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Abstract
Maximally Permissive Composition of Actors in Ptolemy II

by

Marten Lohstroh

Master of Science in Computer Science

University of Amsterdam

The “Cyber” and “Physical” worlds are merging. Cyber-Physical Systems (CPS) are no longer iso-
lated, but start to reach into the Cloud, thereby composing a network which realizes the concept that
became known as The Internet of Things. The dynamic nature of the applications in this domain
poses significant technical challenges concerning the assurance of important system properties like
reliability, robustness, adaptability, and security. Modeling has proven itself to be a valuable tool
in gaining better understanding of complex systems, but existing modeling platforms may lack the
expressivity to model these new, much more dynamic, and opportunistically composed systems in
which the data they handle typically does not conform to a rigid structure.

This thesis addresses the problem of handling dynamic data, in the statically typed, actor-oriented
modeling environment called Ptolemy II. It explores the possibilities of using type inference to stati-
cally type dynamic data and leverage dynamic type checking to invoke error handling strategies that
enhance robustness. The goal is to achieve maximally permissive composition, and the presented
solution comes in the form of backward type inference. Backward inferred types are specific enough
not to limit composability and general enough not to impose unnecessary constraints on the data.
The type constraints imposed by downstream actors determine the type of the otherwise underde-
termined output ports of actors that mediate access to untyped resources. This is achieved using
additional type constraints, without changing Ptolemy II’s original type resolution algorithm, and
with no significant impact on the run-time of type resolution. The proposed solution was imple-
mented successfully and has been adopted as an extension of the Ptolemy II type system.

As a byproduct, this thesis gives a thorough case study of the Ptolemy II type system. It un-
covers two (independent) obscurities: interference between automatic type conversion and dynamic
dispatch; and unsafe access to record elements. Both issues are discussed extensively and possible
improvements are suggested.
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Chapter 1

Introduction

The frontiers of semiconductor and information technology are closing in. Whereas semiconductor
components have kept becoming smaller, faster, and more power-efficient, the Internet has evolved
into an infrastructure that weaves together the bits and pieces of our digital lives. The tentacles
of the Internet reach out into virtually every corner of the world, connecting an ever increasing
number of devices that serve as end-points of our physical reality. What results is a global nervous
system that taps into our physical world by means of sensors and actuators. This global network
of Cyber-Physical Systems (i.e., integrations of computation with physical processes [Lee, 2008]), is
often referred to as the “Internet of Things” (IoT).

This term was coined by Kevin Ashton [Ashton, 2009] in 1999 to describe a system that captures
data from the physical world through networked sensors, instead of relying on human beings to pro-
vide input. His observation was that people have limited time, attention and accuracy, hence they
are not very good at structurally capturing information about physical entities and processes. He
envisioned a network of things that autonomously would capture, generate, and process information
without any immediate human interaction.

Another influential idea that finds its origin in the 1990s, is the concept of “Grid Computing”,
which encompasses a computing paradigm that allows consumers to obtain computing power on
demand [Foster et al., 2008]. Grid computing is a form of distributed computing that allows or-
ganizations to share and acquire resources for the execution of computational tasks. Whereas the
Grid has been mostly geared towards applications in high-performance computing, the same ideas
in slightly different shapes became mainstream under the title of “Cloud Computing”. The Cloud
is a service-oriented platform that is driven by economies of scale, centered around abstraction,
virtualization, and scalability of systems that deliver storage and computing power.

Tremendous progress has been made in the development of Internet infrastructure [Dutta and
Bilbao-Osorio, 2012] and industry predicts Internet-connected mobile devices such as smart phones,
laptops, and tablets, will outnumber the people in the world before the end of 2013 [Cisco, 2013].
These mobile devices have become the primary peripherals of the Cloud, capable of accessing shear
amounts of information and extremely powerful processing capabilities. A newly emerging outer-
most peripheral layer of the Cloud that is key to the full realization of the IoT, is identified as “The
Swarm” [Rabaey, 2011] — a collection of networked sensors and actuators that interact with the
physical world around us.
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Chapter 1. Introduction

All of the former sketches a contour of what the IoT might eventually look like, but it remains
an open question as to how all of these networked “things” can interoperate universally in a mean-
ingful way. This is also the main question that is addressed by the recently launched TerraSwarm
Research Center that is lead by the University of California at Berkeley [Lee et al., 2012]. The term
“TerraSwarm” sprung from the industry prediction that ten years from now there will be thousands
of smart sensing devices per person on the planet, yielding a ubiquitous swarm with trillions of nodes.

One of the main themes identified by TerraSwarm Research Center is the ability to model
system components and their interactions in a setting where components and subsystems can be
dynamically recombined. Because components in Swarm- (or, IoT-) applications will be dynamically
composed and recomposed, the distinction between “design-time” and “run-time” becomes blurred.
This means that design-time testing and verification are no longer adequate and run-time validation
strategies will need to be developed to assure key properties like reliability, robustness, adaptability,
and security. In this thesis it is investigated how lightweight formal methods like type systems can
play a role in achieving this goal.

1.1 Motivation

In the Ptolemy project [Lee, 1999], which is aimed at modeling Cyber-Physical Systems, it was
recognized very early on that modern computing systems tend to be heterogeneous in the sense of
being composed of subsystems with very different characteristics [Eker et al., 2003]. The Ptolemy
approach to tame heterogeneity is to combine abstract actor-oriented semantics with hierarchical
component design. This approach extends very well to the IoT domain which essentially involves
the networking of Cyber-Physical Systems.

Ptolemy II is an open-source software framework for experimentation with actor-oriented de-
sign that has been developed during the past decade in the Ptolemy project. In order to employ
Ptolemy II for modeling IoT applications, a natural first step would be to develop components that
mediate access to information that is dynamically accessible through the Cloud. The first hurdle
to clear in order for this to succeed, is to bridge the gap between on the one hand, online data
that is often unreliable, inconsistent, and subject to change, and on the other hand, much more
static and precisely defined Ptolemy II models. We desire models to be resilient enough to cope
with components of which their execution relies on interactions with external resources that are
deployed in a “live” environment. What makes this particularly challenging, is that Ptolemy II is
statically typed, whereas resources in the IoT domain are generally untyped. This yields an im-
mediate obstacle; Ptolemy II models require all ports and variables to be assigned a type, prior to
execution. This is a difficult task if the type of a resource is unknown until the moment it is accessed.

Clearly, in order to assign a type to dynamic data, an assumption needs to be made about
that data. That assumption should be reasonable. If at runtime, the data conforms to the type
that it was assigned statically, then safe execution of the model must be guaranteed. The type
should not be too general in the sense that it limits composability because it imposes unneces-
sary constraints on the rest of the model. Neither should the type be too specific in the sense that
it imposes unnecessary constraints on the data. Hence, the goal is maximally permissive composition.

2
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The Ptolemy II type system makes use of type inference, which relieves the user from having to
manually annotate every port or variable in a model with explicit types. If there is a structural way
to deduce types for dynamic data (i.e., data whose type is not known statically), then presumably
the existing type reconstruction mechanisms can be used to infer those types. This idea lead to the
following hypothesis:

We can use type inference methods to statically type dynamic data and leverage dy-
namic type checking to invoke error handling strategies that enhance robustness.

If the inferred types are indeed maximally permissive, then they provide the exact conditions
where if those are not met, the component that mediates access to an external data source should
consider alternate execution paths in order to keep the entire model from failing. This allows a
component to define error handling strategies without the need to specify the exact error conditions,
other than “there is a run-time type checking error”.

1.2 Contributions

• A comprehensive formalization of Ptolemy II’s type inference mechanism is given;

• An obscure and undesirable interference between Ptolemy II’s automatic type conversion and
Java’s dynamic dispatch is identified, analyzed, and possible improvements are suggested;

• A recommendation is formulated to improve the type safety of records;

• The Ptolemy II type system is augmented with backward type inference, which allows actors
to infer maximally permissive output types, regardless of whether it can be decided prior to
execution what type of output they will actually produce.

1.3 Organization

The remainder of this thesis is structured as follows:

Chapter 2 provides a brief introduction to Cyber-Physical Systems, actor-oriented modeling, and
the syntax and semantics of Ptolemy II. Secondly, it glances over the immensely rich field of research
involved with type systems. This chapter intends to provide the necessary context for the matter
that is discussed in subsequent chapters.

Chapter 3 presents a thorough case study of the Ptolemy II type system and in particular, its
type inference mechanism. It formalizes the constraint solving problem that underlies the type
inference mechanism; it delivers a comprehensive interpretation of type constraints in terms of the
dependencies they establish between type variables; and it describes the problem of underdetermined
type variables.

Chapter 4 explains how by adding additional type constraints, the original constraint solving
algorithm can be used to achieve backward type inference, resulting in a maximally permissive type
assignment outputs that would otherwise remain underdetermined.

Chapter 5 discusses the solutions proposed in the preceding chapter, sums up conclusions, and
mentions future work.

3
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Chapter 2

Background

This chapter introduces the ideas and motivation behind actor-oriented modeling and provides a high
level introduction to Ptolemy II. An overview of type systems and their underlying concepts are given
to provide the necessary background for the work that was done on the Ptolemy II type system.
The section about type systems is inspired by [Broman et al., 2006], which gives an introduction
to type systems in the context of Modelica, an equation based language to model complex physical
systems.

2.1 Actor-oriented modeling in Ptolemy II

Ptolemy II is an open-source platform that is designed to model Cyber-Physical Systems. The
key idea behind it is to use a common abstract syntax that can be assigned a concrete semantics
depending on the behavioral requirements imposed on the system that is to be modeled. Ptolemy
II models can be composed hierarchically using an abstract semantics.

2.1.1 Cyber-Physical Systems

Cyber-Physical Systems (CPS) are complex systems that integrate computational and physical pro-
cesses. These processes are coupled, usually by feedback loops, such that they influence one another.
Therefore, in order to understand a CPS it does not suffice to consider its computational and phys-
ical components separately.

The abstractions present in conventional programming models are very suitable for algorithmic
computation, but do not fit the characteristics of physical processes very well. Especially proper
abstractions of the concepts of concurrency and time, which are indispensable in the physical world,
are lacking in existing frameworks. In Computer Science, concurrency is often understood as inter-
leavings of sequences of computational steps, but physical processes are continuous and influence
each other without interruption. The notion of time is simply absent in most programming mod-
els. These discrepancies pose considerable challenges to the development of CPS, the relevance and
potential of which is underlined by the recent TerraSwarm effort [Lee et al., 2012]. Ptolemy II is a
valuable tool in the search for better abstractions.

5



Chapter 2. Background

2.1.2 Models

A model can be a great help in gaining a deeper understanding of a complex system, because unlike a
real system, a model can also be taken apart to analyze how it does what it does (or fails to do what
is expected). Likewise, a model also allows experimentation by replacing components or adding new
ones, which eventually may lead to new designs, or give rise to improved design principles. Needless
to say, in order for conclusions that are drawn from a model to be meaningful, the model has to be
a proper abstraction of the actual system i.e., it does not omit essential details.

An important aspect of complex systems is that they are characterized by heterogeneity as they
are build up out of many different components that may operate in different domains, each having
their own dynamics. This aspect must be reflected by the expressivity of the modeling environment,
allowing the components of a system to be modeled differently. Ptolemy II meets this demand by
taking a modeling approach based on concurrent communicating components called actors, where a
diversity of orchestration strategies govern the execution and interaction of components [Lee, 2011].

Actors

Actors in Ptolemy II are related to the concept of actors that was introduced by Hewitt [Hewitt,
1977] in the 1970s which described a semantics of message passing between autonomously reasoning
agents. This idea was later formalized by Agha [Agha and Mason, 1997] and became known as the
“Actor model,” or “Actor model of computation”. The Actor model is inherently concurrent as the
communication between actors is not specified by some interleaving of steps. Moreover, messages
can be timestamped, which allows timing to be part of the interaction semantics.

However, there are several differences between Ptolemy II actors and the actors in Agha’s for-
malization. Agha’s actors have an independent thread of control and communicate via asynchronous
message passing, where recipients of messages are identified by address. Ptolemy II actors operate
concurrently but do not require an independent thread of control. Moreover, tokens (messages) are
sent through ports that are connected using relations, and communication need not be asynchronous.

2.1.3 Syntax

The syntax of Ptolemy II models comprise the actors and the graphs that connect them. For
simplicity, we focus on the concrete syntax offered by Ptolemy II, which is a graphical syntax where
actors are depicted as boxes, with small triangles that represent their ports. Ports can be connected
to one another by means of a relation. Each port has a type assigned to it, either manually or by
means of inference. Actors can only send tokens through ports of which the type of is compatible
with the type of the port. Other entities that can be part of a model are attributes. The most
important attribute is the director , which governs the interactions between actors. Actors can
either be atomic or composite. A composite actor can contain other entities whereas an atomic
actor cannot. A composite actor that contains a director is called opaque and one that does not
is said to be transparent . From the outside, an opaque actor looks just like an atomic actor. It
is internally governed by its own director, but interacts with its external environment through the
same interface as atomic actors do. On the other hand, the execution of a transparent composite is
coordinated by nearest director up the hierarchy. The top-level component of a model must always
be an opaque composite.
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Chapter 2. Background

Figure 2.1: An example of a Ptolemy II model.

An example of a Ptolemy II model is depicted in Figure 2.1 (from [Lee, 2011], used with per-
mission from the author). The model consists of a director, three actors (A, B, and C) and one
relation (the black diamond, usually omitted for one-to-one relations). Each actor has one port and
is connected through the relation. Upon execution actor A sends tokens to actors B and C. Actor A
is an opaque composite as it contains a director. Inside A, actor D is connected to the output port
of actor A. Actor B is an atomic actor, and actor C is a transparent actor that, along with actor E,
carries an attribute that has a value.

2.1.4 Semantics

The abstract semantics of Ptolemy II models are defined by the Executable interface implemented
by the actors, also referred to as the actor semantics. The Executable interface prescribes a number
of methods, the most important ones are: preinitialize(), initialize(), fire(), and postfire(). Before ex-
ecution, preinitialize() performs actions that may influence static analysis, and then initialize() resets
local state, initializes parameters and prepares initial outputs, if any. During execution, at each
iteration, fire() reads inputs and/or produces new outputs, after which postfire() updates the local
state in response to any input.

The concrete semantics are captured in a Model of Computation (MoC) which governs the inter-
action of components in a model. MoCs share the same abstract semantics so that an MoC can be
implemented by means of a director. The execution of a model is conducted by the director through
invocation of the methods defined in the Executable interface. Because models can be constructed
hierarchically and each composite can have its own director, actor models offer a disciplined ap-
proach to heterogeneity. A great variety of MoCs is implemented in Ptolemy II, among which are:
process networks, dataflow, discrete events, finite state machines, continuous time, and rendezvous.

