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Abstract

Major Internet-based service providers rely on high-throughput web-object caches to serve mil-

lions of daily accesses to frequently viewed web content. A web-object cache’s ability to reduce

user access time is dependent on its replacement algorithm and the cache hit rate it yields. In this

report, I present NbQ-CLOCK, a novel, lock-free variant of the Generalized CLOCK algorithm

particularly suited for web-object caching. NbQ-CLOCK is based on an unbounded non-blocking

queue with no internal dynamic memory management, instead of the traditional circular buffer.

My solution benefits from Generalized CLOCK’s low-latency updates and high hit rates, and its

non-blocking implementation makes it scalable with only 10 bytes per-object space overhead.

I compare the solution to existing algorithms, including Intel’s Bag-LRU, and demonstrate that

NbQ-CLOCK’s fast update operation scales well with the number of threads and in a in-memory

key-value store prototype, NbQ-CLOCK offers an overall throughput improvement of as much as

9.20% over the best of the other algorithms. In addition, NbQ-CLOCK’s hit rate exceeds the next

best algorithm’s hit rate by as much as 1.40%.

1 Introduction

Minimizing the service response time experienced by users is very important for global-scale

Internet-based service providers, such as Amazon, Facebook, Google, Samsung, and Twitter. Ser-

vice response time is a performance metric those providers optimize to differentiate themselves

from the competition in order to retain existing users and attract new ones.

One way to reduce service response times is with web-object caching. This technique tem-

porarily stores recently or frequently accessed remote data (e.g., popular photos, micro web logs,

and web pages) in a nearby location to avoid slow remote requests when possible. It is used in

search engines and content delivery networks, as well as (locally) in web browsers.

Web-object caches are often implemented as key-value stores. In general, key-value stores

provide access to unstructured data through read and write operations, where each unique key

maps to one data object. For web-object caches, URLs are often the keys and web objects the



values. Popular key-value stores used for web-object caching operate purely in memory; a prime

example is Memcached [1] (summarized in Section 2). In key-value stores of this type, frequently

accessed data items are stored in cache servers’ volatile RAM. By servicing the cache hits out of

main memory, these accesses can have low round-trip times. Only object requests that miss in the

cache are routed to the slower, non-volatile storage layer; in this way, the key-value store mitigates

the load on the storage layer. Distributed in-memory key-value stores, where cached contents are

distributed across a cluster of machines, are crucial for serving frequently accessed data to very

large number of clients with a satisfactory end-to-end latency.

Inherent to every cache is the eviction problem: When the cache is full, the system needs

to decide which items to evict to make room for new incoming items. The approach used to evict

items in a web-object cache can dramatically impact the performance of the Internet-based services

the cache assists, and that influence on service performance is characterized by the cache hit rate.

Replacement algorithms are devised to tackle the eviction problem. In the context of web-

object caching, a replacement algorithm’s API consists of four operations: insert adds a new

item to the replacement data structure, delete removes an item from the replacement data struc-

ture, update notifies the replacement algorithm of an existing item that has been accessed, and

evict selects one or more cached items for eviction.

A recent study of Facebook’s Memcached traces [3] shows that large-scale key-value store

workloads are read-heavy, and key and value sizes vary. Hence, a replacement algorithm for an in-

memory key-value store should support variably-sized objects and allow for low-latency, scalable

updates and evictions, as well as high cache hit rates.

The most common replacement algorithms are the Least Recently Used (LRU) algorithm and its

derivatives. LRU, as its name implies, evicts the least recently accessed item. Its derivatives (e.g.,

pseudo-LRU and CLOCK) trade-off hit rate in favor of lower space complexity or implementation

cost.

The classic LRU as well as most variants (e.g., Bag-LRU [18]) are implemented using a linked

list. When an item is accessed, it is moved in the list(s) to indicate its recent access. LRU and

its variants typically use locks to control the access of concurrent operations that manipulate the



list(s). Locks can severely limit the scalability of updates and evictions, and increase their latency.

Thus, LRU variants often incorporate techniques to mitigate lock contention.

CLOCK [6] is a well-known memory-page replacement algorithm. It maintains a circular

buffer of reference bits, one for each memory page, and a buffer pointer (“clock hand”). When a

page is referenced, its reference bit is set to indicate a recent access. To evict a page, the clock

hand sweeps through the buffer and resets each non-zero bit it encounters, until it finds an unset bit;

then, the corresponding page is evicted. Unfortunately, CLOCK’s hit rate can suffer because with

a single bit reference it cannot differentiate access frequency from access recency (i.e., hot items

and those accessed once per clock sweep appear identical). To solve this problem, Generalized

CLOCK [17] replaces each reference bit with a counter. A recent access is indicated by a non-zero

counter, and access frequency is indicated by the value of the counter.

While their fast update path is ideal for read-mostly web-object caches, CLOCK and its variants

assume a fixed number of cache entries, which is not the case in the web-object caching domain.

This limitation renders CLOCK and existing variants impractical in this domain.

