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Abstract—Mixed-criticality systems, in which multiple tasks of
varying criticality are executed on a single hardware platform, are
an emerging research area in real-time embedded systems. High-
criticality tasks require spatial and temporal isolation guarantees,
whereas low-criticality tasks should efficiently utilize hardware
resources. Hardware-based isolation is desirable, but commonly
underutilizes hardware resources, which can consist of multiple
single-core, multicore, or multithreaded processors. We present
FlexPRET, a processor designed specifically for mixed-criticality
systems by allowing each task to make a trade-off between
hardware-based isolation and efficient processor utilization. Flex-
PRET uses fine-grained multithreading with flexible scheduling
and timing instructions to provide this functionality.

I. INTRODUCTION

A current trend in real-time embedded systems, driven
by size, weight, and power concerns, is consolidating many
increasingly complex applications onto fewer hardware plat-
forms. A processor must then execute tasks with differing
importance, safety, or certification requirements—creating a
mixed-criticality system [1], [2], [3]. These requirements are
often specified using criticality levels, such as the five levels
(A-E) used in the DO-178C avionics standard [4]. Higher-
criticality-level tasks correspond to hard real-time tasks,
whereas lower-criticality-level tasks correspond to soft real-
time tasks. Each criticality level has different requirements.

Spatial and temporal isolation prevent a task from be-
ing unintentionally affected by another task: spatial isolation
protects a task’s state (stored in registers and memory), and
temporal isolation protects a task’s desired timing behavior.
Timing predictability, still an issue even if a task is isolated, is
desirable to tightly bound a task’s worst-case execution time
(WCET) and avoid over provisioning resources. These are
desirable properties for verification and certification of a hard
real-time task. For a soft real-time task, however, efficiently
utilizing the processor is more important than isolation and
predictability guarantees.

Hardware-based isolation is robust and often used in safety-
critical systems [5], [6], but traditionally utilizes hardware
resources inefficiently [7], as each processor can only execute
a single task. As a consequence, extensive research has been
performed during the past several years on software scheduling
of mixed-criticality systems [1], [8], [9], [2], [10], [11], where
isolation is provided by software running on a real-time
operating system (RTOS). Although this can drastically reduce
hardware costs, the RTOS itself must be verified and certified.
This includes accounting for overhead and behavior of run-
time monitoring and control, which could include preemption

to switch tasks, monitor execution times, or handle sensing
and actuation [12]. In this paper, we take a different approach
and investigate if a new processor architecture can provide
hardware-based isolation to mixed-criticality systems without
underutilizing resources.

Hardware-based isolation can be achieved by deploying
each task on separate computational components: either pro-
cessors, cores in a multicore processor, or hardware threads
in a multithreaded processor. Although potentially better than
one task per processor, one task per core can still underutilize
resources. A hardware thread, subsequently referred to as just
a thread, uses hardware support to share the underlying proces-
sor with other threads. Provided thread scheduling maintains
temporal isolation, which is not done in many multithreaded
processors, one task per thread can better utilize resources by
enabling multiple tasks to be deployed on a single processor
without losing hardware-based isolation.

One approach is to use fine-grained multithreading (in-
terleaved multithreading, barrel processor) [13], [14], where
instructions from different threads are interleaved in the
pipeline every cycle. Existing fine-grained multithreaded pro-
cessors have, however, inflexible thread scheduling mecha-
nisms. PTARM [15] provides scheduling guarantees to each
thread but cannot utilize cycles when a thread is no longer
active, whereas XMOS X1 [16] loses temporal isolation if it
utilizes cycles when a thread is not active. Both processors also
require four threads to be active to fully utilize the pipeline.

This paper presents FlexPRET, a processor designed to
exhibit architectural techniques useful for mixed-criticality
systems. FlexPRET uses fine-grained multithreading, and by
classifying each thread as either a hard real-time thread
(HRTT) or a soft real-time thread (SRTT), provides hardware-
based isolation to HRTTs while allowing SRTTs to efficiently
utilize the processor. Unlike other fine-grained multithreaded
processors, FlexPRET supports an arbitrary interleaving of
threads in the pipeline and uses a novel thread scheduler.
Each thread, either an HRTT or SRTT, can be guaranteed
to be scheduled at certain cycles for isolation or throughput
guarantees. If no thread is scheduled for a cycle or a scheduled
thread has completed its task, that cycle is used by some SRTT
in a round-robin fashion—efficiently utilizing the processor.

Even with spatial and temporal isolation, a task’s WCET
can be difficult to bound; the predictability and performance
trade-off of the underlying processor depends on architectural
decisions, typically regarding branch prediction, pipeline or-
dering, and caches. Current research in scheduling mixed-



critically systems assumes that WCET bounds are either un-
safe [9] (not actually a bound) or overly pessimistic [1], [2].
The problem is many processors lack fine-grained predictabil-
ity, meaning the ability to determine the execution time of
an instruction with little knowledge of execution history—
a desirable property for WCET analysis. Complex branch
prediction and multilevel caches, used to optimize average-case
performance, do not have fine-grained predictability and make
WCET analysis a non-trivial task [17]. FlexPRET is related
to previous precision-timed (PRET) machines [18], [15], [19],
where fine-grained multithreading allows processors to remove
dynamic branch prediction and caches for fine-grained pre-
dictability with less of a performance penalty.

FlexPRET also uses a variation of timing instruc-
tions [20], [18], [19] to provide direct control over timing
(in nanoseconds). With these instructions, the processor itself
is responsible to execute with the timing specified by the
instruction—enabling a more direct temporal mapping between
languages with timing semantics and the processor. Unlike
previous work, cycles are not left unused to satisfy temporal
constraints; FlexPRET reallocates these cycles to SRTTs.

Specific contributions of this paper include:

• A novel processor design exhibiting architectural tech-
niques targeted for mixed-criticality systems, provid-
ing hardware-based isolation to hard real-time threads
while allowing soft real-time threads to efficiently uti-
lize processor resources. (Sections III-B, III-D, III-C).

