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Abstract

Performance Analysis of Nonlinear Systems Combining Integral Quadratic Constraints and
Sum-of-Squares Techniques

by

Melissa Erin Summers

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences
and the Designated Emphasis

in
Computational Science and Engineering

University of California, Berkeley

Professor Andrew Packard, Co-chair

Professor Murat Arcak, Co-chair

This thesis investigates performance analysis for nonlinear systems, which consist of both
known and unknown dynamics and may only be defined locally. We apply combinations of
integral quadratic constraints (IQCs), developed by Megretski and Rantzer, and sum-of-
squares (SOS) techniques for the analysis.

In this context, analysis of stability and input-output properties is performed in three
ways. If the known portion of the dynamics is linear, the stability test from Megretski and
Rantzer, which generalize early frequency-domain based theorems of robust control (Zames,
Safonov, Doyle, and others), are well suited. If the known portion of the dynamics is nonlin-
ear, frequency domain methods are not directly applicable. SOS methods using polynomial
storage functions to satisfy dissipation inequalities are used to certify the stability and per-
formance characteristics. However, if the known dynamics are high dimensional, then this
approach to the analysis is (currently) intractable. An alternate approach is proposed here to
address this dimensionality issue. The known portion is decomposed into a linear intercon-
nection of smaller, nonlinear systems. We derive IQCs satisfied by the nonlinear subsystems.
This is computationally feasible. With this library of IQCs coarsely describing the subsys-
tems’ behaviors, we apply the techniques from Megretski and Rantzer to the interconnection
description involving the known linear part and all of the individual subsystems.

Traditionally, IQCs have been used to cover unknown portions of the dynamics. Our
approach is novel in that we cover known nonlinear dynamics with IQCs, by employing SOS
methods including novel techniques for estimating the input-output gain of a system. This
perspective is a step towards reducing the dimensionality of the analysis of large, intercon-
nected nonlinear systems.
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The IQC stability analysis by Megretski and Rantzer is only applicable for systems that
are well-posed in the large. This thesis makes contributions towards extending this anal-
ysis for with more limited notions of well-posedness. We define the notion of a local or
“conditional” IQC, and develop a new test to verify stability and performance criteria.

We also study a specific class of interconnected, passive subsystems. If the subsystems
also exhibit gain roll-off at high frequencies, one would expect improved analysis results.
In fact, we characterized the gain roll-off property as an integral quadratic constraint, and
achieved an improved bound on the performance with respect to the allowable time delay in
order for the interconnected system to remain stable. In the case where the interconnection
is cyclic, we derive an analytical condition for stability.
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Chapter 1

Introduction

This thesis investigates performance analysis for nonlinear systems, which consist of both
known and unknown dynamics and may only be defined locally. We apply combinations
of integral quadratic constraints (IQCs), developed by Megretski and Rantzer, and sum-of-
squares (SOS) techniques for the analysis.

In this context, analysis of stability and input-output properties is performed in three
ways:

1. If the known portion of the dynamics is linear, the stability test from Megretski and
Rantzer, which generalize early frequency-domain based theorems of robust control
(Zames, Safonov, Doyle, and others), are well suited;

2. If the known portion of the dynamics is nonlinear, frequency domain methods are
not directly applicable. SOS methods using polynomial storage functions to satisfy
dissipation inequalities are used to certify the stability and performance characteris-
tics. However, if the known dynamics are high dimensional, then this approach to the
analysis is (currently) intractable;

3. an alternate approach is proposed here to address this dimensionality issue. The known
portion is decomposed into a linear interconnection of smaller, nonlinear systems. We
derive IQCs satisfied by the nonlinear subsystems. This is computationally feasible.
With this library of IQCs coarsely describing the subsystems’ behaviors, we apply the
techniques from Megretski and Rantzer to the interconnection description involving
the known linear part and all of the individual subsystems.

Traditionally, IQCs have been used to cover unknown portions of the dynamics. This
third approach is novel in that we cover known nonlinear dynamics with IQCs. We employ
SOS methods to generate IQCs to cover the known dynamics. In particular, the IQCs
established in this thesis involve estimating the L2 → L2 norm of a system with a linear
offset and a weight. Many weights and linear offsets can be chosen, which in turn establishes
many local IQCs for the system. Ultimately, we envision the possibility of creating large
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libraries (with hundreds of thousands of entries) of small (1-3 state) nonlinear system models,
each with an associated (long) list of IQCs which the model satisfies (locally). A large
system can be decomposed into and interconnection, and the interconnection can be quickly
analyzed, using the library. If the analysis is inconclusive, an alternative decomposition
can be proposed, and the analysis repeated. This approach is a step towards reducing the
dimensionality of the analysis of large, interconnected nonlinear systems.

The IQC stability analysis by Megretski and Rantzer is only applicable for systems that
are defined on all of L2e and bounded on L2. We extend the stability test to include in-
terconnections of many locally stable operators which satisfy many local IQCs. This thesis
makes large contributions towards extending this analysis for local systems. We define the
notion of a local or “conditional” IQC. For systems which satisfy local IQCs, we develop a
new test to verify stability and performance criteria.

In Chapter 2 we develop theoretical and numerical tools for quantitative local analysis of
nonlinear systems. Specifically, sufficient conditions are provided for bounds on the reachable
set and L2 gain of the nonlinear system subject to norm bounded disturbance inputs. The
main theoretical results are extensions of classical dissipation inequalities but enforced only
on local regions of the state and input space. Computational algorithms are derived from
these local results by restricting to polynomial systems, using convex relaxations, e.g. the
S-procedure, and applying sum-of-squares optimizations. Several pedagogical and realistic
examples are provided to illustrate the proposed approach.

In Chapter 3 we first recall the definitions of IQCs, stability theorems [59], and perfor-
mance analysis techniques using IQCs [4]. We introduce the definition of a local IQC for a
bounded, causal operator which is defined locally. We outline a procedure for establishing
local IQCs using linear offsets, linear weights and estimates of local L2 gains. We show how
SOS methods can be used to generate these IQCs and present and example demonstrating
the technique. The stability criteria for [59] rely on the operators being defined on all of
L2e and bounded on L2. We present conditions in which a global extension, which meets
the criteria of [59], of a local operator exists and satisfies the same IQC on all of L2. If an
operator satisfies many IQCs, then it also satisfies a positive combination of those IQCs.
We show if a local operator satisfies a special class of IQCs, then an extension which also
satisfies an IQC in that class exists. For a special class of parameterized systems, we show
how IQCs for one system in the paramter space map to IQCs for another system with a
different choice of parameters using input-output and time-scaling.

In Chapter 4 we tie together concepts addressed in 3 to establish performance analysis
for interconnections of systems who satisfy local IQCs. First, we develop a frequency domain
performance analysis test for a system with a single operator which satisfies a single, local
IQC. Next, we extend frequency domain results for a single operator which satisfy many
local IQCs. Finally, we address techniques for evaluating performance criteria for an inter-
connection of many operators, each with satisfy many local IQCs. For this most general
case, a state-space condition is presented for the case when the performance metric is an
L2 → L2 gain criteria. An example of an interconnection of three systems, which each satisfy
many IQCs is presented. We compare the frequency domain IQC analysis with a direct SOS
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approach and a worst-case input simulation.
In Chapter 5 we consider networks of passive systems with time delays in the intercon-

nections, and present a stability analysis technique with the help of the integral quadratic
constraint (IQC) framework. Unlike the classical passivity approach that fails to characterize
delay robustness, and the small-gain approach that conservatively accounts for arbitrarily
large delays, the new technique gives sharp stability estimates that depend on the duration
of delay. Since the effect of delay depends on its duration relative to the time scales of the
system, we make use of a “roll-off” IQC that captures magnitude roll-off at high frequencies,
thus, providing the critical time-scale information. We then combine this roll-off IQC with
an output strict passivity IQC that incorporates gain and phase information, and demon-
strate the benefit of this combined IQC approach on a cyclic interconnection structure with
delay. Finally, we develop a technique to verify these IQCs for classes of nonlinear state-space
models and present an example from Internet congestion control.

Chapter 6 presents the conclusions and suggestions for future research.
The Appendix lists notation, facts, lemmas and proofs concerning functional analysis,

Lipschitz extensions, polynomials, sum-of-squares, and the s-procedure.
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Chapter 2

Performance Characterizations

2.1 Context and Acknowledgements

We rely on the notions of the performance characterizations for L2 gain and reachability,
and the sum-of-squares (SOS) techniques used to estimate the performance characterizations
in subsequent chapters. This material is to appear in the International Journal of Robust
and Nonlinear Control, co-authored by Abhijit Chakraborty, Weehong Tan, Ufuk Topcu,
Peter Seiler, Gary Balas, and Andrew Packard entitled “Quantitative Local L2-gain and
Reachability Analysis for Nonlinear Systems”.

2.2 Introduction

We focus on dynamical systems governed by differential equations of the form

ẋ(t) = f(x(t)) + g(x(t))w(t), (2.1)

z(t) = h(x(t)), (2.2)

where t ∈ R, x(0) = x0 ∈ Rn, x(t) ∈ Rn, z(t) ∈ Rp, w(t) ∈ Rm. The functions f : Rn →
Rn, g : Rn → Rn×m and h : Rn → Rp are assumed to be Lipschitz continuous, or locally
Lipschitz continuous, depending on the situation. If f and g are not Lipschitz continuous (as
in the case of polynomial f and g, for example), then the differential equation may exhibit
finite escape times in the presence of bounded inputs and/or initial conditions.

There is a large literature on input/output gain of nonlinear dynamical systems described
by ordinary differential equations (ODEs) [76, 39]. Disturbance rejection and noise insensi-
tivity are critical metrics of performance in a closed-loop control system, and being able to
quantify such metrics allows one to discriminate among competing designs. The importance
of the gain, and other general properties of dissipativeness (e.g., passivity, or more gen-
eral forms) is realized in hierarchical interconnection theorems, such as small-gain, passivity
theorems, and integral quadratic constraints, where coarse input/output properties of a col-
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lection of individual subsystems can be used to infer properties of specific interconnections
of these components, [103, 101, 27, 59, 99, 5].

The overarching goal of the research, reported here and in related papers, [83, 89, 91, 90,
82] is quantitative, local analysis of nonlinear dynamical systems. By “quantitative” we mean
algorithms and sufficient conditions which lead to concrete guarantees about a particular
system’s response. By “local” we refer to guarantees about the reachability and/or system
gain which are predicated on assumptions concerning the magnitude of initial conditions
and input signals. We extensively use, without further citation, the basic, fundamental
ideas from dissipative systems theory [100], [40], barrier functions and reachability [97],
[71], and nonlinear optimal control [76], [39]. Specifically, we employ inequalities involving
the Lie derivative of a scalar function, the storage function, that hold throughout regions
of the state and input space, which when integrated over trajectories of the system, give
certificates of input/output properties of the system. The necessity of the existence of
such storage functions to prove input/output properties, which leads to the most elegant
results of the above mentioned works, is actually not used. Our computational approach
is based on polynomial storage functions of fixed degree which can be viewed as extensions
of known linear matrix inequality conditions to compute reachable sets and input/output
gains for linear systems [12]. Due to the restriction to polynomial storage functions our results
typically do not approach the theoretical optimal storage functions. Current theoretical work
is addressing the necessity of polynomial storage functions for systems with polynomial vector
fields, and is of deep theoretical importance for our work. Some results, [69] are positive,
while others are negative, [1, 2].

A number of recent publications have used sum-of-squares relaxations for polynomial op-
timization in the analysis of dynamical systems or design of feedback control laws. Reference
[29] derives sufficient conditions based on dissipation inequalities for a number of interest-
ing questions, including analysis of minimum phase behavior and design of synchronizing
feedback. The formulations are not local, as the sufficient conditions are imposed through-
out the entire state space. Similar techniques are used in [63] for global reachability and
input-output gain analysis.

Reference [72] studies a rich set of system models, encompassing hybrid dynamics with
polynomial vector fields for the continuous evolution. This and related work, [73], derives
sufficient conditions, based on barrier certificates, for the verification of a set of temporal
properties, including safety, reachability, and eventuality. An alternative approach on quan-
titative analysis of dynamical systems is based on the computation of reachable sets in the
state space as the solution of certain Hamilton-Jacobi-Isaacs partial differential equations
[88]. The toolbox in [60] provides an implementation of this method using level set methods.

Two recent works that are very similar in spirit to this research are [24] and [105]. Refer-
ence [24] uses local dissipation inequalities (similar to those used here but with a restricted
class of supply rates) to characterize input-output gain properties of nonlinear systems. We
assume the disturbance inputs are such that the state remains within a specified region. For
systems with vector fields rational in the states, it provides semidefinite programming based
methods to search for polynomial storage functions that satisfy these dissipation inequalities.
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Reference [105] introduces a nonlinear L2 gain function that bounds the output L2 norm as
a function of the input L2 norm. The gain function is characterized in terms of a dissipation
property of an augmented system with storage functions that are solutions of certain partial
differential inequalities.

Computing the exact region of attraction (ROA) for an equilibrium point of a nonlinear
system is a related problem, loosely corresponding to a special choice of supply rate. Most
research focuses on constructing invariant subsets of the ROA, computing a Lyapunov func-
tion and a sublevel set of this function that is a provably invariant subset of the ROA [26,
33, 94, 22, 21, 63, 36, 85, 86, 67, 23, 20, 18, 19, 104, 65, 17, 84]. Much of the recent work
uses sum-of-squares (SOS) relaxation methods to compute polynomial Lyapunov functions
for systems described by polynomial or rational dynamics. Exciting new approaches to treat
high-dimensional systems based on large-scale decomposition techniques are now available,
[3].

2.3 Reachability

In this section, we establish conditions which guarantee invariance of certain sets under
L2 and pointwise-in-time (L∞-like) constraints on w. These are subsequently referred to as
“reachability” results, since the conclusions yield outer bounds on the set of reachable states.
In that vein, w is interpreted as a disturbance, whose worst-case effect on the state x is being
quantified. We obtain bounds on x that are tightly linked with the assumed bounds on w and
x0, and specifically allow for systems which are not well-defined on all input signals (finite
escape times). Computational approaches based on the S-procedure and sum-of-squares are
introduced in Section 2.9.

A known set W ⊆ Rm is used to express any L∞-like, pointwise-in-time bound on the
signal w, namely w(t) ∈ W for all t. SettingW = Rm is equivalent to the absence of known,
pointwise-in-time bounds on w.

Theorem 2.1. Suppose W ⊆ Rm. Assume that f and g in (2.1) are Lipschitz continuous
on Rn. Suppose τ > 0, and a differentiable Q : Rn → R satisfies Q(0) < τ 2 and

Ωcc,0
Q,τ2 ×W ⊆

{
(x,w) ∈ Rn × Rm : ∇Q(x) · [f(x) + g(x)w] ≤ wTw

}
. (2.3)

Consider x0 ∈ Ωcc,0
Q,τ2 with Q(x0) < τ 2 and w ∈ Lm

2 with w(t) ∈ W for all t. If ‖w‖2
2 <

τ 2 − Q(x0), the solution to (2.1) with x(0) = x0 satisfies Q(x(t)) < τ 2 for all t, and hence
x(t) ∈ Ωcc,0

Q,τ2 for all t.

Proof. Suppose not, and define T > 0 such that Q(x(t)) < τ 2 ∀ t ∈ [0, T ) and Q(x(T )) = τ 2.
Indeed, such a T exists since x and Q are continuous and Q(x0) < τ 2. Hence, on [0, T ],
x(t) ∈ Ωcc,0

Q,τ2 . Since Q is differentiable and x is absolutely continuous and w(t) ∈ W for all
t, integrating the dissipation inequality in equation (2.3) over the interval [0, T ] gives

Q(x(T )) ≤ Q(x0) + ‖w‖2
2,T .
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Recall τ 2 = Q(x(T )), so ‖w‖2
2 ≥ ‖w‖

2
2,T ≥ τ 2 − Q(x0), establishing the result by contradic-

tion.

Remark 2.1. Without loss of generality, Q in Theorem 2.1 can be taken to be zero at x = 0.
For instance, define Q̃(x) := Q(x)−Q(0) and τ̃ 2 := τ 2 −Q(0). The conditions of Theorem
2.1 hold with Q̃ replacing Q, and the same norm bound (i.e. reachable set) is obtained.

Remark 2.2. Condition (2.3) can be equivalently expressed as

Ωcc,0
Q,τ2 ⊆

{
x ∈ Rn : max

w∈W
∇Q(x) · [f(x) + g(x)w]− wTw ≤ 0

}
. (2.4)

The next theorem relaxes the assumption that f and g are globally Lipschitz continuous
in exchange for assuming boundedness of Ωcc,0

Q,τ2 .

Theorem 2.2. Suppose f and g in (2.1) are locally Lipschitz continuous, and hence Lipschitz
continuous on any bounded set. Assume all the other conditions of Theorem 2.1 are satisfied.
If, in addition,

Ωcc,0
Q,τ2 is bounded, (2.5)

then the conclusion of Theorem 2.1 remains true.

Proof. By Lemma 7.2, since Ωcc,0
Q,τ2 is bounded, f and g can be extended to globally Lipschitz

continuous functions, f̃ and g̃ such that f(x) = f̃(x) and g(x) = g̃(x) for all x ∈ Ωcc,0
Q,τ2 . The

conditions of Theorem 2.1 hold for f̃ and g̃, and hence the conclusions apply to solutions of

ẋ(t) = f̃(x(t)) + g̃(x(t))w(t). (2.6)

Consequently, for all x0 with Q(x0) < τ 2 and w ∈ Lm
2 with ‖w‖2

2 < τ 2 −Q(x0), the solution

of (2.6) satisfies x(t) ∈ Ωcc,0
Q,τ2 for all t. Since the solution remains in the region where f = f̃

and g = g̃, it must be that the solution to (2.1) is the same function, and has the properties
as claimed.

2.4 Reachability Refinement

The sufficient conditions presented thus far consider any differentiableQ as a barrier function.
In the computational approach we pursue later, polynomials play a key role, and the choice of
Q will be restricted to polynomials of a given degree. This restriction limits the expressiveness
of Q, and may introduce “slack” in the differential inequality (DIE) (2.3), meaning that the
maximum of the DIE in (2.4) is 0 for some, but not all values of x. Here, following [83],
we partially remove the slack, yielding a function M whose sublevel sets are the same as
those of Q. The reachability bound certified by M is generally an improvement of the bound
guaranteed by Q.
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Theorem 2.3. Suppose τ > 0 and k : R→ R is piecewise continuous, with 0 < k(ξ) ≤ 1 for
all ξ ∈ [0, τ 2]. Assume that f and g in (2.1) are Lipschitz continuous, and a differentiable
Q : Rn → R satisfies Q(0) = 0 and

Ωcc,0
Q,τ2 ⊆

{
x ∈ Rn : max

w∈W
∇Q(x) · [f(x) + g(x)w]− k(Q(x))wTw ≤ 0

}
. (2.7)

Then, for all x0 ∈ Ωcc,0
Q,τ2, T > 0, with Q(x0) < τ 2 and w ∈ Lm

2 with w(t) ∈ W for all t and

‖w‖2
2,T <

∫ τ2

Q(x0)

k−1(ξ)dξ, (2.8)

the solution to (2.1) satisfies x(t) ∈ Ωcc,0
Q,τ2 for all t ∈ [0, T ].

Proof. Define M(x) :=
∫ Q(x)

0
1
k(ξ)

dξ and τ 2
e :=

∫ τ2

0
1
k(ξ)

dξ > 0. Note that τe ≥ τ and M is a

differentiable function satisfying M(0) = 0 and

∇M(x) =
1

k(Q(x))
∇Q(x).

It follows from the definitions of M(x) and τ 2
e that M(x) ≤ τ 2

e if and only if Q(x) ≤ τ 2.
Therefore

Ωcc,0
Q,τ2 = Ωcc,0

M,τ2
e
⊆
{
x ∈ Rn : max

w∈W
∇M(x) · [f(x) + g(x)w] ≤ wTw

}
. (2.9)

By Theorem 2.1, for all x0 ∈ Ωcc,0
M,τe

with M(x0) < τ 2
e , T > 0 and w ∈ Lm

2 with w(t) ∈ W for

all t and ‖w‖2
2,T < τ 2

e −M(x0), the solution to (2.1) satisfies x(t) ∈ Ωcc,0
M,τ2

e
for all t ∈ [0, T ].

Recalling (from (2.9)) that Ωcc,0
Q,τ2 = Ωcc,0

M,τ2
e

completes the proof.

Remark 2.3. The only difference between (2.4) and (2.7) is that wTw is replaced by k(Q(x))wTw.
Consequently, if k(ξ) < 1 for some ξ, then (2.7) is a stronger condition than (2.4) and, con-
sequently, the new allowable bound on ‖w‖2 in (2.8) is larger than the original bound of
τ 2 −Q(x0).