In this report, I present Non-blocking Queue-based CLOCK (NbQ-CLOCK). It is a novel,

lock-free variant of the Generalized CLOCK replacement algorithm particularly suited to caches

containing a variable number of items with different sizes. To the best of my knowledge, prior to

this work no CLOCK implementation existed that could effectively handle such dynamically-sized

caches, which are essential to web-object caching.

NbQ-CLOCK, described in Section 4, circulates the cached items through the eviction logic,

instead of iterating over the items like prior CLOCK variants. The efficient and scalable circulation

of items is enabled by the use of a non-blocking concurrent queue, which by being unbounded also

allows NbQ-CLOCK to handle caches with variably-sized items. NbQ-CLOCK’s other appealing

attributes are simplicity and low memory-usage overhead.

In Section 5, I empirically evaluate NbQ-CLOCK against other replacement algorithms appli-

cable to Memcached, including Intel’s Bag-LRU [18]. I focus on Memcached [1] because it is

widely deployed and has recently received considerable attention from industry and the research

community [7, 16, 14, 18, 11, 12]. I demonstrate that NbQ-CLOCK’s low update latency scales
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Figure 1: Memcached side-cache deployment.

well with the thread count, and that it exhibits better throughput scaling than the other algorithms.

Moreover, when used in a in-memory key-value store prototype, NbQ-CLOCK offers an improve-

ment on the system’s throughput of as much as 9.20% over the best of the other replacement

algorithms. I also show that NbQ-CLOCK’s cache hit rates exceed the state-of-the-art by as much

as 1.40%, a modest relative margin that can have large impact on global Internet-based services

that process billions of requests per day.

2 An Overview of Memcached

Memcached [1, 16, 2] is a widely deployed web-object caching solution. Currently used at Face-

book, Twitter, YouTube, and Zynga, this open-source in-memory key-value store consists of a hash

table coupled with a replacement algorithm. Memcached is typically deployed in a “side-cache”

configuration, depicted in Figure 1. In this configuration end users, via client devices (1), send

requests to the front-end web servers (2). The front-end servers then attempt to resolve each end-

user request from one or more local Memcached servers (3) by, in turn, sending GET requests to

them. The front-end servers perform protocol-bridging from the web request to the Memcache

protocol, and may also perform Memcached-server selection based on the requested object key. If

a cache miss occurs, the front-end server handling the end-user request forwards it to the back-end

database servers (4) that carry out the computation and IO operations to produce the result. On



receiving the result, the front-end server both sends the answer to the client and updates the cache

by issuing a SET request to the appropriate Memcached server. Memcache protocol includes addi-

tional semantics, such as lifetime of cached entries and explicit modification (i.e., REPLACE and

DELETE requests) of key-value pairs.

On a single server node, a Memcached instance consists of a number of worker threads that

serve hash table requests. These include GET, DELETE, ADD, REPLACE, and SET (which replaces

a data item if it exists in the cache; otherwise, it adds a new item). Key and value sizes can vary, and

Memcached utilizes multiple slab allocators to optimize for memory efficiency and to minimize

fragmentation.

An analysis of Facebook’s Memcached traces over a period of several days [3] revealed the

following about large-scale key-value store workloads. They are read-heavy, with a GET/SET

ratio of 30:1, and request sizes are seen as small as 2 bytes and as large as 1 Mbytes.

3 Replacement Algorithms for Memcached

In this section, I describe two existing replacement algorithms used in Memcached [1]: the algo-

rithm shipped with its stock version, and Bag-LRU [18]. In addition, I present Static CLOCK,

a conceivable, but ineffective extension to CLOCK that statically over-provisions for the largest

number of items that an instance of an in-memory key-value store (e.g., Memcached) can possibly

accommodate in order to support variably-sized objects. I discuss the drawbacks of Static CLOCK

in this section and experimentally evaluate the three algorithms against NbQ-CLOCK in Section 5.

3.1 Memcached LRU

The replacement algorithm in the stock version of Memcached is a per-slab class LRU algorithm.

Every item in Memcached has a corresponding item descriptor, which contains a pointer for the

LRU list. This algorithm uses a doubly-linked list to support arbitrary item removals, which is

important for DELETE requests and expired items. A global cache lock protects the LRU list from

concurrent modifications, and fine-grained locks protect the hash table. Lock contention on the
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Figure 2: Bag-LRU’s data structure [18].

global lock greatly impairs intra-node scalability, though this was not a concern at the time of

Memcached’s initial development. Instead, the developers sought a simple mechanism to ensure

thread-safety.1 This synchronization solution is clearly unscalable, and there have been many

attempts at solving it.



3.2 Bag-LRU

Memcached’s poor scalability within the node motivated the development of the Bag-LRU replace-

ment strategy [18]. Bag-LRU is an LRU approximation designed to mitigate lock contention. Its

data structure comprises a list of multiple timestamp-ordered “bags”, each containing a pointer

to the head of a singly-linked list of items (see Figure 2). The developers leveraged both pointer

variables from Memcached’s LRU for Bag-LRU; the next pointer serves the same purpose, but the

back pointer points to the item’s bag. Bag-LRU keeps track of the two newest bags (needed for

updates) and the oldest bag (needed for evictions).