• Timing instructions, extending the RISC-V ISA [21],
that enable cycles to be reallocated to other threads
when not needed to satisfy a temporal constraint
(Section III-D).

• A concrete soft-core FPGA implementation, evalu-
ated for resource usage, and execution of two mixed
criticality task sets to demonstrate properties and a
possible scheduling methodology (Section IV).

II. MOTIVATING EXAMPLE

In this section, we use a simple mixed-criticality example
to demonstrate some useful properties of FlexPRET. Although
in this example each task is deployed on a separate thread, in
practice, software-based scheduling can be used to deploy mul-
tiple tasks on a single thread; the deployment of a large mixed-
criticality task set on FlexPRET is shown in Section IV-D.

Consider a mixed-criticality system that consists of three
independent, periodic tasks, τA, τB , and τC , each mapped
to its own thread. The task identifiers A,B,C correspond to
criticality levels from highest to lowest, motivated by criticality
levels used in the DO-178C avionics standard, with τA and
τB hard real-time tasks that must be verified and certified to
always meet their deadline and C a soft real-time task that
requires less-strict guarantees. Each task τi has a deadline
equal to its period Ti. FlexPRET’s thread scheduler ensures
hard real-time tasks are executed at a constant rate for isolation
and predictability; when a cycle is not used for a hard real-
time task, which includes when tasks finish early, that cycle is
used by a soft real-time task.

In Figure 1, a potential execution trace for a single hyperpe-
riod (t = 10, 000 processor cycles is the least common multiple

of task periods) is shown, where rectangles indicate a task is
executing. The upper plot is unusual in that the units of both
axes are processor cycles, but this is done to more clearly show
which task’s thread is executed each cycle; the vertical axis
indicates which threads are executed in a particular pipeline
stage each cycle over a four cycle interval. The sequence of
thread interleaving is read top to bottom, left to right, as shown
for two intervals by the lower plot.

Task τB executes once every four cycles and is the first
to complete (t = 2, 000). Its cycles are not needed until its
next period (t = 5, 000) and are donated to τC . Task τA,
requiring more cycles than τB to meet its deadline, executes
once every two cycles and also donates cycles to τC when
it completes (t = 8, 000). Notice that τB does not donate
cycles to τA; as a hard real-time task, τA would be verified to
meet its deadline with only its allocated cycles and does not
benefit by completing earlier. Tasks τA and τB are temporally
isolated by only being executed at prescribed cycles—enabling
independent verification. Task τC efficiently uses every cycle
not needed by τA or τB , but has sacrificed temporal isolation:
timing behavior depends on when τA and τB start and end.

∗103 proc. cycles (t)0 1 2 3 4 5 6 7 8 9 10

τC (T = 10, 000)
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Fig. 1: FlexPRET executing a simple mixed-criticality exam-
ple. Vertical direction shows which threads are executed each
processor cycle over a four cycle interval.

III. FLEXPRET DESIGN

FlexPRET is a 32-bit, 5-stage, fine-grained multithreaded
processor with software-controlled, flexible thread scheduling.
It uses a classical RISC 5-stage pipeline: instruction fetch (F),
decode (D), execute (E), memory access (M), and writeback
(W). Predict not-taken branching and software-controlled lo-
cal memories are used for fine-grained predictability. It also
implements the RISC-V ISA [21], an ISA designed to support
computer architecture research, that we extended to include
timing instructions.

A. Background

Fine-grained multithreading is the ability to switch between
different hardware threads on each clock cycle, allowing
instructions from multiple hardware threads to be interleaved
in the pipeline. Each hardware thread, subsequently referred
to as just thread, maintains its own state: general-purpose
registers, program counter, and other control registers. The
thread scheduler decides from which thread to fetch an in-
struction each cycle and will be discussed in Section III-C. A
pipeline hazard occurs when executing a particular instruction
in the next clock cycle could cause incorrect execution and
can be prevented by stalling (waiting) or flushing (aborting)
this instruction—wasting cycles. If multiple threads are inter-
leaved in the pipeline, the previous instruction has progressed



further through the pipeline when the next instruction from
that thread is fetched, reducing or eliminating cycles that are
wasted to prevent hazards by increasing the spacing between
dependant instructions. Such interleaving increases overall
processor throughput (total number of instructions processed
on all threads), but increases the latency (total processor cycles
between start and finish) of computing a task, compared to if
the tasks were executed on a single-threaded processor.

Example 1: Consider a single-threaded processor execut-
ing a branch instruction that should be taken. This particular
processor does not calculate the branch decision and target
address until the end of the execute stage, so two cycles (2
and 3) are wasted (flushed) if a branch is taken.

TID Addr. Inst. Cycle
1 2 3 4 5 6 7 8

0 0x00 BR 0x0C F D E M W
0 0x04 I F D - - -
0 0x08 I F - - - -
0 0x0C I F D E M W

The thread ID (TID) column shows that each cycle an
instruction is fetched from the same thread (0). The instruction
and address columns show example instructions and their
address in memory, where BR 0x0C means branch to address
0x0C, and I is an arbitrary instruction. Dashes indicate an
instruction was flushed (instructions at 0x04 and 0x08).

Example 2: Now consider the same program running on a
fine-grained multithreaded processor sharing the pipeline with
three other threads in a round-robin fashion. The thread is
not scheduled again until after the branch decision and target
address are calculated, so no cycles are wasted, but the thread
has a larger latency.

TID Addr. Inst. Cycle
1 2 3 4 5 6 7 8

0 0x00 BR 0x0C F D E M W
1 0x30 I F D E M W
2 0x60 I F D E M W
3 0x90 I F D E M W
0 0x0C I F D E M

In single-threaded processors, switching to a different task
and maintaining spatial isolation involves a context switch,
saving the state of one task and restoring the state of another,
a time-consuming operation performed entirely by software
unless the processor provides hardware support. If each task
is assigned to a different thread, a fine-grained multithreading
processor is capable of context switching every clock cycle. In
addition to reduced overhead when switching between tasks,
this also allows low-latency reactions to external IO; a task
can start reacting within a few cycles instead of waiting for a
RTOS to context switch.

