
Reconstructing Householder Vectors from Tall-Skinny

QR

Grey Ballard
James Demmel
Laura Grigori
Mathias Jacquelin
Hong Diep Nguyen
Edgar Solomonik

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-175

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-175.html

October 26, 2013



Copyright © 2013, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
We would like to thank Yusaku Yamamoto for sharing his slides from SIAM
ALA 2012 with us. We also thank Jack Poulson for help configuring
Elemental. Solomonik was supported by a Department of Energy
Computational Science Graduate Fellowship, grant number DE-FG02-
97ER25308. This research used resources of the National Energy
Research Scientific Computing Center (NERSC), which is supported by the
Office of Science of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231. We also acknowledge DOE grants DE-SC0004938,
DE-SC0005136, DE-SC0003959, DE-SC0008700, DE-SC0010200, AC02-
05CH11231, and DARPA grant
HR0011-12-2-0016.



Reconstructing Householder Vectors from Tall-Skinny QR

October 26, 2013

Grey Ballard1, James Demmel2, Laura Grigori3, Mathias Jacquelin4, Hong Diep Nguyen2, and Edgar
Solomonik2

1Sandia National Laboratories, Livermore, USA
2University of California, Berkeley, Berkeley, USA

3INRIA Paris - Rocquencourt, Paris, France
4Lawrence Berkeley National Laboratory, Berkeley, USA

Abstract

The Tall-Skinny QR (TSQR) algorithm is more communication efficient than the standard House-
holder algorithm for QR decomposition of matrices with many more rows than columns. However,
TSQR produces a different representation of the orthogonal factor and therefore requires more software
development to support the new representation. Further, implicitly applying the orthogonal factor to
the trailing matrix in the context of factoring a square matrix is more complicated and costly than with
the Householder representation.

We show how to perform TSQR and then reconstruct the Householder vector representation with
the same asymptotic communication efficiency and little extra computational cost. We demonstrate
the high performance and numerical stability of this algorithm both theoretically and empirically. The
new Householder reconstruction algorithm allows us to design more efficient parallel QR algorithms,
with significantly lower latency cost compared to Householder QR and lower bandwidth and latency
costs compared with Communication-Avoiding QR (CAQR) algorithm. As a result, our final parallel
QR algorithm outperforms ScaLAPACK and Elemental implementations of Householder QR and our
implementation of CAQR on the Hopper Cray XE6 NERSC system.

1 Introduction

Because of the rising costs of communication (i.e., data movement) relative to computation, so-called
communication-avoiding algorithms—ones that perform roughly the same computation as alternatives
but significantly reduce communication—often run with reduced running times on today’s architectures.
In particular, the standard algorithm for computing the QR decomposition of a tall and skinny matrix
(one with many more rows than columns) is often bottlenecked by communication costs. A more recent
algorithm known as Tall-Skinny QR (TSQR) is presented in [1] (the ideas go back to [2]) and overcomes this
bottleneck by reformulating the computation. In fact, the algorithm is communication optimal, attaining
the lower bound for communication costs of QR decomposition (up to a logarithmic factor in the number
of processors) [3]. Not only is communication reduced in theory, but the algorithm has been demonstrated
to perform better on a variety of architectures, including multicore processors [4], graphics processing units
[5], and distributed-memory systems [6].

The standard algorithm for QR decomposition, which is implemented in LAPACK [7], ScaLAPACK [8],
and Elemental [9] is known as Householder-QR (given below as Algorithm 1). For tall and skinny matrices,
the algorithm works column-by-column, computing a Householder vector and applying the corresponding
transformation for each column in the matrix. When the matrix is distributed across a parallel machine,

1



this requires one parallel reduction per column. The TSQR algorithm (given below as Algorithm 2), on
the other hand, performs only one reduction during the entire computation. Therefore, TSQR requires
asymptotically less inter-processor synchronization than Householder-QR on parallel machines (TSQR also
achieves asymptotically higher cache reuse on sequential machines).

Computing the QR decomposition of a tall and skinny matrix is an important kernel in many contexts,
including standalone least squares problems, eigenvalue and singular value computations, and Krylov
subspace and other iterative methods. In addition, the tall and skinny factorization is a standard building
block in the computation of the QR decomposition of general (not necessarily tall and skinny) matrices.
In particular, most algorithms work by factoring a tall and skinny panel of the matrix, applying the
orthogonal factor to the trailing matrix, and then continuing on to the next panel. Although Householder-
QR is bottlenecked by communication in the panel factorization, it can apply the orthogonal factor as an
aggregated Householder transformation efficiently, using matrix multiplication [10].

The Communication-Avoiding QR (CAQR) [1] algorithm uses TSQR to factor each panel of a general
matrix. One difficulty faced by CAQR is that TSQR computes an orthogonal factor that is implicitly
represented in a different format than that of Householder-QR. While Householder-QR represents the
orthogonal factor as a set of Householder vectors (one per column), TSQR computes a tree of smaller sets of
Householder vectors (though with the same total number of nonzero parameters). In CAQR, this difference
in representation implies that the trailing matrix update is done using the implicit tree representation rather
than matrix multiplication as possible with Householder-QR. From a software engineering perspective,
this means writing and tuning more complicated code. Furthermore, from a performance perspective,
the update of the trailing matrix within CAQR is less communication efficient than the update within
Householder-QR by a logarithmic factor in the number of processors.

Building on a method introduced by Yamamoto [11], we show that the standard Householder vector
representation may be recovered from the implicit TSQR representation for roughly the same cost as the
TSQR itself. The key idea is that the Householder vectors that represent an orthonormal matrix can be
computed via LU decomposition (without pivoting) of the orthonormal matrix subtracted from a diagonal
sign matrix. We prove that this reconstruction is as numerically stable as Householder-QR (independent
of the matrix condition number), and validate this proof with experimental results.

This reconstruction method allows us to get the best of TSQR algorithm (avoiding synchronization)
as well as the best of the Householder-QR algorithm (efficient trailing matrix updates via matrix multi-
plication). By obtaining Householder vectors from the TSQR representation, we can logically decouple
the block size of the trailing matrix updates from the number of columns in each TSQR. This abstraction
makes it possible to optimize panel factorization and the trailing matrix updates independently. Our result-
ing parallel implementation outperforms ScaLAPACK, Elemental, and our own lightly-optimized CAQR
implementation on the Hopper Cray XE6 platform at NERSC. While we do not experimentally study
sequential performance, we expect our algorithm will also be beneficial in this setting, due to the cache
efficiency gained by using TSQR.

2 Performance cost model

In this section, we detail our algorithmic performance cost model for parallel execution on p processors. We
will use the α-β-γ model which expresses algorithmic costs in terms of computation and communication
costs, the latter being composed of a bandwidth cost as well as a latency cost. We assume the cost of a
message of size w words is α+βw, where α is the per-message latency cost and β is the per-word bandwidth
cost. We let γ be the cost per floating point operation. We ignore the network topology and measure the
costs in parallel, so that the cost of two disjoint pairs of processors communicating the same-sized message
simultaneously is the same as that of one message. We also assume that two processors can exchange
equal-sized messages simultaneously, but a processor can communicate with only one other processor at a
time.

Our algorithmic analysis will depend on the costs of collective communication, particularly broadcasts,

2



reductions, and all-reductions, and we consider both tree-based and bidirectional-exchange (or recursive
doubling/halving) algorithms [12, 13, 14]. For arrays of size w ≥ p, the collectives scatter, gather, all-
gather, and reduce-scatter can all be performed with communication cost

α · log p+ β · p− 1

p
w (1)

(reduce-scatter also incurs a computational cost of γ·((p−1)/p)w). Since a broadcast can be performed with
scatter and all-gather, a reduction can be performed with reduce-scatter and gather, and an all-reduction
can be performed with reduce-scatter and all-gather, the communication costs of those collectives for large
arrays are twice that of Equation (1). For small arrays (w < p), it is not possible to use pipelined or
recursive-doubling algorithms, which require the subdivision of the message into many pieces, therefore
collectives such as a binomial tree broadcast must be used. In this case, the communication cost of
broadcast, reduction, and all-reduction is α · log p+ β · w log p.

3 Previous Work

We distinguish between two types of QR factorization algorithms. We call an algorithm that distributes
entire rows of the matrix to processors a 1D algorithm. Such algorithms are often used for tall and skinny
matrices. Algorithms which distribute the matrix across a 2D grid of pr × pc processors are known as 2D
algorithms. Many right-looking 2D algorithms for QR decomposition of nearly square matrices divide the
matrix into column panels and work panel-by-panel, factoring the panel with a 1D algorithm and then
updating the trailing matrix. We consider two such existing algorithms in this section: 2D-Householder-QR
(using Householder-QR) and CAQR (using TSQR).

3.1 Householder-QR

We first present Householder-QR in Algorithm 1, following [15] so that each Householder vector has a
unit diagonal entry. We use LAPACK [7] notation for the scalar quantities.1 We present Algorithm 1 in
Matlab-style notation as a sequential algorithm. The algorithm works column-by-column, computing a
Householder vector and then updating the trailing matrix to the right. The Householder vectors are stored
in an m× b lower triangular matrix Y . Note that we do not include τ as part of the output because it can
be recomputed from Y .

While the algorithm works for general m and n, it is most commonly used when m � n, such as a
panel factorization within a square QR decomposition. In LAPACK terms, this algorithm corresponds to
geqr2 and is used as a subroutine in geqrf. In this case, we also compute an upper triangular matrix T
so that

Q =
n∏
i=1

(I − τiyiyTi ) = I − Y TY T ,

which allows the application of QT to the trailing matrix to be done efficiently using matrix multiplication.
Computing T is done in LAPACK with larft but can also be computed from Y TY by solving the equation
Y TY = T−1 + T−T for T−1 (since Y TY is symmetric and T−1 is triangular, the off-diagonal entries are
equivalent and the diagonal entries differ by a factor of 2) [16].

3.1.1 1D Algorithm

We will make use of Householder-QR as a sequential algorithm, but there are parallelizations of the al-
gorithm in libraries such as ScaLAPACK [8] and Elemental [9] against which we will compare our new
approach. Assuming a 1D distribution across p processors, the parallelization of Householder-QR (Algo-
rithm 1) requires communication at lines 2 and 8, both of which can be performed using an all-reduction.

1However, we depart from the LAPACK code in that there is no check for a zero norm of a subcolumn.

3



Algorithm 1 [Y,R] = Householder-QR(A)

Require: A is m× b
1: for i = 1 to b do

% Compute the Householder vector
2: α = A(i, i), β = ‖A(i:m, i)‖2
3: if α > 0 then
4: β = −β
5: end if
6: A(i, i) = β, τ(i) = β−α

β

7: A(i+1:m, i) = 1
α−β ·A(i+1:m, i)

% Apply the Householder transformation to the trailing matrix
8: z = τ(i) · [A(i, i+1:b) +A(i+1:m, i)T ·A(i+1:m, i+1:b)]
9: A(i+1:m, i+1:b) = A(i+1:m, i+1:b)−A(i+1:m, i) · z

10: end for
Ensure: A =

(∏n
i=1(I − τiyiyTi )

)
R

Ensure: R overwrites the upper triangle and Y (the Householder vectors) has implicit unit diagonal and
overwrites the strict lower triangle of A; τ is an array of length b with τi = 2/(yTi yi)

Because these steps occur for each column in the matrix, the total latency cost of the algorithm is 2b log p.
This synchronization cost is a potential parallel scaling bottleneck, since it grows with the number of
columns of the matrix and does not decrease with the number of processors. The bandwidth cost is domi-
nated by the all-reduction of the z vector, which has length b− i at the ith step. Thus, the bandwidth cost
of Householder-QR is (b2/2) log p. The computation within the algorithm is load balanced for a parallel
cost of (2mb2 − 2b3/3)/p flops.