By design, Bag-LRU enables low-latency, scalable updates and supports parallel eviction op-

erations. Bag-LRU’s update operation consists of writing the newest bag’s address to the item’s

back pointer and updating the item’s timestamp. If the item resides in an older bag’s linked list, it

is the job of a cleaner thread to migrate the item to the list indicated by its back pointer. If the back

pointer indicates the newest bag, the cleaner thread instead places the item in the second-newest

bag to avoid contention with concurrent insert operations.

The lock-free insert operation places the item in the newest bag’s list. To do so, a worker

thread repeatedly attempts to append the item to the tail of the list using the atomic compare-and-

swap (CAS) operation. If the CAS fails, one or more other threads successfully appended to the

list, so the worker thread traverses the bag’s list until it finds a NULL next pointer and retries.

An eviction requires grabbing a global eviction lock to determine the oldest bag with items in

it, and then locking that bag. Once the bag is locked, the evicting thread chooses the first item

available to evict. Bag-LRU requires locks for evictions and deletes to prevent the cleaner thread

from simultaneously removing items, which can result in a corrupted list.

3.3 Static CLOCK

There are two ways to extend CLOCK in order to support dynamically-sized objects. These are:

1Brad Fitzpatrick, Memcached’s original developer, built it with a “scale out, not up” philosophy [8], at a time

when multi-core chips were just entering the market. Scale-up, however, is important for Memcached deployments to

rapidly serve web-objects stored on the same node in parallel.



• Statically pre-allocate a bit buffer that is large enough to support the worst-case (i.e., most)

number of items. I refer to it as Static CLOCK.

• Replace the underlying data structure with a list. This is the alternative I pursue in this report

and the solution is described in Section 4.

For completeness, I discuss and evaluate Static CLOCK, and show that the list-based approach is

much more effective for web-object caching.

Static CLOCK is more complex than a pre-allocated bit buffer. Figure 3 depicts the data struc-

tures needed for Static CLOCK. In the likely case that the cache fills before all bit-buffer entries are

used, the clock-sweep procedure needs some mechanism to differentiate used and unused buffer

entries. Likewise, this approach requires a way to map from a bit-buffer entry to the corresponding

item descriptor. Both problems can be solved with a pre-allocated pointer buffer, with one pointer-

buffer entry per bit-buffer entry. An invalid bit-buffer entry is then indicated by a NULL value in

the pointer-buffer entry. Furthermore, each item’s descriptor contains the index of its correspond-

ing entries into the two buffers to provide direct access to the entries for the update and delete

operations. In other words, the index in the item’s descriptor acts as a “back pointer” to the buffer

entries. In total, the replacement strategy overhead is 65 bits times the worst-case number of items,

plus 8 bytes for every cached item’s index (assuming 8-byte pointers).

Static CLOCK’s operations are as follows:

• insert searches for a NULL entry in the pointer buffer, then fills the pointer entry with

the item descriptor’s address using an atomic CAS instruction. If the CAS succeeds, the

insert operation saves the item’s array index in the item descriptor; otherwise, insert

finds a different NULL entry and retries.

• update sets the item’s reference bit, using the index stored in the item descriptor.

• evict performs the classic clock-sweep procedure – i.e., sweeping the clock hand along the

reference-bit buffer, resetting each reference bit until an unset bit is encountered – but only

on valid items (with a non-NULL pointer entry). When an item with a unset reference bit is

found, the evict operation sets the item’s pointer entry to NULL using an atomic CAS. If

the CAS succeeds, the item is evicted; otherwise, the operation continues the clock-sweep

procedure.
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uses a buffer of item-descriptor pointers to indicate whether a given CLOCK entry is occupied by an item.

An entry in the buffer of pointers is non-NULL if and only if the CLOCK entry is in use, in which case the

entry points to the item’s descriptor.

• delete uses the index stored in the item’s descriptor to find the item’s pointer-buffer entry

and atomically sets the entry to NULL.

4 NbQ-CLOCK

Non-blocking Queue-based CLOCK (NbQ-CLOCK) is a novel lock-free variant of the Gener-

alized CLOCK replacement algorithm [17]. The primary difference between NbQ-CLOCK and

previous CLOCK variants is that it circulates the cached items through the eviction logic (see Fig-

ure 4), instead of iterating over the items (by moving the clock hand). The efficient and scalable

circulation of items is enabled by the use of a non-blocking concurrent queue, as opposed to the

traditional statically allocated circular buffer in prior CLOCK variants. Moreover, the use of an

unbounded queue allows NbQ-CLOCK to handle a dynamically-sized cache (containing variable

number of items with different sizes), which is key for web-object caching (e.g., Memcached [1]).

NbQ-CLOCK’s non-blocking queue is based on a singly-linked list, and its algorithmic details
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are presented next in Section 4.1. NbQ-CLOCK stores bookkeeping information in each linked-list

node; a node includes:

• a reference counter,2

• an atomic delete marker, and

• a pointer to the next node.