2.5 L2 Gain

In this section, we establish conditions which bound the L2 gain of (2.1) under L2 and
pointwise-in-time (L∞-like) constraints on w. The results are local, in that the obtained
bounds on the gain depend on bounds on w and x0. For the system in (2.1), recall the
following definition from [76].
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Definition 2.1. The system (2.1) is said to have finite L2 gain if there exist a finite constant
ρ > 0 and for every initial condition x0, a finite constant φ(x0) ≥ 0 such that solutions of
(2.1) satisfy

‖z‖2,T ≤ φ(x0) + ρ‖w‖2,T (2.10)

for all w ∈ L2 and for all T ≥ 0. �

Theorem 2.4. SupposeW ⊆ Rm. Assume that f , g and h in (2.1) are Lipschitz continuous.
Suppose γ > 0, R > 0, and a differentiable V : Rn → R satisfies V (0) = 0, and

Ωcc,0
V,R2 \ 0 ⊆ {x ∈ Rn : V (x) > 0} ,(2.11)

Ωcc,0
V,R2 ×W ⊆

{
(x,w) ∈ Rn × Rm : ∇V (x) · [f(x) + g(x)w] ≤ wTw − 1

γ2
hT (x)h(x)

}
.(2.12)

Consider x0 ∈ Ωcc,0
V,R2 with V (x0) < R2, T > 0 and w ∈ Lm

2 with w(t) ∈ W for all t. If

‖w‖2
2,T ≤ R2 − V (x0), the solution to (2.1) with x0 = x(0) satisfies x(t) ∈ Ωcc,0

V,R2 for all
t ∈ [0, T ] and

‖z‖2,T ≤ γ
√
V (x0) + γ ‖w‖2,T . (2.13)

Moreover, if conditions (2.11) and (2.12) hold, then any constraint on w and x0 that ensures
x(t) ∈ Ωcc,0

V,R2 for the solutions will also yield the gain bound in (2.13)

Proof. The conditions in (2.12) are stricter than the reachability conditions in (2.3), hence
the norm-bound on w ensures that the trajectories remain in x(t) ∈ Ωcc,0

V,R2 . Hence (2.12) can
be integrated over the solution on [0, T ], giving

γ2V (x(T )) + ‖z‖2
2,T ≤ γ2V (x0) + γ2 ‖w‖2

2,T .

The additional assumption that V is nonnegative on Ωcc,0
V,R2 implies

‖z‖2,T ≤ γ
√
V (x0) + γ ‖w‖2,T (2.14)

as claimed (via completion-of-squares). Finally, it is clear that the bound is true for any
w ∈ Lm

2 and x0 under the condition that the state trajectories remain in Ωcc,0
V,R2 .

Remark 2.4. The L2 gain supply rate in (2.12) (i.e., wTw − 1
γ2h

T (x)h(x)) can be replaced

by a more general supply rate r(w, h(x)). If (2.11) and the modification to (2.12) hold, then
for combinations of inputs w and initial conditions x0 which lead to x(t) ∈ Ωcc,0

V,R2 for all t,
dissipativity with respect to the supply rate r(w, z) is established, namely 0 ≤ V (x(T )) ≤
V (x(0)) +

∫ T
0
r(w(t), z(t)) dt. Then, a separate analysis, employing the results from Section

2.6 leads to explicit bounds on w and x0 which render x(t) ∈ Ωcc,0
V,R2 for all t, and hence

guarantee the dissipativeness.

Corollary 2.1. Suppose f , g and h are locally Lipschitz continuous, the conditions of The-
orem 2.4 hold and, in addition, Ωcc,0

V,R2 is bounded. The conclusion of Theorem 2.4 holds.

Proof. The proof follows by applying Lemma 7.2 to f , g and h.
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2.6 Combining reachability bounds with L2 gain

estimates

As noted in the proof of Theorem 2.4, the bound (2.13) holds for any constraint on w
and x0 which ensures that x(t) remains in Ωcc,0

V,R2 . In Theorem 2.4, one such condition is

‖w‖2
2,T < R2 − V (x0). However, it is advantageous to make a separate reachability analysis

(using a new storage function) to ascertain bounds on w which keep x(t) ∈ Ωcc,0
V,R2 . Theorem

2.5 below clarifies this process.

Theorem 2.5. Assume the conditions of Theorem 2.1 and Theorem 2.4 hold. If, in addition,

Ωcc,0
Q,τ2 ⊆ Ωcc,0

V,R2 , (2.15)

then, for all x0 ∈ Ωcc,0
Q,τ2 with Q(x0) < τ 2, T > 0, and w ∈ Lm

2 with w(t) ∈ W for all t

and ‖w‖2
2,T ≤ τ 2 − Q(x0), the solution to (2.1) satisfies x(t) ∈ Ωcc,0

Q,τ2 for all t ∈ [0, T ] and

‖z‖2
2,T ≤ γ2V (x0) + γ2‖w‖2

2,T .

Proof. The solution satisfies x(t) ∈ Ωcc,0
Q,τ2 for all t ∈ [0, T ] by Theorem 2.1. The condition in

(2.14) holds since w ∈ Lm
2 and the state trajectories remain in Ωcc,0

V,R2 by (2.15).

Obviously, the procedure described in Theorem 2.3 can be used to relax the conditions
on w such that x(t) remains in ΩQ,τ2 .

Theorem 2.6. Assume the conditions of Theorems 2.3 and 2.4 hold, and Ωcc,0
Q,τ2 ⊆ Ωcc,0

V,R2.

Then for all x0 with M(x0) < τ 2
e , T > 0, and all w ∈ Lm

2 with w(t) ∈ W for all t and
‖w‖2

2,T ≤ τ 2
e − M(x0), the solution satisfies x(t) ∈ Ωcc,0

M,τ2
e

for all t ∈ [0, T ] and ‖z‖2
2,T ≤

γ2V (x0) + γ2‖w‖2
2,T .

Proof. The solution satisfies x(t) ∈ Ωcc,0
M,τ2

e
for all t ∈ [0, T ] by Theorem 2.3. The condition in

(2.14) holds since w ∈ Lm
2 and the state trajectories remain in Ωcc,0

V,R2 by (2.15) and (2.9).

Remark 2.5. Theorems 2.5 and 2.6 can be applied to locally Lipschitz continuous f , g and
h by enforcing that Ωcc,0

V,R2 is bounded.

2.7 Reachability and gain estimates for uncertain

systems

This section extends the conditions in Theorems 2.1 and 2.4 to systems with dynamic uncer-
tainty. The uncertainty is modeled in the standard linear fractional transformation frame-
work, with the uncertain element obeying multiple, known, dissipativeness conditions.
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Consider the dynamics of a multivariable, nonlinear system, G

ẋ(t) = f(x(t)) + g1(x(t))w1(t) + g2(x(t))w2(t),
z1(t) = h1(x(t)),
z2(t) = h2(x(t)),

(2.16)

where x(t) ∈ Rn, z1(t) ∈ Rp1 , z2(t) ∈ Rp2 , w1(t) ∈ Rm1 , and w2(t) ∈ Rm2 . For notational
simplicity, define f̃ : Rn×m1×m2 → Rn as f̃(x,w1, w2) := f(x) + g1(x)w1 + g2(x)w2.

Likewise, let ∆ : Lp2

2e → Lm2
2e be a bounded, causal operator. Assume {ri : Rp2 × Rm2 →

R}Ni=1 is a collection of supply rates for which the operator ∆ is dissipative with respect to.
This means that the behavior of ∆ guarantees that the constraints∫ T

0

ri(q(t), (∆(q))(t))dt ≥ 0 (2.17)

are satisfied for all q ∈ Lp2

2,e and all T > 0.
Assume that ∆ and G form a well-posed interconnection through the constraint

w2(t) = (∆(z2)) (t) (2.18)

as shown in Figure 2.1, meaning that for any w1 ∈ Lm1
2e , and any initial condition x0, there

exists unique w2 ∈ Lm2
2e and absolutely continuous functions x, z1 and z2 satisfying equations

(2.16) and (2.18), and all causally dependent on w1. This is an assumption about the
interaction of G and ∆. It is true, for instance, if ∆ is governed by nonlinear ODEs of the
form

ξ̇(t) = a(ξ(t)) + b(ξ(t))z2(t)
w2(t) = c(ξ(t)) + d(ξ(t))z2(t)

for Lipschitz continuous functions a, b, c and d.

G

∆

��

-

�z2 w2

z1 w1

Figure 2.1: G-∆ interconnection.

The following proposition analyzes the interconnection, establishing L2 gain bounds from
w1 to z1 valid for all operators ∆ that are dissipative with respect to the supply rates
r1, . . . , rN .

Theorem 2.7. SupposeW1 ⊆ Rm1. Assume that f, g1, g2, h1, and h2 in (2.16) are Lipschitz
continuous. Let r1, . . . , rN : Rp2×m2 → R. Suppose there exist constant τ > 0, R > 0,
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nonnegative λi ∈ R, βi ∈ R, differentiable functions Q : Rn → R and V : Rn → R that
satisfy Q(0) = V (0) = 0,

Ωcc,0
Q,τ2 ⊆ Ωcc,0

V,R2 (2.19)

Ωcc,0
V,R2 \ 0 ⊆ {x ∈ Rn : V (x) > 0} (2.20)

Ωcc,0
Q,τ2 ⊆

{
x ∈ Rn : ∇Q(x) · f̃(x,w1, w2)

≤ wT1 w1 −
N∑
i=1

λiri(h2(x), w2), ∀(w1, w2) ∈ W1 × Rm2

}
(2.21)

Ωcc,0
V,R2 ⊆

{
x ∈ Rn : ∇V (x) · f̃(x,w1, w2)

≤ wT1 w1 −
1

γ2
hT1 (x)h1(x)−

N∑
i=1

βiri(h2(x), w2), ∀(w1, w2) ∈ W1 × Rm2

}
. (2.22)

Consider x0 ∈ Ωcc,0
Q,τ2 with Q(x0) < τ 2, T > 0, and w1 ∈ Lm1

2 with w1(t) ∈ W1 for all t. If

‖w1‖2
2,T < τ 2 − Q(x0), then for all ∆ dissipative with respect to the supply rates r1, . . . , rN ,

the solution to (2.16)-(2.18) with x(0) = x0 satisfies Q(x(t)) < τ 2 for all t ∈ [0, T ], and

‖z1‖2
2,T ≤ γ2V (x0) + γ2 ‖w1‖2

2,T (2.23)

Proof. Suppose there is a finite T > 0 such that Q(x(T )) = τ 2 and Q(x(t)) < τ 2 for all
0 ≤ t < T . Hence x(t) ∈ Ωcc,0

Q,τ2 for all t ≤ T . Integrate Q̇ from 0 to T , using that

x(t) ∈ Ωcc,0
Q,τ2 , and Ωcc,0

Q,τ2 is contained in the region where the dissipation inequality in (2.21)
holds. This yields

Q(x(T ))−Q(x0) ≤ ‖w1‖2
2,T −

∑N
i=1

∫ T

0

λiri(h2(x(t), w2(t)))dt

≤ ‖w1‖2
2,T .

But Q(x(T )) = τ 2, therefore ‖w1‖2
2,T ≥ τ 2−Q(x0), and the first claim is established. Recall

Ωcc,0
Q,τ2 ⊆ Ωcc,0

V,R2 , so the solutions remain in Ωcc,0
V,R2 as well. Integrating V̇ gives

V (x(T ))− V (x0) ≤ ‖w1‖2
2,T −

1
γ2 ‖z1‖2

2,T −
∑N

i=1

∫ T

0

βiri(h2(x(t), w2(t)))dt

≤ ‖w1‖2
2,T −

1
γ2 ‖z1‖2

2,T .

Since V ≥ 0 on Ωcc,0
V,R2 , V (x(T )) ≥ 0, and therefore ‖z1‖2

2,T ≤ γ2V (x0) + γ2 ‖w1‖2
2,T .

Remark 2.6. In a manner analogous to Theorem 2.2 and Corollary 2.1, results for locally
Lipschitz f , g1, g2, h1 and h2 can be derived. Assume conditions (2.19)-(2.22) hold, and in
addition, Ωcc,0

Q,τ2 is bounded. Use Lemma 7.2 to define globally Lipschitz functions f̃ , g̃i and



CHAPTER 2. PERFORMANCE CHARACTERIZATIONS 13

h̃i which equal, respectively, f, gi and hi on Ωcc,0
Q,τ2. Following (2.16), define a multivariable

system G̃ using these functions. If ∆ and G̃ form a well-posed interconnection, and ∆ is
dissipative with respect to {ri}Ni=1, then the conclusions of Theorem 2.7, still regarding the
behavior of the interconnection of ∆ and G, remain true.

2.8 Example: Application to a Locally Stable Scalar

System

In this section, we calculate, analytically, the performance characterizations, focusing on a
1-state, not-uncertain system, in order to maintain simplicity in the example.

Reachability calculations

Since (2.1) restricts the vector fields (f(x) + g(x)w) to be affine in w, the maximizing
w ∈ Rn =:W in (2.4) is 1

2
gT (x)∇QT (x). Plugging this in and setting the maximum to be zero

(the limit for (2.4) to be satisfied) gives a quadratic equality in ∇Q(x). Considering scalar
systems (n = m = 1), notate Q′(x) := ∇Q(x), and we obtain 1

4
g2(x)Q′2(x) +Q′(x)f(x) = 0.

Hence, Q′(x) = −4f(x)
g2(x)

and

Q(x) =

∫ x

0

−4f(ξ)

g2(ξ)
dξ. (2.24)

If g(x) 6= 0 for all x, then Q(x) is well defined for all x and Q′(x) [f(x) + g(x)w] ≤ w2 holds
for all x ∈ R and for all w ∈ R. Thus, (2.3) holds for any τ > 0. For such τ , if f and g are
Lipschitz continuous, then the conditions of Theorem 2.1 are satisfied. If f and g are locally
Lipschitz continuous and Ωcc,0

Q,τ2 is bounded, then the conditions of Theorem 2.2 are satisfied.

For example, consider the system ẋ = −x + x3 + w, which has finite escape times for
some inputs with ‖w‖2 ≥ 1. Equation (2.24) yields Q(x) = 2x2 − x4, illustrated in Figure
2.2.

Since f = −x+x3 is only locally Lipschitz continuous, we must choose τ such that Ωcc,0
Q,τ2

is bounded in order to apply Theorem 2.2. Clearly, for 0 < τ < 1, Ωcc,0
Q,τ2 is bounded and the

conditions of Theorem 2.2 are satisfied. For example, if τ 2 = 0.95, then Ωcc,0
Q,τ2 = [−0.88, 0.88],

illustrated in Figure 2.2. Thus, for all |x0| < 0.88 and w ∈ L2 with ‖w‖2 < 0.95 − Q(x0),
solutions satisfy |x(t)| ≤ 0.88 for all t.

L2 Gain calculations

Analogously to reachability, the maximizing w in the DIE (2.12) is 1
2
gT (x)∇V T (x) and

setting the maximum to zero yields a quadratic inequality in ∇V (x). Again, we solve this
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Figure 2.2: Illustration of Q

for a scalar system. At the maximizing w with zero as the maximum we obtain

1

4
g2(x)V ′2(x) + V ′(x)f(x) +

1

γ2
h2(x) = 0. (2.25)

Applying the quadratic formula to (2.25) yields

V ′(x) =


2
(
−f(x)−

√
f2(x)− 1

γ2 g
2(x)h2(x)

)
g2(x)

for x < 0

2
(
−f(x)+

√
f2(x)− 1

γ2 g
2(x)h2(x)

)
g2(x)

for x ≥ 0.

Setting V (0) = 0 gives V (x) =

∫ x

0

V ′(ξ) dξ. Assume g(x) 6= 0 for all x ∈ R. Note that

V ′(x) is real for all x such that f 2(x) − 1
γ2 g

2(x)h2(x) ≥ 0. Let R be such that Ωcc,0
V,R2 \ 0 ⊆

{x : V (x) > 0}. The inequality

V ′(x) [f(x) + g(x)w] ≤ w2 − 1

γ2
h2(x) (2.26)

holds for all x ∈ Ωcc,0
V,R2 and for all w ∈ R. If f , g, and h are Lipschitz continuous and

V (0) = 0, then the assumptions of Theorem 2.4 are satisfied. If f , g and h are locally
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Lipschitz continuous, V (0) = 0, and Ωcc,0
V,R2 is bounded, then the assumptions of Corollary

2.1 are satisfied.
Plugging in f(x) = −x+ x3, g(x) = 1 and h(x) = x into (2.26) yields

V ′(x) =


2
(
x− x3 − x2

√
x4 − 2x2 + 1− 1

γ2

)
for x < 0,

2
(
x− x3 + x2

√
x4 − 2x2 + 1− 1

γ2

)
for x ≥ 0

and the resultant V is illustrated in Figure 2.3 with a choice of γ = 2.

Let α =
√

γ−1
γ

and note that V (x) is real for all x such that |x| ≤ α. Thus, for any

R2 < V (α), Ωcc,0
V,R2 is bounded and Ωcc,0

V,R2 \ 0 ⊆ {x : V (x) > 0}, satisfying Corollary 2.1. For

example, let γ = 2 (V as in Figure 2.3) and R2 = 0.62, then Ωcc,0
V,R2 = [−0.68, 0.68]. Thus, by

Corollary 2.1, the solution satisfies |x(t)| < 0.68 and

‖y‖2,T ≤ 2
√
V (x0) + 2‖w‖2,T

for all |x0| < 0.68, T > 0, and all w ∈ L2 with ‖w‖2
2,T ≤ 0.62− V (x0).
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2
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V,R
2

Figure 2.3: Illustration of V with γ = 2

We can further improve the bound on the gain by exploiting the reachability argument.
From Theorem 2.5, given γ > 0, we restrict Ωcc,0

Q,τ2 ⊆ Ωcc,0
V,R2 . In the case of γ = 2 and

R2 = 0.62, we simply equate Ωcc,0
Q,τ2 = Ωcc,0

V,0.62 = [−0.68, 0.68], which results in τ 2 = 0.711.

Thus, the bound on ‖w‖2 is increased from ‖w‖2
2,T ≤ 0.62−V (x0) to ‖w‖2

2,T ≤ 0.711−Q(x0),
while the bound on the gain remains γ = 2. The increase is shown in Figure 2.4. We repeat
this procedure for a range of γ values to obtain a curve, shown in Figure 2.5, of the gain
based on the size of the input assuming x0 = 0. Note that the bound on the input approaches
1 as the gain increases, which is expected since the dynamical system under consideration
has finite escape times for some inputs ‖w‖2,T ≥ 1.
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Figure 2.4: The bound on the input is shown as a function of the initial condition x0. After
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Figure 2.5: The L2 gain bound is improved after applying Theorem 2.5

2.9 Sum-of-Squares Conditions

In this section we outline the computational methods used to verify the L2 gain and reacha-
bility conditions using SOS programming [56, 67, 66], introduced in the Appendix. Assume
f , g, and h in (2.1) are polynomials, and are therefore locally Lipschitz continuous. The Q
and V in Theorem 2.2, Corollary 2.1 and Remark 2.5 will also be restricted to be polynomial.
The S-procedure, in the Appendix, gives a sufficient condition to verify containments of sets
described by inequalities.
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Reachability, Refinement and L2 Gain Formulations

The results of Theorems 2.1, 2.2, and 2.3 show that a partial differential inequality yields
an outer bound on states reachable from a given initial condition, driven by a ball of L2

disturbances. For various sets of disturbances, the exact reachable set can be described
in terms of a sublevel set of a generalized storage function that satisfies a PDE [88]. The
numerical methods outlined in this section search for storage functions from a limited class
(eg., polynomial, of degree 4). Generally, this class will not include the “real” storage
function, and as a consequence, the PDE has been relaxed, for example, into the inequality
presented in theorems, in order to admit meaningful solutions from a prespecified function
class. The relaxed partial differential inequalities, by their nature, have many solutions.
Among all solutions, the techniques presented are geared towards solutions which improve
the reachability bound relative to a particular shape the analyst proposes. The analyst can
specify a set P for which the goal is to show that all states reachable from x(0) = 0 and
‖w‖2

2 < τ 2 are contained in P . Augmenting the conditions of Theorems 2.1 and 2.2 (and
corollaries) with the requirement ΩQ,τ2 ⊆ P ensures the containment. More flexible is to
use an adjustable region derived from a given function p : Rn → R, called the shape-factor
function, defining P := Ωp,β. The function p is usually simple (e.g., quadratic), so that even
in high dimensions, its sub-level sets are easily interpreted (in contrast to Q, whose sub-level
sets may be difficult to quantify). Much like a weight parameter as part of a cost function
in optimal control, the positive-definite function p is chosen by the analyst to reflect the
relative importance of the individual state elements. Hence, assume a shape-factor function
p, with bounded sublevel sets, is given. The condition Ωcc,0

Q,τ2 ⊆ Ωp,β is enforced with the
S-procedure, which actually certifies more, namely ΩQ,τ2 ⊆ Ωp,β. The set W is defined in
terms of a sublevel set of a polynomial function pW , with W := {w : pW (w) ≤ 0}.

Translating the results of Theorem 2.1 (and Theorem 2.2) into SOS conditions employs
two applications of the S-procedure: one to for ΩQ,τ2 ⊆ Ωp,β in Rn, and one for DIE contain-
ment of (2.4), in Rn × Rm. For given τ > 0, the conditions

s1 ∈ Σn+m, s2 ∈ Σn, sp ∈ Σn+m, Q ∈ Σn, Q(0) = 0 (2.27)

wTw −∇Q · (f + gw)− s1 · (τ 2 −Q)− sppW ∈ Σn+m, (2.28)

β − p− s2 · (τ 2 −Q) ∈ Σn (2.29)

guarantee the hypothesis of Theorem 2.2 and ΩQ,τ2 ⊆ Ωp,β.
Implementation of Theorem 2.3 is relatively simple, since a storage function Q and con-

stant τ that satisfy Theorem 2.2 are given. The computational objective is to find a suitable
function k : [0 τ 2] → R satisfying (2.7). The simplest approach restricts k to be piecewise
constant. For example, take N > 0, and let {ki}Ni=1 denote the function values, with k given

by nearest neighbor interpolation, defining ε := τ2

N
and k(ξ) = ki for all ε(i − 1) ≤ ξ < εi

for i = 1, . . . , N . Employing the S-procedure, obtaining optimal values for the {ki}Ni=1 only
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requires N uncoupled, linear SOS optimizations, namely for i = 1, . . . , N

minimize
s1i,s2i,spi

ki

subject to s1i ∈ Σn+m, s2i ∈ Σn+m, spi ∈ Σn+m,

− [(εi−Q)s1i + (Q− ε(i− 1))s2i +∇Q(f + gw)− kiwTw]− spipW ∈ Σn+m.