B. Pipeline

FlexPRET allows an arbitrary interleaving of threads1 in
the pipeline (i.e. no restrictions on the schedule), giving
the thread scheduler flexibility to well-utilize the processor.
Unfortunately, this also means the pipeline is susceptible to
data and control hazards, which can occur when the spacing
between two instructions from the same thread is too close. For

1The physical number is a hardware decision; we support 1-8 threads.

example, the thread scheduler could schedule only one thread
to be executed in the pipeline, and two cycles would need to
be flushed when a branch is taken (as occurred in Example 1).

As in a typical single-threaded RISC pipeline, FlexPRET
avoids most data hazards by forwarding, which supplies re-
quired data from later pipeline stages to avoid waiting until it
is written back to the register file. The only difference is that
thread IDs must also be compared so that forwarding only
occurs between instructions from the same thread. There are
still hazards that cannot always be avoided with forwarding
because the required data is not yet computed, such as a data
hazard with memory load or a control hazard with a jump or
branch taken. Unlike a typical single-threaded RISC pipeline,
stalling and flushing must be carefully performed as to not
disrupt the schedule, which would reduce temporal isolation.
Stalling is done by replaying the instruction in the thread’s
next scheduled slot, and flushing (decision made by execute
stage) is only done on instructions in the fetch or decode stage
with the same thread ID.

The spacing required between two particular instructions
from the same thread to prevent hazards depends on both the
ISA and how it is implemented. For FlexPRET, if a jump or
branch occurs, the subsequent two processor cycles must not
execute an instruction from that thread, which is achieved by
the flush operation just described. Memory loads and stores
occur in a single processor cycle, but in the pipeline stage
after the execute stage; if the execute stage needs the result of
a memory read (e.g. to perform an arithmetic operation), these
instructions must not be scheduled next to each other. Even
though the number of scheduled processor cycles required to
execute a sequence of instructions varies with scheduling, this
number is still predictable—it can be exactly computed for
any sequence of instructions if the scheduling is known.

Example 3: Consider FlexPRET executing a schedule that
alternates between two threads. Only one instruction (follow-
ing the branch instruction) needs to be flushed when a thread
branches, and forwarding allows the ADD instruction to use
the result of the LD instruction without stalling.

TID Addr. Inst. Cycle
1 2 3 4 5 6 7 8 9

0 0x00 BR 0x0C F D E M W
1 0x30 LD F D E M W
0 0x04 I F - - - -
1 0x34 ADD F D E M W
0 0x0C I F D E M W

Most fine-grained multithreaded processors, such as the
UltraSPARC T1 [14], XMOS XS1 [16], and PTARM [15], do
not support an arbitrary interleaving of threads. They require a
sufficient spacing between instructions from the same thread as
to not require forwarding, stalling, or flushing, saving the area
cost of these mechanisms. This is overly restrictive for some
applications—there must be at least four threads active (for
instance) to fully utilize the pipeline and a single thread cannot
be scheduled more frequently than once every four cycles. By
allowing an arbitrary interleaving, FlexPRET allows a trade-
off between overall throughput and single thread latency. If
a deadline needs to be met, a thread can be scheduled more
frequently, but can waste more cycles preventing hazards.



C. Thread Scheduling

The pipeline supports an arbitrary interleaving of threads
by using knowledge of instructions in the pipeline to forward
or stall to prevent data or control hazards. Without any restric-
tions on thread scheduling, however, it is difficult to predict
how many thread cycles (cycles a thread is scheduled) it would
require for a thread to execute a sequence of instructions
because pipeline spacing between them can vary unpredictably.

Definition 1: If the scheduling frequency of a thread is
1/X , it can use a given stage of the pipeline exactly once
every X processor cycles. For example, if thread T0 has a
scheduling frequency of 1/2 and T is a different thread, then
a resulting schedule could be: T0 T T0 T T0 T . . ..

A constant scheduling frequency is useful for WCET
analysis because the thread cycle cost of each instruction is
constant and known for each scheduling frequency. A branch-
taken or jump instruction, for example, requires three, two,
or one thread cycles for scheduling frequencies 1, 1/2, or
1/3, 1/4, . . ., respectively.

To be useful for mixed-criticality systems, hard real-time
threads (HRTTs) are guaranteed constant scheduling frequen-
cies, and soft real-time threads (SRTTs) efficiently use avail-
able cycles by not providing this guarantee. To implement this,
both HRTTs and SRTTs can either be active or sleeping. If
active, the thread is allowed to be scheduled. If sleeping, the
thread is not allowed to be scheduled and thus will not con-
sume any processor cycles. A thread is put in this mode using
the TS (thread sleep) instruction. A thread can be activated by
an interrupt mechanism, such as a timing instruction or external
I/O—allowing rapid, event-driven responses without wasting
cycles polling. An active HRTT is only scheduled at prescribed
cycles to maintain a constant scheduling frequency. In addition
to being potentially scheduled at prescribed cycles, an active
SRTT will share available cycles between all other active
SRTTs in a round-robin fashion. Available cycles themselves
can be prescribed for SRTTs or occur when an SRTT or HRTT
is sleeping.

Example 4: Consider a system with active HRTT T0,
sleeping HRTT T1, active SRTTs T2 and T3, and sleeping
SRTT T4. If T0 has a scheduling frequency of 1/4, and T1
has a scheduling frequency of 1/2, then a resulting schedule
could be as follows:

T0 T2 T3 T2 T0 T3 T2 T3 . . .

T0 is the only active HRTT and is scheduled every forth
cycle to satisfy its scheduling frequency. The rest of the cycles
are shared round-robin between active SRTTs T2 and T3.

