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Abstract

Scheduling and Optimizing Stream Programs on Multicore Machines by Exploiting
High-Level Abstractions

by

Dai Nguyen Bui

Doctor of Philosophy in Engineering - Electrical Engineering & Computer Sciences

University of California, Berkeley

Professor Edward A. Lee, Chair

Real-time streaming of HD movies and TV via YouTube, Netflix, Apple TV and Xbox
Live is gaining popularity. Stream programs often consume considerable amounts of en-
ergy due to their compute-intensive nature. Making stream programs energy-efficient is
important, especially for energy-constrained computing devices such as mobile phones and
tablets. The first part of this thesis focuses on exploiting the popular Synchronous Dataflow
(SDF) high-level abstraction of stream programs to design adaptive stream programs for
energy reduction on multicore machines. Observing that IO rates of stream programs can
vary at runtime, we seek to make stream programs adaptive by transforming their inter-
nal structures to adapt required occupied computing resources, e.g., cores and memory, to
workload changes at runtime. Our experiments show that adapting stream programs to IO
rate changes can lead to significant energy reduction. In addition, we also show that the
modularity and static attributes of stream programs’ abstraction not only help map stream
programs on multicore machines more easily but also enable energy-efficient routing schemes
of high-bandwidth stream traffic on the interconnection fabric, such as networks on-chip.

While SDF abstractions can help optimize stream programs on multicore machines, SDF
is more suitable for describing stream data-intensive computations such as FFT, DCT, and
FIR and so on. Modern stream operations such as MPEG2 or MP3 encoders/decoders are
often more sophisticated and composed of multiple such computations. Enabling operation
synchronization between different such computations with different semantics leads to the
need for control messaging. We extend previous work on control messaging and give a formal
definition for control message latency via the semantics of information wavefronts. This
control-operation-integrated SDF (COSDF) is able to model sophisticated stream programs
more precisely. However, the conventional scheduling method developed for SDF is not
sufficient to schedule COSDF applications. To schedule COSDF applications, we develop a
scheduling method using dependency graphs and applying a periodic graph theory, based
on reduced dependency graphs (RDG). This RDG scheduling method also helps extract
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parallelism of stream programs. The more precise abstraction of COSDF is expected to help
synthesize and generate sophisticated stream programs more efficiently.

Although the SDF modularity property also improves programmability, it can come at
a price of efficiency when SDF models are not compiled and run using model-based design
environments. However, compiling large SDF models to mitigate the inefficiency can be
prohibitive in the situations where even a small change in a model may lead to large recom-
pilation overhead. We tackle the problem by proposing a method for incrementally compiling
large SDF models that faithfully captures the executions of original SDF models to avoid
potential artificial deadlocks of a naive compilation method.
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Chapter 1

Introduction

Real-time streaming of media data is growing in popularity. This includes both capture and
processing of real-time video and audio, and delivery of video and audio from servers; recent
usage number shows over 800 million unique users that visit YouTube to watch over 3 bil-
lion hours of video each month(http://www.youtube.com/t/press_statistics/). Stream
programs often exhibit rich parallelism, as a result, they are very suitable for multicore
machines. Most of the previous work focuses on parallelizing stream applications on multi-
core machines to speed up computation. However, as people use mobile devices more and
data-centers consume huge amounts of electricity to process big amounts of stream data,
energy-efficient stream processing becomes crucial. The first part of this thesis focuses on
improving energy consumption of stream applications on multicore machines by exploiting
the modularity and the static properties of Synchronous Dataflow (SDF), a popular stream
model of computation. While conventional SDF is expressive enough to describe most of the
stream programs [113], modern stream programs become more complicated and dynamic.
Consequently, SDF is not convenient enough to express modern stream programs and the
theory of SDF is not sufficient to schedule and check for deadlocks in the stream programs.
Another issue arises when large SDF models require compiling incrementally to reduce com-
pile time [116, 75, 77]. However, the naive monolithic code generation for sub-models can
lead to deadlocks and rate inconsistency when linked with other sub-models later. In the
second part of this thesis, we focus on those compilation issues of stream programs.

1.1 Parallelism-Energy Relationship

In this thesis, we focus on optimizing energy for stream programs by exploiting their rich
parallelism and concurrency. The following equations from [59] capture the basic relation
between energy consumption E, voltage Vdd and operating frequencyf:

E = β
1

2
CfV 2

ddU (1.1)

http://www.youtube.com/t/press_statistics/
http://www.youtube.com/t/press_statistics/
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f = γ
(Vdd − Vth)α

Vdd
(1.2)

where β is the activity constant, C is the total capacity. f, Vdd are the operating frequency
and voltage respectively. α is a technology-dependent factor around 1.2 to 1.6. Vth is the
threshold voltage. U is the utilization of the circuit component.

From (1.1) and (1.2), we can see that dynamic energy consumption is approximately
proportional to the cube of frequency. Lowering frequency often leads to lower energy con-
sumption at the cost of increasing running time. Especially, when CPU speed rises too high
to keep up with the processing demand of applications, CPUs can become very hot and the
heat can damage CPUs. As a result, to reduce energy consumption while maintaining the
same running time, we often exploit parallel processing to speed up applications.

Stream programs are suitable for parallel processing because of their rich concurrency.
Stream programs can be decomposed into multiple autonomous modules, called actors, con-
nected using FIFO channels. As a result, we can map concurrent actors onto different cores
to reduce running time. However, decomposing stream programs into concurrent actors in
such a way that they interact with each other deterministically is non-trivial. In the next
section, we summarize a number of programming models for stream programs that help
determine how concurrent actors interact.

1.2 Stream Programming Models

Kahn Process Networks (KPN) [58] is a general programming model for stream programs.
KPN applications are composed of several processes, called actors in this thesis, connected
using FIFO channels. KPN actors block on read when there are not enough data on their
input channels. KPN actors can always write data to their output channels (non-blocking
write). These conditions lead to the deterministic execution of KPN programs [58]. The
determinism of KPN programs can be understood as, regardless of possible execution orders
of actors, the final outputs and the final data history on channels of one program remain
unchanged.

Although KPN applications are deterministic [58, 79, 109], optimizing KPN applications
is often more difficult [93, 39, 71] than less general programming models such as Synchronous
Dataflow (SDF) [70]. Although SDF is less general than KPN, it turns out that SDF is still
general enough to model many stream applications [113], and it is suitable for compiler
optimization techniques for optimizing buffer sizes and static scheduling [14, 105, 13, 15, 16,
87, 86, 100, 47, 68, 37, 98, 50, 51, 116, 24]. SDF is mainly different from KPN in the sense that
each SDF actor produces/consumes a fixed number of tokens from each of its output/input
channel respectively. Cyclo Static Dataflow (CSDF) is a programming model generalized
from SDF to enable more flexible executions. Each CSDF actor executes cyclically a fixed
set of phases. At each phase, each CSDF actor produces/consumes a fixed number of tokens
on its output/input channels. This generalization makes CSDF more flexible than SDF and
enables CSDF to model the executions of certain stream programs that SDF cannot [94]
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while maintaining the advantage of analysable buffers and static scheduling. However, this
generalization is not necessary in practice because SDF is still flexible enough to model
almost all normal stream programs [113, 112]. While SDF is suitable for modeling one-
dimensional streams such as voice signals, it is not natural for modeling multi-dimensional
streams such as videos frames. Modeling multi-dimensional streams using SDF requires
converting those streams to one-dimensional ones. This conversion may render scheduling
less efficient. Multi-dimensional SDF (MDSDF) [88] is a generalization of SDF for modeling
multi-dimensional streams.

Petri nets [85], often used to model distributed systems, are more general than SDF.
While Petri nets can model a wider range of applications than SDF, inferring properties,
e.g., SDF properties, from Petri nets may be expensive and difficult.

1.3 Languages for Writing Stream Programs

StreamIt [114] is a programming language for writing stream programs. The underlying
programming model of StreamIt is based on SDF with a number of extensions such as
sliding windows [114], e.g., actors can peek (read) tokens on their input channels without
consuming them, structured stream graphs [114] to ease stream graph manipulation processes
such as clustering, partitioning and so on, and Teleport messaging [115] for expressing control
operations. The static properties of SDF are useful not only in optimizing buffer space and
statically scheduling actor executions but also in increasing parallelism, e.g., by duplicating
stateless actors [47].

Brook [23] is a language suitable for writing high-performance image manipulation appli-
cations and compiling them to graphic processors. Spiral [123] is a high-level programming
language for digital signal processing (DSP) applications. Programmers can write DSP math-
ematical operations in Spiral and the compiler will automatically transform the operations,
generate code and tune the code to specific processor models.

Ptolemy (http://ptolemy.eecs.berkeley.edu), LabVIEW (http://www.ni.com/labview/)
and Simulink (http://www.mathworks.com/products/simulink/) are model-based pro-
gramming environments used for quick prototyping of signal processing applications.

1.4 Power of Stream Program Abstractions

In this thesis, we show the utilization of the stream program abstractions to design energy
efficient programs as well as to improve verifying, scheduling and compilation processes.

Adaptive Stream Programs for Energy Efficiency

Previous work on compilation of stream programs for multicore machines [47, 68] often
tries to maximize speed for specific processor models assuming that input data are always
available and output devices can always take in processed data produced by stream programs.

http://ptolemy.eecs.berkeley.edu
http://ptolemy.eecs.berkeley.edu
http://www.ni.com/labview/
http://www.ni.com/labview/
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/simulink/
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However, when stream programs are embedded into external environment, this execution
model can result in energy inefficiency. For example, when a stream program runs on four
cores and its input rates are low, e.g., due to low sampling rates, the stream program will
have to pause frequently to wait for input data. Pausing the program can waste energy
due to processor energy leakage and synchronization between threads, which may use spin-
locks to avoid performance degradation. To mitigate the problem, we can instead run the
program on two cores when its input rates become low. This running scheme reduces leakage
power through turning off two unused cores and lowers the inter-core synchronization energy
through reducing the numbers of synchronization cores (two cores instead of four).

As a result, being able to adapt, e.g., adjusting the number of cores used, stream programs
to IO rates at runtime would save energy. However, transforming stream programs on-the-fly
to adapt to IO rate changes while maintaining consistent program states is not straightfor-
ward. The first part of this thesis will focus on designing a mechanism that exploits the
high-level abstractions of stream programs, e.g., SDF, to transform stream programs on-the-
fly to reduce energy [24]. The main idea is that programmers only need to write a single
specification for one stream program; the compiler will exploit the high-level abstractions of
stream programs to generate runtime transformable program automatically.

Energy-Efficient Routing of Stream Traffic on Networks on-Chip

Stream applications often demand high communication bandwidth. This property makes
networks on-chip (NoC) a suitable communication paradigm for stream applications thanks
to their path diversity [81]. As energy consumption is approximately proportional to the cube
of frequency, exploiting NoC’s path diversity property not only mitigates the scalability issue
of the bus system but also can help reduce energy consumption. For example, instead of
routing traffic through congested links, which would require the congested links running at
high frequencies, we can route traffic through less congested links, which would enable links
and routers to run at lower frequencies. As a result, we can reduce energy consumption of
NoC carrying stream traffic.

Stream programs are often modeled by SDF. Because the amount of traffic between actors
often remains stationary between iterations, when mapping actors of stream programs to
multicore machines, the inter-core communication often remains stationary. Exploiting this
stationary inter-core communication property of stream traffic, we can formulate a mixed
integer linear programming (MILP) optimization problem that finds optimal frequencies for
links and routers to minimize energy consumption. To make the problem more scalable, we
also present a heuristic routing algorithm that approximates the optimal results of the MILP
method. Our experiments show that, by exploiting NoC’s path diversity to minimize links
and routers’ frequencies, we can significantly reduce energy consumption of NoC.



CHAPTER 1. INTRODUCTION 5

On the Semantics of Control-Operation-Integrated Synchronous
Dataflow: Schedulability and Parallelism

SDF is suitable for modeling stream data-intensive computations, e.g., FIR, FFT, and
DCT and so on. However, sophisticated stream operations, such as MPEG2 or MP3 en-
coders/decoders, are often composed of multiple such data-intensive computations. To syn-
chronize the executions and configurations between such data-intensive computations with
different semantics, they exchange control messages (CM) containing control information,
e.g., frame types, filter parameters and so on. We first extend Thies et al.’s work [115]
on control messaging and give a formal semantics for control operations (CO). Because
integrating COs into SDF imposes additional control scheduling constraints, some SDF pro-
grams can become non-schedulable after integrating COs. The conventional SDF scheduling
mechanism [70] does not account for such control constraints. To check whether such CO-
integrated SDF (COSDF) programs are schedulable and find a schedule if one exists, we
present a systematic scheduling method based on the reduced dependency graph (RDG) [61]
theory. Our scheduling method can not only find possible schedules for COSDF programs
but also extract parallelism from such programs.

To address the scalability issue of our initial scheduling method, we present a graph
pruning technique that significantly reduces the size of RDGs of practical stream applica-
tions. We then present an algorithm that can make schedulability checking time for COSDF
programs reasonable (within one minute for all the available benchmarks).

Composability of Modular SDF

In the last part of this thesis, we tackle the problem of incremental compilation of large
SDF models. When large SDF models are executed within model-based environments such
as Ptolemy (http://ptolemy.eecs.berkeley.edu) and LabVIEW (http://www.ni.com/
labview/), to reduce large running time, it would be beneficial to compile the large models
to mitigate the overhead of the execution environments. However, this approach is often
undermined by large recompilation time even when just a small part of large models is edited.
To reduce the large recompilation time, we can incrementally compile sub-parts of a large
SDF model [75, 77, 116]. When a sub-part is edited, we only need to recompile the part and
relink it with the other compiled parts. However, this incremental compilation technique can
produce non-functional, e.g., deadlocked, buffer-unbounded compiled models; meanwhile the
corresponding original models are functional. To avoid this problem, we present a technique
for incrementally compiling sub-parts of large SDF models and composing them together
that faithfully captures the executions of original models.

http://ptolemy.eecs.berkeley.edu
http://ptolemy.eecs.berkeley.edu
http://www.ni.com/labview/
http://www.ni.com/labview/
http://www.ni.com/labview/
http://www.ni.com/labview/
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Chapter 2

Background

2.1 Synchronous Dataflow
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Figure 2.1: A Synchronous Dataflow model.

Lee and Messerschmitt propose SDF [70], which can model the executions of many stream
programs [113]. This abstraction enables several compiler optimization techniques [14, 105,
13, 15, 16, 87, 86, 100, 47, 68, 98, 50, 51, 37, 116, 24] for buffer space, scheduling and mapping
to underlying architecture as well as worst-case performance analysis [40].

In the SDF model of computation, a stream program is given as a graph composed of a set
of actors communicating through FIFO channels. Each actor has a set of input and output
ports. Each channel connects an output port of an actor to an input port of another actor.
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Each actor consumes/produces a fixed number of tokens from/to each of its input/output
port each time it executes. This model of computation is interesting as it allows static
scheduling with bounded buffer space whenever possible.

Figure 2.1 shows an example of an SDF stream graph. Actor A has two output ports.
Each time A executes, it produces 2 tokens on its left port and 1 token on its right port, actor
B consumes 1 and produces 2 tokens each time it executes, and so on. The theory of the
SDF programming model provides algorithms to compute the number of times each actor
has to execute within one iteration, of the entire stream graph, so that the total number of
tokens produced on each channel between two actors is equal to the total number of tokens
consumed. In other words, the number of tokens on each channel between two actors remains
unchanged after one iteration of the entire stream graph. For example, in one iteration of the
stream graph in Figure 2.1, actors A, B, C, D, E have to execute 3, 3, 2, 2, 2 times respectively.
Repeating this basic schedule makes the number of tokens on each channel remains the same
after one iteration of the entire stream graph. For instance, for the channel between B and
D, in one iteration, B produces 3× 2 tokens while D consumes 2× 3 tokens.

2.2 Basic SDF Scheduling Techniques

In this section, we present the scheduling technique for SDF stream graphs by Lee and
Messerschmitt [70]. The SDF analysis methods proposed in [70] allow to check whether a
given SDF graph has a periodic admissible sequential schedule (PASS). Existence of a PASS
guarantees two things: first, that the actors in the graph can execute infinitely often without
deadlock; and second, that only bounded queues are required to store intermediate tokens
produced during the executions of these actors. The scheduling technique is composed of
two steps: 1) Finding the number of times each actor executes within one iteration so that
the number of tokens on each channel remain the same by solving a balance equation; 2)
Using symbolic execution to find a concrete schedule, if one exists, for actors within one
iteration based on the number of times each actor executes computed in the previous step.

Balance Equation for SDF Graphs

Let A and B be the upstream and downstream actors respectively of a channel. Each time
A executes, it produces p tokens to the channel and B consumes c tokens from the channel.
Let us assume within one iteration of the stream graph, A executes a times and B executes b
times. Because after one iteration of an SDF graph, the number of tokens on each channel
remains the same, for each channel, the number of tokens produced by the upstream actor
must be equal to as the number of tokens consumed by the downstream actor. We have the
following balance equation for the channel between A and B:

pa− cb = 0 (2.1)
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Now let Γ be the production/consumption matrix of an SDF graph where the entry at
(i, j) is the number of tokens that the jth actor produces to the ith channel each time it
executes. Note that if the jth actor consumes tokens from the ith channel, the value of the
entry at (j, i) is equal to negative of the number of tokens that the jth actor consumes each
execution. Now let q be the vector denoting the numbers of times the actors execute within
one iteration. By applying equation (2.1) for all the channels in the SDF graph, we reach:

Γq = ~0 (2.2)

As Γ is derived from the graph, solving (2.2) for q results in the number of times each
actor has to execute within one iteration. Because we are only interested in non-trivial
solutions, e.g., q 6= ~0, as a result, if matrix Γ has rank α− 1, then equation (2.2) has a non-
trivial solution. A connected stream graph with matrix Γ of rank α− 1 is called a consistent
graph.

The following theorem from [70] proves that, for a consistent graph, there exists q > ~0.

Theorem 1 (Lee & Messerschmitt) Given a consistent connected SDF model with produc-
tion/consumption matrix Γ, we can find an integer vector q whose every element is greater
than zero such that Γq = ~0. Furthermore, there exists a unique least such vector q.

Illustrative Example

We will use the example in Figure 2.1 to illustrate the method. The production/consumption
matrix Γ for the stream graph is as follows:

Γ =



A B C D E

(A→ B) 1 −1 0 0 0
(A→ C) 2 0 −3 0 0
(B→ D) 0 2 0 −3 0
(C→ E) 0 0 1 0 −1
(D→ E) 0 0 0 1 −1

 (2.3)

Solving equation (2.2) for the smallest q, we obtain:

q =


3
3
2
2
2

 (2.4)

We have qA = 3, qB = 3, qC = 2, qD = 2, qE = 2 indicating that within each iteration, if A,
B, C, D and E execute 3, 3, 2, 2, 2 times respectively, the number of tokens on each channel
will remain the same.
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To vectorize SDF programs or to coarsen executions, we can scale the smallest q. Vec-
torizing SDF programs can help improve speed and reduce energy consumption by running
SDF programs on vector processors [50]. Scaling q is not always possible for stream graphs
with loops.

Symbolic Execution to Derive Concrete Sequential Schedules

Solving the balance equation as in the previous section gives the number of times each actor
has to execute within one iteration so that the number of tokens on each channel remains
the same. However, a concrete execution schedule is not immediately available after the
procedure.

Definition 1 An actor in a stream graph is runnable if there are enough tokens on all of
its input channels for it to consume to execute at least once.

From the vector of actor executions within one iteration, we then apply a symbolic
execution procedure [70] to find concrete sequential schedules as in Algorithm 2.2.

Related Work

The static properties of SDF present several optimization opportunities [13]. In [14], Bhat-
tacharyya and Lee present a looped scheduling technique, called pairwise grouping of adjacent
nodes (PGAN), that hierarchically clusters SDF graphs to expose the successive reoccurrence
of identical firing sub-patterns. For example, the technique may transform the schedule
(3A)(3B)(2C)(2D)(2E) of the SDF graph in Figure 2.1 into a looped form as 3(AB)2(CDE).
This is done by successively grouping two adjacent nodes in an SDF graph; e.g., A and B

are grouped together. This PGAN technique can result in significant buffer and code space
reduction. In [15], Bhattacharyya et al. present two heuristics that significantly reduce the
complexity of PGAN for acyclic SDF graphs. Sermulins et al. [100] use a similar technique
that fuses (groups) adjacent actors in such a way that the code and data space, required by
fusing actors, can fit into caches of processors. Gordon et al. [47] evaluate a technique that
increases the parallelism of SDF programs by replicating stateless actors. This is possible for
SDF actors have static IO rates. Murthy et al. [87] present several techniques that minimize
the memory requirement of chain-structured SDF graphs. Murthy and Bhattacharyya [86]
present a scheduling technique that allows the channels in an SDF graph to share buffers.
As a result, this buffer merging technique can help reduce memory requirements for SDF
programs. Samadi et al. [98] show that programs that can be described in the form of SDF
can be compiled to general-purpose graphics processing units (GPGPU) adaptively based
on input sizes resulting in significant speed improvement even when compared to the hand-
optimized corresponding programs. This is made possible because describing programs in
the form of SDF can help compilers schedule and analyse the programs better. Hormati [50]
et al. exploit the repetitive and static properties of SDF programs to compile the programs
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1 findSchedule(StreamGraph, q)
2 L ← StreamGraph.actors() . Form an arbitrary ordered list of all the actors in a

stream graph.
3 schedule ← new List()
4 while True do
5 areAllScheduled ← True
6 progress ← False
7 forall the actor ∈ L do
8 if isRunnable( actor) and qactor > 0 then
9 schedule.add(actor)

10 updateChannelInfo(). Update the numbers of tokens on the input/output
channels of actor changed by firing actor.

11 qactor ← qactor − 1
12 progress ← True

13 end
14 if qactor > 0 then
15 areAllScheduled ←False
16 end

17 end
18 if not progress then
19 return ∅ . No schedule exists.
20 end
21 if areAllScheduled then
22 return schedule . Found the schedule.
23 end

24 end

Figure 2.2: Symbolic execution for finding concrete sequential schedules.

to vector processors, resulting in significant speed improvement and energy reduction. Bui
and Lee [24] show how to exploit the SDF abstraction to design stream programs that can
adapt to IO rate changes for energy and resource reduction. Geilen and Stuijk present a
method for estimating the worst-case performance of SDF programs when switching between
different scenarios. Falk et al. [37] show how to cluster SDF actors together to form quasi-
static schedules that co-ordinate actor firings when mapped to multiprocessor system-on-chip
(MPSOC) resulting in significant latency and throughput improvement.
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2.3 Stream Dependency Function and Dependency

Graph

The method for finding concrete execution schedules in Section 2.2 only finds single proces-
sor schedules. However, SDF programs often expose rich concurrency suitable for running
on multicore. In this thesis, we will present and develop more advanced scheduling tech-
niques that are able to extract parallelism of SDF graphs as well as to schedule SDF graphs
when integrated with control-operations used to synchronize executions between actors. The
scheduling techniques are based on building dependency graphs that capture execution de-
pendencies between actors. Lee and Messerschmitt [70] also present a parallel scheduler but
it is for SDF without control-operations.

First, we will describe an abstract function called Stream Dependency Function, SDEP,
presented by Thies et al. [115]. This function can be used to construct data dependency
graphs.

Stream Dependency Function SDEP

SDEP represents the data dependency of the executions of one actor on the executions of
another actor in a stream graph. SDEPA←B(n) returns the minimum number of times actor
A must execute to allow actor B to execute n times. This is based on the intuition that an
execution of a downstream actor requires data from some executions of its upstream actors;
thus, each execution of a downstream actor depends on certain executions of its upstream
actors. In other words, given an nth execution of a downstream actor B, the SDEP function
returns the latest execution of an upstream actor A that the data it produces, going through
and being processed by intermediate actors, affects the input data consumed by the nth

execution of actor B.

Definition 2 (SDEP)

SDEPA←B(n) = min
φ∈Φ,|φ∧B|=n

|φ ∧ A|

where Φ is the set of all legal sequences of executions, φ is a legal sequence of executions and
|φ ∧ B| is the number of times actor B executes in the sequence φ.

SDEP Calculation

The StreamIt compiler computes the SDEP function using the pull schedule described in [115].
To intuitively illustrate the SDEP calculation using the pull schedule, we take a simple example
of actors B and D in Figure 2.1. The SDEPB←D(m) is as in Table 2.1. In the example, when D

does not execute, it does not require any number of executions of B. In order for D to execute
the first time, it requires three tokens on its input channel. Based on this requirement, the
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pull schedule algorithm will try to pull three tokens from the supplier, actor B. To supply
the three tokens, B has to execute at least two times, therefore we have SDEPB←D(1) = 2.
Similarly, when D wants to execute one more time, it needs two more tokens so it will try to
pull the two tokens from B. Again, B has to execute one more time to supply the two tokens
and we have SDEPB←D(2) = 3. Readers can refer to [115] for further details on the algorithm.

Table 2.1: Stream dependency function example

m SDEPB←D(m)
0 0
1 2
2 3

Periodicity of SDEP

As SDF is periodic, therefore SDEP is also periodic. This means that one does not need
to compute SDEP for all executions, instead, one can compute SDEP for some executions
then based on the periodic property of SDEP to query future dependency information. The
following equation was adapted from [115]:

SDEPA←B(n) = i ∗ |S ∧ A|+ SDEPA←B(n− i ∗ |S ∧ B|) (2.5)

where S is the executions of actors within one iteration of a stream graph. Accordingly,
|S ∧ A| is the number of executions of actor A within one iteration of its stream graph. i is
some iteration such that 0 ≤ i ≤ p(n) where p(n) = n÷ |S ∧ B| is the number of iterations
that B has completed by its nth execution.1

2.4 Sliding Windows

The StreamIt language [114] is a language for writing stream applications extending the SDF
model of computation with a sliding window feature2, in which actors can peek (read) tokens
ahead without consuming those tokens. As a result, many states of programs are stored
on channels in the form of data tokens instead of being stored internally within actors.
Consequently, many actors become stateless and eligible for the actor replication technique
to speed up computation [47]. Figure 2.3 shows how peeking can help eliminate stateless
actors. Suppose that B consumes one token each execution. B also stores the two most
recently consumed tokens in an internal queue, say t1, t2. As a consequence, B is stateful.
Now suppose that B can peek, then tokens t1 and t2 can be stored at the input channel
instead. As a result, B becomes stateless.

1We define a÷ b ≡ bab c.
2This feature was presented in Gabriel [17].
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Figure 2.3: Simple peeking example.
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Chapter 3

StreaMorph: Adaptive Stream
Programs

This chapter presents the concept of adaptive programs, whose computation and communi-
cation structures can morph to adapt to environmental and demand changes to save energy
and computing resources. In this approach, programmers write one single program using
a language at a higher level of abstraction. The compiler will exploit the properties of
the abstractions to generate an adaptive program that is able to adjust computation and
communication structures to environmental and demand changes.

We develop a technique, called StreaMorph, that exploits the properties of stream pro-
grams’ Synchronous Dataflow (SDF) programming model to enable runtime stream graph
transformation. The StreaMorph technique can be used to optimize memory usage and to
adjust core utilization leading to energy reduction by turning off idle cores or reducing op-
erating frequencies. The main challenge for such a runtime transformation is to maintain
consistent program states by copying states between different stream graph structures, be-
cause a stream program optimized for different numbers of cores often has different sets of
actors and inter-actor channels. We propose an analysis that helps simplify program state
copying processes by minimizing copying of states based on the properties of the SDF model.

Finally, we implement the StreaMorph method in the StreamIt compiler. Our exper-
iments on the Intel Xeon E5450 show that using StreaMorph to minimize the number of
cores used from eight cores to one core, e.g., when streaming rates become lower, can reduce
energy consumption by 76.33% on average. Using StreaMorph to spread workload from four
cores to six or seven cores, e.g., when more cores become available, to reduce operating
frequencies, can lead to 10% energy reduction. In addition, StreaMorph can lead to a buffer
size reduction of 82.58% in comparison with a straightforward inter-core actor migration
technique when switching from using eight cores to one core.
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3.1 Introduction

Given that traffic from mobile devices to YouTube(http://www.youtube.com/t/press_
statistics/) tripled in 2011, energy-efficient stream computing is increasingly important,
especially since battery life is a big concern for mobile devices. In addition, as comput-
ing devices are often now equipped with high-resolution displays and high-quality speakers,
streaming quality is expected to rise accordingly. Processing high-quality streams requires
proportionally higher computing energy. While several efforts [47, 68] aim at using parallel
computing to meet the demand of stream computation, not much attention has been paid to
energy-efficient parallel stream computing. These efforts mainly focus on devising scalable
compilation techniques to speed up stream computation. While multicore can address the
rising computing demand for stream computation, it also can result in an unnecessary waste
of energy due to low core utilization when more cores are used than needed at low streaming
rates.

In this chapter, we present StreaMorph [24], a programming methodology that exploits
the high-level abstractions of stream programs to generate runtime adaptive ones for energy-
efficient executions. Based on one single specification of a stream program, the compiler
exploits domain-specific knowledge to generate an adaptive program that is able to adjust
its occupied computing resources, processors, memory and so on, at runtime. Such adaptive
programs help reduce energy consumption by adapting their computing power to demand
changes at runtime. This programming methodology comes from our new perspective on
stream programs. The previous work on stream compilation assumes stream programs are
isolated entities. This assumption misses an important optimization opportunity. As isolated
entities, stream programs are set to run as fast as possible by using as much resources as
possible. Running stream programs aggressively may result in a considerable waste of energy.
In contrast, we treat stream programs as integrated components within certain systems. For
example, an MPEG2 encoder/decoder does not need to run faster than its camera/display
frame rates. Digital signal processing (DSP) programs, such as Radar, FM radio, and
Vocoders, do not need to run faster than their input signals’ sampling rates. Because using
more cores than needed for certain input rates to run these programs will waste energy due to
static energy leakage and inter-core data communication overhead, it is beneficial to find the
minimal number of cores required for a specific workload rate to reduce energy consumption.

