densifier (Definition 80), we have
Prx∼D[f(x) = 1] ≥ γ. Since dTV(D′, D) ≤ ε3, by definition we get

Pr
x∼D′

[f(x) = 1] ≥ Pr
x∼D

[f(x) = 1]− ε3 ≥ γ − ε3 ≥ 3γ/4.
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Now by the guarantee of Step 2 we have that Prx∼D[f(x) 6= h(x)] ≤ ε2. Combined with the fact
that dTV(D′, D) ≤ ε3, this implies that

Pr
x∼D′

[f(x) 6= h(x)] ≤ ε2 + ε3 ≤ γ/2.

Therefore, we conclude that

Pr
x∼D′

[h(x) = 1] ≥ Pr
x∼D′

[f(x) = 1]− Pr
x∼D′

[f(x) 6= h(x)] ≥ 3γ/4− γ/2 ≥ γ/4

as desired.

Hence, for an appropriate constant in the big-Theta specifying t, with probability at least 1 −
δε/12 > 1− δ/12 some x(i) is a satisfying assignment of h. that with probability at least 1− δε/12
some x(i), i ∈ [t], has h(x) = 1. Thus with overall failure probability at most δε/6 a draw from D̂′

is not ⊥, and consequently we have dTV(D̂, D̂′) ≤ δε/6 ≤ ε/6.

Claim 94. dTV(D̂′, D′|h−1(1)) ≤ ε/6.

Proof. The probability that any of the t points x(1), . . . , x(t) is not drawn from D′ is at most t ·
δε/(12t) < ε/12. Assuming that this does not happen, the probability that no x(i) lies in h−1(1)
is at most (1 − γ/4)t < δε/12 < ε/12 by Claim 93. Assuming this does not happen, the output
of a draw from D̂ is distributed identically according to D′|h−1(1). Consequently we have that
dTV(D̂,D′|h−1(1)) ≤ ε/6 as claimed.

Claim 95. dTV(D′|h−1(1),US) ≤ 4ε3/γ.

Proof. The definition of an approximate uniform generator gives us that dTV(D′,Ug−1(1)) ≤ ε3,
and Claim 93 gives that Prx∼D′ [h(x) = 1] ≥ γ/4. We now recall the fact that for any two distri-
butions D1, D2 and any event E, writing Di|E to denote distribution Di conditioned on event E,
we have

dTV(D1|E, D2|E) ≤ dTV(D1, D2)

D1(E)
.

The claim follows since Ug−1(1)|h−1(1) is equivalent to US.

Claim 96. dTV(US,Uf−1(1)) ≤ ε1 + ε2
2γ

+ ε2
γ−ε2 .

Proof. The proof requires a careful combination of the properties of the function g constructed by
the densifier and the guarantee of the SQ algorithm. Recall that S = g−1(1)∩h−1(1). We consider
the set S ′ = g−1(1) ∩ f−1(1). By the triangle inequality, we can bound the desired variation
distance as follows:

dTV(US,Uf−1(1)) ≤ dTV(Uf−1(1),US′) + dTV(US′ ,US). (4.2)

We will bound from above each term of the RHS in turn. To proceed we need an expression for
the total variation distance between the uniform distribution on two finite sets. The following fact
is obtained by straightforward calculation:
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Fact 97. Let A,B be subsets of a finite set W and UA, UB be the uniform distributions on A, B
respectively. Then,

dTV(UA,UB) = (1/2) · |A ∩B|
|A|

+ (1/2) · |B ∩ A|
|B|

+ (1/2) · |A ∩B| ·
∣∣∣∣ 1

|A|
− 1

|B|

∣∣∣∣ . (4.3)

To bound the first term of the RHS of (4.2) we apply the above fact for A = f−1(1) and B = S ′.
Note that in this case B ⊆ A, hence the second term of (4.3) is zero. Regarding the first term, note
that

|A ∩B|
|A|

=
|f−1(1) ∩ g−1(1)|
|f−1(1)|

≤ ε1,

where the inequality follows from Property (a) of the densifier definition. Similarly, for the third
term we can write

|A ∩B| ·
∣∣∣∣ 1

|A|
− 1

|B|

∣∣∣∣ = |B| ·
∣∣∣∣ 1

|A|
− 1

|B|

∣∣∣∣ = 1− |B|
|A|

= 1− |f
−1(1) ∩ g−1(1)|
|f−1(1)|

≤ ε1,

where the inequality also follows from Property (a) of the densifier definition. We therefore con-
clude that dTV(Uf−1(1),US′) ≤ ε1.

We now proceed to bound the second term of the RHS of (4.2) by applying Fact 97 for A = S ′

and B = S. It turns out that bounding the individual terms of (4.3) is trickier in this case. For the
first term we have:

|A ∩B|
|A|

=
|f−1(1) ∩ g−1(1) ∩ h−1(1)|
|f−1(1) ∩ g−1(1)|

=
|f−1(1) ∩ g−1(1) ∩ h−1(1)|

|g−1(1)|
· |g−1(1)|
|f−1(1) ∩ g−1(1)|

≤ ε2
γ
,

where the last inequality follows from the guarantee of the SQ learning algorithm and Property (b)
of the densifier definition. For the second term we have

|B ∩ A|
|B|

=
|f−1(1) ∩ g−1(1) ∩ h−1(1)|
|g−1(1) ∩ h−1(1)|

.

To analyze this term we recall that by the guarantee of the SQ algorithm it follows that the numer-
ator satisfies

|f−1(1) ∩ g−1(1) ∩ h−1(1)| ≤ ε2 · |g−1(1)|.

From the same guarantee we also get

|f−1(1) ∩ g−1(1) ∩ h−1(1)| ≤ ε2 · |g−1(1)|.

Now, Property (b) of the densifier definition gives |f−1(1)∩g−1(1)| ≥ γ · |g−1(1)|. Combing these
two inequalities implies that

|g−1(1) ∩ h−1(1)| ≥ |f−1(1) ∩ g−1(1) ∩ h−1(1)| ≥ (γ − ε2) · |g−1(1)|.
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In conclusion, the second term is upper bounded by (1/2) · ε2
γ−ε2 .

For the third term, we can write

|A ∩B| ·
∣∣∣∣ 1

|A|
− 1

|B|

∣∣∣∣ = |f−1(1) ∩ g−1(1) ∩ h−1(1)| ·
∣∣∣∣ 1

|f−1(1) ∩ g−1(1)|
− 1

|g−1(1) ∩ h−1(1)|

∣∣∣∣ .
To analyze these term we relate the cardinalities of these sets. In particular, we can write

|f−1(1) ∩ g−1(1)| = |f−1(1) ∩ g−1(1) ∩ h−1(1)|+ |f−1(1) ∩ g−1(1) ∩ h−1(1)|
≤ |f−1(1) ∩ g−1(1) ∩ h−1(1)|+ ε2 · |g−1(1)|
≤ |f−1(1) ∩ g−1(1) ∩ h−1(1)|+ ε2

γ
· |f−1(1) ∩ g−1(1)|

where the last inequlity is Property (b) of the densifier defintion. Therefore, we obtain

(1− ε2
γ

) · |f−1(1) ∩ g−1(1)| ≤ |f−1(1) ∩ g−1(1) ∩ h−1(1)| ≤ |f−1(1) ∩ g−1(1)|.

Similarly, we have

|g−1(1) ∩ h−1(1)| = |f−1(1) ∩ g−1(1) ∩ h−1(1)|+ |f−1(1) ∩ g−1(1) ∩ h−1(1)|
≤ |f−1(1) ∩ g−1(1) ∩ h−1(1)|+ ε2 · |g−1(1)|
≤ |f−1(1) ∩ g−1(1) ∩ h−1(1)|+ ε2

γ − ε2
· |g−1(1) ∩ h−1(1)|

and therefore

(1− ε2
γ − ε2

) · |g−1(1) ∩ h−1(1)| ≤ |f−1(1) ∩ g−1(1) ∩ h−1(1)| ≤ |g−1(1) ∩ h−1(1)|.

The above imply that the third term is bounded by (1/2) · ε2
γ−ε2 . This completes the proof of the

claim.

With Lemma 91 established, to finish the proof of Theorem 90 it remains only to establish
the claimed running time bound. This follows from a straightforward (but somewhat tedious)
verification, using the running time bounds established in Lemma 84, Proposition 85, Corollary 87,
Claim 88 and Claim 89.

Getting from A′Cinv to ACinv: An approximate evaluation oracle.
Recall that the algorithm A′Cinv from the previous subsection is only guaranteed (with high prob-
ability) to output a sampler for a hypothesis distribution D̂ that is statistically close to the tar-
get distribution Uf−1(1) if it is given an input parameter p̂ satisfying p ≤ p̂ < (1 + ε)p, where

p
def
= Prx∈Un [f(x) = 1]. Given this, a natural idea is to run A′Cinv a total of k = O(n/ε) times, using

“guesses” for p̂ that increase multiplicatively as powers of 1 + ε, starting at 1/2n (the smallest
possible value) and going up to 1. This yields hypothesis distributions D̂1, . . . , D̂k where D̂i is the
distribution obtained by setting p̂ to p̂i

def
= (1+ε)i−1/2n.With such distributions in hand, an obvious

approach is to use the “hypothesis testing” machinery of Section 4.1 to identify a high-accuracy
D̂i from this collection. This is indeed the path we follow, but some care is needed to make the
approach go through. The details are given in Section C.2.
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4.3 Linear Threshold Functions
In this section we apply our general framework from Section 4.2 to prove Theorem 67, i.e., obtain
a polynomial time algorithm for the problem of inverse approximate uniform generation for the
class C = LTFn of n-variable linear threshold functions over {−1, 1}n. More formally, we prove:

Theorem 98. There is an algorithmALTF
inv which is a poly (n, 1/ε, 1/δ)-time inverse approximate

uniform generation algorithm for the class LTFn.

The above theorem will follow as an application of Theorem 81 for C ′ = C = LTFn. The
literature provides us with three of the four ingredients that our general approach requires for LTFs
– approximate uniform generation, approximate counting, and Statistical Query learning – and
our main technical contribution is giving the fourth necessary ingredient, a densifier. We start by
recalling the three known ingredients in the following subsection.

Tools from the literature.
We first record two efficient algorithms for approximate uniform generation and approximate
counting for LTFn, due to Dyer [43]:

Theorem 99. (approximate uniform generation for LTFn, [43]) There is an algorithm ALTF
gen that

on input (a weights–based representation of) an arbitrary h ∈ LTFn and a confidence parameter
δ > 0, runs in time poly(n, log(1/δ)) and with probability 1 − δ outputs a point x such that
x ∼ Uh−1(1).

We note that the above algorithm gives us a somewhat stronger guarantee than that in Definition 74.
Indeed, the algorithmALTF

gen with high probability outputs a point x ∈ {−1, 1}n whose distribution
is exactly Uh−1(1) (as opposed to a point whose distribution is close to Uh−1(1)).

Theorem 100. (approximate counting for LTFn, [43]) There is an algorithm ALTF
count that on input

(a weights–based representation of) an arbitrary h ∈ LTFn, an accuracy parameter ε > 0 and a
confidence parameter δ > 0, runs in time poly(n, 1/ε, log(1/δ)) and outputs p̂ ∈ [0, 1] that with
probability 1− δ satisfies p̂ ∈ [1− ε, 1 + ε] ·Prx∼Un [h(x) = 1].

We also need an efficient SQ learning algorithm for halfpaces. This is provided to us by a result
of Blum et. al. [15]:

Theorem 101. (SQ learning algorithm for LTFn, [15]) There is a distribution-independent SQ
learning algorithm ALTF

SQ for LTFn that has running time t1 = poly(n, 1/ε, log(1/δ)), uses at
most t2 = poly(n) time to evaluate each query, and requires tolerance of its queries no smaller
than τ = 1/poly(n, 1/ε).
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A densifier for LTFn.
The last ingredient we need in order to apply our Theorem 81 is a computationally efficient den-
sifer for LTFn. This is the main technical contribution of this section and is summarized in the
following theorem:

Theorem 102. (efficient proper densifier for LTFn) Set γ(ε, δ, n)
def
= Θ (δ/(n2 log n)). There is an

(ε, γ, δ)–densifier ALTF
den for LTFn that, for any input parameters 0 < ε, δ, 1/2n ≤ p̂ ≤ 1, outputs

a function g ∈ LTFn and runs in time poly(n, 1/ε, log(1/δ)).

Discussion and intuition. Before we prove Theorem 102, we provide some intuition. Let f ∈
LTFn be the unknown LTF and suppose that we would like to design an (ε, γ, δ)–densifier ALTF

den

for f . That is, given sample access to Uf−1(1), and a number p̂ satisfying p ≤ p̂ < (1 + ε)p, where
p = Prx∈Un [f(x) = 1], we would like to efficiently compute (a weights–based representation for)
an LTF g : {−1, 1}n → {−1, 1} such that the following conditions are satisfied:

(a) Prx∼Uf−1(1)
[g(x) = 1] ≥ 1− ε, and

(b) Prx∼Un [g(x) = 1] ≤ (1/γ) ·Prx∼Un [f = 1].

(While condition (b) above appears slightly different than property (b) in our Definition 80, because
of property (a), the two statements are essentially equivalent up to a factor of 1/(1− ε) in the value
of γ.)

We start by noting that it is easy to handle the case that p̂ is large. In particular, observe that if
p̂ ≥ 2γ then p = Prx∼Un [f(x) = 1] ≥ p̂/(1 + ε) ≥ p̂/2 ≥ γ, and we can just output g ≡ 1 since
it clearly satisfies both properties of the definition. For the following intuitive discussion we will
henceforth assume that p̂ ≤ 2γ.

Recall that our desired function g is an LTF, i.e., g(x) = sign(v · x − t), for some (v, t) ∈
Rn+1. Recall also that our densifier has sample access to Uf−1(1), so it can obtain random positive
examples of f , each of which gives a linear constraint over the v, t variables. Hence a natural
first approach is to attempt to construct an appropriate linear program over these variables whose
feasible solutions satisfy conditions (a) and (b) above. We begin by analyzing this approach; while
it turns out to not quite work, it will gives us valuable intuition for our actual algorithm, which is
presented further below.

Note that following this approach, condition (a) is relatively easy to satisfy. Indeed, consider
any ε > 0 and suppose we want to construct an LTF g = sign(v·x−t) such that Prx∼Uf−1(1)

[g(x) = 1] ≥
1 − ε. This can be done as follows: draw a set S+ of N+ = Θ ((1/ε) · (n2 + log(1/δ))) samples
from Uf−1(1) and consider a linear program LP+ with variables (w, θ) ∈ Rn+1 that enforces all
these examples to be positive. That is, for each x ∈ S+, we will have an inequality w · x ≥ θ. It is
clear that LP+ is feasible (any weights–based representation for f is a feasible solution) and that it
can be solved in poly(n, 1/ε, log(1/δ)) time, since it is defined by O(N+) many linear constraints
and the coefficients of the constraint matrix are in {±1}. The following simple claim shows that
with high probability any feasible solution of LP+ satisfies condition (a):
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Claim 103. With probability at least 1− δ over the sample S+, any g ∈ LTFn consistent with S+

satisfies condition (a).

Proof. Consider an LTF g and suppose that it does not satisfy condition (a), i.e., Prx∼Un [g(x) =
−1|f(x) = 1] > ε. Since each sample x ∈ S+ is uniformly distributed in f−1(1), the probability it
does not “hit” the set g−1(−1)∩ f−1(1) is at most 1− ε. The probability that no sample in S+ hits
g−1(−1)∩ f−1(1) is thus at most (1− ε)N+ ≤ δ/2n

2
. Recalling that there exist at most 2n

2 distinct
LTFs over {−1, 1}n [114], it follows by a union bound that the probability there exists an LTF that
does not satisfy condition (a) is at most δ as desired.

The above claim directly implies that with high probability any feasible solution (w∗, θ∗) to
LP+ is such that g∗(x) = sign(w∗ · x− θ∗) satisfies condition (a). Of course, an arbitrary feasible
solution to LP+ is by no means guaranteed to satisfy condition (b). (Note for example that the
constant 1 function is certainly feasible for LP+.) Hence, a natural idea is to include additional
constraints in our linear program so that condition (b) is also satisfied.

Along these lines, consider the following procedure: Draw a set S−of N− = bδ/p̂c uniform
unlabeled samples from {−1, 1}n and label them negative. That is, for each sample x ∈ S−, we
add the constraint w · x < θ to our linear program. Let LP be the linear program that contains all
the constraints defined by S+ ∪S−. It is not hard to prove that with probability at least 1− 2δ over
the sample S−, we have that S− ⊆ f−1(−1) and hence (any weight based representation of) f is
a feasible solution to LP . In fact, it is possible to show that if γ is sufficiently small — roughly,
γ ≤ δ/ (4(n2 + log(1/δ))) is what is required — then with high probability each solution to LP
also satisfies condition (b). The catch, of course, is that the above procedure is not computationally
efficient because N− may be very large – if p̂ is very small, then it is infeasible even to write down
the linear program LP .
Algorithm Description. The above discussion motivates our actual densifier algorithm as follows:
The problem with the above described naive approach is that it generates (the potentially very
large set) S− all at once at the beginning of the algorithm. Note that having a large set S− is
not necessarily in and of itself a problem, since one could potentially use the ellipsoid method to
solve LP if one could obtain an efficient separation oracle. Thus intuitively, if one had an online
algorithm which would generate S− on the fly, then one could potentially get a feasible solution to
LP in polynomial time. This serves as the intuition behind our actual algorithm.

More concretely, our densifier ALTF
den will invoke a computationally efficient online learning

algorithm for LTFs. In particular, ALTF
den will run the online learner ALTF

MT for a sequence of stages
and in each stage it will provide as counterexamples to ALTF

MT , random labeled examples from
a carefully chosen distribution. These examples will be positive for the online learner’s current
hypothesis, but negative for f (with high probability). Since ALTF

MT makes a small number of
mistakes in the worst-case, this process is guaranteed to terminate after a small number of stages
(since in each stage we force the online learner to make a mistake).

We now provide the details. We start by recalling the notion of online learning for a class C
of Boolean functions. In the online model, learning proceeds in a sequence of stages. In each
stage the learning algorithm is given an unlabeled example x ∈ {−1, 1}n and is asked to predict
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the value f(x), where f ∈ C is the unknown target concept. After the learning algorithm makes
its prediction, it is given the correct value of f(x). The goal of the learner is to identify f while
minimizing the total number of mistakes. We say that an online algorithm learns class C with
mistake bound M if it makes at most M mistakes on any sequence of examples consistent with
some f ∈ C. Our densifier makes essential use of a computationally efficient online learning
algorithm for the class of linear threshold functions by Maass and Turan [108]:

Theorem 104. ([108], Theorem 3.3) There exists a poly(n) time deterministic online learning

algorithm ALTF
MT for the class LTFn with mistake bound M(n)

def
= Θ(n2 log n). In particular,

at every stage of its execution, the current hypothesis maintained by ALTF
MT is a (weights–based

representation of an) LTF that is consistent with all labeled examples received so far.

We note that the above algorithm works by reducing the problem of online learning for LTFs
to a convex optimization problem. Hence, one can use any efficient convex optimization algorithm
to do online learning for LTFs, e.g. the ellipsoid method [92, 61]. The mistake bound in the above
theorem follows by plugging in the algorithm of Vaidya [141, 142].

We now proceed with a more detailed description of our densifier followed by pseudocode and
a proof of correctness. As previously mentioned, the basic idea is to execute the online learner to
learn f while cleverly providing counterexamples to it in each stage of its execution. Our algorithm
starts by sampling N+ samples from Uf−1(1) and making sure that these are classified correctly
by the online learner. This step guarantees that our final solution will satisfy condition (a) of the
densifier. Let h ∈ LTFn be the current hypothesis at the end of this process. If h satisfies condition
(b) (we can efficiently decide this by using our approximate counter for LTFn), we output h and
terminate the algorithm. Otherwise, we use our approximate uniform generator to construct a
uniform satisfying assignment x ∈ Uh−1(1) and we label it negative, i.e., we give the labeled
example (x,−1) as a counterexample to the online learner. Since h does not satisfy condition (b),
i.e., it has “many” satisfying assignments, it follows that with high probability (roughly, at least
1 − γ) over the choice of x ∈ Uh−1(1), the point x output by the generator will indeed be negative
for f . We continue this process for a number of stages. If all counterexamples thus generated are
indeed consistent with f (this happens with probability roughly 1 − γ ·M , where M = M(n) =
Θ(n2 log n) is an upper bound on the number of stages), after at most M stages we have either
found a hypothesis h satisfying condition (b) or the online learner terminates. In the latter case,
the current hypothesis of the online learner is identical to f , as follows from Theorem 104. (Note
that the above argument puts an upper bound of O(δ/M) on the value of γ.) Detailed pseudocode
follows:

Algorithm ALTF
den (Uf−1(1), ε, δ, p̂):

Input: Independent samples from Uf−1(1), parameters ε, δ > 0, and a value 1/2n ≤ p̂ ≤ 1.
Output: If p ≤ p̂ ≤ (1 + ε)p, with probability 1 − δ outputs a function g ∈ LTFn satisfying
conditions (a) and (b).
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1. Draw a set S+ of N+ = Θ ((1/ε) · (n2 + log(1/δ))) examples from Uf−1(1).

2. Initialize i = 0 and set M def
= Θ(n2 log n).

While (i ≤M) do the following:

a) Execute the i-th stage of ALTF
MT and let h(i) ∈ LTFn be its current hypothesis.

b) If there exists x ∈ S+ with h(i)(x) = −1 do the following:

• Give the labeled example (x, 1) as a counterexample to ALTF
MT .

• Set i = i+ 1 and go to Step 2.

c) Run ALTF
count(h

(i), ε, δ/(4M)) and let p̂i be its output.

d) Set γ def
= δ/(16M). If p̂i ≤ p̂/

(
γ · (1 + ε)2

)
then output h(i);

e) otherwise, do the following:

• Run ALTF
gen (h(i), δ/(4M)) and let x(i) be its output.

• Give the point (x(i),−1) as a counterexample to ALTF
MT .

• Set i = i+ 1 and go to Step 2.

3. Output the current hypothesis h(i) of ALTF
MT .

Theorem 105. Algorithm ALTF
den (Uf−1(1), ε, δ, p̂) runs in time poly (n, 1/ε, log(1/δ)). If p ≤ p̂ <

(1 + ε)p then with probability 1 − δ it outputs a vector (w, θ) such that g(x) = sign(w · x − θ)
satisfies conditions (a) and (b) at the start of Section 4.3.

