Carat: Collaborative Energy Diagnosis for Mobile
Devices

Adam Oliner

Anand Padmanabha lyer
lon Stoica

Eemil Lagerspetz

Sasu Tarkoma

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-17
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-17.html

March 8, 2013




Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Carat: Collaborative Energy Diagnosis for Mobile Devices

Adam J. Oliner, Anand P. lyer, lon Stoica

AMP Lab, UC Berkeley

{oliner, api, istoica} @eecs.berkeley.edu

ABSTRACT

We aim to detect and diagnose energy anomalies, abnor-
mally heavy battery use. This paper describes a collaborative
black-box method, and an implementation called Carat, for
performing such diagnosis on mobile devices. A client app
sends intermittent, coarse-grained measurements to a server,
which identifies correlations between higher expected en-
ergy use and client properties like the running apps, device
model, and operating system. The analysis quantifies the er-
ror and confidence associated with a diagnosis, suggests ac-
tions the user could take to improve battery life, and projects
the amount of improvement. Carat detected all anomalies in
a controlled experiment and, during a deployment to a com-
munity of more than 340,000 devices, identified thousands
of energy anomalies in the wild. On average, a Carat user’s
battery life increased by 10% after 10 days.

1 Introduction

Mobile computing, especially smartphones and tablets, is
becoming ubiquitous. Recent work [30] acknowledged the
rise of a class of mobile software misbehavior: energy bugs.
These bugs add to the list of causes of poor battery life that
already includes system configurations, user behavior, and
power-hungry apps. Significantly increased battery drain,
called an energy anomaly, frustrates users, creates poor press
for vendors, and can render devices unusable. For such a
user, the goal is to understand what is using up the battery,
whether or not that is normal, and what can be done.

In this paper, we present a black box method for diagnos-
ing energy anomalies that uses all the information available
to a user app on both the Android and iOS platforms. In
addition to being a pragmatic point in the design space, our
solution naturally possesses several desirable qualities:

e Software-only. Hardware solutions are expensive, re-
quire technical skill, and void warranties.

e No kernel modifications. Hacking an OS requires skill;
even “jailbreaking” may result in the user bricking their
device or introducing bugs or security vulnerabilities.

e Black-box apps. The user does not have access to the

source code for most of the apps they run or, usually, the
ability to instrument binaries.
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Extensions to our method could take advantage of platform-
specific information (our implementation does so), but the
aim of this paper is to evaluate how far we can take diagnosis
without relying on such data. Distribution mechanisms like
the app stores make it easy to get instrumentation onto off-
the-shelf devices, so long as that instrumentation is a stan-
dard app offering a service that users deem valuable. An
app that yields insight into poor battery life—and actionable
advice for improving it—meets this requirement.

Unfortunately, a single device has limited diagnostic power
because there is no a priori specification of normal energy
use. (This is in contrast to many correctness bugs; crash-
ing is almost always bad.) The app could measure every
local signal it can access and still be left with the main ques-
tions: Is the observed energy use normal? Is it abnormal but
merely a consequence of local configuration parameters or
user behaviors? Would changing some aspect of the system
improve battery life? If so, by how much? This limitation
remains even if we modified the hardware, kernel, and apps;
the information is simply not present on any single device.
To answer such questions, the app would need to know about
the energy use and behaviors on other devices, as well.

If, instead, we had a community of devices, these ques-
tions would be tractable. Measurements aggregated from
multiple clients would allow us to collect more data more
quickly, account (statistically) for individual variation in con-
figurations and usage, say whether energy use is normal, and
project the impact of certain actions. Each client occasion-
ally records the battery level and other local data. We ag-
gregate these measurements and compare average discharge
rates under different conditions, such as which third-party
apps (a common source of battery problems) are running.

If the average rate while running some app A is higher
than when A is not running (but any other apps may be),
we call that app an energy hog. A hog may be caused by
a coding error (e.g., it prevents the screen from dimming)
or because such energy use is intrinsic to the app’s function
(e.g., it frequently needs to use the GPS). If an app B is not a
hog, it may still be an energy bug on client X if the average
rate on X is higher than the average on all the other clients
running B. Energy bugs may be caused by a code error that
only triggers under certain conditions (which our analysis
tries to discover), configurations, or user behaviors.



Our method for diagnosing energy anomalies [26] uses
the community to infer a specification (expected energy use),
and we call deviation from that inferred specification a hog
or a bug [9]. Unlike previous work, we are looking for regu-
larity and deviation in the use of energy and leveraging this
insight to characterize the abnormal use of that resource (the
battery). Deviant energy use is an anomaly, regardless of the
cause (e.g., coding error or user behavior).

We take a black-box approach with process-level granu-
larity; when we observe anomalously high energy use, we
implicate one or more processes. Our method further com-
putes diagnosis trees called MCADs, which enable us to ad-
vise users what actions they can take to improve battery life
and to estimate the amount of improvement (accompanied
by error and confidence bounds).

These measurement constraints impose fundamental lim-
itations on our method. Without visibility into apps, we
cannot disambiguate whether apps are consuming abnormal
amounts of energy because of a coding error, in-app con-
figuration, or user behavior. Apps that are often used to-
gether, such as those in app suites, may be conflated by our
correlation-based approach. The lack of resource-specific
instrumentation with attribution (e.g., what used the network
and how much), prevents certain kinds of diagnoses. Al-
though these restrictions may seem severe, for a method that
can still be distributed via the App Store, ours is maximally
invasive. Despite the above limitations, this paper aims to
show that our data is sufficient to diagnose anomalies with
enough accuracy to provide actionable recommendations that
improve battery life in practice.

In this paper, we present the following:

e A collaborative method for detecting and diagnosing en-
ergy anomalies by looking for deviation from typical bat-
tery use (see Section 2) and an implementation as an app
called Carat for iOS and Android (see Section 3),

e Validation of our discharge rate estimation method using
power metering hardware (see Section 4), and

o Results from a 340,000-device deployment, including how
we both successfully detected injected energy anomalies
and diagnosed thousands in the wild (see Section 5).

We conclude with a discussion of the limitations of our ap-
proach (see Section 6), an explanation of our place among
the related work and how we distinguish ourselves (see Sec-
tion 7), and a summary of the conclusions (see Section 8).

2 Method

Our method builds and compares conditional probability dis-
tributions of rates of energy use to look for energy anoma-
lies; e.g., the rates when an app is running on a client with
one OS version (the subject distribution) may be signifi-
cantly higher than when running on clients with another OS
version (the reference distribution). We focus on two kinds
of anomalies: hogs and bugs (see Section 2.1). In Sec-
tions 2.2-2.4, we compute the magnitude of an anomaly, cor-
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Figure 1: We compare the expected values of conditional distributions of
energy drain rates to classify apps as hogs, bugs, or neither. The distance d
shown is used to estimate the severity of the anomaly.

responding to the expected improvement in battery life that
an average user experiencing the anomaly would see if they
became like the average user not experiencing it. We quan-
tify the error and uncertainty of these projected improve-
ments and decrease that uncertainty by classifying measure-
ments according to various conditions (e.g., rates taken when
WiFi was, or was not, available). We generate the classi-
fiers for an anomaly as a diagnosis tree (see Section 2.5-
2.6), which we then reduce to a minimal, complete set of
actionable recommendations (MCAD). An MCAD translates
to anomaly diagnoses, such as “With C% confidence, killing
app A would increase battery life by d; + e; minutes; up-
grading to OS version V' would increase battery life by ds +
eo minutes; disabling WiFi...” and so on.