Determining the optimal number of cores used for a stream program at compile-time
is often not possible due to several factors. These factors include varied processor speed
used to run stream programs, users’ control on stream quality and speed, varied runtime
signal rates, etc. As a result, compiled stream applications are necessary to be able to adapt
computing speed accordingly to external changes at runtime to save energy. Expressing
stream programs as synchronous dataflow (SDF) [70] models presents an opportunity for such
an energy optimization. In SDF, a program is decomposed into multiple autonomous actors
connected using FIFO channels. As a result, stream programs can dynamically relocate
actors and channels between cores at runtime to minimize the number of cores used while
maintaining required throughput demands. Using fewer cores reduces leakage energy as well

http://www.youtube.com/t/press_statistics/
http://www.youtube.com/t/press_statistics/
http://www.youtube.com/t/press_statistics/
http://www.youtube.com/t/press_statistics/
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as inter-core communication energy overhead.
A prior inter-core actor migration technique, the one implemented in Flextream [49] by

Hormati et al. in the context of changing processor availability, can adjust the number of
cores used, but it is not optimal as it does not adjust memory usage accordingly. In cloud
computing as well as in multicore embedded systems, processors are not the only resource
that applications share. In these computing environments, it is also desirable to reduce the
memory usage of each application to improve the overall utilization of a whole system [43, 42].

To improve inter-core actor migration technique, our StreaMorph technique not only mi-
grates actors between cores but also transforms stream graphs, thereby adjusting the set
of actors, inter-actor channels and the number of cores used. Runtime stream graph trans-
formation entails mapping and transferring data on inter-actor channels of different stream
graph configurations. This process is non-trivial because the inter-filer channel states become
complicated when stream programs execute through several stages such as initialization and
software pipelining [46].

We tackle the problem by proposing an analysis that helps reduce the number of tokens
copied between optimized configurations of a single stream program. The main idea of the
proposed analysis is to derive sequences of actor executions to drain tokens on channels as
much as possible. This StreaMorph scheme helps optimize energy consumption in several
ways. Either minimizing the number of cores used at a fixed frequency or lowering operating
voltages and frequencies of processors by using more cores to handle the same workload
rates can help reduce energy consumption. In addition, high processor temperatures due
to running at high utilization for long periods can degrade processors’ performance and
lifespan [45, 11]. As a result, increasing the number of cores used to lower core utilization,
thereby reducing processor temperatures, can mitigate the problem.

We apply the StreaMorph scheme to a set of streaming benchmarks [47] on the Intel Xeon
E5450 processors. The results show that, on average, using StreaMorph to minimize the
number of cores used whenever possible from eight cores to four reduces energy consumption
by 29.90%, and from eight cores to one reduces energy consumption by 76.33% on average.
Using StreaMorph to spread workload on more cores when they become available from four
cores to six or seven cores and applying DVFS can reduce energy consumption by 10%. Our
StreaMorph scheme also leads to an 82.58% buffer size reduction when switching from an
eight-core configuration to one compared to Flextream [49].

This chapter makes the following contributions
• We present the concept of adaptive programs that are beneficial in cloud computing and

embedded systems. Our work demonstrates a case for employing high-level abstractions
to design programs that adapt to demand and resource changes at runtime.
• We identify an energy optimization opportunity by taking into account external set-

tings, e.g., input data rates or the number of available cores, of stream programs with
a task-level program transformation technique.
• We present an analysis that helps simplify program state copying processes when

switching between configurations.
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• We implement the method in the StreamIt compiler and demonstrate experimentally
the effectiveness of the method using a set of StreamIt benchmarks.
• We also derive an approximate energy model analysis for stream programs on multicore

and experimentally validate the model. The model can serve as a guidance for finding
optimal energy-efficient configurations.

3.2 Adaptive Stream Programs
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Figure 3.1: Basic digital signal processing structure.

Stream programs are often compiled to maximize speed [47, 68] assuming fixed numbers of
cores. This approach implicitly assumes that sources/sinks of data for stream programs can
always produce/consume data. This assumption is not often true in practice. For example,
an audio source cannot produce data faster than its sampling rate. A sink, e.g., a monitor,
does not consume faster than its designated frame rate. To understand this situation better,
we discuss where stream programs fit into external settings.

Figure 3.1 shows a general structure of DSP systems. In the figure, the analog-to-digital
converter (ADC) samples analog signals at a sampling frequency f and outputs digital signals
to the DSP module, which executes stream programs. The DSP module manipulates digital
signals and subsequently feeds processed digital signals to the digital-to-analog converter
(DAC). The DAC converts input digital signals to analog signals at a conversion frequency
g.

This general structure of DSP systems suggests DSP modules need not process more
slowly than sampling f and/or conversion g frequencies. It is generally not possible to get
ahead of the source of data, when that source is a real-time source, and it is generally not
necessary to get ahead of the sink. Even with real-time sources and sinks, there may be some
benefit to getting ahead, because results can be buffered, making interruptions less likely
in the future when there is contention for computing resources. However, getting ahead
produces no evident benefit unless such contention occurs, and it comes at an energy cost.
When both the source and the sink are operating in real time, it also comes at a cost in
latency. Having more cores than necessary can waste energy due to static energy leakage
when idle. In addition, inter-core data transfer overhead when using more cores than needed
can be another source of energy inefficiency. Even when buffering is used, in steady state,
it is beneficial for processing speed to match IO rates, otherwise buffers will overflow or
underflow.
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We identify two scenarios that can lead to the mismatch between IO rates and processing
speed.
• Varied IO rates at runtime: Users can use fast forward functionality to quickly

browse through a video or audio file. Graphic applications need to render at faster/slower
frame rates. When users want to increase/decrease songs’ tempos in Karaoke sys-
tems, sound synthesis engines have to adjust accordingly. Sampling rates are in-
creased/decreased to alter quality.
• Different processor speeds: Even though compilers can match between processing

speed and certain IO rates at compile time, this optimization can only be done for
specific processor models. Processors of the same instruction set architecture can
vary in several dimensions such as clocking frequencies, microarchitecture, fabrication
processes. These variations lead to wildly varied execution times of a single program
on different processors with the same instruction set.

Energy Optimization

To get the energy benefits of matching processing speed to IO rates, two common techniques
are: 1) To consolidate tasks by relocating tasks to fewer cores to improve core utilization
and enable turning off idle cores [107, 4]; 2) To vary processing speed by applying dynamic
voltage and frequency scaling(DVFS) [7, 30, 48, 120] or processor composition [25, 63] or
heterogeneous processors of different speeds [69, 121, 78].
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Figure 3.2: Task consolidation and decomposition.

Task Consolidation

Especially for stream programs, task consolidation can help reduce inter-core communication
overhead. However, applying the task consolidation technique to stream programs optimized
for speed is not straightforward. For example, in the left of Figure 3.2, a stream program is
composed of three tasks T1, T2 and T3 connected through two FIFO channels. Suppose that
each task resides on a separate core in a quad-core processor and utilizes 60% of its core
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at current IO rates. Relocating normally one of the three tasks to another occupied core
will overload the core. Consequently, the processing system cannot guarantee the program’s
required IO rates. Instead, the program should switch to a different configuration composed
of two tasks T1’ and T2’; each utilizes 90% of its residing core as in the right of Figure 3.2.

This configuration switching is complicated because the two configurations may be com-
posed of different sets of actors and channels due to speed optimization techniques that
depend on the number of cores used. For example, the configuration composed of T1, T2
and T3 is optimized for 3 cores, while the configuration composed of T1’ and T2’ is optimized
for 2 cores.

Task Decomposition

Task consolidation is necessary as discussed in the previous section, however, there are a
number of scenarios where it is useful to decompose tasks.
• Suppose that running T1’ and T2’ on cores 1 and 2 at 90% utilization drastically

increases those cores’ temperatures [74, 45]. At this point, we want to run 2 tasks on
3 cores to reduce utilization as in Figure 3.2, and thereby consequently reducing the
cores’ temperatures.
• If the processors posses a DVFS capability, and there are more cores available because

some other applications terminated, decomposing two tasks T1’ and T2’ into three
tasks T1, T2 and T3 and reducing the operating frequencies of the processors can lead
to energy reduction; power is proportional to the cube of frequency.

Adjusting Shared Resources Proportionally

Section 3.2 suggests that inter-core actor migration to adjust processor utilization and speed
can help reduce energy consumption. While the inter-core actor migration implemented in
Flextream [49] can adjust the number of cores used at runtime, it is not optimal, because the
technique does not reduce memory usage accordingly. This limitation reduces the value for
cloud computing, where applications are allocated cores, memory, networking bandwidth,
and so on, proportionally [43, 42]; for example, one application using two cores is allocated
4GB of memory while another application using four cores is allocated 8GB. As a conse-
quence, just adjusting the number of cores used by relocating actors between cores without
adjusting memory usage as in Flextream [49] is no longer sufficient. In particular, reducing
memory usage is crucial in embedded systems where memory is scarce.

In contrast to Flextream [49], our StreaMorph technique adjusts both the number of
cores used and memory usage simultaneously. We illustrate the difference using an example.
To speed up stream computation, stateless actors are often replicated as in Figure 3.3(b)
to utilize available cores, where actors B1, B2, D1 and D2 are duplicated from the respective
ones in the original stream graph in Figure 3.3(a). Duplicating actors is necessary when
stream IO rates are high and we need to use more cores to handle such high IO rates.
When IO rates become low, a Flextream inter-core actor migration technique retains the
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stream graphs in Figure 3.3(b) and relocates actors to reduce the number of core used. For
example, originally the application in Figure 3.3(b) runs on two cores, but now the input
rate is lowered and one core can handle the workload. In this case, the actors are relocated in
Figure 3.3(b) and the stream graph is not modified. In contrast, our StreaMorph technique
modifies the stream graph into the one in Figure 3.3(a). As a result, our technique would be
more memory-efficient because it eliminates the buffers between actors Split, B2, D2, and
Join. In addition, we will show that our technique also reduces the buffer sizes of the other
buffers.

3.3 StreaMorph: Designing Adaptive Programs with

High-Level Abstractions

Section 3.2 suggests that adapting stream programs to external changes can lead to energy
and resource reduction. In this section, we will show how to attain such adaptivity by
exploiting stream program abstractions.
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Figure 3.3: Stream graph transformation
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Stream Abstractions and Data Parallelism

Model of Computation

The SDF [70] model of computation is often used to model executions of stream pro-
grams [113]. This abstraction enables several compiler optimization techniques [47, 68] for
buffer space, scheduling and mapping to underlying architecture.

Sliding Windows

The StreamIt language [113] is a language for writing stream applications extending the SDF
model of computation with a sliding window feature, in which actors can peek (read) tokens
ahead without consuming those tokens. As a result, many states of programs are stored
on channels in the form of data tokens instead of being stored internally within actors.
Consequently, many actors become stateless and eligible for the actor replication technique
to speed up computation as in Section 3.3. As many states of programs are stored on
channels, it is easier for compilers to migrate states between different configurations during
the morphing process.

Data Parallelism Exposed by Stream Abstractions

In this section, we will discuss how the stream abstractions in the previous section can help
adjusting parallelism in stream programs, thereby adjusting computing speed. To speed
up a stream application, we can replicate stateless actors so that multiple instances of one
stateless actor execute in parallel. This actor replication technique is feasible because each
actor in an SDF application consumes/produces a known numbers of tokens whenever it
executes at each of its input/output port. As a result, after replicating actors, the compiler
knows how to distribute/merge data tokens to/from each replicated actor.

Let us take the example in Figure 3.3(a) to illustrate the problem. Suppose that B

and D are stateless, as a result, we can duplicate the actors to obtain the configuration in
Figure 3.3(b). Because B consumes one token and D produces one token each time they
execute, we can distribute data tokens to each duplicated B and collect data tokens from
each D evenly in a round-robin fashion using Split and Join actors in Figure 3.3(b). With
this duplication, we can get 2x speed-up for the computation of the two actors. Stateless
actor replication is a popular technique that has proved to achieve significant speed-up for
several StreamIt benchmarks [47, 68]. Stateless actors can be replicated many times to fill-up
all available cores, consequently, this technique is dependent on the number of cores used.

Execution Scaling: The actor replication technique may require changing the number of
times each actor executes within one iteration. For example, A, C, and E in Figure 3.3(b)
now execute 6, 4, and 4 times respectively in one iteration. This means those actors now
execute twice as often within one iteration. This effect is called execution scaling.
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Figure 3.4: Execution strategies for stream programs

Implementing Adaptive Stream Programs

In the previous section, we discussed how the stream abstractions can help improving stream
program speed by exploiting data parallelism. However, switching between configurations
optimized for different numbers of processors is complicated by several compilation tech-
niques applied to stream programs [46]. We will show how to mitigate the complication in
this section.

Execution Stages

Initialization Stage: As downstream actors can peek tokens without consuming them,
upstream actors have to execute a number of times initially in the initialization stage to
supply more tokens to downstream peeking actors. For example, suppose that actor B in
Figure 3.3(a), each time it executes, peeks ahead 3 tokens and consumes only the first one of
the 3. Consequently, it requires at least 2 additional tokens on the channel between actors A
and B. To satisfy this requirement, A has to execute twice in the initialization stage to load
the channel with two tokens.

Software Pipelining: Gordon et al. use software pipelining to address a drawback of
hardware pipelining [47]. In hardware pipelining, only contiguous actors should be mapped
onto one core, e.g., in Figure 3.3(a), actors A and D should not be mapped into a core
when actor B is mapped to another core. This mapping restriction can potentially lead
to unbalanced allocation. Software pipelining allows mapping any actors to any core, e.g.,
actors A and D can be mapped into a core even when actor B is mapped to another core.
This is done by constructing a loop prologue in which each actor executes a certain number
of times to make data tokens available for downstream actors to run in one iteration. In
other words, within one iteration, actors do not communicate directly to each other, instead,
they output tokens into buffers that will be read by downstream actors in the next iteration.
Figure 3.4(a) shows how the prologue stage is executed and its transition to the steady-
state stage. In the steady-state stage, actors execute one stream graph iteration forming a
steady-state repetition. Each actor is able to execute completely independently within one
steady state repetition without the need for waiting for upstream actors to produce data
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in that repetition. For example, for the model in Figure 3.3(a), in order for E to execute 2
times independently, C and D have to execute twice. Consequently, B and A have to execute
3 times. Similarly, for C and D to execute twice independently, B and A have to execute 3
times. Finally, for B to execute 3 times independently, A has to execute 3 times. Adding up,
in the prologue stage, A executes (3+3+3) = 9 times, B executes (3+3)=6 times. C and D

execute 2 times. After the loop prologue A, B, C, D, E can execute independently within one
steady-state repetition.

Deriving Reverse Sequences

Normally, a compiled program repeatedly executes its steady-state repetitions regardless of
external environment changes as in Figure 3.4(a). This conventional execution model may no
longer be efficient in cloud computing, mobile computing and cyber-physical systems where
applications run in various environments or have to interact with physical environments. For
example, let us consider the situation when there are more cores becoming available in the
system because some other applications terminated. One possible way to save energy is to
utilize the newly available cores to process a part of the workload of the running application
at lower frequencies to save energy. Suppose utilizing the available cores would require
the application to switch from configuration C1 in Figure 3.3(a) to the configuration C2 in
Figure 3.3(b). This transition takes place at the end of a repetition in the C1’s steady-state
stage. Note that, in software pipelining, the prologue stage fills the channels of C1 with
tokens, for example, the channel between B and D contains 6 tokens; the channel between D

and E contains 2 tokens. As B and D are duplicated, determining how to copy and distribute
those tokens on the corresponding channels in Figure 3.3(b) is complicated. It is even more
problematic to derive from such a state of C2 a sequence of actor executions such that,
after executing such a sequence, actors in Figure 3.3(b) can execute in a software pipelining
fashion. Deriving such a switching procedure for each pair of configurations may be costly.

We simplify the switching process using the strategy in Figure 3.4(b). Instead of deriving
complicated inter-configuration token copying procedures, we use an epilogue stage to reduce
the number of copied tokens. The epilogue stage is derived to undo the effect of the prologue
stage. As a result, we only need to copy the fixed and known number of tokens across the
configurations produced by the initialization stage. If there is no peeking actor, only initial
tokens and states of stateful actors may still require copying.

Definition 3 Sequences of executions that undo the effect of the program’s current configu-
ration’s prologue stage are called reverse sequences.

Let ~VC be the vector of the number of tokens on each channel of configuration C right
before its prologue stage.

Definition 4 States of a configuration C, whose vectors of the numbers of tokens on the
channels are equal to ~VC, are called C’s pre-prologue states.
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Note that, for any configuration C, from a pre-prologue state, if each actor executes the
same number of iterations, C is again in a pre-prologue state. As a result, a reverse sequence
can be derived by finding dA, ∀A ∈ C, the additional number of times each actor has to execute
more so that all the actors will have executed the same number of iterations. Suppose that
number of iterations is J , counting from C’s first pre-prologue state (right before executing
C’s first prologue stage). Suppose that C has n actors Ai where i = 1, . . . , n, and each actor
Ai executes pAi and sAi times in its prologue stage and one iteration respectively. We have:

pAi +XI sAi + dAi = JsAi ∀Ai ∈ C (3.1)

where I is the current repetition of the steady-state stage and X is the execution scaling
factor. From equation (3.1), since X, I , and J are all integers, pAi + dAi has to divide sAi .
Let αAi be an integer such that pAi + dAi = αAisAi. Equation (3.1) becomes:

αAisAi +XI sAi = JsAi
⇔ αAi = J −XI (3.2)

Note that equation (3.2) holds ∀Ai ∈ C. Expanding the equation for all actors in the configu-

ration C, we arrive at: αA1 = αA2 = . . . = αAn . Because αAi = pAi+dAi
sAi

= dAi+(pAi mod sAi)

sAi
+b pAi

sA1
c,

then:
dA1 + (pA1 mod sA1)

sA1

+ b pA1
sA1

c = . . . =
dAn + (pAn mod sAn)

sAn
+ b pAn

sAn
c (3.3)

As it is desirable to switch between configurations as soon as possible, we find the smallest
dAi ≥ 0 satisfying equation (3.3) by finding the j such that:

j = argmax
i∈[1..n]

(
pAi mod sAi

sAi
+ b pAi

sAi
c
)

(3.4)

Because αAi is an integer and αAi = dA1+(pA1 mod sA1)

sA1
+ b pA1

sA1
c, we can conclude that (dAj +

(pAj mod sAj)) mod sAj ≡ 0. Hence,
• If pAj mod sAj = 0, we find the smallest dAj = 0.
• If pAj mod sAj > 0, we find the smallest dAj = sAj − (pA1 mod sA1). It is easy to prove

that dAj ≥ 0.
Now we derive other dAi from equation (3.3) as follows:

dAi =

(
dAj + (pAj mod sAj)

sAj
+ b

pAj
sAj
c − b pAi

sAi
c
)
sAi − (pAi mod sAi) (3.5)

=

(
dAj + (pAj mod sAj)

sAj
+ b

pAj
sAj
c
)
sAi − pAi (3.6)

As
dAj +(pAj mod sAj)

sAj
is equal to either 0 or 1, from equation (3.6), it is easy to prove that

dAi is an integer. Now we need to prove dAi ≥ 0 ∀i = 1, . . . , n. From (3.3) and (3.4):

b
pAj
sAj
c − b pAi

sAi
c ≥ pAi mod sAi

sAi
−
pAj mod sAj

sAj
(3.7)
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Plugging into equation (3.5), we arrive at:

dAi ≥
(
dAj + (pAj mod sAj)

sAj
+
pAi mod sAi

sAi
−
pAj mod sAj

sAj

)
sAi − (pAi mod sAi)

≥
dAjsAi
sAj

≥ 0 (3.8)

Being able to find dAi does not necessarily mean that reverse sequences always exist;
there may be additional data dependency constraints. Within the SDF literature, even if
we can find numbers of times actors execute within one iteration, it is still possible that
the stream graph is not schedulable, e.g., when the stream graph has loops forming circular
dependencies. The following theorem implies that it is always possible to undo the effect of
prologue stages.

Theorem 2 A reverse sequence always exists for a configuration C if the configuration has
prologue and steady-state schedules (an executed stream graph).

Proof: We prove this by contradiction. Suppose that we cannot derive a concrete reverse
sequence based on the values dAi found as above. The only reason would be because of data
dependency between the executions of the actors. Let Aei denote the eth execution of actor
Ai from the beginning right before the prologue stage. There exist two possible cases:

1) There exists a data dependency loop between actor executions A
ej1
j1
≺ A

ej2
j2
≺ . . . ≺

A
ejm
jm
≺ A

ej1
j1

of m actors. As the existence of this dependency loop depends solely on the
property of C, consequently, the execution of C will be stalled due to the dependency loop.
This contradicts with the fact that C can be repeated in the steady-state stage forever.

2) Some actor B is at its bth execution and has not completed dB executions of its epilogue
stage to reach its execution (JsB)th; in other words, b < JsB. B cannot proceed further
because it requires more data tokens from its upstream actor A, while A has completed dA
executions in its epilogue stage to reach its (JsA)th execution. This implies that A, having
executed J iterations, still does not produce enough tokens for B to execute J iterations.
This contradicts the property of SDF that the number of tokens A produces in one iteration
is equal to the number of tokens B consumes in one iteration.

We now need to derive concrete reverse sequences based on dAi. It is desirable to use
current buffers without increasing buffer sizes for executing reverse sequences. As each buffer
is large enough to store tokens from the upstream actor for the downstream actor to execute
at least one iteration even if the producing actor has not produced any more tokens, it is safe
to execute upstream actors for at most one iteration continuously. After that, downstream
actors have to execute to free up buffers. Algorithm 3.5 derives reverse sequences when
stream graphs do not contain loops. However, most of the stream benchmarks do not contain
loops [113] and all the benchmarks used in [47, 68] are loop-free. When stream graphs have
loops, the classical symbolic execution method of SDF [70] can be used. The classical method
may yield more complicated sequences as it randomly selects actors to execute. This random
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execution ordering can cause severe performance degradation during configuration switching
due to losing cache locality. To mitigate the potential negative effect of the classical symbolic
execution method, the following algorithm seeks to execute each actor several times in a row
by traversing actors in dataflow order.

Data: reverseMap: Map from actors to numbers of reverse executions
schedule: containing prologue and steady-state schedules
Result: reverseSeq: reverse sequence of actor executions

1 reverseSeq ← new List()
2 actors← getActorsInDataflowOrder()
3 while reverseMap.size() > 0 do
4 thisStepMap← new Map()
5 for f ∈ actors do
6 nReverseExes← reverseMap.get(f)
7 nIterExes← schedule.getNumberExesInOneIteration()
8 m = min(nReverseExes, nIterExes)
9 thisStepMap.put(f, m)

10 nReverseExesLeft← nReverseExes−m
11 if nReverseExesLeft > 0 then
12 reverseMap.put(f,nReverseExesLeft)
13 else
14 reverseMap.remove(f)
15 end
16 end
17 reverseSeq.add(thisStepMap)
18 end
19 return reverseSeq

Figure 3.5: Deriving reverse execution sequences when stream graphs are loop-free.

Illustrative Example

We illustrate the analysis method using the configuration in Figure 3.3(a). For the program:
pA=9,pB=6, pC=pD=2, pE=0; sA=sB=3, sC=sD=sE=2; X= 1. As pA mod sA

sA
+ bpA

sA
c=3 is max

and pA mod sA ≡ 0, we set dA = 0. Finally, from (3.6), we find dB=3, dC=dD=4, dE=6.
Readers can verify that condition (3.1) is satisfied. Now, applying Algorithm 3.5, we find
that, in the first reverse step, B, C, D, E execute 3, 2, 2, 2 times respectively. B has executed
all its reverse executions, so it is removed from the reverseMap. In the second step, C, D, E
execute 2, 2, 2 times respectively, and C, D are removed from the reverseMap. In the last
step, only E executes 2 times and is removed from the reverseMap. Now the reverseMap is
empty so the algorithm terminates. Applying the reverse sequence will drain all the tokens
on the channels from B to D and from D to E. Figure 3.4(b) displays how the reverse execution
sequence is executed.

Peeking Token Copying

As reverse sequences can undo the effect of prologue stages, if stream programs do not contain
peeking actors, then after epilogue stages, the effect of respective prologue states is undone.
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Figure 3.6: Peeking token copying in sliding window computation. Each cell denotes a
token. Colored tokens are peeked only and never consumed. (a) Data token distribution in
fined-grained interleaving execution when B is replicated by 2; (b) Data token distribution in
coarse-grained interleaving execution when B is replicated by 2; (c) Data token distribution
in coarse-grained interleaving when execution B is replicated by 3; (d) Copy peeking tokens
when switching configurations.

As a result, we only need to copy actor states, which are small, and initial tokens, which often
do not exist. When peeking actors exist, for example, B peeks 3 tokens and only consumes
1 each time it executes, the channel between A and B will always contain tokens after the
initialization stage. Copying those peeking tokens requires further elaboration about how
stream graphs with peeking actors are optimized.

Efficient Sliding Window Computation: Gordon, in his PhD thesis [46], presents a
method to reduce inter-core communication that degrades performance in SMP and Tilera
machines for applications with peeking actors. We will use an example to illustrate Gordon’s
method.

Consider the configuration in Figure 3.3(b), where actor B is duplicated into B1 and
B2. Because B peeks tokens, it is necessary to send more tokens to the input channels of
replicating actors B1 and B2 than the number of tokens B1 and B2 consume. A fine-grained
data parallelism approach where B1 and B2 alternatively consume tokens from A at the step
size of 1 will double the amount of communication between A and B as in Figure 3.6(a).
For example, suppose that in one iteration A produces 2n tokens on its output channel, and
there are 2 more tokens, numbered 1 and 2, produced by A in the initialization stage. B1

consumes token 1 and reads tokens 2 and 3; B2 consumes token 2 and reads tokens 3 and
4; B1 consumes token 3 and reads tokens 4 and 5; and so on. At the end of the iteration
in the steady-state stage, B2 consumes token 2n and reads tokens 2n + 1 and 2n + 2. As
a result, both B1 and B2 require 2n + 1 tokens out of 2n + 2. The total amount of traffic
is therefore 4n + 2 tokens in comparison with 2n + 2 tokens for the original stream graph.
This communication overhead may degrade performance significantly for applications with
peeking actors in SMP and Tilera machines [46].
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To reduce the communication overhead, a coarse-grained data parallelism approach [46]
is used instead as in Figure 3.6(b). Now B1 consumes the first n tokens and reads tokens
n+ 1, n+ 2; B2 consumes tokens from n+ 1 to 2n and reads tokens 2n+ 1 and 2n+ 2. As
a result, A only needs to send n + 2 tokens to both B1 and B2 within one iteration of the
steady-state stage. The amount of communication is therefore 2n+ 4 tokens in comparison
with 2n + 2 tokens for the original graph. If n is large, the overhead becomes insignificant.
As 2n is the number of tokens A produces within one iteration, we can scale up the number
of times each actor executes within one iteration to increase n. Note that in Figure 3.6(a)(b)
and (c), colored tokens are peeked only and never consumed.

Copying Peeking Tokens: The StreamIt compiler enforces an additional constraint [46]
that the number of tokens on the input channel of a replicated actor right after the initial-
ization stage has to be smaller than the number of tokens the actors will consume within
one iteration. This can be achieved by scaling up the same number of times each actor
executes in one iteration. This constraint implies that, in pre-prologue states, only the input
channels of the first replicated peeking actors contain tokens regardless of configurations. As
a result, after applying reverse sequences to bring a configuration to a pre-prologue state, we
only need to copy tokens from the input channel of the first replicated actors in the current
configuration to the input channel of the respective first replicated actors in the incoming
configuration. For example, only the tokens in the input channel of B1 need to be copied
to the input channel of B∗1 as in Figure 3.6(d). The tokens on the channel between A and
C, due to the executions of A in the initialization stage, only need to be copied if the two
configurations contain different versions of A and C or the channel between A and C needs to
be reallocated for a larger buffer size. As the number of peeking actors and the number of
peeking tokens are small [113], it would take an insignificant amount of time to copy.

3.4 Task Decomposition for Low-Power

As discussed in Section 3.2, when more cores become available because some other programs
terminated, if processors possess DVFS capability, we can reduce energy consumption by
decomposing tasks, thereby spreading workload on more cores, and lowering operating volt-
ages and frequencies. We will derive an analysis that helps justify the hypothesis supported
by the experimental results in Section 3.5.

We employ the energy model for one CPU from [92]:

Pcpu = Pdynamic + Pstatic = (CeV
2
cpufcpu) + (α1Vcpu + α2) (3.9)

Based on equation (3.9), the dynamic energy consumption Pn if computation is spread
on n cores is:

Pn ≈

(
n∑
i=1

Ci

)
V 2
n fn (3.10)
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If we assume that inter-core communication consumes very little energy in compari-
son with computational energy or the same as intra-core communication, spreading stream
graphs on more cores enables lowering operating frequencies and voltages, although it in-
creases

∑n
i=1Ci. Suppose that we can run a stream application at a specific IO rate with

two configurations of n and m cores, where n > m. From equation (3.10), we arrive at:

Pn
Pm
≈ n

m

(
Vn
Vm

)2
fn
fm

(3.11)

Note that the n-core configuration is supposed to be as fast as the m-core configuration. As
a result, it requires that the number of instructions delivered by n cores in one second be
equal to that of m cores: nfnIPCavg ≈ mfmIPCavg, where IPCavg is the average number
of instructions per cycle and it should be the same for the two configurations because both
configurations run the same workload targeting the same IO rates. Equivalently, n

m
≈ fm

fn
.