Proof. First note that by Claim 103, with probability at least 1− δ/4 over S+ any LTF consistent
with S+ will satisfy condition (a). We will condition on this event and also on the event that each
call to the approximate counting algorithm and to the approximate uniform generator is successful.
Since Step 2 involves at most M iterations, by a union bound, with probability at least 1− δ/4 all
calls to ALTF

count will be successful, i.e., for all i we will have that pi/(1 + ε) ≤ p̂i ≤ (1 + ε) · pi,
where pi = Prx∈Un [h(i)(x) = 1]. Similarly, with failure probability at most δ/4, all points x(i)

constructed by ALTF
gen will be uniformly random over (h(i))−1(1). Hence, with failure probability

at most 3δ/4 all three conditions will be satisfied.
Conditioning on the above events, if the algorithm outputs a hypothesis h(i) in Step 2(d), this

hypothesis will certainly satisfy condition (b), since pi ≤ (1 + ε)p̂i ≤ p̂/
(
γ · (1 + ε)

)
≤ p/γ. In

this case, the algorithm succeeds with probability at least 1 − 3δ/4. It remains to show that if the
algorithm returns a hypothesis in Step 3, it will be successful with probability at least 1 − δ. To
see this, observe that if no execution of Step 2(e) generates a point x(i) with f(x(i)) = 1, all the
counterexamples given to ALTF

MT are consistent with f . Therefore, by Theorem 104, the hypothesis
of Step 3 will be identical to f , which trivially satisfies both conditions.
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We claim that with overall probability at least 1 − δ/4 all executions of Step 2(e) generate
points x(i) with f(x(i)) = −1. Indeed, fix an execution of Step 2(e). Since p̂i > p̂/ ((1 + ε)2 · γ), it
follows that p ≤ (4γ)pi. Hence, with probability at least 1− 4γ a uniform point x(i) ∼ U(hi)−1(1) is
a negative example for f , i.e., x(i) ∈ f−1(−1). By a union bound over all stages, our claim holds
except with failure probability 4γ ·M = δ/4, as desired. This completes the proof of correctness.

It remains to analyze the running time. Note that Step 2 is repeated at most M = O(n2 log n)
times. Each iteration involves (i) one round of the online learner ALTF

MT (this takes poly(n) time
by Theorem 104), (ii) one call of ALTF

count (this takes poly(n, 1/ε, log(1/δ)) time by Theorem 100),
and (iii) one call to ALTF

gen (this takes poly(n, 1/ε, log(1/δ)) time by Theorem 99). This completes
the proof of Theorem 105.

Discussion. As mentioned before, the algorithmALTF
den is the most important technical contribution

of this section and hence it is instructive to understand, at a high level, the ingredients which are
combined to construct a densifier. Let C be a class of Boolean functions and Cn consist of functions
in C over n variables. While we do not formalize it here, one can modify the proof of Theorem 105,
mutatis mutandis, to show that Cn has a (ε, γ, δ)-densifier ACden with running time T (n) (where ε,
γ and δ are 1/poly(n) and T (n) is poly(n)) provided that the following conditions hold:

(i) Cn has an (ε, δ)-approximate counting algorithm and an (ε, δ)-approximate uniform genera-
tion algorithm both of which run in time poly(n, 1/ε, 1/δ);

(ii) There is an online learning algorithm ACOL for C with a poly(n) running time and poly(n)
mistake bound.

It will be interesting to see if there are other interesting classes of functions for which this frame-
work gives an “automatic” construction of densifiers.

4.4 DNFs
In this section we apply our general positive result, Theorem 81, to give a quasipolynomial-time
algorithm for the inverse approximate uniform generation problem for s-term DNF formulas. Let
DNFn,s denote the class of all s-term DNF formulas over n Boolean variables (which for conve-
nience we think of as 0/1 variables). Our main result of this section is the following:

Theorem 106. There is an algorithm ADNFn,s
inv which is an inverse approximate uniform gener-

ation algorithm for the class DNFn,s. Given input parameters ε, δ the algorithm runs in time
poly

(
nlog(s/ε), log(1/δ)

)
.

We note that even in the standard uniform distribution learning model the fastest known run-
ning time for learning s-term DNF formulas to accuracy ε is poly(nlog(s/ε), log(1/δ)) [146, 143].
Thus it seems likely that obtaining a poly(n, s, 1/ε)-time algorithm would require a significant
breakthrough in computational learning theory.
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For our application of Theorem 81 for DNFs we shall have C = DNFn,s and C ′ = DNFn,t

for some t which we shall specify later. As in the case of LTFs, the literature provides us with
three of the four ingredients that our general approach requires for DNF — approximate uniform
generation, approximate counting, and Statistical Query learning (more on this below) — and our
main technical contribution is giving the fourth necessary ingredient, a densifier. Before presenting
and analyzing our densifier algorithm we recall the other three ingredients.

Tools from the literature.
Karp, Luby and Madras [81] have given approximate uniform generation and approximate count-
ing algorithms for DNF formulas. (We note that [72] give an efficient algorithm that with high
probability outputs an exactly uniform satisfying assignment for DNFs.)

Theorem 107. (Approximate uniform generation for DNFs, [81]) There is an approximate uniform
generation algorithm ADNFn,t

gen for the class DNFn,t that runs in time poly(n, t, 1/ε, log(1/δ)).

Theorem 108. (Approximate counting for DNFs, [81]) There is an approximate counting algo-
rithm ADNFn,t

gen for the class DNFn,t that runs in time poly(n, t, 1/ε, log(1/δ)).

The fastest known algorithm in the literature for SQ learning s-term DNF formulas under
arbitrary distributions runs in time nO(n1/3 log s) · poly(1/ε) [95], which is much more than our
desired running time bound. However, we will see that we are able to use known malicious noise
tolerant SQ learning algorithms for learning sparse disjunctions over N Boolean variables rather
than DNF formulas. In more detail, our densifier will provide us with a set of N = nO(log(s/ε))

many conjunctions which is such that the target function f is very close to a disjunction (which
we call f ′) over an unknown subset of at most s of these N conjunctions. Thus intuitively any
learning algorithm for disjunctions, run over the “feature space” of conjunctions provided by the
densifier, would succeed if the target function were f ′, but the target function is actually f (which
is not necessarily exactly a disjunction over these N variables). Fortunately, known results on the
malicious noise tolerance of specific SQ learning algorithms imply that it is in fact possible to use
these SQ algorithms to learn f to high accuracy, as we now explain.

We now state the precise SQ learning result that we will use. The following theorem is a direct
consequence of, e.g., Theorems 5 and 6 of [33] or alteratively of Theorems 5 and 6 of [5]:

Theorem 109. (Malicious noise tolerant SQ algorithm for learning sparse disjunctions) Let CDISJ,k

be the class of all disjunctions of length at most k over N Boolean variables x1, . . . , xN . There
is a distribution-independent SQ learning algorithm ADISJ

SQ for CDISJ,k that has running time
t1 = poly(N, 1/ε, log(1/δ)), uses at most t2 = poly(N) time to evaluate each query, and requires
tolerance of its queries no smaller than τ = 1/poly(k, 1/ε). The algorithm outputs a hypothesis
which is a disjunction over x1, . . . , xN .

Moreover, there is a fixed polynomial `(·) such that algorithm ADISJ
SQ has the following prop-

erty: Fix a distribution D over {0, 1}N . Let f be an N -variable Boolean function which is
such that Prx∼D[f ′(x) 6= f(x)] ≤ κ, where f ′ ∈ CDISJ,k is some k-variable disjunction and
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κ ≤ `(ε/k) < ε/2. Then if ADISJ
SQ is run with a STAT(f,D) oracle, with probability 1 − δ it out-

puts a hypothesis h such that Prx∼D[h(x) 6= f ′(x)] ≤ ε/2, and hence Prx∼D[h(x 6= f(x)] ≤ ε.

(We note in passing that at the heart of Theorem 109 is an attribute-efficient SQ algorithm for
learning sparse disjunctions. Very roughly speaking, an attribute efficient SQ learning algorithm
is one which can learn a target function over N variables, which actually depends only on an
unknown subset of k � N of the variables, using statistical queries for which the minimum value
of the tolerance τ is “large.” The intuition behind Theorem 109 is that since the distance between
f and f ′ is much less than τ , the effect of using a STAT(f,D) oracle rather than a STAT(f ′,D)
oracle is negligible, and hence the SQ algorithm will succeed whether it is run with f or f ′ as the
target function.)

A densifier for DNFn,s and the proof of Theorem 106.
In this subsection we state our main theorem regarding the existence of densifiers for DNF formu-
las, Theorem 110, and show how Theorem 106 follows from this theorem.

Theorem 110. Let γ(n, s, 1/ε, 1/δ) = 1/(4n2 log(2s/`(ε/s)) log(s/δ)). AlgorithmADNFn,s
den (Uf−1(1), ε, δ, p̂)

outputs a collection S of conjunctions C1, . . . , C|S| and has the following performance guarantee:

If p
def
= Prx∼Un [f(x) = 1] ≤ p̂ < (1 + ε)p, then with probability at least 1 − δ, the function

g(x)
def
= ∨i∈[|S|]Ci satisfies the following:

1. Prx∼Uf−1(1)
[g(x) = 1] ≥ 1− ε;

2. Prx∼Ug−1(1)
[f(x) = 1] ≥ γ(n, s, 1/ε, 1/δ).

3. There is a DNF f ′ = Ci1 ∨ · · · ∨ Cis′ , which is a disjunction of s′ ≤ s of the conjunctions
C1, . . . , C|S|, such that Prx∼Ug−1(1)

[f ′(x) 6= f(x)] ≤ `(ε/s), where `(·) is the polynomial
from Theorem 109.

The size of S and the running time of ADNFn,s
den (Uf−1(1), ε, δ, p̂) is poly(nlog(s/ε), log(1/δ)).

With a slight abuse of terminology we may rephrase the above theorem as saying thatADNFn,s
den

is a (ε, γ, δ)-densifier for function class C = DNFn,s using class C ′ = DNFn,t where t =

nO(log(s/ε)). We defer the description of Algorithm ADNFn,s
den and the proof of Theorem 110 to the

next subsection.

Proof of Theorem 106. The proof is essentially just an application of Theorem 81. The only twist
is the use of a SQ disjunction learning algorithm rather than a DNF learning algorithm, but the
special properties of Algorithm ADISJ

SQ let this go through without a problem.
In more detail, in Step 2(e) of Algorithm A′Cinv (see Section 4.2), in the execution of Algo-

rithm ASQ−SIM, the SQ algorithm that is simulated is the algorithm ADISJ
SQ run over the feature

space S of all conjunctions that are output by Algorithm ADNFn,s
den in Step 1 of Algorithm A′Cinv
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(i.e., these conjunctions play the role of variables x1, . . . , xN for the SQ learning algorithm). Prop-
erty (3) of Theorem 110 and Theorem 109 together imply that the algorithm ADISJ

SQ , run on a
STAT(f,Ug−1(1)) oracle with parameters ε, δ, would with probability 1− δ output a hypothesis h′

satisfying Prx∼Ug−1(1)
[h′(x) 6= f(x)] ≤ ε. Hence the hypothesis h that is output by ASQ−SIM in

Step 2(e) of Algorithm A′Cinv fulfills the necessary accuracy (with respect to f under D = Ug−1(1))
and confidence requirements, and the overall algorithm ACinv succeeds as described in Theorem 81.

Finally, combining the running time bounds of ADNFn,s
den and ADISJ

SQ with the time bounds of
the other procedures described earlier, one can straightforwardly verify that the running time of the
overall algorithm ACinv is poly(nlog(s/ε), log(1/δ)).

Construction of a densifier for DNFn,s and proof of Theorem 110.
Let f = T1 ∨ · · · ∨ Ts be the target s-term DNF formula, where T1, . . . , Ts are the terms (conjunc-
tions). The high-level idea of our densifier is quite simple: If Ti is a term which is “reasonably
likely” to be satisfied by a uniform draw of x from f−1(1), then Ti is at least “mildly likely” to
be satisfied by r = 2 log n consecutive independent draws of x from f−1(1). Such a sequence of
draws x1, . . . , xr will with high probability uniquely identify Ti. By repeating this process suffi-
ciently many times, with high probability we will obtain a pool C1, . . . , C|S| of conjunctions which
contains all of the terms Ti that are reasonably likely to be satisfied by a uniform draw of x from
f−1(1). Theorem 110 follows straightforwardly from this.

We give detailed pseudocode for our densifier algorithm below:

Algorithm ADNFn,s
den (Uf−1(1), ε, δ, p̂):

Input: Independent samples from Uf−1(1), parameters ε, δ > 0, and a value 1/2n < p̂ ≤ 1.
Output: If p ≤ p̂ ≤ (1+ε)p, with probability 1−δ outputs a set S of conjunctionsC1, . . . , C|S|
as described in Theorem 110

1. Initialize set S to ∅. Let `(·) be the polynomial from Theorem 109.

2. For i = 1 to M = 2n2 log(2s/`(ε/s)) log(s/δ), repeat the following:

a) Draw r = 2 log n satisfying assignments x1, . . . , xr from Uf−1(1).

b) Let Ci be the AND of all literals that take the same value in all r strings x1, . . . , xr

(note Ci may be the empty conjunction). We say Ci is a candidate term.

c) If the candidate term Ci satisfies Prx∼Un [Ci(x) = 1] ≤ p̂ then add Ci to the set S.

3. Output S.

The following crucial claim makes the intuition presented at the start of this subsection precise:
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Claim 111. Suppose Tj is a term in f such that Prx∼Uf−1(1)
[Tj(x) = 1] ≥ `(ε/s)/(2s). Then

with probability at least 1 − δ/s, term Tj is a candidate term at some iteration of Step 2 of Algo-
rithm ADNFn,s

den (Uf−1(1), ε, δ, p̂).

Proof. Fix a given iteration i of the loop in Step 2. With probability at least

(`(ε/s)/(2s))2 logn = (1/n)2 log(2s/`(ε/s)),

all 2 log n points x1, . . . , x2 logn satisfy Tj; let us call this event E, and condition onE taking place.
We claim that conditioned on E, the points x1, . . . , x2 logn are independent uniform samples drawn
from T−1

j (1). (To see this, observe that each xi is an independent sample chosen uniformly at
random from f−1(1)∩T−1

j ; but f−1(1)∩T−1
j (1) is identical to T−1

j (1).) Given that x1, . . . , x2 logn

are independent uniform samples drawn from T−1
j (1), the probability that any literal which is not

present in Tj is contained in Ci (i.e., is satisfied by all 2 log n points) is at most 2n/n2 ≤ 1/2.
So with overall probability at least 1

2n2 log(2s/`(ε/s)) , the term Tj is a candidate term at iteration i.
Consequently Tj is a candidate term at some iteration with probability at least 1 − δ/s, by the
choice of M = 2n2 log(2s/`(ε/s)) log(s/δ).

Now we are ready to prove Theorem 110:

Proof of Theorem 110. The claimed running time bound of ADNFn,s
den is easily verified, so it re-

mains only to establish (1)-(3). Fix p̂ such that p ≤ p̂ < (1 + ε)p where p = Prx∼Un [f(x) = 1].
Consider any fixed term Tj of f such that Prx∼Uf−1(1)

[Tj(x) = 1] ≥ `(ε/s)/(2s).By Claim 111
we have that with probability at least 1−δ/s, term Tj is a candidate term at some iteration of Step 2
of the algorithm. We claim that in step (c) of this iteration the term Tj will in fact be added to S.
This is because by assumption we have

Pr
x∼Un

[Tj(x) = 1] ≤ Pr
x∼Un

[f(x) = 1] = p ≤ p̂.

So by a union bound, with probability at least 1−δ every term Tj in f such that Prx∼Uf−1(1)
[Tj(x) =

1] ≥ `(ε/s)/(2s) is added to S.
Let L be the set of those terms Tj in f that have Prx∼Uf−1(1)

[Tj(x) = 1] ≥ `(ε/s)/(2s). Let
f ′ be the DNF obtained by taking the OR of all terms in L. By a union bound over the (at most
s) terms that are in f but not in f ′, we have Prx∼Uf−1(1)

[f ′(x) = 1] ≥ 1 − `(ε/s)/2. Since g (as
defined in Theorem 110 has g(x) = 1 whenever f ′(x) = 1, it follows that Prx∼Uf−1(1)

[g(x) =

1] ≥ 1− `(ε/s)/2 ≥ 1− ε, giving item (1) of the theorem.
For item (2), since f(x) = 1 whenever f ′(x) = 1, we have Prx∼Ug−1(1)

[f(x) = 1] ≥
Prx∼Ug−1(1)

[f ′(x) = 1]. Every x such that f ′(x) = 1 also has g(x) = 1 so to lower bound
Prx∼Ug−1(1)

[f ′(x) = 1] it is enough to upper bound the number of points in g−1(1) and lower
bound the number of points in f ′−1(1). Since each Ci that is added to S is satisfied by at most
p̂2n ≤ (1 + ε)p2n points, we have that |g−1(1)| ≤ (1 + ε)pM2n. Since at least 1 − ε of
the points that satisfy f also satisfy f ′, we have that |f ′−1(1)| ≥ p(1 − ε)2n. Thus we have
Prx∼Ug−1(1)

[f ′(x) = 1] ≥ p(1− ε)/((1 + ε)pM) = 1−ε
1+ε
· 1
M
> 1

2M
, giving (2).
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Finally, for (3) we have that f(x) 6= f ′(x) only on those inputs that have f(x) = 1 but f ′(x) =
0 (because some term outside of L is satisfied by x and no term in L is satisfied by x). Even if all
such inputs x lie in g−1(1) (the worst case), there can be at most (`(ε/s)/2)p2n such inputs, and we
know that |g−1(1)| ≥ |f−1(1)| ≥ p(1− ε)2n. So we have Prx∼Ug−1(1)

[f(x) 6= f ′(x)] ≤ `(ε/s)/2
1−ε ≤

`(ε/s), and we have (3) as desired.

Inverse approximate uniform generation for k-DNFs.
We briefly note that our general approach immediately yields an efficient inverse approximate
uniform generation algorithm for the class of k-DNFs for any constant k. Let k-DNF denote the
class of all k-DNFs over n Boolean variables, i.e., DNF formulas in which each term (conjunction)
has at most k literals.

Theorem 112. There is an algorithm Ak-DNF
inv which is an inverse approximate uniform gener-

ation algorithm for the class k-DNF. Given input parameters ε, δ the algorithm runs in time
poly

(
nk, 1/ε, log(1/δ)

)
.

For any k-DNF f it is easy to see that Prx∼Un [f(x) = 1] ≥ 1/2k, and consequently the con-
stant 1 function is a γ-densifier for k-DNF with γ = 1/2k. Theorem 112 then follows immediately
from Theorem 81, using the algorithms for approximate uniform generation and counting of DNF
formulas mentioned above [81] together with well-known algorithms for SQ learning k-DNF for-
mulas in poly(nk, 1/ε, log(1/δ)) time [85].

4.5 Negative results for inverse approximate uniform
generation

In this section, we will prove hardness results for inverse approximate uniform generation problems
for specific classes C of Boolean functions. As is standard in computational learning theory, our
hardness results are based on cryptographic hardness assumptions. The hardness assumptions we
use are well studied assumptions in cryptography such as the strong RSA assumption, Decisional
Diffie Hellman problem, and hardness of learning parity with noise.

As was alluded to in the introduction, in light of the standard approach, there are two potential
barriers to obtaining inverse approximate uniform generation algorithms for a class C of functions.
The first is that “reconstructing” the object from class C may be hard, and the second is that sam-
pling approximately uniform random satisfying assignments from the reconstructed object may
be hard. While any hard inverse approximate uniform generation problem must be hard because
of one of these two potential barriers, we emphasize here that even if one of the two steps in the
standard approach is shown to be hard, this does not constitute a proof of hardness of the overall
inverse approximate uniform generation problem, as there is may exist some efficient algorithm
for the class C which departs from the standard approach. Indeed, we will give such an example
in Section 4.6, where we give an efficient algorithm for a specific inverse approximate uniform
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generation problem that does not follow the standard approach. (In fact, for that problem, the sec-
ond step of the standard approach is provably no easier than the well-known graph automorphism
problem, which has withstood several decades of effort towards even getting a sub-exponential
time algorithm.)

Our hardness results come in two flavors. Our first hardness results, based on signature schemes,
are for problems where it is provably hard (of course under a computational hardness assumption)
to sample approximately uniform satisfying assignments. In contrast, our hardness results of the
second flavor are based on Message Authentication Codes (MACs). We give such a result for a
specific class C which has the property that it is actually easy to sample uniform satisfying assign-
ments for functions in C; hence, in an informal sense, it is the first step in the standard approach that
is algorithmically hard for this problem. The following subsections describe all of our hardness
results in detail.

Hardness results based on signature schemes.
In this subsection we prove a general theorem, Theorem 118, which relates the hardness of inverse
approximate uniform generation to the existence of certain secure signature schemes in cryptogra-
phy. Roughly speaking, Theorem 118 says that if secure signature schemes exist, then the inverse
approximate uniform generation problem is computationally hard for any class C which is Levin-
reducible from CIRCUIT-SAT. We will use this general result to establish hardness of inverse
approximate uniform generation for several natural classes of functions, including 3-CNF formu-
las, intersections of two halfspaces, and degree-2 polynomial threshold functions (PTFs).

We begin by recalling the definition of public key signature schemes. For an extensive treat-
ment of signature schemes, see [59]. For simplicity, and since it suffices for our purposes, we only
consider schemes with deterministic verification algorithms.

Definition 113. A signature scheme is a triple (G,S, V ) of polynomial-time algorithms with the
following properties :

• (Key generation algorithm) G is a randomized algorithm which on input 1n produces a
pair (pk, sk) (note that the sizes of both pk and sk are polynomial in n).

• (Signing algorithm) S is a randomized algorithm which takes as input a message m from
the message spaceM, a secret key sk and randomness r∈ {0, 1}n, and outputs a signature
σ = S(m, sk, r).

• (Verification algorithm) V is a deterministic algorithm such that V (m, pk, σ) = 1 for every
σ = S(m, sk, r).