Example 5: Consider the same system as Example 4, but
HRTT T1 and SRTT T4 have been activated. A resulting
schedule could be as follows:

T0 T1 T2 T1 T0 T1 T3 T1 T0 T1 T4 T1 . . .

Now only one out of every four cycles is used for SRTTs.
An SRTT can be scheduled like an HRTT to guarantee a
minimum scheduling frequency, but unlike an HRTT, would
also share available cycles with other SRTTs.

In addition to being able to provide scheduling frequency
guarantees to threads and utilizing unused cycles, this schedul-

ing technique is useful for applications with varying concur-
rency and deadlines. Although the thread scheduling could
be statically set at boot and never changed, it could also be
changed dynamically during runtime. For example, an HRTT’s
scheduling frequency could be increased to meet a deadline it
would otherwise miss, or a platform could switch modes of
operation.

The thread scheduler uses two control registers to im-
plement this technique: the slots control register prescribes
cycles to certain threads and the thread mode control register
stores whether a thread is active or sleeping. A thread requires
supervisory mode to modify the slots control register or the
thread mode of a different thread. The slots control register
provides 8 slots, where each slot can have one of the following
values: D (the slot is disabled), S (the slot is used for SRTTs),
or T0 − T72 (the slot is dedicated to that thread ID and only
used for SRTTs if the thread is sleeping). To decide which
thread to schedule next, non-disabled slots are cycled through
in a round-robin fashion, either using the specified thread ID if
active or delegating to SRTT round-robin. It is the responsiblity
of the programmer or compiler to then assign the slots control
register with HRTT IDs such that each HRTT has a constant
scheduling frequency.

While the slots control register guarantees cycles to certain
threads, the thread mode register specifies the mode of each
thread and is used to schedule SRTTs. A thread can be in
one of four modes: active HRTT (HA), sleeping HRTT (HZ),
active SRTT (SA), or sleeping SRTT (SZ). A disabled thread
can just be set to an HRTT mode and not be specified in the
slots control register. When a cycle is delegated to SRTTs (its
value is S or the specified thread is sleeping), the next SRTT
in a round-robin rotation of active SRTTs is selected.

The layout of the slots control register is shown in Table Ia,
with a possible assignment thats implements the schedule in
Examples 4 and 5 in parentheses; the actual schedules are
only different because of different thread modes. If S3(T0)
and S2(T1) were to be swapped, T1 would no longer have a
constant scheduling frequency because the spacing between
instructions from that thread would no longer be constant
(T1 T0 S T1 T1 T0 S T1 . . .). The layout of the thread mode
register is shown in Table Ib, with values corresponding to
Example 4 in parentheses. Hardware can also modify the mode
of a thread, allowing interrupts to wake a thread from sleep.

2This is the case for a configuration with 8 threads. A 32-bit register can
support up to 14 unique thread IDs.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

S7(D) S6(D) S5(D) S4(D) S3(T0) S2(T1) S1(S) S0(T1)

(a) The slots control register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T7(D) T6(D) T5(D) T4(SZ) T3(SA) T2(SA) T1(HZ) T0(HA)

(b) The thread mode control register

TABLE I: Thread scheduling is set by two control registers.



D. Timing Instructions

New timing instructions augment the RISC-V ISA for
expressing real-time semantics. In contrast to previous PRET
architectures supporting timing instructions [22], [19], [15],
our design is targeted for mixed-critical systems.

The FlexPRET processor contains an internal clock that
counts the number of elapsed nanoseconds since the processor
was booted. The current time is stored in a 64-bit register,
meaning that the processor can be active for 584 years without
the clock counter wrapping around. Two new instructions can
be used to get the current time: get time high GTH r1 and
get time low GTL r2 store the higher and lower 32 bits in
register r1 and r2, respectively. When GTL is executed, the
processor stores internally the higher 32 bits of the clock
and then returns this stored value when executing GTH. As
a consequence, executing GTL followed by GTH is atomic, as
long as the instruction order is preserved.

To provide a lower bound on the execution time for a
code fragment, the RISC-V ISA is extended with a delay until
instruction DU r1,r2, where r1 is the higher 32 bits and r2
is the lower 32 bits of an absolute time value. Semantically,
the thread is delayed (replays this instruction) until the current
time becomes larger or equal to the time value specified by r1
and r2. However, in contrast to previous processors supporting
timing instructions (e.g., PTARM [15], [19]), the clock cycles
are not wasted, but can instead be utilized for other SRTTs.

If the task is firm (there is no utility of continuing after a
missed deadline), it should be interrupted when the deadline
is missed, providing an upper bound. Instruction exception on
expire EE r1,r2 enables a timer exception that is executed
when the current time exceeds r1,r2. The jump address is
specified by setting a control register with MTPCR (move to
program control register). Only one exception per thread can
be active at the same point in time; nested exceptions must be
implemented in software. The instruction deactivate exception
on expire DE deactivates the timer exception.

Exception on expire can be used in different ways. Besides
implementing an upper bound for firm tasks or a preemptive
scheduler, it can also be used as a timer to activate a thread
at a certain point in time in the future. By first issuing an
exception on expire and then executing a new thread sleep
TS instruction, the clock cycles for the sleeping thread can be
utilized by other active SRTTs. Another use of exception on
expire is for anytime algorithms, that is, algorithms that can
be interrupted at any point in time and returns a better solution
the longer time it is executed.

E. Memory Hierarchy

For spatial isolation between threads, FlexPRET allows
threads to read anywhere in memory, but only write to certain
regions. The regions are specified by control registers that can
only be set by a thread in supervisory mode with MTPCR.
Virtual memory is a standard and suitable approach, but Flex-
PRET currently uses a different scheme for simplicity. There
is one control register for the upper address of a shared region
(which starts at the bottom of data memory) and two control
registers per thread for the lower and upper addresses of a
thread-specific region. Memory is divided into 1kB regions,

and a write only succeeds if the address is within the shared or
thread-specific region. By specifying all thread-specific regions
and the shared region to be disjoint, each thread will have both
private memory and access to shared memory.