2.1 Hogs and Bugs

We define two categories of anomalies, hogs and bugs, by
the types of subject and reference distributions we compare.
Informally, an app is an energy hog when using that app
drains the battery significantly faster, in a statistical sense
defined in Section 2.4, than the average app. In contrast, an
app has an energy bug when some running instances of the
app (the ones in which the bug manifests) drain the battery
significantly faster than other instances of the same app (the
ones in which the bug does not manifest). Anomalies do not
imply incorrect behavior; they may have innocuous causes.
Hogs and bugs are computed as follows.

First, we build a (reference) distribution of battery dis-
charge rates for devices used normally: playing games, brow-
sing the web, making phone calls, leaving it idle, etc. Intro-
duce an app A into the community, which some subset of
clients will install and use, possibly in place of certain other
apps. Build another (subject) distribution consisting only of
rates observed while A is running. If the expected battery
life while A is running is significantly lower than the ex-
pected lifetime without A, we call A an energy hog.

Intuitively, a hog lowers the community’s average battery
life. Note that an app may make use of energy-demanding
device resources (e.g., WiFi or GPS) without being consid-
ered a hog; anomalous apps tend to overuse these resources.
An app could be a hog because of a coding error that af-
fects many clients or because an app legitimately needs to
use large amounts of energy to serve its function. Regard-
less, a user seeking to improve their battery life would do
well to not have a hog running.
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Figure 2: The process of converting battery level samples to rate distributions using the a priori distribution. Samples marked X are discarded because the
device was charging. iOS may report a battery level up to 5% above the actual level. The slope bounds (z and y) determine the a priori.

An app B that is not a hog may still use much more energy
on some client X. If the expected discharge rate of B run-
ning on client X (subject distribution) is significantly higher
than that of B running on other clients (reference distribu-
tion), we call B an energy bug on client X.

An energy bug is therefore a pair: an app and a client it
afflicts. An energy bug may be caused by a coding error that
affects a small group of clients, a rare configuration that uses
more energy (“correct” or otherwise), or unusual user behav-
ior (which requires a community to detect). If the buggy app
is getting caught in a bad state, restarting the app may return
the app to normal; otherwise, the remedy is the same as for a
hog. Other actions may be suggested by our diagnosis trees
(Section 2.6), but the current app UI does not reflect this.

We added a caveat that a hog cannot also be a bug to dis-
tinguish anomalies that affect all or most clients (hogs) from
those that affect only a select subset. Hogs are unlikely to
be fixed by a restart, so the action we recommend is to kill
them. This difference in appropriate response motivated the
naming, and we found the distinction useful.

The subject and reference distributions are built using bat-
tery level samples from the community, as we explain in the
following sections. The expected values of these distribu-
tions converge rapidly to the true expected value as the num-
ber of clients increases (see Section 5.7).

Note that even perfect knowledge of app behavior on a
single client could not distinguish hogs from bugs; heavy
energy use on one device could simply be a matter of con-
figuration, user behavior, or some other bug trigger that stays
static across runs. In order to say whether an app or app in-
stance is anomalous, a community is required.

2.2 Conditional Distribution Model

As discussed in Section 2.1, to detect energy anomalies we
compare two distributions of the battery drain (see Figure 1).
This section explains how such a conditional distribution is
modeled, and how we quantify the associated uncertainty.
The input is a set of n rates, tuples consisting of a feature
vector ¢ and a rate probability distribution u, computed from
some pair of samples (see Section 2.3). We model these as
being randomly sampled from a true distribution U,, with
mean g and variance o2, composed of measurements satis-
fying predicate c (e.g., iPhone 4 with WiFi access).

We first take the expected value of each u to yield a rate
r. Consider the conditional distribution R, of rates r satis-
fying c. To compute the error and confidence bounds on the

expected value of R., we model it as n independent samples
from U,. These rates—means computed from a large num-
ber of random i.i.d. variables—are therefore approximately
normally distributed as A (u, 02 /n), according to the Cen-
tral Limit Theorem (CLT).

This result can also be obtained by starting with the as-
sumption that R, is distributed as A (y, 02). Although we
do not know the parameters p and o2, we can estimate them
using the rates (71, . . ., r, ). The well-known maximum like-
lihood estimators for these parameters—obtained by maxi-
mizing the log-likelihood function—are as follows:
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=1

6 = %Z(Ti—f)Q

By the Lehmann-Scheffé theorem, /i is the uniformly mini-
mum variance unbiased estimator for p: ji ~ N (p, %2)

This agrees with the CLT method. The estimator &2, how-
ever, is biased, so we apply Bessel’s correction to obtain
the uniformly minimum variance unbiased estimator for the
sample variance:

2
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By our normality assumption, we can construct the t-statistic

= (s — p)/(s/+/n), which has the Student’s t-distribution
with n — 1 degrees of freedom. We can approximate the
error bounds on this estimate of i using a standard formula,
where h is chosen according to the desired confidence level:

hs
,,U+

pRE | — f =pte
For 95% confidence error bounds, » = 1.96; we use this
value for all experiments in this paper. Crucially, to estimate
the mean p and to assign error and confidence bounds to
that estimate, we require only the rates r, not the original
distributions wu.

As we gather more data, the uncertainty associated with
these expected values decreases. We gauge empirically how

convergence occurs in practice in Section 5.7.
2.3 Computing Rate Distributions

To compute rate distributions, our method must first convert
a set of samples from a single client into a set of rates. A
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Figure 3: We compare distributions of the expected values of battery drain
to identify anomalies (d’ > 0) and quantify the error and confidence ranges
for expected battery drain under different conditions.

sample is a measurement taken at a particular point in time
that consists of the battery level (%) and a list of features:
device model, OS version, names of running processes, bat-
tery state (e.g., unplugged), etc. Let s; = (b, p, ¢, ¢) denote
a sample taken at time ¢, triggered by reason q (e.g., the de-
vice was unplugged), where the battery level was observed
to be at fraction 0 < b < 1 and the battery state was p (e.g.,
unplugged). The remaining features are denoted collectively
as a set ¢ of key-value pairs (e.g., “OSVersion=5.0" or “Ap-
pXRunning=YES”).

First, we sort the samples by ¢ and filter them (using the
p values) to retain only those adjacent samples that span a
period during which the device was not plugged in, restarted,
or otherwise increasing in battery level: that is, only periods
during which the battery was discharging. This reduces the
initial set of all samples to a set of consecutive pairs. We
compute discharge rates from these pairs.

Our method allows for imprecision in both the battery
level and time measurements by converting a consecutive
pair sy, = (bl,pl,ql,él) and sy, = (bg,pQ,QQ,ég) not to
a single rate number but to a rate distribution u. We asso-
ciate this distribution with a set of features, yielding the pair
R = (u,c), computed from the features of the constituent
pair of samples, as explained below.

If both endpoints, (by,t1) and (bs, t2), are exact, then the
rate distribution is u = lt’;:i’f with probability 1. Discharg-
ing yields a positive rate.

