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Human motion models for reaching tasks facilitate the design of many systems such as computer and cellphone interfaces,
cockpits, and assembly lines. Fitts’ Law specifies a logarithmic two-parameter relationship between motion duration and the
ratio of target distance over target size, and more recent models consider square root and modified logarithmic relationships.
This paper contributes new theory and new experiments. For the former, we provide a succinct derivation of the square-root
model based on optimal control theory. Our derivation is intuitive, exact, makes fewer assumptions, and requires fewer
steps than prior derivations. We present data from two experimental user studies, one a controlled (in-lab) study and the
second an uncontrolled (online) study with a total of 94,580 timing measurements. We consider three two-parameter models
that relate motion duration to the ratio of target distance over target size: LOG (the classic logarithmic function), SQR
(square-root), and LOG’ (logarithmic plus 1.0). We find that: (1) the data from the controlled and uncontrolled studies are
remarkably consistent; (2) for homogeneous targets, the SQR model yields a significantly better fit than LOG or LOG’,
except with the most difficult targets (i.e., the ratio of target distance over target size is large) where the models are not
significantly different; (3) for heterogenous targets, SQR yields a significantly better fit than LOG for easier targets and
LOG yields a significantly better fit for more difficult targets, while the the LOG’ model yields a significantly better fit than
both LOG and SQR on more difficult targets.

Keywords: Fitts’ law; human-computer interfaces; time and motion studies; human movement time

Statement of relevance:

1. Introduction

Many tasks from playing games to working on an assembly line to piloting a jet require timely and accurate
human reaching movements between targets. In particular, many computer interfaces require users to move
a mouse or related input device to manually direct a cursor to targeted areas (e.g., menu items, buttons)
on a computer screen. Some motions can be performed more efficiently than others. To facilitate efficient
human-computer interfaces, designers seek accurate predictive models of human reaching motion.

The inherent tradeoff between speed and accuracy of such movements was first quantified by Paul Fitts
of Ohio State University in 1954 (Fitts 1954). Fitts studied reaching movements between “homogeneous
targets” of fixed size and distance, which are common in industrial settings for tasks ranging from installing
parts on an assembly line to stamping envelopes in an office. In a series of experiments, Fitts required
human subjects to repetitively move a stylus between two fixed contact plates as quickly as possible for 15
seconds. Fitts set the width W of the plates and the amplitude (distance) A between the plates which were
constant during each experiment and varied between experiments. Fitts measured the time T required to
move back and forth between the two targets for 16 human volunteers.

Inspired by Shannon’s Information Theory, Fitts empirically fitted a logarithmic model to the data
yielding the now-classic “Fitts’ Law”. Since then, many researchers have repeated these experiments un-
der varying conditions and proposed alternative models and derivations based on human perception and
physiology.

This paper contributes new theory and new experiments. For the former, we reconsider the square-root
model and provide a succinct derivation based on optimal control theory. Our derivation is intuitive, exact,
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Figure 1. Using an applet, sequences of rectangular and circular targets are presented to users, where target distance A and width W
can remain constant (homogeneous) or vary (heterogeneous) after every click.

makes fewer assumptions, and requires fewer steps than the derivation presented in Meyer et al. (Meyer
et al. 1988). We review related work in the next Section.

Since Meyer et al. used the original Fitts’ data and performed new experiments with four human subjects
performing wrist rotation movements to heterogenous targets, we undertook two comprehensive user stud-
ies to gather data on humans performing computer screen cursor motions. We designed and implemented a
Java-based applet that can be easily downloaded from the web. It presents users with a sequence of visual
targets for users to click on, records completion times, and sends the data back to our lab. Our first study
is a standard controlled (in-lab) user study with volunteers using the applet with identical mouse and
settings. Our second study is a uncontrolled (web-based, “in the wild”) study based on an indeterminate
number of volunteers who visited the website (many visit more than once) and used a variety of mouse
types and settings.

Uncontrolled (also known as “in the wild”) studies on the web do not provide the consistency of controlled
in-lab studies but can collect data from large numbers of diverse human participants and are gaining
acceptance, especially when confirmed by controlled experiments (Bigham et al. 2010, Bakshy et al. 2012).
Uncontrolled studies gather data in a variety of settings with perhaps greater ecological validity than found
in a laboratory.

As with any study design, there are disadvantages as well for a web-based uncontrolled study. One cannot
obtain detailed data about the users, some users may perform the experiment multiple times, and one has
no control over the user environment nor the input and display devices. In a survey, Andreasen et al.
(Andreasen et al. 2007) systematically compare controlled and uncontrolled (web-based) usability studies
and find that synchronous studies (with a live remote human monitor) are more reliable than asynchronous
studies (akin to our uncontrolled experiments) but that both en- able collection of use data from a large
number of participants. They note that “it would be interesting to perform comparative studies of remote
usability testing methods” against controlled studies.

Uncontrolled experiments are gaining acceptance in the Computer Human Interaction community. Our
uncontrolled study was motivated by our desire to learn how the results might vary between a controlled
lab setting and online with many different experimental environments. We were surprised to find that data
from the controlled and uncontrolled studies were remarkably consistent.

2. Related Work

There is a vast body of related work on this subject and we regret our inevitable errors of omission.

2.1 Classic Fitts’ Law

In “choice reaction time tasks,” a set of stimuli are assigned unique responses, and participants must give
the correct response when receiving the stimulus (Jagacinski and Flach 2003). In 1885, J. Merkel designed
an experiment in which the stimulus was a number selected from a set of size N with uniform probability
and the participant was required to press a key corresponding to the number (Jagacinski and Flach 2003).
As N increased, so did the reaction time TR. Merkel found that the reaction time increased by a constant
for every doubling of the set of possible numbers.

In 1948, Claude Shannon published the foundational paper on Information Theory, defining the infor-
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mation capacity for a communication channel, C, as:

C = B log2

(
S +N

N

)
, (1)

where B is the channel bandwidth, S is signal strength, and N is noise power. Shannon also defined the
information I of a symbol based on the probability of receiving the symbol, I = log2

1
p .