In addition, each linked-list node contains a pointer to a unique data item (e.g., a key-value pair). I

also refer to these nodes as item descriptors.

NbQ-CLOCK maintains the traditional CLOCK interface and its operations are:

• insert pushes an allocated list node into the queue. The node’s reference counter is ini-

tialized to zero and the delete marker to false.

• update increments the node’s reference counter.
2or a reference bit for a non-blocking variant of the original CLOCK [6].



• delete removes an item from the queue. The non-blocking queue can only remove items

from the head of the queue, but web-object caches must support the ability to delete arbi-

trary objects. To support arbitrary object deletions, each item descriptor contains a “delete

marker”. This binary flag is set atomically and indicates whether the corresponding item is

deleted from the cache (e.g., as the result of a DELETE request for Memcached). During

the clock sweep operation, the worker thread frees the memory of any items whose delete

marker is set, regardless of the reference count value.

• evict pops the head of the queue, and if the node’s reference counter is zero or its delete

marker is set, evicts the item. If the item is not suitable for eviction, its reference counter is

decremented and it is recycled back into the queue.

Figure 4 depicts NbQ-CLOCK’s insert, delete, and evict operations.

As a performance optimization, the implementation of evict collects the popped items in a

linked list, and pushes the head of this list back onto the queue once an item is evicted. Such an op-

timization will deplete the queue if all reference counters are non-zero; therefore, one must limit the

size of such lists of popped items to a bound B, where B is at most (queue size / thread count)−
1. Then, the evict operation can perform at most d(number of items swept / B)e push op-

erations per sweep. The drawback of collecting popped items is that the resulting item ordering

after re-inserting in the queue may differ slightly from what existed prior to the sweep (particularly

if two or more threads are performing evict simultaneously), which causes the implementation

to deviate slightly from the original CLOCK algorithm. Regardless, I do not believe this has any

significant impact on NbQ-CLOCK’s hit rate.

My original implementation of update atomically modified the reference counters to ensure

that no increments or decrements were lost in a data race. If counter modifications are lost, NbQ-

CLOCK may make different replacement decisions than the original CLOCK algorithm. However,

the likelihood that a data race occurs is very small. In the x86 ISA, non-atomic increment and

decrement operations have the smallest possible data race window: a single assembly instruction.

Even if two or more threads execute that instruction simultaneously, a data race requires that they

update the same item’s counter in a cache containing possibly millions of items. Also, it is unclear

whether any different replacement decisions as a result of a race would be worse than CLOCK.



Further, atomic operations on the test platform (described in Section 5.1) incur a performance

overhead. In a single-threaded experiment, I measured an average of 167 CPU cycles to complete

non-atomic increments vs. 338 CPU cycles for their atomic counterparts. One source of this

extra latency is the hardware thread flushing its load and store queues before executing the atomic

operation [9]. Since the goal is a replacement algorithm with low-latency overhead, particularly

for updates, I choose to use non-atomic counter updates.

4.1 Underlying Non-blocking Queue

NbQ-CLOCK is operates on top of a non-blocking concurrent queue. Hence, the clock hand is not

an explicitly maintained variable, but instead is implicitly represented by the head of the queue.

For the non-blocking queue I use Michael and Scott’s algorithm [15], but I have made two

key optimizations. First, the queue performs no memory allocation in its init, push, or pop

operations. Second, NbQ-CLOCK’s push and pop methods operate on nodes, not the data items

themselves, so that one can re-insert a popped node at the tail with no memory management over-

head. These optimizations primarily benefit NbQ-CLOCK’s evict operation.

Listing 1 shows the queue’s init operation. The algorithmic details of the non-blocking

push and pop operations are presented in Listings 2 and 3, respectively.

1 void i n i t ( Node∗ node ) {

2 Q−>head = Q−> t a i l = node ;

3 Q−>head−>n e x t = NULL;

4 }

Listing 1: The init operation for the non-blocking queue.



1 void push ( Node∗ node ) {

2 node−>n e x t = NULL;

3 whi le ( t r u e ) {

4 t a i l = Q−> t a i l ;

5 n e x t = t a i l −>n e x t ;

6 i f ( t a i l != Q−> t a i l )

7 c o n t in u e ;

8 i f ( n e x t == NULL) {

9 i f (CAS(& t a i l −>next , nex t , node ) )

10 break ;

11 } e l s e {

12 CAS(&Q−> t a i l , t a i l , n e x t ) ;

13 }

14 }

15 CAS(&Q−> t a i l , t a i l , node ) ;

16 }

Listing 2: The push operation for the non-blocking queue.



1 Node∗ pop ( ) {

2 d a t a t h e a d d a t a ;

3 whi le ( t r u e ) {

4 head = Q−>head ;

5 t a i l = Q−> t a i l ;

6 n e x t = head−>n e x t ;

7 i f ( head != Q−>head )

8 c o n t i nu e ;

9 i f ( head == t a i l ) {

10 i f ( n e x t == NULL)

11 re turn NULL;

12 CAS(Q−> t a i l , t a i l , n e x t ) ;

13 } e l s e {

14 i f ( n e x t == NULL)

15 c o n t in u e ;

16 h e a d d a t a = next−>d a t a ;

17 i f (CAS(Q−>head , head , n e x t ) )

18 break ;

19 }

20 }

21 head−>d a t a = h e a d d a t a ;

22 re turn head ;

23 }

Listing 3: The pop operation for the non-blocking queue.