On i0S, we only get such exact measurements when the
UIDeviceBatteryLevelDidChangeNotification i trigger—
ed. Otherwise, we estimate a probability distribution for the
rate. There are a variety of techniques one might employ,
depending on the nature of the uncertainty. In this paper, we
address the case of iOS measurements, which present unique
challenges. Specifically, the API provides battery level mea-
surements at a granularity of 0.05. In other words, if we re-
quest the battery level at an arbitrary time during execution
and get 0.95, the true level may be in the range (0.90, 0.95].
The true rate, therefore, lies between ii:f? 2:?%,
where b] = by — 0.05 and b, = bs — 0.05, and subject to
the constraint that the rate is nonnegative. Not all values in
this range are equally likely, however, so we use this range to
take a “slice” of an a priori rate probability distribution (see
Figure 2), computed using the rates that clients were able to
compute exactly, as described above. There was sufficient

data in this distribution to bootstrap our method. We convert
the slice to a probability distribution by dividing by the slice
mass and use it as the rate distribution w.

We compute ¢ from ¢; and ¢; by taking the union: ¢ =
¢1 U ¢5. Features like device model do not change between
consecutive samples. We conservatively say that an app was
running during the period [t1, t2] if it was seen in either sam-
ple. It would be straightforward to use a different function if
the semantics of the features demanded it.

2.4 Comparing Rate Distributions

Let c; be the conditions of the subject distribution (e.g., app
A is running) and c¢5 be the conditions of the reference dis-
tribution (e.g., app A is not running). We aim to ascertain
whether c¢; corresponds to significantly greater energy use
than cy. For this to be answered in the affirmative, we re-
quire the following:
ﬂ1—m—ﬁ2—%:ﬂ1—ﬂ2—(61+62) > 0.
Otherwise, the data does not support the assertion with the
desired confidence. Graphically, this corresponds to a posi-
tive value of d’ in Figure 3.

Carat suggests actions that would improve battery life along
with the expected value of that improvement for an average
client (starting from full charge and fully draining the bat-
tery). The improvement if the client were to change from c;
(experiencing the anomaly) to co (not experiencing it) fol-
lows directly from the distance metric d = iy — fi2. Within
our confidence bounds, however, the value of d could be as
much as

51 52
e=h|—+—7].
< Vv AL )
This is symmetric about the expectation. The estimated im-
provement is therefore d £ e.

2.5 Splitting Distributions

In order to more confidently diagnose anomalies, we build a
tree that separates conditional distributions by features that
significantly affect energy use. Let each conditional distribu-
tion be a node in this tree, uniquely identified by its condition
c. Starting with some distribution ¢ (e.g., app A is running),
iterate through each feature f ¢ c and attempt a split by cre-
ating new child nodes ¢ A f and ¢ A —f. For instance, if f
is whether the client is running a Galaxy S 1II, then one child
would get the rates from node c taken from Galaxy S IIs and
the other would get all other rates satisfying c.

Splitting has two competing effects on the error bounds.
First, it reduces n, thereby increasing the error (increasing
uncertainty). Second, if feature f divides rates from dis-
tributions having significantly different means, then it will
likely reduce the sample variance of at least one child and
thereby decrease the error (decreasing uncertainty).

A split is performed if the child nodes c; and ¢ yield a
positive gap, d’ > 0, as in Figure 3. Splitting generates
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Figure 4: The minimal complete actionable diagnosis (MCAD) for the ex-
ample anomaly c; described in Section 2.6, consisting of cg and c3. The
dashed lines indicate nodes and subtrees that, while produced via splits
when the tree was constructed, did not meet the criteria for an MCAD.

two leaves, children of ¢, with edges f and —f. Otherwise,
we make no changes to the tree and proceed to test the next
feature. When no more features remain, we can recursively
repeat the process on any new leaves.

2.6 Diagnosis

This section describes how to generate a diagnosis for an
anomaly, which involves building a tree structure similar to
a classification or decision tree [23, 38], and conclude with
an example. Consider a node c; corresponding to a subject
distribution for an anomaly (see Section 2.1). A diagnosis
is a set of nodes with significantly lower energy use than
c1. Intuitively, a node in this diagnosis is some condition
under which the anomaly does not occur. The diagnosis is
complete if it includes all such nodes.

Let node co be said to be reachable from node c¢; if, in
the problem domain, it is possible to initially be in a state
satisfying c; and, by performing some actions, then satisfy
co. We define an actionable diagnosis to be one consisting
only of reachable nodes.

A diagnosis is minimal if every subtree entirely contained
in a complete diagnosis is replaced by its root. The minimal
complete actionable diagnosis (MCAD) is unique, but note
that it may include paths from ¢; to multiple different states.

For example, consider the node for running app A, ¢; =
A, with significantly more energy use compared with —A; it
is a hog. Say, for simplicity, that there are only two other
features of the device—model M and OS version V—and
only one other possible OS version. Every node in the sub-
tree rooted at —A has significantly lower energy use than
c1, as does every node with —M or with =V. In our do-
main, a user cannot change their device model, so all nodes
with =M are excluded from the actionable diagnosis despite
showing less energy use. To make the diagnosis minimal,
replace with their respective roots the nodes in the subtrees
rooted at A A =V and —A. Thus, the MCAD (illustrated in
Figure 4) is exactly these two nodes (c2 and c3); the interpre-
tation is that the client can improve their battery life either
by changing OS versions or killing the hog.

These trees helped diagnose problems in the wild, such
as the Kindle bug in Section 5.6 where WhisperSync was
using far more energy when syncing over GSM. Our analysis
discovered the bug was correlated with the iPhone 4 and only
occurred on iPads when they did not have WiFi.

3 Implementation

The Carat architecture consists of a mobile app (see Sec-
tion 3.1), central server (see Section 3.2), and analysis run-

ning in the cloud (see Section 3.3). Figure 5 shows an overview.

. . instrumentation raw and
data derived data

DynamoDB
ﬂ ' E and S3

actions and - .
statistical analysis
reports

Figure 5: The Carat architecture, consisting of the crowd-based front end,
the central server with the analysis running in the cloud, and the stored
samples and results.

3.1 Carat App

We implemented Carat as an app on both the iOS and An-
droid platforms. It is available as a free download on Ap-
ple’s App Store, Google’s Play Store, and as source code on
GitHub, all of which are linked from the project homepage'.
The clients are lightweight; e.g., the iOS app is ~6000 lines
of Objective-C, excluding third-party libraries like Flurry
(for collecting usage statistics), ShareKit (for enabling shar-
ing over social networks), Thrift (for handling messaging
protocols), CorePlot (for plotting), and several others. This
number also excludes auto-generated code related to the UL

Carat runs as a user-level app on stock devices. This places
platform-specific restrictions on what information is acces-
sible and when our app is allowed CPU time to measure it.
Our implementation records the following information using
the public APIs:

e battery level fraction,
e battery state (e.g., plugged in or unplugged),

e names of running processes (each non-OS process rou-
ghly equates to a single user app),

e state of memory (e.g., number of active pages),
e OS and version,

e device model, and

e aunique, anonymous, Carat-specific client ID.

This information resides in persistent storage until the app is
brought to the foreground, at which point it communicates
with the Carat server over TCP. Our communication model
is client-initiated (since they are situated behind NATs) and
utilizes Apache Thrift to define the service interface.