Adopting Shannon’s model, Merkel’s reaction time can be viewed as proportional to the amount of
“information” received by the participant:

TR = a+ b log2N

where a and b are experimentally determined constants.
In 1953, J. Hyman extended Merkel’s work to the case where an element i in the set of possible numbers

was selected with non-uniform probability pi (Hyman 1953). Hyman found that the average reaction time
was consistent with the Shannon’s model (Jagacinski and Flach 2003).

In 1954, Fitts hypothesized that the information capacity of the human motor system is specified by its
ability to produce consistently one class of movement from among several alternative classes of movements
(Fitts 1954). Fitts then defined the difficulty of a task based on the minimum amount of “information”
required to complete it on average. For the “tapping task”, Fitts defined a tap between two targets of
distance (amplitude) A with width of W as a movement class. Using Shannon’s definition of information
as a guideline, Fitts defined the index of difficulty (I) to be the “information” transmitted during the task:

I = log2

(
2A

W

)
.

Fitts noted that the choice of the numerator for this index “is arbitrary since the range of possible
amplitudes must be inferred,” so 2A was selected rather than A to ensure that the index is positive in “all
practical situations.”

Fitts then modeled movement time T as a linear function of the “information” transmitted, producing
his classic two-parameter Logarithmic model:

T = a+ b log2

(
2A

W

)
. (2)

In this paper we refer to this as the LOG model.

2.2 Alternative Information Theory Models of Human Motion

In 1960, Welford proposed a revised model based on a Weber fraction where the user must select “a
distance from a total distance extending from his starting point to the far edge of the target” (Welford
1960, 1968). For some constant b, Welford’s formulation is given by:

T = b log

(
A+ 1

2W

W

)
= b log

(
A

W
+ 0.5

)
.

Researcher I. Scott MacKenzie developed a variation on Fitts’ model that is more closely based on
Shannon’s Theorem (MacKenzie 1992). MacKenzie’s communication channel model considers noise N to
be the variation around a specific signal S, so the signal strength equals the movement amplitude (S = A)
and the noise equals the width (N = W ). By analogy to Shannon’s model (equation 1), movement time is
given by:

T = a+ b log2

(
A

W
+ 1

)
. (3)



4

In this paper we refer to this as the LOG’ model.
Other researchers such as Crossman and Welford (Welford 1968) explore alternative modifications to

Fitts’ model using communication theory. We welcome fellow researchers to apply such models to the
dataset we provide.

2.3 Applications of Fitts’ Law

Although Fitts’ Logarithmic model was originally developed for industrial pick-and-place tasks (Fitts
1954), it has been applied to a variety of human reaching movements. The first application of Fitts’
Logarithmic model to Human Computer Interaction dates from before the commercialization of modern
personal computers. Card, English, and Burr at Xerox PARC studied the relative speed of four input
devices: mouse, joystick, step keys, and text keys (Card et al. 1978). They found that Fitts’ Logarithmic
model accounts for the variation in movement time to select text on a CRT monitor using mice and
joysticks. Subsequent studies applied Fitts’ Logarithmic model to pen input devices (MacKenzie et al.
1991). Fitts’ Logarithmic model has also been applied to robotics applications including telemanipulation
tasks with remote video viewing (Drascic 1991) and pairs of participants performing tapping motions using
a robot manipulator (Reed et al. 2004).

Friedlander et al. found that a linear model for movement time fits selection in a non-visual (tactile
or auditory) bullseye menu more closely than Fitts’ Logarithmic model (Friedlander et al. 1998). Also,
Kristensson proposes using context information, such as pattern recognition of likely key presses on a stylus
keyboard, to develop input devices that increase the speed of input beyond what would be predicted by
Fitts’ Logarithmic model (Kristensson 2005).

Plamondon and Alimi review a number of studies of speed/accuracy trade-off models and their ap-
plications (Plamondon and Alimi 1997). They categorize the experimental procedures used for the
speed/accuracy trade-offs into two different categories: spatially constrained movements and temporally
constrained movements. For the procedures in the first category, distance (A) and the width (W ) are usu-
ally given and the time (T ) is measured. In the temporal group, movement time is given and the accuracy
of reaching the target is being measured. With this definition, Fitts’ Law falls into the first category. They
classify different studies on the Fitts’ Logarithmic model based on different types of movements (tapping,
pointing, dragging), limbs and muscles groups (foot, head, hand, etc), experimental conditions (underwa-
ter, in flight, etc), device (joystick, mouse, stylus, touchpad, etc), and participants (children, monkeys,
adults of different ages, etc).

Hoffmann and Hui study reaching movements of fingers, wrist, forearm and shoulder. They show for the
cases where an operator can choose which limb to reach a target, the limb with the smallest mass moment
of inertia is often used to minimize energy needed to reach the target (Hoffmann and Hui 2010).

2.4 Alternative Models of Reaching Movements

Alternative models of human reaching movements consider properties of the neuromuscular system, such
as minimizing jerk or a sequential impulse model. Crossman and Goodeve (Crossman and Goodeve 1983)
proposed a movement time model based on a sequence of discrete positional corrective motion impulses,
which resulted in a Logarithmic model like Fitts’ law.

Flash and Hogan developed a mathematical model of voluntary reaching movements based on maximizing
the smoothness of trajectories (Flash and Hogan 1985). They propose that the human motor system
minimizes jerk, the derivative of acceleration. Using calculus of variations, they derive a polynomial formula
for the time integral of the square of the magnitude of jerk is

C =
1

2

∫ tf

0

n∑
i=1

((
d3xi
dt3

)2
)
dt

where n is the dimension of the space, x is the vector coordinate of the pointer as a function of time, and
tf is the time to reach the end point. Minimizing this formula results in 5th order polynomials with 6
unknown parameters for each dimension. One can constrain the position of the start and end points and
assume the velocity and acceleration are zero at the start and end of the movement, and then solve for
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the parameters. The resulting trajectories have smooth position and velocity curves qualitatively similar
to experimentally measured data. However, this model differs from Fitts’ Logarithmic variant because it
has more than two parameters and does not explicitly consider the tradeoff resulting from varying the size
of a target region.