For more information about Ptolemy II, see [Ptolemy.org, 2012].

7



Chapter 2. Background

2.2 Type systems

Formal methods are mathematical tools that can help ensure that a system exhibits some speci-
fied behavior. Among these are Hoare logic, algebraic specification languages, modal logic’s, and
denotational semantics. These methods have great value for their ability to express very general
correctness properties, but they are considered a heavy practice that requires levels of sophistication
that go far beyond the capacities of most programmers.

Type systems fall in the category of so called lightweight formal methods, that are less powerful
but at lot easier to handle. Although type systems cannot remove all potential errors in a program,
they can eliminate a great fraction of common programming errors by preventing execution errors.

Pierce gives the following definition:

“A type system is a tractable syntactic method for proving the absence of certain
program behaviors by classifying phrases according to the kinds of values they compute.”
[Pierce, 2002]

2.2.1 Purpose

The fundamental purpose of a type system is to prevent the occurrence of errors during the execution
of a program [Cardelli, 1996]. Two different kinds of execution errors can be identified; trapped
errors and untrapped errors. A trapped error causes a computation to stop immediately whereas an
untrapped error goes unnoticed and causes arbitrary behavior later in time. Examples of untrapped
errors are jumping to the wrong address, or accessing data past the end of an array.

2.2.2 Type safety & Good behavior

In [Cardelli, 1996], the following definitions with regard to type safety are given. A program fragment
is considered safe if its execution does not yield untrapped errors, or unsafe otherwise. A safe
language only allows safe program fragments. Usually type systems are also concerned eliminating
a great number of trapped errors, which together with the untrapped errors designate the set of
forbidden errors. A program fragment is said to be well-behaved if it does not allow any forbidden
errors to occur. A language where the set of forbidden errors includes all untrapped errors, and
where all legal programs are well-behaved, is called strongly checked (or, strongly typed). Languages
that do not include all untrapped errors in their set of forbidden errors are said to be weakly checked
(or, weakly typed). Strong typing is also referred to as type safety, safety, or security. Examples of
type safe languages are Java [Syme, 1999] and Standard ML [Milner, 1978], C is statically typed but
unsafe; assembler languages untyped and unsafe.

2.2.3 Type inference

Types may be part of the syntax of a language, in which case the language is explicitly typed . The
programmer must then annotate each variable with a type. Most statically typed languages are
explicitly typed. Some languages are implicitly typed , meaning that all types are inferred. If some,
but not all type annotations are already present, the process of type inference is also referred to as
type reconstruction.

8
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2.2.4 Formalization

Similarly to how the syntax of a programming language can be captured in a formal grammar, the
type rules of a programming language can be given a formal mathematical representation.

“Once a type system is formalized, we can attempt to prove a type soundness theorem
stating that well-typed programs are well behaved. If such a soundness theorem holds,
we say that the type system is sound. [Cardelli, 1996]”

A sound type system is said to be safe. For literature on soundness theorems, see [Milner, 1978]

and [Wright and Felleisen, 1994].

Types, judgments & rules

A type is a description that characterizes the expected form of the result of a computation [Macqueen,
2012]. A typing judgment : Γ ` e : τ binds a type τ to an expression e, asserting that when e is
evaluated (and its evaluation terminates), its value adheres to τ . Moreover, a typing judgment
requires that the expression is well-typed i.e., derivable using a system of type rules. Free variables
in a typing judgment are considered with respect to some context that assigns those variables a
type, a static type environment Γ, which one can think of as a finite function that maps variables
to types. Consider the following example of a type rule:

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1
e1e2 : τ2

(t-app)

This type rule expresses that a unary function can only be applied to arguments that match the
domain of the function. The conclusion e1e2 : τ2, which appears below the horizontal line, concerns
a function application where e1 denotes the function and e2 denotes the argument. The premises
are located above the line. The first premise denotes a function that maps arguments of type τ1 to
values of type τ2, and the second one denotes a value of type τ1.

2.2.5 Type checking

Type checking involves finding a type for an expression e provided a context Γ, such that Γ ` e : τ .
If such a type does not exist, a type error is reported. If the type of an expression depends only on
the types of its subexpressions i.e., the type rules are compositional, type checking is straightforward.
The type of e can then be constructed by recursing over its structure, computing the types of its
components, and composing the types. When non-compositional rules are involved, type checking
gets more complicated.

Type checking can be done statically at compile time, or dynamically at run time. An untyped
(or, dynamically typed) language can enforce type safety by performing the necessary run-time
checks to rule out untrapped errors. Statically typed programming languages may support features
like downcasting that require run-time checks as well. In that case, static and dynamic type check-
ing can be combined in order to ensure type safety. This can be done using a technique called soft
typing [Cartwright and Fagan, 1991] , where the static type checker does not reject programs, but
instead transforms source programs and judiciously inserts run-time checks to ensure that errors are
detected. In [Cardelli, 1991], and later in [Meijer and Drayton, 2004] it is argued that it is desirable
to use static typing where possible and dynamic typing when needed.
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The choice between static and dynamic checking, or combinations of both, involves trade-offs.
Static typing has the advantage that it allows earlier error checking, better documented code because
the use of type signatures, more opportunity for compiler optimizations and less overhead from con-
sistency checks performed at run-time. Dynamic typing allows constructs like eval functions which
execute arbitrary data as code, which in general would be illegal in a static typing.

The datatype Dynamic was proposed in [Abadi et al., 1991] to safely deal with dynamic data in
a statically typed language, but this solution relies on explicitly added introduction and elimination
expressions. Alternatively, gradual typing [Siek and Taha, 2007] also uses the type Dynamic, but
inserts implicit coercions which may cause types to mismatch at run-time. This approach is very
flexible, but does only give static guarantees for the statically typed terms. The gradual typing
approach is now also applied in the field of Cyber-Physical modeling. Modelyze [Broman and Siek,
2012] is a host language for embedding modeling languages as domain-specific languages (DSLs),
whereas Ptolemy II implements different MoCs as directors. Modelyze is gradually typed and does
not have subtyping or type inference. Many other solutions have been proposed for mixing dynamic
and static typing, a comprehensive list of which is also given in [Broman and Siek, 2012].

2.2.6 Subtyping & Inheritance

A very popular language construct that is found in many programming languages, is subtyping. A
subtype is a data type that relates to a supertype by some notion of substitutability . The principle of
safe substitution entails that if S is a subtype of T, denoted S <: T , then S can be used safely in all
contexts where T is expected [Pierce, 2002]. This relation is captured in the rule of subsumption:

Γ ` e : S S <: T
Γ ` e : T

(t-sub)

This rule establishes that any expression of type S, is a also an expression of type T.

Another concept that is prevalent in modern programming languages is inheritance, which is
a tool for code re-use. Inheritance is not subtyping [Cook et al., 1989]. Through inheritance it is
possible to create new objects from existing ones by creating a base class and extending it, which
results in a subclass that inherits properties from the base class. This idea is fundamental to the
notion of Object Oriented Programming (OOP).

Subtyping relations (or type equivalence relations, for that matter) can be opaque or transparent.
Opaque types declarations are used in the context of nominal typing where the names of types are
considered as identifiers of types. On the other hand, transparent type declarations, allow for types
to be expressed (recursively) in terms of other types. This is also referred to as structural typing .

2.2.7 Polymorphism

Typed languages where every function or procedure and hence their operands have a unique type,
are said to be monomorphic. In contrast, in polymorphic languages, function arguments can have
multiple types. In [Cardelli and Wegner, 1985] two main categories of polymorphism are identi-
fied; universal polymorphism and ad-hoc polymorphism. Whereas universally polymorphic functions
work on well-defined, possibly infinite sets of types, ad-hoc polymorphic functions only work on
finite sets of potentially unrelated types. In this categorization, universal polymorphism is further
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subdivided in inclusion polymorphism and parametric polymorphism. Ad-hoc polymorphism comes
in the varieties overloading and coercion.

Parametric polymorphism

Parametric polymorphism involves the use of implicit or explicit type parameters which determine
the types of the arguments for each application of a polymorphic function. Functions that exhibit
parametric polymorphism are also referred to as generic functions, or in short generics. Templates
in C++ and generics in Java, are examples of explicit parametric polymorphism, where the type
parameter must be declared explicitly. In C++ separate instances of the templated class or function
are generate for every permutation of type parameters it is used with. Java on the other hand, uses
type erasure, which means that at compile time generic types are replaced with ordinary types and
casts are inserted where necessary. The exact opposite is done in Standard ML, which implements
implicit parametric polymorphism, meaning that type parameters are computed during compilation
by means of type inference.

Inclusion polymorphism

Inclusion polymorphism is based on the idea that an object can be viewed as belonging to many
different classes, one of which can be included in the other. Subtyping is an instance of inclusion
polymorphism. A type can be substituted by its subtype conform the (t-sub) rule given in Section
2.2.6. By the same token, an expression can be safely ascribed a supertype of the type that would
naturally be assigned by the type checker. This action is referred to as upcasting and can be viewed
as a form of abstraction — representing a value such that certain parts are hidden. The inverse
operation, downcasting which involves ascribing a type to an expression that is a subtype of its
assigned type, is not safe. This is because it might cast to a type that is not included in its original
type. However, in order for polymorphic functions to be useful, their arguments must be downcast
inside of the function, which enables a kind of “poor-man’s polymorphism”, because the safety of
downcasts must be enforced dynamically [Pierce, 2002].

Overloading

A generic function can be considered to be a single value that has multiple types. In overloading,
the same symbol is used to denote different functions. Given a context, the appropriate function
is inserted. If overloading is done statically, at compile-time, this can be observed as a syntactic
shorthand rather than a semantic operation. Overloading can also take place at run-time, which
is often referred to as dynamic dispatch, dynamic look-up, or multi-method dispatch [Mitchell and
Krzysztof, 2002].

Coercion

Coercion, implicit type conversion, or automatic type conversion is a semantic operation that takes
an argument of a function and converts it into the type that the function expects. Coercions can be
inserted statically, at compile-time, or dynamically by the run-time type checker. The distinction
between overloading and coercion is not always clear as it cannot be unambiguously derived from
an expression which of the two mechanisms play what role. Consider e.g. 3 + 4.0, which could be
evaluated by coercing 3 into 3.0 before doing a double addition, or by having + be overloaded to
add integers and doubles.
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Chapter 3

The Ptolemy II type system

The type system deployed in Ptolemy II was developed by Yuhong Xiong and was extensively de-
scribed in his PhD thesis [Xiong, 2002]. Over the years, only minor changes have been made to the
source code that implements the type system. The first two sections of this chapter, which cover
the description of some of the key features of the type system and their characteristics, are drawn
from both Xiong’s thesis and the actual implementation itself, such that it is sound with the current
implementation. The third section focuses particularly on the subject of type resolution, or type
inference. It provides a deeper theoretical insight in the mathematics and algorithms that drive type
inference in Ptolemy II. It gives rise to a mathematical interpretation that is used in subsequent
chapters to explain the contributions made in this thesis. Finally, the remainder of this chapter
highlights some aspects of the combination of polymorphism and subtyping in Ptolemy II that are
rather unexpected and therefore worth mentioning.

3.1 Characteristics

The type system combines static typing with run-time type checking. As advocated in [Cardelli,
1991], static typing is used as much as possible, and dynamic checking used when necessary. The
strict observance of both secures the absence of unchecked run-time type errors, hence Ptolemy II
is strongly typed (or rather, strongly checked [Cardelli, 1996]). The ports of the actors in a model
can be annotated with types and type inference is used to resolve types for ports that are left
undeclared. The types are established statically i.e., prior to execution. However, since a model
essentially only governs the interactions between actors that are treated as black-box components
that may exchange tokens between connected ports, there is really no guarantee that actors will live
up to the restrictions that are imposed by the types assigned to their ports. Therefore, in order
to warrant type safety during run-time, each token is checked for compatibility with the ports it
is attempted to be sent through. This way, a type error is detected at the earliest possible time.
The Java programming language in which Ptolemy II is implemented also relies on run-time type
checking to enforce type safety [Syme, 1999].

In [Xiong, 2002] the design decisions behind the key features of the type system are motivated.
We only briefly discuss the most essential parts here.
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Automatic type conversion Because type conversion between primitive types happens frequently
in programs, the required conversions are done automatically at run-time if they can be done loss-
lessly. Implicit type conversion, or coercion is form of ad-hoc polymorphism that is very similar to
overloading [Cardelli and Wegner, 1985]. Whereas coercion is a semantic operation that is needed
to convert an argument to the type expected by a function, with overloading the same operator or
function name is used to denote different functions.

Subtyping Subtyping is a very powerful mechanism that allows for the ordered extension of large
software systems [Cardelli, 1991] and it defines the core of many popular object-oriented languages
like Java or C++. In order to facilitate object-oriented design the type system has to recognize the
subtyping relation among types.

Polymorphism The key benefit of component-based design is the ability to reuse components. In
order to use the same actors in different settings with different types, polymorphism is required.
This keeps the library of actors more compact and comprehensible.

Support for design optimization When different type assignments are possible, the type system
should choose types that have the lowest cost of implementation. This is especially relevant if actor
models are used to generate code for deployment on resource constrained platforms like embedded
systems.

Structured types Structured types are very useful for organizing related data in a way that makes
programs more readable. Records or arrays can be used to bundle multiple datums in a single
token and transfer them in one round of communication, which makes execution more efficient and
simplifies the topology of a model by reducing the number of ports.

Extensibility It is possible to add new types to the design environment as it is expected to continue
developing. The type system accommodates for this.

3.2 Mathematical foundations

3.2.1 Partial orders & Lattices

A partially ordered set (poset) is a binary relation (≤) defined over a set, indicating that one ele-
ment precedes another, thereby arranging the elements of the set in some order. The relation ≤ is
reflexive (x ≤ x), transitive (x ≤ y ∧ y ≤ z ⇒ x ≤ z) and antisymmetric (x ≤ y ∧ y ≤ x ⇒ x = y).
The order is partial because not all elements need be related. Two unrelated elements are said to
be incomparable. If the order is total, meaning all elements are related and thus comparable, the
elements are ordered linearly.

Consider a poset P , an element x ∈ P , and a non-empty subset S ⊂ P . If x is greater than or
equal to every element in S, then x is an upper bound of S. Conversely, if x is less than or equal to
every element in S, then x is a lower bound of S. A least upper bound (LUB), also called supremum
or join, is an upper bound that is less than or equal to all upper bounds. An LUB need not exist,
as upper bounds may be incomparable, but if it exists, it is unique. A greatest lower bound (GLB),
also called infimum or meet , is a lower bound that is greater than or equal to all lower bounds.
Again, a GLB need not exist, but if it exists, it is unique. In mathematical notation we use the t
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symbol for the LUB, and the u symbol for the GLB. These symbols are used interchangeably as
binary operators and set operators:

x u y = u{x, y} (3.1)

x t y = t{x, y} (3.2)

A poset P of which each of its directed subsets S ⊂ P (i.e., S is non-empty and every pair of
elements in S has an upper bound in S) has a join is called a complete partial order (CPO). A lattice
is a CPO in which any pair of elements has a meet and a join. If any two elements in a poset have
a meet but not necessarily a join, this structure is called a meet-semilattice. Similarly, a poset that
has a join for any two elements but does not have meet for each pair, is called a join-semilattice.
A lattice is bounded if it has a greatest element (>) and a least element (⊥). A complete lattice
requires that every subset S ⊂ P has a join and a meet in P . Every complete lattice is a bounded
lattice.