For timing predictability, FlexPRET uses scratchpad mem-
ories [23]. These are local memories that, in contrast to caches,
have a separate address space than main memory and are
explicitly controlled by software; all valid memory accesses al-
ways succeed and are single cycle. With scratchpad memories,
WCET analysis only needs to determine which address space a
memory operation is using, but not the current state of a cache,
a benefit for fine-grained predictability. Instructions are stored
in instruction scratchpad memory (I-SPM) and data is stored
separately in data scratchpad memory (D-SPM). Scratchpad
memories are not required; caches could be used instead if
the reduction in fine-grained predictability is acceptable. We
envision a hybrid approach where HRTTs tasks use scratchpads
and SRTTs use caches for future versions of FlexPRET.

F. Programming, Compilation, and Timing Analysis

FlexPRET can be programmed using low level program-
ming language, such as C, but augmented with constructs
for expressing temporal semantics. The proposed hardware
architecture can be an integral part of a precision timed
infrastructure [24] that includes languages and compilers with
an ubiquitous notion of time. Such a complete infrastructure
with timing-aware compilers is outside the scope of this paper;
instead, we use a RISC-V port of the gcc compiler and
implement the new timing instructions using inline assembly.
The following code fragment illustrates how a simple periodic
control loop can be implemented.
1 int h,l; // High and low 32-bit values
2 get_time(h,l); // Current time in nanoseconds
3 while(1){ // Repeat control loop forever
4 add_ms(h,l,10); // Add 10 milliseconds
5 exception_on_expire(h,l,missed_deadline_handler);
6 compute_task(); // Sense, compute, and actuate
7 delay_until(h,l); // Delay until next period
8 }

Before the control loop is executed, the current time (in
nanoseconds) is stored in variables h and l (line 2). The
time is incremented by 10ms (line 4) and a timer ex-
ception is enabled (line 5), followed by task execution
(line 6). If a deadline is missed, an exception handler
missed_deadline_handler is called. To force a lower
bound on the timing loop, the execution is delayed until
the time period has elapsed (line 7); the cycles during the
delay can be used by an active SRTT. Functions get_time,
exeception_on_expire, and delay_until implement
the new RISC-V timing instructions using inline assembly.

To have full control over timing, real-time applications can
be implemented as bare metal software, using only lightweight
libraries for hardware interaction. As a scheduling design
methodology, we propose that tasks with highest criticality
level A are assigned individual HRTTs, thus providing both
temporal and spatial isolation. Criticality level B tasks also
use HRTTs, but several tasks can share the same thread, thus
lowering the hardware enforced isolation. Low criticality tasks
can then be shared on SRTTs using standard scheduling algo-
rithms, such as rate-monotonic scheduling and EDF [25]. In



the evaluation section (Section IV-D), we apply this scheduling
methodology to a mixed-criticality avionics example.

For high criticality tasks it is typically required that the
upper bound is guaranteed statically at compile time. Well
established worst-case execution (WCET) analysis techniques
can be applied to compute safe upper bounds on tasks. In
particular, HRTTs possess fine grained timing predictability
(at the instruction level), making hardware timing analysis
[26] especially simple. Although no timing analysis tools
currently exist for the RISC-V ISA, we contend that standard
WCET computation techniques [17] and state-of-the-art indus-
trial WCET tools, such as AbsInt3, can easily be adapted to
compute WCET estimates for HRTTs for FlexPRET. Timing
analysis for SRTT is, however, inherently harder, because of
cycle stealing. Instead, we propose to use measurement-based
approaches for low criticality tasks. Fortunately, measurement
of time is particular simple in the proposed architecture; the
ISA timing instructions can be used to give precise measure-
ments with minimal overhead.

IV. EVALUATION

We implemented and deployed FlexPRET as a soft-core on
an FPGA to demonstrate feasibility and provide quantitative re-
source costs of the proposed architectural techniques. We also
simulated two mixed-criticality task sets running on FlexPRET.
The first is simple and shows how FlexPRET provides isolation
to HRTTs and efficient utilization with SRTTs, even when an
error occurs on an SRTT. The second is more complex (21
tasks on 8 threads) and requires single threads to use software-
based scheduling to execute multiple tasks. We explain the
methodology used and discuss the implications.

A. Implementation

We implemented FlexPRET in Chisel [27], a hardware
construction language that generates both Verilog code and a
cycle-accurate C++-based simulator. Chisel allows us to easily
parameterize the code to produce various configurations for
both FlexPRET and two baseline processors for comparison.
We implement the two baseline processors instead of compar-
ing to existing processors to remove the influence of differing
ISAs and optimization techniques. The intent is to show and
discuss the incremental costs of flexible thread scheduling and
timing instructions, as these techniques are not restricted in use
to a 5-stage RISC-V processor. The FlexPRET processor may
be referred to as FlexPRET-4T, where the number represents
the physical number of threads available to be used.

The first baseline processor will be referred to as Base-
1T and is a single-threaded 5-stage RISC-V processor with
scratchpad memories, predict not-taken branching, and for-
warding, stalling, or flushing to resolve data and control
hazards. This represents a simple approach to achieving
fine-grained predictability, and would require software-based
scheduled to execute mixed-criticality workloads. This pro-
cessor functions identically to FlexPRET when FlexPRET’s
scheduler executes the same thread every cycle.

The second baseline processor will be referred to as Base-
4T-RR and is a fine-grained multithreaded 5-stage RISC-V pro-
cessor with scratchpad memories, much like PTARM [15] and

3http://www.absint.com/
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Fig. 2: FPGA resource usage for different processors

XMOS [16]. It interleaves a fixed four threads in the pipeline,
and consequently does not require any forwarding, stalling,
or flushing. However, all four threads must be active to fully
utilize the processor. This processor functions identically to
FlexPRET when FlexPRET’s scheduler executes four threads
as HRTTs in a round-robin pattern.