Michael and Scott’s algorithm consists of a singly-linked list of nodes, a tail pointer, and a head

pointer, where the head always points to a dummy node at the front of the list. Their algorithm

uses a simple form of snapshotting, in which the pointer values are re-checked before and during

the CAS operations, to obtain consistent pointer values.

One manner in which NbQ-CLOCK’s queue and Michael and Scott’s algorithm differ is their

queue performs a memory allocation on each push and a de-allocation on each pop. However,

if a clock sweep operation inspects n items before finding one suitable for eviction, it pops n list



nodes and pushes (n−1) list nodes – resulting in n memory frees and (n−1) memory allocations.

On the contrary, the non-blocking queue takes the memory management logic out of push and

pop so that every evict incurs the minimum amount of memory management overhead: a single

de-allocation. Further, most memory allocators use internal locking, in which case the queue is not

fully non-blocking. I avoid this problem by taking the allocators out of the queue.

I also remove the modification counters in Michael and Scott’s algorithm from the queue. The

modification counters protect against the ABA problem3, which can corrupt the queue’s linked

list. In the queue, there are four code paths that can experience the ABA problem: in Listing 2

between lines 4 and 12, in Listing 2 between lines 4 and 15, in Listing 3 between lines 4 and 17,

and in Listing 3 between lines 5 and 12. In each code path the ABA problem occurs if, between

reading the value that is compared in the CAS and executing the CAS, the compared value is cycled

around the queue such that the CAS succeeds, but the swapped value is no longer valid. However,

for sufficiently large queues, the likelihood that other threads can cycle through the queue in such

a short time is effectively zero. Since key-value stores typically cache millions of items, I choose

not to include modification counters in the NbQ-CLOCK queue.

5 Comparative Evaluation

In this section, I evaluate NbQ-CLOCK against the replacement algorithms Memcached LRU,

Bag-LRU, and Static CLOCK, presented in Section 3. I focus on update latency scalability, cache

hit rate, and throughput, which are performance metrics important to high-throughput, low-latency,

read-mostly web-object caches.

The version of NbQ-CLOCK used in the experiments implements the Generalized CLOCK

with 8-bit reference counters. The Static CLOCK, on the other hand, uses a reference bit per

data item. In order to reduce Static CLOCK’s memory-usage overhead, its reference-bit buffer is

implemented as a packed array. This is an attempt to make Static CLOCK competitive in terms of

the number of data items it can hold and thereby its hit rate. Consequently, since the test platform

does not support bit-granularity writes, Static CLOCK’s update operation is a read-modify-write

3The ABA problem can occur when, between reading a shared value of A and performing a CAS on it, another

thread changes the A to a B and then back to an A. In this case, the CAS may succeed when it should not.



In-Memory 
Key-Value Store 

Prototype

Threads

Replacement
Algorithm

Hash Table

Traffic
Generator

TX Channels

RX Channels

Traffic
Model

Figure 5: Structure of the test software platform.

loop using the atomic CAS instruction.

5.1 Experimental Setup

The test software platform consists of two C++ applications (see Figure 5):

• an in-memory key-value store prototype, which is Memcached-protocol conformant, and

• a client traffic generator, called KVTG.

The two applications run in Linux 3.2.0 and are connected through sockets, which enables both

local and distributed tests. For the purposes of this report, I run both applications on the same

machine and connect them via high-performance shared-memory channels [13].

The key-value store prototype primarily comprises a hash table and an item-replacement al-

gorithm, plus the logic necessary to receive and parse client requests and generate and transmit

responses. When in operation, each worker thread in the key-value store receives Memcached-

protocol conformant requests on a receive (RX) channel, performs the hash-table and replacement



operations necessary to satisfy the requests, and transmits the results across a transmit (TX) chan-

nel. The hash table uses a bucket hashing with 220 buckets and a fine-grained locking solution

with 212 locks (i.e., 28 buckets protected per lock). I design the prototype to work with any re-

placement algorithm that implements an interface (i.e., a C++ pure abstract class), whose virtual

methods include add item(), delete item(), update item(), and evict item(). In

this manner, I decouple the hash-table logic from the replacement algorithm.

The key-value store prototype, like Memcached [1], allows us to set the cache size, which is the

memory limit for keys, values, and item descriptors (including replacement-algorithm bookkeep-

ing). Also similar to Memcached, the prototype uses 7 slab allocators with sizes ranging in powers

of two from 64 B to 4 KB. While per-slab class replacement logic is necessary in a deployment

scenario,4 I restrict my focus to a single replacement instance by choosing object sizes that use a

single slab allocator.