We will require signature schemes with some special properties which we now define, first
fixing some notation. Let (G,S, V ) be a signature scheme. For a message space M and pair
(pk, sk) of public and secret keys, we define the set R1,sk of “valid” signed messages as the set
of all possible signed messages (m,σ = S(m, sk, r)) as m ranges over all of M and r ranges
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over all of {0, 1}n. Similarly, we define the set R2,pk of “potential” signed messages as R2,pk =
{(m,σ) : V (m, pk, σ) = 1}. Likewise, we define the set of valid signatures for message m,
denoted R1,sk(m), as the set of all possible pairs (m,σ = S(m, sk, r)) as r ranges over all of
{0, 1}n, and we define the set of potential signatures for message m as R2,pk(m) = {(m,σ) :
V (m, pk, σ) = 1}.

Definition 114. Let (G,S, V ) be a signature scheme andM be a message space. A pair (pk, sk)
of public and secret keys is said to be (δ, η)-special if the following properties hold :

• Let R1,sk be the set of valid signed messages and R2,pk be the set of potential signed mes-
sages. Then |R1,sk|

|R2,pk|
≥ 1− η.

• For any fixed pair (m,σ) ∈ R1,sk(m), we have Prr∈{0,1}n [σ = S(m, sk, r)] = 1
|R1,sk(m)| .

• Define two distributions D and D′ over pairs (m,σ) as follows : D is obtained by choosing
m ∈U M and choosing σ ∈U R1,sk(m). D′ is the distribution defined to be uniform over
the setR1,sk. Then dTV (D,D′) ≤ δ.

From now on, in the interest of brevity,M will denote the “obvious” message spaceM asso-
ciated with a signature scheme unless mentioned otherwise. Similarly, the randomness r for the
signing algorithm S will always assumed to be r ∈U {0, 1}n.

We next recall the standard notion of existential unforgeability under RMA (Random Message
Attack):

Definition 115. A signature scheme (G,S, V ) is said to be (t, ε)-RMA secure if the following
holds: Let (pk, sk) ← G(1n). Let (m1, . . . ,mt) be chosen uniformly at random from M. Let
σi ← S(mi, sk, r). Then, for any probabilistic algorithm A running in time t,

Pr
(pk,sk),(m1,...,mt),(σ1,...,σt)

[A(pk,m1, . . . ,mt, σ1, . . . , σt) = (m′, σ′)] ≤ ε

where V (m′, pk, σ′) = 1 and m′ 6= mi for all i = 1, . . . , t.

Next we need to formally define the notion of hardness of inverse approximate uniform gener-
ation:

Definition 116. Let C be a class of n-variable Boolean functions. C is said to be (t(n), ε, δ)-hard
for inverse approximate uniform generation if there is no algorithm A running in time t(n) which
is an (ε, δ)-inverse approximate uniform generation algorithm for C.

Finally, we will also need the definition of an invertible Levin reduction:

Definition 117. A binary relation R is said to reduce to another binary relation R′ by a time-t
invertible Levin reduction if there are three algorithms α, β and γ, each running in time t(n) on
instances of length n, with the following property:
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• For every (x, y) ∈ R, it holds that (α(x), β(x, y)) ∈ R′;

• For every (α(x), z) ∈ R′, it holds that (x, γ(α(x), z)) ∈ R.

Furthermore, the functions β and γ are injective maps with the property that γ(α(x), β(x, y)) =
y.

Note that for any class of functions C, we can define the binary relationRC as follows : (f, x) ∈
RC if and only if f(x) = 1 and f ∈ C. In this section, whenever we say that there is an invertible
Levin reduction from class C1 to class C2, we mean that there is an invertible Levin reduction
between the corresponding binary relations RC1 and RC2 .

A general hardness result based on signature schemes.

We now state and prove our main theorem relating signature schemes to hardness of inverse ap-
proximate uniform generation:

Theorem 118. Let (G,S, V ) be a (t, ε)-RMA secure signature scheme. Suppose that with probabil-
ity at least 99/100 a random pair (pk, sk)← G(1n) is (δ, η)-special. Let C be a class of n-variable
Boolean functions such that there is a Levin reduction from CIRCUIT-SAT to C running in time
t′(n). Let κ1 and κ2 be such that κ1 ≤ 1 − 2 · (2η + δ + t′(n)/|M|), κ2 ≤ 1 − 2t′(n) · (η + δ)
and ε ≤ (1 − κ1)(1 − κ2)/4. If t1(·) is a time function such that 2t1(t′(n)) ≤ t(n), then C is
(t1(n), κ1, κ2)-hard for inverse approximate uniform generation.

The high-level idea of the proof is simple: Suppose there were an efficient algorithm for the
inverse approximate uniform generation problem for C. Because of the invertible Levin reduction
from CIRCUIT-SAT to C, there is a signature scheme for which the verification algorithm (using
any given public key) corresponds to a function in C. The signed messages (m1, σ1), . . . , (mt, σt)
correspond to points from Uf−1(1) where f ∈ C. Now the existence of an efficient algorithm
for the inverse approximate uniform generation problem for C (i.e. an algorithm which, given
points from Uf−1(1), can generate more such points) translates into an algorithm which, given a
sample of signed messages, can generate a new signed message. But this violates the existential
unforgeability under RMA of the signature scheme.

We now proceed to the formal proof.

Proof. Assume towards a contradiction that there is an algorithm A for inverse approximate uni-
form generationAinv which runs in time t1 such that with probability 1−κ2, the output distribution
is κ1-close to the target distribution. If we can show that for any (δ, η)-special key pair (pk, sk) the
resulting signature scheme is not (t, ε) secure, then this will result in a contradiction. We will now
use algorithm A to construct an adversary which breaks the signature scheme for (δ, η)-special key
pairs (pk, sk).

Towards this, fix a (δ, η)-special key pair (pk, sk) and consider the function Vpk : M ×
{0, 1}∗ → {0, 1} defined as Vpk(m,σ) = V (m, pk, σ). Clearly, Vpk is an instance of CIRCUIT-
SAT (i.e. Vpk is computed by a satisfiable polynomial-size Boolean circuit). Since there is an
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invertible Levin reduction from CIRCUIT-SAT to C, given pk, the adversary in time t′(n) can
compute Φpk ∈ C with the following properties (let β and γ be the corresponding algorithms in the
definition of the Levin reduction):

• For every (m,σ) such that Vpk(m,σ) = 1, Φpk(β(Vpk, (m,σ))) = 1.

• For every x such that Φpk(x) = 1, Vpk(γ(Φpk, x)) = 1.

Recall that the adversary receives signatures (m1, σ1), . . . , (mt′(n), σt′(n)). Let xi = β(Vpk, (mi, σi)).
Let Dx be the distribution of (x1, . . . , xt′(n)). We next make the following claim.

Claim 119. Let y1, . . . , yt′ be drawn uniformly at random from Φ−1
pk (1) and let Dy be the cor-

responding distribution of (y1, . . . , yt). Then, Dy and Dx are t′(n)·(2η + δ)-close in statistical
distance.

Proof. Note that Dy and Dx are t′(n)-way product distributions. If D(1)
x and D(1)

y are the corre-
sponding marginals on the first coordinate, then t′(n) · dTV (D

(1)
x , D

(1)
y ) ≤ dTV (Dx, Dy). Thus, it

suffices to upper bound dTV (D
(1)
x , D

(1)
y ), which we now do.

dTV (D(1)
x , D(1)

y ) ≤
∑

z∈supp(D(1)
y )\supp(D(1)

x )

∣∣D(1)
x (z)−D(1)

y (z)
∣∣+

∑
z∈supp(D(1)

x )

∣∣D(1)
x (z)−D(1)

y (z)
∣∣ .

By definition of (pk, sk) being (δ, η)-special, we get that∑
z∈supp(D(1)

y )\supp(D(1)
x )

|D(1)
x (z)−D(1)

y (z)| ≤ η.

To bound the next sum, let τ = Pr[D
(1)
y ∈ supp(D(1)

x )]. Note that τ ≥ 1− η. We have

∑
z∈supp(D(1)

x )

∣∣D(1)
x (z)−D(1)

y (z)
∣∣ ≤ ∑

z∈supp(D(1)
x )

∣∣τD(1)
x (z)−D(1)

y (z)
∣∣+ (1− τ)

∑
z∈supp(D(1)

x )

D(1)
x (z)

≤ η + τ ·
∑

z∈supp(D(1)
x )

∣∣∣∣∣D(1)
x (z)− D

(1)
y (z)

τ

∣∣∣∣∣ .
We observe that D

(1)
y (z)

τ
restricted to supp(D(1)

x ) is simply the uniform distribution over the image
of the setR1,sk and hence is the same as applying the map β on the distribution D′. Likewise D(1)

x

is the same as applying the map β on D (mentioned in Definition 114). Hence, we have that

dTV (D(1)
x , D(1)

y ) ≤ 2η + dTV (D,D′) ≤ 2η + δ.
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Now, observe that the instances xi are each of length at most t′(n). Since the distributions Dx

and Dy are t′(n)·(2η + δ) close, hence our adversary can run Ainv in time t(n) on the examples
x1, . . . , xt′(n) and succeed with probability 1 − κ2 − t′(n)·(2η + δ) ≥ (1 − κ2)/2 in producing
a sampler whose output distribution is κ1-close to UΦ−1

pk (1). Call this output distribution Z. Let
β(D) denote the distribution obtained by applying the map β on D. The proof of Claim 119 shows
that β(D) is (2η + δ)-close to the distribution UΦ−1

pk (1). Thus, with probability (1 − κ2)/2, Z is
(κ1 + (2η + δ))-close to the distribution β(D). By definition of D, we have

Pr
(m,σ)∈D

[∀i ∈ [t′],mi 6= m] ≥ 1− t′

|M|
.

Thus, with probability 1−κ2
2

,

Pr
z∈Z

[z = g(m,σ) and ∀i ∈ [t′],mi 6= m] ≥ 1− κ1 − (2η + δ)− t′

|M|
≥ 1− κ1

2

Thus, with overall probability (1 − κ1)(1 − κ2)/4 ≥ ε, the adversary succeeds in producing
z = g(m,σ) such that ∀i ∈ [t′],mi 6= m. Applying the map γ on (Φpk, z), the adversary gets
the pair (m,σ). Also, note that the total running time of the adversary is t1(t′(n)) + t′(n) ≤
2t1(t′(n)) ≤ t(n) which contradicts the (t, ε)-RMA security of the signature scheme.

A specific hardness assumption.

At this point, at the cost of sacrificing some generality, we consider a particular instantiation of
a signature scheme from the literature which meets our requirements. While similar signature
schemes can be constructed under many different cryptographic assumptions in the literature, we
forsake such generality to keep the discussion from getting too cumbersome.

To state our cryptographic assumption, we need the following notation:

• PRIMESk is the set of k-bit prime numbers.

• RSAk is the set of all products of two primes of length b(k − 1)/2c.

The following cryptographic assumption (a slight variant of the standard RSA assumption)
appears in [111].

Assumption 1. The RSA′ s(k) assumption: Fix any m ∈ RSAk and let x ∈U Z∗m and p ∈U
PRIMESk+1. Let A be any probabilistic algorithm running in time s(k). Then,

Pr
(x,p)

[A(m,x, p) = y and yp = x (mod m)] ≤ 1

s(k)
.

As mentioned in [111], given the present state of computational number theory, it is plausible
to conjecture the RSA′ s(k) assumption for s(k) = 2k

δ for some absolute constant δ > 0. For the
sake of conciseness, for the rest of this section we write “Assumption 1 holds true” to mean that
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Assumption 1 holds true with s(k) = 2n
δ for some fixed constant δ > 0. (We note, though, that all

our hardness results go through giving superpolynomial hardness using only s(k) = kω(1).)
Micali et al. [111] give a construction of a “unique signature scheme” using Assumption 1:

Theorem 120. If Assumption 1 holds true, then there is a (t = 2n
δ
, ε = 1/t)-RMA secure signature

scheme (G,S, V ) with the following property : For any message m ∈ M, there do not exist σ1 6=
σ2 such that V (m,σ1) = V (m,σ2) = 1. In this scheme the signing algorithm S is deterministic
and the message spaceM is of size 2n

δ
.

The above theorem says that under the RSA′ s(k) assumption, there is a deterministic signature
scheme such that there is only one signature σm for every messagem, and for every messagem the
only accepting input for V is (m,σm). As a consequence, the signature scheme in Theorem 120
has the property that every (pk, sk) pair that can be generated by G is (0, 0)-special.

Remark 121. It is important to note here that constructions of (0, 0) special signature schemes
are abundant in the literature. A partial list follows : Lysyanskaya [107] constructed a deter-
ministic (0, 0) special signature scheme using a strong version of the Diffie–Hellman assumption.
Hohenberger and Waters [67] constructed a scheme with a similar guarantee using a variant of
the Diffie–Hellman assumption on bilinear groups. In fact, going back much further, Cramer and
Shoup [25, 54] show that using the Strong RSA assumption, one can get a (0, 0) special signature
scheme (which however is not deterministic). We remark that the scheme as stated in [25] is not
(0, 0) special in any obvious sense, but the more efficient version in [54] can be easily verified to
be (0, 0) special. Throughout this section, for the sake of simplicity, we use the signature scheme
in Theorem 120.

Instantiating Theorem 118 with the signature scheme from Theorem 120, we obtain the fol-
lowing corollary:

Corollary 122. Suppose that Assumption 1 holds true. Then the following holds : Let C be a func-
tion class such that there is a polynomial time (nk-time) invertible Levin reduction from CIRCUIT-
SAT to C. Then C is (2n

c
, 1− 2−n

c
, 1− 2−n

c
)-hard for inverse approximate uniform generation for

some constant c > 0 (depending only on the “δ” in Assumption 1 and on k).

Inverse approximate uniform generation hardness results for specific function classes whose
satisfiability problem is NP-complete.

In this subsection we use Corollary 122 to prove hardness results for inverse approximate uniform
generation for specific function classes C for which there are invertible Levin reductions from
CIRCUIT-SAT to C.

Recall that a 3-CNF formula is a conjunction of clauses (disjunctions) of length 3. The fol-
lowing fact can be easily verified by inspecting the standard reduction from CIRCUIT-SAT to
3-CNF-SAT.

Fact 123. There is a polynomial time invertible Levin reduction from CIRCUIT-SAT to 3-CNF-
SAT.
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As a corollary, we have the following result.

Corollary 124. If Assumption 1 holds true, then there exists an absolute constant c > 0 such that
the class 3-CNF is (2n

c
, 1− 2−n

c
, 1− 2−n

c
)-hard for inverse approximate uniform generation.

Corollary 124 is interesting in light of the well known fact that the class of all 3-CNF formulas
is efficiently PAC learnable from uniform random examples (in fact under any distribution).

We next observe that the problem of inverse approximate uniform generation remains hard
even for 3-CNF formulas in which each variable occurs a bounded number of times. To prove this
we will use the fact that polynomial time invertible Levin reductions compose:

Fact 125. If there is a polynomial time invertible Levin reduction from CIRCUIT-SAT to C and
a polynomial time Levin reduction from C to C1, then there is a polynomial time invertible Levin
reduction from CIRCUIT-SAT to C1.

The following theorem says that the inverse approximate uniform generation problem remains
hard for the class of all 3-CNF formulas in which each variable occurs at most 4 times (hereafter
denoted 3,4-CNF).

Theorem 126. If Assumption 1 holds true, then there exists an absolute constant c > 0 such that
3,4-CNF-SAT is (2n

c
, 1− 2−n

c
, 1− 2−n

c
)-hard for inverse approximate uniform generation.

Proof. Tovey [137] shows that there is a polynomial time invertible Levin reduction from 3-
CNF-SAT to 3,4-CNF-SAT. Using Fact 125, we have a polynomial time Levin reduction from
CIRCUIT-SAT to 3,4-CNF-SAT. Now the result follows from Corollary 122

The next theorem shows that the class of all intersections of two halfspaces over n Boolean
variables is hard for inverse approximate uniform generation.

Theorem 127. If Assumption 1 holds true, then there exists an absolute constant c > 0 such that
C = {all intersections of two halfspaces over n Boolean variables} is (2n

c
, 1−2−n

c
, 1−2−n

c
)-hard

for inverse approximate uniform generation.

Proof. We recall that the SUBSET-SUM problem is defined as follows : An instance Φ is defined
by positive integers w1, . . . , wn, s > 0. A satisfying assignment for this instance is given by
x ∈ {0, 1}n such that

∑n
i=1wixi = s. It is well known that the SUBSET-SUM problem is NP-

complete and it is folklore that there is a invertible Levin reduction from 3-SAT to SUBSET-SUM.
However, since it is somewhat difficult to find this reduction explicitly in the literature, we outline
such a reduction.

To describe the reduction, we first define 1-in-3-SAT. An instance Ψ of 1-in-3-SAT is defined
over Boolean variables x1, . . . , xn with the following constraints : The ith constraint is defined by
a subset of at most three literals over x1, . . . , xn. An assignment to x1, . . . , xn satisfies Ψ if and
only if for every constraint there is exactly one literal which is set to true. Schaefer [127] showed
that 3-SAT reduces to 1-in-3-SAT in polynomial time, and the reduction can be easily verified to
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be an invertible Levin reduction. Now the standard textbook reduction from 3-SAT to SUBSET-
SUM (which can be found e.g. in [122]) applied to instances of 1-in-3-SAT, can be easily seen
to be a polynomial time invertible Levin reduction. By Fact 125, we thus have a polynomial time
invertible Levin reduction from 3-CNF-SAT to SUBSET-SUM.

With this reduction in hand, it remains only to observe that that any instance of SUBSET-
SUM is also an instance of “intersection of two halfspaces,” simply because

∑n
i=1 wixi = s if and

only if s ≤
∑n

i=1 wi · xi ≤ s. Thus, there is a polynomial time invertible Levin reduction from
3-CNF-SAT to the class of all intersections of two halfspaces. This finishes the proof.

A hardness result where the satisfiability problem is in P .

So far all of our hardness results have been for classes C of NP-complete languages. As Theo-
rem 118 requires a reduction from CIRCUIT-SAT to C, this theorem cannot be directly used to
prove hardness for classes C which are not NP-hard. We next give an extension of Theorem 118
which can apply to classes C for which the satisfiability problem is in P . Using this result we will
show hardness of inverse approximate uniform generation for MONOTONE-2-CNF-SAT. (Recall
that a monotone 2-CNF formula is a conjunction of clauses of the form xi ∨ xj , with no negations;
such a formula is trivially satisfiable by the all-true assignment.)

We begin by defining by a notion of invertible one-many reductions that we will need.

Definition 128. CIRCUIT-SAT is said to have an η-almost invertible one-many reduction to a
function class C if the following conditions hold:

• There is a polynomial time computable function f such that given an instance Φ of CIRCUIT-
SAT (i.e. Φ is a satisfiable circuit), Ψ = f(Φ) is an instance of C (i.e. Ψ ∈ C and Ψ is
satisfiable).

• Fix any instance Φ of CIRCUIT-SAT and let A = Ψ−1(1) denote the set of satisfying as-
signments of Ψ. Then A can be partitioned into sets A1 and A2 such that |A2|/|A| ≤ η and
there is an efficiently computable function g : A1 → Φ−1(1) such that g(x) is a satisfying
assignment of Φ for every x ∈ A1.

• For every y which is a satisfying assignment of Φ, the number of pre-images of y under g is
exactly the same, and the uniform distribution over g−1(y) is polynomial time samplable.

We next state the following simple claim which will be helpful later.

Claim 129. Suppose there is an η-almost invertible one-many reduction from CIRCUIT-SAT to C.
Let f and g be the functions from Definition 128. Let Φ be an instance of CIRCUIT-SAT and let
Ψ = f(Φ) be the corresponding instance of C. Define distributions D1 and D2 as follows :

• A draw from D1 is obtained by choosing y uniformly at random from Φ−1(1) and then out-
putting z uniformly at random from g−1(y).
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• A draw from D2 is obtained by choosing z′ uniformly at random from Ψ−1(1).

Then we have dTV (D1, D2) ≤ η.

Proof. This is an immediate consequence of the fact that D1 is uniform over the set A1 while D2

is uniform over the set A (from Definition 128).

We next have the following extension of Corollary 122.

Theorem 130. Suppose that Assumption 1 holds true. Then if C is a function class such that there
is an η-almost invertible one-many reduction (for η = 2−Ω(n)) from CIRCUIT-SAT to C, then C
is (2n

c
, 1 − 2−n

c
, 1 − 2−n

c
)-hard for inverse approximate uniform generation for some absolute

constant c > 0.

Proof. The proof is similar to the proof of Corollary 122. Assume towards a contradiction that
there is an algorithm for inverse approximation uniform generation Ainv for C which runs in time
t1 such that with probability 1 − κ2, the output distribution is κ1-close to the target distribution.
(We will set t1, κ1 and κ2 later to 2n

c , 1− 2−n
c and 1− 2−n

c respectively.)
Let (G,S, V ) be the RMA-secure signature scheme constructed in Theorem 120. Note that

(G,S, V ) is a (T, ε)-RMA secure signature scheme where T = 2n
δ , ε = 1/T and |M| = 2n

µ

for constant δ, µ > 0. Let (pk, sk) be a choice of key pair. We will us Ainv to contradict the
security of (G,S, V ). Towards this, consider the function Vpk :M× {0, 1}∗ → {0, 1} defined as
Vpk(m,σ) = V (m, pk, σ). Clearly, Vpk is an instance of CIRCUIT-SAT. Consider the η-invertible
one-many reduction from CIRCUIT-SAT to C. Let α and β have the same meaning as in Defi-
nition 128. Let Ψ = α(Vpk) and let A, A1 and A2 have the same meaning as in Definition 128.
The adversary receives message-signature pairs (m1, σ1) . . . (mt1 , σt1) wherem1, . . . ,mt1 are cho-
sen independently at random fromM. For any i, (mi, σi) is a satisfying assignment of Vpk. By
definition, in time t2 = t1 · poly(n), the adversary can sample (z1, . . . , zt1) such that z1, . . . , zt1
are independent and zi ∼ Uβ−1(mi,σi). Note that this means that each zi is an independent sample
from A1 and |zi| = poly(n). Note that (z1, . . . , zt1) is a t1-fold product distribution such that if
D′ denotes the distribution of zi, then by Claim 129, dTV (D′,UΨ−1(1)) ≤ η. Hence, if D is the
distribution of (z1, . . . , zt1), then dTV (D,U tΨ−1(1)) ≤ t1η.

Hence, the adversary can now run Arec on the samples z1, . . . , zt1 and as long as 1−κ2− t1η ≥
(1−κ2)/2, succeeds in producing a sampler with probability (1−κ2)/2 whose output distribution
(call it Z) is κ1 close to the distribution UΨ−1(1). Note that as η = 2−Ω(n), for any c > 0, t1 = 2n

c

and κ2 = 1− 2−n
c satisfies this condition. Hence, we get that dTV (Z,D′) ≤ κ1 + η. Now, observe

that
Pr
ρ∈D′

[β(ρ) = (m,σ) and m 6= mi] = 1− t1
|M|

.