3.1.2 2D Algorithm

In the context of a 2D algorithm, in order to perform an update with the computed Householder vectors,
we must also compute the T matrix from Y in parallel. The leading order cost of computing T−1 from
Y TY is mb2/p flops plus the cost of reducing a symmetric b× b matrix, α · log p + β · b2/2; note that the
communication costs are lower order terms compared to computing Y . We present the costs of parallel
Householder-QR in the first row of Table 1, combining the costs of Algorithm 1 with those of computing
T .

We refer to the 2D algorithm that uses Householder-QR as the panel factorization as 2D-Householder-
QR. In ScaLAPACK terms, this algorithm corresponds to pxgeqrf. The overall cost of 2D-Householder-
QR, which includes panel factorizations and trailing matrix updates, is given to leading order by

γ ·
(

6mnb− 3n2b

2pr
+
n2b

2pc
+

2mn2 − 2n3/3

p

)
+β ·

(
nb log pr +

2mn− n2

pr
+
n2

pc

)
+α·

(
2n log pr +

2n

b
log pc

)
.

The derivation of these costs is very similar to that of CAQR-HR (see Section 4.3). If we pick pr = pc =
√
p

(assuming m ≈ n) and b = n/(
√
p log p) then we obtain the leading order costs

γ · (2mn2 − 2n3/3)/p+ β · (mn+ n2)/
√
p+ α · n log p.

Note that these costs match those of [1, 8], with exceptions coming from the use of more efficient collectives.
The choice of b is made to preserve the leading constants of the parallel computational cost. We present
the costs of 2D-Householder-QR in the first row of Table 2.

3.2 Communication-Avoiding QR

In this section we present parallel Tall-Skinny QR (TSQR) [1, Algorithm 1] and Communication-Avoiding
QR (CAQR) [1, Algorithm 2], which are algorithms for computing a QR decomposition that are more

4



communication efficient than Householder-QR, particularly for tall and skinny matrices.

3.2.1 1D Algorithm (TSQR)

We present a simplified version of TSQR in Algorithm 2: we assume the number of processors is a power
of two and use a binary reduction tree (TSQR can be performed with any tree). Note also that we present
a reduction algorithm rather than an all-reduction (i.e., the final R resides on only one processor at the
end of the algorithm). TSQR assumes the tall-skinny matrix A is distributed in block row layout so that
each processor owns a (m/p) × n submatrix. After each processor computes a local QR factorization of
its submatrix (line 1), the algorithm works by reducing the p remaining n× n triangles to one final upper
triangular R = QTA (lines 2–10). The Q that triangularizes A is stored implicitly as a tree of sets of
Householder vectors, given by {Yi,k}. In particular, {Yi,k} is the set of Householder vectors computed by
processor i at the kth level of the tree. The ith leaf of tree, Yi,0 is the set of Householder vectors which
processor i computes by doing a local QR on its part of the initial matrix A.

In the case of a binary tree, every internal node of the tree consists of a QR factorization of two stacked
b × b triangles (line 6). This sparsity structure can be exploited, saving a constant factor of computation
compared to a QR factorization of a dense 2b×b matrix. In fact, as of version 3.4, LAPACK has subroutines
for exploiting this and similar sparsity structures (tpqrt). Furthermore, the Householder vectors generated
during the QR factorization of stacked triangles have similar sparsity; the structure of the Yi,k for k > 0 is
an identity matrix stacked on top of a triangle.

Because the set {Yi,k} constitutes the implicit tree representation of the orthogonal factor, it is impor-
tant to note how the tree is distributed across processors since the Q factor will be either applied to a
matrix (see [1, Algorithm 2]) or constructed explicitly (see Section 3.2.3). For a given Yi,k, i indicates the
processor number (both where it is computed and where it is stored), and k indicates the level in the tree.
Although 0 ≤ i ≤ p− 1 and 0 ≤ k ≤ log p, many of the Yi,k are null; for example, Yi,log p = ∅ for i > 0 and
Yp−1,k = ∅ for k > 0. In the case of the binary tree in Algorithm 2, processor 0 computes and stores Y0,k
for 0 ≤ k ≤ log p and thus requires O(b2 log p) extra memory.

The costs and analysis of TSQR are given in [1, 17]:

γ ·
(

2mb2

p
+

2b3

3
log p

)
+ β ·

(
b2

2
log p

)
+ α · log p.

We tabulate these costs in the second row of Table 1. We note that the TSQR inner tree factorizations
require an extra computational cost O(b3 log p) and a bandwidth cost of O(b2 log p). Also note that in the
context of a 2D algorithm, using TSQR as the panel factorization implies that there is no b× b T matrix
to compute; the update of the trailing matrix is performed differently.

3.2.2 2D Algorithm (CAQR)

The 2D algorithm that uses TSQR for panel factorizations is known as CAQR. In order to update the
trailing matrix within CAQR, the implicit orthogonal factor computed from TSQR needs to be applied as
a tree in the same order as it was computed. See [1, Algorithm 2] for a description of this process, or see
[18, Algorithm 4] for pseudocode that matches the binary tree in Algorithm 2. We refer to this application
of implicit QT as Apply-TSQR-QT . The algorithm has the same tree dependency flow structure as TSQR
but requires a bidirectional exchange between paired nodes in the tree. We note that in internal nodes of
the tree it is possible to exploit the additional sparsity structure of Yi,k (an identity matrix stacked on top
of a triangular matrix), which our implementation does via the use of the LAPACK v3.4+ routine tpmqrt.

Further, since A is m× n and intermediate values of rows of A are communicated, the trailing matrix
update costs more than TSQR when n > b. In the context of CAQR on a square matrix, Apply-TSQR-QT

is performed on a trailing matrix with n ≈ m columns. The extra work in the application of the inner
leaves of the tree is proportional to O(n2b log(p)/

√
p) and bandwidth cost proportional to O(n2 log(p)/

√
p).

Since the cost of Apply-TSQR-QT is almost leading order in CAQR, it is desirable in practice to optimize

5



Algorithm 2 [{Yi,k}, R] = TSQR(A)

Require: Number of processors is p and i is the processor index
Require: A is m× b matrix distributed in block row layout; Ai is processor i’s block
1: [Yi,0, R̄i] = Householder-QR(Ai)
2: for k = 1 to dlog pe do
3: if i ≡ 0 mod 2k and i+ 2k−1 < p then
4: j = i+ 2k−1

5: Receive R̄j from processor j

6: [Yi,k, R̄i] = Householder-QR

([
R̄i
R̄j

])
7: else if i ≡ 2k−1 mod 2k then
8: Send R̄i to processor i− 2k−1

9: end if
10: end for
11: if i = 0 then
12: R = R̄0

13: end if
Ensure: A = QR with Q implicitly represented by {Yi,k}
Ensure: R is stored by processor 0 and Yi,k is stored by processor i

the update routine. However, the tree dependency structure complicates this manual developer or compiler
optimization task.

The overall cost of CAQR is given to leading order by

γ ·
(

6mnb− 3n2b

2pr
+

(
4nb2

3
+

3n2b

2pc

)
log pr +

6mn2 − 2n3

3p

)
+

β ·
((

nb

2
+
n2

pc

)
log pr +

2mn− n2

pr

)
+ α ·

(
3n

b
log pr +

4n

b
log pc

)
.

See [1] for a discussion of these costs and [17] for detailed analysis. Note that the bandwidth cost is slightly
lower here due to the use of more efficient broadcasts. If we pick pr = pc =

√
p (assuming m ≈ n) and

b = n√
p log2 p

then we obtain the leading order costs

γ ·
(

2mn2 − 2n3/3

p

)
+ β ·

(
2mn+ n2 log p

√
p

)
+ α ·

(
7

2

√
p log3 p

)
.

Again, we choose b to preserve the leading constants of the computational cost. Note that b needs to be
chosen smaller here than in Section 3.1.2 due to the costs associated with Apply-TSQR-QT .

It is possible to reduce the costs of Apply-TSQR-QT further using ideas from efficient recursive dou-
bling/halving collectives. See Appendix A for details.

3.2.3 Constructing Explicit Q from TSQR

In many use cases of QR decomposition, an explicit orthogonal factor is not necessary; rather, we need
only the ability to apply the matrix (or its transpose) to another matrix, as done in the previous section.
For our purposes (see Section 4), we will need to form the explicit m × b orthonormal matrix from the
implicit tree representation.2 Though it is not necessary within CAQR, we describe it here because it is a
known algorithm (see [19, Figure 4]) and the structure of the algorithm is very similar to TSQR.

2In LAPACK terms, constructing (i.e., generating) the orthogonal factor when it is stored as a set of Householder vectors
is done with orgqr.

6



Algorithm 3 [B] = Apply-TSQR-QT ({Yi,k}, A)

Require: Number of processors is p and i is the processor index
Require: A is m× n matrix distributed in block row layout; Ai is processor i’s block
Require: {Yi,k} is the implicit tree TSQR representation of b Householder vectors of length m.
1: Bi = Apply-Householder-QT (Yi,0, Ai)
2: Let B̄i be the first b rows of Bi
3: for k = 1 to dlog pe do
4: if i ≡ 0 mod 2k and i+ 2k−1 < p then
5: j = i+ 2k−1

6: Receive B̄j from processor j

7:

[
B̄i
B̄j

]
= Apply-Householder-QT

(
Yi,k,

[
B̄i
B̄j

])
8: Send B̄j back to processor j
9: else if i ≡ 2k−1 mod 2k then

10: Send B̄i to processor i− 2k−1

11: Receive updated rows B̄i from processor i− 2k−1

12: Set the first b rows of Bi to B̄i
13: end if
14: end for
Ensure: B = QTA with processor i owning block Bi, where Q is the orthogonal matrix implicitly repre-

sented by {Yi,k}

Algorithm 4 presents the method for constructing the m×b matrix Q by applying the (implicit) square
orthogonal factor to the first b columns of the m×m identity matrix. Note that while we present Algorithm
4 assuming a binary tree, any tree shape is possible, as long as the implicit Q is computed using the same
tree shape as TSQR. While the nodes of the tree are computed from leaves to root, they will be applied in
reverse order from root to leaves. Note that in order to minimize the computational cost, the sparsity of
the identity matrix at the root node and the sparsity structure of {Yi,k} at the inner tree nodes is exploited.
In particular, since Ib is upper triangular and Y0,dlog pe has the structure of identity stacked on top of an
upper triangle, the output of the root node application in line 7 is a stack of two upper triangles. By
induction, since every Yi,k for k > 0 has the same structure, all output Qi,k are triangular matrices. At
the leaf nodes, when Yi,0 is applied in line 13, the output is a dense (m/p)× b block.

Since the communicated matrices Q̄j are triangular just as R̄j was triangular in the TSQR algorithm,
Construct-TSQR-Q incurs the exact same computational and communication costs as TSQR. So, we can
reconstruct the unique part of the Q matrix from the implicit form given by TSQR for the same cost as
the TSQR itself.

3.3 Yamamoto’s Basis-Kernel Representation

The main goal of this work is to combine Householder-QR with CAQR; Yamamoto [11] proposes a scheme
to achieve this. As described in Section 3.1, 2D-Householder-QR suffers from a communication bottleneck
in the panel factorization. TSQR alleviates that bottleneck but requires a more complicated (and slightly
less efficient) trailing matrix update. Motivated in part to improve the performance and programmability
of a hybrid CPU/GPU implementation, Yamamoto suggests computing a representation of the orthogonal
factor that triangularizes the panel that mimics the representation in Householder-QR.

As described by Sun and Bischof [20], there are many so-called “basis-kernel” representations of an
orthogonal matrix. See also [21] for general discussion of block reflectors. For example, the Householder-

7



Algorithm 4 Q = Construct-TSQR-Q({Yi,k})
Require: Number of processors is p and i is the processor index
Require: {Yi,k} is computed by Algorithm 2 so that Yi,k is stored by processor i
1: if i = 0 then
2: Q̄0 = Ib
3: end if
4: for k = dlog pe down to 1 do
5: if i ≡ 0 mod 2k and i+ 2k−1 < p then
6: j = i+ 2k−1

7:

[
Q̄i
Q̄j

]
= Apply-Householder-Q

(
Yi,k,

[
Q̄i
0

])
8: Send Q̄j to processor j
9: else if i ≡ 2k−1 mod 2k then

10: Receive Q̄i from processor i− 2k−1

11: end if
12: end for

13: Qi = Apply-Q-to-Triangle

(
Yi,0,

[
Q̄i
0

])
Ensure: Q is orthonormal m× b matrix distributed in block row layout; Qi is processor i’s block

QR algorithm computes a lower triangular matrix Y such that A = (I − Y TY T
1 )R, so that

Q = I − Y TY T = I −
[
Y1
Y2

]
T
[
Y T
1 Y T

2

]
. (2)

Here, Y is called the “basis” and T is called the “kernel” in this representation of the square orthogonal
factor Q. However, there are many such basis-kernel representations if we do not restrict Y and T to be
lower and upper triangular matrices, respectively.