3.2.2 Inequality constraints

The inequality constraints used to express constraints on type variables, therefore also referred to
as type constraints, are of the following form:

τ
f(τ1, τ2, ..., τn)

c

 ≤
{
τ
c

(3.3)

Type variables τ , constants c, and monotonic functions f : L → L are defined over a set of types
that are ordered in a lattice L. A constant is an immutable type variable that is strictly greater than
⊥. Monotonic functions (see Section 3.2.3) are only allowed on the left-hand side of the inequality,
which makes the inequality definite. This is a desirable property because the constraint solving
algorithm in [Rehof and Mogensen, 1999] (discussed in Section 3.4.2) only admits inequalities of this
particular kind.

3.2.3 Monotonic functions

A function f : X → Y where X and Y are ordered sets, is monotonic if it preserves the given order
i.e. for any x1, x2 ∈ X we have that:

x1 ≤ x2 ⇒ f(x1) ≤ f(x2) (3.4)

Repeated evaluation of a monotonic function with increasing inputs will yield a monotonically
increasing output sequence. Likewise, evaluation of a series of decreasing inputs will yield a mono-
tonically decreasing output sequence. This is particularly useful when operating on finite partial
orders because that allows one to express certain guarantees about the convergence of such series of
function evaluations.

A monotonic function f : P → Q where P and Q are partially ordered sets, is Scott continuous
if tf(S) = f(tS) for every directed subset S ⊂ P .
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3.2.4 Fixed points

A fixed point of a function is a value for which the function maps that value to itself i.e., f(x) = x.
A function can have multiple fixed points, and if defined over a partial order, have a greatest and
least fixed point. The greatest fixed point is greater than or equal to all other fixed points. The least
fixed point is less than or equal to all other fixed points. If multiple fixed points exist, but all of
them are incomparable, then no greatest or least fixed point exists.

Kleene fixed point theorem

The Kleene fixed point theorem states that a Scott continuous function f : L → L has a unique least
fixed point, which is the least upper bound of the ascending Kleene chain of f [Davey and Priestley,
2002]:

lfp(f) = t{fn(⊥) | n ∈ N} (3.5)

The Kleene chain is obtained by iterating f by starting out with ⊥ until f(x) = x, which gives
the sequence:

⊥ ≤ f(⊥) ≤ f(f(⊥)) ≤ ... ≤ fn(⊥) ≤ ... (3.6)

3.3 Subtyping & Lossless convertibility

A subtype relationship is generally understood to guarantee that no type errors occur when objects
are used in place of supertype objects [Leavens and Dhara, 2000]. The notion of behavioral subtyping
is much stronger as it guarantees that substitution of an object by an instance of its subtype goes
without changing the behavior of the program [Liskov and Wing, 1994]. Java does not enforce
behavioral contracts, it only guarantees the availability of certain fields and certain methods. The
subtyping in Ptolemy II is based on Java subtyping in combination with coercion, the latter of which
can be viewed as ad-hoc subtyping [Mitchell, 1984].

3.3.1 Type lattice

The types in Ptolemy II are ordered in a lattice. A graphical representation of the type lattice
is shown in Figure 3.1. By virtue of this ordering, subtype relations are reflexive, transitive, and
antisymmetric. The ordering of types is based on the property of lossless convertibility. If there is
a path upward from type τ1 to τ2 then τ1 is losslessly convertible into τ2. An Int can be converted
into a Double, but an Int cannot be losslessly converted into a Boolean. The types Int and Boolean
are said to be incomparable as no path exists from either to one another; Int is not a subtype of
Boolean, nor is Boolean a subtype of Int.

Types correspond to tokens, which are the objects exchanged by actors. Both types and tokens
are implemented in Java classes. Tokens are immutable containers that carry some state which can
be accessed through a set of methods that make up for the interface of the token. Types are used to
annotate ports and they provide the conversion methods that are used for automatic type conversion.
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Figure 3.1: A Hasse diagram of the type lattice.

Aside the subtyping relations defined in the type lattice, there exists a Java subtyping relation
between token classes. The > element of the lattice, type General, corresponds to Token, the base
class of all tokens. The type Unknown, the ⊥ element of the lattice, does not correspond to any
token class. Although every token class extends Token, not all subtyping relations in the lattice are
reflected in the type hierarchy of the Java implementation of the tokens. E.g., the type Scalar is a
subtype of Matrix in the type lattice, but ScalarToken is not a a subtype of MatrixToken.

Not all types correspond to instantiable tokens. Both ScalarToken and MatrixToken are abstract
classes. Conversion to such non-instantiable type does not actually constitute a conversion, it merely
asserts compatibility through a common interface.

Throughout this document, > is always assumed to correspond to General and ⊥ is used as a
shorthand of Unknown.

3.3.2 Basic Types

A basic type B is subtype of another type A if and only if A is reachable from B through the
directed edges in the type lattice. This defines a nominal subtyping relation [Pierce, 2002]; the
subtype relation is purely declarative as it cannot be derived from the structure of the type. The
types are ordered such that a subtype relation implies lossless convertibility between a type and its
supertype.
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3.3.3 Structured types

In contrast to the nominal subtyping relation between basic types, the subtyping relation between
structured types is determined by the inner structure of types. Structures can be arbitrarily nested,
and the leaves of these tree-like structures are again basic types.

Arrays

The subtyping relation for arrays is covariant, meaning lossless conversion is directed from a spe-
cialized type to a more general type, therefore:

τ1 ≤ τ2 ⇒ {τ1} ≤ {τ2} (3.7)

Optionally, arrays types have a length parameter. Array types with different lengths are incompa-
rable, but a bounded array can always be losslessly converted in an unbounded array:

{τ, l} ≤ {τ} (3.8)

Records

Records feature two distinct subtyping relations, depth subtyping and width subtyping. Depth
subtyping regards the types of individual record elements, all the way down to their basic type. If
for each label in a record B the type is less than or equal to the type corresponding to the same
label in a record A, then B is a subtype of A, for example:

{name = string, value = int} ≤ {name = string, value = double} (3.9)

Width subtyping is concerned with the presence of labels. A record type with more labels is more
specific i.e., less general than a record type with fewer labels, for example:

{name = string, value = int} ≤ {value = int} (3.10)

At run-time, it is always safe to convert a token into a token of a more general type because it does
not incur any loss of information. However, at first sight it does not seem lossless at all to erase
fields from a record in order to convert it to a record of greater type. But from a typing perspective
this makes perfect sense.

A type expresses some guarantee, or at least an expectation, about the value of the thing it
describes. For records, this claim is expressed in terms of a set of labels; a token is compatible, only
if all expected labels are present. Additional labels can be safely ignored at run-time, because the
types are static. If the subtyping relation would be inverted, then a conversion would entail padding
records with extra fields i.e., create something out of nothing. One could argue that this is very
similar to what happens when e.g. a Float is converted into a Double, but this padding occurs only
on the level of the data representation. Semantically, the two different representations are the same.
A record with added fields that hold some arbitrary value, is semantically different from a record
without those fields. Hence, one must bare in mind that a record type that is smaller in size, is
indeed greater in type.
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Unions

Subtyping among unions is also defined in terms of depth subtyping and width subtyping. The
depth subtyping for unions is the same as for records:

{| name = string, value = int |} ≤ {| name = string, value = double |} (3.11)

The width subtyping for unions is opposite to that of records:

{| name = string |} ≤ {| name = string, value = double |} (3.12)

A record must contain an element in its structure for each label in its type, but a union instance
always has only one element present at the time. Therefore, a union type with more labels is indeed
more general as it allows for more instances to fit the type description.

3.4 Type inference

In Ptolemy II, some actors declare types for the data they produce or consume, but some do not.
Other actors constrain their input or output to be at least or at most of a certain type because their
operations are not universally applicable to just any type. In order to have a well-typed model, all
of these constraints must be satisfied using some assignment of types. The automated process that
finds this assignment is referred to as type inference or type reconstruction.

The type inference mechanism that is deployed in Ptolemy II is inspired by the Hindley-Milner
algorithm [Hindley, 1969] used in the programming language ML, but is different in many respects.
These differences mainly arise from the fact that the Ptolemy II type system has a notion of sub-
typing, whereas Hindley-Milner does not. As a result, type rules cannot be captured in a set of
equations defined over a set of type variables. Instead, type constraints are used that take the form
of definite inequalities, as discussed in Section 3.2.2.

The Hindley-Milner algorithm finds the principal type (i.e., the most general type) for each type
variable. This has the advantage that modules can be compiled separately and recomposed without
the need to redo type inference, because the found solution is already most general. Ptolemy II does
the exact opposite in so much as that it finds the most specific set of type assignments. In [Xiong,
2002] it is argued that the most specific type has the advantage of having the least implementation
cost. The loss of composability of precompiled modules is not a concern because type resolution is
always performed on a complete model prior its execution. Moreover, each occurrence of the same
actor has a separate instance with its own type assignments. This means there is no need to compute
the principal type in order to achieve component re-use.

The remainder of this section formulates the problem of type resolution in mathematical terms
and provides an intuition for what causes it to fail or succeed.
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3.4.1 Problem formulation

From Equation 3.3, we can tell apart two types of type constraints; one with a type variable on
the right-hand side and one with a constant on the right-hand side. It is relevant to discuss them
separately because they express different things. By aggregating these inequalities in two sepa-
rate groups we can obtain two comprehensive type constraints that jointly describe the complete
constraint system.

Type constraints that have a type variable on the right-hand side of the inequality can be
generalized in the form shown in Equation 3.13, by substituting type variables by identity functions
and constants by constant functions. By definition, these functions are monotonic.

f(τ1, ..., τn) ≤ τi, τi ∈ T (3.13)

If we group these inequalities by the type variable on the right-hand side, we can form a single
constraint for each type variable by taking the least upper bound (LUB, t) of the left-hand sides
of the inequalities in each group. Assuming α ≤ τ and β ≤ τ , τ is an upper bound for α and β,
therefore α t β ≤ τ . Conversely, if α t β ≤ τ is assumed, by definition we have α ≤ α t β and
β ≤ α t β, then by transitivity α ≤ τ and β ≤ τ . The resulting function as follows:

F = f1(τ1, τ2..., τn) t f2(τ1, τ2..., τn) t · · · t f3(τ1, τ2, ..., τn) ≤ τi =


f1(τ1, τ2..., τn) ≤ τi
f2(τ1, τ2..., τn) ≤ τi
...

fn(τ1, τ2..., τn) ≤ τi

(3.14)

After obtaining a single inequality for each right-hand side occurring type variable, we can
express them jointly in the following form:

P (~T ) =


F1(~T )

F2(~T )
...

FN (~T )

 ≤ ~T (3.15)

The resulting inequality P (~T ) ≤ ~T is the part of the constraint system that describes the

ordering relations between possible assignments of type variables. Note that ~T is a tuple that
contains all type variables in the system. Because types are ordered in a lattice, the values of tuple
~T are ordered by a tuple lattice. Let ~> be the top of this lattice where each element in the tuple is
assigned >. Then ~⊥ represents the tuple in which each element is assigned ⊥. The ordering relation
in the tuple lattice as follows:

∀ i ∈ N, ~Ti ≤ ~Si ⇐⇒ ~T ≤ ~S (3.16)

A trivial solution that would satisfy P (~T ) ≤ ~T would thus be ~>. From a type resolution per-
spective, this is typically not a sensible assignment at all. It means that every token could be of
any type because every port that is typed > would accept it. This renders static type checking
practically meaningless.
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However, P (~T ) ≤ ~T only embodies the first part of the constraint system. The other part is
formed by the constraints that have a constant on the right-hand side of the inequality. Similarly
as shown in Equation 3.13, we can rewrite those inequalities as:

g(τi, ..., τn) ≤ c, τi ∈ T , c ∈ C (3.17)

Grouping by the constant on the right-hand side, gives:

G = g1(τ1, τ2..., τn) t g2(τ1, τ2..., τn) t · · · t g3(τ1, τ2, ..., τn) ≤ c =


g1(τ1, τ2..., τn) ≤ c
g2(τ1, τ2..., τn) ≤ c
...

gn(τ1, τ2..., τn) ≤ c

(3.18)

L(~T ) =


G1(~T )

G2(~T )
...

GN (~T )

 ≤ ~C (3.19)

This inequality makes up for the second part of the constraint system. The constraint L(~T ) ≤ ~C
imposes an upper bound on the solutions that satisfy P (~T ) ≤ ~T . As will be established in the

remainder of this section, the constraint P (~T ) ≤ ~T imposes a lower bound on the solutions that

satisfy L(~T ) ≤ ~C.

The constraints that jointly constitute P (~T ) ≤ ~T provide the mechanism for type variables to
influence one another. In search of a solution of the constraint system, assigning a type to one
variable in order to satisfy some constraint might require another variable to be a assigned a higher
or lower type in order to satisfy some other constraint. By transitivity, since α ≤ β∧β ≤ γ ⇒ α ≤ γ,
assigning a type to any variable α during the process of type resolution (i.e., constraint solving),
might force another variable γ to be assigned a higher type. Hence, these type constraints provide
the infrastructure to propagate type information between dependent type variables, therefore we
call them propagation constraints. It should be noted that the dependencies between type variables
established by the propagation constraints are also the ones that warrant lossless convertibility be-
tween tokens sent from one port to another.

The constraints that construct L(~T ) ≤ ~C determine the ceiling of the solution space. These
constraints, all of the form α ≤ c, we call limitation constraints. They each impose an upper bound
on whatever is found on the left-hand side of the inequality, usually a type variable or a monotonic
function. Obviously, a type constraint between two constants is trivially resolved; it either satisfies
or not, regardless of type assignments made to any type variable. Since monotonic functions again
depend on type variables, the limitation constraints ultimately express relations between type vari-
ables and constants.

All possible type assignments are graphically represented in the type lattice in Figure 3.2. The
blue region P includes all possible type assignments that satisfy the propagation constraints and the
red region L captures all type assignments that satisfy the limitation constraints.
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L

(a) The intersection of region P which represents
the solutions for P (~T ) ≤ ~T and region L which
represents the solutions for L(~T ) ≤ ~C , is empty.
Type conflicts remain and the constraint system is
not satisfiable.