Using the resultant piecewise-constant k yields τ 2
e =

∫ τ2

0

k−1(ξ)dξ = ε

N∑
i=1

k−1
i .

For L2 gain, only one application of the S-procedure is used for the DIE containment of
(2.12) in Rn × Rm, which requires the SOS polynomial to be in Σn+m. If V is restricted to
be a polynomial, for given γ > 0, R > 0, and polynomial l(x) > 0 for all x 6= 0, l(0) = 0, the
conditions V (0) = 0,

s3 ∈ Σn+m, sp ∈ Σn+m, (2.30)

V − l ∈ Σn, (2.31)

wTw − 1

γ2
h(x)Th(x)−∇V · (f(x) + g(x)w)− s3(R2 − V )− sppW ∈ Σn+m (2.32)

satisfy the conditions of Corollary 2.1. Note that (2.32) actually implies the DIE holds
on ΩV,R2 , not just the connected component, as in (2.12). Following Theorem 2.5, the
reachability equations, (2.27)-(2.29) can be solved (maximizing τ) with p := V and β := R2.
It is straightforward to show that any V and R in (2.30)-(2.32), τ := R and Q := V are
feasible for (2.27)-(2.29).

The corresponding robust versions, for use with Theorem 2.7, simply include the supply
rates of the known dissipativeness conditions, and account for the signals w1, w2, z1 and z2.
For example, condition (2.22) is ensured by a generalization to (2.32),

wT1 w1−
1

γ2
hT1 h1−∇V · (f + g1w1 + g2w2)− s3(R2−V )− sppW −

n∑
i=1

βiri(h2, w2) ∈ Σn+m1+m2

(2.33)
constrained by βi ≥ 0, as well as the original constraints on the various SOS multipliers.

Feasibility Guarantee

Many standard results from nonlinear system theory show that properties of the linearized
dynamical system carry over to local properties of the nonlinear system, for instance, expo-
nential stability of an equilibrium point of an autonomous system, [52]. In [90], we explored
how properties of the linearized system implied the corresponding feasibility of the SOS
formulations (Section 2.9), using quadratic storage functions, for three types of problems:
region-of-attraction, reachability and L2 gain. In [90], the vector field was limited to cubic
polynomials and the proof techniques geared toward systems of that class. In this section,



CHAPTER 2. PERFORMANCE CHARACTERIZATIONS 19

we extend these results to polynomial vector fields of any degree. For brevity, we only con-
sider L2 gain formulation (section 2.5) although the other results follow as well, including
the uncertain L2 gain formulation from Section 2.7.

The results here are similar in spirit, though different and of significantly weaker theo-
retical value, to other results in the literature. The work of [69] establishes the optimality of
polynomial storage functions for certain stability questions, using Positivestellensatz-based
proofs (generalization of the simple S-procedure). By contrast, the results in [2] are negative,
showing the inadequacy of polynomial storage functions in answering stability questions for
a special class of nonlinear autonomous systems.

A simple technical lemma (proof in Appendix) is used in the subsequent claim.

Lemma 2.1. Let d ≥ 2 be a positive integer. Let V (x) := xTQx with 0 ≺ Q = QT ∈
Rn×n. Let r(x) denote the vector of all monomials of degree 1 through degree d − 1 and
s(x) = r(x)T r(x). Similarly let z(x) denote the vector of all monomials of degree 2 through
degree d. The length of z is denoted nz. There exists H ∈ Rnz×nz with H = HT � 0 and
s(x)V (x) = z(x)THz(x).

Proof. Since Q � 0 there exists α > 0 such that Q̃ := Q − αI � 0. Define the perturbed
polynomial Ṽ (x) := xT Q̃x. By assumption, s(x) =

∑
i ri(x)2 and hence

s(x)Ṽ (x) =
∑
i

ri(x)2xT Q̃x =
∑
i

(ri(x)x)T Q̃(ri(x)x). (2.34)

Each term in the sum is SOS with positive definite Gram matrix Q̃. Thus s(x)Ṽ (x), being
a sum of SOS terms, is itself an SOS polynomial. Since s(x)Ṽ (x) contains all monomials of
degree 4 through degree 2d it has a Gram matrix decomposition of the form z(x)T H̃z(x).
The existence of a Gram matrix H̃ � 0 follows because s(x)Ṽ (x) is SOS.

Finally, s(x)V (x) = s(x)Ṽ (x) + α
∑

i ri(x)2xTx.
∑

i ri(x)2xTx is a sum of monomials
squared. The sum includes squares of all monomials in z(x) possibly with repeats. Therefore
this sum has a Gram matrix decomposition of the form z(x)TDz(x) where D is diagonal
and positive-definite. Thus s(x)V (x) has a Gram representation zT (x)Hz(x) where H =
H̃ + αD � 0.

Now, write the affine-in-w system in (2.1) as

ẋ(t) = Ax(t) +Bw(t) + f2(x(t)) + g1(x(t))w(t)

y(t) = Cx(t) + h2(x(t))
(2.35)

where f2, g1 and h2 are polynomials, respectively consisting of terms of degree 2, 1, and 2
(and higher). Let ∂(f2), ∂(h2) and ∂(g1) denote the highest degree of monomials within
each function. Define d := max {∂(f2), ∂(h2), ∂(g1) + 1}. Suppose the linearization has A
Hurwitz, and for some γ > 0, ‖C(sI − A)−1B‖∞ < γ. By the bounded-real lemma, there
exists P = P T � 0 such that[

ATP + PA+ 1
γ2C

TC PB

BTP −I

]
≺ 0.
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Defining V (x) := xTPx and s := αrT (x)r(x) leads to the main SOS constraint as

2xTP [Ax+Bw + f2(x) + g1(x)w]− wTw

+
1

γ2

[
xTCT + hT2 (x)

]
[Cx+ h2(x)] + α

(
R2 − xTPx

)
rT (x)r(x).

This is a quadratic form in [x;w; z(x)] as follows. There exists a matrices F and H such
that f2(x) = Fz(x) and h2(x) = Hz(x). Likewise, there exists a matrix G such that
xTPg1(x)w = wTGz(x). By Lemma 2.1, there exists a positive-definite matrix MP such
that rT (x)r(x)xTPx = zT (x)MP z(x). Finally, there exists a matrix E such that rT (x)r(x) =
xTx+ z(x)TEz(x). Combining, the expression is x

w
z(x)

T  ATP + PA+ 1
γ2C

TC + αR2I PB PF + 1
γ
CTH

BTP −I G
F TP + 1

γ
HC GT αR2E + 1

γ2H
TH − αMP


︸ ︷︷ ︸

K(R,α)

 x
w
z(x)



At R := 0, the top/left 2× 2 block is negative definite, and MP � 0. Hence for α sufficiently
large, it follows that K(0, α) ≺ 0. With such an α chosen, by continuity there exist nonzero
R such that K(R,α) ≺ 0. The above reasoning is summarized in a theorem.

Theorem 2.8. Assume x = 0 is an equilibrium of (2.1), and express the vector field with
linear and nonlinear terms separated, as in (2.35). If A is Hurwitz, and ‖C(sI − A)−1B‖∞ <
γ, then there exists R > 0, ε > 0, quadratic V and polynomial s3 (with sp = 0) such that
equations (2.30)-(2.32) are feasible using l(x) := εxTx.

Iteration Strategy

Equations (2.27)-(2.29) and (2.30)-(2.32) constitute a nonconvex optimization problem, namely
a linear objective subject to bilinear matrix inequality constraints. Acknowledging the theo-
retical implications [37], [54], we nevertheless push forward with iterative schemes to generate
feasible solutions, and further optimize the cost. We outline an iteration for (2.30)-(2.32).
Analogous iterations are possible for (2.27)-(2.29) by replacing V with Q, R with τ , and s3

with s1, s2.

1. Based on the polynomials f , g and h (and their degrees), choose basis functions for the
unknowns sp, s3 and V . At present, computational restrictions (memory, numerical
conditioning, algorithms etc.) place a practical restriction on the overall degree of the
DIE polynomial in terms of the number of independent variables (n + m), which in
turn, limits the degrees of sp, s3 and V .

2. If the linearization is stable, use the LMI derived in Section 2.9 to obtain feasible values
for s3 and V (using sp = 0). If the linearization is not stable, the DIE is relaxed and
the constraint violation is minimized. If this minimum is less than 0, feasible values
for V and s3 for the original problem are obtained.
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3. [ R Maximization:] Hold V fixed, and maximize R, by choice of s3 and sp, such that
(2.30) and (2.32) hold. This step requires a bisection in R, where for each fixed value
of R, determining feasible s3, sp is a linear SOS problem.

4. [ V Recenter:] Hold s3 fixed, and “recenter” V by finding the analytic center (in
R2, parameters of sp, parameters of V , and parameters associated with the kernel
representation of the SOS problem, [66]) of system of LMI constraints defined by
equations (2.31) and (2.32).

5. Return to the [ R Maximization] step, and repeat.

2.10 Examples

In the following examples, we utilize the SOS optimization tool SOSOPT and associated non-
linear systems analysis software, available at http://www.aem.umn.edu/∼AerospaceControl/.
Supporting material, documentation, and additional examples can be found at [8].

Scalar Example from Section 2.8

We revisit the example in Section 2.8 and compare those results with the SOS-based iteration
from Section 2.9. Using quadratic V , Q, the results are compared in Figure 2.6. The
V obtained from the L2 analysis is used as the shape factor function in the reachability
analysis, which improves the bound, and then improved further with refinement. A power-
algorithm from [87] attempts to find input signals, of a given norm, which maximize the
resultant output norm, yielding a lower bound on the system L2 gain (also shown).
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Figure 2.6: Comparison of the SOS approach with the algebraic approach in Section 2.8
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Bilinear System with Nonzero Initial Condition

Consider the bilinear system ẋ = (w − 1)x, y = x, which is unstable for w(t) > 1. Note
that for x(0) = 0, the solution is x(t) = 0, regardless of w. We use degree 6 V in the SOS
iteration. In this example, the refinement analysis does not yield any benefit. Under the
assumption x0 = 0, we obtain a narrow bound on the input [1.41, 1.46], with little effect
from the bound imposed on the gain. However, for nonzero initial conditions, the bound on
the input varies widely, depending on the bound imposed on the gain, shown in Figure 2.7.
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Figure 2.7: Bound on input as a function of the initial condition x0

Three State Reachability Example

Consider the three state system, extending an example in [43]: ẋ1 = −x3 + x2 − x3x
2
2; ẋ2 =

−x2x
2
3− x2 +w; ẋ3 = 1

2
(x1− x3). For purposes of illustration, choose p(x) := 8x2

1− 8x1x2 +
4x2

2 +x2
3. Given β > 0, and a basis for Q, we maximize τ such that the conditions of Theorem

2.1 hold and ΩQ,τ2 ⊆ Ωp,β, which will further imply that Theorem 2.2 holds since ΩQ,τ2 is
bounded. We perform the analysis for β ∈ (0 50] using both quadratic and quartic Q. In
both cases, the SOS multipliers s1 and s2 are chosen constant and quadratic, respectively.
Conversely, a power algorithm from [87] attempts to find inputs on a finite-horizon, of a given
norm, which maximize p(x(T final). The algorithm is globally convergent for linear systems,
but can also be applied to nonlinear systems as an ad-hoc manner to find the worst-case
input. In that context, the results it produces are lower bounds on the worst-case, since
convergence to the global maximum may not occur. Finally, a single global analysis with a
quartic degree Q is also performed (i.e, positive-definite Q such that Ωcc,0

Q,τ2 is bounded for all

τ > 0 and ∇Q(x) · [f(x) + g(x)w] ≤ wTw on Rn × Rm).
These results are shown in Figure 2.8. The various axes show subsets of the upper-

bounds for ease of comparison. The (same) lower bound is shown in all three subplots. The
upper-left axes shows the bounds obtained from the single global analysis with quartic Q
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and the many local analysis with quadratic Q (and refinements, with N = 20, as in Theorem
2.3). The benefits of the refinement step are obvious. The upper-right axes compares results
obtained with quadratic Q to those with quartic Q. The improvement in the upper bound is
expected, but comes at an increased computational cost. Lastly, the lower-left axes shows the
significant effect of imposing an additional L∞ constraint on w, |w(t)| ≤ 2.5 for all t. with
bounds from the reachability analysis using a quartic Q (refinement provides a negligible
improvement and is not shown).
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L2 Induced Analysis of Generic Transport Longitudinal Model

This section performs nonlinear analyses for NASA’s Generic Transport Model (GTM). The
GTM is a remote-controlled 5.5 percent scale commercial aircraft [25, 62]. The main GTM
aircraft and environmental parameters are: wing area S = 5.902 ft2, mean aerodynamic
chord c̄ = 0.9153 ft, mass m = 1.542 slugs, pitch axis moment of inertia Iyy = 4.254 slugs-
ft2, air density ρ = 0.002375 slugs/ft3, and gravitational acceleration g = 32.17 ft/s2. The
longitudinal dynamics of the GTM are described by a standard four-state model [81]:

V̇ = (−D −mg sin (θ − α) + Tx cosα + Tz sinα) /m

α̇ = q + (−L+mg cos (θ − α)− Tx sinα + Tz cosα) /(mV )

q̇ = (M + Tm) /Iyy

θ̇ = q
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where V is air speed (ft/s), α is angle of attack (rad), q is pitch rate (rad/s) and θ is
pitch angle (rad). Control inputs are elevator deflection δelev (deg) and engine throttle δth
(percent). The drag force D (lbs), lift force L (lbs), and aerodynamic pitching moment M
(lb-ft) are given by D = q̄SCD(α, δelev, q̂), L = q̄SCL(α, δelev, q̂) and M = q̄Sc̄Cm(α, δelev, q̂),
where q̄ := 1

2
ρV 2 is the dynamic pressure (lbs/ft2) and q̂ := c̄

2V
q is the normalized pitch rate

(unitless). CD, CL, and Cm are unitless aerodynamic coefficient functions provided as look-
up tables by NASA. The GTM has one engine on the port side and one on the starboard side
of the airframe. The thrust from a single engine T (lbs) is a function of the throttle setting
δth (percent). T (δth) is specified as a ninth-order polynomial in NASA’s high fidelity GTM
simulation model. Tx (lbs) and Tz (lbs) denote the projection of the total engine thrust along
the body x-axis and body-z axis, respectively. Tm (lbs-ft) denotes the pitching moment due
to both engines.

The following terms of the longitudinal model are approximated by low-order polyno-
mials: Trigonometric functions; Engine model; Rational dependence on speed (1/V ); and
Aerodynamic coefficients (CD, CL, Cm). The trigonometric functions are approximated by
Taylor series expansions. For the engine model, least squares is used to approximate the
ninth order polynomial function T (δth) by a third order polynomial. Least squares is also
used to compute a linear fit to 1/V over the desired range of interest from 100 ft/s to 200 ft/s.
Finally, polynomial least squares fits are computed for the aerodynamic coefficient look-up
tables provided by NASA. A degree seven polynomial model, provided in [17], is obtained
after replacing all non-polynomial terms with their polynomial approximations.

The polynomial model takes the form ẋ = f7(x, u) where x := [V (ft/s), α(rad), q(rad/s),
θ(rad)]T , and u := [δelev(deg), δth(%)]T . The subscript in f7 denotes that the vector field is a
degree seven polynomial in x. The quality of the polynomial approximation was assessed by
comparing the trim conditions and simulation responses of the polynomial and original non-
polynomial models. The following straight and level flight condition was computed for this
model: Vt = 150 ft/s, αt = 0.047 rad, qt = 0 rad/s, θt = 0.047 rad, with δelev,t = 0.051 rad,
δth,t = 14.78 %. The subscript “t” denotes a trim (equilibrium) value. A cubic order
polynomial longitudinal model is extracted from the 4-state, degree seven polynomial model
by holding δth at its trim value and retaining terms up to cubic order. The cubic order
model is ẋ = f3(x, u) with 4 states [V, α, q, θ]T and one input u := δelev. This cubic model
is used for all analyses described in the remainder of the section. Additional details on the
polynomial modeling are provided in [17] and files containing the model can be found at [8].

An L2 → L2 gain analysis was first performed on the open-loop model by injecting a
disturbance w at the elevator input. Figure 2.9 indicates how the induced gain of this open-
loop system varies as the size of the elevator disturbances ||w||2 increases. The horizontal
axis indicates the size of the elevator disturbances, ||w||2, around the trim input value and
the vertical axis shows the bounds of the induced gain from disturbance w to pitch rate q.
The bounds are calculates for several fixed values of γ by maximizing R over the choice of
V and s3 such that (2.30)-(2.32) hold using the strategy from Section 2.9. Figure 2.9 shows
the open-loop results for both a quadratic (black dashed-’♦’) and a quartic (black solid-’♦’)
storage function V . The higher (quartic) degree storage function provides a less conservative
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bound on the gain, as expected. The induced gain for the linearized open-loop system is
23.9. Both nonlinear bounds converge to this linearized gain as ‖w‖2 → 0.

The open loop dynamics of the GTM are slightly underdamped. Inner loop pitch rate
feedback is typically used to improve the damping of the aircraft. A proportional pitch rate
feedback is used to improve the damping of the GTM aircraft. Combining with the input
disturbance gives deltaelev = Kqq + w = 0.0698q + w where w is the input disturbance at
the elevator channel. Figure 2.9 also shows bounds on the closed-loop L2 gain from elevator
disturbances to pitch rate for a quadratic (red dashed-’x’) and a quartic ( blue solid-’x’)
storage function V . Again, the higher (quartic) degree storage function provides a less
conservative bound on the gain. Moreover, the pitch-rate damping lowers the induced gain
for the linearized closed-loop system to 16.6. Both nonlinear bounds for the closed-loop
system converge to this linearized gain as ‖w‖2 → 0. Finally, as expected, the gain bounds
for the closed-loop system are both below the open-loop bounds.

The refinement procedures were used to improve the computed bounds for the closed-loop
system. First,the reachability analysis is performed by setting V as the shape factor function
and maximizing τ over choice of Q, s1 and s2 such that (2.27)-(2.29) hold. Figure 2.9 shows
the results obtained when the degree of Q is restricted to be quadratic (red dashed-’o’) and
quartic (blue solid-’o’). Finally, the refinement is performed on the quadratic (red dashed-
’+’) and quartic (blue solid-’+’) results from the reachability. These results show the bound
on the allowable input is improved from the reachability analysis, and improved further by
the refinement procedure. As expected, the upper bounds on the gain using quartic V and
Q are improvements over their quadratic counterparts.
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Chapter 3

Integral Quadratic Constraints

Integral quadratic constraints (IQCs) [59, 46], encapsulate input-output properties of a sys-
tem. The definitions and theorems in [59] only apply to systems who are defined on all of
L2e and are bounded on L2. However, in many cases systems do not meet this criteria. In
this section, we develop the notion of a local IQC, which may be satisfied for systems who
are only defined locally. We establish facts about local IQCs and local operators which will
be used in Chapter 4 to extend the stability proof to include local operators.

3.1 Background

For continuity, we review the definitions and stability theory for IQCs [59], and performance
analysis [4] using IQCs.

Definition of an Integral Quadratic Constraint

Let Π : jR→ C(l+m)×(l+m) be a measurable, bounded Hermitian-valued function.

Definition 3.1. The signals u ∈ Ll
2, y ∈ Ll

2 are said to satisfy the IQC defined by Π if∫ ∞
−∞

[
û(jω)
ŷ(jω)

]∗
Π(jω)

[
û(jω)
ŷ(jω)

]
dω ≥ 0

holds.

Definition 3.2. A bounded, causal operator ∆ mapping Ll
2e → Lm

2e is said to satisfy the
IQC defined by Π, if for all u ∈ Ll

2, with y = ∆(u), the inequality∫ ∞
−∞

[
û(jω)
ŷ(jω)

]∗
Π(jω)

[
û(jω)
ŷ(jω)

]
dω ≥ 0 (3.1)

holds. This is notated as ∆ ∈ I (Π).
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Time-Domain Representation

If Φ is real, rational and uniformly bounded on the imaginary axis and Π(jω) = Φ(s)|s=jω,
then (3.1) can be expressed equivalently in the time-domain. We factorize Φ as Φ(s) =
Ψ∼(s)MΨ(s), where M is a constant matrix, Ψ is stable and proper. By Parseval’s Theorem,
the inequality in (3.1) is expressed as:∫ ∞

0

yTΨ(t)MyΨ(t) dt ≥ 0, (3.2)

where yΨ = Ψ ( uy ). This is notated as ∆ ∈ I (Ψ,M).
A stricter notion of satisfying and IQC is related to the time domain representation.

Definition 3.3. If ∫ T

0

yTΨ(t)MyΨ(t) dt ≥ 0, (3.3)

for all T , then ∆ is said to satisfy the strict IQC defined by Ψ and M and is notated as
∆ ∈ IS (Ψ,M).

Stability Test

We recall the following definitions and theorem from [59]:

Definition 3.4. The interconnection of G and ∆ in Figure 3.1 is well-posed if the map
from (z, w) 7−→ (f1, f2) defined by

w = f1 + ∆(z)

z = f2 +Gw

has a causal inverse on L2e.

Definition 3.5. The interconnection is stable if, in addition to being well-posed, the inverse
is bounded, i.e. there exists a constant C such that

‖z‖2
2,T + ‖w‖2

2,T ≤ C
(
‖f1‖2

2,T + ‖f2‖2
2,T

)
for any T ≥ 0 and for any solution of w and z.