Plugging into (3.11), we arrive at:

Pn
Pm
≈
(
Vn
Vm

)2

(3.12)

From [56], frequencies relate to voltages as follows:

f ∝ (Vcpu − Vt)γ

Vcpu
(3.13)

where Vt is the threshold voltage of transistors and γ depends on the carrier velocity
saturation and lies between 1.2 to 1.6 for the current technologies. As a result, run-
ning on more cores with lower frequencies can reduce energy consumption. For example,
m < n⇒ fn < fm ⇒ Vn < Vm ⇒ Pn < Pm. Operating voltage reduction also reduces static
energy consumption as in equation (3.9). From (3.12) and (3.13), we can also see that power
is approximately proportional to the cube of frequency.

Note that this is a simplified energy model for stream applications on multicore machines.
This model assumes that computation-communication ratios are large enough to approxi-
mately ignore inter-core communication energy or inter-core communication consumes the
same amounts of energy as intra-core communication. The first assumption depends on
benchmarks’ characteristics while the second assumption is often not true in practice. This
approximation analysis serves as a predictive model to explain the results in Section 3.5.

3.5 Evaluations

We implement the StreaMorph scheme in the StreamIt compiler [46]. To model input data
token streams controlled externally at certain rates, we instrument code of source actors with
the token-bucket mechanism [111]. Whenever a source actor wants to send out a number of
data tokens, it has to acquire the same number of rate control tokens in a bucket. If the
bucket does not have enough rate control tokens, the thread of the source actor will sleep
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and wait until there are enough rate tokens in the bucket. A timer interrupt periodically
fills the bucket with rate control tokens at rate r and wakes up the waiting thread. Our
coarse-grain level implementation of this mechanism has a negligible effect on performance.

We run our experiments on a server with two Intel Xeon E5450 quad-core CPUs operating
at two frequencies 2GHz and 3GHz. We use a power meter to measure the power consumption
of the whole system. The system has a typical idle power consumption Pidle ≈ 228 watts.
For each benchmark, we measure the dynamic power consumption, Pload, computed using
the following equation:

Pload = Pmeasure − Pidle (3.14)

We use the same set of benchmarks in other papers [47, 68]. Most of the benchmarks
are in the DSP domain. Each benchmark is compiled into a program composed of several
configurations, where each configuration is specific to a number of cores.
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(a) Energy consumption when input rates saturate one core.
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BitonicSort

ChannelVocoder
DCT

DES
FFT

Filte
rBank

FMRadio

MPEG2Decoder
Radar

Serpent
TDE

Average
0

30

60

90

120
4 cores4 cores 5 cores5 cores 6 cores6 cores 7 cores7 cores 8 cores8 cores

w
at
ts

(b) Energy consumption when input rates saturate four cores.

Figure 3.7: Energy reduction by task consolidation.
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Energy reduction by task decomposition
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Figure 3.8: Energy reduction by task decomposition.

Energy Reduction by Task Consolidation

In this section, we evaluate the effectiveness of the task consolidation scheme using the
StreaMorph technique. Suppose that when the IO rates of a stream program are reduced,
the processors become under-utilized. As a result, we can morph the stream graph of the
application to minimize the number of cores used to reduce Pload; cores are run at 3GHz. Fig-
ure 3.7(a) and Figure 3.7(b) show the effectiveness of consolidating tasks using StreaMorph
to minimize the number of cores used to one and four cores respectively when input rates
become low enough. Concretely, morphing from eight cores to four cores reduces energy
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consumption by 29.90% on average. Morphing from eight cores to one core reduces energy
consumption by 76.33% on average.

Energy Reduction by Task Decomposition

This section demonstrates experimentally the effectiveness of the task decomposition scheme
with StreaMorph. When there are more available cores in the system, because some other
program terminates, the analysis in Section 3.4 suggests we should transfer a part of the
workload to the newly available cores to lower operating voltages and frequencies of all the
cores to save energy. For each benchmark, we use the workload rate that can be handled
by 4 cores at 3GHz. We use the StreaMorph technique to switch each application to a
new configuration using more cores, such that the new configuration can still handle the
same workload rate at a lowered frequency, say 2GHz. Figure 3.8(a) shows the measured
energy consumptions and Figure 3.8(b) shows the energy reduction percentage gained by
task decomposition. On average, the energy reduction percentage is around 10%.

Our experiment also shows that this method is only effective for the benchmarks that have
high computation-communication ratios [46]; in this experiment, the ratio is greater than 100.
The reason for this result is that the benchmarks with small computation-communication
ratios would incur significant inter-core communication energy overhead compared to com-
putational energy.

Effect of Synchronization on Energy Consumption
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Figure 3.9: Energy consumption when using pthread barriers
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Note that between steady-state repetitions, threads are synchronized by a barrier to
avoid buffer overrun situations. As threads containing source actors will have to wait, by
sleeping, if there are not enough rate control tokens, consequently, other threads have to
wait at barriers. Our experiments in the previous sections use the original implementation
of barriers in the StreamIt compiler that uses spin-locks. This scheme wastes energy because
processors continuously check for conditions. To enable processors to sleep to save energy, we
replace spin-lock barriers with pthread barriers. However, using pthread barriers degrades
performance of a number of benchmarks such as FFT, BitonicSort and TDE. For FMRadio,
using pthread barrier makes energy consumption approximately stay the same even when the
number of cores used is increased. For ChannelVocoder, DES, FilterBank, MPEG2Decoder,
Radar and Serpent, using pthread barriers incurs additional energy consumption in com-
parison with using original spin-lock barriers. This is because it would take a considerable
amount of energy to wake processors up. Figure 3.5 shows the energy consumption when
using pthread barriers for 4-core workload rates. On average, across the benchmarks whose
performance is not degraded by using pthread barriers, using pthread barriers consumes ap-
proximately the same amount of energy as using spin-lock barriers, while spin-lock barriers
are better for speed.

StreaMorph vs. Flextream Task Migration

In the previous sections, we demonstrated how StreaMorph can help save energy. However,
how is StreaMorph compared to the straightforward actor migration scheme implemented
in Flextream [49] by Hormati et al. Figure 3.10 shows the advantage of StreaMorph over a
Flextream actor migration scheme in reducing buffer sizes when switching from multiple cores
to one core. For example, when switching from eight cores to one core, because StreaMorph
transforms the stream graph structures of applications, it reduces the buffer sizes by 82.58%
on average over Flextream, which does not modify the stream graph structures. Even when
switching from two cores to one core, StreaMorph can help reduce buffer sizes by 57.62%.
Especially, for benchmarks ChannelVocoder, FMRadio, FilterBank, StreaMorph can help
reduce buffer sizes more substantially, while it is not useful in the case of TDE because TDE

does not require the actor-replication technique even for eight cores.
In addition, Flextream does not allow the optimizations dependent on the number of

cores as described in Section 3.3. Furthermore, in Flextream, actors are not fused to allow
fine-grain actor migration to avoid the situation in Figure 3.2, while actor fusion is benefi-
cial to reduce synchronization and communication between actors [47]. As a consequence,
Flextream suffers around 9% performance penalty from the optimal configurations [49]. Our
experiment comparing the performances of StreaMorph and the Flextream actor migration
techniques for switching from five cores to three cores also result in the same result. To save
space, we do not present the result here.



CHAPTER 3. STREAMORPH: ADAPTIVE STREAM PROGRAMS 34

Buffer size reduction: StreaMorph vs. Flextream actor migration
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Figure 3.10: Buffer reduction.

Switching Time

We have shown that switching between configurations can help reduce energy consumption
of multicore systems. However, if it takes too long to switch between configurations, QoS
of stream programs may suffer. It is desirable to measure the switching time of the system.
A configuration switch is composed of three steps: the epilogue stage of the current config-
uration, state copying, and the prologue stage of the incoming configuration. The following
equation shows how switching time is broken down:

tswitching = tepilogue + tstate−copying + tprologue (3.15)

We run each benchmark and measure tepilogue and tprologue on 1 to 8 cores. To save
space, we only report the maximum and average measured values for each benchmark in
Table 3.1. As, tstate−copying ≈ 0, it is often too small to measure exactly, we instead report
the number of bytes to copy for each benchmark in Table 3.1. We can use the data from the
table to compute maximum amounts of time to switch from one configuration to another
configuration. For example, for the DES to switch from 3 cores to 7 cores, tepilogue for 3 cores
is bounded by 148µs and tprologue for 7 cores is bounded by 210µs, and tstate−copying = 0
because there is no tokens that need to copy. The total switching time is smaller than or
equal to 148 + 0 + 210 = 358µs for DES. We can see that switching times are small enough
not to degrade user experience.

In addition, note that during the configuration switching process, processors still do useful
work such as running epilogue and prologue stages, and as a result, the overall performance
would not be affected too much.
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Prologue time (µs) Epilogue time (µs) Copy size (bytes)
Benchmarks Max Average Max Average Token State
BitonicSort 716 126 27 22 0 4
ChannelVocoder 2999 2477 45703 39271 8820 252
DCT 28 21 104 68 0 4
DES 210 153 148 115 0 4
FFT 52 38 37 31 0 4
FilterBank 1442 1121 12385 7217 1984 508
FMRadio 1582 988 56575 26974 492 508
MPEG2Decoder 116 75 176 125 0 4
Radar 123 104 347 305 0 1032
Serpent 2303 853 648 548 0 0
TDE 5 3 770 361 0 4

Table 3.1: Switching time statistics.

3.6 Lessons Learned

Designing the StreaMorph scheme, we realized a number of principles for designing adaptive
programs:
• Modularity: Applications should be decomposed into subprocesses to allow task mi-

gration between cores.
• Functional subprocesses: Ideally, the subprocesses should be designed to be stateless

to expose parallelism, e.g., by replicating stateless processes.
• Internal state exposure: States of programs should be exposed by storing on external

queues instead of within subprocesses to facilitate state migration while morphing
programs.
• Predictable inter-process communication rates: This property eases program state

transferring processes, e.g., by reducing the amount of copied state.
These principles point to other domains for adaptive programs. We find we can apply the
adaptive program concept to programming models such as Cilk [38], PetaBricks [8] and
SEDA [119].

3.7 Related Work

The Hormati et al.’s Flextream [49] work is closely related to our work. Hormati et al.
present a method that can efficiently repartition stream programs to adapt dynamically to
environment changes such as the number of available cores. The major drawback of the Flex-
tream is that it does not reduce memory usage proportionally when reducing the number
of cores used as shown in Section 3.5 as well as 9% performance degradation. In addition,



CHAPTER 3. STREAMORPH: ADAPTIVE STREAM PROGRAMS 36

we not only present a method enabling the above adaptations but also show how to use the
method to reduced energy consumption of stream programs by putting stream programs into
external settings. Aleen et al. [4] propose a method to dynamically predict running times
of portions of streaming programs based on input values. Portions of programs are dynam-
ically relocated across cores based on prediction results to balance workload on multicore.
Task consolidation has been deployed in the Linux kernel to reduce energy consumption by
relocating workloads to fewer cores to allows other cores to turn into deep sleep states [107].
Besides the task consolidation technique, adjusting processors’ speed using the DVFS ca-
pability to computation demands is another popular technique. Choi et al. [30] present a
method to reduce energy consumption of a MPEG decoder program by adapting processor
frequencies to MPEG video frame rates. The dynamic knobs framework [48] dynamically
adjusts processor frequencies based on QoS requirements to save energy. In [10], Baek and
Chilimbi present a framework that compile programs into adaptive ones that can return
approximate results based on QoS requirements to reduce energy consumption.

Hardware energy-efficient research has been focusing designing processors that can adapt
themselves to QoS requirements. Executing code regions of certain characteristics to suit-
able cores in heterogeneous multicore systems composed of cores with different points of
energy/performance sharing the same ISA to save energy has been explored in [69, 121, 78].
Another approach to energy-efficient computing is to exploit the DVFS capability of mod-
ern processors [120, 7]. Burger et al. proposed an Explicit Data Graph Execution (EDGE)
architecture [25] to reduce energy consumption by getting rid of complicated speculation
circuits inside modern processors and using compiler techniques instead.

Our work is also related to the fair multiple resource sharing problem [43, 42] in cloud
computing. Our StreaMorph scheme, when reducing the number of cores used, also reduces
memory usages accordingly. This feature makes our StreaMorph scheme more suitable for
cloud computing than the Flextream approach [49].

In [91], Parhi and Messerschmitt present a method for finding multiprocessor rate-optimal
schedules for data flow programs. Rate-optimal schedules help programs achieve minimal
periods for iterations given an infinite number of cores. Renfors and Neuvo’s framework [96]
focuses on determining the minimal sampling periods for a given digital actor structure
assuming the speed of arithmetic operations is known and the number of processing units
is infinite. This line of work is different from our work in the sense that, they assume static
streaming rates and applications are optimized for specific hardware platforms while in cloud
computing, mobile computing and cyber-physical systems, applications run on a wide variety
of underlying hardware.

Finally, our work derives from the work by the StreamIt compiler group [47, 46, 113].
However, we focus on the energy-efficient aspect instead of speed optimization [47, 68]. Our
analysis depends on the static properties of the SDF to derive sequences of actor executions
that drain tokens on channels. Deriving such reverse sequences for more expressive stream
models of computations such as Kahn process networks [58] is problematic due to unknown
traffic patterns between processes. Although this work is within the SDF domain, the process
migration technique to improve core utilization and reduce energy consumption is applicable
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to other streaming languages as well [23, 60, 82].

3.8 Conclusion

We have made a case for exploiting high-level abstractions to design adaptive programs by
presenting our StreaMorph technique for stream programs. We have shown that high-level
abstractions can help design adaptive programs. The concept of adaptive programs proposed
in this chapter is important in cloud computing, mobile computing, and cyber-physical
systems when applications can be dynamically deployed and migrated on a wide variety of
environments. Morphing programs can also help isolate performance of applications, thereby
improving QoS of applications.

This work can be extended in several directions. Our next step would be predicting the
number of cores necessary for a given IO rate. We plan to apply the adaptive program
concept to applications with implicit parallelism with multiple algorithm choices, e.g., in
PetarBricks [8], so that applications can execute adaptively under fair-multiple-resource
constraints [43, 42].

Our evaluations use Intel Xeon processors, it would be more interesting if our evaluations
are done using multimedia processors, however, at the time the chapter is written, we do
not have a multicore multimedia processor platform at hand. We also have not explored
the idea of using configuration switching to lower core utilization to protect processors from
overheating.
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Chapter 4

Exploiting Networks on-Chip Route
Diversity for Energy-Efficient
DVFS-Aware Routing of Streaming
Traffic

Stream programs often demand high communication bandwidth. Networks on-Chip (NoC)
is an interconnection paradigm to address the scalability issue of the conventional bus sys-
tems. In this chapter, we focus on a streaming traffic routing scheme for NoC to reduce
energy consumption. Our routing technique combines the dynamic voltage frequency scal-
ing (DVFS) capability and the route diversity property of NoC for energy reduction. Based
on estimated communication demands of stream programs’ flows, our routing algorithm finds
energy-efficient DVFS-aware routes for the flows that minimize link and router frequencies
to save energy. We evaluate our algorithm on a set of stream applications written in the
StreamIt language. Our experimental results show that exploiting both the DVFS capa-
bility and the route diversity of NoC can significantly reduce links and routers’ energy in
comparison with a number of previous approaches, which utilize only either DVFS or route
diversity. Our routing technique reduces router energy by 25% and 10% over the default
XY routing and a state-of-the-art maximal throughput routing technique respectively when
applying the same DVFS policy for the set of stream benchmarks. For links, our routing
technique reduces energy by 26% and 29% over the two routing techniques respectively when
applying DVFS. Our router frequency tuning technique results in 8.7X router energy reduc-
tion over several current policies that do not tune router frequencies. Applying DVFS to
both links and routers comes at the cost of 8% increase in average latency. To the best of
our knowledge, our work is the first to present a case for applying DVFS to routers to save
energy.
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4.1 Introduction

Networks on-chip is a scalable interconnection fabric for multicore machines that can ad-
dress the limited scalability of the bus paradigm. Thanks to their high throughput, NoC are
especially suitable for stream applications, which often demand high communication band-
width [81]. The route diversity of NoC that makes the communication paradigm scalable
can also become a source of energy-inefficiency. NoC energy consumption has been becom-
ing increasingly substantial and important in multicore machines [102] along with the rising
communication bandwidth demands, e.g., from high-quality stream applications. This chap-
ter focuses on devising NoC energy reduction scheme while still meeting the communication
bandwidth requirement of stream applications.

The advent of underlying hardware capabilities such as DVFS enables new energy saving
schemes [106, 72, 102, 27, 122, 54, 83, 89]. The previous approaches often assume the de-
fault XY routing scheme in NoC before applying DVFS to reduce energy consumption. This
routing assumption misses an important opportunity to balance network traffic appropri-
ately to further reduce energy consumption. This limitation may come from the difficulty in
predicting and estimating precisely the random traffic patterns and time-varied communica-
tion bandwidth of general applications. In contrast, stream applications often exhibit fixed
traffic patterns with predictably periodic bandwidth [113, 47, 70]. As a result, exploiting
those stationary properties of stream traffic can lead to better throughput-optimized routing
schemes [1, 64, 84]. In the related work, routing is used as a mechanism to reduce commu-
nication bottlenecks at congested links. Differently, we focus on reducing NoC energy from
both the DVFS and application-aware perspectives. Our routing scheme exploits the sta-
tionary properties of stream traffic to route stream flows to appropriate routes while tuning
operating voltages and frequencies of both links and routers simultaneously on the routes to
achieve better energy saving.

Tuning router frequencies for energy is difficult and has not been considered in [102, 106,
27, 72] due to the randomness of general applications’ traffic. Tuning router frequencies
for general traffic may lead to drastic performance degradation because routers are often
more complicated than links and located at the intersections of several links and flows.
However, the predictably stationary property of stream traffic makes router frequency tuning
more feasible. Experimentally, we show that our router frequency tuning scheme results in
substantial router energy reduction without drastic performance hits.

To realize the above points, we formulate the stream traffic DVFS-aware routing as a
Mixed Integer Linear Program (MILP) problem using the Orion 2 NoC [59] power model
of links and routers. As the routing problem is NP-hard, we present a heuristic DVFS-
aware routing scheme to handle large networks with large numbers of traffic flows. When
applications no longer execute within one single environment, e.g., in cloud computing,
but rather are dynamically relocated between cores [31, 49], e.g., to reduce peak power
consumption or to save energy by consolidating tasks and turning off unused cores, this
heuristic routing scheme would be beneficial because it can address the scalability issue of
the optimal MILP routing schemes [1, 64, 84]. While frequent traffic rerouting using MILP
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can be expensive, our heuristic DVFS-aware routing scheme enables fast and inexpensive
traffic rerouting.

Our experiments in 2-D mesh networks show that our routing scheme leads to 26%
and 29% link energy reduction compared to the default XY routing approach employed
in [106, 72, 102, 27, 106, 122] and the Transcom-Fission [1], a state-of-the-art maximal
throughput routing technique, respectively while applying the same DVFS policy. Our router
frequency tuning scheme, which, to the best of our knowledge, has not been explored for
energy reduction, leads to 8.6X energy reduction over not tuning router frequencies. When
applying our router frequency tuning scheme, our DVFS-aware routing scheme leads to 26%
and 10% energy router reduction over the XY and Transcom-Fission routing respectively.
The paper’s contributions include:

• An energy-efficient DVFS-aware routing method for NoC by exploiting the DVFS ca-
pability and NoC route diversity to additionally reduce energy consumption when
compared to the state-of-the art routing techniques.

• Given that, applications, e.g., in cloud computing, need to quickly adapt to external
changes, e.g., resources [49], IO rates, it is necessary to be able to reroute traffic
dynamically at runtime. Our heuristic DVFS-aware routing algorithm helps facilitate
such runtime reconfiguration with significantly less routing time compared to MILP
methods.

• We present a case and a technique to tune router frequencies leading to substantial
router energy reduction for stream traffic.

• Through our experiments with a set of stream benchmarks written in the StreamIt lan-
guage, we explain a traffic distinction between the software pipelining and hardware
pipelining compilation techniques for stream programs. This compilation-oriented traf-
fic characterization provides hints for future NoC-aware stream program compilation
techniques.

4.2 Motivating Example

Specifically, for a link, we can estimate its utilization as follows: Ulink = b
flinkw

where b is the
total amount of traffic flowing through the link during one second and w is the width of the
link in numbers of bits. Plugging into (1.1), we arrive at:

E = β
1

2
CV 2

dd

b

w
(4.1)

We will use equation (4.1) to analytically illustrate the motivating example.
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Figure 4.1: Energy aware routing.

DVFS-Aware Energy Efficient Routing

In a NoC, traffic is sent between nodes through a network of routers connected by links as in
Figure 4.1. Exploiting the route diversity of NoC can help reduce not only traffic contention
but also energy consumed in interconnection networks. For example, Figure 4.1(a) shows a
small NoC of two flows (2→ 7) and (5→ 6) with bandwidth b(2→7) and b(5→6) respectively.
If the conventional XY routing method [44, 32] is used, the two flows share links (5 → 8)
and (8 → 7). Suppose that this setting requires these links to run at a frequency-voltage
pair (f3, V3) to be able to carry the traffic of the two flows. Now, consider the case when
flow (2 → 7) is routed through route (2 → 5 → 4 → 7) while the other flow remains in the
same route as in Figure 4.1(b). In this setup, each link only carries the traffic of one flow.
The required frequency-voltage pair for links (5 → 8) and (8 → 7) becomes (f2, V2), and
the required frequency-voltage pair for links (2 → 5) and (4 → 7) becomes (f1, V1). In XY
routing, links (5→ 8) and (8→ 7) have to carry the traffic of both of the flows, as a result,
it is probable that f3 > f2 and f3 > f1. Consequently, by equation (1.2) we have V3 > V2

and V3 > V1. Plugging in equation (4.1), we have:

EXY = 2β
1

2
C

(
V3

2 b(2→7) + b(5→6)

w

)
>

EDV FS−aware = 2β
1

2
C

(
V1

2 b(2→7)

w
+ V2

2 b(5→6)

w

)
(4.2)

Equation (4.2) suggests that balancing flows in the NoC can lead to link energy saving.
Moreover, because the routing setting in Figure 4.1(b) allows links (5→ 8) and (8→ 7) to
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run at a lower frequency, as a result, routers 5, 7, and 8 would be able to operate at a lower
frequency while still meeting the traffic demand of flows (5→ 6) and (2→ 7). Therefore, in
addition to link energy reduction, the routing setting in Figure 4.1(b) can also help reduce
the energy of routers 5, 7 and 8.

The above DVFS-aware routing example suggests that balancing network traffic can lead
to energy saving. However, there are cases in which balancing network traffic naively can
lead to energy inefficiency. We illustrate the observation by a more complicated example.
Let us assume that b(2→7) < b(5→6). As a result, f1 < f2 and V1 < V2. Now, another new
flow (5 → 7) arrives with bandwidth demand b(5→7). A routing mechanism that seeks to
balance network traffic would route the new flow through route (5→ 4→ 7) because these
links are less congested. However, routing the new flow through the route may require links
(5→ 4) and (4→ 7) to raise their frequency from f1 to f2 in order to meet the total demand
of the two flows. Let us consider the situation when routing the new flow through route
(5→ 8→ 7) does not make the links on the route raise their current f2 operating frequency
to meet the total demand. Consequently, the total energy consumed by flow (2 → 7) on

links (5 → 4) and (5 → 7) rises from 2β 1
2
CV1

2 b(2→7)

w
to 2β 1

2
CV2

2 b(2→7)

w
. To avoid such a

situation, a DVFS-aware routing scheme would choose route (5 → 8 → 7) for the new flow
as it saves more energy for the traffic of flow (2 → 7) on links (5 → 4) and (4 → 7).
Therefore, the network balancing routing scheme may not be as energy-optimal as the latter
DVFS-aware routing scheme. This is the major difference between a DVFS-aware routing
scheme and throughput-optimized routing schemes that seek to minimize the congested
links’ traffic load [64, 1] to reduce communication bottlenecks. While routing to reduce
communication bottlenecks on congested links can improve throughput, resulting in energy
reduction by lowering the frequency of an entire network, it often does not pay attention
to reducing energy consumption for non-bottleneck parts. As a consequence, throughput-
optimized routing may not be as energy-optimal as our DVFS-aware routing scheme.

4.3 Background

Streaming

As the SDF semantics can model most of stream programs [113], stream applications often
bear the static properties of SDF such as the amount of traffic sent between actors within
one iteration is fixed and bounded. As a result, after mapping actors of a stream program to
a multicore chip, the communication pattern between nodes in the chip within one iteration 1

is known and fixed. Abdel-Gawad and Thottethodi, in their Transcom [1] work, exploit this
property to improve the communication throughput of stream programs.

Differently from Transcom [1] that uses the traffic of programs compiled with the hard-
ware pipelining technique, we focus on the traffic of stream programs compiled using the
software pipelining technique [47, 68] as it has better throughput. The major advantage

1For the formal definition of iteration, readers can refer to [70].
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Figure 4.2: A portion of the MPEG2 decoder stream graph in StreamIt.

of software pipelining over hardware pipelining is that it allows mapping any actors to
any core, while in hardware pipelining, non-contiguous actors should not be mapped to
one core [47]. For example, in Figure 4.2, mapping actorsPicture Reorder and Motion

Estimation Decision to one core and actors Forward Motion Estimation, Intra Motion

Estimation, Backward Motion Estimation to another core is not recommended in hard-
ware pipelining because it may result in inter-actor synchronization difficulty and inefficiency.
As a consequence, hardware pipelining may lead to unbalanced mapping of stream programs
to multicore. In contrast, this mapping is normal in software pipelining. There is also a
distinction between the traffic patterns of software pipelining and hardware pipelining that
makes the Transcom traffic fission (splitting) technique not very effective for software pipelin-
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ing traffic. We defer elaborating on this observation to the evaluation Section 4.7 because
experimental results can help explain the phenomenon better.
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Figure 4.3: Pipelining compilation techniques for stream programs.

In software pipelining, actors do not communicate directly within one iteration. Rather,
they produce results into buffers that can be consumed by downstream actors in some next
iteration. Figure 4.3(b) illustrates the execution mechanism of a stream program compiled
with the software pipelining technique adapted from Gordon et al. [47]. In the figure, the
communication between actors F1, F2, F3, and actor F4 is overlapped with the computa-
tion within one iteration. This implies that the inter-core traffic is not very delay-sensitive
meaning that outputs of actors do not need to be sent immediately with stringent delay
bounds. Rather, actors’ outputs can be delayed, orchestrated and transmitted at appro-
priate times as long as they are delivered by the start of the designated iteration so that
downstream actors can start using the outputs. Kudlur and Mahlke [68] implement this
computation-communication overlapping technique for stream programs for the Cell proces-
sor. In addition, due to the static and analyzable properties of stream programs [113], the
amount of inter-core traffic carried by interconnection networks is often static and predictable
across iterations of a stream program.

We use the StreamIt compiler [47] to map and derive the communication patterns and
the traffic load for each stream program in 2-D mesh multicore chips similar to the RAW
processor within one iteration. The constraint for our routing procedure is that, within one
iteration period determined by computation time, NoC must deliver all inter-core traffic load.
As the computation interval of one iteration can vary due to different processor speed and
architecture, estimating this interval using a specific processor model is often not adequate.
Instead, we evaluate the effectiveness of our routing mechanism with respect to different
interval lengths.
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Hardware Support for DVFS and Routing

Deploying DVFS-aware routes in NoC requires an additional feature in routers to guide
packets through designated routes [73, 27, 64]. We assume a similar router architecture as
presented in [64] that includes a programmable routing table at each router. Routing tables
only require initializing once when an application starts running, thus the energy for initiating
routing table is negligible. We also assume that links [102, 27, 106] and routers [83, 89] can
operate at multiple frequencies.

The rationale of our router DVFS capability assumption derives from the works by Mishra
et al. [83] and Ogras et al. [89]. Mishra et al. show that a hardware DVFS NoC architecture is
practical and use that DVFS capability to boost and throttle router operations to mitigate
NoC congestion. The architecture employs an asynchronous communication mechanism
between routers with multiple on-chip voltage regulators. Meanwhile, Ogras et al. [89]
present a design methodology for NoC with voltage-frequency island partitions.

4.4 Energy-Optimal Routing

In this section, we present a method for finding energy efficient routes that is aware of DVFS
settings. We first give the formal model for the routing problem.

Definition 5 An NoC is formulated as a flow graph G(V , E), where V is the set of vertices
(routers) and E is the set of edges (links). Routers and links can operate at m operating
points O = {(f1, V1), . . . , (fm, Vm)}. Each edge e ∈ E has a width of w bits. One stream
program creates a set of flows W = {W 1, . . . ,W |W|}. For each flow W i = (si, di, bi), si and
di are the source and the destination of the flow respectively, bi is the average load of the
flow. ti,e is a boolean variable denoting if flow i goes through edge e. oj,e denotes that edge
e uses the jth operating point of O. fe and fv denote the frequencies of edge (link) e and
vertex (router) v respectively.

Now, we formulate the DVFS-aware routing problem as a MILP problem that captured
the essence of the routing scheme.

Energy-Optimal Integer Linear Programming Routing

While reducing link operating frequencies, we still need to meet stream programs’ required
throughput. Equation (4.3) indicates that the frequency of each edge must be greater than
a certain value to sustain the total traffic demand of the flows going through the edge.
Equations (4.4) and (4.5) enforce that the frequency of an edge or a vertex is only selected
from one of the operating point options O. Equation (4.6) denotes that, at each vertex, a
flow is not splittable. Equation (4.8) indicates that if a flow enters a vertex, which is not the
flow’s source or destination, the flow must exit in some direction. Equation (4.9) tells that
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a flow must depart its source and arrive at its destination. Equation (4.10) forbids a flow
from going back to the direction that it comes in.