LFP

T

T

P

L

S

(b) The intersection of regions P and L, region S,
represents all type assignments that satisfy both
P (~T ) ≤ ~T and L(~T ) ≤ ~C. All solutions that satisfy
the constraint system are thus found in S.

Figure 3.2: Graphical representation of the possible type assignments of ~T .

Region P always includes the top of the tuple lattice, because assigning > to every type variable
trivially solves all propagation constraints; α ≤ > is always true since α ranges over the types in the
type lattice. The lowest point of P in the tuple lattice corresponds to the smallest, or most specific
set of type assignment that satisfies P (~T ) ≤ ~T .

Assuming that the tuple lattice L is of finite height, then P : L → L being monotonic, is also
Scott continuous [Edwards, 1997]. This means it preserves all directed suprema, i.e., tP (~T ) =

P (t~T ). The Kleene fixed point theorem (Section 3.2.4) states that a Scott continuous function P
has a unique least fixed point. In [Edwards, 1997] it is shown that the least fixed point is also
the least prefix point P (~T ) ≤ ~T , meaning there is indeed no smaller solution to this inequality.
Therefore, the least fixed point is the lowest point in P. The presence of infinite chains in the type
lattice can break continuity of P and thereby cause there not to exist a least fixed point. However,
if it exists, then it is the least upper bound of the chain {~⊥, P (~⊥), P 2(~⊥), ...}.

A solution for the complete constraint system is found in the intersection of P and L. Figure
3.2a illustrates the situation where no solution exists as the two regions do not overlap. More
specifically, if the least fixed point of P (~T ) does not satisfy L(~T ) ≤ ~C, then there is no solution. Fig-
ure 3.2b shows at least one solution; the least fixed point. Any prefix point within S, is a solution too.

In addition to the propagation and limitation constraints captured in the inequalities P (~T ) ≤ ~T
and L(~T ) ≤ ~C respectively, there is a third criterion that must be satisfied:

∀ τ ∈ T .⊥ < τ (3.20)

This criterion however, which states that every type variable must be assigned a type strictly
greater than ⊥, can generally not be expressed using an inequality in the tuple lattice. Since greater
than or equal to bottom includes bottom itself, strictly greater than bottom would mean: greater
than or equal to the types directly above bottom. Unless the type lattice consists of a single chain,
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which is typically not the case, then there are multiple types directly above bottom. Setting up
an inequality for every type directly above bottom would not work either. If cx and cy are right
above ⊥ and cx ≤ τ and cy ≤ τ , then cx t cy ≤ τ . By definition, the least upper bound of cx and
cy is higher than either cx or cy, or both. Hence, these constraints resolve to a solution that is at
minimum not one, but two levels higher than ⊥, which is too constraining. Ptolemy II attempts to
find a solution that satisfies the constraint system as is, but simply rejects this solution if it contains
any type assignments that are equal to ⊥.

The ⊥ element does not represent an instantiable type, but together with the > element, it gives
the partial order of types the structure of a lattice. This elegant mathematical structure allows for
the deployment of an efficient type resolution algorithm described in Section 3.4.2. More specifically,
this algorithm requires there to exists a greatest lower bound for any subset of types. Introducing a
⊥ element provides all types with a meet, but there is no obvious way to associate ⊥ with a concrete
type. As opposed to >, which is the type that anything could be losslessly converted into, ⊥ is the
type that must be losslessly convertible into anything. In other words, having a token instance that
is typed >, means this token could be anything. But having a token of type ⊥, means it must be
an instance of a token that represents everything. It is hard to imagine a piece of data that could
consistently be captured as such, meaning that all representations would indeed truthfully reflect
the data such that they could be used interchangeably.

Assuming it would be possible, a finite amount of data represented by an instance of type ⊥
would need to be convertible into the unboundedly many incomparable types that are present in the
type lattice. There are only two ways to achieve this. The first one would be for infinitely many
different representations to be encoded in the data, which contradicts the data being finite. The
second one entails any missing data to be generated in some arbitrary way, as a token of type ⊥
is converted into something else. The latter breaks the property of lossless convertibility and the
following example shows how. Assume we have a token that is typed ⊥, and binds the label x to
some floating point value. In order to convert this datum into a record of type {x = float, y = int},
some value needs to be generated to associate with label y. If this would be considered a lossless
conversion, then by transitivity — because {x = float, y = int} can be losslessly converted into
{y = int} — {x = float} would be losslessly convertible into {y = int}. This contradicts the
width subtyping relation of records, out of which it follows that {x = int} and {y = float} are
incomparable.

The threshold that separates type assignments that have no ⊥ elements from ones that do, is
graphically represented in the tuple lattice in Figure 3.3. Tuples of possible type assignments that
are greater than or equal to the threshold have no ⊥ elements, and tuples that are less than the
threshold contain at least one ⊥ element. If the threshold lies below or intersects with the least
fixed point as is depicted in 3.3a, then all solutions in region S are acceptable since none of the type
variables are assigned ⊥.

As shown in Figure 3.3c if the threshold lies above S, then there is no solution that does not
have one or more ⊥ assignments. In this case, even if the constraint system can be satisfied, it
cannot be satisfied without including ⊥ assignments. Therefore all solutions are rejected.
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(a) The least fixed point
(LFP) is above the thresh-
old. Hence, all solutions in
S are accepted.
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(b) The threshold is above
the LFP but within S. Only
the solutions in S above the
threshold are accepted.
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(c) Every solution in S is be-
low the threshold. Hence,
no solutions are accepted.

Figure 3.3: Graphical representation of the threshold ∀ τ ∈ T .⊥ < τ .

The most interesting case is illustrated in Figure 3.3b, where the threshold lies strictly above the
least fixed point, which splits up S into two separate regions. Like in the other cases, any solution
below the threshold is rejected. However, there may very well be a solution i.e., another fixed point
greater than the least fixed point, that lies above the threshold. As will be explained in the next
chapter, the core of this thesis involves finding precisely such solutions.

3.4.2 Type resolution algorithm

As was concluded in the previous section, the least fixed point is unique, and yields the set of most
specific type assignments, given some set of type constraints. To reach this fixed point, Ptolemy
II uses an efficient algorithm given by Rehof and Mogensen. This is a linear time algorithm for
deciding satisfiability of sets of inequality constraints involving monotonic functions, defined over a
finite meet-semilattice. As explained in [Rehof and Mogensen, 1999], the algorithm leverages the
notion of definite inequalities to formulate a class of constraint solving problems that is tractable.
Moreover, Rehof and Mogensen prove that any strict extension of definite inequalities will lead to
NP-hard problems.

A meet-semilattice is a partially ordered set which has a greatest lower bound (meet) for any
non-empty finite subset [Davey and Priestley, 2002]. The types in Ptolemy II are ordered in a lat-
tice, of which the basic types form a complete sublattice (because it is non-empty and finite), but
the structured types form infinite sublattices. Because of this, type resolution does not always con-
verge. In [Xiong, 2002] a particular corner case is highlighted where in the case of arrays, the chain
[⊥], [[⊥]], [[[⊥]]], ... may cause divergence. However, it is observed that this kind of infinite iteration
is detectable and can therefore be obviated by setting a bound on the depth of structured types that
contain ⊥. Moreover, it is argued that for any structured type that does not contain ⊥ elements, all
chains to the top of the lattice have finite length. This also holds for records types since the width
subtyping relation is defined such that the supertype of a record always contains fewer elements.
Therefore, any upward chain from a record that does not contain ⊥ elements, is finite and ends at >.
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Definite inequalities either have a constant or variable expression on the right-hand side of the
inequality. These two kinds of type constraints identify as limitation and propagation constraints,
respectively. Monotonic functions are only allowed on the left-hand side of the inequality. The type
constraints in Ptolemy II, described in Equation 3.3, conform to these rules and thus are definite.
Something that is not mathematically encoded in this system of definite inequalities, is a mecha-
nism to extract a type variable that is embedded in a structured type. Assume we have a type
variable ArrayType(τarray), then we might want to express the inequality τarray ≤ τ . To this end,
ArrayType was augmented with a method to obtain a reference to τarray. This extension is more
elaborately discussed in [Xiong et al., 2005].

If a least fixed point exists for the entire constraint system, i.e., the least fixed point of the prop-
agation constraints lies within the region of solutions enclosed by the limitation constraints, then
this fixed point can be found using the Rehof-Mogensen algorithm. After constructing a list of all
propagation constraints, it starts out with assigning ⊥ to all type variables. Then it begins iterating
through the list. For each constraint it takes the least upper bound of both the left- and right-hand
side of the inequality and assigns it to the right-hand variable. This motion perpetuates until all
constraints are satisfied and a fixed point is reached. Then finally, the limitation constraints are
evaluated using the type assignments obtained from the fixed point computation. If all limitation
constraints are satisfied, then the solution is accepted, or otherwise it is rejected. In the Ptolemy II
implementation we have the additional acceptance criterion that requires every type assignment to
be strictly greater than ⊥.

The Rehof-Mogensen algorithm is linear in the number of symbols in the constraints. More
precisely, the worst-case complexity is O(3h(L) × |C|), where h(L) is the height of the type lattice
and |C| represents the number of symbols used in the entire set of constraints. As monotonic
functions can take an arbitrary number of arguments, the number of symbols can vastly exceed the
number of constraints. Moreover, the maximum number of constraints scales quadratically with
the number of ports in a model. However, since the topology of a model is typically only sparsely
connected, the number of symbols drawn from the type constraints of a model is a lot more modest.

3.4.3 Alternative interpretations

Formulating the type inference problem as a constraint solving problem is attractive for different
reasons. Constraints are very suitable for handling recursion and feedback loops, because once the
constraints are set up the program structure itself is no longer considered. Another advantage of ab-
stracting away from the program structure, or model topology rather, is that is that actor designers
only need to understand how to formulate fitting type constraints for their actors without requiring
deep insight in how the constraints are resolved. Also, since type constraints are aware of types,
but not visa versa, additional types can be added over time, which makes the type system extensible.

In order to develop an intuition about the process of type resolution, the abstraction of type
constraints away from structure, is not very helpful. Alternatively, the complete constraint system
can be translated into a directed graph G = (V,E) with vertices that are type variables or constants,
and directed edges that signify dependency relations between them. More specifically, a dependency
relation entails that during the process of type resolution, if α increases, then β might increase (or
will stay the same, since due to monotonicity β shall never decrease).
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For inequalities of the form α ≤ β, where α and β are constants or type variables, the mapping
from type constraints to dependency relations is as follows:

α ≤ β 7→ α→ β (3.21)

Note that the dependency relation α → β means β depends on α i.e., α may influence β.
Therefore, α → β is a weaker relationship than α ≤ β itself. This is important because α can be a
monotonic function. For a monotonic function it holds that if α ≤ β ⇒ f(α) ≤ f(β), but it is not
required to be strictly monotonic i.e., α < β ⇒ f(α) < f(β). Hence, if the argument of the function
increases, the function result need not necessarily increase; although f depends on α, and β depends
on f , an increase in α is not bound to increase β. An example of a function that is monotonic
but not strictly monotonic, is the greatest lower bound; (⊥,⊥) < (⊥, int) but GLB(⊥,⊥) = ⊥
and GLB(⊥, int) = ⊥ and ⊥ 6< ⊥ . For functions like these, if a function argument is pushed up
the lattice, it is not bound to affect variables that depend on the function. However, because we
have defined the dependency relationship as a possible influence during type inference, dependency
relations can still be drawn from inequalities with (non-strict) monotonic functions on the left-hand
side. As the function depends on its arguments, by transitivity, the type variable on the right-hand
side of the inequality depends on those arguments too. Hence, the mapping from constraints of the
form f(A) ≤ β to dependency relations is as follows:

f(A) ≤ β 7→ {α→ β | α ∈ A} (3.22)

In contrast to monotonic functions that map non-bottom arguments to ⊥, there also exist monotonic
functions that map ⊥ arguments to types higher than bottom. Such a function thus directly affects
variables that depend on it, without the need for any of its arguments to rise above ⊥ (the initial
value of any type variable). A trivial example of a function that produces a value independently,
would be a function that does not depend on any arguments; a constant function. More generally,
it is easy to construct a monotonic function with an arbitrary number of arguments that maps to
a type higher than ⊥ if all of its arguments are ⊥. However, this very type can then be embedded
as a constant in the definition of the function. So in order to capture all dependency relations that
arise from the inequality f(A) ≤ β, it does not suffice to only set up dependency relations between
β and f ’s arguments α ∈ A. In addition, for every monotonic function found on the left-hand side
of an inequality it must be checked whether it evaluates to a type strictly higher than ⊥ if all of its
arguments are valued ⊥. If this is the case, then a dependency must be drawn between this type as
a constant and the term on the right-hand side of that inequality. This is reflected in the following
expression:

f(A) ≤ β ∧ f(~⊥) = c > ⊥ 7→ c→ β (3.23)

Since the type resolution algorithm approaches the least fixed point after starting out with ev-
ery type variable being assigned ⊥, if the output of a monotonic function increases after the first
iteration, this can only be due to one or more of its arguments having increased. This however is
already captured by the dependency relations established between the arguments of the function
and the dependent type variables.

Using the three simple rules listed in Table 3.1, an entire constraint system can be translated
into a dependency graph. The dependency relations drawn from the equality constraints give rise to
dependency chains between type variables that form connected clusters of variables with dependen-
cies between them. Clusters are exclusively connected to the rest of the graph by constants, or not

26



Chapter 3. The Ptolemy II type system

α ≤ β α→ β
f(A) ≤ β {α→ β | α ∈ A}
f(A) ≤ β ∧ f(~⊥) = c > ⊥ c→ β

Table 3.1: Translation from type constraints to dependency relations. Terms α and β represent type
constants or variables. Monotonic functions only take as arguments the variables they depend on.

connected at all. Constants are immutable and therefore independent, so a chain of dependent type
variables always ends because there are simply no more relations that extend the chain, or because
a constant ends it. An example of such a dependency graph is given in Figure 3.4.
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c4τ20

τ21 τ22

variable

constant

Figure 3.4: An example dependency graph that contains a number of specific features; disconnected
clusters (e.g. c4 → τ20), disconnected clusters that consist of connected components (e.g. τ18 → τ19 →
c3 → τ18), connected clusters (e.g. τ0 → τ1), and connected clusters that consist of strongly connected
components (e.g. τ7 → τ8 → τ9 → τ10 → τ7).