Theorem 3.1. Assume ∆ is a bounded, causal operator and G is proper and has no poles
in the right half plane. If

1. for every τ ∈ [0, 1], the interconnection of G and τ∆ is well-posed;

2. for every τ ∈ [0, 1], τ∆ ∈ I (Pi);
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∆

G
w

z

f1 f2

Figure 3.1: Exogenous Inputs in the interconnection of (G,∆)

3. there exists an ε > 0 such that[
G(jω)
I

]∗
Π(jω)

[
G(jω)
I

]
� −εI (3.4)

for all ω ∈ R, then the feedback interconnection of G and ∆ is stable.

Remark 3.1. If ∆ ∈ I (Πi) for i = 1, . . . , n, then the interconnection of G and ∆ is stable
if there exists αi ≥ 0 such that Theorem 3.1 holds with Π :=

∑n
i=1 αiΠi.

Performance Analysis with IQCs

Consider the interconnection of G and ∆ in Figure 3.2. Suppose ∆ satisfies a collection of
IQCs. One might wonder, what is the bound on the L2 → L2 gain from d to e, are the
signals from d to e output strictly passive, or (more generally) which IQCs do the signals d
and e satisfy? We quantify performance metrics using a “performance IQC”, by applying
techniques from [4]. By characterizing the desired performance metric as an IQC, and using
the stability test in [59], we can test whether d and e satisfy performance criteria.

G

∆

d e

w z

Figure 3.2: Feedback Interconnection of (G,∆)

Let Πp represent a performance IQC between the exogenous input d and output e. Our
goal is to show that for all d ∈ L2∫ ∞

−∞

[
d̂(jω)
ê(jω)

]∗
Πp(jω)

[
d̂(jω)
ê(jω)

]
dω ≥ 0 (3.5)

holds.
Using information about the IQCs which ∆ satisfies, IQCs can be certified for the signals

d and e. We recall the following theorem from [4]:
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Theorem 3.2. Let ∆ : L2e → L2e be causal and bounded and ∆ ∈ I (Π). Let G ∈ RH∞ be
causal, finite dimensional, and denote G11 as the channels in G from w to z. Assume that
the interconnection in Figure 3.3 is well-posed and stable. If there exists and ε > 0 such that

[
G(jω)
I

]∗ 
Π11(jω) 0 Π12(jω) 0

0 −Πp,22(jω) 0 −Π∗p,12(jω)
Π∗12(jω) 0 Π22(jω) 0

0 −Πp,12(jω) 0 −Πp,11(jω)

[G(jω)
I

]
� −εI (3.6)

for all ω ∈ R, then for all d ∈ L2, e ∈ L2 and (3.5) is satisfied.

∆

G11
w

z

f1 f2

Figure 3.3: Exogenous Inputs in the interconnection of (G11,∆)

Proof. The well-posedness assumption of the interconnection in Figure 3.3 means that for
all f1, f2 ∈ L2e there exists unique w, z satisfying

w = f1 + ∆(z)

z = f2 +G11w.
(3.7)

Furthermore, since the interconnection in Figure 3.3 is stable and there exists γ1, γ2, γ3, γ4 ∈
R+ such that for all f1, f2 ∈ L2e, there exists unique w, z ∈ L2e that satisfy (3.7) and

‖w‖2,T ≤ γ1‖f1‖2,T + γ2‖f2‖2,T

‖z‖2,T ≤ γ3‖f1‖2,T + γ4‖f2‖2,T .
(3.8)

Suppose d ∈ L2e. Defining f1 := 0 and f2 := G12d recovers the relationship of w and z
from Figure 3.2. Substituting into (3.8) yields

‖w‖2,T ≤ γ2‖G12d‖2,T ≤ γ2‖Ĝ12‖∞‖d‖2,T

‖z‖2,T ≤ γ4‖f2‖2,T ≤ γ4‖Ĝ12‖∞‖d‖2,T .
(3.9)

Hence, w, z ∈ L2e and

‖e‖2,T ≤ ‖Ĝ21‖∞‖w‖2,T + ‖Ĝ22‖∞‖d‖2,T

and e ∈ L2e. Furthermore, for all d ∈ L2, the signals w, z, e ∈ L2.
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Rearranging rows and columns in (3.6) (and dropping jω for clarity) yields
G11 G12

I 0
0 I
G21 G22


∗ [

Π 0
0 −Πp

]
G11 G12

I 0
0 I
G21 G22

 � −εI (3.10)

which implies [
0 I
G21 G22

]∗
Πp

[
0 I
G21 G22

]
�
[
G11 G12

I 0

]∗
Π

[
G11 G12

I 0

]
(3.11)

Note that from the interconnection in Figure 3.2, if d ∈ L2 then w, z, e are in L2 and the
Fourier transforms satisfy[

ẑ(ω)
ŵ(ω)

]
=

[
G11(jω) G12(jω)

I 0

] [
ŵ(ω)

d̂(ω)

]
,

[
d̂(ω)
ê(ω)

]
=

[
0 I

G21(jω) G22(jω)

] [
ŵ(ω)

d̂(ω)

]
.

(3.12)

Hence, substituting (3.12) into (3.11), multiplying the right and left sides by

[
w
d

]
, and

integrating yields∫ ∞
−∞

[
d̂(jω)
ê(jω)

]∗
Πp(jω)

[
d̂(jω)
ê(jω)

]
dω �

∫ ∞
−∞

[
ẑ(jω)
ŵ(jω)

]∗
Π(jω)

[
ẑ(jω)
ŵ(jω)

]
dω. (3.13)

Since ∆ ∈ I (Π), the right hand side of (3.13) is non-negative. Hence, for all d ∈ L2 (3.5)
holds.

Remark 3.2. If Πp,22 � 0, for all τ ∈ [0, 1] the interconnection of (G11, τ∆) is well-posed,
and τ∆ ∈ I (Π), then the assumption that the interconnection in Figure 3.3 is stable is
implicit since the (1, 1) entry of the frequency domain inequality in (3.10) provides the re-
maining requirement for stability by Theorem 3.1.

As an example, we consider the simple feedback network in Figure 3.4. Suppose that ∆1

satisfies a gain roll-off IQC at corner frequency ωc and gain γ1, defined by

Π(jω) =

[
1 0

0 −1+( ω
ωc

)
2

γ2
1

]
(for more on roll-off IQCs, see Section 5.4). Additionally, suppose that ∆2 satisfies a gain
property such that ‖w‖2 ≤ γ2‖e‖2. Using IQCTOOLs, we can verify that if γ1γ2 < 1, then
the gain from d to e also satisfies a roll-off IQC with corner frequency ωc and any gain γ
satisfying γ ≥ γ1

1−γ1γ2
. The following MATLAB script demonstrates how quick and simple it

is to verify this gain property using IQCTOOLs using the iqcperf method. The performance
IQC will be satisfied for any choice of γ1γ2 < 1. An alternate software suite IQC-beta [58]
can be used to verify IQCs as well.
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∆2

∆1
-

ed

Figure 3.4: We verify performance criteria for the signals d and e

% Roll Off Performance IQC example

wc = 0.5;

gamma1 = 0.4;

gamma2 = 2.4;

%rolloff IQC for Delta1

iqcDelta1 = rolloffIQC(gamma1, wc);

% gain IQC for Delta2

iqcDelta2 = gainIQC(gamma2);

%performance IQC

perfIQC = rolloffIQC(abs(gamma1/(1-gamma1*gamma2)), wc);

%frequency grid

Omega = logspace(log10(wc/100), log10(wc*100), 40);

%Define udyns for Delta1 and Delta2

delta1 = udyn(’Delta1’, [1 1], ’UserData’, {iqcDelta1});

delta2 = udyn(’Delta2’, [1 1], ’UserData’, {iqcDelta2});

%build interconnection

H = feedback(delta1, delta2, -1);

%test performance IQC

[perfparm,Sopt,xopt] = iqcperf(H,Omega,{perfIQC});

if(perfparm==1)
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fprintf(’The performance IQC is satisfied\n’)

end

3.2 Local IQCs Definition

Megretski and Rantzer [59] define IQCs for causal operators which are defined on L2e and
bounded on L2. If the operator is not (or is not known to be) bounded (or even defined)
on all of L2, then the notion of locally satisfying the IQC is relevant. Recall, the notation
BRL2 := {u ∈ L2 : ‖u‖2 ≤ R}.

Definition 3.6. Suppose ∆ : BRL2 → L2 is a bounded, causal operator. Then ∆ is said to
locally satisfy the IQC by Π on R if∫ ∞

−∞

[
û(jω)

∆̂(u)(jω)

]∗
Π(jω)

[
û(jω)

∆̂(u)(jω)

]
dω ≥ 0

holds for all u ∈ BRL2. This is notated as ∆ ∈ I (Π, [ ], R).

If ∆ : BRL2 → L2 locally satisfies the IQC defined by Π for all u ∈ BRL2, Π(jω) =
Φ(s)|s=jω, and Φ(s) = Ψ(s)∼MΨ(s), we notate this as ∆ ∈ I (Ψ,M,R) and is illustrated in
Figure 3.5.

Ψ
yΨ

∆

�

��
� ��

��
BR

u
〈yΨ,MyΨ〉 ≥ 0

Figure 3.5: Illustration of local, factorized IQC, ∆ ∈ I (Ψ,M,R)

Definition 3.7. If ∫ T

0

yTΨ(t)MyΨ(t) dt ≥ 0, (3.14)

for all T and for all u ∈ BRL2, then ∆ is said to locally satisfy the strict IQC defined by
Ψ, M , and R and is notated as ∆ ∈ IS (Ψ,M,R).

3.3 Establishing Local, Strict IQCs

Given a nonlinear system, we want to generate many IQC which that system satisfies. In
generating these IQCs, we will encapsulate input-output properties of the system and be able
to perform various analyses without using the system dynamics. A procedure is outlined to
generate locally satisfied IQCs for a nonlinear dynamical system, using linear offsets, linear
weighting functions and estimates of local L2 gains.
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z W ∆
+

−
Ψ

Figure 3.6: IQC Interconnection

Theorem 3.3. If ∆ is a bounded, causal operator mapping BRL2 → L2, and Q and W are
linear, time-invariant, stable, then W (∆−Q) is bounded and causal on BRL2. Furthermore,
if ‖W (∆−Q)‖L2,L2 ≤ 1 on BRL2, then ∆ ∈ I (Π, [ ], R) where

Π(jω) =

[
I −Q∗(jω)W ∗(jω)W (jω)Q(jω) Q∗(jω)W ∗(jω)W (jω)

W ∗(jω)W (jω)Q(jω) −W ∗(jω)W (jω)

]
. (3.15)

Proof. For v ∈ BRL2, define z := W (∆(v)−Qv), as shown in Figure 3.6. Clearly z ∈ L2 and
‖z‖ ≤ ‖v‖ by assumption on the local L2 gain of W (∆−Q). In terms of Fourier transforms,[

v̂(jω)
ẑ(jω)

]
=

[
I 0

−W (jω)Q(jω) W (jω)

][
v̂(jω)

∆̂(v)(jω)

]
. (3.16)

By Parseval’s theorem, ‖z‖ ≤ ‖v‖ is equivalent to∫
R

[
v̂(jω)
ẑ(jω)

]∗ [
I 0
0 −I

] [
v̂(jω)
ẑ(jω)

]
dω ≥ 0. (3.17)

Direct substitution of (3.16) into (3.17) yields∫
R

[
v̂(jω)

∆̂(v)(jω)

]∗
Π(jω)

[
v̂(jω)

∆̂(v)(jω)

]
dω ≥ 0 (3.18)

as desired.

Remark 3.3. A factorization of this IQC is

Ψ :=

[
I 0

−WQ W

]
,M :=

[
I 0
0 −I

]
.

Remark 3.4. By causality ‖z‖2,T ≤ ‖v‖2,T for all T . Hence ∆ ∈ IS (Ψ,M,R).
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As an example, we consider ∆ governed by:

ẋ = −x+ x3 + u

y = x.

This is a locally stable system, but can exhibit finite-escape time solutions when ‖u‖2 ≥ 1.
We establish simple local IQCs for this system by selecting the linear offset Q(s) = 1

s+1
,

which is the linearization of the system, and a stable, minimum phase weight W . Next,
using the procedure in Section 2.9, we estimate the induced L2 → L2 gain of the locally
stable operator W (∆ − Q). The gain, which depends on the norm-bound of the input is 0
for arbitrarily small inputs, and goes to ∞ as the norm of the input is allowed to approach
1. Two bounds on the gain, as a function of input-norm level, are shown below in Figure
3.7 using W = 1 (red) and the bandpass filter W = 0.05s2+s+0.05

s2+s+1
(dashed, blue). The curve

was obtained with the SOS analysis suite [8] using storage functions V and Q of degree 6.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R, Bound on Norm of Input

γ
(R

),
 B

o
u
n
d
 o

n
 L

2
 −

>
 L

2
 G

a
in

 

 

W = 1

W = BandPass Filter

Figure 3.7: Bound of L2 → L2 Gain for system W (∆−Q)

The horizontal axis is labeled R, which is the bound on the input u. Each point on
the upper curve gives rise to a local IQC, with Q(s) as defined, R as the horizontal co-
ordinate, and W̄ (s) = 1

γ(R)
W (s), which is the reciprocal of the norm bound (ie., the re-

ciprocal of the vertical component of the point). Hence, many local IQCs characterized by(
W̄ = 1

γ(R)
W (s), Q(s) = 1

s+1
, R
)

can be generated for a single ∆ by sampling different points

(R, γ(R)) on a gain curve. Further, many of these gain curves can be established by using
different weights W and linear offsets Q.

3.4 Extending Local Operators to Global Operators

One approach to verify stability of an interconnection given local IQCs using frequency
domain methods is to attempt to use the results of Megretski and Rantzer in [59]. However,
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Figure 3.8: Local IQC

the theorems and proofs [59] rely on the operators being defined on L2e, bounded on L2, and
satisfying the IQC on L2. This raises the idea of extending an operator that is defined on
BRL2 to all of L2 such that the extended operator is bounded, causal and satisfies the IQC
globally.

In particular, we focus on the operators N : B1L2 → L2 which satisfy the property
‖p‖2 ≥ ‖q‖2 for u ∈ B1L2, where [ pq ] = Ψ [

u
N(u) ], illustrated in Figure 3.8. Our goal is

to define an extension of N , called Ne, such that Ne : L2e → L2e is bounded, causal and
‖p‖2 ≥ ‖q‖2 for all in u ∈ L2, where [ pq ] = Ψ [

u
Ne(u) ]. The dimensions satisfy nq = ny and

np = nu.
We first recall a simple lemma about linear system inverses.

Lemma 3.1. Consider the linear system H

[
ẋ(t)
y(t)

]
=

[
A B1 B2

C D1 D2

] x(t)
u1(t)
u2(t)

 ,
with D2 square and invertible. Define another system Hz, driven by u1 as[

ξ̇(t)
z(t)

]
=

[
A−B2D

−1
2 C B1 −B2D

−1
2 D1

−D−1
2 C −D−1

2 D1

] [
ξ(t)
u1(t)

]
.

If x(0) = ξ(0) and u2(t) := z(t), then y(t) = 0 for all t ≥ 0. Furthermore, if A − B2D
−1
2 C

is Hurwitz, then there exists a γ such that for all u1 ∈ L2, ‖z‖2 ≤ γ‖u1‖2.

Theorem 3.4. If Ψ−1
22 is stable, then there exists an extension Ne : L2e → L2e of N that is

bounded, casual, and globally satisfies the strict IQC factorization IS
(

Ψ,M =
[
Inu 0

0 −Iny

])
.

Proof. Let

ẋ(t) = Ax(t) +B1u(t) +B2N(u)(t),

p(t) = C1x(t) +D11u(t) +D12N(u)(t)

q(t) = C2x(t) +D21u(t) +D22N(u)(t)

be the response of Ψ as depicted in Figure 3.8. The matrix A is Hurwitz, D22 is invertible,
and it follows from the assumption that Ψ−1

22 is stable that A−B2D
−1
22 C2 is Hurwitz.
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Define the bounded operator Ne : L2e → L2e by first describing it’s action on any u ∈ L2e

as follows:

Tc := sup
T>0

∫ T

0

‖u(t)‖dt ≤ 1.

For t ≤ Tc, let
(Ne(u))(t) := (N(u))(t).

If Tc <∞,

ξ0 :=

∫ Tc

0

eA(Tc−τ)[B1u(τ) +B2N(u)(τ)]dτ

and note that ξ0 is a copy of the value of the state x(t) of Ψ at t = Tc. For t > Tc,
(Ne(u))(t) := z(t) where z is governed by the system Hz[

ξ̇(t)
z(t)

]
=

[
A−B2D

−1
22 C2 B1 −B2D

−1
22 D21

−D−1
22 C2 −D−1

22 D21

] [
ξ(t)
u(t)

]
, ξ(Tc) := ξ0.

For brevity, we denote Az, Bz, Cz, Dz as the state space matrices for Hz.
By Lemma 3.1, defining (Ne(u))(t) := z(t) renders q(t) = 0 for all t ≥ Tc and hence

‖p‖2,T ≥ ‖q‖2,T

for all T ≥ 0. Hence, Ne globally satisfies the strict IQC factorization, so Ne ∈ IS (Ψ,M).
Clearly Ne is a causal operator, since it’s output at any time depends only on input

values up to that time. We will now prove the boundedness of Ne. There exists β1 =∑
i

(∑
j

‖
(
eAtB1

)
ij
‖2,[0,∞]

)2

, β2 =
∑
i

(∑
j

‖
(
eAtB2

)
ij
‖2,[0,∞]

)2

, βN = sup
‖u‖2≤1

‖N(u)‖2,

β3 = ‖σ̄(C2e
At)‖2

2,[0,∞], β4 = ‖Cz(sI − Az)−1Bz +Dz‖∞ such that

‖ξ0‖2 ≤ (β1 + β2βN)‖u‖2,[0 Tc],

‖y‖2,[0 Tc] ≤ βN‖u‖2,[0 Tc],

‖y‖2,[Tc, ∞] ≤ β3‖ξ0‖2 + β4‖u‖2,[Tc ∞].

(See facts 7.3-7.4 in the Appendix for derivations of the bounds on β1, β2, β3.) Note that

‖y‖2
2,[0 ∞] = ‖y‖2

2,[0 Tc] + ‖y‖2
2,[Tc ∞]

≤ β2
N‖u‖2

2,[0 Tc] +
(
β3(β1 + β2βN)‖u‖2,[0 Tc] + β4‖u‖2,[Tc ∞]

)2

≤ β2
N‖u‖2

2,[0 ∞] + (β3(β1 + β2βN) + β4)2 ‖u‖2
2,[0 ∞]

≤ 2 max
(
β2
N , ((β3(β1 + β2βN) + β4)2

)
‖u‖2

2,[0 ∞].

Hence, Ne is a bounded operator on L2. Furthermore, since Ne maps L2 to L2 and it is
causal, Ne also maps L2e to L2e. This completes the extension.
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Remark 3.5. Although Ne is an extension of the operator N it is clear that the extension
also depends on (Ψ,M). Hence, if an operator satisfies multiple local IQCs, it is not clear
that there is one extension of the operator for all of the IQCs. This issue will arise in
subsequent sections.

Remark 3.6. In Section 3.3, the IQCs developed by weighted local L2 gains have the property
that Ψ22 = W . Note that if W−1 is stable, then conditions of Theorem 3.4 are satisfied, and
hence operators which satisfy them locally can be extended as described above.

3.5 Consistent IQC Multipliers

As mentioned in Remark 3.5, if an operator satisfies many IQCs locally, the extended opera-
tor that is suitable for one IQC is different than the extended operator for another IQC. In a
particular robustness analysis, the convex optimization in Remark 3.1 transforms the many
IQCs that the operator satisfies into a single IQC that is ultimately useful for this analysis.
Even if extensions of the operator for the individual IQCs existed, does an extension exist
for this specific element from the positive cone of the multipliers? In this section, we address
this for the specific form of the IQC from Section 3.3.

Lemma 3.2. Let {Wk}nk=1 ∈ RH
ny×ny
∞ with {W−1

k }nk=1 ∈ RH
ny×ny
∞ , L ∈ RH

ny×nu
∞ , {αk >

0}nk=1. Suppose N : BRL2 → L2 is bounded, causal and for all k

N ∈ IS
(

Ψk =

[
I 0

−WkL Wk

]
,M =

[
Inu 0
0 −Iny

]
, R

)
.

Let W ∈ Uny×nyRH∞ satisfy W ∗W =
∑n

k=1 αkW
∗
kWk (spectral factorization). Then

N ∈ IS
(

Ψ =

[√∑n
k=1 αkI 0
−WL W

]
,M =

[
I 0
0 −I

]
, R

)
.

Proof. Let u ∈ BRL2 and define q := N(u)− Lu. Since N : BRL2 → L2 is bounded, causal
and satisfies IS (Ψk,M,R) for k = 1, . . . , n, it follows that q ∈ L2 and ‖Wkq‖2,T ≤ ‖u‖2,T
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for all T ≥ 0. Hence, for all T ≥ 0

‖Wq‖2
2,T ≤ ‖Wq‖2

2

=

∫ ∞
−∞

q̂∗(ω)W ∗(jω)W (jω)q̂(ω)dω

=

∫ ∞
−∞

q̂∗(ω)

(
n∑
k=1

αkW
∗
k (jω)Wk(jω)

)
q̂(ω)dω

=
n∑
k=1

αk

∫
R

q̂∗(ω)W ∗
k (jω)Wk(jω)q̂(ω)dω

=
n∑
k=1

αk‖Wkq‖2
2

≤
n∑
k=1

αk‖u‖2
2

By causality, ‖Wq‖2,T ≤
√∑n

k=1 αk‖u‖2,T . By Theorem 3.3,

N ∈ IS
(

Ψ =

[√∑n
k=1 αkI 0
−WL W

]
,M =

[
I 0
0 −I

]
, R

)
.