KVTG is an application that generates Memcached-style requests (GET, SET, DELETE, etc.)

according to user-supplied probability distributions. It allows creation of traffic with similar sta-

tistical properties of realistic workloads in production environments (e.g., [3]). The aspects of

KVTG that are configured by distributions are key appearance frequency, request type, request

inter-departure time, and value size. KVTG uses a pair of transmit and receive threads for every

key-value store prototype worker thread. As KVTG’s companion, there is also a Python script

capable of generating sets of unique keys according to a given key-size distribution.

The experimental platform is a quad-socket server containing the Intel E5-4640 2.4GHz CPU

(8 cores, 16 hardware threads per socket) with 20 MB of last-level cache, and 128-GB DRAM

overall. To minimize performance variability across test runs, I disable Turbo Boost, redirect

interrupts to unused cores, fix each CPU’s frequency to 2.4 GHz, and affinitize software threads to

cores isolated from the Linux scheduler.
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Figure 6: Scalability of replacement algorithms’ update operation. Each data point is the average

update latency over 10 million GET requests.



5.2 Update Latency Scaling

Update latency is the time to update a cached item’s entry in the replacement data structure in the

event of a cache hit. It is crucial for server performance that this process – the common case in a

read-heavy workload – scales well.

In this experiment, I measure the average latency for the update operation of the replacement

algorithms under evaluation with the worker thread count varying from 1 to 16. Each worker thread

is pinned to a separate hardware thread, with the first eight threads on one CPU socket and the other

eight on another CPU socket. I choose to use one hardware thread per core to avoid performance

crosstalk with its sibling hardware thread.

The results are shown in Figure 6, with the y-axis (CPU cycles) plotted on a logarithmic scale.

Each data point in the figure was calculated over 10 million GET requests, with key frequency

determined by a power-law probability distribution. NbQ-CLOCK’s update latency scales sig-

nificantly better than Memcached LRU. Heavy contention for the global lock seriously hinders

LRU’s scalability, resulting in a 44.6x increase in mean update latency from 1 to 16 threads, while

NbQ-CLOCK’s mean update latency increases by 2.11x in that range.

Interestingly, Static CLOCK’s update performs worse than NbQ-CLOCK despite both being

CLOCK variants. The main reason is the read-modify-write loop with CAS in the update opera-

tion of the Static-CLOCK implementation. I observe that a single atomic CAS operation takes 483

cycles on average on the test platform for a single thread (see Figure 6), but the likelihood of CAS

failing and the loop repeating grows with the number of threads, resulting in the observed update-

latency increase. NbQ-CLOCK’s non-blocking update operation, requiring a single increment

operation, scales much better.

The Bag-LRU solution [18] scales well, but its average update latency is between 1.5x-1.73x

that of NbQ-CLOCK. This is because, besides writing the back pointer, the update operation

must also check if the newest bag is full and, if so, atomically update the global newest bag pointer.

4When a request causes an eviction, the evicted item must occupy enough dynamic memory to satisfy that request.

To find an appropriately-sized item quickly, each slab class must have its own replacement logic.



The performance dip between 8 and 9 worker threads occurs in all algorithms and appears to

be a memory-system artifact resulting from the 9th thread running on a second socket.

5.3 Cache Hit Rate

Another metric fundamental to a web-object cache is hit rate. Besides having lower-latency

update operations, this experiment shows that NbQ-CLOCK is also superior to the alternative

algorithms in terms of hit rate.

For this experiment, the key-value store prototype and traffic-generator program each run on

a single thread. The two threads are pinned to separate hardware threads on different cores of the

same CPU socket. As before (Section 5.2), I use one hardware thread per core to avoid performance

crosstalk between sibling hardware threads.

I set a memory limit of 1 GB for slab allocators for keys, values, item descriptors, and re-

placement algorithm overhead. The key space is modeled by a standard normal distribution of

30 million items and the requests are 70% GETs and 30% ADDs. The traffic generator issues 15

million SET requests during the “warm up” phase, in which no data is collected. In the subsequent

phase, 15 million requests are sent according to the key and request-type distributions and hit-rate

data is collected.

I evaluate a range of object sizes (key plus value) from 64 B to 4 KB. For a fair comparison

with NbQ-CLOCK and Bag-LRU, I count the memory allocated for the Static CLOCK’s circular

buffers against the memory limit.

Table 1 shows that NbQ-CLOCK’s cache hit rates exceed the next best algorithm by as much

as 1.40% (for 4 KB objects). While the relative improvement of NbQ-CLOCK’s hit rate over

Bag-LRU’s may not seem significant, its significance becomes evident when considering realistic

workloads of web-object cache systems. For instance, considering the workload characterization

of live Memcached traffic reported in [3], an additional 1.40% hits of 4.897 billion requests in a

day amounts to an additional 68.6 million cache hits per day. Furthermore, this workload charac-

terization was generated from five server pools within one of many datacenters; the impact of an

improved replacement algorithm compounds in a global Memcached deployment.