In 1988, Hoffamann and Gan proposed a model for ballistic arm movements in which the movement
time is only a function of the amplitude, T = a + b

√
A (Hoffmann and Gan 1988). In 1992, Réjean

Plamondon proposed an alternative to Fitts’ Logarithmic model using a neuromuscular impulse response
model (Plamondon 1992, 1995a,b). Plamondon’s theory for rapid human movements is based on the synergy
between the agonist and antagonist neuromuscular systems (Plamondon 1995a). In his model, the agonist
and antagonist systems synchronously receive an impulse input U0(t− t0) at time t0 scaled by Di, where
i = 1 for the agonist system and i = 2 for the antagonist system. Each system independently responds in
parallel to the input with impulse response functions Hi(t) to generate output velocities vi(t) for i = 1, 2.
Although the two systems may be coupled in reality, Plamondon assumed the output v(t) of the synergy is
obtained by subtracting the two parallel outputs. Plamondon proposed defining the impulse response using
a log-normal function, a very general formulation based on 7 parameters that can qualitatively predict
a variety of velocity profiles including single peaks, double peaks, triple peaks, asymmetric peaks, and
multiple peaks with no zero crossing. Reaching movements from one point to another point terminate at
a time T when the velocity of motion v(T ) equals zero. Solving the velocity equation for the zeros using
constraints set by Fitts’ experiment, Plamondon modeled movement time

T = K

(
2A

W

)α
(4)

with parameters K and α.
Equation 4 defines a power model, an alternative two-parameter formulation based on a fitted log-normal

approximation of the velocity profile. We welcome fellow researchers to apply such models to the dataset
we provide.

2.5 Extensions to Fitts’ Law

Fitts’ Logarithmic model, which was originally developed for one-dimensional reaching movements, has
been extended to the two-dimensional movements that are common in graphical user interfaces (MacKenzie
and Buxton 1992, MacKenzie 1995). For general two-dimensional targets, both the shape of the target
and angle of approach must be considered. For circular targets, the assumptions of the one-dimensional
model remain largely intact with target width W being defined by the circle’s diameter1. For rectangular
targets, Card et al. propose the status quo model defines W by the width of the target while ignoring
height. This model can result in a negative index of difficulty for near wide targets (MacKenzie 1995,
Card et al. 1978). MacKenzie et al. proposed two models for rectangular targets (MacKenzie and Buxton
1992). The smaller-of model sets W to the smaller of the target width or height. The effective width
model sets W by considering an additional parameter: the angle between the start point and the target
center. MacKenzie tested the status quo, smaller-of, and effective width models and found that the linear
correlation of movement time to Fitts’ index of difficulty was significantly greater for both the smaller-of
and effective width models compared to the status quo model (MacKenzie and Buxton 1992).

Gillan et al. examined how Fitts’ Logarithmic model can be applied to point-drag movement sequences
rather than simply point-click operations. They found that Fitts’ Logarithmic model must first be applied
as the user points to the left edge of the text object and then applied separately for the dragging distance
(Gillan et al. 1990).

Accot et al. investigated extensions for Fitts’ Logarithmic model for trajectory-based interactions, such
as navigating through nested menus, drawing curves, or moving in 3D worlds (Accot and Zhai 1997). They
developed a “steering law” similar to Fitts’ Logarithmic model except the index of difficulty for steering
a pointer through a tunnel is defined by the inverse of the width of a tunnel integrated over the length of
the tunnel. They applied the steering law to participants using 5 input devices (tablet, mouse, trackpoint,

1In this paper we use the diameter of circular targets for W as suggested by MacKenzie (MacKenzie 1995).
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touchpad, and trackball), and the linear correlation of movement time to the index of difficulty for steering
exceeded 0.98 (Accot and Zhai 1999). Apitz et al. build a crossing-based interface, CrossY (Apitz et al.
2008). Unlike point-and-click interfaces, crossing-based interfaces allow participants to trigger an action
by crossing a target on the screen instead of clicking on it. Apitz et al. show that a crossing task is as fast
as, or faster than a point-and-click task on for the same index of difficulty (Apitz et al. 2008).

In a related line of research, Wobbrock et al. derive a predictive model for error rates instead of mean
times (Wobbrock et al. 2008). Error rate models have practical applications in designing text entry devices
and video games (Wobbrock et al. 2008).

2.6 Input device settings and Fitts’ Logarithmic Model

The computer mouse and other pointing devices usually offer configurable parameters that adjust the
mapping between movement of the device and movement of the cursor on the screen. The most common
adjustment is mouse speed, a type of “control-display gain” (Moyle and Cockburn 1991). The control-
display gain scales the distance d the mouse moves on the table to a distance p in pixels that the cursor
moves on the screen. The setting of the gain can have a significant impact on movement time to a target.
Thompson et al. experimentally verified that lower gains are better for low amplitude or small target
movements while higher gains are better for large amplitude or large target movements (Thompson et al.
2004). This mixed result makes it difficult to select a single optimal gain for standard computer usage.
Blanch et al. introduce semantic pointing, a technique that improves target acquisition by decoupling the
visual size of a target from the motor size of the target by dynamically adjusting the control-display gain
when the cursor moves over a target (Blanch et al. 2004). The technique is effective because user movement
times are determined primarily by the motor rather than visual space.

Another input device configuration parameter that can be adjusted on many modern personal computers
is mouse acceleration. In its most basic form, mouse acceleration includes two parameters, acceleration and
threshold (Moyle and Cockburn 1991). When the mouse speed exceeds the threshold, the control-display
gain is scaled by the acceleration parameter. Recent operating systems commonly use more complex mouse
acceleration models, e.g. multiple thresholds (Microsoft Corporation 2003). Mouse speed is defined as the
maximum of the x or y axis displacement of the mouse per unit time. When the mouse speed exceeds
the first threshold, the operating system doubles the gain. When the speed exceeds the second threshold
value, the system quadruples the gain.