Lemma 3.3. The IQC multiplier Πk associated with (Ψk,M) is

Πk =

[
I − L∗W ∗

kWkL L∗W ∗
kWk

W ∗
kWkL −W ∗

kWk

]
.

The multiplier Π associated with (Ψ,M), Π = Ψ∼MΨ satisfies

Ψ∼MΨ =
n∑
k=1

αkΠk.

Proof. This simple verification is left to the reader.

Remark 3.7. Since Ψ−1
22 = W−1 ∈ RH∞, by Theorem 3.4 there exists a bounded, casual

extension of N , Ne : L2e → L2e such that Ne ∈ I (Ψ,M).

Remark 3.8. This lemma will be used in Chapter 4, where we examine interconnections of
operators which satisfy many IQCs of this form.
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3.6 Invariants of Integral Quadratic Constraints

The methods outlined for establishing for a particular system in Section 3.3 require com-
putation of gain bounds using SOS techniques from Section 2.9. This raises the question,
once an IQC is established for a particular system, is it possible to reduce or eliminate the
computation time needed to establish IQCs for similar systems?

We establish invariants of factorized, local integral quadratic constraints (IQCs) for pa-
rameterized systems through and input-output scaling and a scaling of the units of the
original system. Given a list of IQCs for a parameterized system with a particular choice of
parameters, we generate lists of IQCs for any other system in the parameter class.

Dimensional analysis [9] relies on the fact that a physical law must be independent of
the units used to measure the physical variables. By scaling the units of an equation, we
obtain a new equation with different quantities for the physical variables that describes the
same relationship in terms of the new units. While dimensional analysis plays a huge roll
in many branches of engineering and the physical sciences, its role in control is much less
visible. Recent work to reduce the dimension of a relevant parameter space in a family of
control designs, [15], [16], [70], [14], show great promise.

For a parameterized system with an IQC, we show that through scaling the units, we
obtain a scaled system which satisfies a scaled IQC. We establish invariants among local IQCs
through the use of an input-output scaling, time scaling, and coordinate change. If an IQC is
established for one particular system in a parameterized class, then (through the invariants)
a manifold of systems within the class satisfy IQCs obtained through transformation. Thus,
through this reduction in dimensionality, obtaining a rich collection of IQCs for the entire
parameterized class is easier. This advantage significantly reduces computation time for
establishing lists of IQCs. Utilizing these invariants is crucial to the success of the ultimate
goal of building a large library of IQCs that these (small) subsystems satisfy.

Notation and Definitions

We recall the following definitions from [9]:

Definition 3.8. Fundamental units are a set of units of measurement, which are arbi-
trarily defined. (ex: length, time, mass).

Definition 3.9. A set of fundamental units that is sufficient for measuring the properties of
the class of phenomena under consideration is called a system of units (ex: meter-second).

Definition 3.10. A set of systems of units that differ only in the magnitudes (but not in
the physical nature) of the fundamental units is called a class of systems of units (ex:
meter and inches).
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For example, if we refer to the meter system as the original system, then the units for an
arbitrary system in the class are

unit of length =
meter

L

where L > 0, and indicate the factor by which the fundamental units of length decreases.
The numerical value for length is increased by a factors of L. If we choose inches to be the
arbitrary system, then L = 39.37,

units of inches =
1

39.37
units of meters,

and if a is the length of some object in units of meters, then b = 39.37a is the length of the
object in units of inches.

An instance of a model of a dynamical system is written with a specific system of units.
If S is a model of a dynamical system, US will denote the system of units being used in this
system model. For clarity, L2,U indicates that the time units are drawn from the system of
units U .

Let N be an operator described by the finite dimensional ODE of the form

x′(·) = f(x(·), u(·)),
y(·) = h(x(·)).

A few words about time units are in order. Local satisfaction of an IQC I (Ψ,M,R) by
a system (f, h) where Ψ is defined by (A,B,C,D) means that all solutions of

x′(·) = f(x(·), u(·)),
y(·) = h(x(·)),

x′Ψ(·) = AxΨ(·) +B

[
u(·)
y(·)

]
,

yΨ(·) = CxΨ(·) +D

[
u(·)
y(·)

]
,

with ‖u‖2 ≤ R satisfy 〈yΨ,MyΨ〉 ≥ 0. This is a property of the tuple (f, h, A,B,C,D,M,R),
and not a property of the time unit. The specific time unit is denoted by the (·) placeholder;
the symbol ′ means differentiation with respect to that chosen time unit; and the integration
in the L2 norm of u is also in this time unit.

Input-Output Scaling

We obtain the first invariant for a local IQC from an input-output scaling. Suppose a
N ∈ I (Ψ,M,R). For any α1 6= 0, α2 6= 0, let the

Ψα1,α2 :=

[
α1Ψ11 α2Ψ12

α1Ψ21 α2Ψ22

]
indicate that the first input of Ψ is scaled by α1 and the second input of Ψ is scaled by α2.
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Figure 3.9: Illustrated proof of Theorem 3.5.

Theorem 3.5. For any α, β 6= 0,

N ∈ I (Ψ,M,R) ⇐⇒ β ◦N ◦ α ∈ I
(

Ψα, 1
β
,M,

R

|α|

)
.

Proof. As illustrated in Figure 3.9, the original system can be equivalently represented by
scaling the ball of inputs BR by 1

|α| , so that v ∈ B R
|α|

while simultaneously scaling the first

input of Ψ by α. Likewise, the original system is equivalent under an output scaling of the
second input of Ψ by 1

β
and an output scaling of N by β. This results in an IQC factorization

of (Ψα, 1
β
,M, R|α|), which β ◦N ◦ α satisfies.

Time Scale and Variable Transformation

For the time scale and variable transformation, we employ dimensional analysis. Let S :
BR,US → L2,US be a bounded, causal operator defined by

dη

dτ
= fS(η(τ), u(τ)), (3.19)

y(τ) = hS(η(τ), u(τ)), (3.20)

and P : BR,UP → L2,UP is a bounded, causal operator defined by

dx

dt
= fP (x(t), u(t)), (3.21)

z(t) = hP (x(t), u(t)). (3.22)
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Let ΨH and ΨL be stable, proper linear systems defined by their respective (A,B,C,D)
matrices with the appropriate subscripts to denote H or L.

Theorem 3.6. If there exist invertible matrix T and constant λ > 0 such that

fS(η, u) ≡ T

λ
fP (T−1η, u), (3.23)

hS(η, u) ≡ hP (T−1η, u), (3.24)

for all (η, u) ∈ Rn × Rm and

AL =
AH
λ
,

BL =
BH

λ
,

CL = CH ,

DL = DH ,

(3.25)

then P ∈ I
(
ΨH ,M,R

)
if and only if S ∈ I

(
ΨL,M,

√
λR
)

.

Proof. The proof follows by representing the P system in terms of the units of the S system
through a time scaling and a coordinate change. Let (x, u) be solution trajectories of (3.21).
Define

η(τ) := Tx (t)|t=λ−1τ , (3.26)

v(τ) := u (t)|t=λ−1τ . (3.27)

Then

dη

dτ

∣∣∣∣
τ

=
T

λ

dx(t)

dt

∣∣∣∣
t=λ−1τ

=
T

λ
fP (x (t) , u (t))

∣∣∣∣
t=λ−1τ

=
T

λ
fP
(
T−1η(τ), v(τ)

)
= fS(η(τ), v(τ)),

showing that (η, v) in (3.26) and (3.27) solve (3.19). The outputs hS and hP are equivalent
under the coordinate change (3.26) and the time scaling τ = λt used above. Hence, P
and S are systems that describe the same physical law with different units. Using the same
approach, input/state/output trajectories of ΨH and ΨL are related by the same time scaling
by virtue of (3.25).

Finally, note that u and v from (3.27) satisfy:

‖v‖2
2,US =

∫ ∞
0

v2(τ) dτ =

∫ ∞
0

u2(τλ−1) dτ =

∫ ∞
o

u2(t) (λdt) = λ‖u‖2
2,UP

Hence, ‖u‖2,UP ≤ R if and only if ‖v‖2,US ≤
√
λR.
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Example

This example combines the input-output and time-scaling invariants and exhibits a one-to-
one correspondence between local IQCs for one system and local IQCs for another, related
system.

Consider the first-order parametrized system, denoted as the operator N , as

fN(x, u) = ax+ bxm + cu,

hN(x, u) = dx,
(3.28)

where m ∈ N, m ≥ 2, and a > 0, b ≥ 0, c ≥ 0, d ≥ 0 are arbitrary parameters. Let the
operator P describe the dynamics of a particular parameter choice for N , where a = b =
c = d = 1:

fP (x, u) = −x+ xm + u,

hP (x, u) = x.
(3.29)

Let

λ :=
1

a
, (3.30)

T :=

(
1

bλ

) 1
m−1

, (3.31)

α :=
cλ

T
, (3.32)

β := dT. (3.33)

Let ΨH and ΨL be stable, proper linear systems with (A,B,C,D) matrices related by
(3.25).

Lemma 3.4. P ∈ I
(
ΨH ,M,R

)
if and only if N ∈ I

(
ΨL
α, 1
β

,M, R
√
λ

|α|

)
Proof. Define a system S such that (3.23)-(3.24) hold. Substituting (3.30)-(3.31) into (3.23)-
(3.24) yields

fS(η, u) = −aη + bηm +
T

λ
u,

hS(x, u) =
η

T
.

(3.34)

Note that (3.28), (3.32), (3.33), (3.34), and imply that N = β ◦ S ◦ α. By Theorem

3.6, P ∈ I
(
ΨH ,M,R

)
if and only if S ∈ I

(
ΨL,M,

√
λR
)

. Moreover, by Theorem 3.5,

S ∈ I
(

ΨL,M,
√
λR
)

if and only if N ∈ I
(

ΨL
α, 1
β

,M,
√
λR
|α|

)
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As a concrete example, let m = 3, a = 2, b = 7, c = 3, d = 5 so that

fP (x, u) = −x+ x3 + u,

hP (x, u) = x

and

fN(x, u) = −2x+ 7x3 + 3u,

hN(x, u) = 5x.

Using the procedure in Section 2.9 with degree 6 V and Q, the induced L2 → L2 gain of
‖W (P − Q)‖ is estimated, where Q(s) = 1

s+1
and W (s) = 0.05s2+s+0.05

s2+s+1
, which gives rise to

a gain curve. Sampling a point from this curve, for inputs less than R = 0.7473, the gain
bound is less than γR = 0.2078. Hence, by Theorem 3.3, P ∈ I

(
ΨP ,M,R = 0.7473

)
, where

M =
[
I 0
0 −I

]
and the state space realization of ΨP is

ΨP =


−1 −1 −2 0 2
1 0 0 0 0
0 0 −1 1 0
0 0 0 1 0

2.2854 0 −0.2406 0 0.2406


By Lemma 3.4, N ∈ I

(
ΨN ,M,R = 0.1883

)
, where the state space realization of ΨN is

ΨN =


−2 −2 −4 0 1.4967
2 0 0 0 0
0 0 −2 5.612 0
0 0 0 2.806 0

2.2854 0 −0.2406 0 0.09

 .
Remark 3.9. By Lemma 3.4, a library of IQCs which N satisfies, with any choice of a, b, c, d,
can be trivially generated using a pre-established library of IQCs which P satisfies.

In order to find IQCs for (3.28) it is only necessary (and sufficient) to find IQCs for (3.29).
Moreover, such IQCs would apply to (3.28) for any choice of (a, b, c, d) via (3.30), (3.31),
(3.32), (3.33). This shows that if one wants to establish a large collection of parameterized
IQCs (by (a, b, c, d)) for (3.28), one needs only to establish a large collection of IQCs for the
single system given in (3.29).
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Chapter 4

Performance Analysis of
Interconnected Locally Stable
Systems

We are interested in model-based certification of large-scale dynamical systems in the pres-
ence of input and model uncertainty. The complexity of such problems often dictates a
decomposition approach, [3], [92], breaking the system into a complex interconnection of
smaller subsystems. Individual analysis on the isolated subsystems reveals coarse properties
of the subsystems (eg., passive, small-gain or generalizations, such as dissipativeness with
respect to various supply rates, etc.). In some cases, the coarse properties, coupled with the
interconnection topology is enough to verify the overall behavior, [99], [47], [92]. In special
cases, optimization can select which coarse properties are most important [92]. Moreover,
this verification step, which involves the coarse properties and the interconnection topology
is scalable, with semidefinite programming as the foundational computational engine.

We present an IQC-based analysis technique to analyze the input/output gain properties
of interconnections of locally stable subsystems. We assume that each subsystem satisfies
a collection of IQCs on inputs with L2 norm less than or equal to 1. The subsystems may
be unstable (or even undefined) on larger norm input signals. The goal of the analysis is
to exploit these local IQCs to obtain a local bound on the gain of the interconnection. We
extend these ideas to the situation where the decomposition leads to component models
which are not globally stable, and may not even be defined on all inputs (eg., certain inputs
may lead to finite-escape time solutions).

4.1 Introduction

Consider the system in Figure 4.1, specified by the equations[
z
e

]
= G

[
w
d

]
,
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where G ∈ RH∞, the operator ∆ : B1L2 → L2 is bounded and causal, and ∆ ∈ I (Π, [ ], 1).
We wish to verify if a performance IQC Πp is satisfied for the exogenous input d to

the output e, in Figure 4.1, which is valid under some (unknown at this point) bound on
‖d‖. The analysis will be accomplished by using the information about ∆ contained in the
IQC defined by Π. We will first investigate the gain from d to z, by temporarily setting
e := z, which yields the structure shown in Figure 4.2. The system Gz embodies this error
redefinition.

Both a frequency domain and state-space approach to verifying the performance IQC
are presented. For each approach, we will first analyze properties of the interconnection of
G with an extension ∆e : L2e → L2e of ∆, as in Figures 4.3-4.4. Then, connections to the
original problem, represented in Figures 4.1-4.2, will be established. It is important to note
(as will be clear in the derivations) that the requirements on the extended operator ∆e are
different in the two approaches.

∆

G

zw

ed

Figure 4.1: (G,∆)

∆
zw

d z
Gz

Figure 4.2: (Gz,∆)

4.2 Frequency Domain Approach

We apply performance analysis using IQCs in Section 3.1 and the extension for local operators
in Section 3.4 to verify a performance IQC Πp for the signals d and e.

Theorem 4.1. Assume Π and Πp, describing ∆ and the performance objective, as outlined in
Section 4.1 are defined. Let G be a causal, finite dimensional, linear time-invariant operator
and let ∆ be a causal, bounded operator mapping B1L2 → L2. ∆ ∈ I (Π, [ ], 1). Assume there
exists a bounded, causal extension ∆e : L2e → L2e of ∆ with ∆e(z) = ∆(z) for z ∈ B1L2 and
∆e ∈ I (Π). Further assume
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G

zw

ed

∆e

Figure 4.3: (G,∆e)

zw

d z
Gz

∆e

Figure 4.4: (Gz,∆e)

1. for every τ ∈ [0, 1] the interconnection of G and τ∆e is well-posed,

2. for every τ ∈ [0, 1], τ∆e ∈ I (Π),

3. the interconnection of G11 and ∆e is well-posed and stable.

4. there exists ρ > 0 and ε1 > 0 such that

[
Gz(jω)
I

]∗ 
Π11(jω) 0 Π12(jω) 0

0 I 0 0
Π∗12(jω) 0 Π22(jω) 0

0 0 0 −ρ2I

[Gz(jω)
I

]
� −ε1I (4.1)

for all ω ∈ R

5. there exists ε2 > 0 such that

[
G(jω)
I

]∗ 
Π11(jω) 0 Π12(jω) 0

0 Πp,22 0 Π∗p,12

Π∗12(jω) 0 Π22(jω) 0
0 Πp,12 0 Πp,11

[G(jω)
I

]
� −ε2I (4.2)

for all ω ∈ R,

then for all ‖d‖2 <
1
ρ

there exist unique solutions to the equations describing the intercon-

nection of (G,∆). Moreover, z satisfies ‖z‖2 ≤ 1 and (d, e) satisfy the IQC defined by Πp

(see Definition 3.1).
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Proof. We begin by establishing facts about the signals in the (G,∆e) interconnection. Since
∆e ∈ I (Π) and the assumptions 3-5 hold, by Theorem 3.2, for all d ∈ L2, there exist unique
z and e are in L2 solving the equations. Moreover, ‖z‖2 ≤ ρ‖d‖2, and (d, e) satisfy the IQC
defined by Πp.

Note that if ‖d‖2 = α < 1
ρ
, then ‖z‖2 ≤ ρα < 1. Since ∆e equals ∆ on B1L2, ∆e(z) =

∆(z). Hence, the unique solution of the loop equations involving (G,∆e) is also a solution
for the (G,∆) interconnection. Suppose that other solutions for (G,∆) existed. If so, then
either ‖z‖2 ≤ ρα or there are finite times when ‖z‖2,T > ρα. The case where ‖z‖2 ≤ ρα is
not possible, since it would constitute another solution with (G,∆e). If at some finite time,
ρα < ‖z‖2,T < 1, then ∆e(z) = ∆(z) on [0 T ]. So, on [0 T ], this is also a solution to the
interconnection of (G,∆e), but violates the already established gain ‖z‖2,T ≤ ρα (on a finite
horizon) in the (G,∆e) loop.

Hence, we conclude that for all ‖d‖2 <
1
ρ

there exist unique solutions to the equations

describing the interconnection of (G,∆). Moreover, z satisfies ‖z‖2 ≤ 1 and (d, e) satisfy the
IQC defined by Πp.

Remark 4.1. In the theorem, we considered z ∈ B1L2. In a more general case, if z ∈ BRL2,
then it is easy to extend the theorem and proof by replacing ‖d‖2 <

R
ρ

and ‖z‖2 ≤ R.

4.3 Interconnections of One System with Many IQCs

In Sections 4.1-4.2, we considered the interconnection with G, of a single ∆ which satisfies
one IQC, ∆ ∈ I (Π, [ ], R). Often ∆ is known to satisfy a collection of IQCs. We extend
previous results in Section 4.2 to cover the case with a single ∆, which satisfies many IQCs.

Theorem 4.2. Assume {Πj}Kj=1 and Πp are defined. Let G ∈ RH∞ and let ∆ is a causal,
bounded operator mapping B1L2 → L2 with ∆ ∈ I (Πj, [ ], 1) for j = 1, . . . , K. Assume

1. there exists {αj > 0}Kj=1, ρ > 0 and ε1 > 0 such that

[
Gz(jω)
I

]∗ 
∑K

j=1 αjΠj,11(jω) 0
∑K

j=1 αjΠj,12(jω) 0

0 I 0 0∑K
j=1 αjΠ

∗
j,12(jω) 0

∑K
j=1 αjΠj,22(jω) 0

0 0 0 −ρ2I

[Gz(jω)
I

]
� −ε1I (4.3)

for all ω ∈ R

2. there exists an extension ∆α
e : L2e → L2e of ∆ with ∆α

e (z) = ∆(z) for z ∈ B1L2 and

∆α
e ∈ I

(∑K
j=1 αjΠj

)
3. for every τ ∈ [0, 1] the interconnection of G and τ∆α

e is well-posed,

4. for every τ ∈ [0, 1], τ∆α
e ∈ I

(∑K
j=1 αjΠj

)
,
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Then for all ‖d‖ < 1
ρ

there exists unique solutions z, e, w to the equations describing the

interconnection of (G,∆). Moreover, z, e, w ∈ L2.
Further assume

6. there exists {βj > 0}Kj=1, ε2 > 0 such that

[
G(jω)
I

]∗ 
∑K

j=1 βjΠj,11(jω) 0
∑K

j=1 βjΠj,12(jω) 0

0 Πp,22 0 Π∗p,12∑K
j=1 βjΠ

∗
j,12(jω) 0

∑K
j=1 βjΠj,22(jω) 0

0 Πp,12 0 Πp,11

[G(jω)
I

]
� −ε2I

(4.4)
for all ω ∈ R,

Then this (d, e) pair satisfy the IQC defined by Πp.

Proof. We begin by establishing facts about the signals in the (G,∆α
e ) interconnection. Since

∆α
e ∈ I

(∑K
j=1 αjΠj

)
and the assumptions 1-5 hold, by Theorem 3.2, for all d ∈ L2, there

exist unique z and e in L2 solving the equations. Moreover, ‖z‖2 ≤ ρ‖d‖2.
The argument for the proof of Theorem 4.1 also applies, showing that if ‖d‖ < 1

ρ
, then

the resulting z ∈ B1L2 and, hence, (z, e, w) are also the unique solution of (G,∆). Condition
6 is applied to these L2 signals (in the same manner as in 3.2) to infer (d, e) satisfy the IQC
defined by Πp.

Remark 4.2. In Chapter 3, we defined local IQCs arising from weighted, local L2 norm
bounds. We showed operators which satisfy these local IQCs can always be extended to all
of L2e, and all input/output pairs of the extended operator satisfy the IQC. Furthermore,
we showed that positive combinations of multipliers associated with a group of such IQCs
can be viewed as another IQC of the same form. This means that for any operator which
satisfies all of the IQCs individually, and any positive combination of multipliers, there is an
extension which satisfies the combined multiplier globally. Hence, for these types of IQCs,
the seemingly stringent condition 2 in Theorem 4.2 is automatically satisfied, and in
that sense, Theorem 4.2 generalizes the results of [59] and [4] to conditional IQCs of this
form. This combination of the results from Chapter 3 along with Theorem 4.2
is the main original contribution of these two chapters. Continued collaborative
work on analysis with conditional IQCs is ongoing with my colleagues in the UC Berkeley
research group (Packard, Meissen and Lessard).