In all processors, a subset of the RISC-V ISA is imple-
mented, currently excluding floating point arithmetic instruc-
tions, atomic memory operations, integer division, and support
for packed instructions. These instructions are not needed
to demonstrate the main ideas. To verify correct implemen-
tation of both FlexPRET and the two baseline processors,
an assembly test suite and more than ten C benchmarks
from the Mälardalen [28] benchmark suite were run for all
configurations on both the cycle-accurate simulator and an
FPGA implementation of the Verilog code, with results being
examined for correctness.

B. FPGA Resources

Several configurations of FlexPRET and the baseline
processors were deployed on an FPGA (Xilinx Virtex-5
XC5VLX110T) to evaluate the area cost associated with
different features. The processors were all clocked at 80MHz
with a 16kB I-SPM and a 16kB D-SPM in block RAM. A
block RAM has a fixed size that happens to be large enough
for all the register files for eight threads, so a single dedicated
block RAM is used for all register files in each configuration.

The flip-flop (FF) and lookup-table (LUT) usages are
shown in Figure 2, where TI implies the processor implements
timing instructions as described in Section III-D. Although the
percentage increase may appear large in some cases, these
numbers are from bare-minimum implementations and the
absolute cost is relatively low. As a processor’s area increases
with more complex functionality, such as supporting integer
division, a floating-point unit, different memory hierarchy, or
more peripherals, the relative percentage cost drops.

The resource difference between Base-1T and Base-4T-
RR shows the cost of fine-grained multithreading, with a 5%
increase in LUTs and a 42% increase in FFs. Although Base-
4T-RR removes forwarding paths and control logic for stalling
and flushing, it requires more multiplexing based on thread
IDs. There is also state that must be stored for each thread,
such as program counter and some control registers.



The resource difference between Base-4T-RR and
FlexPRET-4T shows the cost of adding flexible thread
scheduling. The 35% increase in LUTs and 10% increase in
FFs is caused by the thread scheduler, forwarding paths, and
additional control logic for stalling and flushing. The eight
thread versions, Base-8T-RR and FlexPRET-8T, are useful for
applications where more isolated threads are desired, but do
so at the cost of additional area.

It is important to notice that these modifications do not
add computational power, just allow it to be more efficiently
utilized for mixed-criticality task sets where guarantees must
be made. As a consequence, while a multicore system of
Base-1T cores would provide more computational throughput
per area for many soft-real time task sets, the same may not
hold for mixed-criticality task sets. For a mixed-criticality task
set where hardware-based isolation guarantees are the con-
trolling constraint, fewer FlexPRET processors could provide
the same functionality of many more traditional processors—a
substantial area and power savings. For example, if four tasks
that require hardware-based isolation can execute on a single
FlexPRET-4T, then four Base-1T processors are not needed.

At first glance, adding the timing instructions described
in Section III-D to FlexPRET-4T looks costly, with a 79%
increase of FFs and a 10% increase of LUTs. The main source
is supporting delay until and exception on expire instructions,
where two 64-bit expiration times need to be stored for each
thread and compared to the current time every cycle. This
additional cost could be reduced by roughly half if absolute
time is reduced from 64-bits to 32-bits, but rollover becomes
an issue if any time interval is on the order of seconds.
In practice, FlexPRET could use less bits for time and use
software to handle larger time intervals to reduce area, but we
showed the 64-bit version because it is worst-case for area.
On most microcontrollers, timers are implemented outside the
processor and similar area would be required to achieve the
same precision and flexibility.

C. Demonstration of Hardware-Based Isolation and Efficient
Resource Utilization

A simple mixed-criticality example with four periodic
tasks, τA, τB , τC and τD, was simulated on FlexPRET
as a more concrete demonstration of FlexPRET providing
hardware-based isolation and efficient resource utilization.
Although the FPGA implementation is useful for evaluating
correctness, feasibility, and area costs, our cycle-accurate sim-
ulator is useful for varying configurations and monitoring the
timing behavior of each task. This example simulates tasks
running on a 100MHz FlexPRET-4T with a 32kB I-SPM and
32kB D-SPM, a configuration that would not be unreasonable
for a soft-core or ASIC implementation.

The task identifiers A,B,C,D also correspond to critical-
ity levels from highest to lowest, with A and B considered
hard real-time tasks and C and D soft real-time tasks. Each
task executes on its own thread, so each thread may be referred
to by the task it executes. Each task’s thread ID, initial thread
mode, period (Ti), deadline (Di), and worst-case execution
cycles for each scheduling frequency (Ei,1, Ei,1/2, Ei,1/3+)
are shown in Table IIa.

Task Thread
ID

Thread
Mode

Ti, Di

(ms)
Ei,1

(∗105)
Ei,1/2

(∗105)
Ei,1/3+

(∗105)
τA 0 HA 12 4.00 3.65 3.45
τB 1 HA 6 0.50 0.45 0.43
τC 2 SA 12 4.80 4.69 4.59
τD 3 SA 6 1.00 0.93 0.86

(a) The task set

D D S S 0(τA) 2(τC) 1(τB) 0(τA)

(b) The slots control register

TABLE II: A simple mixed-criticality example

The WCET Ci depends on the worst-case execution cycles
Ei,x and the frequency of the thread f ∗ x (f = 100MHz
is the frequency of the processor), where C = Ex/(f ∗ x).
For example, if τA executes every processor cycle (x = 1) it
would take 4 ∗ 105/(100 ∗ 106Hz) = 4ms to complete, and if
it executed τA every other processor cycle (x = 1

2 ), it would
take 3.65 ∗ 105/(100 ∗ 106Hz ∗ 1

2 ) = 7.3ms to complete.