Equation (4.11) is more complicated than it looks and requires a more detailed explana-
tion. As routers are more complicated than links, routers often do not achieve 100% through-
put due to the non-maximal virtual channel (VC) and switch arbitration processes [32]. As
a consequence, routers running at the same minimal frequencies of links can cause perfor-
mance degradation as shown in Figure 4.9. To mitigate this problem, we use equation (4.11)
to constrain that the frequency of a router must not be smaller than the frequency of any of
its connected links. The reason behind this constraint is that, if the frequency of the router
is smaller than the frequency of one of its connected links, because the frequency of the link
is already minimal, the router would not be able to sustain the traffic load through the link.
In fact, the frequency of a router should be higher than the maximum optimal frequency
of its connected links to avoid performance degradation. Therefore, we enforce that router
frequencies have to be multiplied by a factor X ≤ 1 as in equation (4.11) to avoid significant
performance degradation.

Our objective is to optimize the total network energy consumption. Equation (4.15)
computes the energy consumed by links based on the Orion 2 model [59]. Note that, equation
(4.15) is shorten from equations (4.13) and (4.14). We interpolate the function:

routerPower((fv, Vv), input bandwidth) =

a(fv, Vv)× input bandwidth+ c(fv, Vv)

where a(fv, Vv) and c(fv, Vv) are fixed at a fixed operating point(fv, Vv). We use the en-
ergy/throughput pairs returned by the Orion 2 power model [59] at each operating point to
estimate these constants2. While using a linear function to estimate router energy based on
input rates does not reflect the exact energy behavior of routers, it can capture precisely the
read/write operation energy of buffers and crossbars. Virtual channel and switch allocation
arbitration energy is difficult to estimate solely from input rates. However, the arbitration
energy often only makes up for 7% of NoC energy consumption [59] so the estimation error
would be supposedly small. Readers can refer to [59] for more details.

Capacity constraint:

∀e ∈ E ,
∑
i∈W

biti,e ≤ few (4.3)

Frequency level selection:

∀u ∈ E
⋃
V , fu =

m∑
j=1

oj,ufj (4.4)

∀u ∈ E
⋃
V ,

m∑
j=1

oj,u = 1 (4.5)

2The router power estimation function in Orion 2 actually returns energy estimation outputs as a linear
function of input rates at a fixed operating point.
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Unsplittable flow:

∀i ∈ W ,∀u ∈ V
∑

(u,v)∈E

ti,(u,v) ≤ 1 (4.6)

Bounded route length:

∀i ∈ W ,
∑
e∈E

ti,e ≤ hopi (4.7)

Flow conservation:

∀i ∈ W ,∀u 6= si, di ∈ V ,
∑

(w,u)∈E

ti,(w,u) =
∑

(u,v)∈E

ti,(u,v) (4.8)

Flow origination and termination:

∀i ∈ W ,
∑

(si,v)∈E

ti,(si,v) = 1,
∑

(u,di)∈E

ti,(u,di) = 1 (4.9)

180-turn restriction:

∀i ∈ W ,∀(u, v), (v, u) ∈ E , ti,(u,v) + ti,(v,u) ≤ 1 (4.10)

Router frequency:

∀u ∈ V

{
Xfu ≥ min(max(u,v)∈E

∑
i∈W biti,(u,v), X maxmj=1 fj)

Xfu ≥ min(max(w,u)∈E
∑

i∈W biti,(w,u), X maxmj=1 fj)
(4.11)

Objective function:

min
∑
e∈E

Ee +
∑
v∈V

Ev (4.12)

where:

Ee =
m∑
j=1

βfeVddj
2Coj,eUe (4.13)

Ue =

∑
i∈W biti,e

few
(4.14)

Ee =

(∑m
j=1 βVddj

2Coj,e
)(∑

i∈W biti,e
)

w
(4.15)

Ev = routerPower
(
(fv, Vv),

∑
(u,v)∈E

∑
i∈W

biti,(u,v)

)
(4.16)
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Heuristic DVFS-Aware Routing

The above optimal unsplittable flow routing is NP-hard [65]. As a consequence, it does not
scale well for large networks and stream graphs. However, the formulated MILP problem
captures the constraints for our DVFS-aware routing scheme. In this section, we present
a scalable heuristic routing method based on Dijkstra’s algorithm that gradually routes
flows through a network. The method finds a route that minimizes the energy consumption
increment of the network. Algorithm 4.4 shows the distance function for Dijkstra’s algorithm.

The idea behind the distance function is as follows. Whenever a new flow is considered
to go through an edge (link), its traffic would be added on top of the edge’s current traffic.
As a result, the prospective traffic on the edge can make the current frequency of the edge no
longer sufficient. If the prospective traffic requires a higher frequency level, we will not only
need to compute the additional energy for the new flow on the edge, but also the additional
energy for transporting the existing traffic on the edge if a higher frequency is required. If
the edge needs to use a higher frequency, as routers should not run at a frequency lower
than the frequency of any of its connected edges, the routers connected by the edge may
need to use a higher frequency. As a consequence, routing the new flow through the edge
may incur an additional energy increase due to transporting the routers’ existing traffic at
a higher frequency.

By plugging the distance function into Dijkstra’s algorithm, we can find the route with
the smallest amount of energy increase whenever routing a flow. We also make a small mod-
ification to conventional Dijkstra’s algorithm. Note that conventional Dijkstra’s algorithm
terminates after routing a flow, however, in our case, we need to route flows successively
through a network. As a result, we should balance the network’s traffic whenever possible.
Therefore, whenever there exist two directions (edges) with the same energy increase, it
would be beneficial to choose the edge with lower total traffic.

In lines 35, 38, 41, and 44, function energy computes the estimated power consumption
of a router given the amount of traffic that flows through it at a frequency-voltage pair (an
operating point). This function is the same as function routerPower in the previous section.

After all the flows are routed through a network, we select the minimal frequency for
each edge that satisfies the capacity constraint of the edge.

Traffic Splitting to Improve Energy Saving

It has been shown that splitting flow traffic to route through multiple different routes can
improve throughput [84, 1]. However, multipath routing schemes often increase network
traffic and route lengths as in the Transcom work [1]. In addition, the multipath routing
techniques’ primary purpose is to reduce the maximum traffic load on congested links to
resolve communication bottlenecks without paying attention to non-bottleneck parts. As a
consequence, although multipath routing can improve throughput, it may not be energy-
optimal.
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1 distance(u , v, flow demand, G)
2 e←G.getEdge(u,v)
3 link energy increase←linkEnergy(e.currentTraffic() + flow demand, e) - linkEnergy(e.currentTraffic(), e)
4 router energy increase←routerEnergy(flow demand, e, G) - routerEnergy(0, e, G)
5 return link energy increase + router energy increase
6 . ***********************************************************
7 linkEnergy(demand, edge)
8 for f in freq options.minToMax() do
9 if demand ≤ f * w then

10 return powerConsume(f , demand, edge)
11 end

12 end
13 return ∞
14 . ***********************************************************
15 routerEnergy(added traffic, edge, G)
16 old traffic←edge.currentTraffic()
17 new traffic←added traffic + old traffic
18 edge.setTraffic(new traffic) . temporarily set the new traffic to compute energy consumption
19 new freq←∞
20 new vol←∞
21 for ( f ,V) in operating points.minToMax() do
22 if new traffic ≤ Xfw then
23 new freq←f
24 new vol←V
25 break

26 end

27 end
28 if new freq > operating points.maxFreq() then
29 (new freq, new vol)←operating points.maxOperatingPoint()
30 end
31 . compute estimated energy for the routers connected to the edge with the new frequency
32 u←edge.getSource()
33 v←edge.getDestination()
34 if new freq > u.currentFreq() then
35 energy←u.energy((new freq, new vol), G) . the router needs a higher frequency
36 end
37 else
38 energy←u.energy(u.currentFreqVol(), G) . the current frequency is good enough
39 end
40 if new freq > v.currentFreq() then
41 energy←energy+v.energy((new freq, new vol), G) . the router needs a higher frequency
42 end
43 else
44 energy←energyv.energy(v.currentFreqVol(), G) . the current frequency is good enough
45 end
46 edge.setTraffic(old traffic) . restore the previous traffic
47 return energy

Figure 4.4: Computing cost function.



CHAPTER 4. EXPLOITING NETWORKS ON-CHIP ROUTE DIVERSITY FOR
ENERGY-EFFICIENT DVFS-AWARE ROUTING OF STREAMING TRAFFIC 50

Our DVFS-aware routing method aims at tuning the workload on each link given different
operating voltage-frequency levels to reduce energy consumption. However, when traffic
demands of flows are too coarse, it may not utilize the remaining slacks between the frequency
levels of links well. Let us come back to the example in Section 4.2. Suppose that a portion
of flow (5 → 6)’s traffic can be sent through route (5 → 4 → 7) without making the links
on the route higher their frequency from f1 to f2. The remaining of flow (5 → 6)’s traffic
is still sent through route (5 → 8 → 7). The fraction of flow (5 → 6)’s traffic sent through
(5 → 4 → 7) is now carried by links at frequency f1, which is lower than f2 of the links on
route (5→ 8→ 7). As a result, we would save more energy for the fraction of flow (5→ 6)’s
traffic sent through (5→ 4→ 7).

The above observation suggests that it would be beneficial to split traffic of flows into
smaller trunks to better exploit the slacks between different frequency levels. We augment
our routing scheme in the previous section with an additional preprocessing step. We split
each flow into a number of sibling flows such that the number is at most the number of
minimal routes between the source and the destination of the original flow. We enforce
another constraint which requires the amount of traffic for each sibling flow must be greater
than a certain amount to avoid increasing conflicts when there are too many flows. After
splitting the flows, we apply the routing algorithm in Section 4.4 to the split flows. When
scheduling the traffic of sibling flows, we avoid sending packets of sibling flows simultaneously,
rather, we send sporadically as if sending packets of their parent flow, but through different
routes.

Deadlock-Free Routing

We employ a similar VC assignment technique [104, 1] to resolve deadlocks in case there exist
loops. Whenever route segments form a loop, we assign VCs to flows to avoid the deadlock
by the loop. For further details, readers can refer to the papers.

4.5 Experiment Setup

Benchmarks and Compilation

We use a set of stream benchmarks written in the StreamIt language as in [47]. StreamIt
compiler framework [46] compiles the stream programs in a fashion that overlaps communi-
cation with computation [117, 68, 47]. We first use the StreamIt compiler to compile and
map the benchmarks to 2-D mesh 4×4 and 8×8 chips similar to the RAW processor [47].
After mapping, we use the compiler to derive the inter-core communication patterns and the
traffic loads for flows. For different network sizes, the StreamIt compiler generates different
stream graphs even for one benchmark.
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Simulator

We use a C++ simulator modeled after the GARNET simulator [2] integrated with the
Orion 2 power model [59] to extract the energy consumption of routers and links. Each
router has five input ports and five output ports including one input port and one output
port connected to the links to the local processing elements. Each port has 4 VCs with
buffers of 12 flits deep. Links and flits are both 64 bits wide. An entire router runs at the
same frequency, while different routers can operate at different frequencies. We assume the
65nm technology for the routers, similar to [83] 3. We also assume that the energy overhead
for the table routing logic is negligible [64]. Each router, each link can operate at one of the
10 frequency-voltage pairs as in Table 4.1 from [102].

Frequency (MHz) 125 240 300 370 450 540 640 750 870 1000
Voltage (vol) 0.90 1.10 1.19 1.3 1.43 1.58 1.75 1.95 2.20 2.50

Table 4.1: Frequency-voltage pairs

4.6 Results

As the previous work on exploiting DVFS to reduce NoC power consumption [102, 106, 83]
assumes the default XY deterministic routing, we compare our energy-aware routing scheme
against the XY routing when applying the same DVFS scheme. We also compare our routing
scheme against the Transcom [1] traffic fission (splitting) technique (including the free-
routing technique), a state-of-the art maximal throughput routing technique.

Link and Router Energy Reduction over Other Routing
Techniques

Because routers and links are scheduled to operate at fixed frequencies once a program is
initialized, we can ignore the transition energy. Figures 4.5 and 4.6 show the results of
different routing techniques in 4× 4 and 8× 8 mesh networks at different traffic load levels.

As discussed in Section 4.3, we assume that the NoC has to deliver predictably known
amounts of traffic between cores within one iteration interval of a stream program. The
iteration interval of a stream program can depend on the computation time of processors,
on different speed, and/or varied IO rates of streams, such as video framerates, sampling
rates, and so on. Therefore, using profiled architecture-specific packet timing traces may
not be adequate. Instead, we vary the interval length of one iteration to the point that our
routing technique can guarantee the throughput. This operating point is denoted as 100%

3We chose this 65nm technology for the compatability reason with [83]. In fact, we can use more modern
technolgy such as 32nm or 48nm.
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traffic load. We then reduce the maximum traffic load by a half, denoting as 50% traffic
load. We apply the same DVFS scheme to all the routing schemes to minimize the voltages
and frequencies of links and routers without hurting the performance too much. Readers
may say that this evaluation scheme is not fair for the Transcom-Fission technique because
it may be better at higher traffic load. We argue that the effectiveness of the Transcom-
Fission technique is not limited at high bandwidth traffic load. Rather, the Transcom-Fission
technique seeks to minimize the maximum link load at any traffic load level, thereby reducing
energy consumption by lowering operating frequencies. To be fair, we use the energy delay
product (EDP) metric to compare between the routing schemes. We normalize the results
to the results of XY routing.

The results in Figures 4.5 and 4.6 show that our DVFS-aware routing technique performs
better than the XY and the Transcom-Fission routing techniques, resulting in 25% and 10%
router mean energy reduction over the XY and Transcom-Fission schemes respectively. For
link energy, our DVFS-aware routing scheme improves by 26% and 29% respectively over
the XY and Transcom-Fission schemes. The XY routing scheme improves performance at
lower traffic load. The application-aware schemes, such as Transcom-Fission and DVFS-
aware, improve performance in larger networks, perhaps because the route diversity degree
increases along with network sizes.

Surprisingly, the Transcom-Fission routing technique performs worst in the 4×4 network
while it becomes better than XY routing in the larger 8× 8 network. This implies that the
traffic-fission scheme, which minimizes the maximal link load is not very effective for our soft-
ware pipelining traffic. Note that, for the 8×8 network, there are some missing performance
values of the Transcom-Fission scheme because our implementation of the Transcom-Fission
scheme does not find a valid solution after one hour for those cases, while the Transcom [1]
paper mentions that their procedure can find a valid solution after 10 minutes. Our DVFS-
aware routing technique performs best in most of the cases. The Traffic-Splitting technique
in Section 47 does not really improve the results of the DVFS-aware routing, while in the-
ory, it should. We believe that there is some fundamental difference between the hardware
pipelining traffic and the software pipelining traffic that makes the Transcom-Fission scheme
perform not very well with the software pipelining traffic, while it performs very well with
the hardware pipelining traffic [1], and the Traffic-Splitting scheme is not effective. We use
Section 4.7 to explain the distinction between those traffic types that may help explain the
surprising results.

DVFS Performance Penalty

Applying DVFS to both links and routers often leads to performance degradation, especially
for routers. Figure 4.7 shows the performance degradation when applying DVFS. We use
the amount of time to deliver the traffic load of one iteration, corresponding to the interval
length of one iteration, to estimate the performance penalty when using DVFS. We compare
the performance of DVFS against the non-DVFS performance. In the figure, 100% 4 × 4
denotes 100% (maximum) traffic load in a 4× 4 network. Other notations are similar. Sev-
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eral benchmarks such as FFT, MPEG2, TDE, Bitonic-Sort suffer almost no performance
penalty when applying DVFS to both links and routers. While the ChannelVocder bench-
mark performance suffers most seriously from DVFS for the large 8× 8 network. This result
perhaps comes from heavy traffic conflict at shared VCs when applying the deadlock-free
routing [1]. A similar phenomenon is mentioned in Transcom [1]. Overall, applying DVFS
to both routers and links causes 8% of latency degradation. In return, applying DVFS leads
to 8.7x routers and 4.4x links energy reduction over not using DVFS as shown in Figure 4.8.

Note that, when applying DVFS to routers, we enforce that the frequency of a router has
to be scaled from the maximum of the minimum estimated frequency of its connected links as
in equation (4.11) to avoid performance degradation. Figure 4.9 shows the trade-off between
performance and energy when scaling router frequencies. The results are normalized to the
performance at the smallest factor of 0.65. The figures suggest that a scaling factor smaller
than 0.8 does not improve the performance while it causes 15% energy lost. A scaling factor
greater than 0.8 degrades performance significantly while energy reduction is not substantial.
We chose a scaling factor of 0.8 for our evaluations4.

Heuristic DVFS-Aware Routing Time

To evaluate the feasibility of applying our heuristic DVFS-aware routing scheme to runtime
program reconfiguration, e.g., as in [24, 49, 31], we measure the running time of our heuristic
routing scheme on an eight-core Intel Xeon machine for an 8 × 8 NoC. Figure 4.10 shows
the results of our evaluation. Although the routing routine is written in Python, none of the
benchmarks has routing time exceeding 1 seconds. The mean routing times are less than
half a second. We expect much faster routing times if the routing routine is written in C.
In contrast, the MILP routing scheme often does not terminate after one hour for most of
the benchmarks. These results demonstrate that our DVFS-aware routing scheme would be
suitable for runtime traffic rerouting of runtime program reconfiguration [24, 49, 31].

4.7 Traffic Distinction between Software and

Hardware Pipelining

The Transcom-Fission technique [1] proves to be very effective for the stream traffic compiled
by the hardware pipelining technique by fissing (splitting) traffic of flows into smaller ones.
From our insight, this is because the hardware pipelining traffic tends to lump up more
than the software pipelining stream traffic. We will use an example to elaborate on this
observation. Figure 4.3 illustrates the mechanisms of hardware and software pipelining
techniques used in the StreamIt compiler [47]. In hardware pipelining, actors residing at
different processors proceed at different rates. Actors interact with one another by blocking

4Scaling factor may be a misnomer. Note that we use the constraint X × frouter ≥ fconnected−links to
enforce this requirement. As a result the scaling factor X is actually smaller or equal to 1.
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on FIFO communication. While in software pipelining in Figure 4.3(b), actors on different
processors proceed at the same rate and synchronized by barriers after each iteration. There
is also an inter-actor traffic pattern distinction between software and hardware pipelining
used in the StreamIt compiler. In the hardware pipelining example in Figure 4.3(a), actors
F1, F2 and F3 send their outputs to a split-join JS. This split-join merges the results and
forwards to multiple parallel instances of actor F4. As a consequence, the links to/from
the node containing the split-join JS would be more congested than the other links and can
become serious communication bottlenecks if traffic is not distributed appropriately. While
in software pipelining, actors F1, F2 and F3 split and send their outputs directly to F4 actors
without going through a split-join traffic-centralization node. As a result, software pipelining
would naturally balance network traffic better. In addition, note that, actors F1, F2 and F3

use totally 4×4 = 16 communication flows to send outputs to F4 actors in software pipelining,
therefore, each flow would carry 1

16
of the total traffic. While in hardware pipelining, each of

the four flows to/from the split-join JS would carry 1
4

of the total traffic. Consequently, the
bandwidth of each of the flows in software pipelining would be equal to 1

4
of the bandwidth

of each of the flows in hardware pipelining. In Transcom, the authors observe that splitting
one hardware pipelining traffic flow into more than 4 flows does not improve throughput.
Therefore, splitting software pipelining traffic flows is not very effective because the software
pipelining technique already splits inter-core traffic well enough. In our experiments, the
effectiveness of the Transcom-Fission technique is limited. For each benchmark, only one or
two flows are split into two child flows. As a result, the Transcom-Fission technique does not
improve throughput over our DVFS-aware technique by a large margin for software pipelining
traffic because the only advantage of Transcom-Fission over our DVFS-aware scheme comes
from splitting flows.

In addition, as the software pipelining technique does not require to map contiguous
actors to a core, software pipelining traffic often contains more inter-core flows than hard-
ware pipelining traffic. For example, in Figure 4.2, hardware pipelining should map ac-
tor Picture Reorder to a first core and actor Motion Estimation Decision to a second
core while mapping Forward Motion Estimation, Intra Motion Estimation, Backward
Motion Estimation as well as Splitter, and Joiner to another core resulting in one inter-
core flow. On the other hand, software pipelining may map actors Picture Reorder and
Motion Estimation Decision to a core and actors Forward Motion Estimation, Intra
Motion Estimation, Backward Motion Estimation to another core, which can balance
workload better yet resulting in 6 inter-core flows. Because the unsplittable flow routing
problem is NP-hard [65], Transcom-Fission MILP formulation for software pipelining traffic
often does not scale as well as for hardware pipelining traffic. Note that, although software
pipelining splits and balances traffic better, it often results in more traffic load than hardware
pipelining.
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4.8 Related Work

The work in [102, 106, 72, 83, 20] exploits the DVFS capability to reduce power consump-
tion without exploiting the NoC route diversity to find energy-optimal routes. Our work
combines and exploits both the DVFS capability and the NoC route diversity for link energy
reduction. In addition, we also tune router energy consumption when deriving DVFS-aware
routes, which results in substantial router energy reduction. The work on mapping applica-
tions with static communication bandwidth to NoC [64, 104, 1, 84] concentrates on reducing
communication bottlenecks at congested links to maximize throughput. While these ap-
proaches can lead to energy reduction by lowering the operating voltage and frequency of
an entire network, they neglect to tune operating voltages and frequencies of non-congested
parts in the network. Our approach looks for energy reduction opportunities by tuning the
frequencies and voltages at all the parts of a network. Shang el al. present Powerherd [103], a
dynamic routing technique to manage peak power constraints in interconnection networks by
avoiding routing packets to hotspot routers. Our work is different from Powerherd because
we combine routing with DVFS as a mechanism to reduce power consumption. Li et al. [73]
present an energy aware routing technique that aggregates traffic on networks on-chip to
reduce leakage energy by turning off unused links. This is an interesting direction to explore
in future work. The work in [53, 83] shows that it is feasible to design NoC in which each
router and each link can adjust operating voltages and frequencies. In [83], Mishra et al.
propose to scale up routers’ frequencies to mitigate temporal network congestion, while our
work presents a technique to reduce routers’ frequencies to save energy. Orgras et al. [89]
propose a design methodology for voltage frequency island partitions.

Our work exploits the predictably stationary properties of stream programs derived from
the SDF stream programming model by Lee and Messerschmitt [70] and the recent imple-
mentation of the programming model in the StreamIt language and compiler [113, 47]. The
static properties of stream programs enable offline routing and frequency tuning analyses.
We also exploit the advantage of the recent software pipelining compilation technique for
stream programs [47, 68] to delay and schedule traffic sent through networks. This work is
also related to the ActiveMessages [117] programming model that overlaps between compu-
tation and communication.

4.9 Conclusion

We have presented an energy-efficient DVFS-aware routing scheme of streaming program
traffic written in the StreamIt language on NoC. The scheme exploits both the NoC route
diversity property and the DVFS architecture capability. We estimate frequencies of both
links and routers simultaneously to save energy. To the best of our knowledge, our work is the
first to combine routing with DVFS. Our technique results in significant energy reduction
in comparison with applying DVFS to the default routing scheme and a state-of-the-art
throughput optimal routing scheme.
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We also present a case for tuning router frequencies leading to substantial energy re-
duction. Our experiments demonstrate that it is possible to estimate the minimal router
frequencies based on the traffic characteristics of an important class of applications. To the
best of our knowledge, our work is the first to explore the possibility of reducing router
frequencies to save energy.

Our heuristics DVFS-aware routing algorithm reduces routing time significantly, thus it
is suitable for runtime reconfiguration of applications on multicore. Application runtime
reconfiguration would be important in cloud computing and cyber-physical systems.

In addition, our work helps uncover a distinction between the traffic characteristics of
software pipelining and hardware pipelining. It also suggests that software pipelining traffic
balances networks better, thus, it can be one reason leading to the performance edge of
software pipelining over hardware pipelining.
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BeamForm
er

Bitonic-Sort

ChannelVocoder
DCT

DES
FFT

Filte
rBank

FMRadio

MPEG2

Serpent
TDE

Geometric
 mean

0%

40%

80%

120%

160%
XYXY Transcom-FissionTranscom-Fission Traffic-SplittingTraffic-Splitting DVFS-AwareDVFS-Aware
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(c) Router energy improvement at 50% traffic load.
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(d) Router energy improvement at 100% traffic load.

Figure 4.5: 4×4 network energy results.
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Figure 4.6: 8×8 network energy results.
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Figure 4.8: Energy effectiveness of DVFS over not using DVFS.
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Figure 4.9: Effectiveness of the router scaling factor.
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Figure 4.10: Heuristic DVFS-aware routing times on an 8× 8 NoC.
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Chapter 5

On the Semantics of
Control-Operation-Integrated
Synchronous Dataflow: Schedulability
and Parallelism

We first extend and give a formal semantics for the control-operations-integrated synchronous
dataflow (COSDF) programming model conceived by Thies et al. [115]. We present an analy-
sis that determines the schedulability and parallelism of synchronous dataflow (SDF) models
integrated with control operations (CO). SDF is a popular programming model for express-
ing the data-intensive computations, e.g., DCT, FFT, and so on, within stream programs
such as MPEG2 or MP3 encoders/decoders. Within such sophisticated stream programs,
the data-intensive computations need to synchronize their executions and configurations with
each other by exchanging control messages (CM) containing control information, e.g., frame
types in the case of MPEG2. Integrating COs into SDF imposes additional control con-
straints to the actor scheduling problem of SDF models. In particular, these CO constraints
may render a schedulable SDF model no longer schedulable. Consequently, the existing SDF
scheduling theory is no longer sufficient to handle SDF models integrated with COs. To use
such models, we extend the existing SDF scheduling theory to account for the additional
control constraints. Our scheduling method can determine the schedulability of SDF models
with COs and produces schedules if the models are schedulable using a systematic method
with dependency graphs. We implement our method in the StreamIt compiler. Our experi-
ments indicate that our initial straightforward schedulability checking implementation may
not scale well on certain large benchmarks like MPEG2 decoder. We tackle the scalability
problem by first proposing a graph pruning technique that reduces dependency graph sizes
by a factor up to 0.6 million times. We then come up with a circular checking technique that
significantly reduces average running time by a factor up to 60000 times compared to existing
methods in literature. For all available benchmarks, the schedulability checking times are
less than a minute on an Intel Xeon 3GHz CPU. We show how to utilize the infrastructure
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implemented for the schedulability checking problem to formally study parallelism and find
schedules for SDF programs.

5.1 Introduction

SDF has been proved to be a suitable model of computation for describing the data-intensive
computations such as DCT, FFT, and so on. These primitive computations are often inte-
gral parts of more sophisticated stream programs such as MP3, MPEG2 encoders/decoders.
When these sophisticated stream programs are embedded into external environments, they
need to not only process signals but also react to events from environments and commands
from users. Adjusting internal operating configurations is one possible reaction of stream
programs. These adjustments are relative to data signals, and thus require synchroniza-
tion between their autonomous computations, e.g., FFT, DCT, and so on. Actors within
the computations exchange CMs to synchronize their executions and configurations. COs
appear in five StreamIt benchmarks [113, 112], including important benchmarks such as
MPEG2 encoder/decoder. Each MPEG2 encoder/decoder benchmark uses six CMs for their
COs. We expect that COs will become more prevalent in the near future when stream pro-
grams become more sophisticated in order to satisfy the increasing entertainment quality and
wireless devices become more ubiquitous. In addition, if the control messaging mechanism is
deployed in design environments such as Ptolemy(http://ptolemy.eecs.berkeley.edu) or
LabVIEW(http://www.ni.com/labview/), users will be enabled to create their own many
more applications with COs. Section 5.9 discusses in more detail about the usage scenarios
of COs.

The additional CO semantics poses a new challenge for scheduling actors of stream pro-
grams. The added CO semantics makes the existing SDF scheduling theory developed in [70]
no longer sufficient because the theory assumes that the dependency between executions of
the actors in an SDF model only exists within one iteration of the model, while COs often
impose additional dependency constraints between the executions of actors in different itera-
tions. Even the extended scheduling method developed in [115] does not account for the COs
that render CMs overlapped. The StreamIt compiler only allows non-overlapping CMs, as
on the right side of Figure 5.2. The StreamIt compiler catches one specific non-schedulable
case in which upstream CMs have negative latencies [115]. However, this specific case was
reasoned by the compiler designers; it is not a result of a systematic approach. This conser-
vative approach reflects an underdeveloped theory of execution dependency in the StreamIt
compiler. However, in the full implementation of MPEG2 encoder/decoder benchmarks [35],
e.g., in Figure 5.8, overlapping of CMs (dash arrows) does happen. These benchmarks are
only able to run using a StreamIt simulation library that lets actors automatically interact
to discover schedules using simulation. This approach fails to prove that the programs will
not deadlock. Thies, in his PhD thesis [112], proposes a scheduling algorithm based on the
auto-discovery mechanism that can potentially solve the scheduling problem of overlapping
constraints. However, we did not find a proof of correctness for the scheduling method. In

http://ptolemy.eecs.berkeley.edu
http://ptolemy.eecs.berkeley.edu
http://www.ni.com/labview/
http://www.ni.com/labview/
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particular, the semantics of CMs in [115] only account for SDF graphs without loops.
The contributions of this chapter include:

• A formal semantics for COs via the notion of information wavefronts. The formal
semantics is extended to support SDF graphs with loops.

• A systematic approach for checking the schedulability of SDF graphs integrated with
COs using execution dependency graphs.

• We propose two heuristic algorithms to make the schedulability checking problem fea-
sible for large stream programs.

• We show how to exploit the formal execution dependency framework to study the
formal parallelism of stream programs.

5.2 Integrating Control Operations into SDF
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the arrival of data.

Figure 5.1: Control messages example.

Control Operations

The SDF’s periodic and static properties have proved to be suitable for expressing regular
digital signal processing computations. However, stream applications do not only regularly
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Figure 5.2: Overlapping and non-overlapping of control messages. Dashed arrows represent
control communication.

compute signal data but also switch between operating configurations, e.g., to adjust ampli-
fying volumes, feedback parameters, filter weights, employed protocols, compression rates,
and so on. As SDF programs are partitioned into autonomous actors, to synchronize op-
erating configurations, actors exchange CMs. The CM exchanging process is governed by
control logic separated from data processing engines.