4.4 Interconnections of Many Systems with Many

IQCs

In Sections 4.1-4.3, we have considered interconnections with a single ∆. For general inter-
connected systems, ∆ in Figure 4.2 describes a collection of many subsystems interconnected
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through G and each satisfying a collection of IQCs.
Consider the system in Figure 4.5, which is specified by the equations[

z
e

]
= G

[
w
d

]
, (4.5)

wi = ∆i(zi), i = 1, . . . , N (4.6)

where G ∈ RH∞ and the subscript i denotes the i’th component of a partitioned vector
or diagonal system, the operators ∆i : B1L2 → L2 are bounded and causal, each ∆i ∈
I (Πij, [ ], 1) for j = 1, . . . , Ki, zi ∈ Rnzi , wi ∈ Rnwi , nz =

∑N
i=1 nzi, nw =

∑N
i=1 nwi, and

e ∈ Rne , d ∈ Rnd .

G

∆1

. . .

∆N

d e

zw

z1

zN

w1

wN

Figure 4.5: Feedback Interconnection of (G,∆)

Again, we wish to verify if a performance IQC Πp is satisfied for the exogenous input d
to the output e, which is valid under some bound on ‖d‖. We take a similar approach as
before, by investigating the gain from d to any one of the components of z, zi, by temporarily
setting e := zi. The system Gi embodies this error redefinition.

Frequency Domain Approach

Remark 4.3. Block diagonal transformation of the system in Figure 4.5 yields an intercon-
nection with a single ∆, which satisfies many IQCs. Thus, Theorem 4.2 can be applied to
this interconnection after a basic manipulation.

State-Space Approach

In previous sections, we focused on satisfying a performance IQC Πp for the signals (d, e).
In this section, we examine the satisfaction of a specific performance IQC, namely

Πp =

[
γ2Ind 0

0 −Ine

]
, (4.7)

which encapsulates the gain bound property ‖d‖2 ≤ γ‖e‖2.
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Figure 4.6: Interconnection with ∆i replaced by the IQCs
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Figure 4.7: Interconnection with ∆i replaced by the IQCs and e := zi

We assume that the Πij can be factorized as

Πij = Ψ∼ij

[
I 0
0 −I

]
Ψij

∀i = 1, . . . , N, ∀j = 1, . . . ,M,

(4.8)
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where Ψij ∈ RH∞ with

ẋΨij = AijxΨij +B1,ijzi +B2,ijwi (4.9)[
pij
qij

]
= CijxΨij +D1,ijzi +D2,ijwi. (4.10)

Let ∆ denote the block diagonal concatenation of the ∆i operators. Each ∆i can be
trivially extended to all of L2e by defining

(∆e,i(v))(t) =

{
(∆i(u))(t) if ‖u‖t ≤ 1,

0 if ‖u‖t > 1.
(4.11)

Theorem 4.3. Let G(s) be a causal, finite dimensional, linear time-invariant operator and
let {∆i}Ni=1 be causal, bounded operators mapping B1L2 → L2. For each i, ∆i locally (on

B1L2) satisfies the IQCs defined by {Πij}Mj=1. Each Ψij is represented by a linear system,
as in (4.8)-(4.10). Let x be the state of G, and xΨ be the concatenated state of all Ψij.
Finally, let ∆e,i denote the extension introduced in (4.11). For notational simplicity, define
∆ := diag {∆i} as the block diagonal concatenation. Similarly, ∆e := diag {∆e,i}. Assume
α > 0, β > 0 and

1. the interconnection of G and ∆e, shown in Figure 4.8, is well-posed;

2. for each 1 ≤ i ≤ N there exist positive semidefinite quadratic function Vi(x, xΨ) =
[ x
xΨ ]∗ Pi [

x
xΨ ] and {λijk} ≥ 0 such that the linear system shown in Figure 4.7 satisfies

V̇i ≤
1

β2
dTd− zTi zi +

N∑
j=1

M∑
k=1

λijk(q
T
jkqjk − pTjkpjk). (4.12)

3. there exist positive semidefinite quadratic function V0(x, xΨ) = [ x
xΨ ]∗ P0 [ x

xΨ ] and λ0ij ≥
0 such that the linear system shown in Figure 4.6 satisfies

V̇0 ≤ α2dTd− eT e+
N∑
j=1

M∑
k=1

λ0jk(q
T
jkqjk − pTjkpjk). (4.13)

Then, the feedback interconnection of (G,∆) is well-posed for all d ∈ L2 with ‖d‖ < β.
Moreover, each zi satisfies ‖zi‖ ≤ 1 and ‖e‖ ≤ α‖d‖.

Remark 4.4. The inequalities in (4.12) and (4.13) are quadratic constraints on the variables
(x, xΨ, d, w), parameterized by Pi. P0, λijk, and λ0ij. Hence (4.12) and (4.13) are LMIs,
[101], [12], in P and λ.
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G

∆e

d e

z

Figure 4.8: Feedback Interconnection of (G,∆e)

Proof. The proof is given for α = β = 1. The interconnection of interest is (G,∆). However,
we initially quantify the behavior of the well-posed interconnection (G,∆e), shown in Figure
4.8 and, at the end of the proof, relate the solutions of (G,∆e) to (G,∆). Let d ∈ L2e, ‖d‖ <
1. Since d ∈ L2e, unique solutions in L2e exist. Suppose there exists a i such that ‖zi‖T̄ > 1
at some T̄ > 0. Since zi ∈ L2e, ‖zi‖T is a continuous, nondecreasing, function of T and is
equal to 0 at T = 0. Therefore, at some T1 < T̄ , there exists an index m (possibly equal to
i) such that ‖zm‖T1 = 1 and ‖zk‖T1 ≤ 1 for all k 6= m. Note that for all T2 ≤ T1 and all k,
‖zk‖T2 ≤ 1. Therefore on the time interval [0, T2], the hard IQCs for each ∆e,i are satisfied.
Hence for all j, k

‖qjk‖T2 ≤ ‖pjk‖T2 . (4.14)

From well-posedness of the interconnection of (G,∆e), we can integrate (4.12) with the initial
condition x(0) = 0 and xΨ(0) = 0, yielding for all i

‖zi‖2
T2

+ Vi(x(T2), xΨ(T2)) ≤ ‖d‖2
T2

+
N∑
j=1

M∑
k=1

λijk(‖qjk‖2
T2
− ‖pjk‖2

T2
). (4.15)

From the positive semidefiniteness of Vi and the hard IQC conditions in (4.14)

‖zi‖2
T2
≤ ‖d‖2

T2
(4.16)

holds for all i. However, with i = m, we know ‖zi‖2
T2

= 1, which contradicts ‖d‖ < 1. The
proof of ‖e‖ ≤ ‖d‖ follows similarly by integrating (4.13).

Summarizing, for (G,∆e), we have shown that ‖d‖ < 1 implies all ‖zi‖ ≤ 1 and ‖e‖ ≤ ‖d‖.
However, we are ultimately interested in the interconnection of (G,∆), in Figure 4.5. Since
∆e,i|B1L2

= ∆i|B1L2
, any fact about the solutions of (G,∆e), which satisfies ‖zi‖ ≤ 1 for all

i, is also true for (G,∆).

4.5 Example

We conclude with an example to illustrate the ideas of this Chapter. A 1 state, nonlinear
system ∆i is governed by

ẋi = −xi + x3
i + zi (4.17)

wi =
1

3
xi, (4.18)
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which is locally stable, but can exhibit finite escape time solutions if ‖u‖2 > 1. We establish
simple local IQCs of the form in Section 3.3. We choose a linear offset L = 1

s+1
, which

is the linearization of the system, and variety of 11 stable, minimum phase weights Wi.
Specifically, we choose 10 different band pass filters and the identity as the weights. Next,
using the procedure in Section 2.9, we estimate the induced L2 → L2 gain of the locally
stable operator Wi(∆ − L) for i = 1, . . . , 11. The gain, which depends on the norm-bound
of the input is 0 for arbitrarily small inputs, and goes to ∞ as the norm of the input is
allowed to approach 1. Each analysis produces a gain curve. We fix ten different sam-
ple points, and find the corresponding gain from each curve. Each point sampled on the
gain curves gives rise to a local IQC. The local IQCs generated can be downloaded from
http://jagger.me.berkeley.edu/∼erin/IQC.mat.

We consider a simple interconnection of three ∆i systems along with a disturbance d and
error e. Let wi = ∆i(zi). The inputs and outputs of the systems are described by

z1 = −1

3
w1 +

1

3
w2

z2 =
1

6
w1 −

1

3
w2 +

1

3
w3 + d

z3 =
1

3
w2 −

1

3
w3

e = w2.

We compare three approaches for estimating the L2 → L2 bound from d to e, shown in
Figure 4.9

1. applying the frequency domain methods in Section 4.3

2. direct approach using methods in 2.9, using quadratic V and Q,

3. lower bound, worst-case simulation analysis using methods from [87].

In this example, the bound achieved using the methods in Section 4.3 outperform the
direct approach. Our hope is that these methods will become applicable to large-scale sys-
tems. We are optimistic since we have shown promising results for smaller interconnections
of locally stable systems.
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Chapter 5

Delay Robustness of Interconnected
Systems

5.1 Context and Acknowledgements

The ideas presented in this chapter embody an application of interconnections of systems
which satisfy passivity and roll-off properties. This material is to appear in the IEEE Trans-
actions on Automatic Control, co-authored by Murat Arcak and Andrew Packard, entitled
“Delay Robustness of Interconnected Passive Systems: An Integral Quadratic Constraint
Approach”.

5.2 Introduction

Input-output notions in control theory, such as L2-stability and passivity, emerged from the
far-reaching work of Zames [103] and Sandberg [75] who used these notions to formulate
fundamental stability theorems for feedback systems. Extensions of these stability theorems
to large-scale interconnected systems were developed by Willems [100], Moylan and Hill
[61, 40], and Vidyasagar [95]. These stability theorems have permeated control theory and
served as the starting point for numerous feedback design and analysis techniques [27, 77,
76]. Passivity, in particular, has been instrumental in nonlinear and adaptive control [55] and,
more recently, in networked dynamical systems, such as multi-agent systems [5], biological
networks [7], and communication networks [99].

Passivity is an abstraction of energy dissipation and is, thus, a practically relevant prop-
erty that is inherent in numerous physical systems. However, analysis and design techniques
that rely on passivity are often criticized for lack of stability guarantees in the presence
of time delay. In contrast, a small-gain condition, which stipulates that the loop gain be
smaller than one, guarantees stability for arbitrarily large delays in the feedback loop. This
condition, however, fails to exploit the phase properties in the feedback loop, and may be
overly conservative when the delay is small.
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We derive stability conditions that converge to passivity estimates as the duration of delay
approaches zero, and to small-gain estimates as the duration of delay approaches infinity.
To accomplish this, we follow the IQC framework [59], [44] for stability of interconnections,
and employ two IQCs simultaneously: The first one is an output strict passivity IQC, and
the second one is a roll-off IQC that is frequency-dependent, and carries information about
the time scales of the system it represents.

The roll-off IQC is indeed critical, because neither passivity nor an L2-gain description of
a system encapsulates time-scale information. As an illustration, the first order dynamical
system ρẏ = −y + γu is output strictly passive and has an L2-gain γ from input u to y
regardless of the time constant ρ > 0. However, when this system is part of a feedback loop
with delay T , a reasonable stability condition should restrict T/ρ, which is the magnitude of
the delay relative to the time constant. The roll-off IQC introduced provides this essential
time-scale information, and combines it with the gain and phase information encompassed
by the output strict passivity IQC. The combination of these two IQCs then allows for sharp
stability estimates that are sensitive to the duration of delay.

For a concrete demonstration of the advantage of the roll-off IQC, we study a cyclic
interconnection structure for which a stability condition was derived in [7, 78] for the delay-
free case, using output strict passivity properties of the subsystems. This bound is referred
to as the “secant criterion,” and has the form γ cosn(π/n) < 1 where n is the number of
blocks in the feedback loop, and γ is the product of their gains. As an illustration, for n = 3
blocks, the secant criterion restricts the gain by γ < sec3(π/3) = 8. We first show that, in
the presence of delay T , an application of the IQC stability theorem using only the output
strict passivity IQC yields the small-gain condition γ < 1 regardless of the value of T . By
including the roll-off IQC, we derive a new stability test in which the admissible gain γ is
now a function of the delay T and the number of blocks, n. This function converges to the
small-gain condition as T →∞ and to the secant criterion as T → 0.

Next, we focus on the subsystems of the interconnection and discuss how to verify the out-
put strict passivity and roll-off IQCs. In particular, we focus on an equilibrium-independent
verification of these IQCs, since the equilibrium of the interconnection is sensitive to small
perturbations in the subsystems and may not be accurately known. This is indeed a critical
problem for biological networks where the parameters often exhibit wide variations, and for
resource allocation algorithms in communication networks where the goal is to stabilize an
optimal network equilibrium that is unknown to the users.

It is common in robust control, and specifically IQC literature, [48, 59], to treat known
(and unknown) delays as uncertainties, usually “centered” at some finite-dimensional ap-
proximation (e.g., Pade), and employ a rational frequency-dependent IQC description, Π,
to conservatively cover the difference. This is often done so that both the known (linear)
interconnection system G, as well as the IQC multipliers remain rational. Rational G and Π
are attractive so that the KYP lemma can be used to reformulate the frequency-domain in-
equality into a state-space linear matrix inequality (and avoid frequency gridding). We keep
the delay as part of the interconnection system G, to avoid covering the delay with an IQC.
Although this calls for frequency gridding in general, for special types of interconnections
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we derive exact solutions to the frequency-domain inequality.
The papers [49] and [31] implicitly use the idea of capturing magnitude roll-off at high

frequencies. Unlike these references, which employ an IQC description of the delay element,
we incorporate the delay within the known part of the plant, thereby avoiding undue con-
servatism. Work in [45] uses the IQC framework for network stability, but does not address
time delays and relies on a critical symmetry assumption on the interconnections, which is
avoided here.

5.3 Stability of Interconnected Output Strictly

Passive Systems

Consider Figure 5.1, where G has the form:

G(s) =
M∑
k=1

Gk(s)e
−sTk +G0(s), (5.1)

where Gk are proper, rational functions without poles in the closed right-half plane1, and
each ∆i is a bounded, causal operator. The signals e and f are exogenous inputs that
represent disturbances.

Our main interest is in the situation where ∆i are SISO dynamical blocks representing
the subsystems of a network, and G is n× n and represents their interconnection structure.

G(s)

∆1

...
∆n

e

fv

w

Figure 5.1: Feedback Interconnection of ∆ and G. The ∆i represent subsystems of a network
and G represents the interconnection.

Consider the following IQC:

Π1,γ1 =

[
0 0.5

0.5 − 1
γ1

]
, (5.2)

γ1 > 0, which encapsulates an output strict passivity (OSP) property:

〈y, v〉 − 1

γ1

‖y‖2
2 ≥ 0. (5.3)

1The authors in [59] consider a rational G, but the general form in (5.1) is admissible, as alluded to in
[44].
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In addition to passivity, this inequality implies an L2 gain of γ1, as can be shown with a
completion of squares argument.

Next we define

Π(jω) :=
n∑
i=1

αiΠ1,γ1 ⊗ eieTi = Π1,γ1 ⊗ P, αi ∈ R, (5.4)

where P = diag(αi). If each ∆i satisfies the IQC defined by Π1,γ1 , then the block diagonal
concatenation ∆ := diag(∆i) satisfies the IQC defined by (5.4) for any choice of αi ≥ 0,
i = 1, . . . , n.

From this point on, we assume that, for every κ ∈ [0, 1], the interconnection of G and κ∆
is well-posed, as stipulated in [59]. The second condition in [59] is that, for every κ ∈ [0, 1],
the IQC defined by Π is satisfied by κ∆. The IQCs employed in this paper are structured
such that if ∆ satisfies the IQC, then so does κ∆, κ ∈ [0, 1] (cf. [59, Remark 2]).

Proposition 5.1. If there exists a ε > 0 and a diagonal P ∈ Rn×n, P � 0, such that

P (G(jω)− I) + (G(jω)− I)∗P � −2εI ∀ω ∈ R, (5.5)

then the feedback interconnection of G and ∆ is stable. �

Proof. We show that the proposition is equivalent to the third (and final) condition of the
IQC stability theorem in [59]: If there exist ε > 0 and αi > 0 with Π as in (5.4) such that

HΠ :=

[
G(jω)
I

]∗
Π(jω)

[
G(jω)
I

]
� −εI ∀ω ∈ R (5.6)

holds, then the interconnection of G and ∆ is stable.
To show this, we let P := diag(αi) � 0 and note that[
G(jω)
I

]∗
Π(jω)

[
G(jω)
I

]
=

[
G(jω)
I

]∗
(Π1,γ1 ⊗ P )

[
G(jω)
I

]
=

[
G(jω)
I

]∗ [
0 0.5P

0.5P − 1
γ1
P

] [
G(jω)
I

]
. (5.7)

It then follows that condition (5.6) is equivalent to (5.5).

5.4 Gain Roll-off Integral Quadratic Constraint

In order to evaluate the delay robustness of OSP systems interconnected as in Figure 5.1,
we now introduce a roll-off IQC, which describes a reduction in the gain with increasing
frequency. This IQC will be particularly useful when G contains delay elements, since the
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roll-off characterizes the time-constants within the ∆i subsystems. The roll-off IQC has the
form:

Π2,τ,γ2(jω) :=

[
1 0

0 − 1+( ω
ωc

)2

γ2
2(1+τ( ω

ωc
)2)

]
,

where γ2 > 0, ωc is the “corner frequency”, and 0 < τ � 1 is introduced to render Π2,τ,γ2(jω)
proper, as assumed in [59]. In the subsequent analysis, we will also refer to Π2,τ,γ2 at the
limit τ → 0, which we define as

Π2,γ2(jω) :=

[
1 0

0 −1+( ω
ωc

)2

γ2
2

]
.

If (3.1) holds for Π2,γ2 , then (3.1) also holds for Π2,τ,γ2 for any τ > 0. Thus, if ∆i satisfies
Π2,τ,γ2 for all τ > 0, then we abbreviate the notation and say ∆i satisfies Π2,γ2 .

For systems that are both OSP and have roll-off, it is natural to use an IQC which
combines Π1,γ1 and Π2,γ2 . Since Π1,γ1 is a frequency-independent IQC, the time-scales of
operators which satisfy Π1,γ1 are not constrained. Likewise, the IQC Π2,γ2 does not constrain
the phase properties of operators. By combining both IQCs, we will be able to obtain less
restrictive stability tests, particularly when G(s) contains delay elements. Thus, we select
the combined IQC:

Π(jω) :=
n∑
i=1

(αi1Π1,γ1 + αi2Π2,γ2(jω))⊗ eieTi = Π1,γ1 ⊗ P1 + Π2,γ2 ⊗ P2, (5.8)

where P1 = diag(αi1), P2 = diag(αi2), and search for αi1, αi2 ≥ 0 such that (5.6) holds with
the form in (5.8). We refer to Πτ as the combined IQC (5.8) when Π2,γ2 is replaced with
Π2τ,γ2 .

The condition in (5.6) can be evaluated for any Π by constructing a frequency grid for
a finite set of ω and individually evaluating (5.6) for each ω in the grid. However, it may
be numerically involved to employ a sufficiently dense grid for ω ∈ R. The following lemma
proves that, in the special case where the delays Tk in (5.1) are commensurate2, it is sufficient
to check HΠ � −εI for a particular compact set of frequencies.

Lemma 5.1. Suppose Gk in (5.1) are constant for k = 0, . . . ,M and all of the delays Tk
are commensurate so that there exists T̂ such that Tk = NkT̂ for all k = 1, . . . ,m and some
Nk ∈. Let HΠ be defined as in (5.6) with Π in (5.8). Then, there exists an ε > 0 such that

HΠ � −εI holds for all ω ∈ R if and only if HΠ � −εI holds for ω ∈ Θ :=
[
− π

T̂
, π
T̂

]
.

2If all of the ratios between delays Tk

Tj
for k, j = 1, . . . ,M are rational numbers, then the delays are said

to be commensurate [35].
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Proof. Let P1 = diag(αi1) and P2 = diag(αi2) and note that the combined IQC in (5.8) can
be represented as

Π(jω) =

[
P2 0.5P1

0.5P1 − 1
γ1
P1 −

1+( ω
ωc

)
2

γ2
2

P2

]
.

Hence,

HΠ = G(jω)∗P2G(jω) + 0.5(G(jω)∗P1 + P1G(jω))− 1

γ1

P1 −
1 +

(
ω
ωc

)2

γ2
2

P2.

The two frequency dependent terms in HΠ are G(jω), which is periodic, and the lower n×n
block of Π, which is even and decreasing with increasing ω ∈ [0,∞). Thus, λmax(HΠ) will
be achieved within the first period ω ∈ Θ.

We further show that, under the conditions of Lemma 5.1, verifying (5.6) with Π as in
(5.8) is enough to ensure that (5.6) also holds for Πτ when τ is sufficiently small. The use
of Π yields a cleaner analysis that does not depend on the constant τ .