What happens during the process of type resolution, can be thought of as type information
being propagated along the edges of dependency relations. This happens by means of iteratively
pushing up type variables until a fixed point is reached. At this point, a type assignment is found
that satisfies all constraints. As discussed in Section 3.4.1, the propagation constraints, generally
of the form α ≤ τ , are responsible for pushing up type variables. The sources of the propagated
type information are the type constants that, in contrast to the type variables, have an initial type
greater than ⊥. Therefore, the only way a type variable can be bounded from below (↑) is when
that type variable is reachable by a constant via a path of dependencies between type variables
in the directed graph (c → ... → τ). If there exists such a path, because of possible influence of
non-strict monotonic functions, there is no guarantee that the variable is actually bounded from
below. However, the inverse is true; if there is no such path, then the variable cannot possibly be
bound from below.

The limitation constraints, generally of the form α ≤ c, impose limits on the type assignments
of type variables. Although dependency relations α → β drawn from such inequalities are defined
as: if α increases, then β might increase; then β will of course never increase if β is a constant. In
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(a) The markings of the type variables visualize
their boundedness. A constant potentially bounds
a variable from above (↓) if there is a path from the
variable to that constant. A variable is potentially
bounded from below (↑) if there is a path from a
constant to that variable.
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(b) The type variables that are impossibly bounded
from below (6↑) are underdetermined. This means
they are only possibly bounded from above, or not
bounded at all. These variables are are colored in
red. There exists no path from a constant to any
of the variables in a red cluster.

Figure 3.5: Alternative coloring of the same graph as in Figure 3.4.

fact, if a constant would be required to increase in order to satisfy a constraint, this would yield a
type conflict. The path from a type variable to a constant (τ → ... → c) signifies what one could
describe as an anti-dependency. The constant is not propagated to other type variables, but if type
information can travel along dependency relations from a type variable to a constant, the constant
could impose an upper bound on the type assigned to the variable. If a variable is indeed bounded
from above (↓), there must be a constant that defines the ceiling. Moreover, there has to exist a
path from the type variable to that constant. Again, the presence of such a path does not guarantee
that a variable is bounded from above, but if no such path exists, there cannot exist an upper bound
for that variable.

A type variable is underdetermined if it is not bounded from below. This means there is no
infrastructure in the dependency graph for type information to propagate from any constant to that
variable. Consequently, the variable will remain stuck at ⊥. A cluster is underdetermined if all of its
connected variables are underdetermined. It should be noted that the added edges from constants
to type variables for functions that map non-bottom elements to ⊥ (as denoted in Equation 3.23),
are critical for the purpose of making these claims.

The graphs in Figure 3.5 reveal cases where purely based on the type constraints, so without
regarding the internals of any monotonic function, it can be concluded that type variables are un-
derdetermined. For a constraint system that yields a dependency graph that has underdetermined
variables, it is guaranteed that no solution can be found that has no ⊥ type assignments in it.
However, if the dependency graph does not have any underdetermined type variables, solving the
underlying constraint system still might fail. The purpose of these graphs is to illustrate the in-
formation flow between type variables and emphasize that the absence of certain dependencies can
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cause variables to remain underdetermined.

From the structure of these graphs we can draw two different approaches to get past the prob-
lem of underdeterminacy. One way is to add dependencies that provide pathways from constants to
underdetermined type variables. This is achieved by adding more type constraints. The other way is
to replace type variables with constants, which is the equivalent of doing manual type annotations.
In terms of the representation of type assignments in the tuple lattice (figure 3.3), both of these mea-
sures have the potential of pushing up the least fixed point to a point where it exceeds the threshold
of having no ⊥ assignments. Replacing variables with constants has the result of increasing region
L, whereas adding dependencies may reduce region P.

We can illustrate these strategies by considering examples of underdetermined clusters in Fig-
ure 3.5b. The cluster (τ1 → τ2) can be lifted up in its entirety either by substituting τ1 with a
constant, or by adding an incoming dependency that connects τ1 with a constant or a subgraph
that is not underdetermined. Possible solutions are: (c0 → τ5 → τ6) → τ0, (c1 → τ15) → τ0,
(c3 → τ18 → τ19) → τ0, or (c4 → τ20) → τ0. It is only possible to lift up an entire cluster if
there is a path from a constant to every variable, otherwise the underdetermined cluster would just
split up in a determined part and one or more underdetermined parts. For example, if τ14 was
substituted with a constant or directly connected with another cluster to become reachable from an-
other constant, the remainder of the cluster (τ11 → τ12 → τ13) would remain to be underdetermined.

Type conflicts are a lot less evidently exposed by the dependency graph. Any path from a con-
stant to another constant might bring about a type conflict as the monotonic functions operating
on the type variables that propagate values along such a path might lead to a type assignment that
causes τ 6≤ c. The strategies to eliminate conflicts are to remove dependencies to break down these
paths, or to increase the constants that impose upper bounds that are too strict. In the type lattice
representation, this corresponds to bringing regions P and L closer together such that they even-
tually might overlap. Removing dependencies may increase P by lowering its least point, whereas
increasing constraints raises the ceiling of L.

Although the dependency graphs provide a useful insight in the mechanisms that drive type
resolution, in order to decide which strategies are actually practically fitting to overcome underde-
terminacy, we would again have to consider the semantics of the actual actor models. In the end,
the aim of the type system is to prevent unsafe paths of execution, so type inference can only be
meaningfully enhanced in ways that preserve this property.

3.5 Polymorphism, Coercion & Inheritance

An important aspect of actor-oriented modeling in Ptolemy II is the exploitation of component reuse
by means of polymorphism. This allows for actors to be arranged and composed in a way that is
in a high degree independent from the type of data that is exchanged between actors. Models with
polymorphic actors are more flexible and the libraries that retain such actors are more orderly and
compact. Subtyping usually refers to compatibility of interfaces, but in Ptolemy II the subtyping
order implies lossless convertibility. Instead of relying on the property that if S is a subtype of T,
then an instance of S can be safely substituted for an instance of T, an instance of S can be losslessly
convert into an instance of T.
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In an object-oriented framework, subtyping often goes hand in hand with the concept of inheri-
tance, which is a language feature that allows new objects to be defined from existing ones [Mitchell
and Krzysztof, 2002]. In typed object-oriented languages the subtyping relation is typically based
on the inheritance hierarchy [Cook et al., 1989]. The Ptolemy II type system has a notion of subtyp-
ing, but its expression language features no inheritance. Nevertheless, Ptolemy II is implemented
in Java and leverages many of its features, including its inheritance-based subtyping relation. This
is reflected in all of its components, including the actors themselves, the token types, and token
instances that are exchanged between actors. The interaction between the Java type system and
the Ptolemy II type system can lead to some unexpected behavior.

As mentioned in Section 3.3 the ordering of types in the type lattice is not identical to the
Java subtyping hierarchy of the corresponding token classes. Polymorphism is achieved using two
distinct mechanisms; coercion and inclusion polymorphism. Type coercion involves the instantiation
of a new token based on the value contained by a token instance of another class. The premise for
such conversion is lossless convertibility. There is no need for a Java subtyping relation to exist for
coercion to be possible. An example of this is the conversion between an Int and an IntMatrix; the
Ptolemy II subtype relation permits this conversion, but the Java class IntToken does not extend
MatrixToken. This means that although coercion might be considered lossless with regard to the
value that a token pertains, it can alter the interface and inheritance properties of a token in a way
that is not lossless at all.

Some actors implement parametric polymorphism, meaning they operate uniformly on all types.
An example of this is the Distributor actor, which distributes tokens from an input stream over a
set of output streams, regardless of their type. However, most actors implement inclusion polymor-
phism, which relies on interface inheritance provided by Java subtyping. Although typing in Java is
done statically, it is not possible to determine the concrete class types of symbols at compile time.
It is deferred until run-time to do name binding i.e., to associate concrete objects with identifiers.
Dynamic binding (also known as dynamic dispatch) lets a method invocation be dispatched to the
most concrete implementation that is provided by the object instance at hand. This mechanism
comes into play when an actor declares or infers its input type to be of a non-instantiable type like
General or Scalar. Automatic type conversion into such types constitutes nothing more than the
assertion that a token is a subtype of the corresponding Java class. Note that this assertion always
holds for type General as every token class extends Token. Relying on the interface exposed by the
abstract Java type, an actor can invoke the methods provided by a token polymorphically by means
of dynamic dispatch.

The interaction between automatic type conversion and Java’s inclusion polymorphism in Ptolemy
II is best described as coercive default inheritance. When a token arrives at the input port of an
actor, automatic type conversion either asserts that the token inherits some expected interface, or
the token is converted into an instance that exposes that interface. In other words, coercion offsets
the token to inherit properties from a different base class. From that point on, Java’s dynamic
binding mechanism takes over. There are subtle ways in which these these mechanisms can interfere
with one another.

If an actor expects a more general interface than the type that was inferred for its input port, an
automatic type conversion might be unnecessary, or even improper. Consider the example in Figure
3.7 (model originally created by Patricia Derler) where Display does not declare its input type,
CurrentTime declares its output to be of type Double and CurrentMicrostep declares its output to be
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of type Int. The default constraint forces the input of Display up to Double during type inference,
which at run-time causes the output of CurrentMicrostep to be converted from Int to Double before it
is received by the Display. The Display just uses the toString() method to print a String representation
of incoming tokens. The toString() method is part of the Token interface and therefore defined for
both IntToken and DoubleToken. The automatic conversion of from IntToken to DoubleToken however
causes the tokens sent by CurrentMicrostep to be displayed as 1.0 instead of 1.

Figure 3.6: Example of premature coercion.1

Since coercion and dynamic dispatch are not commutative, it is not always clear which of the
two should happen first. If coercion always has precedence, there is the risk of it affecting the be-
havior of actors in unexpected ways. Consider the following expression: 1 + 2.0 + "3". Both in
the Ptolemy II expression language as in Java, evaluating this expression yields the result: "3.03".
However, as shown in Figure 3.6 we see that the polymorphic actor AddSubtract yields an entirely
different result upon adding the input tokens that corresponds with the same expression. The prob-
lem is that the default type constraints force the input of AddSubtract up to String, which causes all
inputs on the Add port to be automatically converted into a StringToken before being added. If the
coercion had not taken place, dynamic dispatch could have picked the right add() method, added up
the two numbers and then concatenated it with a the string. However, there is no way to enforce a
particular ordering to addition of the inputs provided to AddSubtract. Unlike arithmetic addition,
string concatenation is nonassociative. This means that even if tokens are not improperly coerced,
there is no way to infer from the given model whether the outcome will yield "33.0" or 3.03. The
latter is an inherent problem of the AddSubtract as it combines the associative

∑
-operation and the

nonassociative concatenation operation in the same actor.

It must be noted that AddSubtract is not a type safe actor. It does not impose an upper bound
on the type of the inputs it can take, but not all types are actually supported; e.g. the subtract
operation on a String will yield a run-time error. This is not a result of a token not being compat-
ible with a statically inferred type, but a type not being able to guarantee correct execution. This
information is static, but not captured in the subtyping relation. Therefore it can only be detected
at run-time.

1The blue rectangle represents an attribute that if part of a model shows the types that are assigned to ports.
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The problem of improper or premature coercion is limited to the specific case where actors that
leverage Java’s dynamic dispatch mechanism to implement inclusion polymorphism, and it only
comes up when multiple outputs are connected to a single input. If it is up to the type inference
process to assign a type to an actor’s input port, then this type might correspond to an interface or
to a concrete token. Only in the latter case it will cause an actual conversion of incoming tokens.
One way to circumvent coercion and expose the original token instances to the implementation of
the actor, is the following:

1. An actor must declare its input to be equal to the greatest type that it can handle.

2. (a) The input type must map to a token class that is indeed a common base class for all
tokens it supports. If this is not the case, then coercion would be required to offset the
instance to the base class that implements the expected interface. As shown in the prior
examples, this can be problematic.

(b) The conversion method of the input type must not do an actual conversion i.e., it merely
asserts the subtype relation in terms of interface inheritance.

Figure 3.7: Example of improper coercion.

This approach works very well for sink actors i.e., actors that do not have any output ports.
Assigning the type General to the Display actor in the model in Figure 3.7, solves the problem. As
the display actor merely needs the method toString() to be present in the interface of a token, really
any token is acceptable.

The suggested solution, to statically assign an input type that corresponds with the interface all
acceptable tokens must implement, is not appropriate for actors of which an output type depends on
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Figure 3.8: A type conflict as a result of declaring the input of AddSubtract to be Scalar.

an input type. If the output type is forced up to an interface type such as Scalar or General, then it
becomes impossible to satisfy constraints further downstream that are more specific. The model in
Figure 3.8 (model originally created by Chris Shaver) that should plot the Fibonacci sequence, has
a downstream plotter that only accepts Double input, which causes a type conflict with the greater
type Scalar, even though the actual input of AddSubtract is as small as an Int.

Another, perhaps obvious solution, would be to use different input ports for relations that carry
tokens that should not be coerced into a single type before being processed by the actor. The
drawback of this solution is that it becomes the responsibility of the user to decide which inputs
should be grouped together and which should not. An advantage of this approach is that it enables
the user to explicitly specify the order in which the inputs should be processed. This is useful for
actors that implement an operation like concatenate, which is nonassociative. Currently, multiports
observe the order in which relations were added. So in fact it is already possible to specify an
order, but this is not a very visible property of the model. Alternatively, the user could daisy-chain
a number of AddSubtract actors to prevent premature coercion or to enforce a specific evaluation
order. This can be done with the existing AddSubtract actor, but again, this burdens the user with
the task of finding the composition that implements the expected behavior.

3.6 Records, Arrays & Type safety

The way the subtyping order of records is defined, makes that the supertype of two records i.e., the
least upper bound of both, is their intersection. Arrays are homogeneous, so they can only contain
elements of a single type. Therefore, when an array is instantiated, its contents is typed as the least
upper bound of the types of all elements. If an array contains records that do not all share the same
label set, then not all labels will appear in the type of the array.
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Consider for example the expression {{x = 2}, {y = pi}}, which declares an array containing
two records. The type of the contained records are {x = int} and {y = double}, respectively. The
supertype of both records is {}, so the array is typed ArrayType({}, 2). In the current implementa-
tion, the conversion method of RecordType does not actually do a projection, so the two records are
inserted into the array in their original form, retaining all fields. Despite the uniform type of the
array, its contents thus may very well be heterogeneous.

If we purely regard types, there is no reason to assume there is anything to be found in a record
that is typed as being empty. The concept of lossless convertibility that defines the subtyping rela-
tion in Ptolemy II does not regard instances, it applies to types. One could of course always convert
an IntToken into a DoubleToken and then do the inverse conversion and end up with the original
value, but it is certainly not the case that any DoubleToken could be losslessly converted into an
IntToken. The types are part of static analysis and cannot keep track of the conversion history of
run-time instances. Therefore, converting {x = 2, y = pi} into {} is indeed lossless from a static
typing perspective. It is not possible to losslessly convert back into {{x = 2}, {y = pi}} because
there is no subtyping relation that allows it.