Yamamoto [11] chooses a basis-kernel representation that is easy to compute. For an m× b matrix A,

let A =

[
Q1

Q2

]
R where Q1 and R are b× b. Then define the basis-kernel representation

Q = I − Ỹ T̃ Ỹ T = I −
[
Q1−I
Q2

] [
I−Q1

]−T [
(Q1−I)T QT2

]
, (3)

where I − Q1 is assumed to be nonsingular. It can be easily verified that QTQ = I and QTA =

[
R
0

]
; in

fact, this is the representation suggested and validated by [22, Theorem 3]. Note that both the basis and
kernel matrices Ỹ and T̃ are dense.

The main advantage of basis-kernel representations is that they can be used to apply the orthogonal
factor (or its transpose) very efficiently using matrix multiplication. In particular, the computational
complexity of applying QT using any basis-kernel is the same to leading order, assuming Y has the same
dimensions as A and m � b. Thus, it is not necessary to reconstruct the Householder vectors; from a
computational perspective, finding any basis-kernel representation of the orthogonal factor computed by
TSQR will do. Note also that in order to apply QT with the representation in Equation (3), we need to
apply the inverse of I−Q1, so we need to perform an LU decomposition of the b× b matrix and then apply
the inverses of the triangular factors using triangular solves.

The assumption that I −Q1 is nonsingular can be dropped by replacing I with a diagonal sign matrix
S chosen so that S −Q1 is nonsingular [23]; in this case the representation becomes

QS = I − Ỹ T̃ Ỹ T = I −
[
Q1−S
Q2

]
S
[
S−Q1

]−T [
(Q1−S)T QT2

]
. (4)

8



Yamamoto’s approach is very closely related to TSQR-HR (Algorithm 6), presented in Section 4. We
compare the methods in Section 4.1.

4 New Algorithms

We first present our main contribution, a parallel algorithm that performs TSQR and then reconstructs the
Householder vector representation from the TSQR representation of the orthogonal factor. We then show
that this reconstruction algorithm may be used as a building block for more efficient 2D QR algorithms. In
particular, the algorithm is able to combine two existing approaches for 2D QR factorizations, leveraging
the efficiency of TSQR in panel factorizations and the efficiency of Householder-QR in trailing matrix
updates. While Householder reconstruction adds some extra cost to the panel factorization, we show that
its use in the 2D algorithm reduces overall communication compared to both 2D-Householder-QR and
CAQR.

4.1 TSQR with Householder Reconstruction

The basic steps of our 1D algorithm include performing TSQR, constructing the explicit tall-skinny Q
factor, and then computing the Householder vectors corresponding to Q. The key idea of our reconstruction
algorithm is that performing Householder-QR on an orthonormal matrix Q is the same as performing an
LU decomposition on Q − S, where S is a diagonal sign matrix corresponding to the sign choices made
inside the Householder-QR algorithm. This claim is proved explicitly in Lemma 5.2. Informally, ignoring
signs, if Q = I−Y TY T

1 with Y a matrix of Householder vectors, then Y · (−TY T
1 ) is an LU decomposition

of Q− I since Y is unit lower triangular and TY T
1 is upper triangular.

In this section we present Modified-LU as Algorithm 5, which can be applied to any orthonormal matrix
(not necessarily one obtained from TSQR). Ignoring lines 1, 3, and 4, it is exactly LU decomposition without
pivoting. Note that with the choice of S, no pivoting is required since the effective diagonal entry will be at
least 1 in absolute value and all other entries in the column are bounded by 1 (the matrix is orthonormal).3

This holds true throughout the entire factorization because the trailing matrix remains orthonormal, which
we prove within Lemma 5.2.

Algorithm 5 [L,U, S] = Modified-LU(Q)

Require: Q is m× b orthonormal matrix
1: S = 0
2: for i = 1 to b do
3: S(i, i) = − sgn(Q(i, i))
4: Q(i, i) = Q(i, i)− S(i, i)

% Scale ith column of L by diagonal element
5: Q(i+1:m, i) = 1

Q(i,i) ·Q(i+1:m, i)

% Perform Schur complement update
6: Q(i+1:m, i+1:b) = Q(i+1:m, i+1:b)−Q(i+1:m, i)·Q(i, i+1:b)
7: end for

Ensure: U overwrites the upper triangle and L has implicit unit diagonal and overwrites the strict lower
triangle of Q; S is diagonal so that Q− S = LU

Given the algorithms of the previous sections, we now present the full approach for computing the
QR decomposition of a tall-skinny matrix using TSQR and Householder reconstruction. That is, in this
section we present an algorithm such that the format of the output of the algorithm is identical to that
of Householder-QR. However, we argue that the communication costs of this approach are much less than
those of performing Householder-QR.

3We use the convention sgn(0) = 1.

9



Flops Words Messages

Householder-QR 3mb2

p − 2b3

3p
b2

2 log p 2b log p

TSQR 2mb2

p + 2b3

3 log p b2

2 log p log p

TSQR-HR 5mb2

p + 4b3

3 log p b2 log p 4 log p

Table 1: Costs of QR factorization of tall-skinny m× b matrix distributed over p processors in 1D fashion.
We assume these algorithms are used as panel factorizations in the context of a 2D algorithm applied to
an m× n matrix. Thus, costs of Householder-QR and TSQR-HR include the costs of computing T .

The method, given as Algorithm 6, is to perform TSQR (line 1), construct the tall-skinny Q factor
explicitly (line 2), and then compute the Householder vectors that represent that orthogonal factor using
Modified-LU (line 3). The R factor is computed in line 1 and the Householder vectors (the columns of Y )
are computed in line 3. An added benefit of the approach is that the triangular T matrix, which allows for
block application of the Householder vectors, can be computed very cheaply. That is, a triangular solve
involving the upper triangular factor from Modified-LU computes the T so that A = (I − Y TY T

1 )R. To
compute T directly from Y (as is necessary if Householder-QR is used) requires O(nb2) flops; here the
triangular solve involves O(b3) flops. Our approach for computing T is given in line 4, and line 5 ensures
sign agreement between the columns of the (implicitly stored) orthogonal factor and rows of R.

Algorithm 6 [Y, T,R] = TSQR-HR(A)

Require: A is m× b matrix distributed in block row layout
1: [{Yi,k}, R̃] = TSQR(A)
2: Q = Construct-TSQR-Q({Yi,k})
3: [Y, U, S] = Modified-LU(Q)
4: T = −USY −T1

5: R = SR̃
Ensure: A = (I − Y TY T

1 )R, where Y is m× b and unit lower triangular, Y1 is top b× b block of Y , and
T and R are b× b and upper triangular

On p processors, Algorithm 6 incurs the following costs (ignoring lower order terms):

1. Compute [{Yi,k}, R′] = TSQR(A)

The computational costs of this step come from lines 1 and 6 in Algorithm 2. Line 1 corresponds
to a QR factorization of a (m/p)× b matrix, with a flop count of 2(m/p)b2 − 2b3/3 (each processor
performs this step simultaneously). Line 6 corresponds to a QR factorization of a b × b triangle
stacked on top of a b × b triangle. Exploiting the sparsity structure, the flop count is 2b3/3; this
occurs at every internal node of the binary tree, so the total cost in parallel is (2b3/3) log p.

The communication costs of Algorithm 2 occur in lines 5 and 8. Since every Ri,k is a b × b upper
triangular matrix, the cost of a single message is α + β · (b2/2). This occurs at every internal node
in the tree, so the total communication cost in parallel is a factor log p larger.

Thus, the cost of this step is

γ ·
(

2mb2

p
+

2b3

3
log p

)
+ β ·

(
b2

2
log p

)
+ α · log p.

2. Q = Construct-TSQR-Q({Yi,k})
The computational costs of this step come from lines 7 and 13 in Algorithm 4. Note that for k > 0,
Yi,k is a 2b×b matrix: the identity matrix stacked on top of an upper triangular matrix. Furthermore,
Qi,k is an upper triangular matrix. Exploiting the structure of Yi,k and Qi,k, the cost of line 7 is
2b3/3, which occurs at every internal node of the tree. Each Yi,0 is a (m/p) × b lower triangular

10



matrix of Householder vectors, so the cost of applying them to an upper triangular matrix in line 13
is 2(m/p)b2 − 2b3/3. Note that the computational cost of these two lines is the same as those of the
previous step in Algorithm 2.

The communication pattern of Algorithm 4 is identical to Algorithm 2, so the communication cost
is also the same as that of the previous step.

Thus, the cost of constructing Q is

γ ·
(

2mb2

p
+

2b3

3
log p

)
+ β ·

(
b2

2
log p

)
+ α · log p.

3. [Y,U, S] = Modified-LU(Q)

Ignoring lines 3–4 in Algorithm 5, Modified-LU is the same as LU without pivoting. In parallel, the
algorithm consists of a b×b (modified) LU factorization of the top block followed by parallel triangular
solves to compute the rest of the lower triangular factor. The flop count of the b× b LU factorization
is 2b3/3, and the cost of each processor’s triangular solve is (m/p)b2. The communication cost of
parallel Modified-LU is only that of a broadcast of the upper triangular b× b U factor (for which we
use a bidirectional-exchange algorithm): β · (b2) + α · (2 log p).

Thus, the cost of this step is

γ ·
(
mb2

p
+

2b3

3

)
+ β · b2 + α · 2 log p

4. T = −USY −T1 and R = SR′

The last two steps consist of computing T and scaling the final R appropriately. Since S is a sign
matrix, computing US and SR′ requires no floating point operations and can be done locally on one
processor. Thus, the only computational cost is performing a b × b triangular solve involving Y T

1 .
If we ignore the triangular structure of the output, the flop count of this operation is b3. However,
since this operation occurs on the same processor that computes the top m/p × b block of Y and
U , it can be overlapped with the previous step (Modified-LU). After the top processor performs the
b × b LU factorization and broadcasts the U factor, it computes only m/p − b rows of Y (all other
processors update m/p rows). Thus, performing an extra b× b triangular solve on the top processor
adds no computational cost to the critical path of the algorithm.

Thus, TSQR-HR(A) where A is m-by-b incurs the following costs (ignoring lower order terms):

γ ·
(

5mb2

p
+

4b3

3
log p

)
+ β ·

(
b2 log p

)
+ α · (4 log p) . (5)

Note that the LU factorization required in Yamamoto’s approach (see Section 3.3) is equivalent to
performing Modified-LU(−Q1). In Algorithm 6, the Modified-LU algorithm is applied to an m× b matrix
rather than to only the top b × b block; since no pivoting is required, the only difference is the update
of the bottom m − b rows with a triangular solve. Thus it is not hard to see that, ignoring signs, the
Householder basis-kernel representation in Equation (2) can be obtained from the representation given in
Equation (3) with two triangular solves: if the LU factorization gives I −Q1 = LU , then Y = Ỹ U−1 and
T = UL−T . Indeed, performing these two operations and handling the signs correctly gives Algorithm
6. While Yamamoto’s approach avoids performing the triangular solve on Q2, it still involves performing
both TSQR and Construct-TSQR-Q.