The app intermittently transfers stored samples to the ser-
ver over 3G or WiFi. Since we optimized Carat with respect
to energy use, the client invokes a data transmission to the
server only when it is running in the foreground and when
the user is interacting with the UI. At this time, the app also
requests results from the server to update the UL

To comply with legal restrictions and to alleviate user con-
cerns, our implementation neither records nor transmits per-
sonally-identifying information. What it does record is view-
able within the app (see Section 3.1.1), so the user knows
exactly what Carat is measuring. Furthermore, our EULA
(required by the App Store and also available on the project
webpage!) includes an additional clause making it clear ex-
actly what our app will do. Furthermore, the app is open
source under a BSD license and is available on GitHub'.



Although jailbroken iOS devices would have allowed us
to collect more data (e.g., app versions), it also would have
restricted the size of our user-base, biased our data toward
a certain class of users, and prevented us from distributing
Carat on the App Store. We opted for less data from more
users, and our results demonstrate that energy anomalies can
be detected without intrusive instrumentation.

On Android, Carat samples when the ACTTON_BATTERY_CH-
ANGED intent fires, at 1% battery level granularity. As we dis-
cuss for the remainder of this section, not only is Carat more
restricted on iOS than Android with respect to what it can
measure, but also when. Carat does not fall into the class
of apps that are allowed to run as proper background tasks,
which are given intermittent CPU time to perform tasks such
as buffering audio, maintaining VoIP server connections, or
continuously tracking the GPS coordinates of the device us-
ing location services. This means that, in order to take sam-
ples while Carat is suspended, our app subscribes to sev-
eral notifications. When one of these notifications is trig-
gered, 10S allows Carat a small amount of time to take mea-
surements and save these to persistent storage; there is not
enough time to communicate with the server.

Carat subscribes to battery-related events (UIDeviceBat-
teryLevelDidChangeNotification and UIDeviceBattery-
StateDidChangeNotification)and significant location cha-
nges (startMonitoringSignificantLocationChanges).
The location change feature is especially valuable for us. It
not only uses far less energy than using the full-fledged lo-
cation service, but it means that the OS will automatically
relaunch Carat if it is terminated while the service is ac-
tive. (In our deployment, while Carat was in the background,
roughly half of samples were triggered by location services
and a third were triggered by the battery level event.)

3.1.1 User Interface

When the Carat app is launched, it sends locally stored sam-
ples to the server. When Carat is in the foreground, the tem-
poral resolution of sampling increases several-fold. These
observations—that increased user engagement leads directly
to data being recorded more often and reported sooner—
motivated us to spend time honing the user interface, which
we now present.

The main screen of Carat is the Actions list, shown in Fig-
ure 6, which presents actions the user can take to improve
battery life, based on what Carat has learned about their de-
vice (e.g., what apps they run), sorted by the expected im-
provement if that action is taken. For example, the figure
shows an action “Kill OruxMaps” that would result in an ex-
pected increase of 44m. This means our analysis observed
that a typical device running this game will run a full battery
down to zero almost 44 minutes sooner than a typical device
running typical apps but not OruxMaps. Carat will suggest
restarting bugs, admitting the possibility that the instance is
caught in a bad state; if restarting does not help, it may be a
configuration problem or specific to user behavior. Finally,

Carat 0.81

Actions

i)

Kill OruxMaps
Foreground App

Expected improvement:  0Oh 44m + 20m

Restart Speed Test
Foreground App

Expected improvement: Oh 24m + 4m

Figure 6: The top of the main screen of Carat on Android, showing recom-
mended actions and projected battery life improvements.
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(Updated 17s ago)

Active Battery Life: 15h 56m 17s @
CaratID: CO70E75C-AE97-4B24-AF3A-5E7CF2479745

Your Current J-Score:

OS version: 6.0.1 ©
device model: iPhone 4S ©
running apps: View Process List
memory used: 6

memory active: C————

- . - _

Actions My Device Hog Report Bug Report About

Figure 7: The Device tab on the iOS client. The J-Score indicates the
percent of the community with worse battery life than this device.

our current implementation will suggest upgrading the oper-
ating system if it observes that a newer version is correlated,
across the community, with better battery life. The current
UI does not reflect all information present in the diagnosis
trees; that is planned for a future release.

The Device tab displays information about the client’s de-
vice, including most of the information that is being recor-
ded and transmitted to our server: the process list, the de-
vice model and OS, the state of memory, etc. This tab also
prominently displays a number called a J-Score, which is the
percentile into which the client’s battery life falls within the
community; a J-Score of 65 means a better active battery life
than 65% of devices. Active battery life is computed based
on Carat sampling and omits idle periods. This client’s aver-
age battery drain when using the device would fully deplete
the battery in about 16 hours.

We created the J-Score (see Figure 7) to increase user in-
terest and sharing, hoping that it would introduce an element
of social competitiveness to energy efficiency. It appears,
anecdotally, to have worked. For instance, upon observing
that her score had dropped precipitously due to an influx of
new users, one user remarked (tongue-in-cheek) that she was
“no longer confident in our analysis results.” She continues



to check her score regularly, incidentally sending us samples
each time.

The Actions list only suggests killing or restarting an app
that is currently active (i.e., in the process list). The Hogs tab
shows the top hogs ever reported to have run on the device.
The same is true for bugs under the Bugs tab. Clicking on
one of the hogs or bugs brings up a detail page where the
user can explore the data further.

3.2 Carat Server

The Carat server collects samples from instances of the Carat
app running on clients’ mobile devices and stores them for
use by the backend analysis (see Section 3.3), and it serves
actions and other analysis results to clients.

The server is a <1300 line Java application (excluding
code auto-generated by Thrift) that listens on TCP port 8080
for incoming client connections. We host the server on Ama-
zon EC2 because it provides a mechanism to scale the server
by spawning new instances and to run a load-balancer to dis-
tribute incoming connections.

Received samples undergo lightweight processing to re-
move junk or malformed data and are then sent to persistent
storage. This preprocessing removes OS daemons from the
list of processes. We manually maintain a blacklist of such
daemons, as it does not appear that the iOS API provides
enough information to determine this automatically.

Our storage layer uses Amazon’s DynamoDB, which lets
us retrieve key-based information (e.g., chronological sam-
ples from each client) with little performance overhead, along
with the freedom to change attributes in stored entries with-
out changing the structure of the table (e.g., adding a new
sample field). We also retain a backup of our data in S3.

3.3 Backend Analysis

The Carat analysis consists of approximately 5000 lines of
Scala, written in the Spark framework [43]. The production
version runs in a 20-node cluster composed of high-memory
Amazon EC2 instances. This section provides an overview
of Spark, the challenges related to parallelizing Carat, and
our solutions.

After converting samples to rates, the analysis proceeds in
two main stages: identifying hogs and bugs and then gener-
ating MCAD trees (see Section 2). The first stage is summa-
rized in Algorithm 3.1

3.3.1 Spark Overview

Spark is a cluster computing framework designed for iter-

ative and interactive jobs. Existing data-flow based frame-

works such as Hadoop or Dryad depend on intermediate data

being written and read from disk, incurring a huge perfor-

mance hit for iterative jobs. In contrast, Spark provides an

efficient environment for multi-stage jobs by reusing the same
worker nodes across iterations. In addition, it provides a ro-

bust programming model for interactive queries where it is

desirable to load data into memory and query it repeatedly

(with different filters).