Modern input devices like tablets have inspired new research. Hoffmann and Drury adjust the target
width W by considering the width of the target, its proximity to another target and the width of the finger
(Hoffmann and Drury 2011). They show that in the case that two keys are adjacent to each other and the
width of the finger pad is larger than the clearance between the two key, W can be replaced by “Available
W” whose value is Wavail = 2S −W − F , where W is the target size, F is the width of the finger pad on
the device, and S is the target center spacing.

2.7 The Square-Root Model

Several researchers have considered a two-parameter square-root model:

T = a+ b

√
A

W
. (5)

In this paper we refer to this as the SQR model. Kvalseth and Meyer et al. noted that the SQR model
behaves similarly to the logarithmic model in the standard range of index of difficulty (Kv̊alseth 1980,
Meyer et al. 1988).

Meyer et al. used the homogeneous target data from the original Fitts’ paper (Fitts 1954), and showed
that the SQR model fits the original data better than the LOG model (Meyer et al. 1988). Meyer et al.
also performed experiments with 4 human subjects performing wrist rotation movements to heterogenous
targets with similar results

Meyer et al. propose a complex derivation of the SQR model based on the assumption that reaching
motion can be partitioned into two submovements, a primary ballistic submovement and a secondary
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corrective submovement, with near-zero velocity at the transition. The derivation is an approximation
based on four strong assumptions: 1) two submovements with a stop between them, 2) submovement
endpoints have Gaussian distributions around the center point of the target, and 3) the standard deviation
of each Gaussian is linearly related to the average velocity during that submovement, and 4) there are
strong numerical bounds on values of A and W for which the approximation holds.

Meyer et al. then derive the time T to reach the target as the sum of the average time for the primary
submovement T1 and for the corrective submovement T2. They estimate T by minimizing its derivative with
respect to the submovements and show that when A/W > 4/z

√
2π the value of T can be approximated

by the SQR function above where z is the z-score such that 95% of the area under a standard Gaussian
distribution N(0, 1) falls inside (−z, z).

In addition to its complexity vis a vis Occam’s Razor, there are several other drawbacks to this derivation
(Rioulo and Guiard 2012). As Meyer et al. note, if the participant reaches the target in a single movement,
the derivation collapses to a linear model which fits the data very poorly. The approximation requires
numerical bounds on values of A and W . Furthermore, Guiard et al. note that for a fixed positive value
of A/W Meyer’s model approaches 1 as the number of submovements n approaches infinity (Guiard et al.
2001, Rioulo and Guiard 2012). Meyer et al. evaluated their model with one-dimensional movements using
wrist rotation of a dial that can be rotated to different angular targets. In their experiments, 4 participants
are presented with 12 target conditions with A/W values ranging from 2.49 to 15.57. This range of A/W
does not violate the assumption made for their derivation.

3. A Succinct Derivation of the Square-Root (SQR) Model

It is well known in control theory that the optimal time for a system to reach a target is obtained by “bang-
bang” control, where maximal positive acceleration is maintained for the first half of the trajectory and
then switched to maximal negative acceleration for the second half (Macki and Strauss 1982, Jagacinski
and Flach 2003).

In this section we provide a new derivation for the SQR model that models acceleration as (1) piecewise
constant as predicted by optimal control theory, and (2) proportional to target width: wider targets are
perceived by humans as “easier” to reach and hence humans apply larger accelerations as they have a
larger margin for error.

Given this model, we define the halfway point (the point reached at the switching time) for a human to
reach a target at distance A as xmid = A/2. Acceleration as a function of time for bang-bang control is
shown in Figure 2(a), where the switching time between maximum acceleration and maximum deceleration
is s = T/2.

As shown in Figure 2, Acceleration has only two values: full forward or full reverse, hence the term
“bang-bang”. Velocity is initially zero and then ramps up linearly during the first phase and ramps down
during the second. Velocity is thus ẋ(t) = ẍt during the acceleration phase (t ≤ s) and ẋ(t) = ẍs− ẍ(t− s)
during the deceleration phase (t > s), where ẍ is the constant magnitude of acceleration.

We can integrate this linear velocity with respect to time to get a quadratic function for position x(t).
At the switching time s, the position by integration will be x(s) = 1

2 ẍs
2. By symmetry, position after time

T = 2s will be x(T ) = ẍs2 = 1
4 ẍT

2. For cursor motion, we set the total distance traveled during movement

time T as the amplitude x(T ) = A. Hence, A = 1
4 ẍT

2 which implies

T = 2

√
A

ẍ
. (6)

Now, from the second assumption, acceleration magnitude is proportional to the width of the target:
ẍ = kW where k is a constant scalar and W is the target width. Substituting into equation 6, we get

T = 2

√
A

kW
.

We now add an initial reaction time a and let b = 2/
√
k. The total movement time is then:
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Figure 2. Acceleration vs. Time (a), Velocity vs. Time (b), and Position vs. Time (c) under symmetric optimal control. The “bang-
bang” controller maintains the maximal positive acceleration in the first half of the motion and then switches to the maximal negative
acceleration until the target is reached (a). The maximal velocity is reached in the middle of the path (b).

T = a+ b

√
A

W
. (7)

This derivation is intuitive, exact, makes fewer assumptions, and requires fewer steps than the two-
submovement derivation presented in Meyer et al. (Meyer et al. 1988).

3.1 The SQR Model with Asymmetric Acceleration

In 1987, C. L. MacKenzie showed empirically that velocity profiles for reaching movements during Fitts’
task are often asymmetric (MacKenzie et al. 1987). The derivation above does not require a symmetric
motion profile.

In this section we present a modified derivation based on an asymmetric velocity profile. Let s be the
switching time between the acceleration phase and deceleration phase. The peak velocity will occur at
the switching time. To complete the reaching movement of amplitude A with ẋ(T ) = 0, the magnitude of
constant acceleration ẍa before time s may be different from the constant deceleration ẍd after s.