11



Flops Words Messages

2D-Householder-QR 2mn2−2n3/3
p

2mn+n2/2√
p n log p

CAQR 2mn2−2n3/3
p

2mn+n2 log p√
p

7
2

√
p log3 p

CAQR-HR 2mn2−2n3/3
p

2mn+n2/2√
p 6

√
p log2 p

Table 2: Costs of QR factorization of m× n matrix distributed over p processors in 2D fashion. Here we
assume a square processor grid (pr = pc). We also choose block sizes for each algorithm independently to
ensure the leading order terms for flops are identical.

4.2 LU Decomposition of A−R

Computing the Householder vectors basis-kernel representation via Algorithm 6 requires forming the ex-
plicit m × b orthonormal matrix. It is possible to compute this representation more cheaply, though at

the expense of losing numerical stability. Suppose A is full rank, R =

[
R1

0

]
is the upper triangular factor

computed by TSQR, and A − R is also full rank. Then A = (I − Y TY T
1 )R1 implies that the unique LU

decomposition of A−R is given by
A−R = Y (−TY T

1 R1), (6)

since Y is unit lower triangular and T , Y T
1 , and R1 are all upper triangular. The assumption that A− R

is full rank can be dropped by choosing an appropriate diagonal sign matrix S and computing the LU

decomposition of A−
[
SR1

0

]
.

Not surprisingly, choosing the signs to match the choices of the Householder-QR algorithm applied to
A guarantees that the matrix is nonsingular. In fact, the signs can be computed during the course of a
modified LU decomposition algorithm very similar to Algorithm 5 (designed for general matrices rather
than only orthonormal). This more general algorithm can also be interpreted as performing Householder-
QR on A but using R to provide “hints” to the algorithm to avoid certain expensive computations; see
Appendix B for more details.

The advantage of this approach is that Y can be computed without constructing Q explicitly, which
is as expensive as TSQR itself. Unfortunately, this method is not numerically stable. An intuition for
the instability comes from considering a low-rank matrix A. Because the QR decomposition of A is
not unique, the TSQR algorithm and the Householder-QR algorithm may compute different factor pairs
(QTSQR, RTSQR) and (QHh, RHh). Performing an LU decomposition using A and RTSQR to recover the
Householder vectors that represent QHh is hopeless if RTSQR 6= RHh, even in exact arithmetic. In floating
point arithmetic, an ill-conditioned A corresponds to a factor R which is sensitive to roundoff error, so
reconstructing the Householder vectors that would produce the same R as computed by TSQR is unstable.
However, if A is well-conditioned, then this method is sufficient; one can view Algorithm 5 as applying the
method to an orthonormal matrix (which is perfectly conditioned).

One method of decreasing the sensitivity of R is to employ column pivoting. That is, after performing
TSQR apply QR with column pivoting to the b × b upper triangular factor R, yielding a factorization
A = QTSQR(Q̃R̃P ), or AP = (QTSQRQ̃)R̃, where the diagonal entries of R decrease monotonically in

absolute value. We have observed experimentally that performing LU decomposition of AP −
[
SR̃
0

]
is a

more stable operation than not using column pivoting, though it is still not as robust as Algorithm 6. See
Section 5 for a discussion of experiments where the instability occurs (even with column pivoting).

4.3 CAQR-HR

We refer to the 2D algorithm that uses TSQR-HR for panel factorizations as CAQR-HR. Because Householder-
QR and TSQR-HR generate the same representation as output of the panel factorization, the trailing matrix

12



Algorithm 7 [Y, T,R] = CAQR-HR(A)

Require: A is m × n and distributed block-cyclically on p = pr · pc processors with block size b, so that
each b× b block Aij is owned by processor Π(i, j) = (i mod pr) + pr · (j mod pc)

1: for i = 0 to n/b− 1 do
% Compute TSQR and reconstruct Householder representation using column of pr processors

2:
[
Yi:m/b−1,i, Ti, Rii

]
= Hh-Recon-TSQR(Ai:m/b−1,i)

% Update trailing matrix using all p processors
3: Π(i, i) broadcasts Ti to all other processors
4: for r ∈ [i,m/b− 1], c ∈ [i+ 1, n/b− 1] do in parallel
5: Π(r, i) broadcasts Yri to all processors in its row, Π(r, :)
6: Π(r, c) computes W̃rc = Y T

ri ·Arc
7: Allreduce Wc =

∑
r W̃rc so that processor column Π(:, c) owns Wc

8: Π(r, c) computes Arc = Arc − Yri · T Ti ·Wc

9: Set Ric = Aic
10: end for
11: end for
Ensure: A =

(∏n
i=1(I − Y:,iTiY T

:,i)
)
R

update can be performed in exactly the same way. Thus, the only difference between 2D-Householder-QR
and CAQR-HR, presented in Algorithm 7, is the subroutine call for the panel factorization (line 2).

Algorithm 7 with block size b, and matrix m-by-n matrix A, with m ≥ n and m,n ≡ 0 (mod b)
distributed on a 2D pr-by-pc processor grid incurs the following costs over all n/b iterations.,

1. Compute
[
Yi:m/b−1,i, Ti, Rii

]
= Hh-Recon-TSQR

(
Ai:m/b−1,i

)
Equation (5) gives the cost of a single panel TSQR factorization with Householder reconstruction.
We can sum over all iterations to obtain the cost of this step in the 2D QR algorithm (line 2 in
Algorithm 7),

n/b−1∑
i=0

(
γ ·
(

5(m− ib)b2

pr
+

4b3

3
log pr

)
+ β ·

(
b2 log pr

)
+ α · (4 log pr)

)
=

γ ·
(

5mnb

pr
− 5n2b

2pr
+

4nb2

3
log pr

)
+ β · (nb log pr) + α ·

(
4n log pr

b

)
2. Π(i, i) broadcasts Ti to all other processors

The matrix Ti is b-by-b and triangular, so we use a bidirectional exchange broadcast. Since there are
a total of n/b iterations, the total communication cost for this step of Algorithm 7 is

β · (nb) + α ·
(

2n

b
log p

)
3. Π(r, i) broadcasts Yri to all processors in its row, Π(r, :)

At this step, each processor which took part in the TSQR and Householder reconstruction sends
its local chunk of the panel of Householder vectors to the rest of the processors. At iteration i of
Algorithm 7, each processor owns at most dm/b−ipr

e blocks Yri. Since all the broadcasts happen along
processor rows, we assume they can be done simultaneously on the network. The communication
along the critical path is then given by

13



n/b−1∑
i=0

(
β ·
(

2(m/b− i) · b2

pr

)
+ α · 2 log pc

)
= β ·

(
2mn− n2

pr

)
+ α ·

(
2n

b
log pc

)

4. Π(r, c) computes W̃rc = Y T
ri ·Arc

Each block W̃rc is computed on processor Π(r, c), using Arc, which it owns, and Yri, which it just

received from processor Π(r, i). At iteration i, processor j may own up to dm/b−ipr
e · dn/b−ipc

e blocks

W̃rc, Π(r, c) = j. Each, block-by-block multiply incurs 2b3 flops, therefore, this step incurs a total
computational cost of

γ ·

n/b−1∑
i=0

2(m/b− i)(n/b− i)b3

p

 = γ ·
(
mn2 − n3/3

p

)

5. Allreduce Wc =
∑

r W̃rc so that processor column Π(:, c) owns Wc

At iteration i of Algorithm 7, each processor j may own up to dm/b−ipr
e · dn/b−ipc

e blocks Wrc. The
local part of the reduction can be done during the computation of Wrc on line 6 of Algorithm 7.
Therefore, no process should contribute more than dn/b−ipc

e b-by-b blocks Wrc to the reduction. Using
a bidirectional exchange all-reduction algorithm and summing over the iterations, we can obtain the
cost of this step throughout the entire execution of the 2D algorithm:

n/b−1∑
i=0

(
β ·
(

2(n/b− i) · b2

pc

)
+ α · 2 log pr

)
= β ·

(
n2

pc

)
+ α ·

(
2n

b
log pr

)
6. Π(r, c) computes Arc = Arc − Yri · Ti ·Wc

Since in our case, m ≥ n, it is faster to first multiply Ti by Wc rather than Yri by Ti. Any processor
j may update up to dm/b−ipr

e · dn/b−ipc
e blocks of Arc using dm/b−ipr

e blocks of Yri and dn/b−ipc
e blocks of

Wc. When multiplying Ti by Wc, we can exploit the triangular structure of T , to lower the flop count
by a factor of two. Summed over all iterations, these two multiplications incur a computational cost
of

γ ·

n/b−1∑
i=0

2(m/b− i)(n/b− i)b3

p
+

(n/b− i)b3

pc

 = γ ·
(
mn2 − n3/3

p
+
n2b

2pc

)

The overall costs of CAQR-HR are given to leading order by

γ ·
(

10mnb− 5n2b

2pr
+

4nb2

3
log pr +

n2b

2pc
+

2mn2 − 2n3/3

p

)
+

β ·
(
nb log pr +

2mn− n2

pr
+
n2

pc

)
+ α ·

(
8n

b
log pr +

4n

b
log pc

)
.

If we pick pr = pc =
√
p (assuming m ≈ n) and b = n√

p log p then we obtain the leading order costs

γ ·
(

2mn2 − 2n3/3

p

)
+ β ·

(
2mn+ n2/2
√
p

)
+ α ·

(
6
√
p log2 p

)
,

shown in the third row of Table 2.

14



Comparing the leading order costs of CAQR-HR with the existing approaches, we note again the
O(n log p) latency cost incurred by the 2D-Householder-QR algorithm. CAQR and CAQR-HR eliminate
this synchronization bottleneck and reduce the latency cost to be independent of the number of columns
of the matrix. Further, both the bandwidth and latency costs of CAQR-HR are factors of O(log p) lower
than CAQR (when m ≈ n). As previously discussed, CAQR includes an extra leading order bandwidth
cost term (β ·n2 log p/

√
p), as well as a computational cost term (γ ·(n2b/pc) log pr) that requires the choice

of a smaller block size and leads to an increase in the latency cost.
Further, the Householder form allows us to decouple the block sizes used for the trailing matrix update

from the width of each TSQR. This is a simple algorithmic optimization to add to our 2D algorithm, which
has the same leading order costs. We show this nested blocked approach in Algorithm 8, which is very
similar to Algorithm 7, and does not require any additional subroutines. While this algorithm does not
have a theoretical benefit, it is highly beneficial in practice, as we will demonstrate in the performance
section. We note that it is not possible to aggregate the implicit TSQR updates in this way.

Algorithm 8 [Y, T,R] = CAQR-HR-Agg(A)

Require: A is m× n and distributed block-cyclically on p = pr · pc processors with block size b1, so that
each b1 × b1 block Aij is owned by processor Π(i, j) = (i mod pr) + pr · (j mod pc)

1: for i = 0 to n/b2 − 1 do
2:

[
Yi:m/b2−1,i, Ti, Rii

]
= CAQR-HR(Ai:m/b2−1,i)

3: Aggregate updates from line 5 of CAQR-HR into (m− ib2)-by-b2 matrix Ȳri
4: for r ∈ [i,m/b2 − 1], c ∈ [i+ 1, n/b2 − 1] do in parallel
5: Π(r, c) computes W̃rc = Ȳ T

ri ·Arc
6: Allreduce Wc =

∑
r W̃rc so that processor column Π(:, c) owns Wc

7: Π(r, c) computes Arc = Arc − Ȳri · T Ti ·Wc

8: Set Ric = Aic
9: end for

10: end for
Ensure: A =

(∏n
i=1(I − Y:,iTiY T

:,i)
)
R

5 Correctness and Stability

In order to reconstruct the lower trapezoidal Householder vectors that constitute an orthonormal matrix (up
to column signs), we can use an algorithm for LU decomposition without pivoting on an associated matrix
(Algorithm 5). Lemma 5.1 shows by uniqueness that this LU decomposition produces the Householder
vectors representing the orthogonal matrix in exact arithmetic. Given the explicit orthogonal factor, the
LU method is cheaper in terms of both computation and communication than constructing the vectors via
Householder-QR.