The above uses the fact that every element in the range of β has the same number of pre-images.
This of course implies that

Pr
ρ∈Z

[β(ρ) = (m,σ) and m 6= mi] ≥ 1− t1
|M|

− (κ1 + η).
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Again as long as κ1 ≤ 1 − 2(η + t1/|M|), the adversary succeeds in getting a valid message
signature pair (m,σ) with m 6= mi for any 1 ≤ i ≤ t1 with probability (1 − κ1)/2. Again,
we can ensure κ1 ≤ 1 − 2(η + t1/|M|) by choosing c sufficiently small compared to µ. The
total probability of success is (1 − κ1)(1 − κ2)/4 and the total running time is t1(poly(n)) +
poly(n). Again if c is sufficiently small compared to µ and δ, then the total running time is at most
t1(poly(n))+poly(n) < T and the success probability is at least (1−κ1)(1−κ2)/4 > ε, resulting
in a contradiction.

We now demonstrate a polynomial time η-invertible one-many reduction from CIRCUIT-SAT
to MONOTONE-2-CNF-SAT for η = 2−Ω(n). The reduction uses the “blow-up” idea used to
prove hardness of approximate counting for MONOTONE-2-CNF-SAT in [72]. We will closely
follow the instantiation of this technique in [148].

Lemma 131. There is a polynomial time η-almost invertible one-many reduction from CIRCUIT-
SAT to MONOTONE-2-CNF-SAT where η = 2−Ω(n).

Proof. We begin by noting the following simple fact.

Fact 132. If there is a polynomial time invertible Levin reduction from CIRCUIT-SAT to a class
C1 and an η-almost invertible one-many reduction from C1 to C2, then there is a polynomial time
η-almost invertible one-many reduction from CIRCUIT-SAT to C2.

Since there is an invertible Levin reduction from CIRCUIT-SAT to 3-CNF-SAT, by virtue
of Fact 132, it suffices to demonstrate a polynomial time η-almost invertible one-many reduction
from 3-CNF-SAT to MONOTONE-2-CNF-SAT. To do this, we first construct an instance of
VERTEX-COVER from the 3-CNF-SAT instance. Let Φ =

∧m
i=1Φi be the instance of 3-CNF-

SAT. Construct an instance of VERTEX-COVER by introducing seven vertices for each clause
Φi (one corresponding to every satisfying assignment of Φi). Now, put an edge between any two
vertices of this graph if the corresponding assignments to the variables of Φ conflict on some
variable. We call this graph G. We observe the following properties of this graph :

• G has exactly 7m vertices.

• Every vertex cover of G has size at least 6m.

• There is an efficiently computable and invertible injection ` between the satisfying assign-
ments of Φ and the vertex covers of G of size 6m. To get the vertex cover corresponding to a
satisfying assignment, for every clause Φi, include the six vertices in the vertex cover which
conflict with the satisfying assignment.

We next do the blow-up construction. We create a new graph G′ by replacing every vertex of G
with a cloud of 10m vertices, and for every edge inGwe create a complete bipartite graph between
the corresponding clouds in G′. Clearly, the size of the graph G′ is polynomial in the size of the
3-CNF-SAT formula. We define a map g1 between vertex covers of G′ and vertex covers of G as
follows : Let S ′ be a vertex cover of G′. We define the set S = g1(S ′) in the following way. For
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every vertex v in the graph G, if all the vertices in the corresponding cloud in G′ are in S ′, then
include v ∈ S, else do not include v in S. It is easy to observe that g1 maps vertex covers of G′ to
vertex covers of G. It is also easy to observe that a vertex cover of G of size s has (210m − 1)7m−s

pre-images under g1.
Now, observe that we can construct a MONOTONE-2-CNF-SAT formula Ψ which has a vari-

able corresponding to every vertex inG′ and every subset S ′ ofG′ corresponds to a truth assignment
yS′ to Ψ such that Ψ(yS′) = 1 if and only if S ′ is a vertex cover of G′. Because of this correspon-
dence, we can construct a map g′1 which maps satisfying assignments of Ψ to vertex covers of G.
Further, a vertex cover of size s in graphG has (210m−1)7m−s pre-images under g′1. Since the total
number of vertex covers of G of size s is at most

(
7m
s

)
, the total number of satisfying assignments

of Ψ which map to vertex covers of G of size more than 6m can be bounded by :

7m∑
s=6m+1

(
7m

s

)
· (210m − 1)7m−s ≤ m ·

(
7m

6m+ 1

)
· (210m − 1)m−1 ≤ (210m − 1)m · 27m

210m − 1

On the other hand, since Φ has at least one satisfying assignment, hence G has at least one
vertex cover of size 6m and hence the total number of satisfying assignments of Ψ which map to
vertex covers of G of size 6m is at least (210m− 1)m. Thus, if we letA denote the set of satisfying
assignments of Ψ andA1 be the set of satisfying assignment of Ψ which map to vertex covers of G
of size exactly 6m (under g1), then |A1|/|A| ≥ 1−2−Ω(n). Next, notice that we can define the map
g mapping A1 to the satisfying assignments of Φ in the following manner : g(x) = `−1(g1(x)). It
is easy to see that this map satisfies all the requirements of the map g from Definition 128 which
concludes the proof.

Combining Lemma 131 with Theorem 130, we have the following corollary.

Corollary 133. If Assumption 1 holds true, then MONOTONE-2-CNF-SAT is (2n
c
, 1− 2−n

c
, 1−

2−n
c
) hard for inverse approximate uniform generation for some absolute constant c > 0.

As a consequence of the above result, we also get hardness for inverse approximate uniform
generation of degree-2 polynomial threshold functions (PTFs); these are functions of the form
sign(q(x)) where q(x) is a degree-2 multilinear polynomial over {0, 1}n.

Corollary 134. If Assumption 1 holds true, then the class of all n-variable degree-2 polynomial
threshold functions is (2n

c
, 1 − 2−n

c
, 1 − 2−n

c
) hard for inverse approximate uniform generation

for some absolute constant c > 0.

Proof. This follows immediately from the fact that every monotone 2-CNF formula can be ex-
pressed as a degree-2 PTF. To see this, note that if Φ =

∧m
i=1(xi1 ∨ xi2) where each xij is a 0/1

variable, then Φ(x) is true if and only if
∑m

i=1 xi1 +xi2−xi1 ·xi2 ≥ m. This finishes the proof.
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Hardness results based on Message Authentication Codes.
All of the previous hardness results intuitively correspond to the case when the second step of our
“standard approach” is algorithmically hard. Indeed, consider a class C of functions that has an
efficient approximate uniform generation algorithm. Unless P 6= NP there cannot be any Karp
reduction from CIRCUIT-SAT to C (this would contradict the NP-completeness of CIRCUIT-SAT)
and hence Theorem 118 is not applicable in this setting. In fact, even for η = 1− 1/poly(n) there
cannot be any η-almost invertible one-many reduction from CIRCUIT-SAT to C unless P 6= NP .
This makes Theorem 130 inapplicable in this setting. Thus, to prove hardness results for classes
that have efficient approximate uniform generation algorithms, we need some other approach.

In this section we show that Message Authentication Codes (MAC) can be used to establish
hardness of inverse approximate uniform generation for such classes. We begin by defining MACs.
(We remark that we use a restricted definition which is sufficient for us; for the most general
definition, see [59].)

Definition 135. A Message Authentication Code (MAC) is a triple (G, T, V ) of polynomial-time
algorithms with the following properties :

• (Key generation algorithm) G(·) is a randomized algorithm which on input 1n produces a
secret key sk;

• (Tagging algorithm) T is a randomized algorithm which takes as input message m, secret
key sk and randomness r and outputs σ ← T (m, sk, r);

• (Verification algorithm) V is a deterministic algorithm which takes as input message m,
secret key sk and σ. If σ = T (m, sk, r) for some r then V (m, sk, σ) = 1.

For the purposes of our hardness results we require MACs with some special properties. While
our hardness results can be derived from slightly more general MACs than those we specify below,
we forsake some generality for the sake of clarity. For a MAC (G, T, V ) and a choice of secret key
sk, we say σ is a valid tag for message m if there exists r such that σ = T (m, sk, r). Likewise,
we say that σ is a potential tag for message m if V (m, sk, σ) = 1.

Definition 136. A Message Authentication Code (G, T, V ) over a message spaceM is said to be
special if the following conditions hold : For any secret key sk,

• For every message m ∈M, the set of valid tags is identical to the set of potential tags..

• For every two messages m1 6= m2 and every σ1, σ2 such that σi is a valid tag for mi, we
have Prr[T (m1, sk, r) = σ1] = Prr[T (m2, sk, r) = σ2].. In particular, the cardinality of
the set of valid tags for m is the same for all m.

We next define the standard notion of security under Random Message attacks for MACs. As
before, from now onwards, we will assume implicitly thatM is the message space.
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Definition 137. A special MAC (G, T, V ) is said to be (t, ε)-RMA secure if the following holds
: Let sk ← G(1n). Let (m1, . . . ,mt) be chosen uniformly at random from M. Let σi ←
T (mi, sk, r). Then for any probabilistic algorithm A running in time t,

Pr
sk,(m1,...,mt),(σ1,...,σt)

[A(m1, . . . ,mt, σ1, . . . , σt) = (m′, σ′)] ≤ ε

where V (m′, sk, σ′) = 1 and m′ 6= mi for all i = 1, . . . , t.

It is known how to construct MACs meeting the requirements in Definition 137 under standard
cryptographic assumptions (see [59]).

A general hardness result based on Message Authentication Codes.

The next theorem shows that special MACs yield hardness results for inverse approximate uniform
generation.

Theorem 138. Let c > 0 and (G, T, V ) be a (t, ε)-RMA secure special MAC for some t = 2n
c

and ε = 1/t with a message spaceM of size 2Ω(n). Let Vsk denote the function Vsk : (m,σ) 7→
V (m, sk, σ). If Vsk ∈ C for every sk, then there exists δ > 0 such that C is (t1, κ, η)-hard for
inverse approximate uniform generation for t1 = 2n

δ
and κ = η = 1− 2−n

δ
.

Proof. Towards a contradiction, let us assume that there is an algorithm Ainv for inverse approxi-
mate uniform generation of C which runs in time t1 and with probability 1 − η outputs a sampler
whose statistical distance is at most κ from the target distribution. (We will set t1, κ and η later in
the proof.) We will use Ainv to contradict the security of the MAC. Let sk be a secret key chosen
according to G(1n). Now, the adversary receives message-tag pairs (m1, σ1), . . . , (mt1 , σt1) where
m1, . . . ,mt1 are chosen independently at random fromM. Because the MAC is special, for each
i we have that σi is a uniformly random valid tag for the message mi. Hence each (mi, σi) is an
independent and uniformly random satisfying assignment of Vsk.

We can thus run Ainv on the samples (m1, σ1), . . . , (mt1 , σt1) with its accuracy parameter set
to κ and its confidence parameter set to 1 − η. Taking κ = η = 1 − 2−n

δ , we can choose δ small
enough compared to c, and with t1 = 2n

δ we get that the total running time ofAinv is at most 2n
c
/2.

By the definition of inverse approximate uniform generation, with probability at least 1−η = 2−n
δ

the algorithmAinv outputs a sampler for a distribution Z that is κ = (1−2−n
δ
)-close to the uniform

distribution over the satisfying assignments of Vsk. Now, observe that

Pr
(m,σ)∼U

V−1
sk

(1)

[mi 6= m for all i ∈ [t1]] ≥ 1− t1
|M|

.

Thus,

Pr
z∼Z

[z = (m,σ) and mi 6= m for all i ∈ [t1]] ≥ (1− κ)− t1
|M|

.

This means that with probability (1−η) ·((1−κ)− t1
|M|), the adversary can output a forgery. It

is clear that for a suitable choice of δ relative to c, recalling that κ = η = 1− 2−n
δ , the probability

of outputting a forgery is greater than 2−n
c
, which contradicts the security of the MAC.
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Unlike signature schemes, which permitted intricate reductions (cf. Theorem 118), in the case
of MACs we get a hardness result for complexity class C only if Vsk itself belongs to C. While spe-
cial MACs are known to exist assuming the existence of one-way functions [59], the constructions
are rather involved and rely on constructions of pseudorandom functions (PRFs) as an intermediate
step. As a result, the verification algorithm V also involves computing PRFs; this means that using
these standard constructions, one can only get hardness results for a class C if PRFs can be com-
puted in C. As a result, the class C tends to be fairly complex, making the corresponding hardness
result for inverse approximate uniform generation for C somewhat uninteresting.

One way to bypass this is to use construction of MACs which do not involve use of PRFs as an
intermediate step. In recent years there has been significant progress in this area [93, 41]. While
both these papers describe several MACs which do not require PRFs, the one most relevant for us
is the MAC construction of [93] based on the hardness of the “Learning Parity with Noise” (LPN)
problem.

Some specific hardness assumptions, and a corresponding specific hardness result.

We first state a “decision” version of LPN. To do this, we need the following notation:

• Let Berτ denote the following distribution over GF (2) : If x← Berτ , then Pr[x = 1] = τ .

• For x ∈ GF (2)n, we use Λ(x, τ, ·) to denote the distribution (r, x · r ⊕ e) over GF (2)n ×
GF (2) where r ∼ GF (2)n and e ∼ Berτ and x · r = ⊕ixiri ( mod 2).

Assumption 2. Let τ ∈ (0, 1/2) and let Ox,τ be an oracle which, each time it is invoked, returns
an independent uniformly random sample from Λ(x, τ, ·). The LPN assumption states that for any
poly(n)-time algorithm A,∣∣∣∣[ Pr

x∈GF (2)n
[AOx,τ = 1

]
−
[

Pr
x∈GF (2)n

[AOx,1/2 = 1

]∣∣∣∣ ≤ ε

for some ε which is negligible in n.

LPN is a well-studied problem; despite intensive research effort, the fastest known algorithm
for this problem takes time 2O(n/ logn) [16]. For our applications, we will need a variant of the
above LPN assumption. To define the assumption, let Λ(x, `, τ, ·) denote the distribution over
(A,A · x ⊕ e) where A is uniformly random in GF (2)`×n and e is uniformly random over the set
{z ∈ GF (2)` : wt(z) ≤ dτ`e}. The vector e is usually referred to as the noise vector.

Assumption 3. Let τ ∈ (0, 1/2), ` = c · n for some 0 < c < 1/2 and let Ox,`,τ be an oracle which
returns a uniformly random sample from Λ(x, `, τ, ·). Then the (t, ε) exact LPN assumption states
that for any algorithm A running in time t,∣∣∣∣ Pr

x∈GF (2)n

[
AOx,`,τ = 1

]
− Pr

x∈GF (2)n

[
AOx,`,1/2 = 1

]∣∣∣∣ ≤ ε
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For the sake of brevity, we henceforth refer to this assumption by saying “the exact (n, `, τ)
LPN problem is (t, ε)-hard.”

The above conjecture seems to be very closely related to Assumption 2, but it is not known
whether Assumption 2 formally reduces to Assumption 3. Assumption 3 has previously been
suggested in the cryptographic literature [84] in the context of getting perfect completeness in LPN-
based protocols. We note that Arora and Ge [4] have investigated the complexity of this problem
and gave an algorithm which runs in time nO(`). We believe that the proximity of Assumption 3 to
the well-studied Assumption 2, as well as the failure to find algorithms for Assumption 3, make it
a plausible conjecture. For the rest of this section we use Assumption 3 with t = 2n

β and ε = 2−n
β

for some fixed β > 0.
We next define a seemingly stronger variant of Assumption 3 which we call subset exact LPN.

This requires the following definitions: For x, v ∈ GF (2)n, `, d ≤ n and τ ∈ (0, 1/2), we define
the distribution Λa(x, v, `, τ, ·) as follows :

Λa(x, v, `, τ, ·) =

{
Λ(x · v, `, 1/2, ·) if wt(v) < d
Λ(x · v, `, τ, ·) if wt(v) ≥ d

where x · v ∈ GF (2)n is defined by (x · v)i = xi · vi. In other words, if wt(v) ≥ d, then the
distribution Λa(x, v, `, τ) projects x into the non-zero coordinates of v and then outputs samples
corresponding to exact LPN for the projected vector. We define the oracle Oax,`,d,τ (·) which takes
an input v ∈ GF (2)n and outputs a random sample from Λa(x, v, `, τ, ·). The subset exact LPN
assumption states the following:

Assumption 4. Let τ ∈ (0, 1/2), ` = c ·n and d = c′ ·n for some 0 < c, c′ < 1/2. The (t, ε)-subset
exact LPN assumption says that for any algorithm A running in time t,∣∣∣∣ Pr

x∈GF (2)n

[
AOax,`,d,τ = 1

]
− Pr

x∈GF (2)n

[
AO

a
x,`,d,1/2 = 1

]∣∣∣∣ ≤ ε.

For the sake of brevity, we henceforth refer to this assumption by saying “the subset exact (n, `, d, τ)
LPN problem is (t, ε)-hard.”

Assumption 4 is very similar to the subset LPN assumption used in [93] and previously con-
sidered in [124]. The subset LPN assumption is the same as Assumption 4 but with ` = 1 and the
coordinates of the noise vector e being drawn independently from Berτ . Pietrzak [124] showed
that the subset LPN assumption is implied by the standard LPN assumption (Assumption 2) with
a minor change in the security parameters. Along the same lines, the next lemma shows that As-
sumption 3 implies Assumption 4 with a minor change in parameters. The proof is identical to the
proof of Theorem 1 in [124] and hence we do not repeat it here.

Lemma 139. If the exact (n, `, τ) LPN problem is (t, ε) hard, then for any g ∈ N, the subset exact
(n′, `, n+ g, τ) LPN problem is (t′, ε′) hard for n′ ≥ n+ g, t′ = t/2 and ε′ = ε+ 2t

2g+1 .
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Proof. The proof of this lemma follows verbatim from the proof of Theorem 1 in [124]. The key
observation is that the reduction from subset LPN to LPN in Theorem 1 in [124] is independent of
the noise distribution.

From Lemma 139, we get that Assumption 3 implies Assumption 4. In particular, we can set
` = n/5 and g = n/10, n′ ≥ 11n/10. Then we get that if the exact (n, `, τ) problem is (2n

β
, 2−n

β
)

hard for some β > 0, then the subset exact (n′, `, 11n/10, τ) is also (2n
β′
, 2−n

β′
) hard for some

other β′ > 0. For the rest of this section, we set the value of ` and g as above and we assume that
the subset exact (n′, `, 11n/10, τ) is (2n

β′
, 2−n

β′
) hard for some β′ > 0.

Now we are ready to define the following Message Authentication Code (MAC) (G,S, V ),
which we refer to as LPN-MAC:

• The key generation algorithm G chooses a random matrix X ∈ GF (2)λ×n and a string
x′ ∈ GF (2)λ, where λ = 2n.

• The tagging algorithm samples R ∈ GF (2)`×λ and e ∈ GF (2)` where e is a randomly
chosen vector in GF (2)` with at most dτ`e ones. The algorithm outputs (R,RT · (X ·m +
x′) + e).

• The verification algorithm, given tag (R,Z) for message m, computes y = Z + RT · (X ·
m+ x′) and accepts if and only if the total number of ones in y is at most dτ`e.

Note that all arithmetic operations in the description of the above MAC are done over GF (2).
The following theorem shows that under suitable assumptions the above MAC is special and secure
as desired:

Theorem 140. Assuming that the exact (n, `, τ) problem is (t, ε) hard for t = 2n
β

and ε = 2−n
β

for β > 0, LPN-MAC described above is a (t′, ε′)-RMA-secure special MAC for t′ = 2n
β′

and
ε′ = 2−n

β′
for some β′ > 0.

Proof. First, it is trivial to observe that the MAC described above is a special MAC. Thus, we are
only left with the task of proving the security of this construction. In [93] (Theorem 5), the authors
show that the above MAC is secure with the above parameters under Assumption 2 provided the
vector e in the description of LPN-MAC is drawn from a distribution where every coordinate of e
is an independent draw from Berτ . (We note that the MAC of Theorem 5 in [93] is described in a
slightly different way, but Dodis et al. [41] show that the above MAC and the MAC of Theorem 5
in [93] are exactly the same). Follow the same proof verbatim except whenever [93] use the subset
LPN assumption, we use the subset exact LPN assumption (i.e. Assumption 4), we obtain a proof
of Theorem 140.
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A problem for which inverse approximate uniform generation is hard but approximate
uniform generation is easy.

Given Theorem 138, in order to come up with a problem where inverse approximate uniform gen-
eration is hard but approximate uniform generation is easy, it remains only to show that the verifi-
cation algorithm for LPN-MAC can be implemented in a class of functions for which approximate
uniform generation is easy. Towards this, we have the following definition.

Definition 141. BILINEAR-MAJORITY`,n,λ,τ is a class of Boolean functions such that every
f ∈BILINEAR-MAJORITY`,n,λ,τ , f : GF (2)`×λ × GF (2)` × GF (2)n → {0, 1} is parame-
terized by subsets S1, . . . , Sλ ⊆ [n] and x0 ∈ GF (2)λ and is defined as follows : On input
(R,Z,m) ∈ GF (2)`×λ ×GF (2)` ×GF (2)n, define

yi = Zi +
λ∑
j=1

Rij · (
∑
`∈Sj

m` + x0
j)

where all the additions and multiplications are in GF (2). Then f(R,Z,m) = 1 if and only if
at most dτ`e coordinates y1, . . . , y` are 1.

Claim 142. For the LPN-MAC with parameters `, n, λ and τ described earlier, the verification
algorithm V can be implemented in the class BILINEAR-MAJORITY`,n,λ,τ .

Proof. Consider the LPN-MAC with parameters `, n, λ and τ and secret keyX and x′. Now define
a function f in BILINEAR-MAJORITY`,n,λ,τ where x0 = x′ and the subset Sj = {i : Xji = 1}.
It is easy to check that the corresponding f(R,Z,m) = 1 if and only if (R,Z) is a valid tag for
message m.

The next and final claim says that there is an efficient approximate uniform generation algo-
rithm for BILINEAR-MAJORITY`,n,λ,τ :

Claim 143. There is an algorithm which given any f ∈BILINEAR-MAJORITY`,n,λ,τ (with pa-
rameters S1, . . . , Sλ ⊆ [n] and x0 ∈ GF (2)λ) and an input parameter δ > 0, runs in time
poly(n, `, λ, log(1/δ)) and outputs a distribution which is δ-close to being uniform on f−1(1).