Parallel programming in Spark is provided in the form of
Resilient Distributed Datasets (RDDs), which are read-only
collections of objects partitioned across a set of machines
that can be rebuilt if a partition is lost, and a set of paral-
lel operations on the RDDs (e.g., foreach, reduce, and
collect). These features, along with fault tolerance and
its memory management model, made Spark a good fit for
implementing Carat’s analysis.

Algorithm 3.1: ANALYZERATES(all Rates, aDist)

comment: Hog detection

for each app € allApps

filt < ALLRATES.FILTER (app in _.allApps)

filt Neq < ALLRATES.FILTER (app not in _.allApps)

do ! PDist < GETDIST(filt, filt Neq, aDist)

if pDist.evDistance > 0 && ISSIGNIFICANT(pDist)
then {comment: store hog and distributions

comment: Bug detection

for each id € alllds

fid < ALLRATES.FILTER(-.id = id)

notFid - ALLRATES.FILTER(_.id!=id)
comment: Consider apps reported by id, omit hogs

fidNonHogs < FID.MAP(_.allApps) \ Hogs
for each app € fidNonHogs
appFid < FID.FILTER (app in _.allApps)
do appNotFid < NOTFID.FILTER (app in _.allApps)
do { PDist < GETDIST(appFid, appNotFid, aDist)
if pDist.evDistance > 0 && ISSIGNIFICANT(pDist)
then {comment: store bug and distributions

scoreDist < GETDIST(fid, notFid, aDist)
comment: Save scoreDist for J-Score calculation

comment: Write J-Scores based on the processed distributions

3.3.2 Parallelizing Samples to Rate Conversion

In Section 2.3, we discussed how Carat converts consecutive
samples from users into rates. This computation involves
a dependency between samples that complicates the paral-
lelization process.

To remove this inter-sample dependency, we create RDDs
of consecutive sample pairs. This new RDD is free of de-
pendencies, so the Spark runtime can independently assign
data and conversion tasks to workers. This is done by apply-
ing a map operation to every item in the RDD. The result of
this operation is another RDD consisting of rates. We add
metadata for backtracking.

3.3.3 Parallelizing Distribution Building

The bulk of Carat’s analysis is the process of building and
comparing rate distributions. To reduce memory require-
ments, we load the rates into an RDD (see Section 3.3.2).
Spark automatically distributes the RDD to all compute nodes,
thus optimizing memory usage per node. To achieve opti-
mal parallelism, the strategy must compute distributions on
features in parallel. That is, when building distributions on
feature c, the technique must compute distributions for all
values of feature c. We devise such a strategy using Spark’s
RDD operations as follows.
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¢n). To compute rate distributions on feature

c (e.g., each app), we first map the RDD to a structure with (¢, ) as the key (shaded) and, as the value, 1 if the feature occurs and 0 otherwise. A reduce
operation yields the rate frequencies for features. We map again, now with c as the key, and (r, count) as the value. Grouping by key then gives the frequency
of every R for every F'. With slight modifications to the mapping and grouping fields, we use this parallelization strategy for hogs, bugs, J-Scores, etc.

We begin with items in the rate RDD, composed of rates r
and their associated features (c1, ..., ¢,, ), split among worker
nodes. We compute distributions of rates conditioned on
c and compare them with distributions satisfying —c. (We
compute the distribution for —c by subtracting the distribu-
tion for ¢ from the full distribution.)

The first step maps items to the format ((c,r),{0,1}),
keyed on ¢ and r and with a value of O or 1, indicating
the presence of the rate. This is computed from the apri-
ori (see Section 2.2). A reduce operation computes the
frequency of each such (¢, ) pair. We remap the reduced
RDD and make c the key and (r, count) the value. When we
apply a groupBy operation on the key, we obtain the fre-
quency of every rate for every value of ¢, or a sequence of
(¢, (r, count)) (see Figure 8).

We now have two RDDs, one which has the frequency
of rates satisfying ¢ and its complement. The RDDs are
joined using a groupWith operation. A final map opera-
tion passes them through our distribution building and com-
parison module in a parallel fashion, thus obtaining the ex-
pected improvements and the correlations. These results are
stored in DynamoDB where they are retrieved on-demand
by the client.

The same parallelization strategy is applied to compute
hogs (features are apps), bugs (features are (UserID, App)
pairs), J-scores (features are UserIDs). We observe that most
other feature-grouping required in Carat’s analysis can be
reduced to this parallel model.

4 Ground Truth and Overhead

In order for Carat to accurately account for when energy is
being used, it must convert intermittent (low precision) bat-
tery level samples into energy drain rates in a way that is
faithful to the ground truth. Furthermore, the practicality
of our method relies on sampling that is sufficiently low-
overhead that it does not have a significant impact on the
energy use, itself. In this section, we attach mobile devices
to power metering hardware: an iPhone 4S to a Monsoon
Power Monitor? (see Figure 9) and a Galaxy Tab 2 10.1
to Leyden Energy’s” battery-testing equipment. Our results
confirm that Carat generates accurate energy distributions
while consuming few resources (i.e., almost no battery).

To test the fidelity and cost of our sampling, we ran the de-
vices through scripts of varied activities. The scripts are not
intended to be a representative workload, but to repeatably
exercise the device features and drain the battery at different
rates. It includes such behaviors as downloading and running
an app, browsing the web, playing a game, and idle periods.

Figure 9: Close-up of the wiring rig that connects our iPhone 4S test phone
with the Monsoon Power Monitor.
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Figure 10: The battery levels during our iOS power metering experiments,
either taken directly from the on-screen battery indicator, the Carat samples,
or computed from the meter’s readings.

The WiFi was turned on for some periods and off for others.

On each device, we ran through the script under three dif-
ferent arrangements: (1) hooked up to the power meter with
and (2) without Carat running and (3) not hooked up to the
power meter with Carat running. We compare the data from
(1) and (2) to quantify the overhead of running Carat; we
compare the data from (1) and (3) to ensure the meter was
not influencing Carat’s measurements and to assess the fi-
delity of our sampling and rate estimation. For the runs per-
formed without Carat, where our app appears in the script,
we substituted the standard Weather app.

The battery levels reported by the OS, both through the
API (Carat samples) and the on-screen indicator, track the
actual use of power by the device. Figure 10 shows the
i0S data. Between 00:30 and 1:30, Carat took no samples
and conflated a higher-rate period with a lower-rate period.
Higher frequency sampling would have avoided this error.

The expected energy discharge rates computed from the
Carat samples approximate the values computed using power
metering hardware. During the 9-hour i0S experiment, Ca-
rat took 9 samples at 5% granularity; the power meter took
13,549 samples at effectively 0.0001% resolution. Carat over-
estimates the average discharge rate by only 0.00088%/sec
(see Figure 11). On the Galaxy Tab, where Carat took twice
as many samples as on iOS (19), the error is an order of
magnitude less (0.00015%/sec). This accuracy is possible
thanks to the a priori distribution, which uses knowledge



3 4 —— Power Monitor (w/ Carat)
- — — Power Monitor (w/out Carat)
- Carat
1
T T T T

0.000 0.005 0.010 0.015

Density

50

Energy Discharge Rate (%/s)
Figure 11: The energy rate distributions from our iOS power metering ex-
periments, smoothed with a Gaussian kernel estimator for visibility. Using
the a priori, Carat is able to faithfully estimate the distribution with sparse
sampling, overestimating the mean energy drain rate by only 0.00088%
from 9 samples.

of community behavior to refine noisy and incomplete mea-
surements; imprecision in per-client measurements is further
mitigated by the statistical backend analysis.