Let us take the Finite Impulse Response (FIR) example from [115] in Figure 5.1(a) to
illustrate the notion of COs. FIR is a common kind of filters in digital signal processing
where the output of the filter is a convolution of the input sequence with a finite sequence
of coefficients. The FIR example is composed of one Source, one Sink, and 64 Multiply

actors. Each Multiply actor has a single coefficient w, called tap weight. Now suppose that,
during the execution, at some iteration, actor Source detects some condition, and decides to
change the tap weights of the Multiply actors. The new set of weights should only be used
to compute with data produced by the Source actor during and after its current execution.
This means that the updates to the Multiply actors have to be precisely applied. Note that
the FIR example is purely used to demonstrate the notion of CMs, real applications will
have more complicated data processing stream graph structures and control logic.

Semantics of Control Information Latency

In this section, we formally give and extend the definition of CM latency informally presented
by Thies et al. [115]. Our CM semantics extension accounts for SDF graphs with loops, which
are not handled in [115]. Because operating configurations are specific to certain data tokens,
CMs must propagate relatively to data tokens. As a result, receiving actors must process
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CMs in sync with processing of data tokens. As SDF actors consume fixed numbers of data
tokens in each execution, we can time CM processing by the execution numbers of receiving
actors. Each CM is associated with a latency k that determines how much a message is
delayed relatively to the data stream. To define the notion of latency, we first define the
notion of information wavefronts 1. Let Am denote the mth execution of actor A.

Definition 6 Given A is connected to B and A is upstream of B, if execution Bm consumes
any data produced by execution An, we say that Bm is data-dependent on An, denoted by

Bm
δ−→ An. The data-dependent set of An, denoted as DependsOn(An), is then defined using

the following fixed point computation:

DependsOn0(An) = {Bm|Bm
δ−→ An}

DependsOnr(An) = DependsOnr−1(An)
⋃ ⋃

e∈DependsOnr−1(An)

DependsOn0(e)


DependsOn(An) =

⊔
DependsOnr(An)

Now, let us define a set of executions that affect an execution An as follows:

Affects(An) = {Bk|An ∈ DependsOn(Bk)} (5.1)

Using DependsOn(An) and Affects(An), we will define the information wavefront set
WF(An) of An, which captures the executions that propagate information to/from An.

Definition 7 An execution An is said to trigger execution Bm iff Bm can only happen after
An and no further execution of A is needed to enable Bm. Concretely, An triggers Bm iff
Bm ∈ DependsOn(An) and Bm 6∈ DependsOn(An+1).

Intuitively, Bm is in the wave of executions made possible by data produced by An.
For an execution An, we define an upstream information wavefront set WF↑(An) of up-

stream executions that propagate information to An. WF↑(An) is a set of executions triggering
An and not An−1, so information can flow directly from the executions to An. As a result:

WF↑(An) = Affects(An) \ Affects(An−1) (5.2)

Similarly, the downstream wavefront set WF↓(An) of An is composed of the executions
that are directly triggered by An but not An+1 so that information can flow directly to the
executions from An without looping through A again, e.g., to An+1:

WF↓(An) = DependsOn(An) \ DependsOn(An+1) (5.3)

1The notion of information wavefronts was conceived informally by Thies et al. [114].
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Definition 8 The information wavefront set, WF(An), of an execution An is defined as fol-
lows:

WF(An) = WF↑(An) ∪ WF↓(An) (5.4)

Definition 9 The latency k of a CM sent from execution Sn of actor S is intended to be
processed by the receiving actor R in its execution Rm where Rm ∈ WF(Sn+k). Ideally, Rm is
the most recent in WF(Sn+k), e.g., m is smallest. If there is no m such that Rm ∈ WF(Sn+k),
we then find such Rm in WF(Sn+l) where l > k and l is minimal.

Intuitively, the latency of a CM denotes the number of information wavefronts of the sender
of the CM that the control information is designated to traverse. The reason for choosing
WF(Sn+l) where l > k and l is minimal when Rm does not exist in WF(Sn+k) is that, while Sn+k

does not directly trigger Rm if S is upstream of R or is directly triggered by Rm otherwise,
it contributes to data eventually consumed by Rm (if S is upstream of R) or consumes data
derived from Rm (if S is downstream of R).
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Figure 5.3: Upstream information wavefront example.

Let us take the stream graph in Figure 5.3(a) to illustrate the upstream latency concept.
Figure 5.3(b) shows the corresponding dependency graph. Based on the dependency graph,
we have:

WF↑(A2n) = Affects(A2n) \ Affects(A2n−1) = ∅
WF↑(A2n+1) = Affects(A2n+1) \ Affects(A2n) = {Bn+1, Cn+1}

WF↑(A2n) ≡ ∅ because both A2n−1 and A2n depend on Bn. Suppose that in execution A2n−1,
a CM is sent from A to B with latency 1. Because WF↑(A2n) ≡ ∅, the message is processed
in WF↑(A2n+1); specifically it is processed in execution Bn+1. Because both A2n−1 and A2n
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Figure 5.4: Downstream information wavefront example.

consume data from Bn, it is legitimate that the CM with latency 1 be processed in Bn+1 ∈
WF↑(A2n+1).

Let us take the stream graph in Figure 5.4(a) to illustrate the downstream latency con-
cept. Figure 5.4(b) shows the corresponding dependency graph. Based on the dependency
graph, we have:

WF↓(A2n+1) = DependsOn(A2n+1) \ DependsOn(A2n+2) = ∅
WF↓(A2n+2) = DependsOn(A2n+2) \ DependsOn(A2n+3) = {Bn+1, Cn+2}

WF↓(A2n+1) ≡ ∅ because both A2n and A2n+1 contribute to the data consumed by Bn. Now
in execution A2n, a CM with latency 1 is sent to B. Because WF↓(A2n+1) ≡ ∅, the mes-
sage is processed within WF↓(A2n+2); specifically, it is processed in execution Bn+1. While
WF↓(A2n+1) ≡ ∅, A2n+1 contributes to the data consumed by Bn+1, it is legitimate that the
message be processed in Bn+1.

Note that our generalized definition of latency k does account for SDF graphs with loops,
which are not handled in [115].

COSDF Schedulability Problem

Because COs often impose additional control constraints on the execution orders of actors
in SDF programs, the SDF scheduling theory [70] developed for data signal processing com-
putations is no longer sufficient. The extended scheduling method developed by Thies et al.
[115] does not handle the case when CMs overlap on some actors on their data paths, called
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the overlapping constraint problem. As a consequence, schedulable stream programs can be
dubbed non-schedulable because the compiler cannot analyze these situations.

We tackle the schedulability problem by developing a dependency analysis method to
account for the overlapping constraint situations. Let us take an example on the left of
Figure 5.2 to explain our analysis method and the schedulability problem. Four actors A,

B, C, D in the example form a pipeline. The solid arrows between actors denote data
connections. The dashed arrows are control connections used to carry CMs. The values
beside those dashed arrows are latencies of CMs.

Based on the CM latency semantics in the previous section and the semantics of SDF,
we have the following constraints:

• Suppose that D is at its nth execution. The stream graph indicates that CMs from D

to A have latency 1 and D is downstream of A. When applying the latency semantics,
A may have to process a possible CM2 from Dn right before its execution in WF(Dn+1),
which is An+1. Hence, An+1 has to happen after Dn. Let us denote this as Dn ≺ An+1.

• Via the data path, Bn+1 consumes one token produced by An+1, we have An+1 ≺ Bn+1.

• We assume that multiple executions of a single actor must proceed in sequential order,
so Bn+1 ≺ Bn+2, and hence, of course, Bn+1 ≺ Bn+10.

• Suppose that B is at its nth execution. The latency for CMs from B to C is -10 and B is
upstream of C as in the figure. C has to process a possible CM from Bn right before its
execution in WF(Bn+(−10)), which is Cn−10. Therefore, Cn−10 has to happen after Bn:
Bn ≺ Cn−10. Equivalently, Bn+10 ≺ Cn.

• Finally, Dn consumes one token produced by Cn, therefore Cn ≺ Dn.

Summing up, we have a set of dependency constraints for the example: Dn ≺ An+1 ≺
Bn+1 ≺ Bn+10 ≺ Cn ≺ Dn. These dependency constraints create a cycle of dependencies, so
no evaluation order exists and the system is deadlocked.

We identify two factors contributing to cyclic dependencies of actor executions in a stream
graph: 1) the structure of the stream graph, and 2) the latencies of CMs. Let us take an
example to illustrate the importance of the two factors. With the same graph structure on the
left side of Figure 5.2, however, the latency for CMs between actor B and actor C is 0. In this
case, there exists a valid evaluation order: . . . ≺ An ≺ Bn ≺ Cn ≺ Dn ≺ An+1 ≺ Bn+1 ≺ . . ..
For the same stream graph structure, different CM latencies can lead to different results; the
first one is a deadlock while the second one has a valid schedule.

Thies et al. [115] call the graph structure on the left of Figure 5.2 “overlapping con-
straints” because the data paths between the actors involved in control messaging have over-
lapping actors. In this example, the overlapping actors are B and C. Constraints imposed
by multiple CMs on those overlapping actors form overlapping constraints. The StreamIt

2At its nth execution, D may send or may not send a CM as CMs are infrequent.



CHAPTER 5. ON THE SEMANTICS OF CONTROL-OPERATION-INTEGRATED
SYNCHRONOUS DATAFLOW: SCHEDULABILITY AND PARALLELISM 69

compiler simply rejects graph structures that have overlapping CM situations regardless of
message latencies even if the latencies can result in valid schedules, as is the case when the
CM latency between actor B and actor C is 0.

We will present a scalable and systematic method to check for such circular dependencies
by constructing dependency graphs for stream programs. We then show how to use the
constructed dependency graphs to study parallelism of stream programs.

5.3 Schedulability of COSDF

Thies et al. [115] use Teleport messaging (TMG) to call control messaging (CMG). We will
use CMs in place of Teleport messages in this chapter.

Concrete CM Execution Model

With the CMG approach illustrated in Figure 5.1(b), actor Source can send CMs containing
new weights directly to each Multiply actor before the arrival of data tokens that need to
be computed with the new weights. This separation between COs and data computation
makes it easier to maintain and to debug programs. It also helps avoid the error-prone task
of manually embedding and processing control information within data tokens. And later in
this chapter, we will see that it also eases the compositional verification of the programs.

CM Timing with SDEP

Thies et al. [115] present an approach for finding processing times of CMs at receiving actors
using the SDEP function based on senders-receivers data dependencies in SDF graphs3.

Execution Model of CMG: Based on SDEP function and the semantics of CMs in Sec-
tion 5.2, we provide the formal semantics of CMs based on Thies’s PhD thesis [112] as
follows:

Definition 10 Suppose that actor S sends a CM to actor R with latency k during the nth

execution of S, then the message must be processed immediately before R’s mth execution,
where:

• If R is upstream of S:
m = SDEPR←S(n+ k − 1) + 1 (5.5)

• If R is downstream of S:

m = min{m′|SDEPS←R(m
′) ≥ n+ k} (5.6)

3Note that the CM latency semantics in Section 5.2 is not necessarily restricted in SDF graphs.
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• If R is both upstream and downstream of S (e.g., a stream graph with loops):

m = min{min{m′|SDEPS←R(m
′) ≥ n+ k}, SDEPR←S(n+ k − 1) + 1} (5.7)

First, we will explain the reason leading to equation (5.5). Because R is upstream of S, as
a result, Rm ∈ WF↑(An+l) where l = mint≥k;∃Rm∈WF↑(Sn+t) t. Expanding using equation (5.2)
leads to Rm ∈ Affects(Sn+l) and Rm 6∈ Affects(Sn+k−1). Because we can always find l such
that Rm ∈ Affects(Sn+l), the only necessary condition left is Rm 6∈ Affects(Sn+k−1). Rm 6∈
Affects(Sn+k−1) implies m > SDEPR←S(n+ k − 1). So if we chose the most recent Rm, then
m = SDEPR←S(n+ k − 1) + 1. Similarly for equation (5.6), we have Rm ∈ DependsOn(Sn+k).
Because Rm ∈ DependsOn(Sn+k) implies SDEPS←R(m) ≥ n+ k and we chose the most recent
Rm, then m = min{m′|SDEPS←R(m

′) ≥ n + k}. Equation (5.7) is just the combination of
(5.5) and (5.6).

To illustrate how to use SDEP to find the appropriate executions of receiving actors, we
take the FIR example in Figure 5.1(b) and find the mth execution of a Multiply that a CM
has to be processed right before. Suppose that, at its 5th execution (n = 5), actor Source

sends a CM to a Multiply actor with latency k = 2. We have:

SDEPSource←Multiply(m
′) ≥ n+ k = 7

Each time actor Source executes, it produces one token and each time one Multiply ac-
tor executes, it produces one token and consumes one token. Therefore, in order for a
Multiply actor executes m′ times, actor Source has to execute m′ times. In other words,
SDEPSource←Multiply(m

′) = m′. Hence, m′ ≥ 7. Because m = min{m′}, as a result, m = 7.

Characterizing Execution Dependencies

The COSDF schedulability problem in Section 5.2 hinders potential interesting applications
whenever their stream graphs have overlapping constraints of CMs4 even though the ap-
plications are schedulable. The StreamIt compiler considers a program invalid when it has
upstream CMs with negative latencies. This specific checking rule is reasoned by the com-
piler designers [115]. Checking for invalid cases for general stream graph structures with
overlapping of CMs is not straightforward due to the mis-matching input/output rates of
actors.

Dependency Graphs

To check for circular dependencies, we can construct dependency graphs (DG) capturing
the execution dependency between SDF actors and check for cycles in the graphs. If there
is no cycle in a DG, then the graph is directed acyclic and a schedule can be found using

4The overlapping constraints of CMs actually depends on semantics of applications.
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a topological sort. The construction of such DGs is done in two steps. First, we replicate
the executions of the actors of an SDF graph. These executions form the vertices of a DG.
Second, we add dependency edges between these vertices. Constructing such DGs requires
characterizing various kinds of execution dependencies in stream programs.

Actor Execution Dependencies

Definition 11 Execution dependency: An execution e1 of an actor is said to be dependent
on another execution e2 of some actor (can be the same actor) when e1 has to wait until e2

has finished before it can commit its results.

We characterize three kinds of execution dependency as follows:

• Sequential dependency: The (n + 1)th execution of A by definition happens after the
nth execution of A, or An ≺ An+1. We have the corresponding edge:An+1 → An.

• Data dependency: Let B be downstream of A. An nth execution of B will be data-
dependent on an mth execution of A if Bn ∈ DependsOn(Am). We utilize the SDEP

function to derive such dependencies. For any two actors, upstream A and downstream
B, such that ∃n,m ∈ N, Bn ∈ DependsOn(Am), we create a data-dependency edge from
the nth execution of B to the SDEPA←B(n)th execution of A, denoted as ASDEPA←B(n) ← Bn.
Note that, based on sequential dependency condition, Am−1 ≺ Am, as a result, Am ≺
Bn,∀m ≤ SDEPA←B(n). Thus, we do not need to add any dependency edges between
Bn and Am,∀m < SDEPA←B(n), as those dependencies are implicit and can be inferred
from Am ≺ Am+1 and ASDEPA←B(n) ≺ Bn.

• Control dependency due to CMs sent between actors. Because an actor S at its nth

execution may send a CM to an actor R with latency k, then for all the mth executions
of R satisfying the Definition 10, Rm is said to be control dependent on Sn as it may
consume some control information from Sn. We create an edge Rm → Sn. According
to Definition 10, R has to process the message right before its mth execution:

There are three cases:

– If R is downstream of S: m = min{m′|SDEPS←R(m
′) ≥ n+ k}. The created edge

Rm → Sn becomes Rmin{m′|SDEPS←R(m′)≥n+k} → Sn.

– If R is upstream of S: m = SDEPR←S(n+ k − 1) + 1. The created edge Rm → Sn
becomes RSDEPR←S(n+ k − 1)+1 → Sn.

– If R is both upstream and downstream of S (there exists a loop in the stream
graph): m = min{min{m′|SDEPS←R(m

′) ≥ n + k}, SDEPR←S(n+ k − 1) + 1}. The
created edge Rm → Sn becomes Rmin{min{m′|SDEPS←R(m′)≥n+k},SDEPR←S(n+ k − 1)+1} →
Sn.
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Illustrative Example: Let us come back to the example in Figure 2.1 to illustrate our
method. Within one iteration of the whole stream graph, according to the SDF model
of computation, actors A,B,C,D and E execute 3, 3, 2, 2, and 2 times respectively. Each
execution of an actor is replicated as one vertex in the DG as in Figure 5.5. Ai2 denotes the
2nd relative execution of actor A within the ith iteration of the stream graph. Ai2 corresponds
to the (i ∗ 3 + 2)th absolute (from the beginning when the program starts) execution of actor
A as A executes 3 times in one iteration for the stream graph in Figure 2.15.

Figure 5.5 shows the DG when E sends CMs to A with latency 1 and B sends CMs to
D with latency -2. In the figure, the sequential dependency edges are dashed arrows, data
dependency edges are dash-dot arrows, and control dependency edges are solid arrows. We
use the SDEP function between actors B and D in Table 2.1 to illustrate our method. For any
nth iteration of the stream graph, we add data dependency edges Dn

1 → Bn
2 and Dn

2 → Bn
3 as

in Figure 5.5 because within one iteration, the first execution of D is data-dependent on the
second execution of B and the second execution of D is data-dependent on the third execution
of B. For control dependency edges, we apply the formula Dmin{m′|SDEPB←D(m′)≥n+k} → Sn for
CMs from B to D with a latency k = −2.

The above naive graph construction process will produce infinite graphs as stream ap-
plications are presumed to run forever. Because we cannot verify if infinite graphs do not
contain a cycle, we do not know for sure if a COSDF program will be deadlocked or not. To
tackle this problem, we can translate infinite DGs into equivalent finite graphs that preserve
the circular dependency attribute. As the SDF model of computation is periodic, although
DGs of SDF models are infinite, they are periodic [90]. We employ a technique to reduce
infinite DGs into corresponding weighted finite graphs, called reduced dependency graphs
(RDG), pioneered by Karp, Miller and Winograd [61]. Darte presents a nice summary of
work related to the technique in [33]. The basic idea is to translate periodic DGs into corre-
sponding RDGs. Checking for cycles in periodic DGs is equivalent to checking for zero-weight
cycles in RDGs.

Reduced Dependency Graphs

Definition 12 A directed periodic graph G∞ = (V ∞, E∞) is induced by a RDG G =
(V,E, T ), where V is the set of vertices, E is the set of edges, T : E → Zk is a weight
function on the edges of G, via the following expansion:

V ∞ = {vp|v ∈ V, p ∈ Zk}
E∞ = {(up, vp+tuv)|(u, v) ∈ E, tuv ∈ T, p ∈ Zk}

5To make this conversion more clear, we take an example. Suppose that an actor A has executed n times
since a program starts and in each iteration of the program, A executes a times. Then we can calculate that
execution An belongs to i = n ÷ a iteration of the whole program (based on SDF semantics) and it is the
r = (n mod i) execution of A within the ith iteration of the program. In other words An ⇔ An÷a

n mod a. We
call n the absolute execution, r the relative execution, and i the iteration index. We will use this conversion
frequently in the next sections.
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where tuv ∈ T represents the number of k-dimensional periods it takes to travel from u’s
period to v’s period along the edge. The vertex vp of G∞ can be interpreted as vertex v of
G in a k-dimensional period p. Edge (up, vp+tuv) represents travelling from u in period p and
arriving at v by tuv periods later. Intuitively, a k-dimensional periodic graph is obtained
by replicating a basic graph (cell) in a k-dimensional orthogonal grid. Each vertex within
the basic graph is connected with a finite number of other vertices in other replicated basic
graphs and the inter-basic-graph connections are the same for each basic graph.

The DG of a SDF stream graph is an infinite 1-dimensional periodic graph with its basic
graph composed of the vertices of actor executions within one iteration. The basic cell
is repeatedly put in a 1-dimensional time grid. Data, sequential and control dependencies
induce the directed edges between the vertices. As the SDF model of computation is periodic
by nature, the pattern of the inter-cell (inter-iteration) connections is the same for each cell
(iteration).

Translating to RDGs

Figure 5.6 shows the corresponding RDG of the DG in Figure 5.5. In the graph, all the edges
without specified weights are of zero weight. Intuitively, all the vertices within one arbitrary
iteration, say iteration nth, are kept to form the vertices in the corresponding RDG after
removing iteration indices, e.g., An1 becomes A1. Directed edges between vertices within one
iteration are also kept and their weights are set to 0. For directed edges crossing iterations,
only outgoing edges (edges from this iteration to some other iterations) are used to translate
to the corresponding edges in the RDG. The translation is done as follows. Suppose that
an outgoing edge is Snx → Rm

y , we add a directed edge Sx → Ry with weight n−m. n−m
is called relative iteration, which is the gap between the iterations of two actor executions.
For example, the directed edge Dn

2 → Bn+1
2 in Figure 5.5 becomes the edge D2 → B2 with

weight −1 in Figure 5.6. Note that an edge Sx → Ry is equivalent to any edge Six → Rj
y in

the execution dependency graph as long as i− j = n−m because of the repetitive property
of the SDF model of computation. This translation process could be understood as folding
SDF DGs into corresponding RDGs at period boundaries.

Graph Correspondence

We cite the following lemma from Lemma 1 in [90].

Lemma 1 Let G = (V,E, T ) be a RDG graph. For u, v ∈ V and s, d ∈ Z, there is a one-
to-one canonical correspondence between the set of finite paths from us → vd in G∞ and the
set of paths in G from u to v with transit time s− d.

The above lemma is instrumental in proving the following theorem:

Theorem 3 One dependency cycle in a DG corresponds to one cycle of zero length in the
corresponding RDG and vice-versa.
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Figure 5.5: Infinite periodic dependency graph.

Proof: Suppose that there is a cycle in a DG, say Xn1
i1
→ Xn2

i2
→ . . . → Xnm

im
→ Xn1

i1
. By

Lemma 1, this cycle corresponds to one directed cycle with edges (Xi1 → Xi2), (Xi2 → Xi3),
. . . ,(Xim−1 → Xim), (Xim → Xi1) of weights (n1−n2), (n2−n3), . . . , (nm−1−nm), (nm−n1),
respectively. The sum of the weights of the edges in the corresponding directed cycle is:
(n1 − n2) + (n2 − n3) + . . .+ (nm−1 − nm) + (nm − n1) = 0.
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Figure 5.6: Reduced dependency graph.

For one zero directed cycle with edges (Xi1 → Xi2), (Xi2 → Xi3), . . . ,(Xim−1 → Xim),
(Xim → Xi1) of weights w1, . . . , wm respectively in a RDG, we chose some very large n1 and
derive n2 = n1 − w1, n3 = n2 − w2, . . . , nm = nm−1 − wm. n1 should be chosen to be large
enough so that n2, . . . , nm > 0. By Lemma 1, the zero directed cycle corresponds to one
cycle of dependencies Xn1

i1
→ Xn2

i2
→ . . .→ Xnm

im
→ Xn1

i1
in the corresponding DG

Detecting Zero Cycles

We have shown that a cycle of dependencies corresponds to a cycle of zero weight in a
RDG. In [55], Iwano and Steiglitz propose an algorithm for detecting zero cycles in an
1-dimensional6 RDG with complexity O(|V |3) (Theorem 4 in [55]).

Illustrative Example

To illustrate the cycle checking method better, we take the translated RDG in Figure 5.6.
Running the zero cycle detection algorithm in [55] on the graph, we find a zero cycle
A1, E2, D2, B2, A2, which corresponds to the cycle of dependencies in the dependency graph
in Figure 5.5, An+1

1 � En
2 � Dn

2 � Bn+1
2 � An+1

2 � An+1
1 .

Now, suppose that the latency of CMs from E to A is 3, then the RDG has no zero cycles,
thus, there is no cycle of dependencies in the DG. As a result, the set of constraints imposed
by the control communications is feasible.

6Distances between vertices have only one dimension.
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5.4 Direct Construction of RDGs

In the previous section, we show how to translate from infinite DGs to RDGs to check for
cycles of dependencies. However, constructing infinite DGs from stream programs is not
possible and not necessary. Instead, we can use a similar mechanism to construct RDGs
directly from stream programs as we know the repetitive dependency structures across iter-
ations of SDF stream programs. Algorithm 5.7 shows how to directly construct RDGs from
stream graphs.

Similar to infinite DGs, RDGs are constructed in two steps. First, the executions of one
actor are replicated the same number of times that the actor executes within one iteration of
an SDF graph. Each execution becomes one vertex in the RDG. Second, we add dependency
edges between the vertices based on the three kinds of dependency presented in Section 5.3.

In Algorithm 5.7, the get num reps function returns the number of repetitions of an
actor within one iteration of the entire stream graph. The function compute rel iter exe

computes relative iterations ir and relative executions er of CMG receiving actors as follows.
Suppose that a CMG sender S at its absolute nth execution may send a message to a receiver
R with latency k. Then the absolute mth execution of the receiver R will be computed as in
Section 5.3. We use the conversion from absolute executions of actors to relative executions
and iterations in Section 5.3. Suppose that S and R execute s = |S ∧ S| and r = |S ∧ R|
times within one iteration S of a stream graph respectively. We compute the iterations iS, iR

and the relative executions rS, rR of S and R respectively from their corresponding absolute
executions nth and mth as follows:

rS = n mod s, iS = n÷ s
rR = m mod r, iR = m÷ r

then the relative iteration ir = iS− iR and er = rR. The above calculation method for relative
iterations and relative executions is specific to an nth execution of S. The immediate question
is how to pick n to compute ir. The following theorem presents an answer to the question.

Theorem 4 For a fixed relative execution rS, relative execution ir is invariant to absolute
iteration iS. Concretely, ir is the same for iS and iS + j with j ∈ Z.

Proof: Suppose that we consider the same relative execution of S in j iterations later of the
stream graph, say iteration iS+j, then the absolute execution of S is rS+(iS+j)∗s = n+s∗j.
We have three cases:

• If R is downstream of S. Note that SDF is periodic, therefore, if
m = min{m′|SDEPS←R(m

′) ≥ n + k} then m + r ∗ j = min{m′|SDEPS←R(m
′ + r ∗ j) ≥

n+ s ∗ j + k} based on equation (2.5). Thus, for j iterations later of S, we still have:
ir = ((n+ s ∗ j)÷ s)− ((m+ r ∗ j)÷ r) = (iS + j)− (iR + j) = iS − iR.
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1 (V,E, T )← (∅, ∅, ∅)
2 sched← compute SDF schedule(streamGraph)
3 . Create the set of vertices
4 forall the actor do
5 for exe = 1→ sched.get num reps(actor) do
6 V ← V + new vertex(actor, exe) . Each vertex is one actor execution in one iteration
7 end

8 end
9 . Add data dependency edges

10 forall the v ∈ V do
11 forall the actor ∈ upstream actors(v.actor) do
12 absolute exe← SDEPactor←v.actor(v.exe) . Translate from absolute execution to relative one

iteration← (absolute exe− 1)÷ sched.get num reps(actor)
13 exe← 1 + (absolute exe− 1) mod sched.get num reps(actor)
14 u←get vertex(actor, exe)
15 e←new edge(u, v)
16 E ← E + e
17 T ← T + (weigth(e)← (−iteration))

18 end

19 end
20 . Add sequential dependency edges
21 forall the v ∈ V do
22 if v.exe > 1 then
23 u← get vertex(v.actor, v.exe + 1) . Edges within one SDF iteration have weight 0
24 e← new edge(v, u)
25 E ← E + e
26 T ← T + (weigth(e)← 0)

27 end
28 else
29 u← get vertex(v.actor, sched.get num executions(actor)) . Edges to previous SDF

iterations have weight 1 e← new edge(v, u)
30 E ← E + e
31 T ← T + (weigth(e)← 1)

32 end

33 end
34 . Add control dependency edges
35 forall the actor do
36 if send control msg(actor) then
37 for exe = 1→ sched.get num reps(actor) do
38 forall the recv ∈ get control receivers(actor) do
39 k ← get latency(actor, recv) . Get control message latency . Determine relative

iterations and relative executions of control receivers
(ir, er)← funccompute rel iter exe(actor, recv, exe, k)

40 s← get vertex(actor, exe)
41 r ← get vertex(recv, er)
42 e← new edge(s, r)
43 E ← E + e
44 T ← T + (weigth(e)← ir) . Relative iteration of each receiver is the edge weight

45 end

46 end

47 end

48 end

Figure 5.7: Constructing reduced dependency graphs
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• If R is upstream of S then m = SDEPR←S(n+ k − 1) + 1. As SDF is periodic, therefore,
m+r∗j = SDEPR←S(n+ s ∗ j + k − 1)+1 based on equation (2.5). Thus, for j iterations
later of S, we still have: ir = ((n+s∗j)÷s)−((m+r∗j)÷r) = (iS+j)−(iR+j) = iS−iR.

• If R is both upstream and downstream of S then m = min{min{m′|SDEPS←R(m
′) ≥

n+ k}, SDEPR←S(n+ k − 1) + 1}. As SDF is periodic, therefore, m+ r ∗ j =
min{min{m′|SDEPS←R(m

′) ≥ n + s ∗ j + k}, SDEPR←S(n+ s ∗ j + k − 1) + 1} based on
equation (2.5). Thus, for j iterations later of S, we still have: ir = ((n+ s ∗ j)÷ s)−
((m+ r ∗ j)÷ r) = (iS + j)− (iR + j) = iS − iR.

Based on Theorem 4, for one relative execution rS, we can take an arbitrary iS that is
large enough to find the absolute mth execution of R from the absolute nth execution of S

where n = iS ∗ s + rS using the techniques in Section 5.3. After finding m, we calculate iR

and rR as shown above. Subsequently, we find ir and er.