Proof. The crucial observation is that for any (R,m), the set AR,m = {z : f(R,Z,m) = 1}
has cardinality independent of R and m. This is because after we fix R and m, if we define
bi =

∑λ
j=1Rij · (

∑
`∈Sj m` + x0

j), then yi = Zi + bi. Thus, for every fixing of R and m, since bi is
fixed, the set of those Z such that the number of yi’s which are 1 is bounded by τ` is independent of
R and m. This implies that the following sampling algorithm returns a uniformly random element
of f−1(1):

• Randomly sample R and m. Compute bi as defined earlier.

• Let a = dτ`e and consider the halfspace g(y) = sign(a −
∑`

i=1 yi). Now, we use Theo-
rem 99 to sample uniformly at random from g−1(1) and hence draw a uniformly random y
from the set {y ∈ {0, 1}` :

∑`
i=1 yi ≤ a}.
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• We set Zi = yi + bi. Output (R,Z,m).

The guarantee on the running time of the procedure follows simply by using the running time
of Theorem 99. Similarly, the statistical distance of the output from the uniform distribution on
f−1(1) is at most δ.

4.6 Efficient inverse approximate uniform generation when
approximate uniform generation is infeasible

In Section 4.3 we gave an efficient algorithm for the inverse approximate uniform generation prob-
lem for halfspaces, and in Section 4.4 we gave a quasi-polynomial time algorithm for the inverse
approximate uniform generation problem for DNFs. Since both these algorithms follow the stan-
dard approach, both crucially use efficient algorithms for the corresponding uniform generation
problems [81, 112]. In this context, it is natural to ask the following question: Is inverse approxi-
mate uniform generation easy only if the corresponding approximate uniform generation problem
is easy?

In this section we show that the answer to this question is “no” (for at least two reasons). First,
we point out that a negative answer follows easily from the well-known fact that it is computation-
ally hard to “detect unique solutions.” In more detail, we recall the definition of the UNIQUE-SAT
problem. UNIQUE-SAT is a promise problem where given a CNF Φ, the task is to distinguish
between the following two cases:

• Φ has no satisfying assignment; versus

• Φ has exactly one satisfying assignment.

In a famous result, Valiant and Vazirani [145] showed the following.

Theorem 144. [145] There is a randomized polynomial time reduction from CNF-SAT to UNIQUE-
SAT.

Let C denote the class of all n-variable CNF formulas that have exactly one satisfying assign-
ment. As an immediate corollary of Theorem [145] we have the following:

Corollary 145. There is a constant c > 0 such that unless SAT ∈ BPTIME(t(n)), there is no
approximate uniform generation algorithm for C which runs in time BPTIME(t(nc)) even for
variation distance ε = 1/2.

On the other hand, it is clear that there is a linear time algorithm for the inverse approximate
uniform generation problem for the class C: simply draw a single example x and output the trivial
distribution supported on that one example.

The above simple argument shows that there indeed exist classes C where inverse uniform
generation is “easy” but approximate uniform generation is “hard”, but this example is somewhat
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unsatisfying, as the algorithm for inverse approximate uniform generation is trivial. It is natural to
ask the following meta-question: is there a class of functions C such that approximation uniform
generation is hard, but inverse approximate generation is easy because of a polynomial-time algo-
rithm that “uses its samples in a non-trivial way?” In the rest of this section we give an example of
such a problem.

Efficient inverse approximate uniform generation for graph automorphism. The following
problem is more naturally defined in terms of a relation over combinatorial objects rather than in
terms of a function and its satisfying assignments. Let us define Gn to be the set of all (simple
undirected) graphs over vertex set [n] and Sn to be the symmetric group over [n]. We define the
relation Raut(G, σ) over Gn× Sn as follows: Raut(G, σ) holds if and only if σ is an automorphism
for the graph G. (Recall that “σ is an automorphism for graph G” means that (x, y) is an edge in
G if and only if (σ(x), σ(y)) is also an edge in G.) The inverse approximate uniform generation
problem for the relation Raut is then as follows: There is an unknown n-vertex graph G. The algo-
rithm receives uniformly random samples from the set Aut(G) := {σ ∈ Sn : Raut(G, σ) holds }.
On input ε, δ, with probability 1− δ the algorithm must output a sampler whose output distribution
is ε-close to the uniform distribution over Aut(G).

It is easy to see that Aut(G) is a subgroup of Sn, and hence the identity permutation en must
belong to Aut(G). To understand the complexity of this problem we recall the graph isomorphism
problem:

Definition 146. GRAPH-ISOMORPHISM is defined as follows : The input is a pair of graphs
G1, G2 ∈ Gn and the goal is to determine whether they are isomorphic.

While it is known that GRAPH-ISOMORPHISM is unlikely to be NP-complete [128, 18],
even after several decades of effort the fastest known algorithm for GRAPH-ISOMORPHISM has
a running time of 2Õ(

√
n) [7]. This gives strong empirical evidence that GRAPH-ISOMORPHISM

is a computationally hard problem. The following claim establishes that approximate uniform
generation for Raut is as hard as GRAPH-ISOMORPHISM:

Claim 147. If there is a t(n)-time algorithm for approximate uniform generation for the rela-
tion Raut (with error 1/3), then there is a O(t(2n))-time randomized algorithm for GRAPH-
ISOMORPHISM.

Proof. Let A be the hypothesized t(n)-time algorithm, so A, run on input (G, 1/2) where G is an
n-node graph, returns an element σ ∈ Aut(G) drawn from a distributionD that has dTV(D,UAut(G)) ≤
1/3. We now describe an algorithm for GRAPH-ISOMORPHISM (using A).

Let the two input graphs be H1 and H2 of size n. Define G = H1 ∪ H2 (of size 2n). Next,
define Aut(G)s = {σ : σ ∈ Aut(G) and σ moves a vertex of H1 to a vertex of H2}. We ob-
serve that given H1, H2 and a permutation σ on the set [2n], it is easy to check membership in
Aut(G)s. Further, using Lagrange’s theorem, it can also be shown that if |Aut(G)s| > 1, then
|Aut(G)s|/|Aut(G)| ≥ 1/2.

To decide if given graphs H1 and H2 are isomorphic, we run A on G = H1∪H2. If H1 and H2

are not isomorphic, then Aut(G)s is empty and hence the output of A does not belong to Aut(G)s
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(which can be easily checked). On the other hand, if H1 and H2 are isomorphic, with probability
at least 1/6, the output belongs to Aut(G)s (and this can again be efficiently checked). We repeat
this algorithm several times to boost its completeness.

While approximate uniform generation forRaut is hard, the next theorem shows that the inverse
approximate uniform generation problem for Raut is in fact easy:

Theorem 148. There is a randomized algorithm Aaut
inv with the following property: The algorithm

takes as input ε, δ > 0. Given access to uniform random samples from Aut(G) (where G is an
unknown n-node graph), Aaut

inv runs in time poly(n, log(1/ε), log(1/δ)) and with probability 1− δ
outputs a sampler Caut with the following property : The running time of Caut is O(n log n +
log(1/ε)) and the output distribution of Caut is ε-close to the uniform distribution over Aut(G).

Proof. The central tool in the proof is the following theorem of Alon and Roichman [2]:

Theorem 149. [2] Let H be any group and let h1, . . . , hk be chosen uniformly at random from H .
Consider the set S = ∪ki=1{hi, h−1

i }. Then, for k = O(log |H| + log(1/δ)), with probability at
least 1− δ the Cayley graph (H,S) has its second largest eigenvalue at most 1/2.

We now describe our algorithm Aaut
inv . On input ε, δ it draws k = O(n log n + log(1/δ)) per-

mutations g1, . . . , gk from Aut(G). It computes g−1
1 , . . . , g−1

k and sets S = ∪ki=1{gi, g−1
i }. The

sampler Caut is defined as follows: It uses its input random bits to perform a random walk on
the Cayley graph (Aut(G), S), starting at en, for T = O(n log n + log(1/ε)) steps; it outputs the
element of H which it reaches at the end of the walk. (Note that in order to perform this random
walk it is not necessary to have Aut(G) explicitly – it suffices to explicitly have the set S.)

The analysis is simple: we first observe that every graph G has an automorphism group of size
|Aut(G)| ≤ n!. Theorem 149 then guarantees that with probability at least 1− δ the Cayley graph
(Aut(G), S) has its second eigenvalue bounded by 1/2. Assuming that the second eigenvalue
is indeed at most 1/2, standard results in the theory of random walks on graphs imply that the
distribution of the location reached at the end of the walk has variation distance at most ε from the
uniform distribution over Aut(G). This concludes the proof.

Another interesting direction to pursue is to study inverse approximate uniform generation for
combinatorial problems like matching and coloring as opposed to the “Boolean function satisfying
assignment”–type problems that have been the main focus of this chapter. We note that prelimi-
nary arguments suggest that there is a simple efficient algorithm for inverse approximate uniform
generation of perfect matchings in bipartite graphs. Similarly, preliminary arguments suggest that
for the range of parameters for which the “forward” approximate uniform generation problem for
colorings is known to be easy (namely, the number q of allowable colors satisfies q > 11∆/6
where ∆ is the degree [147]), the inverse approximate uniform generation problem also admits
an efficient algorithm. These preliminary results give rise to the question of whether there are
similar combinatorial problems for which the complexity of the “forward” approximate uniform
generation problem is not known and yet we can determine the complexity of inverse approximate
uniform generation (like the group theoretic setting of Section 4.6).
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Finally, for many combinatorial problems, the approximate uniform generation algorithm is to
run a Markov chain on the state space. In the regimes where the uniform generation problem is
hard, the Markov chain does not mix rapidly which is in turn equivalent to the existence of sparse
cuts in the state space. However, an intriguing possibility arises here: If one can show that the
state space can be partitioned into a small number of components such that each component has no
sparse cuts, then given access to a small number of random samples from the state space (with at
least one such example belonging to each component), one may be able to easily perform approx-
imate uniform generation. Since the inverse approximate uniform generation algorithms that we
consider have access to random samples, this opens the possibility of efficient approximate uniform
generation algorithms in such cases. To conclude, we give an example of a natural combinatorial
problem (from statistical physics) where it seems that this is essentially the situation (although we
do not have a formal proof). This is the 2-D Ising model, for which the natural Glauber dynamics is
known to have exponential mixing time beyond the critical temperature [109]. On the other hand,
it was recently shown that even beyond the critical temperature, if one fixes the boundary to have
the same spin (all positive or all negative) then the mixing time comes down from exponential
to quasipolynomial [106]. While we do not know of a formal reduction, the fact that fixing the
boundary to the same spin brings down the mixing time of the Glauber dynamics from exponential
to quasipolynomial is “morally equivalent” to the existence of only a single sparse cut in the state
space of the graph [131]. Finding other such natural examples is an intriguing goal.
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Chapter 5

Future work

In this chapter, we provide some future research directions related to material presented in this
thesis.

5.1 Research directions for the Chow parameters problem
In Chapter 2, we achieved a running time of Õ(n2 · εpoly log(1/ε)) for the Chow parameters problem.
An obvious open problem is to improve the dependence on the error parameter ε in the running
time and to get it down to say Õ(n2 · εpoly log log(1/ε)) or even poly(n/ε).

It would also be interesting to characterize the complexity of the exact problem (i.e., that of
finding the linear threshold given the exact value of Chow parameters, or deciding that no such
game exists). We conjecture that the exact problem is intractable, namely ]P -hard.

Furthermore, in Chapter 2, we saw that the Chow parameters algorithm gives an agnostic-type
learning algorithm for halfspaces. Is it possible to use the ideas here to push this bound further and
get a better agnostic learning algorithm for halfspaces?

5.2 Research directions for the Inverse Shapley value problem
In Chapter 3, we achieved a running time of Õ(n2 ·2poly(1/ε)) for the Inverse Shapley value problem.
An obvious open problem is to improve the dependence on the error parameter ε in the running
time. Our algorithm is an Efficient Polynomial Time Approximation Scheme (EPTAS). Is there
a Fully Polynomial Time Approximation Scheme (FPTAS), i.e., an algorithm with running time
poly(n, 1/ε)?

It would also be interesting to characterize the complexity of the exact problem (i.e., that of
designing a weighted voting game that exactly achieves a given set of Shapley values, or deciding
that no such game exists). We conjecture that the exact problem is intractable, namely ]P -hard.

Besides this, one can consider getting similar efficient algorithms for the inverse problems
corresponding to other power indices like the Deegan-Packel index, Holler index amongst others.
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5.3 Research directions for Inverse approximate uniform
generation

In Chapter 4, we considered inverse problems in approximate uniform generation for a range of in-
teresting and well-studied classes of functions including LTFs, DNFs, CNFs, polynomial threshold
functions, and more. While our findings have determined the computational complexity of inverse
approximate uniform generation for these classes, several interesting questions and directions re-
main to be pursued. We outline some of these directions below.

One natural goal is to extend our results (both positive and negative) to a wider range of func-
tion classes; we list several specific classes that seem particularly worthy of investigation. The
first of these is the class of intersections of two monotone LTFs. We note that Morris and Sin-
clair [112] gave efficient approximate uniform generation / counting algorithms for intersections
of two monotone LTFs, but on the other hand, no distribution independent PAC or SQ learning
algorithm is known for this class (although quasipoly(n)-time algorithms are known if both LTFs
have integer weights that are at most poly(n) [94]). The second class is that of poly(n)-size de-
cision trees. Our DNF result gives a quasipoly(n/ε)-time inverse approximate uniform generation
algorithm for this class; can this be improved to poly(n, 1/ε)? We note that in order to obtain such
a result one would presumably have to bypass the “standard approach,” since decision trees are
not known to be PAC learnable faster than quasipoly(n/ε)-time under the uniform distribution on
{−1, 1}n. (We further note that while [48] gives a reduction from learning the uniform distribution
over satisfying assignments of a decision tree to the problem of PAC learning decision trees under
the uniform distribution, this reduction relies crucially on the assumption — implicit in the [48]
framework — that the probability mass function of the hypothesis distribution can be efficiently
evaluated on any input x ∈ {−1, 1}n. In our framework this assumption need not hold so the [48]
reduction does not apply.) Still other natural classes to investigate are context free languages (for
which quasi-polynomial time uniform generation algorithms are known [60]) and various classes
of branching programs. It may also be of interest to consider similar problems when the underlying
measure is (say) Gaussian or log-concave.
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[64] J. Håstad. “On the size of weights for threshold gates”. In: SIAM Journal on Discrete
Mathematics 7.3 (1994), pp. 484–492.

[65] David Haussler. “Decision Theoretic Generalizations of the PAC Model for Neural Net and
Other Learning Applications”. In: Information and Computation 100.1 (1992), pp. 78–150.

[66] Thomas P. Hayes and Eric Vigoda. “A Non-Markovian Coupling for Randomly Sampling
Colorings”. In: FOCS. 2003, pp. 618–627.



BIBLIOGRAPHY 127

[67] S. Hohenberger and B. Waters. “Constructing Verifiable Random Functions with Large
Input Spaces”. In: EUROCRYPT. 2010, pp. 656–672.

[68] M.J. Holler. “Forming coalitions and measuring voting power”. In: Political studies 30
(1982), pp. 262–271.

[69] S.L. Hurst. “The application of Chow Parameters and Rademacher-Walsh matrices in the
synthesis of binary functions”. In: The Computer Journal 16 (2 1973), pp. 165–173.

[70] R. Impagliazzo. “Hard-core distributions for somewhat hard problems”. In: Proc. 36th
FOCS. Milwaukee, Wisconsin, 1995, pp. 538–545.

[71] Russell Impagliazzo. “Hard-Core Distributions for Somewhat Hard Problems”. In: Proc.
36th IEEE Symposium on Foundations of Computer Science (FOCS). IEEE Computer So-
ciety Press, 1995, pp. 538–545.

[72] M. Jerrum, L. G. Valiant, and V. V. Vazirani. “Random Generation of Combinatorial Struc-
tures from a Uniform Distribution”. In: Theor. Comput. Sci. 43 (1986), pp. 169–188.

[73] Mark Jerrum. “A Very Simple Algorithm for Estimating the Number of k-Colorings of a
Low-Degree Graph”. In: Random Struct. Algorithms 7.2 (1995), pp. 157–166.

[74] Mark Jerrum and Alistair Sinclair. “Approximating the Permanent”. In: SIAM J. Comput.
18.6 (1989), pp. 1149–1178.

[75] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. “A polynomial-time approximation algo-
rithm for the permanent of a matrix with nonnegative entries”. In: J. ACM 51.4 (2004),
pp. 671–697.

[76] S. Jukna. Extremal combinatorics with applications in computer science. Springer, 2001.

[77] A. Kalai et al. “Agnostically Learning Halfspaces”. In: Proceedings of the 46th IEEE Sym-
posium on Foundations of Computer Science (FOCS). 2005, pp. 11–20.

[78] Adam Kalai et al. “Agnostically Learning Halfspaces”. In: SIAM Journal on Computing
37.6 (2008). Special issue for FOCS 2005., pp. 1777–1805.

[79] G. Kalai and S. Safra. “Threshold phenomena and influence”. In: Computational Complex-
ity and Statistical Physics. Oxford University Press, 2006, pp. 25–60.

[80] K.R. Kaplan and R.O. Winder. “Chebyshev approximation and threshold functions”. In:
IEEE Trans. Electronic Computers EC-14 (1965), pp. 315–325.

[81] R. M. Karp, M. Luby, and N. Madras. “Monte-Carlo Approximation Algorithms for Enu-
meration Problems”. In: Journal of Algorithms 10.3 (1989), pp. 429–448.

[82] R.M. Karp and M. Luby. “Monte-Carlo algorithms for enumeration and reliability prob-
lems”. In: FOCS. 1983, pp. 56–64.

[83] P. Kaszerman. “A geometric test-synthesis procedure for a threshold device”. In: Informa-
tion and Control 6.4 (1963), pp. 381–398.

[84] Jonathan Katz, Ji Sun Shin, and Adam Smith. “Parallel and Concurrent Security of the HB
and HB+ Protocols”. In: Journal of Cryptology 23.3 (2010), pp. 402–421.



BIBLIOGRAPHY 128

[85] M. Kearns. “Efficient noise-tolerant Learning from statistical queries”. In: Journal of the
ACM 45.6 (1998), pp. 983–1006.

[86] M. Kearns, R. Schapire, and L. Sellie. “Toward Efficient Agnostic Learning”. In: Machine
Learning 17.2/3 (1994), pp. 115–141.

[87] M. Kearns et al. “On the learnability of discrete distributions”. In: Proceedings of the 26th
Symposium on Theory of Computing. 1994, pp. 273–282.

[88] Michael J. Kearns, Robert E. Schapire, and Linda Sellie. “Toward Efficient Agnostic Learn-
ing”. In: Machine Learning 17.2-3 (1994), pp. 115–141.

[89] B. de Keijzer, T. Klos, and Y. Zhang. “Enumeration and exact design of weighted voting
games”. In: Proceedings of the 9th International Conference on Autonomous Agents and
Multiagent Systems : volume 1 - Volume 1. AAMAS ’10. 2010, pp. 391–398.

[90] Bart de Keijzer. “A Survey on the Computation of Power Indices”. 2008.

[91] Bart de Keijzer, Tomas Klos, and Yingqian Zhang. “Enumeration and exact design of
weighted voting games”. In: AAMAS. 2010, pp. 391–398.

[92] L.G. Khachiyan. “Polynomial algorithms in linear programming”. In: USSR Computa-
tional Mathematics and Mathematical Physics 20.1 (1980), pp. 53 –72.

[93] Eike Kiltz et al. “Efficient Authentication from Hard Learning Problems”. In: ECRYPT11.
2011, pp. 7–26.

[94] A. Klivans, R. O’Donnell, and R. Servedio. “Learning intersections and thresholds of half-
spaces”. In: Journal of Computer & System Sciences 68.4 (2004), pp. 808–840.

[95] A. Klivans and R. Servedio. “Learning DNF in time 2Õ(n1/3)”. In: Journal of Computer &
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Appendix A

Missing proofs from Chapter 2

A.1 Near-Optimality of Lemma 22
The following lemma shows that in any statement like Lemma 22 in which the hyperplane H′

passes through all the points in S, the distance bound on β can be no larger than n−1/2 as a
function of n. This implies that the result obtained by taking κ = 1/2n+1 in Lemma 22, which
gives a distance bound of n−(1/2+o(1)) as a function of n, is optimal up to the o(1) in the exponent.

Lemma 150. Fix ε > 8n−1/2. There is a hyperplane H ∈ Rn and a set S ⊆ {−1, 1}n such that
|S| ≥ ε

8
2n and the following properties both hold:

• For every x ∈ S we have d(x,H) ≤ 2εn−1/2; and

• There is no hyperplane H′ which passes through all the points in S.

Proof. Without loss of generality, let us assume K = 4/ε2 is an even integer; note that by assump-
tion K < n/2. Now let us define the hyperplane H by

H =

{
x ∈ Rn : (x1 + . . .+ xK) +

2(xK+1 + . . .+ xn)

(n−K)
= 0

}
Let us define S = {x ∈ {−1, 1}n : d(x,H) ≤ 4/

√
K(n−K)}. It is easy to verify that every

x ∈ S indeed satisfies d(x,H) ≤ 2εn−1/2 as claimed. Next, let us define A as follows:

A = {x ∈ {−1, 1}n : x1 + . . .+ xK = 0

and
|xK+1 + . . .+ xn| ≤ 2

√
n−K}.

It is easy to observe that A ⊆ S. Also, we have

Pr
x1,...,xK

[x1 + . . .+ xK = 0] ≥ (2
√
K)−1
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and
Pr

xK+1,...,xn
[|xK+1 + . . .+ xn| ≤ 2

√
n−K] ≥ 1/2.

Hence we have that |S| ≥ ε2n/8. We also observe that the point z ∈ {−1, 1}n defined as

z := (1, 1, 1,−1, . . . , 1,−1︸ ︷︷ ︸
K−2

,−1, . . . ,−1) (A.1)

(whose first two coordinates are 1, next K − 2 coordinates alternate between 1 and −1, and final
n−K coordinates are −1) lies on H and hence z ∈ S.

We next claim that the dimension of the affine span of the points in A ∪ z is n. This obviously
implies that there is no hyperplane which passes through all points in A ∪ z, and hence no hyper-
plane which passes through all points in S. Thus to prove the lemma it remains only to prove the
following claim:

Claim 151. The dimension of the affine span of the elements of A ∪ z is n.