Lemma 5.1. Given an orthonormal m× b matrix Q, let the compact QR decomposition of Q given by the
Householder-QR algorithm (Algorithm 1) be

Q =

([
In
0

]
− Y TY T

1

)
S,

where Y is unit lower triangular, Y1 is the top b× b block of Y , and T is the upper triangular b× b matrix

satisfying T−1+T T = Y TY . Then S is a diagonal sign matrix, and Q−
[
S
0

]
has a unique LU decomposition

given by

Q−
[
S
0

]
= Y · (−TY T

1 S). (7)

15



Proof. Since Q is orthonormal, it has full rank and therefore has a unique QR decomposition with positive
diagonal entries in the upper triangular matrix. This decomposition is Q = Q · In, so the Householder-QR
algorithm must compute a decomposition that differs only by sign. Thus, S is a diagonal sign matrix. The
uniqueness of T is guaranteed by [20, Example 2.4].

We obtain Equation (7) by rearranging the Householder QR decomposition. Since Y is unit lower
triangular and T , Y T

1 , and S are all upper triangular, we have an LU decomposition. Since Y is full

column rank and T , Y T
1 , and S are all nonsingular, Q −

[
S
0

]
has full column rank and therefore has a

unique LU decomposition with a unit lower triangular factor.

Unfortunately, given an orthonormal matrix Q, the sign matrix S produced by Householder-QR is not

known, so we cannot run a standard LU algorithm on Q −
[
S
0

]
. Lemma 5.2 shows that by running the

Modified-LU algorithm (Algorithm 5), we can cheaply compute the sign matrix S during the course of the
algorithm.

Lemma 5.2. In exact arithmetic, Algorithm 5 applied to an orthonormal m × b matrix Q computes the
same Householder vectors Y and sign matrix S as the Householder-QR algorithm (Algorithm 1) applied to
Q.

Proof. Consider applying one step of Modified-LU (Algorithm 5) to the orthonormal matrix Q, where we
first set S11 = − sgn(q11) and subtract it from q11. Note that since all other entries of the first column
are less than 1 in absolute value and the absolute value of the diagonal entry has been increased by 1,
the diagonal entry is the maximum entry. Following the LU algorithm, all entries below the diagonal are
scaled by the reciprocal of the diagonal element: for 2 ≤ i ≤ m,

yi1 =
qi1

q11 + sgn(q11)
, (8)

where Y is the computed lower triangular factor. The Schur complement is updated as follows: for
2 ≤ i ≤ m and 2 ≤ j ≤ b,

q̃ij = qij −
qi1q1j

q11 + sgn(q11)
. (9)

Now consider applying one step of the Householder-QR algorithm (Algorithm 1). To match the LA-
PACK notation, we let α = q11, β = − sgn(α) · ‖q1‖ = − sgn(α), and τ = β−α

β = 1 + α sgn(α), where we
use the fact that the columns of Q have unit norm. Note that β = − sgn(α) = S11, which matches the
Modified-LU algorithm above. The Householder vector y is computed by setting the diagonal entry to 1
and scaling the other entries of q1 by 1

α−β = 1
α+sgn(α) . Thus, computing the Householder vector matches

computing the column of the lower triangular matrix from Modified-LU in Equation (8) above.
Next, we consider the update of the trailing matrix: Q̃ = (I − τyyT )Q. Since Q has orthonormal

columns, the dot product of the Householder vector with the jth column is given by

yT qj =
m∑
i=1

yiqij = q1j +
m∑
i=2

qi1
α+ sgn(α)

qij

= q1j −
q11q1j

α+ sgn(α)
=

(
1− α

α+ sgn(α)

)
q1j .

The identity

(1 + α sgn(α))

(
1− α

α+ sgn(α)

)
= 1

implies τyT qj = q1j . Then the trailing matrix update (2 ≤ i ≤ m and 2 ≤ j ≤ b) is given by

q̃ij = qij − yi(τyT qj) = qij −
qi1q1j

α+ sgn(α)
,

16



which matches the Schur complement update from Modified-LU in Equation (9) above.
Finally, consider the jth element of first row of the trailing matrix (j ≥ 2): q̃ij = qij − y1(τyT qj) = 0.

Note that the computation of the first row is not performed in the Modified-LU algorithm. The correspond-
ing row is not changed since the diagonal element is Y11 = 1. However, in the case of Householder-QR,
since the first row of the trailing matrix is zero, and because the Householder transformation preserves
column norms, the updated (m − 1) × (b − 1) trailing matrix is itself an orthonormal matrix. Thus, by
induction, the rest of the two algorithms perform the same computations.

In order to bound the error in the decomposition of a general matrix using Householder reconstruction,
we will use Lemma 5.4 below as well as the stability bounds on the TSQR or “AllReduce” algorithm
provided in [24]. We restate those results here.

Lemma 5.3 ([24]). Let R̂ be the computed upper triangular factor of m × b matrix A obtained via the
AllReduce algorithm using a binary tree of height L (m/2L ≥ b). Then there exists an orthonormal matrix
Q such that

‖A−QR̂‖F ≤ f1(m, b, L, ε)‖A‖F
and

‖Q− Q̂‖F ≤ f2(m, b, L, ε),

where f1(m, b, L, ε) ' bγc· m
2L

+ Lbγc·2b and f2(m, b, L, ε) '
(
bγc· m

2L
+ Lbγc·2b

)√
b, for bγc· m

2L
� 1 and

bγc·2b � 1, where c is a small constant.

The following lemma shows that the computation performed in Algorithm 5 is more stable than general
LU decomposition. Because it is performed on an orthonormal matrix, the growth factor in the upper
triangular factor is bounded by 2, and we can bound the Frobenius norms of both computed factors by
functions of the number of columns. Further, we can stably compute the T̃ factor (needed to apply a
blocked Householder update) from the upper triangular LU factor, a computationally cheaper method
than using the Householder vectors themselves.

Lemma 5.4. In floating point arithmetic, given an orthonormal m × b matrix Q, Algorithm 5 computes
factors S, Ỹ , and T̃ such that ∥∥∥∥QS − ([I0

]
− Ỹ T̃ Ỹ T

1

)∥∥∥∥
F

≤ f3(b, ε).

where
f3(b, ε) = 2γb

(
b2 +

(
1 +
√

2
)
b
)

and Y1 is given by the first b rows of Y .

Proof. This result follows from the standard error analysis of LU decomposition and triangular solve with
multiple right hand sides, and the properties of the computed lower and upper triangular factors.

First, we use the fact that for LU decomposition of Q−
[
S
0

]
into triangular factors Ỹ and Ũ , we have

(see [25, Section 9.3]) ∥∥∥∥(Q− [S0
])
− Ỹ Ũ

∥∥∥∥
F

≤ γb‖Ỹ ‖F ‖Ũ‖F .

Second, we compute T̃ = (ŨS)Y −T1 using the standard algorithm for triangular solve with multiple right
hand sides to obtain (see [25, Section 8.1])∥∥∥Ũ − T̃ Ỹ T

1 S
∥∥∥
F

=
∥∥∥ŨS − T̃ Ỹ T

1

∥∥∥
F
≤ γb‖T̃‖F ‖Ỹ T

1 ‖F .

17



Finally, we bound the norms of the computed triangular factors in exact arithmetic. At each step
of the Modified-LU algorithm, the trailing matrix is an orthogonal matrix (before modifying the diagonal
element). Each column of Ỹ is computed by scaling down elements of a unit vector and setting the diagonal
element to 1. Thus, the sum of squares of elements in a column is bounded by 2, and ‖Ỹ ‖F ≤

√
2b. Note

that this also implies ‖Ỹ1‖F ≤
√

2b. Each row of Ũ is computed by increasing the absolute value of the
diagonal element by 1, but leaving the other elements to the right of the diagonal unchanged. The sum
of squares of elements in a row of a matrix with orthonormal columns is at most 1. Thus, the sum of
squares of elements in a row of Ũ is bounded by 4, and ‖Ũ‖F ≤ 2

√
b. From [22, Theorem 13], we have

‖T̃‖F < b+ 1.
Therefore, altogether we have

∥∥∥∥QS − ([I0
]
− Ỹ T̃ Ỹ T

1

)∥∥∥∥
F

=

∥∥∥∥Q− ([S0
]
− Ỹ T̃ Ỹ T

1 S

)∥∥∥∥
F

=

∥∥∥∥(Q− [S0
])
− Ỹ Ũ + Ỹ

(
Ũ − T̃ Ỹ T

1 S
)∥∥∥∥

F

≤
∥∥∥∥(Q− [S0

])
− Ỹ Ũ

∥∥∥∥
F

+ ‖Ỹ ‖F
∥∥∥Ũ − T̃ Ỹ T

1 S
∥∥∥
F

≤ γb‖Ỹ ‖F ‖Ũ‖F + γb‖Ỹ ‖F ‖T̃‖F ‖Ỹ T
1 ‖F

≤ γb
(√

8b+ 2b(b+ 1)
)
.

Theorem 5.5. Let R̂ be the computed upper triangular factor of m× b matrix A obtained via the TSQR
algorithm using a binary tree of height L (m/2L ≥ b), and let Q̃ = I − Ỹ T̃ Ỹ T

1 and R̃ = SR̂ where Ỹ , T̃ ,
and S are the computed factors obtained from the Householder reconstruction algorithm. Then

‖A− Q̃R̃‖F ≤ F1(m, b, L, ε)‖A‖F

and
‖I − Q̃T Q̃‖F ≤ F2(m, b, L, ε)

where
F1(m, b, L, ε) ' (bγc· m

2L
+ Lbγc·2b)(1 +

√
b) + 2γb

(
b2 +

(
1 +
√

2
)
b
)

and
F2(m, b, L, ε) ' 2(bγc· m

2L
+ Lbγc·2b)

√
b+ 4γb

(
b2 +

(
1 +
√

2
)
b
)

for bγc· m
2L
� 1 and bγc·2b � 1.

Proof. From Lemmas 5.3 and 5.4, there exists an exactly orthonormal matrix Q such that

‖A− Q̃R̃‖F = ‖A−QR̂− (Q− Q̂)R̂− (Q̂− Q̃S)R̂‖F
≤ ‖A−QR̂‖F + ‖Q− Q̂‖F ‖R‖F + ‖Q̂− Q̃S‖F ‖R‖F
≤ f1(m, b, L, ε)‖A‖F + f2(m, b, L, ε)‖R̂‖F + f3(b, ε)‖R̂‖F
≤ F1(m, b, L, ε)‖A‖F .

The approximation of F1 also uses [24, Lemma 1]: ‖R̂‖F ' ‖A‖F assuming bγc· m
2L
� 1 and bγc·2b � 1.

18



Further, since Q is exactly orthonormal, we have

‖I − Q̃T Q̃‖F = ‖QT (Q− Q̃S) + (Q− Q̃S)T Q̃‖F

≤ ‖Q− Q̃S‖F
(

1 + ‖Q̃‖F
)

≤
(
‖Q− Q̂‖F + ‖Q̂− Q̃S‖F

)(
1 + ‖Q̃‖F

)
≤ (f2(m, b, L, ε) + f3(b, ε))

(
1 + ‖Q̃‖F

)
≤ F2(m, b, L, ε).

6 Numerical experiments

In this section we present numerical results of TSQR-HR. Experiments were conducted on two represen-
tative sets of test matrices. The first set is used to check the stability of the algorithm on single panels
represented by tall and skinny matrices, while the second set focuses on the factorization of full matrices
panel by panel.

6.1 Tall and Skinny Matrices

In this section, we use matrices which are formed by A = Q · Rρ, where Q and R are computed via QR
decomposition of an m× b matrix with i.i.d. entries chosen from a normal distribution. Rρ is obtained by
setting the

⌊
n
2

⌋
-th diagonal element of an upper triangular matrix R to a small parameter value ρ. This

experimental setup is used to vary the condition number of the matrix and demonstrate instability of the
cheaper method described in Section 4.2.