Carat imposes negligible energy overhead. Our power
metering hardware indicates that running through our iOS
script with Carat running used /less energy (53.691 mAh or
~3.5% of the battery less) than executing that same script
with the Weather app running in its place (i.e., 54 minutes
less battery life running Weather instead of Carat). We also
ran the script without substituting another app but found bat-
tery life with Carat running was slightly higher than without;
Carat’s energy use is less than the experimental imprecision.
Similar results held on Android. We can afford to perform
such sparse, low-overhead sampling on individual clients be-
cause we aggregate such data from many clients.

5 Deployment Results

Carat became available as a free download on Apple’s App
Store and on Google’s Play Store in mid-June of 2012. Days
later, it was featured on the popular TechCrunch blog?; the
story was immediately picked up by dozens of other news
sources. Within 24 hours of the article’s publication, we
went from a few hundred users to more than 100,000. This
doubled in the subsequent 24 hours. More than 340,000
unique devices have run Carat.

5.1 Data

Of the 340,000+ clients that ran Carat, at the time of writ-
ing, 270,063 had reported enough data for our analysis to
produce results for them. Our users were 58% i0S and the
rest Android. Tables 1 and 2 show a breakdown of the most
common device models and operating systems. The com-
munity recorded roughly 8.6 million rates, launching the app
3.5 million times (a median of 1.9 sessions per day).

The community ran 119,652 different apps, with a dispro-
portionate number (77%) coming from Android users. Of
these apps, 11,256 (9.4%) were classified as hogs, of which
86% were Android apps. Carat detected energy bugs in thou-
sands of apps; of the 9,136,237 total possible bugs (user-app
instance pairs), 5.3% were classified as such. These data
suggest that Android apps that deplete the battery generally
do so uniformly across clients, while iOS apps have great
variance in energy use from one device to another.

Clients reported samples at a wide variety of rates, clus-
tering into casual users recording a few samples daily and
heavier users sampling sometimes a hundred times as often.

Device Model

[[ Number | % Total [ % Platform

i0S
iPhone 4S 62,831 23.3 39.8
iPhone 4 45,713 16.9 28.9
iPhone 3GS 10,318 3.82 6.53
iPad 2 (WiFi) 6940 2.57 4.39
Verizon iPhone 4 5662 2.10 3.58
Other 26,479 51.31 16.8
Android
GT-19100 12,046 4.46 10.7
unknown 10,812 4.00 9.64
Galaxy Nexus 7305 2.70 6.52
GT-N7000 4152 1.54 3.70
GT-19300 3866 1.43 3.45
Other 73,939 85.87 65.98

Table 1: The most common device models in our deployment, showing the
percent of users from whom we had sufficient data.

[ OS Version || Number | % Total [ % Platform

i0S
5.1.1 135,880 50.3 86.0
5.0.1 8882 3.29 5.62
5.1 6172 2.29 3.91
6.0 4374 1.62 2.77
Other 2635 42.50 1.70
Android
4.0.4 21,650 8.02 19.3
4.0.3 19,121 7.08 17.1
2.3.6 14,355 5.32 12.8
234 13,164 4.87 11.7
Other 43,830 74.71 39.10

Table 2: The most common operating system versions in our deployment,
showing the percent of users from whom we had sufficient data.

The average number of samples per day was nearly the same
on both platforms (36.8 samples per user per day on iOS and
37.7 on Android), but the variance of this rate on Android
was 32% higher than on iOS. This is, in part, because some
Motorola devices only triggered the battery level intent at
10% levels while most other Android devices triggered every
1%; 10S devices triggered consistently at 5% increments.

5.2 User Behavior

The frequency and duration of user engagement matters. The
more often users launch Carat, the fresher our data will be
(that is when it is sent to our server). On both iOS and
Android, the longer users keep Carat in the foreground, the
more samples it can record. The session length data (see Ta-
ble 3) and click-path data show that many stay in the app to
explore the reports or check their J-Score. The majority of
sessions last more than 30 seconds. After a month, we retain
roughly 25% of our users. The median user opens Carat 1.9
times per day and 3.0 times per week.

5.3 Performance and Scaling

The success of our approach depends on an active commu-
nity and generates better results as that community grows,
so the implementation must be scalable.

Our frontend experienced linear traffic scaling with the
size of our deployment, at a rate far below 1 byte per sec-
ond per client. Sample reporting is presumed to be unre-
liable; a client with no disk space or network access is al-



Session Length [[ Sessions | % of Sessions |

0-3 secs 129,860 3.81
3-10 secs 478,930 14.05
10-30 secs 1,152,333 33.82
30-60 secs 776,364 22.78
1-3 mins 618,721 18.16
3—-10 mins 90,809 2.66
10+ mins 160,578 471

Table 3: The length of Carat sessions. The app only reports data when it is
opened and can sample more aggressively in the foreground. So, incentiviz-
ing the user to open the app and explore results from within the UI helps us
collect more data.

4000
3500
3000
2500
2000
1500
1000

500
0 —

Serial =]
Spark 3

Time (s)

]
I:_l

0L

< 0

20K
80K
100K

# Samples

Figure 12: The Carat analysis scales almost linearly when parallelized,
while a serial implementation shows exponential complexity.

lowed to throw away samples and an overloaded server may
drop packets. Five medium Amazon EC2 instances behind
an Elastic Load Balancer (ELB) has been handling our user-
base of 340,000 devices.

Our current implementation of the analysis backend (see
Section 3.3) uses the Spark cluster computing framework.
The computation is massively parallel, as every distribution
and comparison can be computed independently. Figure 12
compares the runtime for an optimized serial implementa-
tion of the analysis algorithm compared to a parallel imple-
mentation in Spark for increasing number of samples. The
results underline the need for parallelization. As our user-
base grew, we made numerous optimizations. The analysis
program now computes all reports for all our users (24 mil-
lion samples) from scratch in approximately 45 minutes.

5.4 Injected Anomalies

We added energy anomalies to an existing app—initially with
no apparent misbehavior—to confirm that Carat is able to de-
tect the new bugs. For these controlled experiments, we used
a private deployment of 75 devices. (In subsequent sections,
we detect anomalies in the wild.)

We chose the Wikipedia Mobile app made by Wikime-
dia Foundation because it is an open-source app used by
many of our clients but was not reported as an anomaly. We
added several behaviors that consume large amounts of en-
ergy when activated, with each one repeatedly using a dif-
ferent resource: radio, CPU, and GPS.