To prove the claim, we observe that if we let Y denote the affine span of elements in A ∪ z
and Y ′ denote the linear space underlying Y , then it suffices to show that the dimension of Y ′ is n.
Each element of Y ′ is obtained as the difference of two elements in Y .

First, let y ∈ {−1, 1}n be such that∑
i≤K

yi =
∑

K+1≤i≤n

yi = 0.

Let y⊕i ∈ {−1, 1}n be obtained from y by flipping the i-th bit. For each i ∈ {K + 1, . . . , n} we
have that y and y⊕i are both in A, so subtracting the two elements, we get that the basis vector ei
belongs to Y ′ for each i ∈ {K + 1, . . . , n}.

Next, let i 6= j ≤ K be positions such that yi = 1 and yj = −1. Let yij denote the vector
which is the same as y except that the signs are flipped at coordinates i and j. Since yij belongs to
A, by subtracting y from yij we get that for every vector eij (i 6= j ≤ K) which has 1 in coordinate
i, −1 in coordinate j, and 0 elsewhere, the vector eij belongs to Y ′.

The previous two paragraphs are easily seen to imply that the linear space Y ′ contains all
vectors x ∈ Rn that satisfy the condition x1 + · · · + xK = 0. Thus to show that the dimension of
Y ′ is n, it suffices to exhibit any vector in Y ′ that does not satisfy this condition. But it is easy to
see that the vector y − z (where z is defined in (A.1)) is such a vector. This concludes the proof of
the claim and of Lemma 150.

A.2 Useful extensions of Goldberg’s theorems
To allow an application of Lemma 22 in affine subspaces of Rn we require an extension of Theo-
rem 21 (Theorem 3 of [57]) which roughly speaking is as follows: the hypothesis is that not only
does the set S ⊂ {−1, 1}n lie close to hyperplane H but so also does a (small) set R of points in
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{0, 1}n; and the conclusion is that not only does “almost all” of S (the subset S∗) lie on H′ but so
also does all of R. To obtain this extension we need a corresponding extension of an earlier result
of Goldberg (Theorem 2 of [57]), which he uses to prove his Theorem 3; similar to our extension of
Theorem 21 our extension of Theorem 2 of [57] deals with points from both {−1, 1}n and {0, 1}n.
The simplest approach we have found to obtain our desired extension of Theorem 2 of [57] uses
the “Zeroth Inverse Theorem” of Tao and Vu [140]. We begin with a useful definition from their
paper:

Definition 152. Given a vector w = (w1, . . . , wk) of real values, the cube S(w) is the subset of R
defined as 1

S(w) =

{
k∑
i=1

εiwi : (ε1, . . . , εn) ∈ {−1, 0, 1}n
}
.

The “Zeroth Inverse Theorem” of [140] is as follows:

Theorem 153. Suppose w ∈ Rn, d ∈ N and θ ∈ R satisfy Prx∈{−1,1}n [w · x = θ] > 2−d−1. Then
there exists a d-element subset A = {i1, . . . , id} ⊂ [n] such that for v = (wi1 , . . . , wid) we have
{w1, . . . , wn} ⊆ S(v).

For convenience of the reader, we include the proof here.

Proof of Theorem 153. Towards a contradiction, assume that there is no v = (wi1 , . . . , wid) such
that {w1, . . . , wn} ⊆ S(v). Then an obvious greedy argument shows that there are distinct integers
i1, . . . , id+1 ∈ [n] such that wi1 , . . . , wid+1

is dissociated, i.e. there does not exist j ∈ [n] and
εi ∈ {−1, 0, 1} such that wj =

∑
i 6=j εiwi.

Let v = (wi1 , . . . , wid+1
). By an averaging argument, it is easy to see that if Prx∈{−1,1}n [w ·x =

θ] > 2−d−1, then ∃ν ∈ R such that Prx∈{−1,1}d+1 [v ·x = ν] > 2−d−1. By the pigeon hole principle,
this means that there exist x, y ∈ {−1, 1}d+1 such that x 6= y and v · ((x−y)/2) = 0. Since entries
of (x− y)/2 are in {−1, 0, 1}, and not all the entries in (x− y)/2 are zero, this means that v is not
dissociated resulting in a contradiction.

Armed with this result, we now prove the extension of Goldberg’s Theorem 2 that we will need
later:

Theorem 154. Let w ∈ Rn have ‖w‖2 = 1 and let θ ∈ R be such that Prx∈{−1,1}n [w ·x = θ] = α.
Let H denote the hyperplane H = {x ∈ Rn | w · x = θ}. Suppose that span(H ∩ ({−1, 1}n ∪
{0, 1}n)) = H, i.e. the affine span of the points in {−1, 1}n ∪ {0, 1}n that lie on H is H. Then all
entries of w are integer multiples of f(n, α)−1, where

f(n, α) ≤ (2n)blog(1/α)c+3/2 · (blog(1/α)c)!
1In [140] the cube is defined only allowing εi ∈ {−1, 1} but this is a typographical error; their proof uses the

εi ∈ {−1, 0, 1} version that we state.
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Proof. We first observe that w · (x − y) = 0 for any two points x, y that both lie on H. Consider
the system of homogeneous linear equations in variables w′1, . . . , w

′
n defined by

w′ · (x− y) = 0 for all x, y ∈ H ∩ ({−1, 1}n ∪ {0, 1}n). (A.2)

Since span(H∩ ({−1, 1}n ∪{0, 1}n)) is by assumption the entire hyperplane H, the system (A.2)
must have rank n− 1; in other words, every solution w′ that satisfies (A.2) must be some rescaling
w′ = cw of the vector w defining H.

Let A denote a subset of n − 1 of the equations comprising (A.2) which has rank n − 1 (so
any solution to A must be a vector w′ = cw as described above). We note that each coefficient in
each equation of A lies in {−2,−1, 0, 1, 2}. Let us define d = blog(1/α)c + 1. By Theorem 153,
there is some wi1 , . . . , wid′ with d′ ≤ d such that for v def

= (wi1 , . . . , wid′ ), we have {w1, . . . , wn} ⊆
S(v); in other words, for all j ∈ [n] we have wj =

∑d′

`=1 ε`,jwi` where each ε`,j belongs to
{−1, 0, 1}. Substituting these relations into the system A, we get a new system of homogenous
linear equations, of rank d′− 1, in the variables w′i1 , . . . , w

′
id′

, where all coefficients of all variables
in all equations of the system are integers of magnitude at most 2n.

Let M denote a subset of d′ − 1 equations from this new system which has rank d′ − 1. In
other words, viewing M as a d′ × (d′ − 1) matrix, we have the equation M · vT = 0 where all
entries in the matrix M are integers in [−2n, 2n]. Note that at least one of the values wi1 , . . . , wid′
is non-zero (for if all of them were 0, then since {w1, . . . , wn} ⊆ S(v) it would have to be the case
that w1 = · · · = wn = 0.). Without loss of generality we may suppose that wi1 has the largest
magnitude among wi1 , . . . , wid′ . We now fix the scaling constant c, where w′ = cw, to be such that
w′i1 = 1. Rearranging the system M(cv)T = M(1, w′i2 , . . . , w

′
id′

)T = 0, we get a new system of
d′ − 1 linear equations M ′(w′i2 , . . . , w

′
id′

)T = b where M ′ is a (d′ − 1) × (d′ − 1) matrix whose
entries are integers in [−2n, 2n] and b is a vector whose entries are integers in [−2n, 2n].

We now use Cramer’s rule to solve the system

M ′(w′i2 , . . . , w
′
id′

)T = b.

This gives us that w′ij = det(M ′
j)/ det(M ′) where M ′

j is the matrix obtained by replacing the jth

column of M ′ by b. So each w′ij is an integer multiple of 1/ det(M ′) and is bounded by 1 (by our
earlier assumption about wi1 having the largest magnitude). Since {w′1, . . . , w′n} ⊆ S(v), we get
that each value w′i is an integer multiple of 1/ det(M ′), and each |w′i| ≤ n. Finally, since M ′ is
a (d′ − 1) × (d′ − 1) matrix where every entry is an integer of magnitude at most 2n, we have
that | det(M ′)| ≤ (2n)d

′−1 · (d′ − 1)! ≤ (2n)d−1 · (d − 1)!. Moreover, the `2 norm of the vector
w′ is bounded by n3/2. So renormalizing (dividing by c) to obtain the unit vector w back from
w′ = cw, we see that every entry of w is an integer multiple of 1/N , where N is a quantity at most
(2n)d+1/2 · d!. Recalling that d = blog(1/α)c+ 1, the theorem is proved.

We next prove the extension of Theorem 3 from [57] that we require. The proof is almost
identical to the proof in [57] except for the use of Theorem 154 instead of Theorem 2 from [57]
and a few other syntactic changes. For the sake of clarity and completeness, we give the complete
proof here.
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Theorem 155. Given any hyperplane H in Rn whose β-neighborhood contains a subset S of
vertices of {−1, 1}n where S = α · 2n, there exists a hyperplane which passes through all the
points of ({−1, 1}n ∪ {0, 1}n) that are contained in the β-neighborhood of H provided that

0 ≤ β ≤
(
(2/α) · n5+blog(n/α)c · (2 + blog(n/α)c)!

)−1
.

Before giving the proof, we note that the hypothesis of our theorem is the same as the hypoth-
esis of Theorem 3 of [57]. The only difference in the conclusion is that while Goldberg proves that
all points of {−1, 1}n in the β-neighborhood of H lie on the new hyperplane, we prove this for all
the points of ({−1, 1}n ∪ {0, 1}n) in the β-neighborhood of H.

Proof. Let H = {x | w · x− t = 0} with ‖w‖ = 1. Also, let S = {x ∈ {−1, 1}n | d(x,H) ≤ β}
and S ′ = {x ∈ ({−1, 1}n ∪ {0, 1}n) | d(x,H) ≤ β}. For any x ∈ S ′ we have that w · x ∈
[t− β, t+ β]. Following [57] we create a new weight vector w′ ∈ Rn by rounding each coordinate
wi of w to the nearest integer multiple of β (rounding up in case of a tie). Since every x ∈ S ′ has
entries from {−1, 0, 1}, we can deduce that for any x ∈ S ′, we have

t− β − nβ/2 < w · x− nβ/2 < w′ · x < w · x+ nβ/2 ≤ t+ β + nβ/2.

Thus for every x ∈ S ′, the value w′ · x lies in a semi-open interval of length β(n + 2); moreover,
since it only takes values which are integer multiples of β, there are at most n+ 2 possible values
that w′ · x can take for x ∈ S ′. Since S ⊂ S ′ and |S| ≥ α2n, there must be at least one value
t′ ∈ (t− nβ/2− β, t+ nβ/2 + β] such that at least α2n/(n+ 2) points in S lie on the hyperplane
H1 defined as H1 = {x : w′ · x = t′}. We also let A1 = span{x ∈ S ′ : w′ · x = t′}. It is clear that
A1 ⊂ H1. Also, since at least α2n/(n + 2) points of {−1, 1}n lie on A1, by Fact 16 we get that
dim(A1) ≥ n− log(n+ 2)− log(1/α).

It is easy to see that ‖w′ − w‖ ≤
√
nβ/2, which implies that ‖w′‖ ≥ 1 −

√
nβ/2. Note that

for any x ∈ S ′ we have |w′ · x − t′| ≤ (n + 2)β. Recalling Fact 20, we get that for any x ∈ S ′
we have d(x,H1) ≤ (β(n+ 2))/(1−

√
nβ/2). Since

√
nβ � 1, we get that d(x,H1) ≤ 2nβ for

every x ∈ S ′.
At this point our plan for the rest of the proof of Theorem 155 is as follows: First we will con-

struct a hyperplane Hk (by an inductive construction) such that span(Hk∩({−1, 1}n∪{0, 1}n)) =
Hk, A1 ⊆ Hk, and all points in S ′ are very close to Hk (say within Euclidean distance γ). Then
we will apply Theorem 154 to conclude that any point {−1, 1}n∪{0, 1}n which is not on Hk must
have Euclidean distance at least some γ′ from Hk. If γ′ > γ then we can infer that every point in
S ′ lies on Hk, which proves the theorem. We now describe the construction that gives Hk.

If dim(A1) = n − 1, then we let k = 1 and stop the process, since as desired we have
span(Hk ∩ ({−1, 1}n ∪ {0, 1}n)) = Hk, A1 = Hk, and d(x,Hk) ≤ 2nβ for every x ∈ S ′.
Otherwise, by an inductive hypothesis, we may assume that for some j ≥ 1 we have an affine
space Aj and a hyperplane Hj such that

• A1 ⊆ Aj ( Hj;

• dim(Aj) = dim(A1) + j − 1, and
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• for all x ∈ S ′ we have d(x,Hj) ≤ 2jnβ.

Using this inductive hypothesis, we will construct an affine space Aj+1 and a hyperplane Hj+1

such that A1 ⊂ Aj+1 ⊆ Hj+1, dim(Aj+1) = dim(A1) + j, and for all x ∈ S ′ we have

d(x,Hj+1) ≤ 2j+1nβ.

If Aj+1 = Hj+1, we stop the process, else we continue.
We now describe the inductive construction. Since Aj ( Hj , there must exist an affine sub-

spaceA′j such thatAj ⊆ A′j ( Hj and dim(A′j) = n−2. Let xj denote arg maxx∈S′ d(x,A′j). (We
assume that maxx∈S′ d(x,A′j) > 0; if not, then choose xj to be an arbitrary point in {−1, 1}n not
lying on A′j . In this case, the properties of the inductive construction will trivially hold.) Define
Hj+1 = span(A′j ∪ xj). It is clear that Hj+1 is a hyperplane. We claim that for x ∈ S ′ we have

d(x,Hj+1) ≤ d(x,Hj) + d(xj,Hj) ≤ 2jnβ + 2jnβ = 2j+1nβ.

To see this, observe that without loss of generality we may assume that Hj passes through the origin
and thus A′j is a linear subspace. Thus we have that ‖x⊥A′j‖ ≤ ‖(xj)⊥A′j‖ for all x ∈ S ′, where for
a point z ∈ Rn we write z⊥A′j to denote the component of x orthogonal to A′j . Let r = ‖x⊥A′j‖ and
r1 = ‖xj,⊥A′j‖, where r1 ≥ r. Let θ denote the angle that x⊥A′j makes with Hj and let φ denote
the angle that x⊥A′j makes with (xj)⊥A′j . Then it is easy to see that d(x,Hj+1) = |r · sin(θ − φ)|,
d(x,Hj) = |r · sin(θ)| and d(xj,Hj) = |r1 · sin(φ)|. Thus, we only need to check that if r1 ≥ r,
then |r · sin(θ − φ)| ≤ |r · sin(θ)|+ |r1 · sin(φ)| which is straightforward to check.

Let Aj+1 = span(Aj ∪ xj) and note that A1 ⊂ Aj+1 ⊆ Hj+1 and dim(Aj+1) = dim(Aj) + 1.
As shown above, for all x ∈ S ′ we have d(x,Hj+1) ≤ 2j+1nβ. This completes the inductive
construction.

Since dim(A1) ≥ n − log(n + 2) − log(1/α), the process must terminate for some k ≤
log(n + 2) + log(1/α). When the process terminates, we have a hyperplane Hk satisfying the
following properties:

• span(Hk ∩ ({−1, 1}n ∪ {0, 1}n)) = Hk; and

• |Hk ∩ S| ≥ α2n/(n+ 2); and

• for all x ∈ S ′ we have d(x,Hk) ≤ 2knβ ≤ (1/α)n(n+ 2)β.

We can now apply Theorem 154 to the hyperplane Hk to get that if Hk = {x | v · x− ν = 0} with
‖v‖ = 1, then all the entries of v are integral multiples of a quantity E−1 where

E ≤ (2n)blog((n+2)/α)c+3/2 · (blog((n+ 2)/α)c)!.

Consequently v · x is an integral multiple of E−1 for every x ∈ ({−1, 1}n ∪ {0, 1}n). Since there
are points of {−1, 1}n on Hk, it must be the case that ν is also an integral multiple of E. So if any
x ∈ ({−1, 1}n ∪ {0, 1}n) is such that d(x,Hk) < E, then d(x,Hk) = 0 and hence x actually lies
on Hk. Now recall that for any x ∈ S ′ we have d(x,Hk) ≤ (n/α)(n + 2)β. Our upper bound on
β from the theorem statement ensures that (n/α)(n+ 2)β < E−1, and consequently every x ∈ S ′
must lie on Hk, proving the theorem.
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A.3 Proof of Claim 31
We will need the following technical tool for the proof:

Lemma 156. Let S ⊆ {−1, 1}n and W : S → [0, 2] such that W(S) = δ′2n. Also, let v ∈ Rn

have ‖v‖ = 1. Then ∑
x∈S
W(x) · |v · x| = δ′(

√
2 ln(1/δ′) + 4) · 2n.

Proof. For any x ∈ S, letD(x)
def
= W(x)/W(S). Clearly, D defines a probability distribution over

S. By definition, Ex∼D[|v ·x|] = (
∑

x∈SW(x) · |v ·x|)/W(S). SinceW(S) = δ′ · 2n, to prove the
lemma it suffices to show that Ex∼D[|v · x|] =

√
2 ln(1/δ′) + 4. Recall that for any non-negative

random variable Y , we have the identity E[Y ] =
∫
t≥0

Pr[Y > t] dt. Thus, we have

Ex∼D[|v · x|] =

∫
t≥0

Pr
x∼D

[|v · x| > t] dt.

To bound this quantity, we exploit the fact that the integrand is concentrated. Indeed, by the
Hoeffding bound we have that

Pr
x∼{−1,1}n

[|v · x| > t] ≤ 2e−t
2/2.

This implies that the set A = {x ∈ {−1, 1}n : |v · x| > t} is of size at most 2e−t
2/22n. Since

W(x) ≤ 2 for all x ∈ S, we have that
∑

x∈A∩SW(x) ≤ 4e−t
2/22n. This implies that Prx∼D[|v ·

x| > t] ≤ (4/δ′) · e−t2/2. The following chain of inequalities completes the proof:

Ex∼D [|v · x|] =

∫ √2 ln(1/δ′)

t=0

Pr
x∼D

[|w · x| > t] dt+

∫
t≥
√

2 ln(1/δ′)

Pr
x∼D

[|v · x| > t] dt

≤
√

2 ln(1/δ′) +

∫
t≥
√

2 ln(1/δ′)

Pr
x∼D

[|v · x| > t] dt

≤
√

2 ln(1/δ′) +

∫
t≥
√

2 ln(1/δ′)

4e−t
2/2

δ′
dt

≤
√

2 ln(1/δ′) +

∫
t≥
√

2 ln(1/δ′)

4te−t
2/2

δ′
dt =

√
2 ln(1/δ′) + 4.

Recall the statement of Claim 31:

Claim 31. For j ≤ log(8/ε), suppose thatW(Sj) ≥ γj · 2n where γj = β4 log(1/ε)−2(j+1) · ε. Then
dChow(f, g) ≥ δ, where δ = β4 log(1/ε).



APPENDIX A. MISSING PROOFS FROM CHAPTER 2 139

Proof. We start by observing that(
ε− 4

j−1∑̀
=0

γ`−δ
)

2n−1 ≤ W(V j
+),W(V j

−) ≤ (ε+ δ)2n−1.

The upper bound is obvious because V j
+ ⊆ V 0

+ and V j
− ⊆ V 0

− and the range ofW is non-negative.
To see the lower bound, note thatW(V 0 \ V j) ≤ 2(

∑j−1
`=0 γ`)2

n. As V 0
+ \ V

j
+ and V 0

− \ V
j
− are both

contained in V 0 \ V j , we get the stated lower bound. We also note that

2

(
j−1∑
`=0

γ`

)
2n = 2

(
j−1∑
`=0

β4 log(1/ε)−2`−2

)
2n

≤ 4β4 log(1/ε)−2j2n.

This implies that the sets V j
+ and V j

− are (ε, 4β4 log(1/ε)−2j+δ) balanced. In particular, using that δ ≤
4β4 log(1/ε)−2j , we can say that the sets V j

+ and V j
− are (ε, 8β4 log(1/ε)−2j)-balanced. We also observe

that for j ≤ log(8/ε), we have that 8β4 log(1/ε)−2j ≤ ε/8. Let us define µj+ =
∑

x∈V j+
W(x) · x,

µj− =
∑

x∈V j−
W(x) · x, ∆j

+ = V 0
+ \ V

j
+ and ∆j

− = V 0
− \ V

j
−. An application of Proposition 29

yields that |(µj+ − µ
j
−) · ̂̀j| ≥ (βγj − 8β4 log(1/ε)−2j

√
2 ln(16/ε))2n.

We now note that

(µ+ − µ−) · ̂̀j = (µj+ − µ
j
−) · ̂̀j +

∑
x∈∆j

+

W(x)−
∑
x∈∆j

−

W(x)

 · ̂̀j.
Defining µ′j+ =

∑
x∈∆j

+
W(x) · x and µ′j− =

∑
x∈∆j

−
W(x) · x, the triangle inequality implies that∣∣∣(µ+ − µ−) · ̂̀j∣∣∣ ≥ ∣∣∣(µj+ − µj−) · ̂̀j∣∣∣− ∣∣∣µ′j+ · ̂̀j∣∣∣− ∣∣∣µ′j− · ̂̀j∣∣∣ .

Using Lemma 156 and thatW(∆j
+),W(∆j

−) ≤ W(V 0 \ V j) ≤ 8β4 log(1/ε)−2j · 2n, we get that∣∣∣µ′j+ · ̂̀j∣∣∣ =
∑
x∈∆j

+

W(x) · x · ̂̀j
= O

(
|∆j

+| ·
√

log(2n/|∆j
+|)
)

= O
(
β4 log(1/ε)−2j · log3/2(1/ε) · 2n

)
and similarly ∣∣∣µ′j− · ̂̀j∣∣∣ = O

(
β4 log(1/ε)−2j · log3/2(1/ε) · 2n

)
.
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This implies that ∣∣∣(µ+ − µ−) · ̂̀j∣∣∣ ≥ (βγj − 8β4 log(1/ε)−2j
√

2 ln(8/ε))2n

−O
(
β4 log(1/ε)−2j · log3/2(1/ε) · 2n

)
.

Plugging in the value of γj , we see that for ε smaller than a sufficiently small constant, we have
that ∣∣∣(µ+ − µ−) · ̂̀j∣∣∣ ≥ βγj2

n−1.