As can be seen from Table 3, for all test cases both the orthogonality and factorization errors of are
of order 10−15 for TSQR-HR, which is close to ε = 2−52 of double precision. This demonstrates the
numerical stability of this approach on tall and skinny matrices. Table 3 shows a comparison between
three approaches: TSQR-HR, Yamamoto’s approach described in Section 3.3, and LU(A − R) described
in Section 4.2. While Yamamoto’s approach is as stable as TSQR-HR, the LU(A − R) method provides
unsatisfactory backward errors which grow with the condition number of the matrix.

6.2 Square Matrices

We now present numerical results for the QR factorization of square matrices using a panel-by-panel
factorization. The matrices are generated similarly to [26], where the set is chosen from well-known
anomalous matrices. Most are of size 1000-by-1000 (except the ARC130 and FS 541 1 matrices, which are
respectively of order 130 and 541), with various condition numbers, some of them being very ill-conditioned
(i.e. having a condition number much larger than the inverse of machine precision). We tried several panel
sizes ranging from 2 to 256 columns and report only the largest errors and their associated panel widths.

Results from Table 5 show that TSQR-HR is numerically stable in terms of backward errors when
computing the QR factorization of full matrices, regardless of the condition number of the matrix, as
suggested by Theorem 5.5. Again, Yamamoto’s approach displays similar results. To the contrary, the
alternative approach of LU(A − R) does not yield numerically stable results in practice, confirming what
was observed on tall and skinny matrices. Altogether, these two sets of experiments demonstrate the
numerical stability of the proposed approach on representative matrices.

19



Q− I (T from Algorithm 5) Yamamoto’s approach A−R (T−1 from Y TY )
ρ κ norm-wise col-wise ortho. norm-wise col-wise ortho. norm-wise col-wise ortho.

1e-01 5.1e+02 2.2e-15 2.7e-15 9.3e-15 2.5e-15 3.1e-15 9.2e-15 3.8e-14 1.7e-14 5.5e-15
1e-02 5.0e+03 2.3e-15 2.9e-15 1.0e-14 2.4e-15 3.1e-15 1.1e-14 3.2e-13 1.1e-13 6.2e-15
1e-03 5.0e+04 2.2e-15 2.6e-15 8.4e-15 2.6e-15 3.4e-15 1.1e-14 4.2e-12 1.7e-12 5.6e-15
1e-04 4.9e+05 2.2e-15 2.6e-15 7.7e-15 2.3e-15 2.8e-15 8.7e-15 3.8e-11 1.7e-11 5.4e-15
1e-05 5.1e+06 2.3e-15 2.9e-15 8.7e-15 3.2e-15 4.2e-15 1.0e-14 3.9e-10 1.4e-10 5.3e-15
1e-06 5.0e+07 2.3e-15 3.0e-15 9.1e-15 3.0e-15 3.9e-15 1.0e-14 3.6e-09 1.5e-09 6.1e-15
1e-07 5.0e+08 2.4e-15 3.4e-15 1.1e-14 2.7e-15 3.7e-15 9.9e-15 4.2e-08 2.1e-08 5.0e-15
1e-08 5.1e+09 2.2e-15 2.8e-15 8.6e-15 2.5e-15 3.1e-15 8.9e-15 3.8e-07 1.5e-07 5.8e-15
1e-09 5.0e+10 2.3e-15 3.1e-15 9.9e-15 3.9e-15 5.1e-15 1.3e-14 3.6e-06 2.0e-06 5.4e-15
1e-10 5.0e+11 2.1e-15 2.6e-15 7.1e-15 2.6e-15 3.4e-15 9.9e-15 3.3e-05 1.2e-05 6.3e-15
1e-11 4.9e+12 2.5e-15 3.4e-15 1.0e-14 2.4e-15 3.1e-15 1.0e-14 3.1e-04 1.2e-04 5.9e-15
1e-12 5.1e+13 2.2e-15 2.9e-15 8.5e-15 2.6e-15 3.3e-15 1.2e-14 3.7e-03 1.6e-03 5.8e-15
1e-13 5.0e+14 2.2e-15 2.7e-15 8.8e-15 3.0e-15 3.9e-15 1.0e-14 4.0e-02 1.4e-02 4.7e-15
1e-14 3.5e+15 2.3e-15 3.1e-15 1.0e-14 2.3e-15 2.9e-15 9.4e-15 2.7e-01 9.7e-02 4.9e-15
1e-15 5.0e+15 2.4e-15 3.1e-15 9.7e-15 2.8e-15 3.7e-15 9.4e-15 3.5e-01 1.3e-01 6.3e-15

Table 3: Error on tall and skinny matrices (m = 1000, n = 200) for three approaches. The label “norm-
wise” corresponds to ‖A−QR‖2, “col-wise” corresponds to maxi ‖Ai− (QR)i‖2, and “ortho.” corresponds
to ‖I −QTQ‖2.

Id Matrix type Size κ

1. A = 2 ∗ rand(m)− 1 1000-by-1000 2.106e+ 03

2. A = diag((10 ∗ eps) i
m ) ∗ rand(m) 1000-by-1000 7.731e+ 17

3. Golub-Klema-Stewart: A(i, i) = 1√
i
, A(i, j > i) = 1√

j
, A(i, j < i) = 0 1000-by-1000 2.242e+ 20

4. Break 1 distribution: A = gallery(′randsvd′, n, 1e9, 2) 1000-by-1000 1.00e+ 09
5. Break 9 distribution: A = gallery(′randsvd′, n, 1e9, 1) 1000-by-1000 1.00e+ 09

6.
A = orth(rand(n)) · diag([100, 10, linspace(1e− 8, 1e− 2, n− 2)])
A = A · orth(rand(n))

1000-by-1000 1.00e+ 10

7.
v = linspace(1, 1e− 3, n); v(51 : end) = 0;
A = orth(rand(n)) · diag(v) · orth(rand(n)) + 0.1 ∗ v(50) ∗ rand(n)

1000-by-1000 8.464e+ 04

8. UΣV T with exponential distribution 1000-by-1000 4.155e+ 19
9. The devil’s stairs matrix 1000-by-1000 2.275e+ 19
10. KAHAN matrix, a trapezoidal matrix 1000-by-1000 5.642e+ 56
11. Matrix ARC130 from Matrix Market 130-by-130 6.054e+ 10
12. Matrix FS 541 1 from Matrix Market 541-by-541 4.468e+ 03

13. BAART Test problem: Fredholm integral equation of the first kind 1000-by-1000 5.251e+ 18

14.
BLUR Test problem: digital image deblurring.
A is a symmetric, doubly block Toeplitz matrix

961-by-961 3.075e+ 01

15. DERIV2 Test problem: computation of the second derivative 1000-by-1000 1.216e+ 06
16. Matrix Ex1-CMRS 1000-by-500 1.398e+ 17
17. Matrix Ex2-RST 1024-by-512 3.276e+ 16
18. FOXGOOD Test problem: severely ill-posed problem 1000-by-1000 5.742e+ 20
19. GRAVITY Test problem: 1-D gravity surveying model problem 1000-by-1000 8.797e+ 20
20. HEAT Test problem: inverse heat equation 1000-by-1000 1.070e+ 232
21. PARALLAX Stellar parallax problem with 28 fixed, real observations 26-by-1000 4.629e+ 14

22.
PHILLIPS Test problem: discretization of the ‘famous’ first-kind
Fredholm integral equation deviced by D. L. Phillips

1000-by-1000 2.641e+ 10

23. SHAW Test problem: one-dimensional image restoration model 1000-by-1000 2.441e+ 21
24. SPIKES Test problem with a ”spiky” solution 1000-by-1000 5.796e+ 21
25. TOMO is a 2D tomography test problem 961-by-961 1.091e+ 17

Table 4: Description of the full matrices used in the experiments.

20



Q− I (T from Algorithm 5) Yamamoto’s approach A−R (T−1 from Y TY )
Id norm-wise error column-wise error orthogonality norm-wise error column-wise error orthogonality norm-wise error column-wise error orthogonality

1 4.3e-15 (256) 3.7e-15 (256) 2.8e-14 (2) 4.7e-15 (256) 4.4e-15 (256) 2.8e-14 (2) 3.5e-15 (256) 3.5e-15 (256) 2.8e-14 (2)
2 2.0e-15 (256) 6.6e-15 (64) 2.6e-14 (2) 2.6e-15 (256) 7.4e-15 (256) 2.6e-14 (2) 2.7e-15 (256) 9.0e-15 (256) 3.1e-14 (2)
3 0.0e+00 (2) 0.0e+00 (2) 0.0e+00 (2) 0.0e+00 (2) 0.0e+00 (2) 0.0e+00 (2) 0.0e+00 (2) 0.0e+00 (2) 0.0e+00 (2)
4 1.0e-14 (256) 5.5e-15 (256) 2.8e-14 (2) 1.1e-14 (256) 6.3e-15 (256) 2.8e-14 (2) 4.4e-14 (256) 4.4e-14 (256) 2.8e-14 (2)
5 9.9e-15 (256) 5.1e-15 (256) 2.9e-14 (2) 1.0e-14 (256) 6.2e-15 (256) 2.8e-14 (2) 4.2e-14 (256) 3.0e-14 (256) 2.8e-14 (2)
6 1.4e-15 (256) 5.9e-15 (256) 2.8e-14 (2) 2.2e-15 (128) 6.9e-15 (256) 2.8e-14 (2) 1.4e-15 (256) 1.8e-14 (256) 2.8e-14 (2)
7 1.4e-15 (256) 4.6e-15 (64) 2.7e-14 (2) 3.5e-15 (256) 7.7e-15 (256) 2.8e-14 (2) 2.3e-15 (256) 5.8e-15 (256) 2.8e-14 (2)
8 2.0e-15 (256) 4.3e-15 (64) 2.8e-14 (2) 3.8e-15 (256) 7.0e-15 (256) 2.8e-14 (2) 1.9e-15 (256) 1.4e-14 (256) 2.8e-14 (2)
9 2.4e-15 (256) 5.0e-15 (256) 2.8e-14 (2) 2.7e-15 (256) 5.4e-15 (256) 2.8e-14 (2) 2.9e-15 (256) 1.5e-14 (256) 2.8e-14 (2)
10 0.0e+00 (2) 0.0e+00 (2) 0.0e+00 (2) 0.0e+00 (2) 0.0e+00 (2) 0.0e+00 (2) 0.0e+00 (2) 0.0e+00 (2) 0.0e+00 (2)
11 8.8e-19 (16) 1.3e-15 (16) 2.1e-15 (2) 1.1e-18 (16) 1.8e-15 (16) 3.9e-15 (16) 3.9e-19 (32) 8.7e-16 (32) 1.7e-15 (2)
12 5.8e-16 (64) 1.3e-15 (2) 1.8e-15 (256) 8.4e-16 (16) 1.9e-15 (32) 2.8e-15 (64) 6.0e-16 (256) 1.3e-15 (32) 1.7e-15 (2)
13 1.6e-15 (32) 6.2e-15 (256) 2.9e-14 (2) 2.0e-15 (32) 7.3e-15 (256) 2.8e-14 (2) 3.0e-07 (256) 1.5e-06 (256) 2.8e-14 (2)
14 1.0e-15 (32) 1.5e-15 (16) 4.7e-15 (2) 1.6e-15 (256) 2.8e-15 (256) 6.8e-15 (128) 8.2e-16 (16) 1.5e-15 (16) 3.9e-15 (2)
15 2.8e-15 (256) 8.7e-15 (256) 4.6e-14 (2) 1.0e-14 (256) 1.6e-14 (256) 4.8e-14 (2) 1.0e-12 (256) 5.3e-12 (256) 5.6e-14 (2)
16 1.8e-15 (256) 5.7e-15 (256) 4.9e-14 (2) 1.7e-15 (256) 5.7e-15 (256) 4.0e-14 (2) 4.3e-07 (256) 2.3e-06 (256) 3.3e-14 (2)
17 3.7e-15 (32) 1.1e-14 (16) 5.0e-14 (2) 3.0e-15 (16) 9.8e-15 (32) 3.8e-14 (2) 1.4e-14 (256) 2.3e-14 (256) 4.5e-14 (2)
18 2.4e-15 (256) 6.4e-15 (16) 2.8e-14 (2) 3.5e-15 (256) 8.0e-15 (256) 2.8e-14 (2) 8.2e-04 (256) 5.7e-03 (256) 2.8e-14 (2)
19 2.3e-15 (256) 4.8e-15 (64) 2.9e-14 (2) 3.1e-15 (256) 7.1e-15 (256) 2.8e-14 (2) 2.1e-03 (256) 1.1e-02 (256) 2.8e-14 (2)
20 2.6e-15 (256) 4.5e-15 (256) 3.9e-14 (2) 2.6e-15 (256) 5.1e-15 (256) 4.0e-14 (2) 3.8e-02 (256) 1.7e-01 (256) 3.4e-14 (2)
21 8.8e-16 (16) 1.9e-15 (32) 2.6e-15 (16) 1.1e-15 (32) 2.3e-15 (32) 2.5e-15 (32) 1.1e-11 (32) 1.8e-10 (32) 2.3e-15 (16)
22 1.0e-15 (32) 4.9e-15 (32) 3.7e-14 (2) 1.2e-15 (256) 5.0e-15 (256) 3.1e-14 (2) 5.2e-11 (256) 1.9e-10 (256) 3.4e-14 (2)
23 2.5e-15 (256) 5.3e-15 (64) 2.8e-14 (2) 2.8e-15 (256) 7.1e-15 (256) 2.9e-14 (2) 7.0e-04 (256) 5.2e-03 (256) 2.8e-14 (2)
24 7.2e-16 (32) 3.8e-15 (256) 2.8e-14 (2) 1.2e-15 (256) 4.7e-15 (256) 2.8e-14 (2) 2.2e-03 (256) 2.6e-02 (256) 2.8e-14 (2)
25 2.2e-15 (256) 4.3e-15 (256) 2.2e-14 (2) 2.3e-15 (256) 5.0e-15 (256) 2.2e-14 (2) 2.3e-15 (256) 1.2e-14 (256) 2.3e-14 (2)