5.5 Scaling the COSDF Schedulability Checking

Process

The basic schedulability checking method presented in the previous sections may not scale
well for large RDGs because the zero-cycle detection algorithm by Iwano and Steiglitz [55] is
of complexity O(|V |3) in all cases (due to three nested for loops of |V | iterations each). For
example, for the MPEG2 decoder benchmark [35], the RDG has around 4 million vertices and
the zero-cycle detection algorithm would take 400,000 years to finish 7. This running time
makes the checking process hardly have any practical usages for verifying large programs.
However, the method in the previous sections still serves as the basic reasoning process to
find a solution. We will present two optimization techniques to make the checking process
more feasible.

Pruning RDGs

In this section, we will present a graph pruning method that significantly reduces sizes of
RDGs.

Lemma 2 Zero-cycles in RDGs must contain vertices of actors involved in control commu-
nication, called control vertices.

Proof: Circular dependencies happen when additional constraints by CMs impose on basic
SDF schedules. Therefore, cycles of dependencies must contain control vertices. As a result,
the corresponding zero-cycles in RDGs must contain control vertices.

7We predict this running time based on the numbers of vertices and the running times of other smaller
benchmarks.
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The above lemma implies that we only need to construct pruned RDGs and/or pruned
DGs of control vertices. Concretely, we only create control vertices for RDGs and directly
derive data dependency edges between the control vertices using the SDEP function. For
example, in Figure 5.6, the non-control vertices C1 and C2 can be removed. We draw direct
edges between E1 to A1, A2 and E3 to A3.

Theorem 5 A cycle of dependencies in a DG corresponds to a cycle in the corresponding
pruned DG.

Proof: Lemma 2 shows that a cycle of dependencies must contain control vertices. Fur-
thermore, as non-control vertices only serve as proxies to carry data dependencies between
control vertices in DGs. Because the data dependency edges between control vertices in
pruned DGs can be derived directly using the SDEP function, a cycle C of dependencies in
a DG corresponds to the cycle in the corresponding pruned DG constructed by taking only
the control vertices of C.

The above graph pruning technique significantly reduces the RDG of the MPEG2 decoder
benchmark to 25 thousands vertices from 4 million vertices of the original RDG and it
would take the zero-cycle detection algorithm around 40 days8 to finish. This is still rather
expensive as programmers would have to wait for days to know whether their programs are
valid or not.

Augmenting with Negative-Zero Cycle Detection

To make the schedulability checking process more practical, we need an algorithm that
performs on average much faster than the used zero-cycle detection algorithm. The zero-
cycle detection algorithm is more expensive on average than the negative cycle detection
algorithm [29]. Now, we prove that a DG has cycles of dependencies when the corresponding
RDG has negative or zero cycles.

Theorem 6 A negative cycle in a RDG implies a cycle of dependencies in the corresponding
DG.

Proof: Suppose that a negative cycle in a RDG contains a vertex Xi. The negative cycle
has length l < 0. There exists a corresponding path in the corresponding DG from Xn

i to
Xm
i where n − m = l by Lemma 1. As a result, Xm

i ≺ Xn
i . Furthermore, by sequential

dependency, Xn
i ≺ Xm

i because n−m = l < 0. Summing up, we have a cycle of dependencies
Xm
i ≺ Xn

i ≺ Xm
i .

Note that, the above theorem does not conflict with Theorem 3, rather, it presents a way
to early detect a cycle of dependencies when there exists a negative cycle. Combining both
Theorems 3 and 6, we arrive at:

8The checking algorithm does not terminate after one day of running. We predict this running time
based on the benchmark graph size and running times of other benchmarks.
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• If a RDG has a negative or zero cycle, then the corresponding DG has a cycle of
dependencies

• If there exists cycle of dependencies in the DG, then we will eventually find a zero cycle
in the corresponding RDG.

These results enable using more efficient algorithms that detect both negative and zero cycles.
We modify the Tarjan’s negative cycle detection algorithm [29] to check for both negative and
zero cycles. The algorithm has O(|E||V |) worst-case complexity, but in practice, it usually
performs much better than the zero-cycle detection. For the MPEG2 decoder benchmark,
the algorithm finishes in 58 seconds in comparison with the projected 40-day running time
of the zero-cycle detection algorithm on the same processor.

5.6 Soundness and Completeness of the

Schedulability Checking Method

In this section, we prove that our checking method is sound and complete according to the
definitions in [101].

Theorem 7 The schedulability checking method by either the zero-cycle detection algorithm
or the negative-zero cycle detection algorithm is sound and complete.

Proof: The method is sound because Theorem 3 says if there exists a cycle of dependencies
in a DG, then we will eventually find a zero cycle in the corresponding RDG by either the
zero-cycle detection algorithm or the negative-zero cycle detection algorithm.

The method is complete because, based on Theorems 6 and 3, if either the zero-cycle
detection algorithm or the negative-zero cycle detection algorithm detects a negative or a
zero cycle in a RDG, then the corresponding DG must have a cycle of dependencies.

5.7 Scheduling and Parallelism Study

The schedulability checking method presented in the previous sections only determines
whether a stream graph is schedulable. The auto-discovery scheduling method implemented
in the StreamIt compiler for programs with CMs can find execution orders for stream pro-
grams. The scheduling method lets actors interact autonomously with each other to discover
schedules, e.g., an actor can start executing whenever it has enough data, otherwise, it will
wait. As a consequence, this method hinders the optimizability by exploiting the stationary
property of SDF programs. In this section, we use RDGs to derive static schedules and study
parallelism for SDF programs with or without CMs.
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Static Scheduling

We derive static schedules for stream programs by applying a special topological sort on
RDGs. The DGs we constructed for stream programs are infinite, therefore, normal topo-
logical sorting algorithms will never terminate. We employ the topological sort method for
acyclic periodic graphs described in Section 3.8 of Kodialam’s PhD thesis [66]. For an 1-
dimensional acyclic periodic graph G∞, we can calculate a value A(vp) for each vertex vp

in the periodic graph such that if there is a dependency constraint vp ≺ ul in the corre-
sponding RDG, then A(ul) < A(vp). The calculation is done first by constructing a RDG
G = (V,E, T ) from G∞ and then by solving the following linear program:

min
(u,v)∈E

σuv

πv − πu + γTuv ≥ 0 ∀(u, v) ∈ E
πv − πu + γTuv + σuv ≥ 1 ∀(u, v) ∈ E

σuv ≥ 0 ∀(u, v) ∈ E

where Tuv is the weight of edge (u, v) ∈ E. The above linear program has a unique
optimal solution for an acyclic periodic graph [66], let us call it (σ∗, π∗, γ∗). Then the value
assignment procedure for each vertex vp is as follows:

A(vp) = π∗v − γ∗p ∀v ∈ V (5.8)

With this execution ordering method, we can derive steady state static execution orders
of actors within one iteration of an entire stream graph for compiler optimizations.

Note that, we can apply the above topological sorting technique to pruned RDGs to lower
running time. Topological sorts on pruned RDGs will only derive sketches of execution orders
between control vertices. From the orders of the pivotal control vertices, we can subsequently
derive execution orders for other vertices using data dependency constraints based on the
pull schedule in Section 2.3. However, a detailed scheduling technique is beyond the scope
of this chapter and not difficult to figure out.

Initialization Schedule

Note that an initialization schedule has fewer constraints than its subsequent steady-state
sequence. In other words, an initialization schedule only contains a subset of dependency
constraints of its subsequent steady-state schedule. In addition, note that, any execution
with an iteration index smaller than 1 needs not be considered because they do not ex-
ist. Consequently, removing those execution vertices does not make the scheduling problem
unschedulable because we simply remove constraints from the scheduling problem. This
effectively reduces the number of dependency constraints. As a result, an initialization
schedule can be derived by plugging in n = 1, 2, 3, . . . until finding a steady-state sequence
that does not contain any execution whose iteration index is smaller than 1. Note that we
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know the upper-bound on how far we need to unroll for the initialization based on repeated
steady-state sequences. For the example in Section 5.8, when n = 1 we have a sequence:
(A1

1) ≺ (A1
2, B

1
1) ≺ (B1

2 , C
1
1) ≺ (A1

3). When n = 2 all the iteration indices are greater than
0, as a result, we can stop deriving the initialization schedule. Now, we can repeat the
steady-state sequence.

Parallelism Study

The method in the previous section not only presents a way to find static schedules for
stream programs with CMs but also helps study stream programs parallelism. In [97],
Roychowdhury and Kailath prove that if A(ul) = A(vp), then executions ul and vp can
run in parallel. Thereby, the above scheduling technique presents a formal way to study
parallelism of stream programs.

5.8 Experiments

We implemented the above algorithms in the StreamIt compiler, written in Java, to both
check for circular dependencies and to find static schedules. We run our evaluations on
Intel(R) Xeon(R) CPU E5450 3.00GHz.

Scalability of the Schedulability Checking Methods

We discussed the scalability of the schedulability checking methods in Section 5.5 for the
MPEG2 decoder benchmarks. We will evaluate the scalability of the methods for 5 avail-
able CMG benchmarks: MPEG2 encoder/decoder, Frequency Hopping Radio (FHR), MP3
Latency and Mosaic.

Table 5.1 shows that the RDG pruning technique significantly reduces the numbers of
vertices and edges in RDGs. The original RDGs of very large sizes are reduced to the
pruned RDGs with reasonable sizes. For the MPEG2 encoder benchmark, the RDG’s size
is substantially reduced by around 600,000 times by the graph pruning algorithm. This
indicates the number of control vertices is actually very small in comparison with the num-
ber of non-control vertices. Constructing original RDGs (without pruning) for MPEG2
encoder/decoder, MP3Latency, Mosaic benchmarks makes our computer run out of memory
because the graph sizes are too large9.

We then run the two cycle detection algorithms, the zero-cycle detection in Section 5.3
and the augmented negative-zero cycle detection in Section 5.5, on the pruned RDGs. Ta-
ble 5.1 also demonstrates the practicability of the augmented negative-zero cycle detection
algorithm. The augmented algorithm finishes within one minute for all the benchmarks.

9The number of vertices in one original RDG is obtained by summing all the numbers of actor executions
in one iteration of the respective stream graph. These numbers are obtained by the SDF scheduling theory.
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While for the MPEG2 decoder, the baseline zero-cycle detection does not terminate after 24
hours.

Table 5.1: Experiments

Graph size evaluation Running time evaluation (in ms)
# of vertices # of edges Cycle detection time

Benchmark Original Pruned Reduction Original Pruned Reduction Scheduling Zero-Cycle Negative-Zero-Cycle
MPEG2 encoder 58133280 90 645925.3x - - 210 - - 5461 39184 32742
MPEG2 decoder 4088367 25752 158.8x - - 84198 - - 943604 - - 58080
FHR 1665 516 3.2x 4868 524 9.3x 834 141 1257
MP3 Latency 7252 1218 5.9x - - 1218 - - 2196 13041 241
Mosaic 7753576 20 387678.8x - - 88 - - 929 6994 8098

Static Scheduling

After checking whether the benchmarks are schedulable, we run the static scheduling algo-
rithm on the pruned RDGs, and obtain the results as in Table 5.1. We use the CPLEX
( http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/)
solver. For the MPEG2 decoder benchmark, it takes around 0.64 second to schedule its
pruned RDGs with 7 CLEX threads. The scheduling for the other benchmarks finishes
almost in no time.

We take the stream graph in Figure 2.1 as an example with CMG latency from E to A is
3 and from B to D is -2. With this configuration, the stream graph does not have any cycle
of dependencies. We apply the topological sorting algorithm by solving the respective linear
program and obtain γ∗ = 5 and π∗A1

= 9, π∗B3
= 4, π∗A2

= 8, π∗B1
= 8, π∗C2

= 3, π∗D1
= 2, π∗B2

=
7, π∗C1

= 7, π∗E1
= 1, π∗D2

= 1, π∗E2
= 0, π∗A3

= 5. As a result, a valid execution order for
the stream program is: (An1 , B

n−1
3 ) ≺ (An2 , B

n
1 , C

n−1
2 ) ≺ (Dn−1

1 , Bn
2 , C

n
1 ) ≺ (En−1

1 , Dn−1
2 ) ≺

(En−1
2 , An3 ).

5.9 Expressiveness of CMG

Readers may wonder about the usefulness of CMG. Although CMG is used to describe COs,
its implication is broader than that. In this section, we will discuss and summarize a number
of advantages of CMG.

Verifiability, Readability, Maintainability, and Performance
Improvement of CMG

As discussed in Section 5.3, separating sporadic low-bandwidth control communication from
regular high-bandwidth data communication helps reduce wasted communication band-
widths. It also improves the readability, maintainability, and backward compatibility of
stream programs by avoiding mixing up data and control processing codes. For example

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
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without CMG, to change a CM latency, programmers have to dive into program code and
modify code segments related to data token processing. As a consequence, maintaining pro-
grams becomes more difficult without CMG. Furthermore, it is also difficult to check for
the schedulability problem because compilers have to analyze complicated tokens processing
code just to infer inherent information such as message latency and which actors will process
which messages. Applying the RDG pruning technique is even more complicated.

Splitter
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Backward 
Motion Estimation
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Picture reorder

Motion Estimation 
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Figure 5.8: MPEG2 encoder stream graph.
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Feedback Loops Reasoning

We will discuss about how CMG can help improve programming productivity. Beside the
advantage of using CMG for expressing control communication, CMG can also help pro-
grammers to reason about data dependencies in complicated stream program structures.
For example, when feedback loops cross multiple actors, it is difficult for programmers to
determine which feedback tokens are relevant to certain input data tokens. For example,
when implementing his MPEG2 benchmarks [35], Drake uses CMs, the red dash arrows from
the actor Reference Frame Handler to actors Forward Motion Estimation and Backward

Motion Estimation in Figure 5.8, for feedback loops that help multiplex between feedback
tokens from actors Forward Motion Estimation and Backward Motion Estimation and
the input data tokens from the upstream Splitter actor. The SDEP function helps ease that
multiplexing reasoning process.

Optimizing Stream Programs with CMG

In Section 8.4 of [35], Drake shows how to use CMG to implement programmable Split/Join
actors to avoid the overhead of processing unused data in the MPEG2 encoder/decoder
benchmarks. For example in Figure 5.8, the result from either actor Forward Motion

Estimation or actor Backward Motion Estimation is used, which is decided by actor
Motion Estimation Decision. However, the regularity property of SDF semantics makes
the current Split/Join actors regularly dispatch/retrieve data tokens to/from other ac-
tors. Actors Split/Join are not capable of distributing/gathering dynamically and spo-
radically. As a consequence, we waste the computation done by either actor Forward

Motion Estimation or actor Backward Motion Estimation. Drake in [35] suggests that
Split/Join actors that are capable of dynamically dispatching/retrieving data and syn-
chronized using CMs can help programmers implement such an optimization. Note that this
suggested extension creates additional overlapping of CMs in the MPEG2 benchmarks.

5.10 Related Work

Thies et al. [115] introduce CMG as a mechanism to integrate COs into SDF. They present
an analysis that computes processing time of CMs. However, this analysis is applicable to
only non-overlapping CMs. Consequently, SDF graphs with overlapping CMs cannot utilize
this analysis. We address this limitation with our dependency analysis method applicable to
any SDF graph with CMs. Furthermore, we show that it is possible to compute schedules
for the SDF graphs with integrated COs. This problem is not well-defined in the work by
Thies et al. [115].

As an extension of CMG in the StreamIt compiler, our work is based on SDF/CSDF [70,
18] semantics. We also adopt several results from the RDG work pioneered by Karp, Miller
and Winograd [61]. Darte [33] summarizes work related to the pioneering work by Karp,
Miller, and Winograd [61]. The loop compilation techniques in [6, 3, 62] also derive from
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the work by Karp, Miller, and Winograd. Our graph pruning technique is related to the
quotient graph theory [12].

Zhou and Lee [124] tackle a circular dependency analysis problem using causality inter-
faces. For the SDF case, they do not account for CMs in their SDF models. Moreover, we
also support dependency analysis for SDF with overlapping CMs.

Horwitz et al. [52] propose a method for interprocedure program slicing by constructing
DGs between program statements with data and control dependency edges. The graph
construction method is similar to our method in that they construct DGs of statements and
use the graphs to find dependency between interprocedure statements.

The deadlock analysis method for communicating processes by Brook and Roscoe [22]
characterizes the properties and structures of networks of communicating processes that can
cause deadlocks. For example, the work can answer which kind of communication can cause
the dining philosophers problem. However, the method only works for some structures of
networks of processes.

There are several algorithms on deadlock detection in distributed systems [26]. However,
the algorithms proposed mainly focus on detecting deadlocks when they happens rather than
on deadlock avoidance and static deadlock analysis.

Wang et al. [118] propose a method that helps avoid potential deadlocks in multithreaded
programs sharing resources. The method translates control flow graphs into Petri nets. Petri
net theories are used to synthesize control logic code to avoid potential deadlocks. This bears
some similarity to our construction of DGs to detect deadlocks.

5.11 Conclusion

In this chapter, we give a formal definition of control communication latency conceived
in [115]. We then present a method for checking for invalid sets of specifications when SDF
models are extended with the control semantics by exploiting its periodic property. The ap-
plication of this work is not only limited in current StreamIt benchmarks but also applicable
to other design environments supporting SDF streaming semantics such as Ptolemy(http:
//ptolemy.eecs.berkeley.edu) and LabVIEW(http://www.ni.com/labview/). Users in
such environments can create arbitrary streaming models and the frameworks need to quickly
validate the models.

The other implication of this work is to study parallelism of stream programs formally
through our formulated RDGs for stream programs. We have implemented the method in
the StreamIt compiler. Furthermore, in the StreamIt compiler’s backend, actors involved
in CMG are not clustered because fused actors cannot be identified and fusing actors can
cause false dependencies, therefore, generated code may be not efficient. A modular code
generation method, such as the one proposed by Lublinerman et al. in [75], can avoid the
problem of false dependencies caused by fusing actors.

COs’ semantics are derived for the SDF model of computation, however, it is straightfor-
ward to apply the techniques in this chapter to the CSDF model of computation with almost

http://ptolemy.eecs.berkeley.edu
http://ptolemy.eecs.berkeley.edu
http://ptolemy.eecs.berkeley.edu
http://ptolemy.eecs.berkeley.edu
http://www.ni.com/labview/
http://www.ni.com/labview/
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no required modification. It would be interesting to extend the work to the MDSDF model
of computation for image processing applications as in [99] because MDSDF is natural to
express image and video processing applications.
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Chapter 6

Compositionality in Synchronous
Data Flow

Hierarchical SDF models are not compositional: a composite SDF actor cannot be repre-
sented as an atomic SDF actor without loss of information that can lead to rate inconsistency
or deadlock. Motivated by the need for incremental and modular code generation from hier-
archical SDF models, we introduce in this chapter DSSF profiles. DSSF (Deterministic SDF
with Shared FIFOs) forms a compositional abstraction of composite actors that can be used
for modular compilation. We provide algorithms for automatic synthesis of non-monolithic
DSSF profiles of composite actors given DSSF profiles of their sub-actors. We show how
different tradeoffs can be explored when synthesizing such profiles, in terms of compact-
ness (keeping the size of the generated DSSF profile small) versus reusability (maintaining
necessary information to preserve rate consistency and deadlock-absence) as well as algorith-
mic complexity. We show that our method guarantees maximal reusability and report on a
prototype implementation.

6.1 Introduction

Programming languages have been constantly evolving over the years, from assembly, to
structural programming, to object-oriented programming, etc. Common to this evolution is
the fact that new programming models provide mechanisms and notions that are more ab-
stract, that is, remote from the actual implementation, but better suited to the programmer’s
intuition. Raising the level of abstraction results in undeniable benefits in productivity. But
it is more than just building systems faster or cheaper. It also allows to create systems that
could not have been conceived otherwise, simply because of too high complexity.

Modeling languages with built-in concepts of concurrency, time, I/O interaction, and
so on, are particularly suitable in the domain of embedded systems. Indeed, languages
such as Simulink, UML or SystemC, and corresponding tools, are particularly popular in
this domain, for various applications. The tools provide mostly modeling and simulation,
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but often also code generation and static analysis or verification capabilities, which are
increasingly important in an industrial setting. We believe that this tendency will continue,
to the point where modeling languages of today will become the programming languages of
tomorrow, at least in the embedded software domain.

A widespread model of computation in this domain is Synchronous (or Static) Data Flow
(SDF) [70]. SDF is particularly well-suited for signal processing and multimedia applications
and has been extensively studied over the years (e.g., see [13, 108]). Recently, languages based
on SDF, such as StreamIt [114], have also been applied to multicore programming.

In this chapter we consider hierarchical SDF models, where an SDF graph can be encap-
sulated into a composite SDF actor. The latter can then be connected with other SDF actors,
further encapsulated, and so on, to form a hierarchy of SDF actors of arbitrary depth. This
is essential for compositional modeling, which allows to design systems in a modular, scal-
able way, enhancing readability and allowing to master complexity in order to build larger
designs. Hierarchical SDF models are part of a number of modeling environments, including
the Ptolemy II framework [36]. A hierarchical SDF model is shown in Figure 6.1.
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Figure 6.1: Example of a hierarchical SDF graph.

The problem we solve in this chapter is modular code generation for hierarchical SDF
models. Modular means that code is generated for a given composite SDF actor P inde-
pendently from context, that is, independently from which graphs P is going to be used in.
Moreover, once code is generated for P, then P can be seen as an atomic (non-composite)
actor, that is, a “black box” without access to its internal structure. Modular code genera-
tion is analogous to separate compilation, which is available in most standard programming
languages: the fact that one does not need to compile an entire program in one shot, but can
compile files, classes, or other units, separately, and then combine them (e.g., by linking) to
a single executable. This is obviously a key capability for a number of reasons, ranging from
incremental compilation (compiling only the parts of a large program that have changed),
to dealing with IP (intellectual property) concerns (having access to object code only and
not to source code). We want to do the same for SDF models. Moreover, in the context of a
system like Ptolemy II, in addition to the benefits mentioned above, modular code generation
is also useful for speeding-up simulation: replacing entire sub-trees of a large hierarchical
model by a single actor for which code has been automatically generated and pre-compiled,
removes the overhead of executing all actors in the sub-tree individually.

Modular code generation is not trivial for hierarchical SDF models because they are not
compositional. Let us try to give the intuition of this fact here through an example. A
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more detailed description is provided in the sections that follow. Consider the left-most
graph of Figure 6.2, where the composite actor P of Figure 6.1 is used. This left-most graph
should be equivalent to the right-most graph of Figure 6.2, where P has been replaced by its
internal contents (i.e., the right-most graph is the “flattened” version of the left-most one).
Observe that the right-most graph has no deadlock: indeed, actors A,B,C can fire (execute)1

infinitely often according to the periodic schedule (A, A, B, C, A, B)ω. Now, suppose we treat P
as an atomic actor that consumes 3 tokens and produces 2 tokens every time it fires: this
makes sense, since it corresponds to a complete iteration of its internal SDF graph, namely,
(A, A, B, A, B). We then find that the left-most graph has a deadlock: P cannot fire because it
needs 3 tokens but only 2 are initially available in the queue from C to P; C cannot fire either
because it needs 2 tokens but only 1 is initially available in the queue from P to C.
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Modular code generation is not trivial for hierarchical SDF models because they are not
compositional. Let us try to give the intuition of this fact here through an example. A more
detailed description is provided in the sections that follow. Consider the left-most graph of
Figure 4.2, where the composite actor P of Figure 4.1 is used. This left-most graph should be
equivalent to the right-most graph of Figure 4.2, where P has been replaced by its internal
contents (i.e., the right-most graph is the “flattened” version of the left-most one). Observe
that the right-most graph has no deadlock: indeed, actors A,B,C can fire infinitely often
according to the periodic schedule (A, A, B, C, A, B)!. Now, suppose we treat P as an atomic
actor that consumes 3 tokens and produces 2 tokens every time it fires: this makes sense,
since it corresponds to a complete iteration of its internal SDF graph, namely, (A, A, B, A, B).
We then find that the left-most graph has a deadlock: P cannot fire because it needs 3 tokens
but only 2 are initially available in the queue from C to P; C cannot fire either because it
needs 2 tokens but only 1 is initially available in the queue from P to C.
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Figure 4.2: Left: using the composite actor P of Figure 4.1 in an SDF graph with feedback
and initial tokens. Right: the same graph after flattening P.

The above example illustrates that composite SDF actors cannot be represented by
atomic SDF actors without loss of information that can lead to deadlocks. Even in the
case of acyclic SDF graphs, problems may still arise due to rate inconsistencies (see Fig-
ure 4.6 and related discussion). Compositionality problems also arise in simpler hierarchical
models such as synchronous block diagrams (SBDs) which (in the absence of triggers) can be
seen as the subclass of homogeneous SDF where token rates are all equal [43, 44, 42]. Our
work extends the ideas of modular code generation for SBDs introduced in the above works.
In particular, we borrow their notion of profile which characterizes a given actor. Modular
code generation then essentially becomes a profile synthesis problem: how to synthesize a
profile for composite actors, based on the profiles of its internal actors.

In SBDs, profiles are essentially DAGs (directed acyclic graphs) that capture the depen-
dencies between inputs and outputs of a block, at the same synchronous round. In general,
not all outputs depend on all inputs, which allows feedback loops with unambiguous se-
mantics to be built. For instance, in a unit delay block the output does not depend on the
input at the same clock cycle, therefore this block “breaks” dependency cycles when used in
feedback loops.

Figure 6.2: Left: using the composite actor P of Figure 6.1 in an SDF graph with feedback
and initial tokens. Right: the same graph after flattening P.

The above example illustrates that composite SDF actors cannot be represented by
atomic SDF actors without loss of information that can lead to deadlocks. Even in the
case of acyclic SDF graphs, problems may still arise due to rate inconsistencies (see Fig-
ure 6.6 and related discussion). Compositionality problems also arise in simpler hierarchical
models such as synchronous block diagrams (SBDs) which (in the absence of triggers) can be
seen as the subclass of homogeneous SDF where token rates are all equal [77, 76, 75]. Our
work extends the ideas of modular code generation for SBDs introduced in the above works.
In particular, we borrow their notion of profile which characterizes a given actor. Modular
code generation then essentially becomes a profile synthesis problem: how to synthesize a
profile for composite actors, based on the profiles of its internal actors.

In SBDs, profiles are essentially DAGs (directed acyclic graphs) that capture the depen-
dencies between inputs and outputs of a block, at the same synchronous round. In general,
not all outputs depend on all inputs, which allows feedback loops with unambiguous se-
mantics to be built. For instance, in a unit delay block the output does not depend on the
input at the same clock cycle, therefore this block “breaks” dependency cycles when used in
feedback loops.

1We use the word “fire” instead of “execute in this chapter so that we can illustrate the problem better.
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The question is, what is the right model for profiles of SDF graphs. We answer this
question in this chapter. For SDF graphs, profiles turn out to be more interesting than
simple DAGs. SDF profiles are essentially SDF graphs themselves, but with the ability to
associate multiple producers and/or consumers with a single FIFO queue. Sharing queues
among different actors generally results in non-deterministic models, however, in our case,
we can guarantee that actors that share queues are always fired in a deterministic order. We
call this model deterministic SDF with shared FIFOs (DSSF). DSSF allows, in particular, to
decompose the firing of a composite actor into an arbitrary number of firing functions that
may consume tokens from the same input port or produce tokens to the same output port.
Having multiple firing functions allows to decouple firings of different internal actors of the
composite actor, so that deadlocks are avoided when the composite actor is embedded in a
given context. Our method guarantees maximal reusability [77], i.e., the absence of deadlock
in any context where the corresponding “flat” (non-hierarchical) SDF graph is deadlock-free,
as well as consistency in any context where the flat SDF graph is consistent.

For example, two possible profiles for the composite actor P of Figure 6.1 are shown in
Figure 6.3. The left-most one has a single firing function that corresponds to the internal
sequence of firings (A, A, B, A, B), which is problematic as explained above. The right-most
profile is a DSSF graph where the above sequence is split into two firing functions: P.f1, cor-
responding to (A, A, B), and P.f2, corresponding to (A, B). This profile is maximally-reusable,
and also optimal in the sense that no less than two firing functions can achieve maximal
reusability.
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Figure 6.3: Two DSSF graphs that are also profiles for the composite actor P of Figure 6.1.

We show how to perform profile synthesis for SDF graphs automatically. This means
to synthesize for a given composite actor a profile, in the form of a DSSF graph, given
the profiles of its internal actors (also DSSF graphs). This process involves multiple steps,
among which are the standard rate analysis and deadlock detection procedures used to check
whether a given SDF graph can be executed infinitely often without deadlock and with
bounded queues [70]. In addition to these steps, SDF profile synthesis involves unfolding a
DSSF graph (i.e., replicating actors in the graph according to their relative rates produced
by rate analysis) to produce a DAG that captures the dependencies between the different
consumptions and productions of tokens at the same port.
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Reducing the DSSF graph to a DAG is interesting because it allows to apply for our
purposes the idea of DAG clustering proposed originally for SBDs [77, 75]. As in the SBD
case, we use DAG clustering in order to group together firing functions of internal actors and
synthesize a small (hopefully minimal) number of firing functions for the composite actor.
These determine precisely the profile of the latter. Keeping the number of firing functions
small is essential, because it results in further compositions of the actor being more efficient,
thus allowing the process to scale to arbitrary levels of hierarchy.

As shown by [77, 75], there exist different ways to perform DAG clustering, that achieve
different tradeoffs, in particular in terms of number of clusters produced vs. reusability of
the generated profile. Among the clustering methods proposed for SBDs, of particular in-
terest to us are those that produce disjoint clusterings, where clusters do not share nodes.
Unfortunately, optimal disjoint clustering, that guarantees maximal reusability with a min-
imal number of clusters, is NP-complete [75]. This motivates us to devise a new clustering
algorithm, called greedy backward disjoint clustering (GBDC). GBDC guarantees maximal
reusability but due to its greedy nature cannot guarantee optimality in terms of number of
clusters. On the other hand, GBDC has polynomial complexity.