An application of Proposition 27 finally gives us that

dChow(f, g) ≥ 2−n‖µ+ − µ−‖ ≥ 2−n(µ+ − µ−) · ̂̀j = βγj/2 ≥ δ

which establishes Claim 31.
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Appendix B

Missing proofs from Chapter 3

B.1 LTF representations with “nice” weights
This chapter contains the missing proofs from Chapter 3. The reason for having these proofs in the
appendix as opposed to the main chapter is that the proofs In this section, we prove Theorem 40.
This theorem essentially says that given any η-reasonable LTF, there is an equivalent representation
of the LTF which is also η-reasonable and is such that the weights of the linear form (when arranged
in decreasing order of magnitude) decrease somewhat “smoothly.” For convenience we recall the
exact statement of the theorem:

Theorem 40. Let f : {−1, 1}n → {−1, 1} be an η-reasonable LTF and k ∈ [2, n]. There exists
a representation of f as f(x) = sign(v0 +

∑n
i=1 vixi) such that (after reordering coordinates so

that condition (i) below holds) we have: (i) |vi| ≥ |vi+1|, i ∈ [n− 1]; (ii) |v0| ≤ (1− η)
∑n

i=1 |vi|;
and (iii) for all i ∈ [0, k − 1] we have |vi| ≤ (2/η) ·

√
n · k k2 · σk, where σk

def
=
√∑

j≥k v
2
j .

Proof of Theorem 40. The proof proceeds along similar lines as the proof of Lemma 5.1 from
[120] (itself an adaptation of the argument of Muroga et. al. from [116]) with some crucial modi-
fications.

Since f is η-reasonable, there exists a representation as f(x) = sign(w0 +
∑n

i=1 wixi) (where
we assume w.l.o.g. that |wi| ≥ |wi+1| for all i ∈ [n − 1]) such that |w0| ≤ (1 − η)

∑n
i=1 |wi|. Of

course, this representation may not satisfy condition (iii) of the theorem statement. We proceed to
construct the desired alternate representation as follows: First, we set vi = wi for all i ≥ k. We
then set up a feasible linear program LP with variables u0, . . . , uk−1 and argue that there exists a
feasible solution to LP with the desired properties.

Let h : {±1}k−1 → R denote the affine form h(x) = w0 +
∑k−1

j=1 wjxj . We consider the
following linear system S of 2k−1 equations in k unknowns u0, . . . , uk−1: For each x ∈ {±1}k−1

we include the equation

u0 +
k−1∑
i=1

uixi = h(x).
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It is clear that the system S is satisfiable, since (u0, . . . , uk−1) = (w0, . . . , wk−1) is a solution.
We now relax the above linear system into the linear program LP (over the same variables) as

follows: Let C def
=
√
nσk. Our linear program has the following constraints:

• For each x ∈ {±1}k−1 we include the (in)equality:

u0 +
k−1∑
i=1

uixi


≥ C if h(x) ≥ C,
= h(x) if |h(x)| < C,
≤ −C if h(x) ≤ −C.

(B.1)

• For each i ∈ [0, k − 1], we add the constraints sign(ui) = sign(wi). Since the wi’s are
known, these are linear constraints, i.e., constraints like u1 ≤ 0, u2 ≥ 0, etc.

• We also add the constraints of the form |ui| ≥ |ui+1| for 1 ≤ i ≤ k − 2 and also |uk−1| ≥
|wk|. Note that these constraints are equivalent to the linear constraints: ui · sign(wi) ≥
ui+1 · sign(wi+1) and sign(wk−1) · uk−1 ≥ |wk|.

• We let q = d1/ηe and η′ = 1/q. Clearly, η′ ≤ η. We now add the constraint |u0| ≤
(1−η′)·

(∑k−1
j=1 |uj|+

∑n
j=k |wj|

)
. Note that this is also a linear constraint over the variables

u0, u1, . . . , uk−1. Indeed, it can be equivalently written as:

sign(w0) · u0 − (1− η′)
k−1∑
j=1

sign(wj) · uj ≤ (1− η′)
n∑
j=k

|wj|.

Note that the RHS is strictly bounded from above by C, since

n∑
j=k

|wj| ≤
√
n− k + 1 · σk <

√
nσk,

where the first inequality is Cauchy-Schwarz and the second uses the fact that k ≥ 2.

We observe that the above linear program is feasible. Indeed, it is straightforward to verify
that all the constraints are satisfied by the vector (w0, . . . , wk−1). In particular, the last constraint
is satisfied because |w0| ≤ (1 − η) ·

(∑k−1
j=1 |wj|+

∑n
j=k |wj|

)
and hence a fortiori, |w0| ≤

(1− η′) ·
(∑k−1

j=1 |wj|+
∑n

j=k |wj|
)

.

Claim 157. Let (v0, . . . , vk−1) be any feasible solution to LP and consider the LTF

f ′(x) = sign(v0 +
k−1∑
j=1

vjxj +
n∑
j=k

wjxj).

Then f ′(x) = f(x) for all x ∈ {−1, 1}n.
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Proof. Given x ∈ {−1, 1}n, we have

h(x) = h(x1, . . . , xk−1) = w0 +
k−1∑
j=1

wjxj;

Let us also define

h′(x) = h′(x1, . . . , xk−1) = v0 +
k−1∑
j=1

vjxj

t(x) =
∑
j≥k

wjxj

Then, we have f(x) = sign (h(x) + t(x)) and f ′(x) = sign (h′(x) + t(x)). Now, if x ∈ {−1, 1}n
is an input such that |h(x)| < C, then we have h′(x) = h(x) by construction, and hence f(x) =
f ′(x). If x ∈ {−1, 1}n is such that |h(x)| ≥ C, then by construction we also have that |h′(x)| ≥ C.
Also, note that h(x) and h′(x) always have the same sign. Hence, in order for f and f ′ to disagree
on x, it must be the case that |t(x)| ≥ C. But this is not possible, since |t(x)| ≤

∑n
j=k |wj| ≤√

n− 1·σk < C. This completes the proof of the claim.

We are almost done, except that we need to choose a solution (v0, . . . , vk−1) to LP satisfying
property (iii) in the statement of the theorem. The next claim ensures that this can always be
achieved.

Claim 158. There is a feasible solution v = (v0, . . . , vk−1) to the LP which satisfies property (iii)
in the statement of the theorem.

Proof. We select a feasible solution v = (v0, . . . , vk−1) to the LP that maximizes the number
of tight inequalities (i.e., satisfied with equality). If more than one feasible solutions satisfy this
property, we choose one arbitrarily. We require the following fact from [116] (a proof can be found
in [64, 39]).

Fact 159. There exists a linear system A · v = b that uniquely specifies the vector v. The rows of
(A, b) correspond to rows of the constraint matrix of LP and the corresponding RHS respectively.

At this point, we use Cramer’s rule to complete the argument. In particular, note that vi =
det(Ai)/ det(A) where Ai is the matrix obtained by replacing the i-th column of A by b. In
particular, we want to give an upper bound on the magnitude of vi; we do this by showing a lower
bound on | det(A)| and an upper bound on | det(Ai)|.

We start by showing that | det(A)| ≥ η′. First, since A is invertible, det(A) 6= 0. Now, note
that all rows of A have entries in {−1, 0, 1} except potentially one “special” row which has entries
from the set {±1,±(1−η′)}. If the special row does not appear, it is clear that | det(A)| ≥ 1, since
it is not zero and the entries of A are all integers. If, on the other hand, the special row appears,
simply expanding det(A) along that row gives that det(A) = a · (1 − η′) + b where a, b ∈ Z. As
η′ = 1/q for some q ∈ Z and det(A) 6= 0, we deduce that | det(A)| ≥ η′, as desired.

We bound | det(Ai)| from above by recalling the following fact.
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Fact 160. (Hadamard’s inequality) If A ∈ Rn×n and v1, . . . , vn ∈ Rn are the columns of A, then
| det(A)| ≤

∏n
j=1 ‖vj‖2.

Now, observe that for all i, the i-th column of Ai (i.e., vector b) has all its entries bounded by
C, hence ‖vi‖2 ≤ C

√
k. All other columns have entries bounded from above by 1 and thus for

j 6= i, ‖vj‖2 ≤
√
k. Therefore, det(Ai) ≤ C · kk/2. Thus, we conclude that |vi| ≤ (C · kk/2)/η′.

Further, as (1/η′) = d(1/η)e ≤ (2/η), we get |vi| ≤ 2C · kk/2/η, completing the proof of the
claim.

The proof of Theorem 40 is now complete.

B.2 Estimating correlations and Shapley values
Our algorithms need to estimate expectations of the form f ∗(i) = Ex∼µ[f(x)xi] and to estimate
Shapley values f̃(i), where f : {−1, 1}n → [−1, 1] is an explicitly given function (an LBF). This
is quite straightforward using standard techniques (see e.g. [8]) but for completeness we briefly
state and prove the estimation guarantees that we will need.

Estimating correlations with variables. We will use the following:

Proposition 161. There is a procedure Estimate-Correlation with the following properties: The
procedure is given oracle access to a function f : {−1, 1}n → [−1, 1], a desired accuracy pa-
rameter γ, and a desired failure probability δ. The procedure makes O(n log(n/δ)/γ2) oracle
calls to f and runs in time O(n2 log(n/δ)/γ2) (counting each oracle call to f as taking one
time step). With probability 1 − δ it outputs a list of numbers a∗(0), a∗(1), . . . , a∗(n) such that
|a∗(j) − f ∗(j)| ≤ γ/

√
n+ 1 for all j = 0, . . . , n. (Recall that f ∗(j) equals Ex∼µ[f(x)xj], where

x0 ≡ 1).

Proof. The procedure works simply by empirically estimating all the values f ∗(j) = Ex∼µ[f(x)xj],
j = 0, . . . , n, using a single sample of m independent draws from µ. Since the random variable
(f(x)xj))x∼µ is bounded by 1 in absolute value, a straightforward Chernoff bound gives that for
m = O(n log(n/δ)/γ2), each estimate a∗(j) of f ∗(j) is accurate to within an additive±γ/

√
n+ 1

with failure probability at most δ/(n + 1). A union bound over j = 0, . . . , n finishes the argu-
ment.

Estimating Shapley values. This is equally straightforward:

Proposition 162. There is a procedure Estimate-Shapley with the following properties: The pro-
cedure is given oracle access to a function f : {−1, 1}n → [−1, 1], a desired accuracy parameter
γ, and a desired failure probability δ. The procedure makes O(n log(n/δ)/γ2) oracle calls to f
and runs in time O(n2 log(n/δ)/γ2) (counting each oracle call to f as taking one time step). With
probability 1− δ it outputs a list of numbers ã(1), . . . , ã(n) such that dShapley(a, f) ≤ γ.
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Proof. The procedure empirically estimates each f̃(j), j = 1, . . . , n, to additive accuracy γ/
√
n

using Equation (3.1). This is done by generating a uniform random π ∼ Sn and then, for each
i = 1, . . . , n, constructing the two inputs x+(π, i) and x(π, i) and calling the oracle for f twice
to compute f(x+(π, i)) − f(x(π, i)). Since |f(x+(π, i)) − f(x(π, i))| ≤ 2 always, a sample of
m = O(n log(n/δ)/γ2) permutations suffices to estimate all the f̃(i) values to additive accuracy
±γ/
√
n with total failure probability at most δ. If each estimate ã(i) is additively accurate to

within ±γ/
√
n, then dShapley(a, f) ≤ γ as desired.
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Appendix C

Missing proofs from Chapter 4

This appendix collects some of the missing proofs from Chapter 4. The reason the

C.1 Proofs from Section 4.1
Proof of Proposition 77. At a high level, the algorithm T D performs a tournament by running a
“competition” Choose-HypothesisD for every pair of distinct distributions in the collection
Dε. It outputs a distribution D? ∈ Dε that was never a loser (i.e., won or achieved a draw in all
its competitions). If no such distribution exists in Dε then the algorithm outputs “failure.” We
start by describing and analyzing the competition subroutine between a pair of distributions in the
collection.

Lemma 163. In the context of Proposition 77, there is an algorithm Choose-HypothesisD(Di, Dj, ε
′, δ′)

which is given access to

(i) independent samples from D and Dk, for k ∈ {i, j},

(ii) an evaluation oracle EVALDk(β), for k ∈ {i, j},

an accuracy parameter ε′ and a confidence parameter δ′, and has the following behavior: It uses
m′ = O

(
(1/ε′2) log(1/δ′)

)
samples from each ofD,Di andDj , it makesO(m′) calls to the oracles

EVALDk(β), k ∈ {i, j}, performs O(m′) arithmetic operations, and if some Dk, k ∈ {i, j},
has dTV(Dk, D) ≤ ε′ then with probability 1 − δ′ it outputs an index k? ∈ {i, j} that satisfies
dTV(D,Dk?) ≤ 6ε′.

Proof. To set up the competition between Di and Dj , we consider the following subset ofW:

Hij = Hij(Di, Dj)
def
= {w ∈ W | Di(w) ≥ Dj(w)}

and the corresponding probabilities pi,j
def
= Di(Hij) and qi,j

def
= Dj(Hij). Clearly, it holds pi,j ≥ qi,j

and by definition of the total variation distance we can write

dTV(Di, Dj) = pi,j − qi,j.
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For the purposes of our algorithm, we would ideally want oracle access to the set Hij . Un-
fortunately though, this is not possible since the evaluation oracles are only approximate. Hence,
we will need to define a more robust version of the set Hij which will turn out to have similar
properties. In particular, we consider the set

Hβ
ij

def
= {w ∈ W | D̃β

i (w) ≥ D̃β
j (w)}

and the corresponding probabilities pβi,j
def
= Di(H

β
ij) and qβi,j

def
= Dj(H

β
ij). We claim that the differ-

ence ∆
def
= pβi,j − q

β
i,j is an accurate approximation to dTV(Di, Dj). In particular, we show:

Claim 164. We have
∆ ≤ dTV(Di, Dj) ≤ ∆ + ε/4. (C.1)

Before we proceed with the proof, we stress that (C.1) crucially uses our assumption that the
evaluation oracles provide a multiplicative approximation to the exact probabilities.

Proof. To show (C.1) we proceed as follows: LetA = Hij∩Hβ
ij ,B = Hij∩Hβ

ij andC = Hij∩Hβ
ij .

Then we can write
dTV(Di, Dj) = (Di −Dj)(A) + (Di −Dj)(B)

and
∆ = (Di −Dj)(A) + (Di −Dj)(C).

We will show that
0 ≤ (Di −Dj)(B) ≤ ε/8 (C.2)

and similarly
−ε/8 ≤ (Di −Dj)(C) ≤ 0 (C.3)

from which the claim follows. We proceed to prove (C.2), the proof of (C.3) being very similar.
Let w ∈ B. Then Di(w) ≥ Dj(w) (since w ∈ Hij) which gives (Di −Dj)(B) ≥ 0, establishing
the LHS of (C.2). We now establish the RHS. For w ∈ B we also have that D̃β

i (w) < D̃β
j (w)

(since w ∈ Hβ
ij). Now by the definition of the evaluation oracles, it follows that D̃β

i (w) ≥ Di(w)
(1+β)

and D̃β
j (w) ≤ (1 + β)Dj(w). Combining these inequalities yields

Di(w) ≤ (1 + β)2Dj(w) ≤ (1 + ε/8)Dj(w)

where the second inequality follows by our choice of β. Therefore,

(Di −Dj)(B) =
∑
w∈B

(Di(w)−Dj(w)) ≤ (ε/8) ·Dj(B) ≤ ε/8

as desired.
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Note that the probabilities pβi,j and qβi,j are not available to us explicitly. Hence, the algorithm
Choose-Hypothesis requires a way to empirically estimate each of these probability values
(up to a small additive accuracy). This task can be done efficiently because we have sample access
to the distributions Di, Dj and oracle access to the set Hβ

ij thanks to the EVALDk(β) oracles. The
following claim provides the details:

Claim 165. There exists a subroutine Estimate(Di, H
β
ij, γ, δ) which is given access to

(i) independent samples from Di,

(ii) an evaluation oracle EVALDk(β), for k ∈ {i, j},

an accuracy parameter γ and a confidence parameter δ, and has the following behavior: It makes
m = O ((1/γ2) log(1/δ)) draws from Di and O(m) calls to the oracles EVALDk(β), k = i, j,
performs O(m) arithmetic operations, and with probability 1 − δ outputs a number p̃βi,j such that
|p̃βi,j − p

β
i,j| ≤ γ.

Proof. The desired subroutine amounts to a straightforward random sampling procedure, which
we include here for the sake of completeness. We will use the following elementary fact, a simple
consequence of the additive Chernoff bound.

Fact 166. Let X be a random variable taking values in the range [−1, 1]. Then E[X] can be esti-
mated to within an additive ±τ , with confidence probability 1− δ, using m = Ω((1/τ 2) log(1/δ))

independent samples from X . In particular, the empirical average X̂m = (1/m)
∑m

i=1Xi, where

the Xi’s are independent samples of X , satisfies Pr
[
|X̂m − E[X]| ≤ τ

]
≥ 1− δ.

We shall refer to this as “empirically estimating” the value of E[X].
Consider the indicator function IHβ

ij
of the set Hβ

ij , i.e., IHβ
ij

:W → {0, 1} with IHβ
ij

(x) = 1 if

and only if x ∈ Hβ
ij . It is clear that Ex∼Di

[
IHβ

ij
(x)
]

= Di(H
β
ij) = pβi,j . The subroutine is described

in the following pseudocode:

Subroutine Estimate(Di, H
β
ij, γ, δ):

Input: Sample access to Di and oracle access to EVALDk(β), k = i, j.
Output: A number p̃βij such that with probability 1− δ it holds |p̃βij −Di(H

β
ij)| ≤ γ.

1. Draw m = Θ ((1/γ2) log(1/δ)) samples s = {s`}m`=1 from Di.

2. For each sample s`, ` ∈ [m]:

(a) Use the oracles EVALDi(β), EVALDj(β), to approximately evaluate Di(s`),
Dj(s`).

(b) If D̃β
i (s`) ≥ D̃β

j (s`) set IHβ
ij

(s`) = 1, otherwise IHβ
ij

(s`) = 0.
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3. Set p̃βij = 1
m

∑m
`=1 IHβ

ij
(s`).

4. Output p̃βij.

The computational efficiency of this simple random sampling procedure follows from the fact
that we can efficiently decide membership in Hβ

ij . To do this, for a given x ∈ W , we make a query
to each of the oracles EVALDi(β), EVALDj(β) to obtain the probabilities D̃β

i (x), D̃β
j (x). We have

that x ∈ Hβ
ij (or equivalently IHβ

ij
(x) = 1) if and only if D̃β

i (x) ≥ D̃β
j (x). By Fact 166, applied

for the random variable IHβ
ij

(x), where x ∼ Di, after m = Ω((1/γ2) log(1/δ)) samples from Di

we obtain a ±γ-additive estimate to pβi,j with probability 1 − δ. For each sample, we make one
query to each of the oracles, hence the total number of oracle queries is O(m) as desired. The only
non-trivial arithmetic operations are the O(m) comparisons done in Step 2(b), and Claim 165 is
proved.

Now we are ready to prove Lemma 163. Choose-HypothesisD(Di, Dj, ε
′, δ′) performs a

competition between Di and Dj in the following way:

Algorithm Choose-HypothesisD(Di, Dj, ε
′, δ′):

Input: Sample access to D and Dk, k = i, j, oracle access to EVALDk(β), k = i, j.

1. Set p̃βi,j =Estimate(Di, H
β
ij, ε

′/8, δ′/4) and q̃βi,j =Estimate(Dj, H
β
ij, ε

′/8, δ′/4).

2. If p̃βi,j − q̃
β
i,j ≤ 9ε′/2, declare a draw and return either i or j. Otherwise:

3. Draw m′ = Θ
(
(1/ε′2) log(1/δ′)

)
samples s′ = {s`}m

′

`=1 from D.

4. For each sample s`, ` ∈ [m′]:

(a) Use the oracles EVALDi(β), EVALDj(β) to evaluate D̃β
i (s`), D̃β

j (s`).

(b) If D̃β
i (s`) ≥ D̃β

j (s`) set IHβ
ij

(s`) = 1, otherwise IHβ
ij

(s`) = 0.

5. Set τ = 1
m′

∑m′

`=1 IHβ
ij

(s`), i.e., τ is the fraction of samples that fall inside Hβ
ij.

6. If τ > p̃βi,j − 13
8
ε′, declare Di as winner and return i; otherwise,

7. if τ < q̃βi,j + 13
8
ε′, declare Dj as winner and return j; otherwise,

8. declare a draw and return either i or j.



APPENDIX C. MISSING PROOFS FROM CHAPTER 4 150

It is not hard to check that the outcome of the competition does not depend on the ordering
of the pair of distributions provided in the input; that is, on inputs (Di, Dj) and (Dj, Di) the
competition outputs the same result for a fixed set of samples {s1, . . . , sm′} drawn from D.

The upper bounds on sample complexity, query complexity and number of arithmetic opera-
tions can be straightforwardly verified. Hence, it remains to show correctness. By Claim 165
and a union bound, with probability at least 1 − δ′/2, we will have that |p̃βi,j − pβi,j| ≤ ε′/8

and |q̃βi,j − qβi,j| ≤ ε′/8. In the following, we condition on this good event. The correctness of
Choose-Hypothesis is then an immediate consequence of the following claim.

Claim 167. Suppose that dTV(D,Di) ≤ ε′. Then:

(i) If dTV(D,Dj) > 6ε′, then the probability that the competition between Di and Dj does not
declare Di as the winner is at most e−m

′ε′2/8. (Intuitively, if Dj is very far from D then it is
very likely that Di will be declared winner.)

(ii) The probability that the competition betweenDi andDj declaresDj as the winner is at most
e−m

′ε′2/8. (Intuitively, since Di is close to D, a draw with some other Dj is possible, but it
is very unlikely that Dj will be declared winner.)

Proof. Let rβ = D(Hβ
ij). The definition of the variation distance implies that |rβ − pβi,j| ≤

dTV(D,Di) ≤ ε′. Therefore, we have that |rβ − p̃βi,j| ≤ |rβ − p
β
i,j|+ |p̃

β
i,j − p

β
i,j| ≤ 9ε′/8. Consider

the indicator (0/1) random variables {Z`}m
′

`=1 defined as Z` = 1 if and only if s` ∈ Hβ
ij . Clearly,

τ = 1
m′

∑m′

`=1 Z` and Es′ [τ ] = Es`∼D[Z`] = rβ . Since the Z`’s are mutually independent, it follows
from the Chernoff bound that Pr[τ ≤ rβ − ε′/2] ≤ e−m

′ε′2/8. Using |rβ − p̃βi,j| ≤ 9ε′/8. we get
that Pr[τ ≤ p̃βi,j − 13ε′/8] ≤ e−m

′ε′2/8.