Lemma 5.2. Suppose the conditions in Lemma 5.1 hold. If there exists ε > 0, αi1, αi2 ≥ 0,
such that HΠ � −εI for all ω ∈ Θ, then there exists a τ̃ > 0, ε̃ > 0, α̃i1, α̃i2 ≥ 0 such that

HΠτ � −ε̃I (5.9)

holds for all ω ∈ Θ and for all τ such that 0 < τ ≤ τ̃ .

Proof. Assume there exists ε > 0, αi1 ≥ 0, αi2 ≥ 0 such that HΠ � −εI for all ω ∈ Θ. Denote
Πτ (2, 2) and Π(2, 2) as the lower right n × n blocks of Πτ and Π. Let α̃i1 := αi1, α̃i2 := αi2
for i = 1, . . . , n, and let

α̂ = max
i

α̃i2.

Note that for any τ ,

HΠτ = HΠ + Πτ (2, 2)− Π(2, 2) ∀ω, and

HΠτ = HΠ for ω = 0.

Moreover, for ω ∈ {Θ \ 0}, if

τ̃ <
γ2

2λmax (−HΠ)

α̂
(

π

T̂ωc

)2
(

1 +
(

π

T̂ωc

)2
) , (5.10)

then
σ (Πτ (2, 2)− Π(2, 2)) < λmax (−HΠ) . (5.11)

for any τ , such that 0 < τ ≤ τ̃ . Note that the bound on τ̃ in (5.10) is greater than 0. Hence,
choosing τ̃ such that (5.10) holds will preserve the negativity of HΠτ̃ on ω ∈ {Θ \ 0}. Thus,
for α̃i1 := αi1, α̃i2 := αi2 for i = 1, . . . , n, τ̃ in (5.10), there exists ε̃ > 0 and τ > 0 such that
(5.9) holds for all ω ∈ Θ and for all τ such that 0 < τ ≤ τ̃ .
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g1 ∆1 · · · gn ∆n

Figure 5.2: Interconnection of ∆ and cyclic G. The gain, delay, and negative sign are
distributed throughout the gi blocks.

5.5 Example: Cyclic Interconnections with Delay

In this section we make the advantage of the combined IQC (5.8) explicit by studying a special
interconnection structure whose stability properties in the absence of delay are characterized
in [7, 78].

Let G(jω) be of the form

G(jω) =


0 0 · · · 0 g1(jω)

g2(jω) 0 0 0

0 g3(jω) 0
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 gn(jω) 0

 , (5.12)

where
gi(jω) = ρie

jβi(ω), ρi > 0, i = 1, . . . , n (5.13)

and βi(ω) are real-valued functions such that

n∏
i=1

ρi = γ and
n∑
i=1

βi(ω) = π − ωT. (5.14)

Figure 5.2 represents the interconnection of Figure 5.1 with G defined as in (5.12). This
interconnection structure plays an important role in biological oscillators (see [7] and refer-
ences therein).

In this example, when applying Π1,γ1 or Π2,γ2 we will assume that γ1 and γ2 are equal.
Under this assumption, we choose γ1 = γ2 = 1 without loss of generality, since we can modify
G(s) to absorb a different value of the gain. Let

Π1 := Π1,1,

Π2 := Π2,1.

The phase condition in (5.14) means that this is a negative feedback loop with delay T .
Now, we prove that the result of the IQC-based analysis depends only on the total gain γ
and total delay T , and not the particular choice of each ρi and βi(ω).

We present a lemma that will be used in the proof of Theorem 5.1.
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Lemma 5.3. Let G and G̃ represent two different cyclic matrices as in (5.12) such that

n∏
i=1

gi(jω) =
n∏
i=1

g̃i(jω), g̃i(jω), gi(jω) 6= 0. (5.15)

Then, there exists a diagonal nonsingular D(jω) ∈ Cn×n such that

D(jω)−1G(jω)D(jω) = G̃(jω). (5.16)

Proof. Since (5.15) holds, choosing

d1(jω) = 1, (5.17)

di(jω) = di−1(jω)
gi(jω)

g̃i(jω)
i = 2, . . . , n (5.18)

and D(jω) = diag (d1(jω), . . . , dn(jω)) provides a nonsingular, diagonal D(jω) such that
(5.16) holds.

Theorem 5.1. Let G(jω) and G̃(jω) represent two different cyclic matrices as in (5.12) and
(5.13), each with different choice of values for gi(jω) such that both matrices satisfy (5.14)
with a common γ and T . Let gi(jω) and g̃i(jω) indicate the particular choice for G(jω) and
G̃(jω). Let {Πk(jω)}pk=1 represent an arbitrary set of IQCs.

Define

Π(jω) =

p∑
k=1

Πk(jω)⊗ Pk

and

Π̃(jω) =

p∑
k=1

Πk(jω)⊗ P̃k,

where Pk = diag(αik), P̃k = diag(α̃ik) for i = 1, . . . , n. There exist constants αik ≥ 0 and
ε > 0 such that for all ω ∈ R [

G(jω)
I

]∗
Π(jω)

[
G(jω)
I

]
� −εI, (5.19)

if and only there if exist constants α̃ik ≥ 0 and ε̃ > 0 such that for all ω ∈ R[
G̃(jω)
I

]∗
Π̃(jω)

[
G̃(jω)
I

]
� −ε̃I. (5.20)

Proof. (⇒) From Lemma 5.3, we know that there exists a nonsingular, diagonal D(jω)
such that (5.16) holds. Moreover, note from (5.13), (5.17), (5.18), that |di(jω)| are constant
scalars. Thus, we use the notation |di|. Let D(jω) = I2⊗D(jω). Since D(jω) is nonsingular,
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multiplying (5.19) by D(jω) will not effect the inequality constraint. Hence, the following
holds for all ω:

D∗(jω)

[
G(jω)
I

]∗
(D
∗
(jω))−1D

∗
(jω)Π(jω)

D(jω)D(jω)−1

[
G(jω)
I

]
D(jω) � −εD∗(jω)D(jω). (5.21)

The right hand term −εD∗(jω)D(jω) = −ε|di(jω)|2I is a constant, negative definite, di-
agonal matrix. Let ε̃ = εmax(|di|2). Since G(jω) and G̃(jω) are similar for D(jω), (5.21)
implies [

G̃(jω)
I

]∗
D
∗
(jω)Π(jω)D(jω)

[
G̃(jω)
I

]
� −ε̃I (5.22)

holds for all ω. Expanding Π(jω), D(jω) and rearranging yields[
G̃(jω)
I

]∗ p∑
k=1

Πk(jω)⊗ (D∗(jω)PkD(jω))

[
G̃(jω)
I

]
� −ε̃I (5.23)

holds for all ω. Let D∗(jω)PkD(jω) = P̃k. Since D(jω) and Pk are diagonal, P̃k =
diag(|di(jω)|2αik) for i = 1, . . . n. Since, the |di| terms are constant scalars, we remove
the dependency on ω and note that P̃k = diag(|di|2αik). Hence, (5.23) holds if and only if[

G̃(jω)
I

]∗ p∑
k=1

Πk(jω)⊗ P̃k
[
G̃(jω)
I

]
� −ε̃I

holds for all ω. Therefore, ε̃ = εmax(|di|2) and α̃ik := |di|2αik are the appropriate, constant
positive and non-negative multiples for the condition in (5.20) to hold for all ω.
(⇐) From the symmetry, given the multipliers for (5.20), the multipliers of (5.19) can be
recovered by the same argument.

Now we will study how delay affects the stability of the cyclic interconnection in (5.12).
We first consider the case T = 0 and recall the following stability test from [7]:

Theorem 5.2. The cyclic feedback interconnection of ∆ and G is stable for all ∆ satisfying
the IQC defined by Π1 if and only if

γ cos
(π
n

)n
< 1. (5.24)

Although [7] did not use the IQC formalism, the stability criterion was identical to (5.5)
with G as in (5.12)-(5.14) and T = 0. The existence of a diagonal P � 0 satisfying (5.5) was
shown in [7, Theorem 1] to be equivalent to (5.24).

Now we consider the case T 6= 0, and show that employing the IQC Π1 alone yields a
conservative result that is independent of the duration of the delay.
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Theorem 5.3. Suppose T > 0 and each ∆i satisfies the IQC defined by Π1. There exists a
diagonal P � 0 and ε > 0 such that HΠ � −εI holds for all ω ∈ R with Π = Π1 if and only
if γ < 1.

Proof. Using Theorem 5.1, we choose G(jω) such that

ρ1 = γ, β1(ω) = π − ωT,
ρi = 1, βi(ω) = 0, i ≥ 2,

that is, g1(jω) = −γe−jωT and gi(jω) = 1, i ≥ 2.
(⇒ Contradiction) Suppose P � 0 exists and γ ≥ 1. At ω̄ = π

T
, G(jω̄) − I is a Metzler

matrix of the form:

G(jω̄)− I =


−1 0 · · · γ
1 −1 · · · 0

0
. . . . . .

...
... 0 1 −1

 . (5.25)

From [10, Theorem 2.3], there exists an ε > 0 and P � 0 such that P [G(jω̄) − I] +
[G(jω̄)− I]∗P � −εI if and only if the principal minors of −(G(jω̄− I)) are all positive. All
principal minors of −(G(jω̄ − I)), except the minor which is the determinant of the matrix
itself, are 1. The remaining principal minor, which is

det(−(G(jω̄)− I)) = 1− γ(−1)n+1(−1)n−1 = 1− γ(−1)2n = 1− γ,

is positive only if γ < 1. Hence, when γ ≥ 1 at ω = ω̄ there does not exist a P such that
(5.7) holds.

(⇐) Assume γ < 1. We will first show that a P exists at ω̄ = π
T

, and then show that
this P can be used for any value of ω. At ω = ω̄, G(jω̄)− I is a Metzler matrix of the form
in (5.25). Hence, since γ < 1, there exists a positive definite P = diag(p1, . . . , pn) and ε > 0
such that

x∗[P (G(jω̄)− I) + (G(jω̄)− I)∗P ]x ≤ −ε|x|2 (5.26)

holds for all x ∈ Cn. Expanding (5.26) yields the condition

− p1|x1|2 − . . .− pn|xn|2 + 0.5p2(x∗1x2 + x∗2x1) + . . .+ 0.5pn(x∗n−1xn + x∗nxn−1)

+ 0.5γp1(x∗1xn + x∗nx1) ≤ −ε|x|2. (5.27)

Since (5.27) holds for all x ∈ Cn, it also holds for all xi = |yi| for y ∈ Cn. Hence, it is clear
that (5.27) implies that

− p1|y1|2− . . .− pn|yn|2 + . . .+ p2|y1||y2|+ . . .+ pn|yn−1||yn|+ γp1|y1||yn| ≤ −ε|y|2 (5.28)
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for all y ∈ Cn. Now we consider y∗[P (G(jω)−I)+(G(jω)−I)∗P ]y for all ω ∈ R. Expanding
y∗[P (G(jω)− I) + (G(jω)− I)∗P ]y yields

− p1|y1|2 − . . .− pn|yn|2 + . . .+ 0.5p2(y∗1y2 + y∗2y1) + . . .

+ 0.5pn(y∗n−1yn + y∗nyn−1)− 0.5γp1(e−jωTy∗1yn + ejωTy∗ny1),

which is upper bounded by (5.28). Hence, there exists a positive definite P = diag(p1, . . . , pn)
and ε > 0 such that (5.6) holds for all ω ∈ R.

Note that γ < 1 in Theorem 5.3 is a small-gain condition. Since this condition does not
depend on the duration of the delay, one would anticipate that using Π1 alone may lead
to a conservative result. We will present a theorem which shows that combining Π1 with
the roll-off IQC Π2 gives a relaxed condition that depends on the delay T . To simplify the
discussion, we assume that each of the ∆i subsystems in the cyclic interconnection satisfies
the IQC Π2 with the same corner frequency ωc.

We present Lemmas 5.4-5.6, which are used in the final proof of Theorem 5.4. We define

f(ω) := 1− γ1/n cos

(
π

n
− ωT

n

)
− α(γ2/n − (1 + ω2)), (5.29)

ω :=
√
γ2/n − 1, (5.30)

T :=
π − n arctan(ω)

ω
, (5.31)

α :=
γ1/nT

2nω
sin

(
π − Tω

n

)
, (5.32)

which are used in the following Lemmas.

Lemma 5.4. If γ > 1, α = α and T = T , then for f in (5.29)

argmin
ω

f(ω) = ω.

Proof. The lemma is proven true by inspecting the first, second and third derivatives of f
at ω.

Lemma 5.5. If γ > 1, α = α and T = T , then ∀ω ∈
[
0, π

T

]
f(ω) ≥ 0.

Proof. Since f(ω) = 0 and ω is the global minimum by Lemma 5.4, f(ω) ≥ 0 ∀ω ∈[
0, π

T

]
.

Lemma 5.6. If γ > 1, for any T̂ such that 0 ≤ T̂ < T ,

αω2 − γ1/n cos

(
ωT̂ − π

n

)
+ 1 + α− αγ2/n > 0 (5.33)

for all ω ∈
[
0, π

T

]
.
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Proof. The proof follows by applying Lemma 5.5 and inspecting (5.33) after substituting in
for y = Tω.

Theorem 5.4. For any γ > 1, the cyclic interconnection of G and ∆ is stable for all ∆
satisfying the IQCs defined by Π1 and Π2 with corner frequency ωc if and only if

ωcT <
π − n arctan

(√
γ

2
n − 1

)
√
γ

2
n − 1

. (5.34)

Proof. Without loss of generality, we prove the theorem for ωc = 1. This is because one can
define the dimensionless time variable t′ = ωct and, thus, take ωc = 1.
(⇒) The condition in (5.34) is the time delay margin for a cascade of identical linear systems
∆i = 1

(s+1)
for i = 1, . . . , n, in feedback with gain γ. This is a particular system that satisfies

the IQCs defined by Π1 and Π2 at ωc = 1, which proves the necessity of (5.34).
(⇐) Using Theorem 5.1, we choose G(jω) such that

gi(jω) := g(jω) , γ
1
n ej(−

ωT
n

+π
n), i = 1, . . . , n. (5.35)

With αi1 = 1 and αi2 = α, i = 1, · · · , n, the IQC stability condition HΠ � −εI with the
combined IQC (5.8) can be written as:

1

2
(G(jω)− I) +

1

2
(G(jω)− I)∗ + α(|g(jω)|2 − (1 + ω2))I � −εI ∀ω. (5.36)

Let Θ :=
[
− π
T
, π
T

]
. From Lemma 5.1, the inequality (5.36) need only hold for ∀ω ∈ Θ.

Since
(G(jω)− I) + (G(jω)− I)∗ (5.37)

is a circulant matrix, its eigenvectors are [34]:

vk = [1 e−j(k−1) 2π
n e−j(k−1)2 2π

n · · · e−j(k−1)(n−1) 2π
n ]T (5.38)

for k = 1, . . . n and, thus, the eigenvalues are the discrete Fourier transform coefficients of
the first row which, for (5.37), are:

λk(jω) = −2 + g(jω)∗e−j(k−1) 2π
n + g(jω)e−j(k−1)(n−1) 2π

n (5.39)

for k = 1, . . . n.
Defining the matrix V = [v1 · · · vn] and noting that V −1 = 1

n
V ∗, we conclude:

1

n
V ∗[(G(jω)− I) + (G(jω)− I)∗]V = diag(λ1(jω), . . . , λn(jω)).
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Multiplying (5.36) from the right by V and from the left by 1
n
V ∗ yields a diagonal matrix

on the left side of the inequality and does not effect the right side since 1
n
V ∗V = I. Thus,

the condition in (5.36) becomes

1

2
λk(jω) + α(γ2/n − (1 + ω2)) ≤ −ε, k = 1, · · · , n ∀ω ∈ Θ. (5.40)

Substituting (5.35) into (5.39) and simplifying yields

λk(jω) = −2 + 2γ1/n cos

(
π

n
+ (k − 1)

2π

n
− ωT

n

)
(5.41)

for k = 1, · · · , n. We rewrite (5.40) as:

h(ω, k) := −1 + γ1/n cos

(
π

n
+ (k − 1)

2π

n
− ωT

n

)
+

α(γ2/n − (1 + ω2)) ≤ −εk = 1, · · · , n,∀ω ∈ Θ.

Note that for ω ∈ Θ, ωT
n
∈
[
−π
n
, π
n

]
. For ω ∈

[
0, π

T

]
, h(ω, k) has the largest value when

k = 1. For ω ∈
[−π
T
, 0
]
, h(ω, k) has the largest value when k = n. However, note that

h(ω, 1) = h(−ω, n). Thus, we can restrict the range of interest to ω ∈
[
0, π

T

]
. Let

f(ω) := −h(ω, 1) = 1− γ1/n cos

(
π

n
− ωT

n

)
− α(γ2/n − (1 + ω2)). (5.42)

Thus, if there exists an ε̃ > 0 such that f(ω) ≥ ε̃ for all ω ∈
[
0, π

T

]
, then there exists an

ε > 0 such that HΠ � −εI for all ω ∈ R.
Note that (5.42) and (5.29) are equivalent. If T < T , α = α and

ε := min
ω

f(ω), (5.43)

then by Lemma 5.6, f(ω) → ∞ as ω → ∞, f(ω) > 0 ∀ω ∈ R, by our choice of T and α.
Hence, there exists an ε > 0 and αi1 := 1, αi2 := α for i = 1, . . . , n, such that HΠ � −εI
holds for all ω ∈

[
0, π

T

]
. Furthermore, by the symmetry of λk and Lemma 5.1, HΠ � −εI

holds for all ω ∈ R.

Note that, when T = 0, (5.34) recovers the secant criterion in Theorem 5.2. Likewise, as
T →∞, the small gain condition in Theorem 5.3 is recovered.

Moreover, we emphasize that condition in (5.34) is the exact stability bound for a cascade
of identical linear systems ∆i = ωc

s+ωc
for i = 1, . . . , n, in negative feedback with gain γ, as

one can verify using classical Nyquist analysis criterion. Since this choice of ∆i satisfies the
IQCs defined by Π1 and Π2, the stability bound (5.34) is tight and cannot be relaxed without
further assumptions on the ∆i subsystems.
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The special case n = 2 is of particular interest, as it relates to the classical Passivity
Theorem [75, 103]. This theorem states that, in the absence of delay, the negative feedback
interconnection of two passive systems is stable without any restriction on the loop gain γ.
Theorem 5.4 shows how this gain must be restricted to accommodate the delay for a duration
T in the feedback loop.

As a further example, in Figure 5.3 we show the bound on the gain γ as a function of the
delay for a cyclic interconnection of n = 3 OSP systems with roll-off at ωc = 1. As T → 0,
the bound converges to 8, which is the secant criterion for n = 3 and as T →∞, the bound
converges to 1, which is the small-gain condition.
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Figure 5.3: A stability bound on γ as a function of delay T for n = 3 from (5.34). The
secant criterion is recovered as T → 0 and the small-gain condition is recovered as T →∞.

5.6 Application to State Space Models

A series of recent publications presented a passivity approach for overcoming the complex-
ity of high-order differential equation models arising in communication networks [99, 32],
cooperative robotic vehicles [5, 42], and biochemical reaction networks [7, 6]. This approach
decomposes the network into passive components and applies a stability test that is equiva-
lent to the IQC test of this paper with Π1,γ1 only. We now generalize this method to systems
with time delays and incorporate the roll-off IQC Π2,γ2 in the stability analysis.

Let ∆i refer to a dynamical system of the form:

ẋi = fi(xi, ui)

yi = hi(xi),

for i = 1, . . . , n, where xi(t) ∈ Rni , ui(t) ∈ R, yi(t) ∈ R. Let N =
∑n

i=1 ni and define
u ∈ Rn, y ∈ Rn, x ∈ RN , by uT = [u1 . . . un], yT = [y1 . . . yn], xT = [xT1 . . . xTn ]. The
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interconnection of these subsystems is described by the feedback law

u(t) = G0y(t) +
M∑
k=1

Gky(t− Tk),

where Gk are constant for k = 0, . . . ,M . Assume that the interconnected system possesses
an equilibrium x?, and let x?i denote the part corresponding to the ith subsystem. Let:

y?i := hi(x
?
i ),

(y?)T := [y?1 . . . y?n],

u? :=

(
G0 +

M∑
k=1

Gk

)
y?,

ūi := ui − u?i ,
ȳi := yi − y?i ,
x̄i := xi − x?i .

Let ∆̄i represent the system with inputs ūi, states x̄i, and outputs ȳi

˙̄xi(t) = f(x?i + x̄i(t), u
?
i + ūi(t))

ȳi(t) = h(x?i + x̄i(t)).

In order to apply the IQC test discussed in this paper, we need to verify the OSP and
roll-off IQCs for each of the ∆̄i blocks, whose definitions depend on the network equilibrium
x? as shown above. However, the equilibrium of a network depends on the parameters of the
subsystems. In many of our motivating applications, such as biological reaction networks
and the Internet congestion control problem, the equilibrium of the network is not known
a priori and it is essential to verify these IQCs without relying on the knowledge of x?. A
procedure for equilibrium-independent verification is presented next.