The rest of this chapter is organized as follows. Section 6.2 discusses related work.
Section 6.3 introduces DSSF graphs and SDF as a subclass of DSSF. Section 6.4 reviews
analysis methods for SDF graphs. Section 6.5 reviews modular code generation for SBDs
which we build upon. Section 6.6 introduces SDF profiles. Section 6.7 describes the profile
synthesis procedure. Section 6.8 details DAG clustering, in particular, the GBDC algorithm.
Section 6.9 presents a prototype implementation. Section 6.10 presents the conclusions and
discusses future work.

6.2 Related Work

Dataflow models of computation have been extensively studied in the literature. Dataflow
models with deterministic actors, such as Kahn Process Networks [58] and their various sub-
classes, including SDF, are compositional at the semantic level. Indeed, actors can be given
semantics as continuous functions on streams, and such functions are closed by composi-
tion. (Interestingly, it is much harder to derive a compositional theory of non-deterministic
dataflow, e.g., see [21, 57, 110].) Our work is at a different, non-semantical level, since we
mainly focus on finite representations of the behavior of networks at their interfaces, in par-
ticular of the dependencies between inputs and output. We also take a “black-box” view
of atomic actors, assuming their internal semantics (e.g., which function they compute) are
unknown and unimportant for our purpose of code generation. Finally, we only deal with
the particular subclass of SDF models.

Despite extensive work on code generation from SDF models and especially scheduling
(e.g., see [13, 108], there is little existing work that addresses compositional representations
and modular code generation for such models. [41] proposes abstraction methods that reduce
the size of SDF graphs, thus facilitating throughput and latency analysis. His goal is to have
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a conservative abstraction in terms of these performance metrics, whereas our goal here is
to preserve input-output dependencies to avoid deadlocks during further composition.

Non-compositionality of SDF due to potential deadlocks has been observed in earlier
works such as [95], where the objective is to schedule SDF graphs on multiple processors.
This is done by partitioning the SDF graph into multiple sub-graphs, each of which is
scheduled on a single processor. This partitioning (also called clustering, but different from
DAG clustering that we use in this chapter, see below) may result in deadlocks, and the
so-called “SDF composition theorem” given by [95] provides a sufficient condition so that no
deadlock is introduced.

More recently, [37] also identify the problem of non-compositionality and propose Cluster
Finite State Machines (CFSMs) as a representation of composite SDF. They show how to
compute a CFSM for a composite SDF actor that contains standard, atomic, SDF sub-
actors, however, they do not show how a CFSM can be computed when the sub-actors are
themselves represented as CFSMs. This indicates that this approach may not generalize to
more than one level of hierarchy. Our approach works for arbitrary depths of hierarchy.

Another difference between the above work and ours is on the representation models,
namely, CFSM vs. DSSF. CFSM is a state-machine model, where transitions are annotated
with guards checking whether a sufficient number of tokens is available in certain input
queues. DSSF, on the other hand, is a data flow model, only slightly more general than
SDF. This allows to re-use many of the techniques developed for standard SDF graphs, for
instance, rate analysis and deadlock detection, with minimal adaptation.

The same remark applies to other automata-based formalisms, such as I/O automata [80],
interface automata [34], and so on. Such formalisms could perhaps be used to represent con-
sumption and production actions of SDF graphs, resulting in compositional representations.
These would be at a much lower level than DSSF, however, and for this reason would not
admit SDF techniques such as rate analysis, which are more “symbolic”.

To the extent that we propose DSSF profiles as interfaces for composite SDF graphs,
our work is related to so-called component-based design and interface theories [5]. Similarly
to that line of research, we propose methods to synthesize interfaces for compositions of
components, given interfaces for these components. We do not, however, include notions
of refinement in our work. We are also not concerned with how to specify the “glue code”
between components, as is done in connector algebras [9, 19]. Indeed, in our case, there is
only one type of connections, namely, conceptually unbounded FIFOs, defined by the SDF
semantics. Moreover, connections of components are themselves specified in the SDF graphs
of composite actors, and are given as an input to the profile synthesis algorithm. Finally, we
are not concerned with issues of timeliness or distribution, as in the work of [67].

Finally, we should emphasize that our DAG clustering algorithms solve a different prob-
lem than the clustering methods used in [95, 37] and other works in the SDF scheduling
literature. Our clustering algorithms operate on plain DAGs, as do the clustering algorithms
originally developed for SBDs [77, 75]. On the other hand, [37, 95] perform clustering di-
rectly at the SDF level, by grouping SDF actors and replacing them by a single SDF actor
(e.g., see Figure 4 of [37]). This, in our terms, corresponds to monolithic clustering, which
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is not compositional.

6.3 Hierarchical DSSF and SDF Graphs

Deterministic SDF with shared FIFOs, or DSSF, is an extension of SDF in the sense that,
whereas shared FIFOs (first-in, first-out queues) are explicitly prohibited in SDF graphs,
they are allowed in DSSF graphs, provided determinism is ensured.

Syntactically, a DSSF graph consists of a set of nodes, called actors,2 a set of FIFO
queues, a set of external ports, and a set of directed edges. Each actor has a set of input
ports (possibly zero) and a set of output ports (possibly zero). An edge connects an output
port of an actor to the input of a queue, or an output port of a queue to an input port of
an actor. Actor ports can be connected to at most one queue.3 An edge may also connect
an external input port of the graph to the input of a queue, or the output of a queue to an
external output port of the graph.

Actors are either atomic or composite. A composite actor P encapsulates a DSSF graph,
called the internal graph of P. The input and output ports of P are identified with the
input and output external ports of its internal graph. Composite actors can themselves be
encapsulated in new composite actors, thus forming a hierarchical model of arbitrary depth.
A graph is flat if it contains only atomic actors, otherwise it is hierarchical. A flattening
process can be applied to turn a hierarchical graph into a flat graph, by removing composite
actors and replacing them with their internal graph, while making sure to re-institute any
connections that would be otherwise lost.

Each port of an atomic actor has an associated token rate, a positive integer number,
which specifies how many tokens are consumed from or produced to the port every time
the actor fires. Composite actors do not have token rate annotations on their ports. They
inherit this information from their internal actors, as we will explain in this chapter.

A queue can be connected to more than one ports, at its input or output. When this
occurs we say that the queue is shared, otherwise it is non-shared. An SDF graph is a DSSF
graph where all queues are non-shared. Actors connected to the input of a queue are the
producers of the queue, and actors connected to its output are its consumers. A queue stores
tokens added by producers and removed by consumers when these actors fire. An atomic
actor can fire when each of its input ports is connected to a queue that has enough tokens,
i.e., more tokens than specified by the token rate of the port. Firing is an atomic action, and
consists in removing the appropriate number of tokens from every input queue and adding
the appropriate number of tokens to every output queue of the actor. Queues may store a

2 It is useful to distinguish between actor types and actor instances. Indeed, an actor can be used in
a given graph multiple times. For example, an actor of type Adder, that computes the arithmetic sum of
its inputs, can be used multiple times in a given graph. In this case, we say that the Adder is instantiated
multiple times. Each “copy” is an actor instance. In the rest of the paper, we often omit to distinguish
between type and instance when we refer to an actor, when the meaning is clear from context.

3 Implicit fan-in or fan-out is not allowed, however, it can be implemented explicitly, using actors. For
example, an actor that consumes an input token and replicates to each of its output ports models fan-out.
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number of initial tokens. Queues are of unbounded size in principle. In practice, however,
we are interested in graphs that can execute forever using bounded queues.

To see why having shared queues generally results in non-deterministic models, consider
two producers A1, A2 sharing the same output queue, and a consumer B reading from that
queue and producing an external output. Depending on the order of execution of A1 and A2,
their outputs will be stored in the shared queue in a different order. Therefore, the output
of B will also generally differ (note that tokens may carry values).

To guarantee determinism, it suffices to ensure that A1 and A2 are always executed in a
fixed order. This is the condition we impose on DSSF graphs, namely, that if a queue is
shared among a set of producers A1, ..., Aa and a set of consumers B1, ..., Bb, then the graph
ensures, by means of its connections, a deterministic way of firing A1, ..., Aa, as well as a
deterministic way of firing B1, ..., Bb.

Let us provide some examples of SDF and DSSF graphs. A hierarchical SDF graph is
shown in Figure 6.1. P is a composite actor while A and B are atomic actors. Every time it
fires, A consumes one token from its single input port and produces two tokens to its single
output port. B consumes three tokens and produces one token every time it fires. There
are several non-shared queues in this graph: a queue with producer A and consumer B; a
queue connecting the input port of P to the input port of its internal actor A; and a queue
connecting the output port of internal actor B to the output port of P. Non-shared queues
are identified with corresponding directed edges.

Two other SDF graphs are shown in Figure 6.2, which also shows an example of flattening.
The left-most graph is hierarchical, since it contains composite actor P. By flattening this
graph we obtain the right-most graph. These graphs contain queues with initial tokens,
depicted as black dots. The queue connecting the output port of C to the input port of P

has two initial tokens. Likewise, there is one initial token in the queue from P to C.
Figure 6.3 shows two more examples of DSSF graphs. Both graphs are flat. Actors in

these graphs are drawn as circles instead of squares because, as we shall see in Section 6.6,
these graphs are also SDF profiles. External ports are depicted by arrows. The left-most
graph is an SDF graph with a single actor P.f . The right-most one is a DSSF graph with two
actors, P.f1 and P.f2. This graph has two shared queues, depicted as small squares. The two
queues are connected to the two external ports of the graph. The graph also contains three
non-shared queues, depicted implicitly by the dashed-line and solid-line edges connecting
P.f1 and P.f2. Dashed-line edges are called dependency edges and are distinguished from
solid-line edges that are “true” dataflow edges. The distinction is made only for reasons of
clarity, in order to understand better the way edges are created during profile generation
(Section 6.7). Otherwise the distinction plays no role, and dependency edges can be encoded
as standard dataflow edges with token production and consumption rates both equal to 1.
Notice, first, that the dataflow edge ensures that P.f2 cannot fire before P.f1 fires for the first
time; and second, that the dependency edge from P.f2 to P.f1 ensures that P.f1 can fire for
a second time only after the first firing of P.f2. Together these edges impose a total order
on the firing of these two actors, therefore fulfilling the DSSF requirement of determinism.

DSSF graphs can be open or closed. A graph is closed if all its input ports are connected;
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otherwise it is open. The graph of Figure 6.1 is open because the input port of P is not
connected. The graphs of Figure 6.3 are also open. The graphs of Figure 6.2 are closed.

6.4 Analysis of SDF Graphs

We review these analysis methods here, because we are going to adapt them and use them
for modular code generation (Section 6.7).

Rate Analysis

Rate analysis seeks to determine if the token rates in a given SDF graph are consistent: if
this is not the case, then the graph cannot be executed infinitely often with bounded queues.
We illustrate the analysis in the simple example of Figure 6.1. The reader is referred to [70]
or Section 2.2 for the details.

We wish to analyze the internal graph of P, consisting of actors A and B. This is an open
graph, and we can ignore the unconnected ports for the rate analysis. Suppose A is fired rA
times for every rB times that B is fired. Then, in order for the queue between A and B to
remain bounded in repeated execution, it has to be the case that:

rA · 2 = rB · 3

that is, the total number of tokens produced by A equals the total number of tokens consumed
by B. The above balance equation has a non-trivial (i.e., non-zero) solution: rA = 3 and rB = 2.
This means that this SDF graph is indeed consistent. In general, for larger and more complex
graphs, the same analysis can be performed, which results in solving a system of multiple
balance equations. If the system has a non-trivial solution then the graph is consistent,
otherwise it is not. At the end of rate analysis, if consistent, a repetition vector (r1, ..., rn)
is produced that specifies the number ri of times that every actor Ai in the graph fires with
respect to other actors. This vector is used in the subsequent step of deadlock analysis. Note
that for disconnected graphs, the individual parts each have their own repetition vector and
any linear combination of multiples of these repetition vectors is a PASS of the whole graph.

Deadlock Analysis

Having a consistent graph is a necessary, but not sufficient condition for infinite execution:
the graph might still contain deadlocks that arise because of absence of enough initial tokens.
Deadlock analysis ensures that this is not the case. An SDF graph is deadlock free if and only
if every actor A can fire rA times, where rA is the repetition value for A in the repetition vector
(i.e., it has a PASS [70]). The method works as follows. For every queue ei in the SDF graph,
an integer counter bi is maintained, representing the number of tokens in ei. Counter bi is
initialized to the number of initial tokens present in ei (zero if no such tokens are present).
For every actor A in the SDF graph, an integer counter cA is maintained, representing the
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number of remaining times that A should fire to complete the PASS. Counter cA is initialized
to rA. A tuple consisting of all above counters is called a configuration v. A transition from a
configuration v to a new configuration v′ happens by firing an actor A, provided A is enabled
at v, i.e., all its input queues have enough tokens, and provided that cA > 0. Then, the queue
counters are updated, and counter cA is decremented by 1. If a configuration is reached where
all actor counters are 0, there is no deadlock, otherwise, there is one. Notice that a single
path needs to be explored, so this is not a costly method (i.e., not a full-blown reachability
analysis). In fact, at most Σn

i=1ri steps are required to complete deadlock analysis, where
(r1, ..., rn) is the solution to the balance equations.

We illustrate deadlock analysis with an example. Consider the SDF graph shown at the
left of Figure 6.2 and suppose P is an atomic actor, with input/output token rates 3 and 2,
respectively. Rate analysis then gives rP = rC = 1. Let the queues from P to C and from
C to P be denoted e1 and e2, respectively. Deadlock analysis then starts with configuration
v0 = (cP = 1, cC = 1, b1 = 1, b2 = 2). P is not enabled at v0 because it needs 3 input tokens
but b2 = 2. C is not enabled at v0 either because it needs 2 input tokens but b1 = 1. Thus v0

is a deadlock. Now, suppose that instead of 2 initial tokens, queue e2 had 3 initial tokens.
Then, we would have as initial configuration v1 = (cP = 1, cC = 1, b1 = 1, b2 = 3). In this

case, deadlock analysis can proceed: v1
P→ (cP = 0, cC = 1, b1 = 3, b2 = 0)

C→ (cP = 0, cC =
0, b1 = 1, b2 = 3). Since a configuration is reached where cP = cC = 0, there is no deadlock.

Transformation of SDF to Homogeneous SDF

A homogeneous SDF (HSDF) graph is an SDF graph where all token rates are equal (and
without loss in generality, can be assumed to be equal to 1). Any consistent SDF graph
can be transformed to an equivalent HSDF graph using a type of an unfolding process
consisting in replicating each actor in the SDF as many times as specified in the repetition
vector [70, 95, 108]. The unfolding process subsequently allows to identify explicitly the
input/output dependencies of different productions and consumptions at the same output or
input port. Examples of unfolding are presented in Section 6.7, where we adapt the process
to our purposes and to the case of DSSF graphs.

6.5 Modular Code Generation Framework

As mentioned in the introduction, our modular code generation framework for SDF builds
upon the work of [77, 75]. A fundamental element of the framework is the notion of profiles.
Every SDF actor has an associated profile. The profile can be seen as an interface, or
summary, that captures the essential information about the actor. Atomic actors have
predefined profiles. Profiles of composite actors are synthesized automatically, as shown in
Section 6.7.

A profile contains, among other things, a set of firing functions, that, together, implement
the firing of an actor. In the simple case, an actor may have a single firing function. For
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example, actors A, B of Figure 6.1 may each have a single firing function

A.fire(input x[1]) output (y[2]);

B.fire(input x[3]) output (y[1]);

The above signatures specify that A.fire takes as input 1 token at input port x and produces
as output 2 tokens at output port y, and similarly for B.fire. In general, however, an actor
may have more than one firing function in its profile. This is necessary in order to avoid
monolithic code, and instead produce code that achieves maximal reusability, as is explained
in Section 6.7.

The implementation of a profile contains, among other things, the implementation of
each of the firing functions listed in the profile as a sequential program in a language such
as C++ or Java. We will show how to automatically generate such implementations of SDF
profiles in Section 6.7.

Modular code generation is then the following process:

• given a composite actor P, its internal graph, and profiles for every internal actor of P,

• synthesize automatically a profile for P and an implementation of this profile.

Note that a given actor may have multiple profiles, each achieving different tradeoffs, for
instance, in terms of compactness of the profile and reusability (ability to use the profile in
as many contexts as possible). We illustrate such tradeoffs in the sequel.

6.6 SDF Profiles

We will use a special class of DSSF graphs to represent profiles of SDF actors, called SDF
profiles. An SDF profile is a DSSF graph such that all its shared queues are connected
to its external ports. Moreover, all connections between actors of the graph are such that
the number of tokens produced and consumed at each firing by the source and destination
actors are equal: this implies that connected actors fire with equal rates. The shared queues
of SDF profiles are called external, because they are connected to external ports. This is
to distinguish them from internal shared queues that may arise in other types of DSSF
graphs that we use in this chapter, in particular, in so-called internal profiles graphs (see
Section 6.7).

Two SDF profiles are shown in Figure 6.3. They are two possible profiles for the compos-
ite actor P of Figure 6.1. We will see how these two profiles can be synthesized automatically
in Section 6.7. We will also see that these two profiles have different properties. In par-
ticular, they represent different Pareto points in the compactness vs. reusability tradeoff
(Section 6.7).

The actors of an SDF profile represent firing functions. The left-most profile of Fig-
ure 6.3 contains a single actor P.f corresponding to a single firing function P.fire. Profiles
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that contain a single firing function are called monolithic. The right-most profile of Fig-
ure 6.3 contains two actors, P.f1 and P.f2, corresponding to two firing functions, P.fire1
and P.fire2: this is a non-monolithic profile. Notice that the dependency edge from P.f1

to P.f2 is redundant, since it is identical to the dataflow edge between the two. But the
dataflow edge, in addition to a dependency, also encodes a transfer of data between the two
firing functions.

Unless explicitly mentioned otherwise, in the examples that follow we assume that atomic
blocks have monolithic profiles.

6.7 Profile Synthesis and Code Generation

As mentioned above, modular code generation takes as input a composite actor P, its internal
graph, and profiles for every internal actor of P, and produces as output a profile for P and
an implementation of this profile. Profile synthesis refers to the computation of a profile
for P, while code generation refers to the automatic generation of an implementation of this
profile. These two functions require a number of steps, detailed below.

Connecting the SDF Profiles

The first step consists in connecting the SDF profiles of internal actors of P. This is done
simply as dictated by the connections found in the internal graph of P. The result is a flat
DSSF graph, called the internal profiles graph (IPG) of P. We illustrate this through an
example. Consider the composite actor P shown in Figure 6.1. Suppose both its internal
actors A and B have monolithic profiles, with A.f and B.f representing A.fire and B.fire,
respectively. Then, by connecting these monolithic profiles we obtain the IPG shown in
Figure 6.4. In this case, the IPG is an SDF graph.
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Figure 6.4: Internal profiles graph of composite actor P of Figure 6.1.

Two more examples of IPGs are shown in Figure 6.5. There, we connect the profiles of
internal actors P and C of the (closed) graph shown at the left of Figure 6.2. Actor C is
assumed to have a monolithic profile. Actor P has two possible profiles, shown in Figure 6.3.
The two resulting IPGs are shown in Figure 6.5. The left-most one is an SDF graph. The
right-most one is a DSSF graph, with two internal shared queues and three non-shared
queues.
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Figure 6.5: Two internal profiles graphs, resulting from connecting the two profiles of actor
P shown in Figure 6.3 and a monolithic profile of actor C, according to the graph at the left
of Figure 6.2.

Rate Analysis with SDF Profiles

This step is similar to the rate analysis process described in Section 6.4, except that it is
performed on the IPG produced by the connection step, instead of an SDF graph. This
presents no major challenges, however, and the method is essentially the same as the one
proposed by [70].

Let us illustrate the process here, for the IPG shown to the right of Figure 6.5. We
associate repetition variables r1

p, r
2
p, and rq, respectively, to P.f1, P.f2 and C.f . Then, we

have the following balance equations:

r1
p · 1 + r2

p · 1 = rq · 2
rq · 3 = r1

p · 2 + r2
p · 1

r1
p · 1 = r2

p · 1

As this has a non-trivial solution (e.g., r1
p = r2

p = rq = 1), this graph is consistent, i.e., rate
analysis succeeds in this example.

If the rate analysis step fails the graph is rejected. Otherwise, we proceed with the
deadlock analysis step.

It is worth noting that rate analysis can sometimes succeed with non-monolithic profiles,
whereas it would fail with a monolithic profile. An example is given in Figure 6.6. A
composite actor R is shown to the left of the figure and its non-monolithic profile to the
right. If we use R in the diagram shown to the middle of the figure, then rate analysis with
the non-monolithic profile succeeds. It would fail, however, with the monolithic profile, since
R.f2 has to fire twice as often as R.f1. This observation also explains why rate analysis must
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generally be performed on the IPG, and not on the internal SDF graph using monolithic
profiles for internal actors.C
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Figure 6.6: Composite SDF actor R (left); using R (middle); non-monolithic profile of R

(right).

Deadlock Analysis with SDF Profiles

Success of the rate analysis step is a necessary, but not sufficient, condition in order for a
graph to have a PASS. Deadlock analysis is used to ensure that this is the case. Deadlock
analysis is performed on the IPG produced by the connection step. It is done in the same
way as the deadlock detection process described in Section 6.4. We illustrate this on the two
examples of Figure 6.5.

Consider first the IPG to the left of Figure 6.5. There are two queues in this graph: a
queue from P.f to C.f , and a queue from C.f to P.f . Denote the former by b1 and the latter
by b2. Initially, b1 has 1 token, whereas b2 has 2 tokens. P.f needs 3 tokens to fire but only
2 are available in b2, thus P.f cannot fire. C.f needs 2 tokens but only 1 is available in b1,
thus C.f cannot fire either. Therefore there is a deadlock already at the initial state, and
this graph is rejected.

Now consider the IPG to the right of Figure 6.5. There are five queues in this graph: a
queue from P.f1 and P.f2 to C.f , a queue from C.f to P.f1 and P.f2, two queues from P.f1

to P.f2, and a queue from P.f2 to P.f1. Denote these queues by b1, b2, b3, b4, b5, respectively.
Initially, b1 has 1 token, b2 has 2 tokens, b3 and b4 are empty and b5 has 1 token. P.f1 needs
2 tokens to fire and 2 tokens are indeed available in b2, thus P.f1 can fire and the initial state
is not a deadlock. Deadlock analysis gives:

(cp1 = 1, cp2 = 1, cq = 1, b1 = 1, b2 = 2, b3 = 0, b4 = 0, b5 = 1)
P.f1→

(cp1 = 0, cp2 = 1, cq = 1, b1 = 2, b2 = 0, b3 = 1, b4 = 1, b5 = 0)
C.f→

(cp1 = 0, cp2 = 1, cq = 0, b1 = 0, b2 = 3, b3 = 1, b4 = 1, b5 = 0)
P.f2→

(cp1 = 0, cp2 = 0, cq = 0, b1 = 1, b2 = 2, b3 = 0, b4 = 0, b5 = 1)
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Therefore, deadlock analysis succeeds (no deadlock is detected).
This example illustrates the tradeoff between compactness and reusability. For the same

composite actor P, two profiles can be generated, as shown in Figure 6.3. These profiles
achieve different tradeoffs. The monolithic profile shown to the left of the figure is more
compact (i.e., smaller) than the non-monolithic one shown to the right. The latter is more
reusable than the monolithic one, however: indeed, it can be reused in the graph with
feedback shown at the left of Figure 6.2, whereas the monolithic one cannot be used, because
it creates a deadlock.

Note that if we flatten the graph as shown in Figure 6.2, that is, remove composite actor
P and replace it with its internal graph of atomic actors A and B, then the resulting graph
has a PASS, i.e., exhibits no deadlock. This shows that deadlock is a result of using the
monolithic profile, and not a problem with the graph itself. Of course, flattening is not the
solution, because it is not modular: it requires the internal graph of P to be known and used
in every context where P is used. Thus, code for P cannot be generated independently from
context.

If the deadlock analysis step fails then the graph is rejected. Otherwise, we proceed with
the unfolding step.

Unfolding with SDF Profiles

This step takes as input the IPG produced by the connection step, as well as the repetition
vector produced by the rate analysis step. It produces as output a DAG (directed acyclic
graph) that captures the input-output dependencies of the IPG. As mentioned in Section 6.4
the unfolding step is an adaptation of existing transformations from SDF to HSDF.

The DAG is computed in two steps. First, the IPG is unfolded, by replicating each node
in it as many times as specified in the repetition vector. These replicas represent the different
firings of the corresponding actor. For this reason, the replicas are ordered: dependencies
are added between them to represent the fact that the first firing comes before the second
firing, the second before the third, and so on. Ports are also replicated. In particular, port
replicas are created for ports connected to the same queue. This is the case for replicas
xi and yi shown in the figure. Note that we do not consider these to be shared queues,
precisely because we want to capture dependencies between each separate production and
consumption of tokens at the same queue. Finally, for every internal queue of the IPG, a
queue is created in the unfolded graph with the appropriate connections. The process is
illustrated in Figure 6.7, for the IPG of Figure 6.4. Rate analysis in this case produces the
repetition vector (rA = 3, rB = 2). Therefore A.f is replicated 3 times and B.f is replicated 2
times. In this example there is a single internal queue between A.f and B.f , and the unfolded
graph contains a single shared queue.

In the second and final step of unfolding, the DAG is produced, by computing depen-
dencies between the replicas. This is done by separately computing dependencies between
replicas that are connected to a given queue, and repeating the process for every queue. We
first explain the process for a non-shared queue such as the one between A and B in the IPG
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Figure 6.7: First step of unfolding the IPG of Figure 6.4: replicating nodes and creating a
shared queue.

of Figure 6.4. Suppose that the queue has d initial tokens, its producer A adds k tokens to
the queue each time it fires, and its consumer B removes n tokens each time it fires. Then
the j-th occurrence of B depends on the i-th occurrence of A iff:

d+ (i− 1) · k < j · n (6.1)

In that case, an edge from A.f i to B.f j is added to the DAG. For the example of Figure 6.4,
this gives the DAG shown in Figure 6.8.
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Figure 6.8: Unfolding the IPG of Figure 6.4 produces the IODAG shown here.

In the general case, a queue in the IPG of P may be shared by multiple producers and
multiple consumers. Consider such a shared queue between a set of producers A1, ..., Aa and
a set of consumers B1, ..., Bb. Let kh be the number of tokens produced by Ah, for h = 1, ..., a.
Let nh be the number of tokens consumed by Bh, for h = 1, ..., b. Let d be the number of initial
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tokens in the queue. By construction (see Section 6.7) there is a total order A1→A2→· · ·→Aa
on the producers and a total order B1→B2→· · ·→Bb on the consumers. As this is encoded

with standard SDF edges of the form Ai
1 1→ Ai+1, this also implies that during rate analysis

the rates of all producers will be found equal, and so will the rates of all consumers. Then,
the j-th occurrence of Bu, 1 ≤ u ≤ b, depends on the i-th occurrence of Av, 1 ≤ v ≤ a, iff:

d+ (i− 1) ·
a∑

h=1

kh +
v−1∑
h=1

kh < (j − 1) ·
b∑

h=1

nh +
u∑
h=1

nh (6.2)

Notice that, as should be expected, Equation (6.2) reduces to Equation (6.1) in the case
a = b = 1.

Another example of unfolding, starting with an IPG that contains a non-monolithic
profile, is shown in Figure 6.9. P is the composite actor of Figure 6.1. Its non-monolithic
right-most profile of Figure 6.3 is used to form the IPG shown in Figure 6.9.
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Figure 6.9: Another example of unfolding.

In the DAG produced by unfolding, input and output port replicas such as xi and yi in
Figures 6.8 and 6.9 are represented explicitly as special nodes with no predecessors and no
successors, respectively. For this reason, we call this DAG an IODAG. Nodes of the IODAG
that are neither input nor output are called internal nodes.
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DAG Clustering

DAG clustering consists in partitioning the internal nodes of the IODAG produced by the
unfolding step into a number of clusters. The clustering must be valid in the sense that
it must not create cyclic dependencies among distinct clusters4. Note that a monolithic
clustering is trivially valid, since it contains a single cluster. Each of the clusters in the
produced clustered graph will result in a firing function in the profile of P, as explained in
Section 6.7 that follows. Exactly how DAG clustering is done is discussed in Section 6.8.
There are many possibilities, which explore different tradeoffs, in terms of compactness,
reusability, and other metrics. Here, we illustrate the outcome of DAG clustering on our
running example. Two possible clusterings of the DAG of Figure 6.8 are shown in Figure 6.10,
enclosed in dashed curves. The left-most clustering contains a single cluster, denoted C0.
The right-most clustering contains two clusters, denoted C1 and C2.
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Figure 6.10: Two possible clusterings of the DAG of Figure 6.8.

Profile Generation

Profile generation is the last step in profile synthesis, where the actual profile of composite
actor P is produced. The clustered graph, together with the internal graph of P, completely
determine the profile of P. Each cluster Ci is mapped to a firing function firei, and also to
an atomic node P.fi in the profile graph of P. For every input (resp. output) port of P, an
external, potentially shared, queue L is created in the profile of P. For each cluster Ci, we

4 A dependency between two distinct clusters exists iff there is a dependency between two nodes from
each cluster.
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compute the total number of tokens ki read from (resp. written to) L by Ci: this can be
easily done by summing over all actors in Ci. If ki > 0 then an edge is added from L to P.fi
(resp. from P.fi to L) annotated with a rate of ki tokens.