Object Size NbQ- Static

(bytes) CLOCK Bag-LRU CLOCK LRU

Number of items stored (millions)

64 5.263 5.113 4.503 5.089

128 4.006 3.919 3.336 3.905

256 2.711 2.671 2.198 2.664

512 1.647 1.632 1.306 1.629

1024 0.922 0.918 0.721 0.916

2048 0.491 0.489 0.380 0.489

4096 0.253 0.253 0.196 0.253

Hit rate

64 82.81% 82.34% 81.32% 82.29%

128 80.86% 80.76% 80.34% 80.76%

256 78.23% 78.13% 77.14% 78.13%

512 75.26% 75.26% 74.06% 75.25%

1024 72.20% 72.05% 70.90% 72.07%

2048 68.92% 68.32% 67.29% 68.32%

4096 65.60% 64.20% 63.32% 64.19%

Table 1: Number of stored data items and hit rate for a 1 GB cache, with a standard normal key

distribution, across various object sizes.



NbQ-CLOCK’s higher hit rates for small objects can be attributed to its superior space effi-

ciency. Compared to Bag-LRU, NbQ-CLOCK has six fewer bytes per item due to its use of one

pointer for its singly-, not doubly-, linked list, plus the single-byte reference counter and single-

byte delete marker. For smaller object sizes, NbQ-CLOCK’s bookkeeping space advantage is more

significant relative to the object size, allowing it to store more objects than the alternatives – 150

thousand more than Bag-LRU for 64 B objects, for instance.

Static CLOCK has poor space efficiency, despite my effort to improve this aspect in the imple-

mentation. The reason is that it requires a statically allocated reference-bit array and item pointer

array for every possible item in the cache. In this experiment, 249.67 MB (25% of the memory

limit) is dedicated to Static CLOCK’s arrays, and the hit rate suffers as a result.

For larger object sizes, the space overhead advantage of NbQ-CLOCK is insignificant with

respect to the object size – NbQ-CLOCK, Bag-LRU, and LRU can store nearly the same number

of items for 2 KB and higher. In the case of 4 KB objects, NbQ-CLOCK, Bag-LRU, and LRU can

only store a small fraction (0.84%) of the 30 million items (due to the 1 GB memory limit), so the

eviction algorithm’s intelligence is the main factor affecting the hit rate.

The reason for NbQ-CLOCK’s hit-rate advantage for 1 KB and larger objects is that NbQ-

CLOCK, as a variant of Generalized CLOCK, considers not only access recency, but also access

frequency. As a result, frequently accessed items tend to persist longer in a cache with Generalized

CLOCK than in one with LRU. This is particularly important when the number of key-value pairs

the cache can store is small compared to the total set of pairs, and key appearance is governed by

a power-law distribution (as in this experiment). For this distribution, a small fraction of the keys

appear much more frequently than the rest, and NbQ-CLOCK keeps the key-value pairs in that

fraction longer than the LRU variants do.

5.4 Throughput Scaling of Pure Replacement Algorithms

In this experiment, I evaluate the performance of NbQ-CLOCK, Memcached LRU, Bag-LRU, and

Static CLOCK in the best case – i.e., when the rest of the cache imposes no bottlenecks. This

allows one to accurately measure the scalability (or lack thereof) of each replacement algorithm in



the cache.

To remove all bottlenecks, I replace the hash table with a pre-allocated array of keys and item

descriptors (see Figure 5), and remove any dynamic memory management. Rather than allocating

memory for an item descriptor on each insert and freeing on each evict, I use a “present”

boolean flag to indicate whether or not the item is cached. Thus, if the cache operation is a GET on

a present (cached) item, then the worker thread performs update. And, if the cache operation is

an ADD on a new (uncached) item, the worker thread performs evict then insert. By designing

the benchmark in this way, I replicate the behavior of the hash table without any of its scalability

bottlenecks.

For this experiment, I define throughput as the time spent in the replacement algorithm oper-

ations divided by the number of requests (10 million). I use 70% GET and 30% ADD operations.

I model the key-appearance frequency with a power-law distribution for 10 million unique keys,

and use an object size of 128 B. I fill the cache during an initialization phase before running the

experiment. In addition, the key-value store prototype uses the same thread configuration as that

in the latency scaling experiment (Section 5.2).

The results are shown in Figure 7. Each cache stores between 33% and 40% of the 10 mil-

lion objects, depending on the replacement algorithm. By storing at least 1/3 of the keys whose

appearance is modeled by a power-law distribution, 91% of all GETs are successful. On the other

hand, successful ADDs - wherein the key does not already exist - occur the other 9% of the time.

NbQ-CLOCK, with its low-latency updates (276 cycles average for 16 threads), outperforms the

other replacement algorithms. The other algorithms perform as one would expect from Figure 6:

Bag-LRU performs better than Static CLOCK, and Memcached LRU scales poorly, particularly af-

ter crossing the socket boundary. As with the update latency scaling experiment in Section 5.2, the

performance dip between 8 and 9 worker threads appears to be a memory-system artifact resulting

from the 9th thread running on a second socket.
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Figure 7: Throughput scaling of the replacement algorithms when the in-memory key-value store imposes

no additional bottlenecks.