MacKenzie showed that normalized time to peak velocity s/T increases roughly linearly as target width
W increases and does not depend on amplitude A (MacKenzie et al. 1987). We approximate the normalized
time to peak velocity as linearly proportional to W :

s

T
= kW
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Figure 3. Velocity vs. Time (a) and Position vs. Time (b) for the asymmetric acceleration model. Similar to MacKenzie we assume that
the velocity profile is asymmetric and the peak velocity occurs at a switching time s that is not necessarily equal to T/2 (a) (MacKenzie
et al. 1987).

where k is a scalar constant. We also assume that initial acceleration ẍa for an individual is a fixed
maximum acceleration regardless of the task and the deceleration ẍd is set so velocity is 0 at time T .
The maximum initial acceleration condition implies |ẍa| ≥ |ẍd|, which is true according to empirical
observations in MacKenzie’s results (MacKenzie et al. 1987).

To obtain a relationship between T , A, and W , we first solve for the peak velocity ẋmax = ẍas. The
switching time constraint s/T = kW implies ẋmax = ẍakWT . Integrating the asymmetric velocity profile
in Figure 3(a) with respect to time, we get position x(t), shown in Figure 3(b).

At time T , position as a function of ẋmax is

x(T ) =
1

2
ẋmaxs+

1

2
ẋmax(T − s) =

1

2
ẋmaxT. (8)

Setting x(T ) = A and substituting ẋmax into equation 8 yields:

A =
1

2
ẍakWT 2.

Hence,

T =

√
2

ẍak

A

W
.

Letting b =
√

2
ẍak

and adding a fixed initial reaction time a common to all trials for a given participant,

we get

T = a+ b

√
A

W
. (9)

Equation 9 is identical to equation 7 except for the definition of the constant term b. Both binary accel-
eration models were derived based on kinematic assumptions. The former model assumes switching time
is fixed relative to T and acceleration is proportional to W while the latter model assumes switching time
is proportional to W and initial acceleration is a fixed constant.
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4. Experimental User Studies

We performed two experimental user studies, one a controlled (in-lab) study and the second an uncon-
trolled (web-based) study. Both studies include two conditions, a “homogeneous targets” condition where
sequential targets are constant in distance and size, and a “heterogeneous targets” condition where se-
quential targets vary in distance and size. The experimental test and full dataset are available online at
http://www.tele-actor.net/fitts/. The experiments consider targets of different difficulty, as defined by the
ratio of target distance over target size.

4.1 Experiment Conditions: The Java Applet

For both the controlled and uncontrolled studies, we implemented a Java applet that asks each subject to
complete two experiments by using his or her cursor to click on a sequence of rectangular or circular targets
as they are presented on the screen. The Java applet is available online at http://www.tele-actor.net/fitts/.

The applet records the time in milliseconds between when the target appears until the subject clicks
on the target. A subject may click when the cursor is outside the target, but the timer increments until
the target is successfully clicked upon. To allow precise measurement of movement times without lag from
Internet communications, movement times are measured locally by the applet and sent to our central
server after completion of the trials. We did not attempt to capture the complete motion trajectory since
the client computer may not have sufficient processing speed when running other processes to take reliable
measurements.

4.1.1 Homogeneous Targets Experiment

This set of trials focuses on repetitive motions like the ones studied in the original Fitts papers. A
sequence of 33 vertical rectangles are presented as illustrated in Figure 1(a). The first, second, and third
set of the 11 rectangles have the same (homogenous) width and amplitude. They hence have the same
difficulty, as defined by the ratio of target distance over target size. In other words after the 11th, 22nd,
and 33rd repetition, the width and amplitude (and difficulty) of the rectangles are changed. To allow
subjects to “warm-up” and become familiar with each set, the system discards timing data from the first 3
timing measurements out each set of 11, so data from the latter 8 rectangles for each difficulty is collected,
producing 24 timing measurements.

4.1.2 Heterogeneous Targets Experiment

This set of trials focuses on changing targets as might be encountered in a game or computer human
interface. A sequence of 25 circular targets are presented as illustrated in Figure 1(b). Each trial begins
when the subject clicks inside a small “home” circle in the center of the window and ends when the user
successfully clicks inside the target. Each of the circular targets varies in distance from the home circle
and varies in diameter (and hence in difficulty).

The distance/amplitude and size/width of the targets (in pixels) are shown in Table 1. Note that the
difficulty varies and is not strictly increasing or decreasing. Since the targets are measured in units of
pixels, the distance and size of targets may appear different on computer systems with different display
sizes and resolutions.

4.2 Two User Studies

User studies were conducted under UC Berkeley human subject certificate IRB-2009-09-283.

4.2.1 Controlled User Study

For the controlled user study, we posted ads on campus and Facebook offering an Amazon.com gift
certificate for participation. Forty-six (46) people responded, including 17 female (37%) and 29 male
(63%) participants. From a questionnaire, we learned that the distribution of their ages is as shown in
Figure 4. The average age was 24.7 (variance = 23.8). We also learned that participants play video games
for an average of 1.5 hours per week (the population has a high variance of 10.01 hours, suggesting that
the majority do not play video games during the week). Out of the 46 subjects, 4 were left-handed, but
opted to use their right hand to operate the pointing device. Although all of the left-handed participants
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Trial
Homogeneous

Targets
Heterogeneous

Targets

A W A W

1 370 50 67 20
2 370 50 184 38
3 370 50 280 14
4 370 50 230 29
5 370 50 144 55
6 370 50 249 29
7 370 50 255 14
8 370 50 96 50
9 240 10 225 19
10 240 10 263 12
11 240 10 259 25
12 240 10 229 20
13 240 10 215 31
14 240 10 198 83
15 240 10 301 16
16 240 10 194 66
17 180 70 260 12
18 180 70 296 14
19 180 70 180 44
20 180 70 278 11
21 180 70 283 37
22 180 70 40 32
23 180 70 233 10
24 180 70 191 50
25 - - 179 18

Table 1. Target distance/amplitude (A) and size/width (W ), in display pixels, for the 24 recorded Fixed Rectangles (Fixed Rectangles) trials

and 25 Variable Circles trials.