Not removing fields from a record as it is converted into a record type with fewer fields, can
cause unexpected consequences that emerge from polymorphic actors operating on such record. The
AddSubtract actor is defined to do an element-wise addition (or concatenation) for records. Fields
that do not appear in the corresponding type, are rightfully not considered and will not appear in the
output record. This is not established by the automatic conversion mechanism of the type system,
but by the actor itself. There is nothing in the implementation of a RecordToken that prevents the
actor from accessing undeclared fields, even after being coerced into a supertype. Consequently, the
Display actor that simply invokes the toString() method, prints out all fields that are present in an
incoming RecordToken, regardless of its conversion history or actual type.

Access to record elements that are not declared in the records type, is in principle unsafe. The
type system cannot guarantee that undeclared elements are indeed present. Nevertheless, it could
be useful to retain certain information in a record without having a guarantee about its presence. It
would then be up to the actor to implement the necessary run-time checks to trap errors and deal
with them gracefully; it would be better if the run-time type checker could take care of this. An
attempt to access an element that is not present in a record’s type is similar to a downcast operation
in object-oriented programming. A downcast can result in a run-time error. The key insight is
that undeclared elements need not be removed, but are ought to be hidden. An explicit downcast
would then be required to increase the visibility of a record’s fields. This combination of static and
dynamic typing, offers the best compromise between type safety and flexibility; types are checked
statically where possible, and dynamically if needed.
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Maximally permissive composition

This chapter addresses the problems that are formalized in the previous chapter in a more practical
context. It describes the goal of maximally permissive composition and explains how by augmenting
the type inference mechanism in Ptolemy II with the means for backward type inference, we can
achieve this goal.

4.1 Composition & Composability

As opposed to layered system designs that reduce complexity “horizontally” by splitting the de-
sign into multiple layers, component-based approaches reduce complexity “vertically” by assembling
strongly encapsulated design entities called components equipped with concise and rigorous inter-
face specifications [Lee and Sangiovanni-vincentelli, 2011]. The idea of composition encompasses
combining simple components to build more complicated ones. The property of composability is the
extent to which components are suitable for composition in different environments. Composability
facilitates component re-use and broadens an individual component’s range of application.

Composability can be maximized by finding the weakest assumptions on the environment suf-
ficient to establish the guarantees on a given component implementation [Lee and Sangiovanni-
vincentelli, 2011]. In the context of the Internet of Things (IoT), where components are charac-
terized by their ability to dynamically engage in interaction, composability is of prime importance.
Components must be able to function in dynamically established configurations, meaning they must
be designed without full knowledge of the shape these configurations may take. Incorporating too
much context in the design of a component results in reduced flexibility and compatibility, leading
to “stovepipe” solutions limited to isolated vertical conduit.

The behavioral aspects of component composition i.e., the interaction semantics, or models of
computation are discussed extensively in [Janneck, 2003]. In this work, we merely focus on the
typing aspects of composition.

4.1.1 Actors in Ptolemy II

As discussed in Section 2.1.2, Ptolemy II components come in the form of actors1. Actors can
receive tokens through input ports and sent tokens through output ports. Each input and output

1Note that throughout this text the words “component” and “actor” are used interchangeably.

35



Chapter 4. Maximally permissive composition

port is associated with a type, and all tokens passed through a port must be compatible with its
type, or otherwise a runtime type checking error is thrown. An actor can impose constraints on the
types of its ports which limits the types it will accept. The input of an actor is subject to the local
requirements of that actor, whereas the output, if left unconstrained by the actor itself, is subject
to requirements imposed by downstream actors or the system as a whole.

In terms of types, particularly in the context of subtyping, the requirements with regard to an
actor’s input are twofold. Firstly, the data needs to be sufficiently specific so that the actor can
operate on it in a meaningful way. Second, the data must be complete, meaning that if the data is
structured, all elements are present. In Ptolemy II, the former corresponds to depth subtyping and
the latter is expressed by width subtyping. In fact, since the width subtyping relation of records is
such that a record with more fields is a subtype of a record with fewer fields, the first requirement
is a generalization of the second. In both cases, the input is required to be minimally specific.

If an input must be minimally specific, then the same holds for the output becomes that input.
In the case of subtyping, an instance can always be safely upcasted, and in the case of automatic
type conversion, this can be done losslessly. Therefore, in order to obtain actors that allow for
maximally permissive composition, inputs need to be typed as general as possible and outputs need
to be typed as specific as possible. This is not a new idea. In fact, it is very much central to the
design of the Ptolemy II type system:

“Note that even with the convenience provided by the type conversion, actors should
still declare the receiving types to be the most general that they can handle and the
sending types to be the most specific that includes all tokens they will send. This
maximizes their applications.” [Xiong, 2002]

The underlying assumption for this to work, is that an actor has prior knowledge about the
types of tokens it will send. This is not always a reasonable assumption. Any actor that parses
arbitrary data and turns it into a (typed) token, is unable to statically declare or infer a fitting type.
Actors like these are very similar to the eval function that is found in some general purpose scripting
and programming languages. Not surprisingly, most of these languages are dynamically typed. The
question is how to incorporate eval-like actors in a statically typed environment, without breaking
type safety and maintaining maximum flexibility.

4.2 How to type untyped data

The most obvious way to type untyped data would be; dynamically. A dynamic type system accom-
modates untyped data as it interprets values at runtime and assigns them a type accordingly. The
problem is that Ptolemy II is statically typed, which yields many advantages e.g., early detection
of programming mistakes, better coding documentation in the form of type signatures, and more
opportunities for optimization. However, static type systems are rigid and lack the flexibility to in-
teract with systems that change unpredictably. Nevertheless, it is desirable to be able to have models
interact with sources of untyped data from a file, from the Web, or through interactive components
that gather data from the physical world. An actor that mediates such interaction might e.g. take as
input a String and outputs whatever it parses out of that String. Whatever that might be, is unknown
until the data is actually read, which is supposed to happen when the model executes. But in order
to execute the model, the output port of the actor must be typed. This is a chicken-and-egg problem.
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Due to the parsing/evaluation operation, the input and output types are completely unrelated,
meaning there is no way to infer the output type prior to execution. Deriving a type signature based
on the structure of the used data is certainly possible, even in an automated fashion if the actor is
able to inspect the data prior to execution, but a caveat of this approach is that the data may be
subject to change during the course of execution. This means that a type description might end
up to be overspecified, which can cause runtime type checking to fail, making the system needlessly
brittle. Ideally, the output should be typed such that if the data adheres to the assigned type, then
the model is guaranteed to function correctly. Arguably, this type is maximally permissive if it is
no more specific than need be. On the other hand, if the type is too general, type conflicts can
occur as downstream actors might enforce stricter requirements on their inputs. The question then
is, exactly how specific does the type need to be.

The answer to this question was already hinted at in the previous section. The type of an
output port needs to be specific enough to be compatible with downstream input requirements. In
other words, if it is unknown what data will be produced, it makes sense to set its type in terms of
how the data will be used. It is not particularly straightforward for the user to deduce this type,
so ideally this type would be automatically inferred. In the next few sections we investigate the
possibilities for leveraging the existing type inference mechanism to deduce maximally permissive
types for unknown outputs.

If we address the problem of unknown output types in terms of underdetermined type variables,
the notion of which is explained in Section 3.4.3, we observe that in order to get beyond a least fixed
point with ⊥ assignments in it, more constraints must be added. The targeted solution is a fixed
point, slightly higher than the original one, which is consistent and has no ⊥ assignments in it. In
addition to being consistent, the assignments for the previously underdetermined type variables is
desired to be maximally permissive i.e., no more specific than required by the actors that read the
tokens emitted from the ports associated with those type variables.

4.3 Backward type inference

In principle, type inference has no directionality. The constraint solving problem that underlies the
type inference mechanism in Ptolemy II is discussed in fine detail in the previous chapter. As was
mentioned here, we can recognize two different kinds of type constraints; propagation constraints
and limitation constraints. Propagation constraints are the constraints that drive the type inference
process, whereas the limitation constraints provide the acceptation criterion for an inferred solu-
tion. The notion of directionality comes from the topology of the model as data flows through a
model from output ports to input ports between actors, and from input to output port within actors.

The conventional default constraints that are set up along relations and between otherwise
unconstrained input and output ports within actors, facilitate forward propagation. The forward
propagation constraints between actors are of the form α ≤ τinput, and within actors they look like
α ≤ τoutput. Forward propagation allows for actors to infer their input type based on the output of
upstream actors. Now if we want to do the opposite and infer the type of an output port based on
the types of downstream actors’ input, what we need is backward propagation.

A backward type constraint between actors would look like:

α ≤ τoutput (4.1)
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The Rehof and Mogensen algorithm iteratively unifies the right-hand variable with the left-hand
term, which could be a constant, a monotonic function, or another type variable. As long as the left-
hand term eventually yields anything other than ⊥, the (previously underdetermined) type variable
τoutput will eventually be pushed up to something higher than ⊥. Similarly, a backward constraint
within an actor, is of the form:

α ≤ τinput (4.2)

Again, the left-hand term is responsible for pushing up the type assignment of τinput. Note that
these are the exact same inequalities as used for forward propagation, only their direction is inverted.
It is clear that these constraints can be added to influence underdetermined variables, but it is not
clear what α should be in order to obtain a valid and consistent, yet maximally permissive solution.
This will be investigated in the remainder of this chapter. First we discuss the type constraints that
are imposed by the topology of a model, the type constraints between actors. After that, we discuss
the type constraints that are imposed by actors themselves.

4.4 Type constraints between actors

The default forward type constraints τoutput ≤ τinput that are imposed by the relations between
actors, are preserved. These constraints guarantee lossless type convertibility of tokens between
two connected ports. They warrant that if a token is compatible with the type of the output port,
then it is guaranteed be compatible with the input port on the other end of the relation as well.
Therefore, at run-time, right before an actor is about to send a token, the token is checked for type
compatibility with the associated output port. The actual conversion is done on the receiving end.
This makes sense, because an output port can be connected to many input ports, each of which can
have different types.

The backward type constraints discussed in this section are additional. These constraints are
intended to raise the types of output ports based on the types of input ports they are connected to.
This preserves this property that run-time type checking errors are trapped as early as possible, and
it does not affect the time at which run-time type conversion takes place. Actual Ptolemy II models
are used to provide examples and point out corner cases.

4.4.1 Flat relations

In Ptolemy II it is possible to build multiple levels of hierarchy in a model using composite actors
each of which can contain yet another model. The flat relations discussed here, are relations between
actors within the same level of hierarchy.

One-to-One

Consider the example model in Figure 4.1 that has a JSONToToken and ExpressionToToken actor
in it. Both these actors read a StringToken as input and produce a token that corresponds to an
expression encoded in the input string. The input strings are supplied to the model as constant,
but not evaluated until the model is executed. If instead of a StringConst actor a FileReader was
used, the string would have been retrieved from where ever the FileOrURL-parameter had pointed to.
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The XYPlotter declares its inputs to be of type ArrayType(Double), so any output connected to
those inputs must be less then or equal to ArrayType(Double), which is exactly what the default
forward type constraint expresses. However, this constraint is trivially satisfied by the initial ⊥
assignment to the output ports of JSONToToken and ExpressionToToken. The maximally permissive
assignment would be to have those output ports be typed equal to ArrayType(Double), which can be
achieved by inserting the following backward type constraints along each relation:

τoutputSink ≤ τoutput (4.3)

In this inequality τoutput corresponds to the type of an output port and τoutputSink is the type
associated with a port connected to that output port.

Figure 4.1: Unsuccessful type resolution due to underdetermined output ports.

In particular, the following backward type constraints would be added:

• JSONToToken.input ≤ JSONExpr.output

• ExpressionToToken.input ≤ PtExpr.output

• ArrayPlotterXY.x ≤ JSONToToken.output

• ArrayPlotterXY.y ≤ ExpressionToToken.output

In combination with the default forward type constraints that are already in place, what happens
is that the types of connected output and input ports are unified. After all, because the subtype
ordering is antisymmetric, if α ≤ β and β ≤ α then α = β. The first two backward constraints do
not affect any type assignments, but the last two constraints force the previously underdetermined
outputs to be of the same type as the input ports they are connected to. The result is shown in
Figure 4.2.

One-to-Many

If the output port of an actor is not connected to a single input port, but multiple, then using the
simple backward constraint that unifies outputs and inputs, may cause type conflicts. Two backward
constraints β ≤ α and γ ≤ α constitute β t γ ≤ α, which means that if β < γ or γ < β, then α
can no longer satisfy one of the forward constraints which require that α ≤ β and α ≤ γ. Instead of
expressing the type of an output port in terms of the least upper bound of the types of its destination
ports, we should express it in terms of a lower bound, because a lower bound is compatible with the
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Figure 4.2: Backward inferred types for previously underdetermined output ports.

forward constraints. Because we want the type to be maximally permissive, we would like the type
to be equal to the greatest lower bound of the types of the output destinations, which is expressed
by the following constraint:

u ~ToutputSinks ≤ τoutput (4.4)

Note that this expression generalizes the inequality given in Equation 4.3 that was used to backward
infer types over one-to-one relations; the greatest lower bound of a single argument is just that
argument. The example model in Figure 4.3 shows the result of type inference using the backward
type constraints that make use the greatest lower bound. The output type of the JSONToToken
actor gets inferred successfully even though the input ports of the MonitorValue actors have declared
two different, incomparable types. The backward inferred type, ArrayType(int) is the greatest lower
bound of the two destination ports, therefore it is compatible with the inputs of both downstream
actors.

Figure 4.3: Backward inferred output type over a one-to-many relation.

Many-to-One

When two outputs merge into a single input, the only reasonable thing to do is backward infer
the same type for both output ports. Again, this can be achieved using the same type constraint
presented in Equation 4.4. In the example in Figure 4.4 the JSONToToken and ExpressionToToken
outputs are fed into a single Discard actor. To keep things simple, the Discard actor declares its
input to be of type arrayType(complex), which gets backward propagated using the backward type
constraints:
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• Discard.input ≤ JSONToToken.output

• Discard.input ≤ ExpressionToToken.output

The examples used so far are oversimplified. One could of course imagine much more complex
networks of actors that impose requirements on the data that is produced by upstream sources.
For these requirements then to be back propagated all the way up to the untyped outputs of these
sources, a bit more is needed than just the backward type constraints along flat relations. Next, we
discuss the type constraints for backward propagation along hierarchical relations.

Figure 4.4: Backward inferred output type over a many-to-one relation.