5.5 Throughput Scaling of an In-Memory Key-Value Store

While hit rate and update-latency scalability give important insight into the performance of a re-

placement algorithm, those pieces in isolation can only tell part of the story. To capture the effect

of a replacement algorithm on the performance of an in-memory key-value store, one must mea-

sure the entire system’s throughput. Unlike in the previous benchmark, the key-value store proto-

type is not fully optimized for scalability; there is lock contention in the hash table and memory-

management operations. Thus NbQ-CLOCK’s inherent advantages are hindered by the rest of the

cache.

For this experiment, I set a memory limit of 1 GB for slab allocators for keys, values, item

descriptors, and replacement algorithm overhead, and use an object size of 128 bytes. The key-

appearance frequency is modeled by a power-law distribution of 10 million keys and the requests

are 70% GETs and 30% ADDs. KVTG issues 40 million SET requests during the “warm up” phase

to ensure the cache is well populated; in this phase no data is collected. In the subsequent phase,

20 million requests are sent to each worker thread according to the key-appearance and request-

type distributions. I evaluate each replacement algorithm for up to 6 worker threads. For up to

4 worker threads the key-value store prototype uses the same thread configuration as that in the

latency scaling experiment (Section 5.2). However, for 5 and 6 worker threads, I pair a KVTG’s

transmit thread and a key-value store’s worker thread on sibling hardware threads.

The results are shown in Figure 8. As expected, there is much less differentiation in through-

put between the four replacement algorithms with the key-value store prototype. For one and two

worker threads, and again with five and six worker threads, there is little difference between the

algorithms. As opposed to the previous experiment, the latency for a single request is a function of

the replacement algorithm and the rest of the cache (i.e., the hash table and memory management).

Thus, for one and two worker threads, the performance difference among the algorithms is less

significant than in Figure 7. As the number of worker threads increases and the performance dif-

ference in the replacement algorithm grows, the throughput difference becomes more pronounced.

With four worker threads, NbQ-CLOCK’s throughput exceeds the next best by 9.20%. For five or

more worker threads the (unoptimized) cache does not scale, which is evident when comparing the

performance ceiling in Figure 8 with the lack thereof in Figure 7. Because the rest of the cache is

the limiting factor for five or more worker threads, I do not show results beyond six threads.
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6 Related Work

Nb-GCLOCK [19] is a non-blocking variant of the Generalized CLOCK algorithm intended for

memory-page replacement in operating systems. Nb-GCLOCK assumes a fixed (typically 4KB)

cache-object size, and as such is based on a statically allocated circular buffer. This assumption

typically does not hold for in-memory key-value stores (e.g., Memcached), where keys and values

have variable size, which makes Nb-GCLOCK unsuitable for most web-object caching scenarios.

MemC3 [7] is a Memcached implementation that uses CLOCK for its replacement algorithm.

However, MemC3 makes the (generally incorrect) assumption that the object size is fixed. Further,

MemC3 does not consider the possibility of slab class re-balancing, which requires either pre-

allocating a large enough CLOCK buffer for the worst case (i.e., re-balancing all memory to a

given slab) for every slab, or dynamic CLOCK buffer resizing. However, maintaining correctness

in the presence of dynamic CLOCK buffer resizing is impossible without introducing locks, and

statically pre-allocating the buffer introduces an unwieldy space overhead (discussed further in

Section 4).

Bag-LRU [18], discussed in Section 3.2, is a pseudo-LRU algorithm that divides the LRU list

into a list of 2 or more timestamp-ordered “bags”, each of which contains a linked list of item

descriptors. This replacement scheme optimizes for cache hits, which require a single non-atomic

write to update the item’s bag. Evictions are, however, serialized behind a bag lock for the oldest

bag. Further, the algorithm has a higher per-item memory overhead than NbQ-CLOCK, resulting

in less memory for cached items.

7 Conclusion

This report presents NbQ-CLOCK, a new replacement algorithm for web-object caches. This al-

gorithm’s performance exceeds state-of-the-art algorithms like Bag-LRU in terms of hit rate, items

stored, and overall system throughput. While NbQ-CLOCK’s hit rate was typically within 1% of

the alternative algorithms’ hit rates, a mere 1% improvement can have a large impact on global

Internet-based services that process billions of requests per day. Furthermore, NbQ-CLOCK’s



simplicity is beneficial when developing a multi-threaded key-value store.

In the future, I plan to optimize and improve the scalability and performance of the key-value

store prototype. Doing so will allow us to compare replacement algorithms (as in Section 5.5) with

higher thread counts, and determine the relative contribution of the replacement algorithms to the

latency of a higher-performing system. The first two improvements are to replace the prototype’s

fine-grained lock-based hash table with a non-blocking variant and to use scalable slab allocators.

Another future direction for this work is to adapt higher-performance CLOCK variants (e.g., [10,

5, 4]) to web-object caching with the ideas presented in this report. CLOCK has well-documented

deficiencies that these variants overcome. For instance, they can cope with scans, self-tune to a

given workload, better measure access frequency, and in general outperform CLOCK.

Finally, I also believe NbQ-CLOCK could be used in other domains, especially when the cache

size and object size vary. I plan to explore these opportunities in the future.
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