Figure 4. Age distribution for participants for the controlled study

were given the chance to customize their environment, none of them changed their mouse settings to
left-handed; prior studies have shown that this does not disadvantage left-handed users (Hoffmann et al.
1997).

Each subject performed the homogenous target and the heterogeneous target experiments 10 times.
Subjects were given breaks between experiments to reduce fatigue. The experiments were performed under
supervision of lab assistants who encouraged subjects to repeat a trial if the subject became distracted.

For this controlled experiment, we collected a total of 22, 540 timing measurements (11, 040 for homoge-
nous targets and 11, 500 for heterogenous targets). We cleaned this raw dataset by keeping only timing
measurements for cases where the subject successfully clicks on all presented targets within a ”reasonable”
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LOG Model SQR Model Hypothesis Testing
A/W µRMSE σRMSE µRMSE σRMSE p-value Best Fit

2.57 224.16 147.90 120.22 64.04 7.68E-28 SQR
7.40 421.80 291.36 237.92 132.98 5.26E-23 SQR

24.00 704.86 489.78 553.09 329.48 3.74E-06 SQR
Table 2. Homogeneous Targets: Controlled Study: Prediction Error and Pairwise Fit between LOG and SQR models. SQR yields a significantly

better fit than LOG.

time period (within 3 std dev of the global mean time). Our goal is to remove most cases where subjects
were distracted or decided not to complete the experiment. After cleaning, the dataset contains 16, 170
valid timing measurements (8, 250 for homogenous targets and 7, 920 for heterogenous targets).

4.2.2 Uncontrolled User Study

To conduct the uncontrolled study, we made the same applet available online and advertised by emails
and postings on user groups. The experimental applet and datasets are available online at http://www.tele-
actor.net/fitts/.

To comply with our Human Subjects approval, each online participant is asked to click an online consent
box before starting the applet. An entry is created in the server database each time the consent box is
clicked. We do not record IP addresses and cannot determine if the same person runs the experiment
multiple times so we do not know the number of unique participants. We ask online visitors to indicate
the type of mouse device they use (trackpad, mouse, trackball, etc), but cannot verify these responses.

The online applet presents visitors with 24 homogenous targets and 25 heterogenous targets and thus
collects up to 49 timing measurements. Unlike the controlled experiment, online visitors were not asked
to repeat each experiment 10 times. (The online applet includes a third experiment with variable-sized
rectangular targets; we discovered a timing error in that experiment so we do not use data from that
experiment.)

We collected timing data from 2, 689 visits to the homogeneous target experiment and 2, 811 visits to
the heterogenous target experiment. As with the controlled study, our goal is to remove most cases where
subjects were distracted or did not complete the experiment. We cleaned the raw dataset by keeping only
timing measurements for cases where the subject successfully clicked on all presented targets within a
“reasonable time” (i.e., within 3 standard deviations of the global mean time).

After cleaning, the online study dataset includes 78, 410 valid timing measurements (39, 360 for the
homogeneous targets and 39, 050 for the heterogenous targets).

4.3 Experimental Results

Using the data we collected, we compare three two-parameter models that relate motion duration to the
difficulty: LOG (the classic logarithmic function), SQR (square-root), and LOG’ (logarithmic plus 1.0
proposed by (MacKenzie and Buxton 1992)).

We use regression to fit the unknown a, b parameters for each subject and model and compute the result-
ing root-mean-squared (RMS) error and variance. We perform two-sided paired Student t-tests comparing
the within-subject models using the p = 0.05 level of significance. As noted by R. A. Fisher in his classic
text, Statistical Methods for Research Workers: “The value for which p = 0.05, or 1 in 20, is 1.96 or nearly
2; it is convenient to take this point as a limit in judging whether a deviation ought to be considered
significant or not. Deviations exceeding twice the standard deviation are thus formally regarded as signifi-
cant. Using this criterion we should be led to follow up a false indication only once in 22 trials, even if the
statistics were the only guide available. Small effects will still escape notice if the data are insufficiently
numerous to bring them out, but no lowering of the standard of significance would meet this difficulty.”

4.3.1 Homogeneous Targets

Data from the controlled study are presented in Tables 2 and 3. Data from the uncontrolled study are
presented in Tables 4 and 5. The last column indicates the model that fits better and is in bold face if the
difference is statistically significant beyond the p < .05 level.

The results from the controlled and uncontrolled experiments are remarkably consistent. For homoge-
neous targets, the SQR model yields significantly better fit than LOG or LOG’, except for the most difficult
targets.
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LOG’ Model SQR Model Hypothesis Testing
A/W µRMSE σRMSE µRMSE σRMSE p-value Best Fit

2.57 147.36 87.26 120.22 64.04 6.32E-06 SQR
7.40 299.46 191.16 237.92 132.98 2.00E-06 SQR

24.00 549.20 358.28 553.09 329.48 8.84E-01 LOG’
Table 3. Homogeneous Targets: Controlled Study: Prediction Error and Pairwise Fit between LOG’ and SQR models. SQR yields a significantly

better fit than LOG’ except for the most difficult targets, where the two models are not significantly different.

LOG Model SQR Model Hypothesis Testing
A/W µRMSE σRMSE µRMSE σRMSE p-value Best Fit

2.57 257.63 166.89 143.87 82.75 1.80E-120 SQR
7.40 484.39 322.55 296.63 177.29 8.84E-88 SQR

24.00 814.39 545.63 686.34 423.14 7.68E-14 SQR
Table 4. Homogeneous Targets: Uncontrolled Study: Prediction Error and Pairwise Fit between LOG and SQR models. As in the Controlled

study, SQR yields a significantly better fit than LOG.