We installed this buggy instance on one of our test de-
vices, an iPhone 3GS. Wikipedia Mobile was already in use
by a handful of clients at this point, so a baseline distribu-
tion had been established and Carat did not consider the app
to be anomalous. We ran the app for one day for each in-
jected bug, activating the app a handful of times during the
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Figure 13: The reference (anomaly-free) and anomalous rate distributions
for the modified Wikipedia Mobile, using only the a priori from the private
deployment. Carat successfully detects all of the injected bugs.

day but only leaving it open for a couple of minutes (casual
use). At the end of the third day, we ran the analysis with the
real, non-buggy data as the reference distribution and once
each with the data from exactly one of the buggy days as the
subject distribution. Thus, we could declare success if the
analysis reported three bugs, one for each injected behavior.

Indeed, after performing the injection, Carat correctly de-
tected each of the three bugs (no false negatives). Figure 13
shows the reference distribution and each of the three subject
distributions for the iPhone 3GS running our buggy Wikipedia
build. The expected improvement reported for fixing each
bug (i.e., returning the app to typical Wikipedia Mobile be-
havior) was 27m 26s for the CPU bug, 9m 22s for the GPS
bug, and 55m 28s for the Radio bug, which agreed with what
the experimenter observed on the device.

5.5 Hogs

Of the 119,652 apps seen during our deployment, 11,256
(9.4%) were categorized as hogs. (Before checking for sta-
tistical significance, there were 15,038 (12.6%).) Recall that
an app is a hog if the community-wide average discharge
rate while running the app is significantly greater than the
average rate while not running it (see Section 2.1) and that
we can compute the expected improvement in battery life by
killing a hog (see Section 2.4). Hogs may be caused by an
oft-triggered code bug or may be simply intrinsic to the app.
Users concerned about battery life are advised by the Action
list to kill hogs; the user is not concerned about the intention,
or lack thereof, behind the energy use.

We now describe a couple of hogs and cite corroborating
evidence that the app does, indeed, consume an anomalously
large amount of energy. For every hog reported by Carat that
we checked (several dozen, admittedly a small fraction of
the total), we could corroborate the classification with one
or more of user complaints, news coverage, personal experi-
ence, or experimental results in the literature (e.g., [31, 32]).

Pandora Radio: Carat classifies Pandora Radio, which
7561 iOS users ran, as a hog and says killing it will in-
crease an client’s average battery life by 50m 43s. This is
corroborated by user reports, one of which claimed Pandora
drained the battery to 30% in a few hours even with the
screen off>. To improve battery life while using Pandora,
the MCAD suggests using WiFi for connectivity (an addi-
tional 25-35m). If a Pandora user is on the move, the best
approach is to turn off WiFi and use the mobile network for
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Figure 14: MCAD for the Kindle app on i0S, showing the expected battery
life when using exclusively this app under various conditions. The diagno-
sis points to network connectivity as the primary determinant of energy use.

connectivity (+25-33m).

Skype: 43,716 iOS clients were running the Skype VoIP
app, which was also reported as a hog. This is also confirmed
by the forums; one user even used the term ‘power hog’ to
describe Skype®. Skype’s energy use is driven by network
connectivity; when no network connection is available, ex-
pected battery life is about 6.5h above average.

Go launcher exe new theme...: (sic) Is a hog on the
Android platform that costs most users between 2h 1m and
2h 53m of battery life. Experiences with Go Launcher and
its variants, which change the UI of the device, vary among
users’, but generally “fancier” themes and widgets cause
higher battery drain®.

Live wallpapers: Carat identifies several Android Live
Wallpapers as energy hogs. Two that rank among the top
10 most severe hogs on the Android platform are Beach at
Night® and Heart and Love'?. They cost most users 2h 33m—
2h 49m and 2h 37m—2h 51m battery life, respectively. Both
are ad-supported; the detrimental effect of adware on battery
life is known [31]. Both live'! wallpapers'? and adware!?
have been blamed for abnormally fast battery drain.

5.6 Bugs

Recall that a bug is an app that is not a hog (it usually con-
sumes below-average energy) but consumes far more energy
on some clients than others (see Section 2.1). Although the
current Carat client-side Ul only suggests restarting a bug (in
case it is simply caught in a bad state), the MCAD diagnosis
computed on the backend enables more specific recommen-
dations, such as disabling WiFi or turning on GPS; we plan
to add this in later versions of the app. Note that, without a
community of clients, distinguishing bugs from hogs would
be impossible and identifying the triggers would be difficult.

The maximum number of bugs that Carat could report is
the sum over clients of the number of non-hog apps they ran,
which was 9.1 million in our dataset. Our method reported
483,354 buggy app instances (5.3%); we describe some ex-
amples below. As with hogs, we were able to corroborate
investigated bugs using a variety of sources; in some cases,
however, we were not able to identify the trigger of the bug
and only know that it was causing problems for some users.

Kindle: This electronic book app was reported as a bug
for 510 out of 13,226 i0S clients (3.9%). Figure 14 shows a
diagnosis tree for Kindle, in which 3G connectivity appears
especially detrimental. The support forums blame the prob-

lem on WhisperSync”, which synchronizes notes, bookmarks,
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Figure 15: As the number of samples increases, the relative error in our
estimate of the expected discharge rate shrinks rapidly. Above is the average
expected value for several of the largest anomalies seen in our deployment
and the 95% confidence error envelope.

previous location, and Popular Highlights. When syncing
over GSM, in particular, the device uses much more energy
than syncing over WiFi. Our data support this hypothesis,
which had previously been only anecdotal.

Facebook: This mobile app was a bug for 8909 out of
79,609 i0S clients (11.2%). Higher energy use was not cor-
related with a particular device model or OS version (the
highest correlation was 0.057). We believe this high vari-
ance in energy use may be attributable to the variety of ways
that users interact with the app (that is, workload).

Facebook Messenger: Was anomalous on 792 of 7350
Android clients (10.8%). The MCAD indicates that upgrad-
ing the OS improves battery life (71-83m), and that WiFi is
more energy efficient than other connectivity options. Using
the app while stationary gives a 63—97m boost to battery life.
(Note that Carat does not advise users to stand still.)

YouTube: Was abug on 3118 of 37475 i0S clients (8.3%).
The MCAD shows that while moving, users of mobile Inter-
net have a battery life advantage over WiFi users (25-34m).
When compared to immobile WiFi users, mobile network
users still have a 20-28m advantage. This is contrary to
many apps, where WiFi is less energy-consuming.

Twitter: Was reported as a bug on 2744 of 18651 An-
droid clients (14.9%). The MCAD for Twitter indicates that
the most critical cause of battery drain is an old OS version.
Users of Ice Cream Sandwich (4.0.4) got 94m to 100m more
battery life than other Android Twitter users. Use of WiFi
with 4.0.4 yielded another 85m to 105m; this was not ob-
served on other OS versions.

SwiftKey: A popular keyboard application for Android,
SwiftKey is one of the top 15 bugs (by severity), affecting
2402 Carat users. The developer website indicates that the
latest release of the app exhibits high energy drain, espe-
cially in newer versions of Android OS'.

5.7 Result Confidence

As the number of clients and samples increases, so does the
accuracy of our results. In particular, Carat’s estimate of the
expected value—the crucial number used to identify anoma-
lies and compute expected benefits—tends to converge to the
true value. Figure 15 shows the shrinking relative error en-
velope of this estimate for some of the anomalies Carat de-
tected in the wild.