4.4.2 Hierarchical relations

A composite actor is a container for a model, that itself can be contained in yet another model.
Using composite actors, multiple levels of hierarchy can be constructed. There is always a top level
composite that contains the whole model including all of its submodels. Unlike flat relations between
actors that always connect outputs to inputs, the inputs of a composite actor can be connected to the
inputs of its contained actors. In order to backward infer the type of the input port of a composite
actor, the following constraint must be added:

u ~TinputSinks ≤ τinput (4.5)

This is the same constraint as given in Equation 4.4, only this time it is set up between the input of a
composite and the inputs of its internally connected contained actors. Note that the relation between
the outputs of internal actors and the output of the composite, are already captured by Equation 4.4

TypedCompositeActor

The base class for composite actors is TypedCompositeActor and it is responsible for generating all
type constraints imposed by the relations between its contained actors. In summary, given the
embedded actors and the set R of relations between them, and the set P of relations between them
and the composite itself, the following set of forward type constraints are generated:

• ∀ (input, sink) ∈ P [αinput ≤ αsink]

• ∀ (output, sink) ∈ P ∪R [αoutput ≤ αsink]

41



Chapter 4. Maximally permissive composition

, where α can either be a type variable τ , or constant c. These constraints can thus be either
propagation of limitation constraints. The propagation constraints with the type variable on the
right-hand side are needed to promote the type of the sink port such that it is compatible with the
sources that connect to it. The limitation constraints assert that sources shall never have a type
greater than the sinks they are connected to.

In order to also do backward type inference, the following set of backward type constraints must
be generated:

• ∀ input ∈ {input | (input, sink) ∈ P} [u {αsink | (input, sink) ∈ P} ≤ τinput]

• ∀ output ∈ {output | (output, sink) ∈ P ∪R} [u {αsink | (output, sink) ∈ P ∪R} ≤ τoutput]

Again, α can either be a type variable τ , or constant c. It is important to point out that these in-
equalities are exclusively propagation constraints i.e., they have never a constant but always a type
variable on the right-hand side. If this were not the case, then chains of dependent type variables
would not be broken up by constants, which almost immediately leads to unnecessary type conflicts.
In essence, this would defeat the whole purpose of subtyping, as it would no longer allow for a source
port to be assigned a subtype of the type assigned to a connected sink port. The sole purpose of the
backward type constraints is to propagate type information upstream, not to enforce inverse type
compatibility.

Note that for composite actors that are opaque i.e., they are run by their own director, the ports
of the composite have a separate internal and external representation, therefore these ports can be
typed differently internally and externally. This does not affect the proposed solution, it only means
that the type variables associated with these ports exist both in P and R.

4.5 Type constraints within actors

The idea of back propagating type information through the topology of a model by means of back-
ward type constraints, extends to the inner structure of atomic (i.e., non-composite) actors as well.
For most of these actors, the types of their input and output ports are tightly interdependent. These
dependencies can be leveraged to provide upstream actors with the information required to infer a
maximally permissive output type. If backward propagation is done both along relations and within
atomic actors, type information can travel upstream multiple hops. This way, it is still possible to
reach a satisfying solution for the type inference problem, even when the type variables associated
with two interconnected ports both start out as ⊥.

Default type constraints

Similar to the type constraints imposed by relations between actors, the inputs and outputs of an ac-
tor that are left completely unconstrained, are captured in a default constraint τinput ≤ τoutput that
ensures type compatibility of tokens passed from inputs to outputs, and to allow type information
to propagate forward. For backward propagation we add the opposite constraint τoutput ≤ τinput
for each pair of unconstrained inputs and outputs, which together with the forward type constraint
unifies their types; τinput = τoutput.
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However, actors often require much more sophisticated type constraints between inputs and
outputs. This is because the constraints may depend on particular data transformations that are
done inside of the actor. Of course, this also holds for the internal type constraints that need to
be generated in order to do backward type inference. In this section we discuss the backward type
constraints that are involved with several popular actors in Ptolemy II.

4.5.1 ArrayToSequence

This actor reads an array at the input and writes the array elements as a sequence to the output.
This is expressed in terms of types using the following inequality:

elementType(τinput) ≤ τouput (4.6)

This constraint restricts the ouput to be greater than or equal to the type that the monotonic
function elementType() returns, given the type of the input port as an argument. The function
elementType(), presented in Equation 4.8, simply extracts the element type of the input array.
However, if this type cannot be inferred from upstream types, it can be backward inferred by adding
the following constraint:

arrayTypeFunc(τoutput, length) ≤ τinput (4.7)

The monotonic function arrayTypeFunc(), shown in Equation 4.9 wraps its argument type into
an ArrayType (represented by curly brackets). The length parameter is set as part of the ArrayType
only if it has a positive value.

elementType({τ}) = τ (4.8)

arrayTypeFunc(τ, length) =

{
{τ, length} if length > 0
{τ} otherwise

(4.9)

Figure 4.5: Monotonic functions used in type constraints for arrays.

4.5.2 ArrayElement

According to a given index, the ArrayElement actor picks an element out of the array it receives as
an input and emits the value on its output port. The index is either set through a parameter named
index, or dynamically updated by means of a token received on the input port named index. The
token that is used to set or update the parameter is declared to be of type Int (Equation 4.10). By
declaring a type variable to be equal to a constant, that symbol is no longer considered a variable
and is thus excluded from type inference.

Furthermore, Equation 4.11 constrains the input to be greater than or equal to an ArrayType(⊥),
and just like the ArrayToSequence actor, Equation 4.12 requires the output to be greater than or
equal to the element type of the input array. The last inequality, Equation 4.13, is the backward
type constraint, identical to the one used for ArrayToSequence.
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Int = τindex (4.10)

{⊥} ≤ τinput (4.11)

elementType(τinput) ≤ τoutput (4.12)

arrayTypeFunc(τoutput, length) ≤ τinput (4.13)

Figure 4.6: Type constraints internal to ArrayElement.

4.5.3 RecordDisassembler

An interesting and slightly more complex example, is the RecordDisassembler actor, which disassem-
bles a RecordToken into multiple outputs. This actor is used by instantiating it, and declaring a
number of output ports of which the names correspond to a label in the RecordToken that is expected
on the input port. No types need to be declared for the output ports, but it is possible. Undeclared
types can be inferred. Essentially, the input record has to contain a field with a corresponding label
for every output port, and the type of each output port has to be compatible with the type of that
field. This is expressed using the three type constraints in Figure 4.7.

constructRecordType(connectedOutputs) ≤ τinput (4.14)

τinput ≤ {p = > | p ∈ connectedOutputs} (4.15)

∀ p ∈ connectedOutputs [extractRecordType(τinput, p) ≤ τp] (4.16)

Figure 4.7: Type constraints internal to RecordDisassembler.

The first type constraint, shown in Equation 4.14, involves the monotonic function construct-
RecordType(P ) which constructs a RecordType that has corresponding fields for every port in a list
provided by the argument P . The labels match the names of the ports on the list, and the types are
equal to the currently inferred or declared types of the respective ports. Only the connected output
ports are passed on to the function, as others pose no requirement on the contents of the input record.

The first type constraint requires the input type to be a RecordType of which each field is greater
than or equal to the type of that field in the RecordType returned by constructRecordType(P ). How-
ever, since width-subtyping for records is defined such that a record with fewer types is greater than
a record with more types, this single constraint could be trivially satisfied using an empty record.
A second constraint is set up to preclude this trivial solution and ensure that every output port is
indeed represented by a field in the input record.

The second type constraint, given in Equation 4.15, sets the input type to be less than or equal
to a constant RecordType that contains a label for every output but sets the type for every field
to >. Since any type is less than or equal to >, this constraint does not impose any restriction in
terms of depth-subtyping. Instead, by means of width-subtyping, it forces the input type to be a
RecordType that minimally contains a corresponding label for every connected output port.
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constructRecordType(P ) = {p = τp | (p, τp) ∈ P} (4.17)

extractF ieldType(τRecord, name) =

 ⊥ if τRecord = ⊥
τname if τRecord = {l : τl | l ∈ L} ∧ name ∈ L
> otherwise

(4.18)

Figure 4.8: Monotonic functions used in type constraints for records.

The third type constraint, presented in Equation 4.16, is set up for each output port, and in-
volves a monotonic function extractF ieldType(τinput, name) that extracts the type from the field
inside the input record of which the label corresponds to the given port name. The argument τinput
represents the type variable associated with the input port of the RecordDisassembler. The name
parameter is used to look up the type of the corresponding field inside the RecordType. If a matching
label is found, the function returns the associated type, or > otherwise. The latter requires some
explanation. Intuitively, it does not make sense for the function to return > if no matching label is
found. One would expect it to return ⊥ instead. Since there is no type variable or constant to draw
a type from, ⊥ seems appropriate.

The reason that extractF ieldType(τinput, name) has to return > if no matching label is found, is
to preserve monotonicity. This has everything to do with the width-subtyping relation of structured
types. Monotonicity requires that:

τ1 ≤ τ2 ⇒ extractF ieldType(τ1, name) ≤ extractF ieldType(τ2, name) (4.19)

Assume that name = b, τ1 = {a = Boolean, b : Int}, and τ2 = {a = Boolean}. Then τ1 ≤ τ2,
but since the label b is not present in τ2, extractF ieldType(τ2, name) ends up in the second case
of its function description, where according to the monotonicity property it must return something
that is greater than or equal to extractF ieldType(τ1, name). This requirement is always satisfied
by returning >. In the configuration in which extractF ieldType(τinput, name) is used, however, it
will always find a matching label since the inequality in Equation 4.15 ensures that a matching label
is present for each output port.

Whereas the last two type constraints are strictly required to assure type safety, the first type
constraint serves no other purpose than to back propagate type information from the output ports
to the input port. This backward type constraint it is responsible for pushing up the types of the
fields of the input record to the same level as the types of the output ports during type resolution.

4.5.4 RecordAssembler

The RecordAssembler actor assembles the tokens it receives on its input ports into a record and
sends it out on its output port. It is used in a similar way as RecordDisassembler; input ports can be
added after instantiating the actor, and the names of the input ports must correspond to the labels
associated with the values that are assembled into the output record.

Analogous to RecordDisassembler, the types of the input tokens must match the types of the
fields in the record. Not only should the types of the inputs be compatible with (i.e., losslessly
convertible into) the types of the fields in the output record, but in order for type information to
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back propagate from the output to the inputs, they need to be equal. However, to construct a
maximally permissive set of type annotations, there is no need for every input port to be repre-
sented by a label in the type of the output record. After all, downstream actors might not require
a record with all provided fields; the minimally required label set will suffice to guarantee type safety.

Figure 4.9: Record assemblage and disassemblage without backward type inference.

The type constraints internal to the RecordAssembler, listed in Figure 4.10, make use of the same
monotonic functions as the RecordDisassembler that are shown in Figure 4.8.

constructRecordType(connectedInputs) ≤ τoutput (4.20)

∀p ∈ UndeclaredConnectedInputs extractF ieldType(τoutput, p) ≤ τp (4.21)

Figure 4.10: Type constraints internal to RecordAssembler.

The first type constraint, given in Equation 4.20, requires the types of the input ports to be
compatible with i.e., losslessly convertible into the types of the corresponding fields in the output
record. Again, unconnected ports are ignored. This constraint can be viewed as a forward con-
straint, because during type inference it is responsible for pushing up the type of the output port
based on the types of the input ports. This makes type information propagate in a forward direction.

The second type constraint, presented in Equation 4.21, does nothing to ensure type compat-
ibility, but allows type information to propagate in the opposite direction; from the output port
to toward the input ports. Together with the first type constraint, it forces the input types to be
exactly equal to the types of the corresponding fields in the output record. Because the second con-
straint is intended to back propagate type information upstream, and not to assure type safety, this
constraint is only set up for input ports that are connected, and do not already have a type declared.
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The simple model in Figure 4.9 parses a number of expressions, assembles them into a record
and then immediately disassembles the record en shows the obtained values. The MonitorValue
actors declare a type for their inputs, but the rest of the types are not successfully inferred because
ExpressionToToken is unable to determine a type for its output port. Figure 4.11 shows the same
model, but now with the additional backward type constraints. This allows the types declared by the
MonitorValue actors to back propagate all the way to the ExpressionToToken actors, thereby solving
all type errors. Also note that the ports on the RecordAssembler and RecordDisassembler that are
left unconnected, are not represented in the inferred record types.

Figure 4.11: Type errors resolved using backward type inference.

4.6 Sink actors & Polymorphism

The actors discussed so far have both inputs and outputs. Backward constraints make the types
of inputs to depend on the types of outputs, thereby letting type information propagate upstream
during the type inference process. Sink actors do not have outputs. However, the type variable
associated with their input port might very well be on the end of a chain of underdetermined type
variables that need to be bounded from below. In that case, if the sink actor does not declare a type
for its input, there is no constant to bound upstream type variables from below.

If in the context of backward type inference sink actors should the declare an input type, then
the question is what type it should be. The discussion in Section 3.5 provides an answer to this
question; we use the most general type the actor can handle, provided that:

1. the type maps to a token class that is a common base class for all the tokens it supports;

2. the conversion method of the type does not do an actual conversion.

What this establishes is that the input is limited to tokens that implement the interface associated
with the declared type. This is perfectly reasonable for sink actors that rely on Java’s subtyping
mechanisms to implement polymorphism. In fact, all true sink actors that are currently in the
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Ptolemy II actor library, qualify as such. Examples are: Display, Recorder, MonitorValue, Discard,
XYPlotter, ArrayPlotter, and so forth. An actor like SetVariable might conceptually look like a sink,
but it is type dependent on the variable that it is supposed to set. Therefore, it can impose a
backward type constraint to back propagate that type.

Because it is desirable to be able to override the types with a manual type declaration, and
also switch between modes where backward type inference is enabled or disabled, the current im-
plementation demands that instead of a declaring the input type using the method setTypeEquals(),
a type constraint of the form c ≤ τinput is used to force the input type up to c. This constraint
is like a backward type constraint with a constant on the left-hand side instead of a type variable
corresponding to a downstream port. Note that this constraint must be combined with the upper
bound τinput ≤ c to enforce that no type greater than c is acceptable.

Figure 4.12: An expression evaluator model with underdetermined outputs.

Consider the example model in Figure 4.12 (model originally created by Edward A. Lee). The
model has an InteractiveShell that has two input ports; one for specifying a prompt message and
another to feed console output into. When the model runs, the InteractiveShell opens up a console
and displays a message and a prompt. It captures input entered into the console, and then forwards
it to an ExpressionToToken actor. The ExpressionToToken actor attempts to parse the expression
it receives, and feeds the result into a SampleDelay, which routes it to back the InteractiveShell for
display. The SampleDelay is used to break the dependency cycle in this SDF model, and in addition
it provides an initial message to display on the console. The SampleDelay can infer its output type
based on the expression given for its initialOutputs parameter, which in this case is a String.