LOG’ Model SQR Model Hypothesis Testing
A/W µRMSE σRMSE µRMSE σRMSE p-value Best Fit

2.57 173.60 102.60 143.87 82.75 1.15E-19 SQR
7.40 351.91 218.18 296.63 177.29 2.33E-15 SQR

24.00 649.56 412.45 686.34 423.14 1.18E-02 LOG’
Table 5. Homogeneous Targets: Uncontrolled Study: Prediction Error and Pairwise Fit between LOG’ and SQR models. As in the Controlled

study, SQR yields a significantly better fit than LOG’ except for the most difficult targets, where the two models are not significantly different.
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Figure 5. Heterogeneous Targets: Controlled user Study: LOG vs SQR models. See Tables VI through IX for numerical details.

4.3.2 Heterogeneous Targets Experiments

Data from the studies are presented first using four sets of plots and then in four numerical tables (Tables
VI through IX). The plots show RMS Error and standard deviation for increasing values of difficulty for
pairs (two models) at a time. The first two plots compare the LOG and SQR in the Controlled and
Uncontrolled Experiments respectively. The third and fourth plots compare the LOG’ and SQR in the
Controlled and Uncontrolled Experiments respectively. In the tables, the last column indicates the model
that fits better and is in bold face if the difference is statistically significant beyond the p < .05 level.

In both controlled and uncontrolled studies with heterogeneous targets, SQR yields a significantly better
fit than LOG for easier targets and LOG yields a significantly better fit for harder targets. For heterogenous
targets, the LOG’ model yields significantly better fit than LOG or SQR, except for easier targets where
the results are inconclusive.
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Figure 6. Heterogeneous Targets: Uncontrolled user Study: LOG vs SQR models.

0

200

400

600

800

1000

1200

1400

1600

1.25 1.92 2.39 2.62 2.94 3.35 3.82 4.09 4.84 6.94 7.65 7.93 8.59 9.94 10.36 11.45 11.84 18.21 18.81 20.00 21.14 21.67 21.92 23.30 25.27

   
   

RM
SE

A/W

Controlled Experiments

Log (A/W+1)

SQR

Figure 7. Heterogeneous Targets: Controlled user Study: LOG’ vs SQR models.
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Figure 8. Heterogeneous Targets: Uncontrolled user Study: LOG’ vs SQR models.

5. Discussion and Conclusion

We explore three two-parameter models that relate human motion duration to the difficulty (i.e., the ratio
of target distance over target size) of the targets: LOG (the classic logarithmic function), SQR (square-
root), and LOG’ (logarithmic plus 1.0 proposed by (MacKenzie and Buxton 1992)). The latter two have
been proposed as superior models.

We describe new theory and new experiments. For the former, we provide a succinct derivation of the
SQR model based on optimal control theory. Our derivation is intuitive, exact, makes fewer assumptions,
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LOG Model SQR Model Hypothesis Testing
A/W µRMSE σRMSE µRMSE σRMSE p-value Best Fit

1.25 102.09 86.82 86.26 73.34 1.02E-02 SQR
1.92 162.18 113.97 140.68 78.22 4.42E-03 SQR
2.39 214.24 140.20 164.37 93.82 1.38E-07 SQR
2.62 253.96 162.95 195.47 102.42 6.79E-08 SQR
2.94 266.23 176.04 199.92 108.42 1.28E-08 SQR
3.35 250.99 163.39 168.21 108.85 1.00E-13 SQR
3.82 317.67 203.14 234.14 126.64 4.47E-10 SQR
4.09 327.71 212.77 239.75 130.97 4.62E-10 SQR
4.84 383.26 243.54 295.41 152.44 4.26E-08 SQR
6.94 473.81 279.80 397.26 186.73 4.90E-05 SQR
7.65 474.89 299.14 409.27 201.03 1.09E-03 SQR
7.93 506.52 312.39 442.76 209.92 2.41E-03 SQR
8.59 495.86 307.24 442.47 209.20 8.85E-03 SQR
9.94 541.84 337.11 512.23 237.91 2.04E-01 SQR

10.36 529.48 329.97 501.45 235.70 2.07E-01 SQR
11.45 545.50 349.61 545.01 250.04 9.92E-01 SQR
11.84 567.83 350.57 560.45 257.54 7.35E-01 SQR
18.21 663.13 419.94 789.96 348.02 2.55E-05 LOG
18.81 649.96 405.78 790.24 330.94 1.86E-06 LOG
20.00 681.42 428.81 810.65 397.08 6.07E-05 LOG
21.14 679.44 431.03 836.16 395.38 1.41E-06 LOG
21.67 692.45 437.13 875.12 385.34 1.74E-08 LOG
21.92 699.30 444.25 865.82 413.59 1.08E-06 LOG
23.30 732.01 442.11 906.26 442.91 7.10E-07 LOG
25.27 734.77 468.18 987.07 435.41 1.83E-12 LOG

Table 6. Heterogeneous Targets: Controlled user study: LOG vs SQR models. SQR yields a significantly better fit than LOG for easier targets

and LOG yields a significantly better fit for harder targets.

and requires fewer steps than the derivation presented in Meyer et al. (Meyer et al. 1988).
We present data from two experimental user studies, one a controlled (in-lab) study and the second

an uncontrolled (online) study. The controlled study collected 16, 170 valid timing measurements from 46
volunteers using the identical mouse and settings. The uncontrolled (online) study collected 78, 410 valid
timing measurements from an indeterminate number of volunteers who visited the website with with a va-
riety of mouse types and settings. Both studies include two conditions, a “homogeneous targets” condition
where sequential targets are constant in distance and size, and a “heterogeneous targets” condition where
sequential targets vary in distance and size.

We use regression to fit the unknown parameters for each model and compute the resulting root-mean-
squared error and variance. We perform two-sided paired Student t-tests comparing the within-subject
models using the p = 0.05 level of significance.

We find that (1) the data from the controlled and uncontrolled studies are remarkably consistent. Tables
VIII and IX exhibit some inconsistency for easier targets. Although uncontrolled experiments do not
provide the uniform setup of controlled in-lab studies, they are gaining popularity as they can collect
data from large numbers of human participants. A few earlier studies have also shown consistent results
from controlled and uncontrolled experiments (Bigham et al. 2010, Bakshy et al. 2012). Our study showed
consistent results across the uncontrolled and controlled studies, suggesting that the relative performance
of the evaluated models is robust to the variables introduced by actual computer users in the real world.