There is no guarantee of convergence in practice because
the true rate distribution may be neither stationary nor iden-
tically distributed. Indeed, this paper has discussed at length
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Figure 17: The projected battery life slope b, (x-axis) and the empirical
improvement slope b/, (y-axis), as fit using a least squares regression on
data from a sample of users who ran the top significant hogs. Most users
(95.4%) experienced improvements within our error bounds, while the rest
(orange) tended to see more improvement than Carat predicted.

one situation where a rate distribution may not be identically
distributed across clients: the presence of an energy bug. As
long as a bug affects a constant fraction of the population,
however, this convergence happens almost surely.

5.8 Validating Recommendations

In order to verify that the recommendations provided by Ca-
rat improve battery life, we consider two metrics.

The first metric is whether battery life tends to increase
over time for users of the app. This is a coarse measure of
whether using Carat correlates with reduced energy use. The
metric is coarse because it includes several confounding fac-
tors: some of these users may not have followed Carat’s rec-
ommendations, the population is biased toward users who
originally had battery problems (and thus installed Carat),
and users may have also employed alternative means to de-
crease energy use. Figure 16 shows average relative battery
life over time for Carat users. After 2 weeks, the average
user sees an 11.4% improvement in battery life; long-term
users (90+ days) improve by more than 30%.

The second is how closely the Carat Actions—and their
projected benefits—match the observed benefits. Let x,, ,
be the fraction of the time that user u reports running app
a, within some window of time. The estimated battery life
improvement b, (in seconds) that Carat quotes assumes a
transition from z,, , = 1 ~» 0. We assume that the achieved
benefit is linear in Az, so moving from z,,, = 1 ~ 0.5
yields an improvement of 0.5, seconds; transitioning from
ZTy,e = 0.5 ~ 0.3 yields an improvement of 0.2, seconds.
(Other actions that Carat suggests, such as upgrading the op-
erating system, cannot be done fractionally.)

The predicted benefit b, is a coefficient; we can evaluate
the accuracy of this coefficient by comparing the predicted
improvement curve y = b,x with the empirical curve, a
least-squares best-fit line with slope /,. Figure 17 compares
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b, (projected) and b/, (empirical) across a sampling of 633
clients on both platforms who used various top hogs at a vari-
ety of rates. Carat tended to underestimate the improvement
that clients would experience, but 95.4% of these predictions
fell within our 95% confidence bounds.

6 Limitations and Future Work

Carat takes a black-box approach to diagnosing anomalies,
which carries inherent limitations. Without visibility into
the mechanisms (e.g., code, messages, or kernel state) and
without the ability to perturb the system (i.e., is passive and
cannot modify other apps), the best possible result is to say
what aspects of the system are likely to be involved with the
abnormal battery discharge. This is what Carat provides, and
it does so by correlating real-valued signals from features
without initial assumptions about their relationships. This
kind of approach has proven fruitful in prior work [25, 27].

Compared to i0S, Android provides greater visibility into
the behavior of apps and the operating system, as would fa-
cilitating app instrumentation through a developer API. We
opted for feature parity with iOS for this paper, in order to
evaluate a method that works for both platforms, but plan
to leverage such additional data in later versions of the app
(and have already begun to do so on the backend).

As with any passive approach, which a regulation i0OS app
must be, our results are limited by the data. If none of the
clients ever runs a particular buggy app, Carat will never
detect a problem; if two apps are always run together and
one is anomalous, they will both be categorized as anomalies
and there is nothing that correlation can do to disambiguate.
The likelihood of spurious correlations increases with the
number of features (apps and configurations). The way to
combat this problem is with more data. For example, as we
gather more samples involving highly correlated apps that
show one but not the other, we can begin to discern which (or
possibly both) are responsible for the anomaly. The results
show that our data are sufficient for actionable diagnosis.

7 Related Work

There is a rich body of work in diagnosis for correctness and
performance. Recent work identified an emerging class of
software misbehavior that afflicts battery life [30] and pro-
posed a method for detecting a specific class of such bugs
[32]. We believe our work is the first to automatically detect
and diagnose abnormal energy use on mobile devices.

Our approach is a form of statistical debugging, in which
(loosely speaking) deviant behavior is called a bug [9]. Such
methods have been used to identify code paths correlated
with failure [16, 17], concurrency bugs [14], shared influ-
ence (surprising behavior that is correlated in time) [25, 27],
invariant violation [13], and configuration errors [40]. In
the field of security, anomaly-based intrusion detection has
a long history [8, 33, 34].

These statistical methods frequently make use of a large
number of instances or users of these programs, which is



sometimes called a community. A recent paper suggested
a collaborative debugging framework called MobiBug for
mobile devices [1], but they focused on crash problems and
dumps, not continuous or intermittent measurements. There
is prior work for file systems [41] and peer-to-peer networks
[21] that generate alerts based on aggregate behavior.
Projects like the Application Communities project [20]
use the community to distribute work; instead, we employ
uniform, lightweight instrumentation. There are also secu-
rity applications for the community besides detection, such
as diagnosing problems by discovering root causes [40] and
preventing known exploits (e.g., sharing antibodies) [7, 24].
Many projects have sought to profile or emulate energy
use on mobile devices [10, 11, 22, 28, 29, 31], sometimes
for prediction [36, 39], mitigation [3, 18], or developer tools
[15]. Human interface studies have shown that 80% of mo-
bile users will take steps to improve their battery life [35];
Carat recommends specific, personalized actions for users
to take and even estimates the benefit they are likely to see.
We believe this is a distinguishing feature of our work.
Energy debugging shares similarities with performance
debugging; both areas aim to account for the use or abuse
of a shared resource. Some notable performance debugging
work includes history-based analysis in datacenters [5], re-
source accounting [4], and blackbox debugging [2]
Pinpoint [6] and Magpie [4] track communication depen-
dencies with the aim of isolating the root cause of misbe-
havior; they require instrumentation of the application to tag
client requests. In order to determine the causal relationships
among messages, ProjectS [2] and WAPS [37] use message
traces and compute dependency paths. D3S [19] uses binary
instrumentation to perform online predicate checks. Recent
work shows how access to source code can facilitate tasks
like log analysis [42] and distributed diagnosis [12]. Car-
rierIQ'® collects detailed measurements by integrating with
the mobile platform, and has drawn criticism for the intru-
siveness of their implementation!”. Unlike the preceding
methods, we do not assume such access to code, commu-
nications, or binaries, taking instead a black-box approach
with broader deployment potential.

8 Conclusions

This paper presents a method for diagnosing energy anoma-
lies in the wild given incomplete and noisy instrumentation
measurements from a community of clients. We implement-
ed this method as an app for iOS and Android called Ca-
rat and deployed it to a community of more than 340,000
users. Carat diagnosed thousands of anomalies, which in-
volves detecting the anomaly, estimating its severity, quanti-
fying the error and confidence bounds on that estimate, and
sometimes identifying the device features that are correlated
with the anomaly. We also validated our implementation
with hardware measurements and synthetic anomaly injec-
tion, demonstrating that Carat can accurately estimate en-
ergy use and detect anomalies. A collaborative approach
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is required to diagnose energy anomalies; even complete
knowledge of app behavior on a single client could be spe-
cific to a configuration or user behavior. We believe this
work is the first automatic diagnosis of energy anomalies in
the wild, and represents a crucial extension of previous work
in distributed and statistical debugging to include a new class
of abnormal behavior related to mobile energy use.

Notes
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