Table 5: Error of full matrices (n = 1000). The label “norm-wise” corresponds to ‖A−QR‖2, “col-wise”
corresponds to maxi ‖Ai− (QR)i‖2, and “ortho.” corresponds to ‖I−QTQ‖2. Descriptions of the matrices
can be found in Table 4.

7 Performance

Having established the stability of our algorithm, we now analyze its experimental performance. We
demonstrate that for tall and skinny matrices TSQR-HR achieves better parallel scalability than library
implementations (ScaLAPACK and Elemental) of Householder-QR. Further, we show that for square
matrices CAQR-HR-Agg outperforms our implementation of CAQR, and library implementations of 2D-
Householder-QR.

7.1 Architecture

The experimental platform is “Hopper,” which is a Cray XE6 supercomputer, built from dual-socket 12-core
“Magny-Cours” Opteron compute nodes. We used the Cray LibSci BLAS routines. This machine is located
at the NERSC supercomputing facility. Each node can be viewed as a four-chip compute configuration due
to NUMA domains. Each of these four chips have six super-scalar, out-of-order cores running at 2.1 GHz
with private 64 KB L1 and 512 KB L2 caches. Nodes are connected through Cray’s “Gemini” network,
which has a 3D torus topology. Each Gemini chip, which is shared by two Hopper nodes, is capable of
9.8 GB/s bandwidth.

7.2 Parallel Scalability

In this section, we give performance results based on a C++/MPI/LAPACK implementation of TSQR
and TSQR-HR, as well as two library implementations of 2D-Householder-QR, Elemental (version 0.80)
and ScaLAPACK (native LibSci installation on Hopper, October 2013). Our implementations aim to do
minimal communication and arithmetic, and do not employ low-level tuning or overlap between commu-
nication and computation. All the benchmarks use one MPI process per core, despite the fact that is
favorable on Hopper to use one process per socket and six threads per process. This decision was made
because we observed that some of the many LAPACK routines used throughout our codes (geqrf, ormqr,
tpqrt, tmpqrt, etc.) were not threaded.

21



 0

 5

 10

 15

 20

144 288 576 1152 2304 4608 9216

Te
ra

flo
ps

#cores

QR weak scaling on Hopper (15K-by-15K to 131K-by-131K)

CAQR-HR-Agg
CAQR-HR

Elemental QR
ScaLAPACK QR

CAQR

(a) Tall-skinny QR performance on Cray XE6

 0

 5

 10

 15

 20

144 288 576 1152 2304 4608 9216

Te
ra

flo
ps

#cores

QR weak scaling on Hopper (15K-by-15K to 131K-by-131K)

CAQR-HR-Agg
CAQR-HR

Elemental QR
ScaLAPACK QR

CAQR

(b) Square QR performance on Cray XE6

First, we study the performance of QR factorization of tall-skinny matrices using a 1D processor grid.
Figure 1(a) gives the strong scaling performance for a matrix of size 122,880-by-32. We also tested a range
of reasonable panel sizes that are not detailed here and observed similar performance trends. We observe
from Figure 1(a) that TSQR-HR takes roughly twice the execution time of TSQR, which is in line with
our theoretical cost analysis. Figure 1(a) also gives the time to solution of Elemental and ScaLAPACK,
which both use the Householder-QR algorithm, albeit with different matrix blocking and collectives. We
see that TSQR obtains a performance benefit over Householder-QR due to the lower synchronization cost
and TSQR-HR preserves the scaling behavior with roughly a factor of two overhead.

Second, we study the parallel scaling of QR factorization on square matrices. In Figure 1(b), we compare
our implementation of CAQR (with a simple binary tree update, no pipelining or other optimizations),
CAQR-HR, and CAQR-HR-Agg, with Elemental and ScaLAPACK, which use 2D-Householder-QR. We
tuned the block sizes of all the codes (the CAQR-HR-Agg required tuning two block sizes), though fewer
data points were collected for larger scale runs, due to timing and allocation constraints.

Comparing the performance of CAQR-HR-Agg and CAQR-HR in Figure 1(b), we observe that signifi-
cant benefit is obtained from aggregating the trailing matrix update. By combining the aggregated update
and lower synchronization cost of TSQR, CAQR-HR-Agg outperforms ScaLAPACK and Elemental and
achieves better parallel scalability. On the other hand, the CAQR performance is relatively poor due to
the overhead of the implicit tree trailing update. We also note that for Elemental, ScaLAPACK, and all of
our QR implementations, it was often better to utilize a rectangular processor grid with more rows than
columns. Having more processes in each column of the processor grid accelerates the computation of each
tall-skinny panel.

8 Conclusion

In this paper, we introduce a method for recovering the Householder basis-kernel representation from any
matrix with orthonormal columns in a stable and efficient manner. Our method was motivated by the
desire to combine the efficiency of the TSQR algorithm with that of the trailing matrix updates within
Householder-QR in the context of computing the QR factorization of general matrices.

We argue using a performance cost model that the savings from combining the approaches outweigh
the extra cost required to reconstruct the Householder vectors for each panel factorization, observing
asymptotic improvements over both existing approaches. We also demonstrate that our algorithm is
practical, attaining speed-ups of up to 1.5× for CAQR-HR-Agg over the standard 2D-Householder-QR
algorithm, and we conjecture that larger speed-ups may be achieved on future architectures, which are
becoming increasingly more synchronization and communication bound.

Our approach provides a promising direction for heterogenous architectures (as suggested in [11]), where

22



synchronization-avoidance and high granularity computation have even more pervasive effects on perfor-
mance efficiency. Furthermore, because our approach recovers the standard representation of orthogonal
matrices (as is used in libraries like LAPACK), we are able to re-use the existing software infrastructure
and maintain performance portability.

Finally, we conjecture that the Householder reconstruction technique will enable the design of a QR
algorithm which is as stable as Householder QR and reduces the bandwidth cost asymptotically compared
to parallel CAQR. We aim to reduce the asymptotic bandwidth cost for QR as done by Tiskin [27], except
in a more practical manner, following the communication-optimal parallel algorithm for LU [28].

9 Acknowledgements

We would like to thank Yusaku Yamamoto for sharing his slides from SIAM ALA 2012 with us. We also
thank Jack Poulson for help configuring Elemental.

Solomonik was supported by a Department of Energy Computational Science Graduate Fellowship,
grant number DE-FG02-97ER25308. This research used resources of the National Energy Research Sci-
entific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231. We also acknowledge DOE grants DE-SC0004938,
DE-SC0005136, DE-SC0003959, DE-SC0008700, DE-SC0010200, AC02-05CH11231, and DARPA grant
HR0011-12-2-0016.

References

[1] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, “Communication-optimal parallel and sequential
QR and LU factorizations,” SIAM Journal on Scientific Computing, vol. 34, no. 1, pp. A206–A239,
2012.

[2] G. H. Golub, R. J. Plemmons, and A. Sameh, “Parallel block schemes for large-scale least-squares com-
putations,” in High-speed computing: scientific applications and algorithm design, R. B. Wilhelmson,
Ed. Champaign, IL, USA: University of Illinois Press, 1988, pp. 171–179.

[3] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, “Minimizing communication in numerical linear
algebra,” SIAM Journal on Matrix Analysis and Applications, vol. 32, no. 3, pp. 866–901, 2011.

[4] F. Song, H. Ltaief, B. Hadri, and J. Dongarra, “Scalable tile communication-avoiding QR factorization
on multicore cluster systems,” in Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis, ser. SC ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 1–11.

[5] M. Anderson, G. Ballard, J. Demmel, and K. Keutzer, “Communication-avoiding QR decomposition
for GPUs,” in Proceedings of the 2011 IEEE International Parallel & Distributed Processing Sympo-
sium, ser. IPDPS ’11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 48–58.

[6] E. Agullo, C. Coti, J. Dongarra, T. Herault, and J. Langem, “QR factorization of tall and skinny
matrices in a grid computing environment,” in Parallel Distributed Processing (IPDPS), 2010 IEEE
International Symposium on, 2010, pp. 1–11.

[7] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling,
A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’ Guide. Philadelphia, PA, USA:
SIAM, 1992.

[8] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammar-
ling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK Users’ Guide.
Philadelphia, PA, USA: SIAM, May 1997.

23



[9] J. Poulson, B. Marker, R. A. van de Geijn, J. R. Hammond, and N. A. Romero, “Elemental: A new
framework for distributed memory dense matrix computations,” ACM Trans. Math. Softw., vol. 39,
no. 2, pp. 13:1–13:24, Feb. 2013.

[10] R. Schreiber and C. Van Loan, “A storage-efficient WY representation for products of Householder
transformations,” SIAM Journal on Scientific and Statistical Computing, vol. 10, no. 1, pp. 53–57,
1989.

[11] Y. Yamamoto, “Aggregation of the compact WY representations generated by the TSQR algorithm,”
2012, Conference talk presented at SIAM Applied Linear Algebra.

[12] A. Farley, “Broadcast time in communication networks,” SIAM Journal on Applied Mathematics,
vol. 39, no. 2, pp. 385–390, 1980.

[13] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective communication operations
in MPICH,” International Journal of High Performance Computing Applications, vol. 19, no. 1, pp.
49–66, 2005.

[14] E. Chan, M. Heimlich, A. Purkayastha, and R. van de Geijn, “Collective communication: theory,
practice, and experience,” Concurrency and Computation: Practice and Experience, vol. 19, no. 13,
pp. 1749–1783, 2007.

[15] G. Golub and C. Van Loan, Matrix Computations, ser. Johns Hopkins Studies in the Mathematical
Sciences. Johns Hopkins University Press, 2012.

[16] C. Puglisi, “Modification of the Householder method based on compact WY representation,” SIAM
Journal on Scientific and Statistical Computing, vol. 13, no. 3, pp. 723–726, 1992.

[17] J. Demmel, L. Grigori, M. F. Hoemmen, and J. Langou, “Communication-optimal parallel and se-
quential QR and LU factorizations,” EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2008-89, Aug 2008.

[18] G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H. D. Nguyen, and E. Solomonik, “Reconstructing
Householder vectors from tall-skinny QR,” EECS Department, University of California, Berkeley,
Tech. Rep., 2013.