We find that (2) for homogeneous targets, the SQR model yields a significantly better fit than LOG or
LOG’, except with the most difficult targets (with higher difficulty) where the models are not significantly
different. That SQR is superior is surprising in these cases since Fitts’ original experiments were with
homogenous targets but is consistent with more recent experiments.

We find that (3) for heterogenous targets, SQR yields a significantly better fit than LOG for easier
targets and LOG yields a significantly better fit for more difficult targets. The results are inconclusive for
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LOG Model SQR Model Hypothesis Testing
A/W µRMSE σRMSE µRMSE σRMSE p-value Best Fit

1.25 119.57 98.92 100.97 83.80 1.56E-08 SQR
1.92 268.83 204.39 192.50 120.64 6.22E-36 SQR
2.39 367.02 248.20 245.90 133.16 3.02E-61 SQR
2.62 380.05 264.30 246.15 141.72 1.32E-65 SQR
2.94 417.87 261.97 266.70 140.79 4.45E-83 SQR
3.35 338.92 259.77 190.52 141.98 4.51E-81 SQR
3.82 558.07 369.86 373.06 206.70 4.52E-63 SQR
4.09 543.80 350.37 357.48 189.44 1.87E-71 SQR
4.84 562.20 384.60 364.24 207.13 2.01E-67 SQR
6.94 763.44 486.99 573.27 283.94 3.13E-39 SQR
7.65 800.26 538.79 614.45 330.99 1.97E-30 SQR
7.93 784.19 505.72 602.04 303.43 2.40E-33 SQR
8.59 835.37 537.14 665.74 331.57 8.00E-26 SQR
9.94 872.83 638.81 716.32 433.10 1.62E-15 SQR

10.36 881.19 582.18 738.77 374.93 6.56E-16 SQR
11.45 887.13 582.48 764.25 381.57 3.85E-12 SQR
11.84 917.90 614.22 801.91 409.63 6.14E-10 SQR
18.21 1085.70 715.08 1111.37 539.99 2.58E-01 LOG
18.81 1064.30 727.25 1091.28 563.31 2.46E-01 LOG
20.00 1116.00 797.88 1167.20 630.27 4.66E-02 LOG
21.14 1122.52 758.94 1203.31 607.69 1.03E-03 LOG
21.67 1157.07 790.10 1258.60 636.56 7.83E-05 LOG
21.92 1156.89 804.50 1258.05 651.53 1.15E-04 LOG
23.30 1151.02 746.97 1272.71 627.45 8.67E-07 LOG
25.27 1181.75 768.04 1364.91 657.32 1.00E-12 LOG

Table 7. Heterogeneous Targets: Uncontrolled user study: LOG vs SQR models. As in the Controlled study, SQR yields a significantly better

fit than LOG for easier targets and LOG yields a significantly better fit for harder targets.

targets in the middle range of difficulty, while the the LOG’ model yields a significantly better fit than
both LOG and SQR on more difficult targets. This suggests that there might be an underlying difference
in human motor processes for targets of different levels of difficulty and more work remains to be done.

Our applet records the time in milliseconds between when the target appears until the subject clicks
on the target. We did not attempt to capture the complete motion trajectory as we were not confident
that computer clients would have sufficient processing speed when running other processes to take reliable
measurements, but this is an interesting avenue for future study.

To the best of our knowledge, the dataset of 94, 580 timing measurements is the largest dataset to
date for human reaching motion. The experimental applet and dataset are openly available online at
http://www.tele-actor.net/fitts/. The data may also contain patterns such as variations between subjects
with overall faster response times and those that have slower response times. We encourage others to use
this data with other metrics or to evaluate models beyond the three we study in this paper.
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LOG’ Model SQR Model Hypothesis Testing
A/W µRMSE σRMSE µRMSE σRMSE p-value Best Fit

1.25 93.39 83.74 86.26 73.34 2.33E-01 SQR
1.92 118.17 83.18 140.68 78.22 4.36E-04 LOG’
2.39 146.71 97.94 164.37 93.82 1.76E-02 LOG’
2.62 178.96 112.99 195.47 102.42 4.69E-02 LOG’
2.94 180.12 123.00 199.92 108.42 2.71E-02 LOG’
3.35 162.56 118.13 168.21 108.85 5.20E-01 LOG’
3.82 216.83 142.10 234.14 126.64 1.06E-01 LOG’
4.09 220.04 150.55 239.75 130.97 6.95E-02 LOG’
4.84 267.82 174.09 295.41 152.44 3.36E-02 LOG’
6.94 347.05 203.18 397.26 186.73 9.34E-04 LOG’
7.65 346.52 221.30 409.27 201.03 1.54E-04 LOG’
7.93 375.59 233.22 442.76 209.92 1.11E-04 LOG’
8.59 365.48 228.88 442.47 209.20 9.72E-06 LOG’
9.94 408.58 255.77 512.23 237.91 9.08E-08 LOG’

10.36 399.28 250.50 501.45 235.70 1.18E-07 LOG’
11.45 410.84 268.34 545.01 250.04 5.82E-11 LOG’
11.84 438.75 264.69 560.45 257.54 5.19E-09 LOG’
18.21 528.38 334.25 789.96 348.02 2.00E-21 LOG’
18.81 515.00 321.04 790.24 330.94 6.00E-25 LOG’
20.00 551.39 341.18 810.65 397.08 2.53E-18 LOG’
21.14 549.85 347.95 836.16 395.38 1.83E-21 LOG’
21.67 559.49 352.79 875.12 385.34 8.17E-26 LOG’
21.92 568.38 359.30 865.82 413.59 3.90E-21 LOG’
23.30 606.58 356.09 906.26 442.91 3.89E-20 LOG’
25.27 602.49 383.22 987.07 435.41 2.59E-30 LOG’

Table 8. Heterogeneous Targets: Controlled user study: LOG’ vs SQR models. The LOG’ model yields a significantly better fit than SQR on

harder targets (with higher difficulty).
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