• For part (i): If dTV(D,Dj) > 6ε′, from the triangle inequality we get that pi,j − qi,j =

dTV(Di, Dj) > 5ε′ Claim 164 implies that pβi,j − q
β
i,j > 19ε′/4 and our conditioning finally

gives p̃βi,j − q̃
β
i,j > 9ε′/2. Hence, the algorithm will go beyond Step 2, and with probability

at least 1 − e−m
′ε′2/8, it will stop at Step 6, declaring Di as the winner of the competition

between Di and Dj .

• For part (ii): If p̃βi,j − q̃βi,j ≤ 9ε′/2 then the competition declares a draw, hence Dj is not
the winner. Otherwise we have p̃βi,j − q̃βi,j > 9ε′/2 and the argument of the previous para-
graph implies that the competition between Di and Dj will declare Dj as the winner with
probability at most e−m′ε′2/8.

This concludes the proof of Claim 167.

This completes the proof of Lemma 163.

We now proceed to describe the algorithm T D and establish Proposition 77. The algorithm
performs a tournament by running the competition Choose-HypothesisD(Di, Dj, ε, δ/(2N))
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for every pair of distinct distributionsDi, Dj in the collectionDε. It outputs a distributionD? ∈ Dε
that was never a loser (i.e., won or achieved a draw in all its competitions). If no such distribution
exists in Dε then the algorithm outputs “failure.” A detailed pseudocode follows:

Algorithm T D({Dj}Nj=1, ε, δ):
Input: Sample access to D and Dk, k ∈ [N ], and oracle access to EVALDk , k ∈ [N ].

1. Draw m = Θ ((1/ε2)(logN + log(1/δ))) samples from D and each Dk, k ∈ [N ].

2. For all i, j ∈ [N ], i 6= j, run Choose-HypothesisD(Di, Dj, ε, δ/(2N)) using this
sample.

3. Output an index i? such that Di? was never declared a loser, if one exists.

4. Otherwise, output “failure”.

We now proceed to analyze the algorithm. The bounds on the sample complexity, running
time and query complexity to the evaluation oracles follow from the corresponding bounds for
Choose-Hypothesis. Hence, it suffices to show correctness. We do this below.

By definition, there exists some Di ∈ Dε such that dTV(D,Di) ≤ ε. By Claim 167, the
distribution Di never loses a competition against any other Dj ∈ Dε (so the algorithm does not
output “failure”). A union bound over allN distributions inDε shows that with probability 1−δ/2,
the distribution D′ never loses a competition.

We next argue that with probability at least 1 − δ/2, every distribution Dj ∈ Dε that never
loses has small variation distance from D. Fix a distribution Dj such that dTV(Dj, D) > 6ε;
Claim 167(i) implies that Dj loses to Di with probability 1 − 2e−mε

2/8 ≥ 1 − δ/(2N). A union
bound yields that with probability 1 − δ/2, every distribution Dj that has dTV(Dj, D) > 6ε loses
some competition.

Thus, with overall probability at least 1 − δ, the tournament does not output “failure” and
outputs some distribution D? such that dTV(D,D?) is at most 6ε. The proof of Proposition 77 is
now complete.

C.2 Proofs from Section 4.2

Proofs from Section 4.2
Proof of Lemma 84. To prove the lemma, we start by rewriting the expectation in (4.1) as follows:

Ex∼D [χ(x, f(x))] = Ex∼Df,+ [χ(x, 1)] · Pr
x∼D

[f(x) = 1] + Ex∼Df,− [χ(x,−1)] · Pr
x∼D

[f(x) = −1].
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We also observe that

Ex∼D [χ(x,−1)] = Ex∼Df,+ [χ(x,−1)] · Pr
x∼D

[f(x) = 1] + Ex∼Df,− [χ(x,−1)] · Pr
x∼D

[f(x) = −1].

Combining the above equalities we get

Ex∼D [χ(x, f(x))] = Ex∼D [χ(x,−1)] + Ex∼Df,+ [χ(x, 1)− χ(x,−1)] · Pr
x∼D

[f(x) = 1]. (C.4)

Given the above identity, the algorithm Simulate-STATDf is very simple: We use random sam-
pling from D to empirically estimate the expectations Ex∼D [χ(x,−1)] (recall that D is assumed
to be a samplable distribution), and we use the independent samples from Df,+ to empirically
estimate Ex∼Df,+ [χ(x, 1)− χ(x,−1)]. Both estimates are obtained to within an additive accuracy
of±τ/2 (with confidence probability 1−δ/2 each). We combine these estimates with our estimate
b̃f for Prx∼D[f(x) = 1] in the obvious way (see Step 2 of pseudocode below).

Subroutine Simulate-STATDf (D,Df,+,χ, τ, b̃f , δ):
Input: Independent samples from D and Df,+, query access to χ : {−1, 1}n → {−1, 1},
accuracy τ , b̃f ∈ [0, 1] and confidence δ.
Output: If |b̃f − Prx∼D[f(x) = 1]| ≤ τ ′, a number v that with probability 1 − δ satisfies
|Ex∼D[χ(x, f(x))]− v| ≤ τ + τ ′.

1. Empirically estimate the values Ex∼D[χ(x,−1)] and Ex∼Df,+ [χ(x, 1) − χ(x,−1)] to
within an additive ±τ/2 with confidence probability 1 − δ/2. Let Ẽ1, Ẽ2 be the corre-
sponding estimates.

2. Output v = Ẽ1 + Ẽ2 · b̃f .

By Fact 166, we can estimate each expectation using m = Θ ((1/τ 2) log(1/δ)) samples (from
D, Df,+ respectively). For each such sample the estimation algorithm needs to evaluate the func-
tion χ (once for the first expectation and twice for the second). Hence, the total number of queries
to χ is O(m), i.e., the subroutine Simulate-STATDf runs in time O(m · t(n)) as desired.

By a union bound, with probability 1−δ both estimates will be±τ/2 accurate. The bound (4.1)
follows from this latter fact and (C.4) by a straightforward application of the triangle inequality.
This completes the proof of Lemma 84.

Proof of Proposition 85. The simulation procedure is very simple. We run the algorithm ASQ by
simulating its queries using algorithm Simulate-STATDf . The algorithm is described in the
following pseudocode:
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Algorithm ASQ−SIM(D,Df,+, ε, b̃f , δ):

Input: Independent samples from D and Df,+, b̃f ∈ [0, 1], ε, δ > 0.
Output: If |b̃f −Prx∼D[f(x) = 1]| ≤ τ/2, a hypothesis h that with probability 1− δ satisfies
Prx∼D[h(x) 6= f(x)] ≤ ε.

1. Let τ = τ(n, 1/ε) be the minimum accuracy ever used in a query to STAT(f,D) during
the execution of ASQ(ε, δ/2).

2. Run the algorithm ASQ(ε, δ/2), by simulating each query to STAT(f,D) as follows:
whenever ASQ makes a query (χ, τ) to STAT(f,D), the simulation algorithm runs
Simulate-STATDf (D,Df,+,χ, τ/2, τ/2, δ/(2T1)).

3. Output the hypothesis h obtained by the simulation.

Note that we run the algorithmASQ with confidence probability 1−δ/2. Moreover, each query
to the STAT(f,D) oracle is simulated with confidence 1 − δ/(2T1). Since ASQ runs for at most
T1 time steps, it certainly performs at most T1 queries in total. Hence, by a union bound over these
events, with probability 1 − δ/2 all answers to its queries will be accurate to within an additive
±τ/2. By the guarantee of algorithmASQ and a union bound, with probability 1−δ, the algorithm
ASQ−SIM will output a hypothesis h : {−1, 1}n → {−1, 1} such that Prx∼D[h(x) 6= f(x)] ≤ ε.
The sample complexity and running time follow from the bounds for Simulate-STATDf . This
completes the proof of Proposition 85.

Proof of Fact 86. By definition we have that

|Ex∼D[φ(x)]− Ex∼D′ [φ(x)]| =

∣∣∣∣∣ ∑
x∈{−1,1}n

(D(x)−D′(x))φ(x)

∣∣∣∣∣
≤

∑
x∈{−1,1}n

|(D(x)−D′(x))| |φ(x)|

≤ maxx∈{−1,1}n |φ(x)| ·
∑

x∈{−1,1}n
|D(x)−D′(x)|

≤ 1 · ‖D −D′‖1

= 2dTV(D,D′)

≤ 2τ ′

as desired.

Proof of Claim 88. To simulate a sample from Df,+ we simply draw samples from Uf−1(1) until
we obtain a sample x with g(x) = 1. The following pseudocode makes this precise:
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Subroutine Simulate-sampleDf,+(Uf−1(1), g, ε
′, δ):

Input: Independent samples from Uf−1(1), a circuit computing g, a value ε′ > 0 such that
ε′ ≤ Prx∼Uf−1(1)

[g(x) = 1] and confidence parameter δ.
Output: A point x ∈ {−1, 1}n that with probability 1− δ satisfies x ∼ Df,+.

1. Repeat the following at most m = Θ ((1/ε′) log(1/δ)) times:

a) Draw a sample x ∼ Uf−1(1).

b) If the circuit for g evaluates to 1 on input x then output x.

2. If no point x with g(x) = 1 has been obtained, halt and output “failure.”

Since Prx∼Uf−1(1)
[g(x) = 1]≥ ε′, after repeating this process m = Ω ((1/ε′) log(1/δ)) times,

we will obtain a satisfying assignment to g with probability at least 1 − δ. It is clear that such a
sample x is distributed according to Df,+. For each sample we need to evaluate g once, hence the
running time follows.

Proof of Claim 89. The procedure Estimate-Bias is very simple. It runs AC′count on inputs
ε? = τ ′/2, δ′, using the representation for g ∈ C ′. Let pg be the value returned by the approximate
counter; Estimate-Bias returns p̂/pg.

The claimed running time bound is obvious. To see that the procedure is correct, first observe
that by Definition 73, with probability 1− δ′ we have that

|g−1(1)|
2n

· 1

1 + ε?
≤ pg ≤

|g−1(1)|
2n

· (1 + ε?).

For the rest of the argument we assume that the above inequality indeed holds. Let A denote
|g−1(1)|, let B denote |f−1(1) ∩ g−1(1)|, and let C denote |f−1(1) \ g−1(1)|, so the true value
Prx∼D[f(x) = 1] equals B

A
and the above inequality can be rephrased as

A

1 + ε?
≤ pg · 2n ≤ A · (1 + ε?).

By our assumption on p̂ we have that

B + C ≤ p̂ · 2n ≤ (1 + ε′)(B + C);

since Prx∼Uf−1(1)
[g(x) = 1] ≥ 1− ε′ we have

C

B + C
≤ ε′ (i.e., C ≤ ε′

1− ε′
·B );
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and since Prx∼Ug−1(1)
[f(x) = 1] ≥ γ′ we have

B

A
≥ γ′.

Combining these inequalities we get

1

1 + ε?
· B
A
≤ 1

1 + ε?
· B + C

A
≤ p̂

pg
≤ B

A
· (1 + ε′)(1 + ε?)

(
1 +

ε′

1− ε′

)
=
B

A
· (1 + ε?)

Hence ∣∣∣∣BA − p̂

pg

∣∣∣∣ ≤ B

A

(
1 + ε? − 1

1 + ε?

)
≤ 2ε?

1 + ε?
≤ 2ε?,

where we have used B ≤ A. Recalling that ε? = τ ′/2, the lemma is proved.

Details from Section 4.2
In this section, we complete the proof of Theorem 81. Recall that as described in Proposition 77,
the hypothesis testing algorithm requires the following:

1. independent samples from the target distribution Uf−1(1) (this is not a problem since such
samples are available in our framework);

2. independent samples from D̂i for each i (also not a problem since the i-th run of algorithm
A′Cinv outputs a sampler for distribution D̂i; and

3. a (1 +O(ε))-approximate evaluation oracle EVALD̂i for each distribution D̂i.

In this subsection we show how to construct item (3) above, the approximate evaluation oracle.
In more detail, we first describe a randomized procedure Check which is applied to the output
of each execution of A′Cinv (across all k different settings of the input parameter p̂i). We show
that with high probability the “right” value p̂i∗ (the one which satisfies p ≤ p̂i∗ < (1 + ε)p) will
pass the procedure Check. Then we show that for each value p̂i∗ that passed the check a simple
deterministic algorithm gives the desired approximate evaluation oracle for D̂i.

We proceed to describe the Check procedure and characterize its performance.

Algorithm Check(g, h, δ′, ε) :

Input: functions g and h as described in Lemma 168, a confidence parameter δ′, and an
accuracy parameter ε
Output: If |h−1(1) ∩ g−1(1)|/|g−1(1)| ≥ γ/2, with probability 1 − δ′ outputs a pair (α, κ)

such that |α−|h−1(1)∩ g−1(1)|/|g−1(1)|| ≤ µ · |h−1(1)∩ g−1(1)|/|g−1(1)| and |g
−1(1)|
1+τ

≤ κ ≤
(1 + τ)|g−1(1)|, where µ = τ = ε/40000.
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1. Sample m = O(log(2/δ′)/(γµ2)) points x1, . . . , xm from AC′gen(g, γ/4, δ′/(2m)). If any
xj = ⊥ halt and output “failure.”

2. Let α be (1/m) times the number of points xj that have h(x) = 1.

3. Call AC′count(τ, δ
′/2) on g and set κ to 2n times the value it returns.

Lemma 168. Fix i ∈ [k]. Consider a sequence of k runs of A′Cinv where in the i-th run it is given

p̂i
def
= (1 + ε)i−1/2n as its input parameter. Let gi be the function in C ′ constructed byA′Cinv in Step 1

of its i-th run and hi be the hypothesis function constructed by A′Cinv in Step 2(e) of its i-th run.
Suppose Check is given as input gi, hi, a confidence parameter δ′, and an accuracy parameter
ε′. Then it either outputs “no” or a pair (αi, κi) ∈ [0, 1] × [0, 2n+1], and satisfies the following
performance guarantee: If |h−1

i (1) ∩ g−1
i (1)|/|g−1

i (1)| ≥ γ/2 then with probability at least 1− δ′
Check outputs a pair (αi, κi) such that∣∣∣∣αi − |h−1

i (1) ∩ g−1
i (1)|

|g−1
i (1)|

∣∣∣∣ ≤ µ · |h
−1
i (1) ∩ g−1

i (1)|
|g−1
i (1)|

(C.5)

and
|g−1
i (1)|
1 + τ

≤ κi ≤ (1 + τ)|g−1
i (1)|, (C.6)

where µ = τ = ε/40000.

Proof. Suppose that i is such that |h−1
i (1) ∩ g−1

i (1)|/|g−1
i (1)| ≥ γ/2. Recall from Definition 74

that each point xj drawn from AC′gen(gi, γ/4, δ
′/(2m)) in Step 1 is with probability 1 − δ′/(2m)

distributed according to Dgi,γ/4; by a union bound we have that with probability at least 1 − δ′/2
all m points are distributed this way (and thus none of them are ⊥). We condition on this going
forward. Definition 74 implies that dTV(Dgi,γ/4,Ug−1

i (1)) ≤ γ/4; together with the assumption that
|h−1
i (1) ∩ g−1

i (1)|/|g−1
i (1)| ≥ γ/2, this implies that each xj independently has proability at least

γ/4 of having h(x) = 1. Consequently, by the choice of m in Step 1, a standard multiplicative
Chernoff bound implies that∣∣∣∣αi − |h−1(1) ∩ g−1(1)|

|g−1(1)|

∣∣∣∣ ≤ µ · |h
−1(1) ∩ g−1(1)|
|g−1(1)|

with failure probability at most δ′/4, giving (C.5).
Finally, Definition 73 gives that (C.6) holds with failure probability at most δ′/4. This con-

cludes the proof.

Next we show how a high-accuracy estimate αi of |h−1
i (1) ∩ g−1

i (1)|/|g−1
i (1)| yields a deter-

ministic approximate evaluation oracle for D̂′i.
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Lemma 169. Algorithm Simulate-Approx-Eval (which is deterministic) takes as input a
value α ∈ [0, 1], a string x ∈ {−1, 1}n, a parameter κ, (a circuit for) h : {−1, 1}n → {−1, 1},
and (a representation for) g : {−1, 1}n → {−1, 1}, g ∈ C ′, where h, g are obtained from a run of
A′Cinv. Suppose that ∣∣∣∣α− |h−1(1) ∩ g−1(1)|

|g−1(1)|

∣∣∣∣ ≤ µ · |h
−1(1) ∩ g−1(1)|
|g−1(1)|

and
|g−1(1)|
1 + τ

≤ κ ≤ (1 + τ)|g−1(1)|

where µ = τ = ε/40000. Then Simulate-Approx-Eval outputs a value ρ such that

D̂′(x)

1 + β
≤ ρ ≤ (1 + β)D̂′(x), (C.7)

where β = ε/192, D̂ is the output distribution constructed in Step 3 of the run ofACinv that produced
h, g, and D̂′ is D̂ conditioned on {−1, 1}n (excluding ⊥).

Proof. The Simulate-Approx-Eval procedure is very simple. Given an input x ∈ {−1, 1}n
it evaluates both g and h on x, and if either evaluates to −1 it returns the value 0. If both evaluate
to 1 then it returns the value 1/(κα).

For the correctness proof, note first that it is easy to see from the definition of the sampler
Cf (Step 3 of A′Cinv) and Definition 74 (recall that the approximate uniform generator AC′gen(g) only
outputs strings that satisfy g) that if x ∈ {−1, 1}n, x /∈ h−1(1)∩g−1(1) then D̂ has zero probability
of outputting x, so Simulate-Approx-Eval behaves appropriately in this case.

Now suppose that h(x) = g(x) = 1. We first show that the value 1/(κα) is multiplicatively
close to 1/|h−1(1)∩ g−1(1)|. Let us write A to denote |g−1(1)| and B to denote |h−1(1)∩ g−1(1)|.
With this notation we have∣∣∣∣α− B

A

∣∣∣∣ ≤ µ · B
A

and
A

1 + τ
≤ κ ≤ (1 + τ)A.

Consequently, we have

B(1− µ− τ) ≤ B · 1− µ
1 + τ

=
B

A
(1− µ) · A

1 + τ
≤ κα ≤ B

A
(1 + µ) · (1 + τ)A ≤ B(1 + 2µ+ 2τ),

and hence
1

B
· 1

1 + 2µ+ 2τ
≤ 1

κα
≤ 1

B
· 1

1− µ− τ
. (C.8)

Now consider any x ∈ h−1(1) ∩ g−1(1). By Definition 74 we have that

1

1 + ε3
· 1

|g−1(1)|
≤ Dg,ε3(x) ≤ (1 + ε3) · 1

|g−1(1)|
.
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Since a draw from D̂′ is obtained by taking a draw from Dg,ε3 and conditioning on it lying in
h−1(1), it follows that we have

1

1 + ε3
· 1

B
≤ D̂′(x) ≤ (1 + ε3) · 1

B
.

Combining this with (C.8) and recalling that µ = τ = ε/40000 and ε3 = εγ/48000, we get (C.7)
as desired.

The final algorithm: Proof of Theorem 81.
Finally we are ready to give the inverse approximate uniform generation algorithm ACinv for C.

Algorithm ACinv(Uf−1(1), ε, δ)

Input: Independent samples from Uf−1(1), accuracy and confidence parameters ε, δ.
Output: With probability 1− δ outputs an ε-sampler Cf for Uf−1(1) .

1. For i = 1 to k = O(n/ε):

a) Set p̂i
def
= (1 + ε)i−1/2n.

b) Run A′Cinv(Uf−1(1), ε/12, δ/3, p̂i). Let gi ∈ C ′ be the function constructed in Step 1,
hi be the hypothesis function constructed in Step 2(e), and (Cf )i be the sampler for
distribution D̂i constructed in Step 3.

c) Run Check(gi, hi, δ/3, ε). If it returns a pair (αi, κi) then add i to the set S (initially
empty).

2. Run the hypothesis testing procedure T Uf−1(1) over the set {D̂′i}i∈S of hypothesis distri-
butions, using accuracy parameter ε/12 and confidence parameter δ/3. Here T Uf−1(1) is
given access to Uf−1(1), uses the samplers (Cf )i to generate draws from distributions D̂′i
(see Remark 78), and uses the procedure Simulate-Approx-Eval(αi, κi, hi, gi) for
the (1 + ε/192)-approximate evaluation oracle EVALD̂′i

for D̂′i. Let i? ∈ S be the index
of the distribution that it returns.

3. Output the sampler (Cf )i? .

Proof of Theorem 81: Let p ≡ Prx∈Un [f(x) = 1] denote the true fraction of satisfying as-
signments for f in {−1, 1}n. Let i∗ be the element of [k] such that p ≤ p̂i∗ < (1 + ε/6)p. By
Theorem 90, with probability at least 1− δ/3 we have that both
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(i) (Cf )i∗ is a sampler for a distribution D̂i∗ such that dTV(D̂i∗ ,Uf−1(1)) ≤ ε/6; and

(ii) |h−1
i∗ (1) ∩ g−1

i∗ (1)|/|g−1
i∗ (1)| ≥ γ/2.

We condition on these two events holding. By Lemma 168, with probability at least 1 − δ/3
the procedure Check outputs a value αi∗ such that∣∣∣∣αi∗ − |h−1

i∗ (1) ∩ g−1
i∗ (1)|

|g−1
i∗ (1)|

∣∣∣∣ ≤ µ · |h
−1
i∗ (1) ∩ g−1

i∗ (1)|
|g−1
i∗ (1)|

for µ = ε/40000. We condition on this event holding. Now Lemma 169 implies that the algorithm
Simulate-Approx-Eval((Cf )i∗) meets the requirements of a (1+β)-approximate evaluation
oracle for EVALD̂′

i∗
from Proposition 77, for β = ε

192
.Hence by Proposition 77 (or more precisely

by Remark 78) with probability at least 1 − δ/3 the index i? that T Uf−1(1) returns is such that D̂′i?
is an ε/2-sampler for Uf−1(1) as desired.

As in the proof of Theorem 90, the claimed running time bound is a straightforward conse-
quence of the various running time bounds established for all the procedures called by ACinv. This
concludes the proof of our general positive result, Theorem 81.