[19] M. Hoemmen, “A communication-avoiding, hybrid-parallel, rank-revealing orthogonalization
method,” in Parallel Distributed Processing Symposium (IPDPS), 2011 IEEE International, 2011,
pp. 966–977.

[20] X. Sun and C. Bischof, “A basis-kernel representation of orthogonal matrices,” SIAM Journal on
Matrix Analysis and Applications, vol. 16, no. 4, pp. 1184–1196, 1995.

[21] R. Schreiber and B. Parlett, “Block reflectors: Theory and computation,” SIAM Journal on Numerical
Analysis, vol. 25, no. 1, pp. 189–205, 1988.

[22] C. H. Bischof and X. Sun, “On orthogonal block elimination,” Argonne National Laboratory, Argonne,
IL, Tech. Rep. MCS-P450-0794, 1994.

[23] Y. Yamamoto, 2012, Personal communication.

[24] D. Mori, Y. Yamamoto, and S.-L. Zhang, “Backward error analysis of the AllReduce algorithm for
Householder QR decomposition,” Japan Journal of Industrial and Applied Mathematics, vol. 29, no. 1,
pp. 111–130, 2012.

[25] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed. Philadelphia, PA: SIAM,
2002.

24



[26] J. Demmel, L. Grigori, M. Gu, and H. Xiang, “Communication avoiding rank revealing QR fac-
torization with column pivoting,” EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2013-46, May 2013.

[27] A. Tiskin, “Communication-efficient parallel generic pairwise elimination,” Future Generation Com-
puter Systems, vol. 23, no. 2, pp. 179 – 188, 2007.

[28] E. Solomonik and J. Demmel, “Communication-optimal 2.5D matrix multiplication and LU factoriza-
tion algorithms,” in Springer Lecture Notes in Computer Science, Proceedings of Euro-Par, Bordeaux,
France, Aug 2011.

A Improved CAQR

In this Appendix, we show how the CAQR algorithm can be improved via a more efficient trailing matrix
update algorithm. The main idea of this approach is to use a recursive halving and recursive doubling
approach over the columns of the trailing matrix while applying the TSQR tree. This task can be achieved
via a butterfly communication network which performs the update and scatters the data, followed by
an inverted butterfly network which collects the scattered data via recursive doubling. Performing the
trailing matrix update in this manner also requires replicating the TSQR tree as a butterfly (Householder
data replicated 2k times at the kth level). The Householder tree data may be replicated explicitly via
communication or can be computed redundantly during the factorization phase via a butterfly network
TSQR (see Algorithm 9) for no extra parallel cost. We arrived at this algorithm only after implementing
and evaluating CAQR with a simple binary tree network for the TSQR and the trailing matrix update.
We plan to implement and study the performance of this trailing matrix update in the context of CAQR,
as it alleviates important algorithmic bottlenecks on which we elaborate below.

Algorithm 9 demonstrates how TSQR can be done via butterfly tree network. The main difference
between the butterfly algorithm and the binary tree TSQR is the fact that the butterfly algorithm com-
putes and stores each Yi,k redundantly on 2k processors on level k. Algorithm 10 uses the redundantly
stored representation produced by Algorithm 9 to perform the trailing matrix update more efficiently. In
particular, at each level of the first butterfly network in Algorithm 10, the working part of the columns of
the trailing matrix are partitioned in half and scattered amongst pairs of processor rows. In the binary
tree application method (Algorithm 3), half the processors were assigned work at each successive level
of the tree. In our butterfly algorithm, all the processors are assigned half the work at each successive
level of the butterfly. As a result, the number of columns each processor works on reduces in half at each
successive level in the butterfly. We note that Algorithm 10 is different from the butterfly algorithm for
the trailing matrix application presented in [19], which applies the redundant copies of Yi,k to the columns
of the trailing matrix redundantly.

The benefit achieved by Algorithm 10 over Algorithm 3 is reflected both in communication bandwidth
and computational cost. The number of words moved by each processor in Algorithm 10 is given to leading
order by

2

log p∑
i=1

nb/2i = 2nb.

We note that this is a factor of log p smaller than the bandwidth cost associated with Algorithm 3. Further,
excluding the cost of the initial application on line 1 (which also occurs in Algorithm 3), the computational
cost of the algorithm is given by

log p∑
i=1

O(nb2/2i) = O(nb2),

which compares favorably to Algorithm 3 which has a cost of O(nb2 log p). The reduction in bandwidth cost

yielded by this algorithm leads directly to a reduction in bandwidth cost from O(mn+n
2 log p√
p ) to O(mn+n

2
√
p )

25



(where we assume pr = pc =
√
p). Further, the reduction in floating point cost makes it possible to select

a block size for CAQR which is a factor of log p larger without incurring any overhead in leading order
computational cost. Previously, the block size was made smaller due to the O(n2b log p) computational
term associated with using Algorithm 3 for the trailing matrix update. Raising the block size by a factor of
log p yields a reduction in the latency cost of CAQR by the same factor. The overall cost of the improved
CAQR algorithm (using Algorithms 9 and 10) is given to leading order for nearly square matrices by

γ ·
(

2mn2 − 2n3/3

p

)
+ β ·

(
2mn+ 2n2
√
p

)
+ α ·

(
7
√
p log2 p)

)
.

Therefore, it is possible for CAQR to achieve the same asymptotic costs as CAQR-HR; however, it is not
possible to aggregate the update to obtain the practical benefits harvested by CAQR-HR-Agg. Further,
the reconstruction of Householder vectors requires less software engineering to be incorporated into high
performance numerical linear algebra libraries.

Algorithm 9 [{Yi,k}, R] = Butterfly-TSQR(A)

Require: Number of processors, p, is a power of two and i is the processor index
Require: A is m× b matrix distributed in block row layout; Ai is processor i’s block
1: [Yi,0, R̄i] = Householder-QR(Ai)
2: for k = 1 to log p do
3: % Determine my neighbor in this level of the butterfly
4: j = 2kb i

2k
c+ (i+ 2k−1 mod 2k)

5: if i < j then
6: Send R̄i from processor j
7: Receive R̄j from processor j

8: [Yi,k, R̄i] = Householder-QR

([
R̄i
R̄j

])
9: else

10: Receive R̄j from processor j
11: Send R̄i to processor j

12: [Yi,k, R̄i] = Householder-QR

([
R̄j
R̄i

])
13: end if
14: end for
15: R = R̄i
Ensure: A = QR with Q implicitly represented by {Yi,k}
Ensure: R is stored redundantly on all processors, Y0,0 is stored by processor 0, and Yi,k for i > 0 is stored

redundantly on processor j for each j + 2k−1 = i mod 2k

B Householder-QR with Hints

The idea in this section is to interpret computing the LU decomposition of A − R (discussed in Section
4.2) as performing Householder-QR on A, but we will use the information in R as “hints” to avoid parts
of the computation (particularly the communication-expensive parts).

Let A(i) be the partially factored matrix whose first i columns form an upper triangular matrix. Since
Y is a lower triangular matrix (the height of the nonzero part of the Householder vectors decreases as
the algorithm progresses), the ith row of the trailing matrix is not updated after the ith Householder
reflection is applied. This implies that the ith row of A(i) is equal to the ith row of the final output; that
is, A(i)(i, :) = R(i, :).

26



Algorithm 10 [B] = Scatter-Apply-TSQR-QT ({Yi,k}, A)

Require: Number of processors, p, is a power of two and i is the processor index
Require: A is m× n matrix distributed in block row layout; Ai is processor i’s block
Require: {Yi,k} is the implicit representation of b Householder vectors computed via a butterfly TSQR.
1: Bi = Apply-Householder-QT (Yi,0, Ai)
2: Let B̄i be the first b rows of Bi
3: % Butterfly network recursive-halving TSQR
4: for k = 1 to log p do
5: % Determine my neighbor in this level of the butterfly
6: j = 2kb i

2k
c+ (i+ 2k−1 mod 2k)

7: % Subdivide columns via recursive halving
8: Let B̄i = [B̄i1, B̄i2] where each block is b-by-n/2k

9: if i < j then
10: % Send half my columns to my neighbor and receive half of his
11: Send B̄i2 to processor j
12: Receive B̄j1 from processor j
13: % Apply the Householder vectors to stacked blocks to compute input to next level of butterfly

14:

[
B̄i
B̄k
j1

]
= Apply-Householder-QT

(
Yi,k,

[
B̄i1
B̄j1

])
15: % Lower rows are not acted on at further levels in butterfly, so can be returned immediately
16: Send B̄k

j1 back to processor j
17: else
18: Receive B̄j2 from processor j
19: Send B̄i1 to processor j

20:

[
B̄i
B̄k
i2

]
= Apply-Householder-QT

(
Yi,k,

[
B̄i2
B̄j2

])
21: Receive updated rows B̄k

i1 back from processor j
22: end if
23: end for
24: % Propagate computed B back to origins via recursive doubling
25: for k = log p down to 1 do
26: % Determine my neighbor in this level of the butterfly
27: j = 2kb i

2k
c+ (i+ 2k−1 mod 2k)

28: if i < j then
29: % Collect upper rows
30: Receive B̄j from processor j
31: B̄i = [B̄i, B̄j ]
32: else
33: % Collect lower rows
34: Send B̄i to processor j
35: B̄i = [B̄k

i1, B̄
k
i2]

36: end if
37: end for
38: Set the first b rows of Bi to B̄i
Ensure: B = QTA where Q is the orthogonal matrix implicitly represented by {Yi,k}

27



Algorithm 11 [Y, S] = Householder-QR-with-Hints(A,R)

Require: A is m× b, R is upper triangular such that R = QTA for some orthogonal Q
1: S = I
2: for i = 1 to b do

% Compute the Householder vector to annihilate sub-diagonal entries in the ith column
3: α = A(i, i)

% Compute column norm from diagonal entry of R
4: β = R(i, i)
5: if sgn(β) = sgn(α)) then
6: S(i, i) = −1
7: β = −β
8: end if
9: τ(i) = β−α

β

10: A(i+ 1 : m, i) = 1
A(i,i)−β ·A(i+ 1 : m, i)

% Apply the Householder transformation to the trailing matrix
% Compute z from the ith row of R

11: z = A(i, i+ 1 : n)− S(i, i) ·R(i, i+ 1 : n)
12: A(i+ 1 : m, i+ 1 : n) = A(i+ 1 : m, i+ 1 : n)−A(i+ 1 : m, i) · z
13: end for
Ensure: A =

(∏n
i=1(I − τiyiyTi )

)
SR

Ensure: Y (the Householder vectors) has implicit unit diagonal and overwrites the strict lower triangle
of A; τ is an array of length b with τi = 2/(yTi yi)

In order to compute the Householder vector yi, we must compute the norm of A(i−1)(i : m, i) and scale
each entry below the diagonal by the reciprocal of the norm. Computing this norm requires a reduction,
but we can avoid this calculation because the norm is given by the absolute value of the diagonal entry
R(i, i).

Further, after the Householder vector yi is computed, the orthogonal reflector is applied to the trailing
matrix in the form of a rank-one update. This update is given by

A(i) =
(
I − τiyiyTi

)
A(i−1) = A(i−1) − yi

(
τyTi A

(i−1)
)

= A(i−1) − yizi (10)

where zi is the ith row of Z, yi is the ith column of Y , and τi = 2
yTi yi

. Note that the ith entry of yi, or

Y (i, i), is always 1. Then by Equation (10), we have

R(i, :) = A(i)(i, :) = A(i−1)(i, :)− yi(i) · zi = A(i−1)(i, :)− zi

so that zi = A(i−1)(i, :)−R(i, :). This implies that zi can be computed via subtraction rather than from the
formula zi = τyTi A

(i−1), thereby avoiding the matrix-vector product. Algorithm 11 shows the Householder-
QR-with-Hints algorithm which incorporates the cheaper means of computing column norms and vectors
zi. Close comparison of Algorithm 11 with Algorithm 1 will show the computational savings from lines 4
and 11, where hints from R are used to compute the relevant quantities more cheaply.

28