Figure 4.13: An expression evaluator model with backward inferred outputs.
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The model has a feedback loop, but type-wise it is broken up in separate parts. The actors like
ExpressionToToken that inspired the idea of backward type inference, have an important property
in common with sink actors; the types of their inputs and outputs do not correlate. Similarly, the
InteractiveShell is both a sink and a source, but there exist no type constraints between its inputs
and outputs. The input is displayed on the console and the output is obtained from the user, so any
type correlation, if it exists, would be accidental.

With backward type inference, the underdetermined output ports in the expression evaluator
model can successfully resolve to a type greater than ⊥. Aside the default backward constraints
along relations, two things are required. First, the SampleDelay actor needs to impose the backward
constraint τoutput ≤ τinput, which together with the existing constraint τinput ≤ τoutput, unifies the
types of its ports. Second, in order to achieve a maximally permissive type assignment, the Intera-
tiveShell must declare for its input the most general type it can handle. Because this actor simply
displays all input as a String, it merely requires the method toString() to be present, which is the
case for all subclasses of Token, therefore > the most general type InteractiveShell can handle. The
type assignments obtained through backward type inference are shown in Figure 4.13.

The fact that in this example all formerly underdetermined type variables resolve to >, might
raise the question why the downstream InteractiveShell actor had to declare its input as >, such that
the type could then back propagate upstream and push up underdetermined type variables. It would
be a lot easier to just have ExpressionToToken declare its output as > directly. In this particular
situation, that approach would have worked, but if downstream inputs would have been constrained
to a more specific type than >, a type conflict would have occurred. An example of this is depicted
in Figure 3.7. Simply declaring an actors’ underdetermined outputs to be of type >, severely limits
composability. On the other hand, for sink actors (i.e., actors for which the types of their output
ports, if present, do not depend on the types of their inputs), we can declare the input type to be a
general as possible without limiting the composability of the actor.

4.6.1 AddSubtract

The AddSubtract actor, and its quirks, have been discussed extensively in Section 3.5. Having al-
ready pointed out a number of problems with this actor, together with the fact that it is possibly
one of the most used actors in the Ptolemy II library, makes it an interesting case to investigate in
the context of backward type inference.

It was already argued that this type of actor cannot statically declare its input type as gen-
eral as possible, because the type of its output must be greater than or equal to this type, which
is likely to cause unnecessary type conflicts further downstream. Because AddSubtract unifies the
types of its inputs by taking their least upper bound, there is no need for AddSubtract to backward
infer anything if at least one of the inputs can infer a type using forward propagation constraints.
Consider the example model in Figure 4.14 (model originally created by Edward A. Lee), which is
same the model as in the previous example, but now extended with an AddSubtract actor. Backward
type inference is enabled, but the AddSubtract actor does not impose any backward type constraints.

Clearly, the model is well-typed, but a closer look tells that this is not a desirable set of type
assignments at all. Whereas the ExpressionToToken actor can in principle parse any token out of an
input string, and the AddSubtract actor is polymorphic, the backward inferred types do not allow
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ExpressionToToken to output tokens that are strictly greater than Int. Entering the value 1.0 into
the console does not yield the expected value 2.0, but results in an error because Double > Int.

Figure 4.14: An expression evaluator model that is more constrained than necessary.

If we introduce the backward type constraint τoutput ≤ τplus, this problem is resolved; the
inferred types are no longer too strict. The result is shown in Figure 4.15. Any expression can be
entered into the console, and as long as the AddSubtract actor supports the token, it will operate
on it, or otherwise throw an exception. The latter is a peculiar property of AddSubtract; it makes
use of the method Token.add() which simply returns an exception with a “not supported” message.
Only subclasses of Token that override this method can give it a meaningful implementation. This
actually defeats the purpose of static typing, which should establish that if a token is of a certain
type, then run-time type errors are guaranteed not to occur. A summary of the type constraints
internal to AddSubtract is given in Figure 4.16.

Figure 4.15: An expression evaluator model that is maximally permissive.

The fact that backward type inference gives this model a set of type assignments that let the
model work as expected, can not only be attributed to the use of backward type constraints. Of
course it also matters what the type is that gets back propagated. In this case, it is the Interac-
tiveShell that declares its input to be >, which bounds upstream type variables from below. But
what would happen if a more specific type would propagate upstream?
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τplus = τminus (4.22)

τplus ≤ τoutput (4.23)

τoutput ≤ τplus (4.24)

Figure 4.16: Type constraints internal to AddSubtract.

Consider the example model in Figure 4.17 where the InteractiveShell declares its input to be
String. Again, the model is well-typed and the type assignments are the least bit surprising. How-
ever, if we run the model, the exhibited behavior is rather unexpected.

Figure 4.17: An expression evaluator model that shows interference between backward type inference
and automatic type conversion.
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Declaring the input of InteractiveShell to be of type String is perfectly reasonable, because after
all, the received tokens will be displayed as a String in the console. The only expected difference in
the behavior of the model, would be that a token that is incompatible with String, would no longer
be accepted as input for InteractiveShell, but would trigger a runtime type checking exception in-
stead. Back propagating the type String would only cause the conversion into StringToken to happen
further upstream. The problem here, is that the conversion happens too far upstream. As a result,
AddSubtract starts doing string concatenation instead of scalar addition. This issue can be explained
as a problem with coercion, or a problem with overloading of the AddSubtract actor.

It may be considered impure to combine two entirely different “add” operations in a single actor
(or as implementations of a single Java interface, for that matter), but one could argue that it is
convenient. Whether the same always holds for automatic type conversion, is not that evident. In
[Xiong, 2002] it was argued that coercions happen frequently in programming and therefore it would
be convenient to have them automated, but the use of automatic type conversion might be more
limited than it seems.

If an actor exhibits parametric polymorphism i.e., its implementation is entirely unaware of
types, it has no need for type conversions. Other polymorphic actors, the ones that use Java’s
interface inheritance and dynamic dispatch mechanism to implement inclusion polymorphism, are
not always helped by automatic type conversion either. In fact, in Section 3.5 it was demonstrated
that automatic type conversion can interfere with dynamic dispatch which may lead to unexpected
behavior.

Automatic type conversion may be needed when a port can resolve to a type that has subtypes
in the lattice of which the token representations are not subclasses of the token class corresponding
to the inferred type. If the actor relies on an interface that is not implemented by all subclasses
of the token it expects on basis of the inferred type, then automatic coercion converts incoming
tokens into objects that do offer that interface. In Section 3.5, this mechanism was described as
coercive default inheritance. For actors that rely exclusively on a property that is shared by all
tokens, coercion is superfluous. Examples of the latter are: Display which uses Object.toString(); and
AddSubtract which uses Token.add() and Token.subtract().

For actors that do not benefit from automatic type conversion, it makes sense to disable it. If we
augment the TypedIOPort class with the methods enableTypeCoercion() and disableTypeCoercion(),
actors can individually specify the appropriate behavior for each of their ports. This would solve
the problems with improper and premature coercion, including the issue illustrated with the model
in Figure 4.17. However, in order to assure that no premature coercion takes place in a setting with
backward type inference, it is required that none of the upstream actors coerce their inputs into a
backward inferred type that is presumably more general than strictly necessary.
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Discussion & Conclusions

The Ptolemy II type system was extended with a type inference mode that assigns static, yet
maximally permissive types, to dynamic data. The types for otherwise underdetermined outputs
are backward inferred based on type constraints imposed by downstream actors. This is achieved
using additional type constraints, leaving the original type resolution algorithm unchanged. The
extension has no significant impact on the run-time of type resolution. Type errors are trapped at
run-time as early as possible, directly at the source. This allows actors to invoke error handling
strategies that improve robustness.

5.1 Using backward type inference

The work described in Chapter 4 has been incorporated in the Ptolemy II development tree and will
be available in the next major release. The source code and the nightly build are available from:

http://chess.eecs.berkeley.edu/ptexternal/

Backward type inference is not enabled by default. It can be enabled or disabled on the gran-
ularity of an individual composite actor using the parameter enabledBackwardTypeInference. The
method isBackwardTypeInferenceEnabled() which is available in both TypedAtomicActor and Typed-
CompositeActor looks for this parameter by increasing scope until the parameter is found, or the
top level composite is reached. The top level composite always has the parameter, and it can be set
through the context menu (right click, or CTRL-click on the background of the model) by selecting
Customize → Configure, after which the dialog in Figure 5.1 should appear.

Figure 5.1: Dialog for enabling backward type inference.
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Individual actors can be suited with backward type constraints by overriding the method cus-
tomTypeConstraints() that is inherited from TypedAtomicActor. The method isBackwardTypeInfer-
enceEnabled() can be used to condition the activation of type constraints.

5.2 Limitations & Trade-offs

Backward type inference provides a solution to the problem of handling dynamic data in a statically
typed environment. It allows actors that mediate access to untyped data to omit type declarations
from their output ports and have maximally permissive types backward inferred based on type con-
straints that are imposed by downstream actors. However, the solution involves trade-offs and has
limitations.

The type resolution algorithm in Ptolemy II is aimed at finding the most specific consistent type
assignments, which is a valid goal from an implementation cost perspective, particularly when want-
ing to do code generation. This is at odds with the idea of maximally permissive type assignments,
which are supposed to be least specific. This is clearly a trade-off between flexibility and performance.

It has been established that the most specific solution coincides with the least fixed point (LFP)
of the system of inequality constraints imposed by the configuration of actors. The maximally per-
missive solution lies beyond the LFP, but it must not be confused with the greatest fixed point
(GFP). We use backward type inference instead of targeting the GFP (which if consistent, is ar-
guably maximally permissive), because the GFP is a lot less likely to be consistent. Since the GFP
is more general than the LFP, it is less likely to satisfy the limitation constraints. This is illustrated
in Figure 3.2.

Many examples were provided to explain how backward type inference establishes maximally
permissive types for output ports that otherwise would have been left underdetermined. However,
there is one specific case for which the current implementation does not provide a solution. This
case is illustrated by Figure 5.2. In this very simple example, a String is meant to be parsed by an
ExpressionToToken after which the resulting token is to be sent to two different actors. The Array-
Plotter declares an input type, arrayType(double). The Expression actor declares no types, nor can it
infer any because the type of its expression depends on the PortParameter input, the type of which
is underdetermined.

Figure 5.2: Problem with backward type inference over one-to-many relations.
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One could argue that the appropriate type assignment for ExpressionToToken.output and Expres-
sion.input (and Expression.ouput, for that matter), would be ArrayType(Double). After all, this is the
most general type that both ArrayPlotter and Expression would accept. The problem is, the back-
ward constraint ArrayPlotter.input u Expression.input ≤ ExpressionToToken.output yields ⊥ because
Expression.input = ⊥. In general, the greatest lower bound of any set of type variables of which one
or more are equal to ⊥, yields ⊥. This means that in any one-to-many configuration where during
the type inference process one of the downstream inputs remains underdetermined, backward type
inference fails.

To overcome this problem, a more sophisticated approach is required. Presumably, the key to a
solution lies within the graph structure of model. In Chapter 4 it was explained that type constraints
constitute dependencies between type variables that, directly or by transitivity, depend on type con-
stants. Backward type inference involves adding dependency relations between type variables and
replacing type variables with constants. The former is achieved using backward type constraints,
and the latter is done by having generic sink actors statically declare the type of their inputs.

A promising idea that needs further investigation is a two stage approach to backward type
inference. In the first stage, only the backward type constraints within actors are enabled. If after a
first run of the Rehof and Mogensen algorithm, the obtained least fixed point yields a solution that
is consistent and has no ⊥ assignments in it, the solution is accepted. If the solution if inconsistent,
the solution is rejected. However, if the solution is consistent but does have ⊥ assignments in it,
backward type constraints between actors could be added selectively to build the necessary depen-
dencies to raise underdetermined type variables to a higher type in a second run.

This approach has two potential advantages. Firstly, the graph structure of the model can be
taken in consideration to formulate a more expressive backward type constraint. E.g., it would be
possible to be specific about which type variables to include in a greatest lower bound, thereby
avoiding the problem illustrated in Figure 5.2. Secondly, because backward type constraints are not
enabled along every relation, but only along the ones that provide the necessary dependencies to
connect an underdetermined variable with a constant, the obtained solution is closer to the original
goal of finding the most specific set of type assignments. This yields a solution that is most specific
if possible and maximally permissive if needed.

5.3 Other problems

Two independent mechanism are used to achieve polymorphism in Ptolemy II; automatic type con-
version and dynamic dispatch. These operations are not commutative, so it matters in what order
they occur. Some of the types in the type lattice represent Java interfaces rather than instantiable
types, which means their conversion method does not actually convert. Therefore, different type
assignments may cause unexpected changes in behavior. Backward type inference exacerbates these
problems because it causes coercions to happen further upstream, which flips around the order in
which coercion and dispatch takes place.

For parametric polymorphic actors that are entirely unaware of types, automatic type conver-
sion has no purpose. Actors that use Java’s interface inheritance and dynamic dispatch mechanism
to implement inclusion polymorphism, need to have the original instances of tokens exposed to their
implementation, but type conversions discard those. For actors that rely exclusively on a property
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that is shared by all tokens, it makes sense to disable automatic conversions.

The need for automatic type conversion emerges from the fact that subtype relations in the
type lattice are not reflected by the class hierarchy of the corresponding token implementations. For
nominal subtypes, coercion would become entirely obsolete if every subtype would represent a Java
interface, and a subtype relation in the type lattice would imply an inheritance relation between the
associated Java interfaces (i.e., τ1 ≤ τ2 ⇒ I1 ⊆ I2). For structured types, automatic type conversion
could be a means to make access to record fields type safe, but the current implementation leaves
this opportunity unused, as it omits an actual conversion. The proposed solution is to change the
conversion of records such that it hides fields that are not present the type. Hidden fields would still
be accessible, but only after an explicit conversion.

5.4 Future work

There are quite a few ideas, recommendations, and questions expressed in this thesis that are worth
further exploration. To start with, the two stage variant of the Rehof and Mogensen algorithm
sketched out in Section 5.2 is already a prelude to further improvements of the backward type in-
ference mechanism.

Another issue is that in order to make backward type inference generally usable, is that many
actors still need to be fitted with backward type constraints such that they back propagate type
information upstream. These actors are characterized by having custom type constraints to facilitate
forward propagation and downstream compatibility as well.

Error handling strategies were mentioned, but not addressed in great detail. Backward inferred
maximally permissive types create the conditions where run-time type checking can be leveraged to
execute customized error handling strategies upon type problems with unreliable data sources. It
requires more investigation to decide what these strategies should be.

Issues with the type safety of records have been pointed out and a possible solution is given.
The implementation of this solution should be straightforward.

Finally, the problems with the interactions between coercion, dynamic dispatch, and type infer-
ence demand a solution. The proposed idea to disable automatic type conversion for some actors is
a somewhat ad-hoc solution, whereas the idea to match the subtype hierarchies of Ptolemy II types
with Java interfaces that corresponding tokens representations must implement, is more structural,
but a lot more involved.
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