One of the properties of FlexPRET is the number of cycles
required to complete a task can depend on the scheduling
frequency, as more cycles can be wasted at higher scheduling
frequencies to prevent hazards. To account for this varia-
tion in execution cycles, each task iterates a program from
the Mälardalen benchmark suite a fixed number of times
to reach the value of Ei,1 specified in Table IIa, and the
values of Ei,1/2 and Ei,1/3+ are then measured. The values
of Ei,1 are contrived to highlight properties. Tasks τA and
τB use statemate (generated automotive controller), τC uses
jfdctint (discrete-cosine transformation), and τD uses insertsort
(sorting algorithm). Inputs are always the same, so each job
(iteration of the task) takes the same number of cycles. Periodic
release of each task is simple: after the task completes a delay
until instruction prevents the thread from being scheduled until
the next period starts.

The schedule set by the slots control register is shown in
Table IIb. Task τA executes every 3rd processor cycle, τB every
6th processor cycle, τC every 6th processor cycle. Recall that
if a task does not need to use the cycle or the slot is marked as
S, that cycle is used by active SRTTs in a round-robin fashion,
potentially τC and τD in this case. Even though τC is a soft-
real time task, it is given a scheduling slot in order to execute
more frequently than τD because it requires higher processor
utilization.

Figure 3 shows execution traces for a single hyperperiod
(t = 12) for different situations on FlexPRET-4T. The horizon-
tal axis is time and the vertical axis is one iteration through the
slots control register, with the value of each slot in parentheses.
Figure 3a shows normal operation, where all tasks meet their
deadlines. The first job of both τA and τB finishes before
the deadline and the remaining allocated cycles are shared by
active SRTTs, which means τC and τD until τD completes.
Note that this task set would not even be schedulable on Base-
4T-RR because τA and τC each require more than 1/4 of
the processor cycles to meet their deadlines, which cannot be
provided in four thread round-robin.

Figure 3b shows an error case where τD completes immedi-
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(c) FlexPRET-4T with error: τD executes infinitely.
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Fig. 3: FlexPRET-4T demonstrating hardware-based isolation
and resource utilization efficiency.

ately, and Figure 3c and shows an error case where τD executes
infinitely. Their cause is not important, these two extremes
are just to demonstrate isolation of HRTTs. Regardless of the
operation of τD, the timing behavior of τA and τB , the most
critical tasks, is identical. When τD finishes immediately, τC
executes more frequently and finishes sooner than in normal
operation. When τD is in an infinite loop, τC takes slightly
longer but still meets its deadline.

D. Case Study: Avionics Mixed-Criticality System

To demonstrate a possible methodology for mapping and
scheduling a mixed criticality task set on FlexPRET, we
simulated a task set from Vestal’s influential paper on mixed-
criticality scheduling [1]. The abstract workload contains 21
tasks and is derived from a time-partitioned avionics systems
at Honeywell. The allocated execution time numbers are used
to have a combined single-threaded processor utilization of
93%. We simulate execution time using the same method as
in the previous section; A and B criticality level tasks iterate
the statemate program, and C and D use either jfdctint or
insertsort. This example simulates tasks running on a 100MHz
FlexPRET-8T with a 128kB I-SPM and 128kB D-SPM.

Our approach is to isolate and over-allocate resources to
the hard-real time tasks (criticality levels A and B) and use
slack stealing to efficiently utilize the processor for soft-real
time tasks (criticality levels C and D), similar to reservation-
based scheduling used in commercial RTOSs for mixed-
criticality systems [29], but with hardware-based isolation
guarantees. Each task’s thread ID, period (Ti), deadline (Di),
and worst-case execution cycles for each scheduling frequency
(Ei,1, Ei,1/2, Ei,1/3+) are shown in Table IIIa, and the slots
control register is shown in Table IIIb.

Tasks τA1−τA3 each execute on their own HRTT, isolating
each task from all other tasks. Once a task completes, the delay
until instruction is used to wait until the next period release.
Each are given a scheduling frequency of 1/8 because this
is sufficient for meeting respective deadlines; over-allocation
is acceptable because delay until will donate cycles to other
threads. Complete hardware-based isolation and lack of pre-
emption simplifies WCET analysis and provides the highest
level of confidence.

Due to resource constraints, tasks τB1 − τB7 cannot each
execute on their own HRTT, but they can still be isolated from
the A, C, and D criticality level tasks. Tasks τB1 − τB3 are
mapped to one HRTT and are able to use use a non-preemptive
static schedule to meet their respective deadlines at scheduling
frequency 1/4; tasks τB4 − τB7 are mapped to another HRTT
and use preemptive rate-monotonic software scheduling to
meet their respective deadlines at schedule frequency 1/4.
Different scheduling algorithms could be used, but we selected
the simplest ones that provided schedulability for these task
sets to provide the highest level of confidence. Both HRTT
will donate cycles when not needed: the static schedule uses
delay until until next periodic release, and the rate-monotonic
scheduler uses thread sleep until an exception on expire occurs
to release tasks.

Even though τC1, τD1 − τD9 could be mapped to one
SRTT, we use remaining thread resources and split between
two SRTTs to improve thread throughput. Each SRTT uses
a preemptive EDF scheduler for simplicity, although other
scheduling algorithms could also be used. Exception on expire
is used to add new jobs to a priority queue sorted by deadline,
and the scheduler is run whenever a job finishes or jobs are
added, possibly preempting an executing job. Despite not being
allocated a slot in the schedule, slack stealing from the over-
allocation of cycles to the HRTTs of the A and B criticality
level tasks is enough to meet all deadlines in this example.

Figure 4 shows execution traces for a single hyperperiod
(t = 200). Each subplot is for a different thread and the
rectangles show when the jobs of each task are executing.
Whenever the job is preempted, the rectangle is a lighter shade
with a dotted line. Up arrows are release times and down
arrows are deadlines for each task. Each job of a task always
takes the same number of cycles. For tasks τA1 − τA4 and
τB1− τB7, the threads are isolated so each job takes the same
amount of time. Notice that the execution times of tasks τC1

and τD1 − τD9 vary, this is because the number of cycles
donated by τA1 − τA4 and τB1 − τB7 varies as well.