Dependency edges between firing functions are computed as follows. For every pair of
distinct clusters Ci and Cj, a dependency edge from P.fi to P.fj is added iff there exist
nodes vi in Ci and vj in Cj such that vj depends on vi in the IODAG. Validity of clustering
ensures that this set of dependencies results in no cycles. In addition to these dependency
edges, we add a set of backward dependency edges to ensure a deterministic order of writing
to (resp. reading from) shared queues also across iterations. Let L be a shared queue of
the profile. L is either an external queue, or an internal queue of P, like the one shown in
Figure 6.7. Let WL (resp. RL) be the set of all clusters writing to (resp. reading from) L.
By the fact that different replicas of the same actor that are created during unfolding are
totally ordered in the IODAG, all clusters in WL are totally ordered. Let Ci,Cj ∈ WL be the
first and last clusters in WL with respect to this total order, and let P.fi and P.fj be the
corresponding firing functions. We encode the fact that the P.fi cannot re-fire before P.fj
has fired, by adding a dependency edge from P.fj to P.fi, supplied with an initial token. This
is a backward dependency edge. Note that if i = j then this edge is redundant. Similarly,
we add a backward dependency edge, if necessary, among the clusters in RL, which are also
guaranteed to be totally ordered.

To establish the dataflow edges of the profile, we iterate over all internal (shared or non-
shared) queues of the IPG of P. Let L be an internal queue and suppose it has d initial
tokens. Let m be the total number of tokens produced at L by all clusters writing to L: by
construction, m is equal to the total number of tokens consumed by all clusters reading from
L. For our running example (Figures 6.4, 6.8 and 6.10), we have d = 0 and m = 6.

Conceptually, we define m output ports denoted z0, z1, ..., zm−1, and m input ports, de-
noted w0, w1, ..., wm−1. For i = 0 to m − 1, we connect output port zi to input port wj,
where j = (d+ i)÷m, and ÷ is the modulo operator. Intuitively, this captures the fact that
the i-th token produced will be consumed as the ((d + i) ÷m)-th token of some iteration,
because of the initial tokens. Notice that j = i when d = 0. We then place bd+m−1−i

m
c initial

tokens at each input port wi, for i = 0, ...,m − 1, where bvc is the integer part of v. Thus,
if d = 4 and m = 3, then w0 will receive 2 initial tokens, while w1 and w2 will each receive 1
initial token.

Finally, we assign the ports to producer and consumer clusters of L, according to their
total order. For instance, for the non-monolithic clustering of Figure 6.10, output ports z0 to
z3 and input ports w0 to w2 are assigned to C1, whereas output ports z4, z5 and input ports
w3 to w5 are assigned to C2. Together with the port connections, these assignments define
dataflow edges between the clusters. Self-loops (edges with same source and destination
cluster) without initial tokens are removed. Note that more than one edges may exist
between two distinct clusters, but these can always be merged into a single edge.

As an example, the two clusterings shown in Figure 6.10 give rise, respectively, to the
two profiles shown in Figure 6.3. Another, self-contained example is shown in Figure 6.11.
The two profiles shown at the bottom of the figure are generated from the clustering shown
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at the top-right, assuming 6 and 17 initial tokens in the queue from A to B, respectively.
Notice that if the queue contains 17 tokens then this clustering is not optimal, in the sense
that a more coarse-grain clustering exists. However, the clustering is valid, and used here to
illustrate the profile generation process.
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Figure 6.11: Composite SDF actor H (top-left); possible clustering produced by unfolding
(top-right); SDF profiles generated for H, assuming 6 initial tokens in the queue from A to B

(bottom-left); assuming 17 initial tokens (bottom-right). Firing functions H.f1, H.f2, H.f3, H.f4

correspond to clusters C1,C2,C3,C4, respectively.

Code Generation

Once the profile has been synthesized, its firing functions need to be implemented. This is
done in the code generation step. Every firing function corresponds to a cluster produced
by the clustering step. The implementation of the firing function consists in calling in a
sequential order all firing functions of internal actors that are included in the cluster. This
sequential order can be arbitrary, provided it respects the dependencies of nodes in the
cluster. We illustrate the process on our running example (Figures 6.1, 6.3 and 6.10).
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Consider first the clustering shown to the left of Figure 6.10. This will result in a single
firing function for P, namely, P.fire. Its implementation is shown below in pseudo-code:

P.fire(input x[3]) output y[2]

{

local tmp[4];

tmp <- A.fire(x);

tmp <- A.fire(x);

y <- B.fire(tmp);

tmp <- A.fire(x);

y <- B.fire(tmp);

}

In the above pseudo-code, tmp is a local FIFO queue of length 4. Such a local queue is
assumed to be empty when initialized. A statement such as tmp <- A.fire(x) corresponds
to a call to firing function A.fire, providing as input the queue x and as output the queue
tmp. A.fire will consume 1 token from x and will produce 2 tokens into tmp. When all
statements of P.fire are executed, 3 tokens are consumed from the input queue x and 2
tokens are added to the output queue y, as indicated in the signature of P.fire.

Now let us turn to the clustering shown to the right of Figure 6.10. This clustering
contains two clusters, therefore, it results in two firing functions for P, namely, P.fire1 and
P.fire2. Their implementation is shown below:

persistent local tmp[N]; /* N is a parameter */

assumption: N >= 4;

P.fire1(input x[2])

output y[1], tmp[1]

{

tmp <- A.fire(x);

tmp <- A.fire(x);

y <- B.fire(tmp);

}

P.fire2(input x[1], tmp[1])

output y[1]

{

tmp <- A.fire(x);

y <- B.fire(tmp);

}

In this case tmp is declared to be a persistent local variable, which means its contents
“survive” across calls to P.fire1 and P.fire2. In particular, of the 4 tokens produced and
added to tmp by the two calls of A.fire within the execution of P.fire1, only the first 3 are
consumed by the call to B.fire. The remaining 1 token is consumed during the execution
of P.fire2. This is why P.fire1 declares to produce at its output tmp[1] (which means it
produces a total of 1 token at queue tmp when it executes), and similarly, P.fire2 declares
to consume at its input 1 token from tmp.

Dependency edges are not implemented in the code, since they carry no useful data, and
only serve to encode dependencies between firing function calls. These dependencies must
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be satisfied by construction in any correct usage of the profile. Therefore they do not need
to be enforced in the implementation of the profile.

Discussion: Inadequacy of Cyclo-Static Data Flow

It may seem that cyclo-static data flow (CSDF) [18] can be used as an alternative representa-
tion of profiles. Indeed, this works on our running example: we could capture the composite
actor P of Figure 6.1 using the CSDF actor shown in Figure 6.12. This CSDF actor specifies
that P will iterate between two “firing modes”. In the first mode, it consumes 2 tokens
from its input and produces 1 token at its output; in the second mode, it consumes 1 token
and produces 1 token; the process is then repeated. This indeed works for this example:
embedding P as shown in Figure 6.2 results in no deadlock, if the CSDF model for P is used.
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Figure 6.12: CSDF actor for composite actor P of Figure 6.1.

In general, however, CSDF models are not expressive enough to be used as profiles.
We illustrate this by two examples5, shown in Figures 6.6 and 6.13. Actors R and W are
two composite actors shown in these figures. All graphs are homogeneous (tokens rates are
omitted in Figure 6.13, they are implicitly all equal to 1; dependency edges are also omitted
from the profile, since they are redundant). Our method generates the profiles shown to
the right of the two figures. The profile for R contains two completely independent firing
functions, R.f1 and R.f2. CSDF cannot express this independence, since it requires a fixed
order of firing modes to be specified statically. Although two separate CSDF models could
be used to capture this example, this is not sufficient for composite actor W, which features
both internal dependencies and independencies.

6.8 DAG Clustering

DAG clustering is at the heart of our modular code generation framework, since it determines
the profile that is to be generated for a given composite actor. As mentioned above, different
tradeoffs can be explored during DAG clustering, in particular, in terms of compactness and
reusability. In general: the more fine-grain the clustering is, the more reusable the profile
and generated code will be; the more coarse-grain the clustering is, the more compact the

5 [37] also observe that CSDF is not a sufficient abstraction of composite SDF models, however, the
example they use embeds a composite SDF graph into a dynamic data flow model. Therefore the overall
model is not strictly SDF. The examples we provide are much simpler, in fact, the models are homogeneous
SDF models.
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Figure 6.13: An example that cannot be captured by CSDF.

code is, but also less reusable. Note that there are cases where the most fine-grain clustering
is wasteful since it is not necessary in order to achieve maximal reusability. Similarly, there
are cases where the most coarse-grain clustering does not result in any loss of reusability. An
instance of both cases is the trivial example where all outputs depend on all inputs, in which
case the monolithic clustering is maximally reusable and also the most coarse possible. An
extensive discussion of these and other tradeoffs can be found in previous work on modular
code generation for SBDs [77, 76, 75]. The same principles apply also to SDF models.

DAG clustering takes as input the IODAG produced by the unfolding step. A trivial way
to perform DAG clustering is to produce a single cluster, which groups together all internal
nodes in this DAG. This is called monolithic DAG clustering and results in monolithic
profiles that have a single firing function. This clustering achieves maximal compactness,
but it results in non-reusable code in general, as the discussion of Section 6.7 demonstrates.

In this section we describe clustering methods that achieve maximal reusability. This
means that the generated profile (and code) can be used in any context where the corre-
sponding flattened graph could be used. Therefore, the profile results in no information loss
as far as reusing the graph in a given context is concerned. At the same time, the profile
may be much smaller than the internal graph.

To achieve maximal reusability, we follow the ideas proposed by [77, 75] for SBDs. In
particular, we present a clustering method that is guaranteed not to introduce false input-
output dependencies. These dependencies are “false” in the sense that they are not induced
by the original SDF graph, but only by the clustering method.

To illustrate this, consider the monolithic clustering shown to the left of Figure 6.10.
This clustering introduces a false input-output dependency between the third token con-
sumed at input x (represented by node x3 in the DAG) and the first token produced at
output y (represented by node y1). Indeed, in order to produce the first token at output
y, only 2 tokens at input x are needed: these tokens are consumed respectively by the first
two invocations of A.fire. The third invocation of A.fire is only necessary in order to
produce the second token at y, but not the first one. The monolithic clustering shown to
the left of Figure 6.10 loses this information. As a result, it produces a profile which is not
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reusable in the context of Figure 6.2, as demonstrated in Section 6.7. On the other hand,
the non-monolithic clustering shown to the right of Figure 6.10 preserves the input-output
dependency information, that is, does not introduce false dependencies. Because of this, it
results in a maximally reusable profile.

The above discussion also helps to explain the reason for the unfolding step. Unfolding
makes explicit the dependencies between different productions and consumptions of tokens
at the same ports. In the example of actor P (Figure 6.4), even though there is a single
external input port x and a single external output port y in the IPG, there are three copies
of x and two copies of y in the unfolded DAG, corresponding to the three consumptions from
x and two productions to y that occur within a PASS.

Unfolding is also important because it allows us to re-use the clustering techniques pro-
posed for SBDs, which work on plain DAGs [77, 75]. In particular, we can use the so-called
optimal disjoint clustering (ODC) method which is guaranteed not to introduce false IO
dependencies, produces a set of pairwise disjoint clusters (clusters that do not share any
nodes), and is optimal in the sense that it produces a minimal number of clusters with the
above properties. Unfortunately, the ODC problem is NP-complete [75]. This motivated us
to develop a “greedy” DAG clustering algorithm, which is one of the contributions of this
chapter. Our algorithm is not optimal, i.e., it may produce more clusters than needed to
achieve maximal reusability. On the other hand, the algorithm has polynomial complexity.
The greedy DAG clustering algorithm that we present below is “backward” in the sense
that it proceeds from outputs to inputs. A similar “forward” algorithm can be used, that
proceeds from inputs to outputs.

Greedy Backward Disjoint Clustering

The greedy backward disjoint clustering (GBDC) algorithm is shown in Figure 6.14. GBDC
takes as input an IODAG (the result of the unfolding step) G = (V,E) where V is a finite
set of nodes and E is a set of directed edges. V is partitioned in three disjoint sets: V =
Vin ∪ Vout ∪ Vint, the sets of input, output and internal nodes, respectively. GBDC returns
a partition of Vint into a set of disjoint sets, called clusters. The partition (i.e., the set of
clusters) is denoted C. The problem is non-trivial when all Vin, Vout and Vint are non-empty
(otherwise a single cluster suffices). In the sequel, we assume that this is the case.
C defines a new graph, called the quotient graph, GC = (VC, EC). GC contains clusters

instead of internal nodes, and has an edge between two clusters (or a cluster and an input
or output node) if the clusters contain nodes that have an edge in the original graph G.
Formally, VC = Vin ∪ Vout ∪ C, and EC = {(x,C) | x ∈ Vin,C ∈ C,∃f ∈ C : (x, f) ∈
E} ∪ {(C, y) | C ∈ C, y ∈ Vout,∃f ∈ C : (f, y) ∈ E} ∪ {(C,C′) | C,C′ ∈ C,C 6= C′,∃f ∈ C, f ′ ∈
C′, (f, f ′) ∈ E}. Notice that EC does not contain self-loops (i.e., edges of the form (f, f)).

The steps of GBDC are explained below. E∗ denotes the transitive closure of relation E:
(v, v′) ∈ E iff there exists a path from v to v′, i.e., v′ depends on v.
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Input: An IODAG G = (V,E). V = Vin ∪ Vout ∪ Vint.
Output: A partition C of the set of internal nodes Vint.

1 foreach v ∈ V do
2 compute ins(v) and outs(v);

3 end
4 C ← ∅;
5 Out ← {f ∈ Vint | ∃y ∈ Vout : (f, y) ∈ E};
6 while

⋃
C 6= Vint do

7 partition Out into C1, ...,Ck such that two nodes f, f ′ are grouped in the same set
Ci iff ins(f) = ins(f ′);

8 C ← C ∪ {C1, ...,Ck};
9 for i = 1 to k do

10 while
∃f ∈ Ci, f

′ ∈ Vint \
⋃
C : (f ′, f) ∈ E ∧ ∀x ∈ ins(Ci), y ∈ outs(f ′) : (x, y) ∈ E∗ do

11 Ci ← Ci ∪ {f ′};
12 end

13 end
14 Out ← {f ∈ Vint \

⋃
C | ¬∃f ′ ∈ Vint \

⋃
C : (f, f ′) ∈ E};

15 end
16 while quotient graph GC contains cycles do
17 pick a cycle C1→C2→· · ·→Ck→C1;

18 C ← (C \ {C1, ...,Ck}) ∪ {
⋃k
i=1 Ci};

19 end

Figure 6.14: The GBDC algorithm.

Identify input-output dependencies Given a node v ∈ V , let ins(v) be the set of input
nodes that v depends upon: ins(v) ← {x ∈ Vin | (x, v) ∈ E∗}. Similarly, let outs(v) be the
set of output nodes that depend on v: outs(v)← {y ∈ Vout | (v, y) ∈ E∗}. For a set of nodes
F , ins(F ) denotes

⋃
f∈F ins(f), and similarly for outs(F ).

Lines 1-3 of GBDC compute ins(v) and outs(v) for every node v of the DAG. We
can compute these by starting from the output and following the dependencies backward.
For example, consider the DAG of Figure 6.8. There are three input nodes, x1, x2, x3

and two output nodes, y1 and y2. We have: ins(y1) = ins(B.f 1) = ins(A.f 2) = {x1, x2},
and ins(y2) = ins(B.f 2) = {x1, x2, x3}. Similarly: outs(x1) = outs(A.f 1) = {y1, y2}, and
outs(x3) = outs(A.f 3) = {y2}.

Line 4 of GBDC initializes C to the empty set. Line 5 initializes Out as the set of internal
nodes that have an output y as an immediate successor. These nodes will be used as “seeds”
for creating new clusters (Lines 7-8).

Then the algorithm enters the while-loop at Line 6.
⋃
C is the union of all sets in C, i.e.,
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the set of all nodes clustered so far. When
⋃
C = Vint all internal nodes have been added to

some cluster, and the loop exits. The body of the loop consists in the following steps:

Partition seed nodes with respect to input dependencies Line 7 partitions Out into
a set of clusters, such that two nodes are put into the same cluster iff they depend on the
same inputs. Line 8 adds these newly created clusters to C. In the example of Figure 6.8,
this gives an initial C = {{B.f 1}, {B.f 2}}.

Create a cluster for each group of seed nodes The for-loop starting at Line 9 iterates
over all clusters newly created in the previous step and attempts to add as many nodes as
possible to each of these clusters, going backward, and making sure no false input-output
dependencies are created in the process. In particular, for each cluster Ci, we proceed
backward, attempting to add unclustered predecessors f ′ of nodes f already in Ci (while-
loop at Line 10). Such a node f ′ is a candidate to be added to Ci, but this happens only
if an additional condition is satisfied: namely ∀x ∈ ins(Ci), y ∈ outs(f ′) : (x, y) ∈ E∗. This
condition is violated if there exist an input node x that some node in Ci depends upon, and
an output node y that depends on f ′ but not on x. In that case, adding f ′ to Ci would create
a false dependency from x to y. Otherwise, it is safe to add f ′, and this is done in Line 11.

In the example of Figure 6.8, executing the while-loop at Line 10 results in adding nodes
A.f 1 and A.f 2 in the cluster {B.f 1}, and node A.f 3 in the cluster {B.f 2}, thereby obtaining
the final clustering, shown to the right of Figure 6.10.

In general, more than one iteration may be required to cluster all the nodes. This is done
by repeating the process, starting with a new Out set. In particular, Line 14 recomputes
Out as the set of all unclustered nodes that have no unclustered successors.

Removing cycles The above process is not guaranteed to produce an acyclic quotient
graph. Lines 16-19 remove cycles by repeatedly merging all clusters in a cycle into a single
cluster. This process is guaranteed not to introduce false input-output dependencies, as
shown in Lemma 5 of [75].

Termination and Complexity

Theorem 8 Provided the set of nodes V is finite, GBDC always terminates.

Proof : G is acyclic, therefore the set Out computed in Lines 5 and 14 is guaranteed to be
non-empty. Therefore, at least one new cluster is added at every iteration of the while-loop
at Line 6, which means the number of unclustered nodes decreases at every iteration. The
for-loop and foreach-loop inside this while-loop obviously terminate, therefore, the body of
the while-loop terminates. The second while-loop (Lines 16-19) terminates because the num-
ber of cycles is reduced by at least one at every iteration of the loops, and there can only be
a finite number of cycles.
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Theorem 9 GBDC is polynomial in the number of nodes in G.

Proof : Let n = |V | be the number of nodes in G. Computing sets ins and outs can be done
in O(n2) time (perform forward and backward reachability from every node). Computing
Out can also be done in O(n2) time (Line 5 or 14). The while-loop at Line 6 is executed
at most n times. Partitioning Out (Line 7) can be done in O(n3) time and this results in
k ≤ n clusters. The while-loop at Lines 10-12 is iterated no more than n2 times and the
safe-to-add-f ′ condition can be checked in O(n3) time. The quotient graph produced by the
while-loop at Line 6 contains at most n nodes. Checking the condition at Line 16 can be
done in O(n) time, and this process also returns a cycle, if one exists. Executing Line 18
can also be done in O(n) time. The loop at Line 16 can be executed at most n times, since
at least one cluster is removed every time.

Note that the above complexity analysis is largely pessimistic. A tighter analysis as well
as algorithmic optimizations are beyond the scope of this chapter and are left for future
work. Also note that GBDC is polynomial in the IODAG G, which, being the result of the
unfolding step, can be considerably larger than the original SDF graph. This is because the
size of G depends on the repetition vector and therefore ultimately on the hyper-period of
the system. Finding ways to deal with this complexity (which, it should be noted, is common
to all methods for SDF graphs that rely on unfolding or similar steps) is also part of future
work.

Correctness

GBDC is correct, in the sense that, first, it produces disjoint clusters and clusters all internal
nodes, second, the resulting clustered graph is acyclic, and third, the resulting graph contains
no input-output dependencies that were not already present in the input graph.

Theorem 10 GBDC produces disjoint clusters and clusters all internal nodes.

Proof : Disjointness is ensured by the fact that only unclustered nodes (i.e., nodes in
Vint \

⋃
C) are added to the set Out (Lines 5 and 14) or to a newly created cluster Ci

(Line 11). That all internal nodes are clustered is ensured by the fact that the while-loop at
Line 6 does not terminate until all internal nodes are clustered.

Theorem 11 GBDC results in an acyclic quotient graph.

Proof : This is ensured by the fact that all potential cycles are removed in Lines 16-19.

Theorem 12 GBDC produces a quotient graph GC that has the same input-output depen-
dencies as the original graph G.
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Proof : We need to prove that: ∀x ∈ Vin, y ∈ Vout : (x, y) ∈ E∗ ⇐⇒ (x, y) ∈ E∗C. We
will show that this holds for the quotient graph produced when the while-loop of Lines 6-15
terminates. The fact that Lines 16-19 preserve IO dependencies is shown in Lemma 5 of [75].

The ⇒ direction is trivial by construction of the quotient graph. There are two places
where false IO dependencies can potentially be introduced in the while-loop of Lines 6-15:
at Lines 7-8, where a new set of clusters is created and added to C; or at Line 11, where a
new node is added to an existing cluster. We examine each of these cases separately.

Consider first Lines 7-8: A certain number k ≥ 1 of new clusters are created here,
each containing one or more nodes. This can be seen as a sequence of operations: first,
create cluster C1 with a single node f ∈ Out, then add to C1 a node f ′ ∈ Out such that
ins(f) = ins(f ′) (if such an f ′ exists), and so on, until C1 is complete; then create cluster C2

with a single node, and so on, until all clusters C1, ...,Ck are complete. It suffices to show
that no such creation or addition results in false IO dependencies.

Regarding creation, note that a cluster that contains a single node cannot add false
IO dependencies, by definition of the quotient graph. Regarding addition, we claim that
if a cluster C is such that ∀f, f ′ ∈ C : ins(f) = ins(f ′), then adding a node f ′′ such that
ins(f ′′) = ins(f), where f ∈ C, results in no false IO dependencies. To see why the claim is
true, let y ∈ outs(f ′′). Then ins(f ′′) ⊆ ins(y). Since ins(f ′′) = ins(f), for any x ∈ ins(f), we
have (x, y) ∈ E∗. Similarly, for any y ∈ outs(f) and any x ∈ ins(f ′′), we have (x, y) ∈ E∗.

Consider next Line 11: The fact that f ′ is chosen to be a predecessor of some node f ∈ Ci
implies that ins(f ′) ⊆ ins(f) ⊆ ins(Ci). There are two cases where a new dependency can be
introduced: Case 2(a): either between some input x ∈ ins(Ci) and some output y ∈ outs(f ′);
Case 2(b): or between some input x′ ∈ ins(f ′) and some output y′ ∈ outs(Ci). In Case 2(a),
the safe-to-add-f ′ condition at Line 10 ensures that if such x and y exist, then y already
depends on x, otherwise, f ′ is not added to Ci. In Case 2(b), ins(f ′) ⊆ ins(Ci) implies
x′ ∈ ins(Ci). This and y′ ∈ outs(Ci) imply that (x′, y′) ∈ E∗: indeed, if this is not the case,
then cluster Ci already contains a false IO dependency before the addition of f ′.

Clustering for Closed Models

It is worth discussing the special case where clustering is applied to a closed model, that is, a
model where all input ports are connected. This in particular happens with top-level models
used for simulation, which contain source actors that provide the input data. By definition,
the IODAG produced by the unfolding step for such a model contains no input ports. In
this case, a monolithic clustering that groups all nodes into a single cluster suffices and the
GBDC algorithm produces the monolithic clustering for such a graph. Such a clustering
will automatically give rise to a single firing function. Simulating the model then consists in
calling this function repeatedly.
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6.9 Implementation

We have built a preliminary implementation of the SDF modular code generation described
above in the open-source Ptolemy II framework [36] (http://ptolemy.org/). The imple-
mentation uses a specialized class to describe composite SDF actors for which profiles can
be generated. These profiles are captured in Java, and can be loaded when the composite
actor is used within another composite. For debugging and documentation purposes, the
tool also generates in the GraphViz format DOT (http://www.graphviz.org/) the graphs
produced by the unfolding and clustering steps.

Using our tool, we can, for instance, generate automatically a profile for the Ptolemy II
model depicted in Figure 6.15. This model captures the SDF graph given in Figure 3 of [37].
Actor A2 is a composite actor designed so as to consume 2 tokens on each of its input ports
and produce 2 tokens on each of its output ports each time it fires. For this, it uses the
DownSample and UpSample internal actors: DownSample consumes 2 tokens at its input
and produces 1 token at its output; UpSample consumes 1 token at its input and produces
2 tokens at its output. Actors A1 and A3 are homogeneous. The SampleDelay actor models
an initial token in the queue from A2 to A3. All other queues are initially empty.

Figure 6.15: A hierarchical SDF model in Ptolemy II. The internal diagram of composite
actor A2 is shown to the right.

Assuming a monolithic profile for A2, GBDC generates for the top-level Ptolemy model
the clustering shown to the left of Figure 6.16. This graph is automatically generated by
DOT from the textual output automatically generated by our tool. The two replicas of A1

are denoted A1 1 0 and A1 2 0, respectively, and similarly for A2 and A3. Two clusters are
generated, giving rise to the profile shown to the right of the figure. It is worth noting
that there are 4 identical backward dependency edges generated for this profile (only one is
shown). Moreover, all dependency edges are redundant in this case, thus can be removed.
Finally, notice that the profile contains only two nodes, despite the fact that the Ptolemy
model contains 9 actors overall.

http://ptolemy.org/
http://ptolemy.org/
http://www.graphviz.org/
http://www.graphviz.org/
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Figure 6.16: Clustering (left) and SDF profile (right) of the model of Figure 6.15.

6.10 Conclusions and Perspectives

Hierarchical SDF models are not compositional: a composite SDF actor cannot be rep-
resented as an atomic SDF actor without loss of information that can lead to deadlocks.
Extensions such as CSDF are not compositional either. In this chapter we introduced DSSF
profiles as a compositional representation of composite actors and showed how this represen-
tation can be used for modular code generation. In particular, we provided algorithms for
automatic synthesis of DSSF profiles of composite actors given DSSF profiles of their sub-
actors. This allows to handle hierarchical models of arbitrary depth. We showed that differ-
ent tradeoffs can be explored when synthesizing profiles, in terms of compactness (keeping
the size of the generated DSSF profile minimal) versus reusability (preserving information
necessary to avoid deadlocks) as well as algorithmic complexity. We provided a heuristic
DAG clustering method that has polynomial complexity and ensures maximal reusability.

In the future, we plan to examine how other DAG clustering algorithms could be used
in the SDF context. This includes the clustering algorithm proposed by [77], which may
produce overlapping clusters, with nodes shared among multiple clusters. This algorithm
is interesting because it guarantees an upper bound on the number of generated clusters,
namely, n+ 1, where n is the number of outputs in the DAG. Overlapping clusters result in
complications during profile generation that need to be resolved.

Apart from devising or adapting clustering algorithms in the SDF context, part of future
work is also to implement this algorithms in a tool such as Ptolemy, and compare their
performance.

Another important problem is the efficiency of the generated code. Different efficiency
goals may be desirable, such as buffer size, code length, and so on. Problems of code
optimization in the SDF context have been extensively studied in the literature, see, for
instance [13, 108]. One direction of research is to adapt existing methods to the modular
SDF framework proposed here.

We would also like to study possible applications of DSSF to contexts other than modular
code generation, for instance, compositional performance analysis, such as throughput or
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latency computation. Finally, we plan to study possible extensions towards dynamic data
flow models as well as towards distributed, multiprocessor implementations.
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Chapter 7

Conclusion

This thesis focuses on mechanisms and methods to improve energy efficiency as well as pro-
grammability of stream programs. We demonstrate the use of the high-level abstractions of
stream programs to synthesize adaptive programs for energy and resource efficient executions.
Our technique for co-designing stream program stationary traffic properties with NoC’s path
diversity and DVFS capability can help significantly reduce communication energy of stream
traffic. In the second part of this thesis, we give a formal definition for SDF integrated with
COs, extended from the Teleport messaging work by Thies et al. [115]. SDF integrated with
COs allows describing operation synchronization between computational parts of sophisti-
cated stream programs. Our scheduling technique, developed for the COSDF programs,
is not only more general than the previous techniques in [70] and [115] but also can help
understand the formal parallelism of stream programs. Finally, we tackle the problem of
incrementally compiling large SDF models to faithfully capture the executions of respective
original models.

The adaptive program concept presented in this thesis can be generalized to other do-
mains such as Cilk [38], PetaBricks [8] and SEDA [119]. We also show the usage of modular
programming not only in helping programmers manage complex programs better but also
in improving energy efficiency of programs by enabling runtime program transformation to
dynamically adjust resource usage. Through the development of the routing technique for
stream traffic on NoC, we present a case for dynamic hardware-software co-design. Our
scheduling technique for COSDF programs can be used to find optimal buffer sizes as well
as static communication schedules when mapping the programs to FPGA or coarse-grained
reconfigurable arrays.

However, this thesis still has several limitations. We have not developed a method for
estimating required computational resources at runtime for adaptive programs based on IO
rates. The stream traffic routing technique has not accounted for the case then links and
routers can be turned off to reduce leakage energy. We postulate that the scheduling tech-
nique developed for COSDF can help estimate required computational resources at runtime
for adaptive programs.

In the future, we plan to apply the stream optimization techniques to another class of
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stream applications such as streaming of big-data(http://storm-project.net/). When
large programs are developed and deployed, it would be beneficial to decompose such pro-
grams into sub-modules and connect them via FIFO channels so that multiple programmers
can contribute to the programs separately. This modular programming mechanism can
also help scale the programs when sub-modules can be distributed to different machines.
The Storm(http://storm-project.net/) is such a framework. However, modularity often
comes at the price of communication and synchronization overhead between sub-modules
when programs are decomposed into too many sub-modules. For example, each Storm sub-
module is spawned as a Java process, as a consequence, a Storm program composed of many
sub-modules can perform very badly because of context switching and Java Virtual Machine
overheads [28]. A source-to-source translation process, which fuses multiple sub-modules
together to reduce the number of sub-modules and mitigate inter-module communication
overhead, can improve performance of large Storm programs significantly while still main-
taining the programmability through the modular programming methodology.

http://storm-project.net/
http://storm-project.net/
http://storm-project.net/
http://storm-project.net/
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