V. RELATED WORK

This paper is most closely related to two areas of research:
timing predictable processors and software-based scheduling
for mixed-criticality systems.

A. Timing Predictable Processors

Berg et al. [30] and Heckmann et al. [31] identified the ar-
chitectural properties that complicate WCET analysis and pro-
posed design principles that facilitate it. Edwards and Lee [32]
went further to argue for precision time (PRET) machines that
incorporate time into the abstraction levels, making temporal
behavior as important as logical functionality. Researchers



Task Thread
ID

Thread
Mode

Ti, Di

(ms)
Ei,1

(∗105)
Ei,1/2

(∗105)
Ei,1/3+

(∗105)
τA1 0 HA 25 1.10 1.00 0.95
τA2 1 HA 50 1.80 1.64 1.55
τA3 2 HA 100 2.00 1.82 1.72
τA4 3 HA 200 5.30 4.83 4.56
τB1 4 HA 25 1.40 1.27 1.20
τB2 4 HA 50 3.90 3.54 3.34
τB3 4 HA 50 2.80 2.54 2.40
τB4 5 HA 50 1.40 1.28 1.21
τB5 5 HA 50 3.70 3.37 3.19
τB6 5 HA 100 1.80 1.64 1.55
τB7 5 HA 200 8.50 7.75 7.32
τC1 6 SA 50 1.90 1.77 1.63
τD1 6 SA 50 5.40 5.03 4.65
τD2 6 SA 200 2.40 2.33 2.28
τD3 6 SA 50 1.30 1.26 1.23
τD4 6 SA 200 1.50 1.45 1.42
τD5 7 SA 25 2.30 2.14 1.98
τD6 7 SA 100 4.80 4.65 4.30
τD7 7 SA 200 13.00 12.70 12.44
τD8 7 SA 100 0.60 0.57 0.56
τD9 7 SA 50 2.40 2.33 2.28

(a) The task set

5 3 4 2 5 1 4 0

(b) The slots control register

TABLE III: A case study on an avionics mixed-criticality
system

have proposed many timing predictable processor for real-time
systems; each processor making different trade-offs to target an
application space. The SPEAR processor by Delvai et al. [33]
is a 16-bit, 3-stage processor that has constant-time instructions
by removing caches and assuming single-path programming.
Schoeberl’s Java Optimized Processor (JOP) [34] predictably
executes Java bytecode by translating it to microcode for a sim-
ple 3-stage pipeline. To execute a program with synchronous
semantics, Andalam’s ARPRET [35] achieves predictability by
customizing an existing soft-core processor.

PTARM [15] by Liu et al. and XMOS X1 [16] are the
most closely related processors to FlexPRET. Both are fine-
grained multithreaded 5-stage RISC processors that require at
least four threads (exactly four threads for PTARM) to be
round-robin interleaved in the pipeline; cycles are wasted if
there are fewer than four active threads, and a single thread
can only be executed at most once every four cycles. PTARM
is better suited for hard-real time tasks because all threads have
a constant scheduling frequency. Conversely, XMOS is better
suited for soft-real time tasks because inactive tasks can be
left out of round-robin scheduling, but scheduling frequency
depends on the maximum number of simultaneously active
threads.

B. Software-based Scheduling

Software based scheduling for mixed-criticality software is
typically either reservation-based or priority-based [2]. Rese-
rvation-based is best demonstrated by the ARINC 653 standard
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Fig. 4: FlexPRET-8T executing a mixed-criticality avionics
case study.

used in integrated modular avionic (IMA) systems [36]. Crit-
ical tasks are guaranteed segments of time, and most RTOSs
will steal cycles for other tasks if a task finishes early, as done
by Wind River’s VxWorks 653 RTOS [29].

Using priority-based preemptive scheduling for mixed-
criticality systems was first proposed by Vestal [1]. Since
then, there has been much work addressing scheduling the-
ory of mixed-criticality systems, as recently summarized by
Burns [11]. Scheduling sporadic tasks was first addressed
by Baruah and Vestal [8], and Niz et al. [9] presented a
scheduling algorithm that protects high-criticality tasks from
low-criticality tasks, even if a nomimal WCET is overrun.
More recently, Mollison et al. [10] proposed an approach for
multicore platforms. Although FlexPRET does not implement
priority-based scheduling in hardware, it can still be used as a
platform for these algorithms: either scheduling tasks within a
single thread or changing the thread scheduling.

VI. CONCLUSIONS AND FUTURE WORK

Hardware-based isolation requires executing each task on
a separate computational component, which could be a pro-
cessor, core, or hardware thread, and typically results in
underutilization of hardware resources. FlexPRET uses fine-
grained multithreading and flexible thread scheduling to pro-
vide hardware-based isolation and predictability to HRTTs, but
also allows SRTTs to use any cycle not needed by an HRTT.

We consider FlexPRET a key contribution to a precision
timed infrastructure [24], where languages, compilers, and
architectures allow the specification and preservation of timing



semantics. The next steps in that direction are tool support for
formal verification of hard real-time tasks and investigating
how languages can leverage FlexPRET’s properties. From the
hardware perspective, the presented architectural techniques
could be applied to other processors, or FlexPRET could be
a core in a multicore system that uses a predictable network-
on-a-chip for communication.

This type of hardware platform presents an interesting new
scheduling problem. Not only do tasks need to be mapped
and scheduled on threads, but the logical execution frequency
of each thread can be controlled by modifying the slots
control register during run-time. How to optimally exploit this
flexiblity to control resource distribution amongst SRTTs while
still maintaining hardware-based isolation for HRTTs is an
open scheduling problem.
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