5.7 Equilibrium-Independent Verification of Integral

Quadratic Constraints

We now study the equilibrium-independent verification of Π1,γ1 and Π2,γ2 . In the previous
sections we assumed that the ∆i blocks are single-input single-output blocks for notational
simplicity. However, this assumption is not essential, and identical results hold for m-input
m-output blocks if Gk, k = 0, . . . ,M in (5.1) are replaced with Gk ⊗ Im and the IQCs Πi,
i = 1, 2 are replaced with Πi ⊗ Im. Thus, in this section we study m-input m-output blocks
for further generality.
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Let ∆ refer to a dynamical system of the form:

ẋ = f(x, u) (5.44)

y = h(x), (5.45)

with x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rm. We assume that for all u? ∈ Rm there exists a unique
x? ∈ Rn such that f(x?, u?) = 0. We recall the following definition from [41]:

Definition 5.1. ∆ is said to be output strictly equilibrium-independent passive (OSEIP)
with gain γ1 > 0 if for every u? ∈ Rm, there exists a once-differentiable storage function
Su? : Rn → R such that Su?(x) > 0 ∀x 6= x?, Su?(x

?) = 0, and

∇xSu? · f(x, u) ≤ (u− u?)T (y − y?)− 1

γ1

(y − y?)T (y − y?) (5.46)

for all u ∈ Rm, x ∈ Rn, where y? = h(x?). �

By integrating (5.46) with respect to time from 0 to ∞, and assuming x̄(0) = 0, it
is not difficult to verify that (5.3) holds for the input-output pair ū, ȳ, which means that
∆̄ satisfies the IQC defined by Π1,γ1 ⊗ Im. Clearly, the assumption x̄(0) = 0 must be
eliminated for stability analysis of the interconnected system in Figure 5.1. This can be
done by assuming an appropriate reachability property for the interconnected system, which
is a standard approach in going from input-output to state space stability [96, Section 6.3],
[79]. In this approach one treats the system as if it had zero initial conditions and uses
reachability to prescribe bounded and finite-duration (therefore, L2) exogenous signals that
bring the state to the actual, non-zero initial condition. One then uses the input-output
stability of the interconnection to conclude that the internal signals are in L2, and employs
additional reachability or detectability conditions for the subsystems to conclude that the
states converge to zero.

In order to verify that ∆̄ satisfies Π2,γ2 , we cascade ∆̄ with a linear system whose gain
“rolls-up” with corner frequency ωc, illustrated in Figure 5.4. Next, we estimate the gain
from the input ū to the output z̄ of the roll-up system. A bounded L2 gain from ū to z̄
implies that ∆̄ satisfies Π2,γ2 with corner frequency ωc.

∆̄
s
ωc

+ 1ū ȳ z̄

Figure 5.4: Cascade of ∆ with roll-up. If the gain from ū to z̄ is bounded, then ∆̄ rolls off
at ωc.

The state equations for the new cascaded system are

˙̄x = f(x? + x̄, u? + ū) (5.47)

z̄ :=
˙̄y

ωc
+ ȳ (5.48)
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To verify the roll-off IQC, we bound the L2 gain of the cascaded system dynamics (5.47)-
(5.48) from ū to z̄.

Definition 5.2. ∆ in (5.44)-(5.45) is said to have equilibrium-independent roll-off with cor-
ner frequency ωc > 0 and gain γ2 > 0 if for every u? ∈ Rm, there exists a once-differentiable
storage function Vu?(x) : Rn → R such that Vu?(x) > 0 ∀x 6= x?, Vu?(x

?) = 0, and

0 ≤ −∇Vu?f(x, u) + γ2
2(u− u?)T (u− u?)− z̄T z̄ (5.49)

∀x ∈ Rn, ∀u ∈ Rm, where

z̄ =
∂h

∂x
f(x, u)

1

ωc
+ y − y?.

We notate this as EIRO(γ2, ωc).

Thus, the EIRO(γ2, ωc) property may be used to show that ∆̄ satisfies Π2,γ2 ⊗ Im with
corner frequency ωc regardless of where the equilibrium is located.

As a special case of practical interest, we focus on the nonlinear system ∆ with dynamics

ẋ = −βx− φ(x) + u (5.50)

y = x, (5.51)

where x ∈ R, u ∈ R, y ∈ R, β > 0, φ(x) : R → R is continuous and nondecreasing so that
for all (x, x?) ∈ R× R,

(x− x?)(φ(x)− φ(x?)) ≥ 0. (5.52)

Claim 5.1. ∆̄ satisfies Π1, 1
β

.

Proof. Consider the storage function

Su?(x) :=
1

2
(x− x?)2. (5.53)

Clearly Su?(x) > 0 for all x 6= x? and Su?(x
?) = 0. We show that the condition in (5.46)

holds for all x ∈ R, u ∈ R for the system ∆ using the storage function (5.53).
We subtract f(x?, u?), which is equal to zero, from (5.50) and multiply by ∇Su?(x) = x̄,

which yields

∇Su?(x) (f(x, u)− f(x?, u?))

= x̄(−βx̄− φ(x) + φ(x?) + ū) ≤ −βx̄2 + x̄ū

from (5.52). Thus, ∆ is OSEIP with γ1 = 1
β
.

Claim 5.2. ∆̄ satisfies Π2, 1
β

with ωc > β.
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Proof. After cascading ∆̄ with the roll-up with ωc, the new dynamics are

˙̄x = −βx̄− (φ(x)− φ(x?)) + ū (5.54)

z̄ =
1

ωc
˙̄x+ x̄ (5.55)

=

(
1− β

ωc

)
x̄− φ(x)− φ(x?)

ωc
+

ū

ωc
. (5.56)

With the choice of storage function

Vu?(x) = 2γ2
2

∫ x

x?
[φ(y)− φ(x?)]dy +

(
βγ2

2 −
1

ωc

)
x̄2, (5.57)

we show that Vu?(x
?) = 0, Vu?(x) > 0 for all x 6= x?, and (5.49) hold.

Trivial inspection of Vu?(x) reveals that Vu?(x
?) = 0 and Vu?(x) > 0 for all x 6= x?.

Let
φ̄x?(x) := φ(x)− φ(x?).

Note that right hand side of (5.49) is a quadratic function in ū and the inequality holds for
all u. Thus, we can apply the Bounded Real Lemma and eliminate the dependence on ū.
Assume γ2 = 1

β
and γ2ωc > 1. Then (5.49) holds for all x ∈ R and u ∈ R if and only if both

γ2
2ω

2
c > 1, and (5.58)[

2

ωc

(
x̄− βx̄+ φ̄x?(x)

ωc

)
+∇Vu?(x)

]2

+ 4

[
γ2

2 −
1

ω2
c

](
x̄− βx̄+ φ̄x?(x)

ωc

)2

+ 4

[
γ2

2 −
1

ω2
c

]
∇Vu?(x)(−βx̄− φ̄x?(x)) ≤ 0 (5.59)

hold. The conditions (5.58) and (5.59) ensure that right hand side of (5.49) is convex and
has roots that are imaginary or zero. Thus, the right hand side of (5.49) is greater than or
equal to zero for all x ∈ R, u ∈ R. By assumption, (5.58) holds. Note that

∇Vu?(x) = 2γ2
2 φ̄x?(x) + 2

(
βγ2

2 −
1

ωc

)
x̄.

Substituting ∇Vu?(x) into (5.59) and expanding yields an inequality of the form

c1x̄
2 + c2x̄φ̄x?(x) + c3φ̄

2
x?(x) ≤ 0, (5.60)

where

c1 =
4

ω2
c

(
1− γ2

2ω
2
c

)
(β2γ2

2 − 1),

c2 =
8βγ2

2

ω2
c

(
1− γ2

2ω
2
c

)
,

c3 =
4γ2

2

ω2
c

(
1− γ2

2ω
2
c

)
.
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Since γ2ωc > 1 and γ2
2β

2 = 1, the terms c1, c2, and c3 are less than or equal to zero. From
the condition in (5.52), x̄φ̄x?(x) ≥ 0. Hence, (5.60) holds for all x̄ and (5.59) holds for all x.

Since both (5.58) and (5.59) hold, (5.49) holds for all x ∈ R and u ∈ R. Hence, and ∆̄
satisfies Π2, 1

β
with ωc > β.

Note that the special case φ(x) ≡ 0, in (5.50)-(5.51) gives a linear system with the transfer
function 1

s+β
. In this case, the conditions γ2ωc > 1, and γ2β > 1 imply∣∣∣∣ 1

s+ β

∣∣∣∣
s=jω

<

∣∣∣∣∣ γ2
s
ωc

+ 1

∣∣∣∣∣
s=jω

∀ω,

which describes a roll-off with gain γ2 and corner frequency ωc.

5.8 Application to Internet Congestion Control

Establishing the stability of Internet congestion control algorithms has been a major research
topic over the past decade [51], [57], [80], [31], [68], [63], [98]. A broadly applicable passivity
approach was presented in [99], but this study did not take into account the forward and
backward delays from the users to the routers. Stability estimates which bound the time
delay are essential when achieving robustness and satisfactory performance for the Internet
congestion control system, since time delay is an inherent property. As a motivating example,
we apply both the IQC verification techniques and the IQC stability analysis to this problem.

Consider a set of NU users and NL links. The Internet congestion control problem is
to design update algorithms for the sending rates xi for i = 1, . . . , NU , and prices pl for
l = 1, . . . , NL, that are decentralized and have a stable network equilibrium that maximizes
the aggregate utility

NU∑
i=1

Ui(xi),

subject to the capacity constraints of the links, where Ui(·) is a concave utility function for
user i.

The routing matricesRf andRb indicate connections with forward delay T fli and backward
delay T bli as follows:

[Rf (s)]li =

{
e−T

f
lis if user i uses link l

0 else
(5.61)

[Rb(s)]li =

{
e−T

b
lis if user i uses link l

0 else.
(5.62)
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Hence, the interconnection of the sources and links is described be the feedback law[
q
z

]
=

[
0 RT

b

Rf 0

] [
x
p

]
,

where q := [qT1 , . . . , q
T
NU

]T , x := [xT1 , . . . , x
T
NU

]T , z := [zT1 , . . . , z
T
NL

]T , and p := [pT1 , . . . , p
T
NL

]T .
Here qi denotes the price feedback received by user i, and zl is the aggregate rate for link l.

We now verify Π1,γ1 and Π2,γ2 for a class of user algorithms:

ẋi = U ′i(xi)− qi. (5.63)

Let Ωi refer to the dynamics in (5.63) with input−qi and output xi. We assume U ′′i (xi) ≤ −βi
for all xi ∈ R and for some βi > 0, which implies that Ui(·) is concave. We further assume
that U ′i(xi) → ∞ as xi → 0+, which renders RNU

+ invariant and allows us to restrict our
analysis to this domain.

Claim 5.3. Ω̄i satisfies Π1, 1
β

and Π2, 1
β

with ωc > β.

Proof. Since Ui(·) is concave, U ′i(·) can be written as:

U ′i(xi) = −βixi − φi(xi),

where φi is a nondecreasing function because the derivative of φi is

φ′i(xi) = −U ′′i (xi)− βi ≥ 0.

Hence, φi(xi) is strictly increasing and (5.52) holds. Clearly, Ωi is a special case of the
system in (5.50)-(5.52). Thus, by Claim 5.1 and Claim 5.2, Ω̄i satisfies Π1, 1

β
and Π2, 1

β
with

ωc > β.

Several classes of congestion control algorithms treat the links as static operators, inter-
preted as penalty functions that keep the link rate below capacity, and the users as dynamic
operators [57]. For the link price we select the algorithm:

pl = hl(zl), (5.64)

where hl(·) is a monotone penalty function. Let ∆l describe the dynamics of the link price
with input zl and output pl. Clearly, a static system will not satisfy the roll-off IQC Π2,γ2 .
However, since hl(·) is strictly increasing, if the slope of hl is less than or equal to γ1, then
∆̄l satisfies Π1,γ1 .

Let
Σ := diag(Ω1, . . . ,ΩNU ,∆1, . . . ,∆NL),

and note that the interconnection matrix is

G :=

[
0 −RT

b

Rf 0

]
, (5.65)
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since the input to Ωi is −qi.
To test the stability of the interconnection of Σ with G, we let define Π(jω) to be

composite IQC for the entire system of NU users using NL links:

Π(jω) := Π1, 1
β
⊗ P1 + Π2, 1

β
(jω)⊗ P2 + Π1,γ1(jω)⊗ P3,

where P1, P2 and P3 are diagonal (NU +NL)× (NU +NL) matrices, [P1]ii = αi1, [P2]ii = αi2,
[P3]ii = 0 for i = 1, . . . , NU , and [P1]ii = 0, [P2]ii = 0, [P3]ii = αi1 for i = NU+1, . . . , NU+NL.
We then search for αi1 ≥ 0 for i = 1, . . . NU + NL and αj2 ≥ for j = 1, . . . , NU such that
(5.6) holds for all ω ∈ R.

5.9 Example

As an example application to the Internet congestion control problem, we consider the in-
terconnection in Figure 5.5 with one link serving NU users. We combine the forward and
backward delays to yield the round trip time

Ti = T fi + T bi .

In this special case, we can equivalently test the stability for an interconnection where all of
the delay is in the forward routing matrix Rf .

Lemma 5.7. Let G(jω) and G̃(jω) represent two different interconnections as in (5.65)
where Rf , Rb, R̃f , R̃b are r × 1 such that (5.69) holds.

There exists a diagonal nonsingular D(jω) ∈ Cn×n such that

D(jω)−1G(jω)D(jω) = G̃(jω). (5.66)

Proof. Since (5.69) holds, choosing

d1(jω) := 1, (5.67)

di(jω) := di−1
[Rb(jω)]i

[R̃b(jω)]i
i = 2, . . . , n, (5.68)

and D(jω) = diag (d1(jω), . . . , dn(jω)) provides a nonsingular, diagonal D(jω) such that
(5.66) holds.

Theorem 5.5. Let G(jω) and G̃(jω) represent two different interconnections as in (5.65)
where Rf , Rb, R̃f , R̃b are r × 1 and

[Rf (s)]i[Rb(s)]i = [R̃f (s)]i[R̃b(s)]i ∀i = 1, . . . , r. (5.69)

Let {Πk(jω)}pk=1 represent an arbitrary set of IQCs.
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Define

Π(jω) =

p∑
k=1

Πk(jω)⊗ Pk

and

Π̃(jω) =

p∑
k=1

Πk(jω)⊗ P̃k,

where Pk = diag(αik), P̃k = diag(α̃ik) for i = 1, . . . , r + 1. There exist constants αik ≥ 0 and
ε > 0 such that for all ω ∈ R [

G(jω)
I

]∗
Π(jω)

[
G(jω)
I

]
� −εI, (5.70)

if and only there if exist constants α̃ik ≥ 0 and ε̃ > 0 such that for all ω ∈ R[
G̃(jω)
I

]∗
Π̃(jω)

[
G̃(jω)
I

]
� −ε̃I. (5.71)

Proof. The proof of Theorem 5.5 is identical to the proof of Theorem 5.1, by defining G and
G̃ as in (5.65) such that (5.69) holds, and by defining D such that (5.67) and (5.68) hold.
As in Theorem 5.1, the |di| terms will be constant scalars, since (5.61), (5.62), (5.67), and
(5.68) are assumed in the statement of Theorem 5.5.

For simplicity of the presentation, we assume that Ti := T for i = 1, . . . , NU . By Theorem
5.5, we combine all of the forward and backward delay into Rf such that Rf = e−sT1T and
Rb = 1 and test the stability of the new interconnection. The user algorithms Ωi are defined
by (5.63) for i = 1, . . . , NU with Ui

′′(xi) ≤ −β for some β > 0 and for all xi ∈ R. By Claim
5.3, Ω̄i satisfies Π1, 1

β
and Π2, 1

β
with ωc > β for i = 1, . . . , NU . The link price algorithm ∆1

is defined by (5.64), where hl(·) is a monotone penalty function with a slope less than or
equal to γ1. Thus, ∆1 satisfies Π1,γ1 . Since there is only one link and the link only satisfies
one IQC, we incorporate the IQC gain γ1 in the feedback loop in Figure 5.5 and assume
henceforth that ∆1 satisfies Π1,1.

The stability test for this interconnection can be equivalently expressed as the stability
test for an interconnection of two subsystems.

Lemma 5.8. Let Π(jω) represent an arbitrary IQC multiplier Π22(jω) � 0. If bounded,
causal operators {Ωi}Ki=1 on Ll

2e → Lm
2e satisfy the IQC defined by Π, then, for all θi ≥ 0,

such that
K∑
i=1

θi = 1, the bounded, causal operator

∆ :=
K∑
i=1

θiΩi

also satisfies the IQC defined by Π.
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Ω1

Ωi ∆1

ΩNU

−γe−sT

+

x1

+
xNU

−q1

−qNU

−qixi

∆2 ∆1

−NUγe
−sT

Figure 5.5: Simplified network with one link and NU users with round trip time T for each
user. The stability of this interconnection can be tested on the two system interconnection.

Proof. Let

Π(jω) =

[
Πa(jω) Πb(jω)
Π∗b(jω) −Πc(jω)

]
,

where, Πc(jω) � 0 for all ω. Assume {Ωi}Ki=1 are bounded causal operators that satisfy the
IQC defined by Π. For any u ∈ L2, define yi := Ωi(u), and note that for each i,∫ ∞

−∞

[
û(jω)
ŷi(jω)

]∗ [
Πa(jω) Πb(jω)
Π∗b(jω) −Πc(jω)

] [
û(jω)
ŷi(jω)

]
dω ≥ 0. (5.72)

If
K∑
i=1

θi = 1 and θi ≥ 0 for all i, then

K∑
i=1

θi

(∫ ∞
−∞

[
û(jω)
ŷi(jω)

]∗ [
Πa(jω) Πb(jω)
Π∗b(jω) −Πc(jω)

] [
û(jω)
ŷi(jω)

]
dω

)
≥ 0.

Distributing the sum of θi yields

∫ ∞
−∞

K∑
i=1

θiû(jω)∗Πa(jω)û(jω) + û(jω)∗Πb(jω)

(
K∑
i=1

θiŷi(jω)

)

+ û(jω)∗

(
K∑
i=1

θiŷi(jω)

)∗
Π∗b(jω)û(jω)−

K∑
i=1

θiŷi(jω)∗Πc(jω)ŷi(jω) dω ≥ 0. (5.73)
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Since Πc(jω) � 0, there exist L(jω) such that Πc(jω) = L(jω)∗L(jω). By definition
∆ :=

∑K
i=1 θiΩi, so

∆̂(u)(jω) =
K∑
i=1

θiŷi(jω),

and (5.73) is equivalent to∫ ∞
−∞

[
û(jω)

∆̂(u)(jω)

]∗ [
Πa(jω) Πb(jω)
Π∗b(jω) 0

][
û(jω)

∆̂(u)(jω)

]
−

K∑
i=1

θi‖L(jω)ŷi(jω)‖2 dω ≥ 0,

Let g : Cn → R+, A ∈ Cm×n, g(x) := ‖Ax‖, and h : R→ R, h(z) := z2. The composition
h ◦ g is convex on Cn since g is convex and h is convex and nondecreasing on the range of g.
Hence, Jensen’s inequality [13] implies∥∥∥∥∥

K∑
i=1

θiL(jω)ŷi(jω)

∥∥∥∥∥
2

≤
K∑
i=1

θi‖L(jω)ŷi(jω)‖2 ∀ω

and, thus:

0 ≤
∫ ∞
−∞

[
û(jω)

∆̂(u)(jω)

]∗ [
Πa(jω) Πb(jω)
Π∗b(jω) 0

][
û(jω)

∆̂(u)(jω)

]

−

∥∥∥∥∥
K∑
i=1

θiL(jω)ŷi(jω)

∥∥∥∥∥
2

dω =

∫ ∞
−∞

[
û(jω)

∆̂(u)(jω)

]∗
Π(jω)

[
û(jω)

∆̂(u)(jω)

]
dω, (5.74)

since ∆̂(u)
∗
(jω)Πc(jω)∆̂(u)(jω) = ‖

∑K
i=1 θiL(jω)ŷi(jω)‖2 pointwise in ω. Thus, ∆ satisfies

the IQC defined by Π.

Assume each {Ωi}NUi=1 in Figure 5.5 satisfies the IQCs defined by Π1,γ1 , Π2,γ2 with ωc, and,
therefore, also satisfies Π2,τ,γ2 with ωc for any τ > 0. Then, by Lemma 5.8, we can replace
the sum of the users Ωi in the dashed box by the subsystem NU∆2, where

∆2 :=

NU∑
i=1

1

NU

Ωi,

and ∆2 satisfies Π1,γ1 and Π2,τ,γ2 with ωc for any τ > 0. This yields an interconnection of ∆1

and ∆2 in negative feedback with gain NUγ1 and delay T , seen in Figure 5.5. If there exist
ε > 0, αi1, αi2 ≥ 0 such that HΠ � −εI for ω ∈ θ =

[
− π
T
, π
T

]
, then from Lemma 5.2, there

exist τ̄ > 0, ε̄ > 0, ᾱi1, ᾱi2 ≥ 0 such that HΠτ̄ � −ε̄I. Since ∆2 satisfies Π2,τ̄ ,γ2 , in particular,
stability is achieved.
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As a numerical example, we performed the robustness test in (5.6) on the interconnection
in Figure 5.5 with ∆1 satisfying Π1,1 and ∆2 satisfying Π1, 1

β
and Π2, 1

β
at ωc = 1. We gridded

the frequency ω ∈
[
− π
T
, π
T

]
with 300 points and varied T ∈ (10−3, 103), which is illustrated

in Figure 5.6. Since the delays are commensurate, we evaluate (5.6) over this subset of R.
Note that the curve is parametrized by NU , and we need only run the test once to obtain the
result for any NU . If the number of sources NU increases, the stability bound will decrease.
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Figure 5.6: Robustness test for the Internet congestion control problem with a static link
(5.64) and dynamic user algorithm in (5.63). The bound on the gain γ1β

−1 approaches 1
NU

as the time delay T approaches infinity.

The global nonlinear results on the stability of the Internet congestion control problem
in [68], [98], [63] are not comparable to this study, as they assumed a dynamic link price.
Under similar dynamic user and static link algorithms assumptions, [31] analyzed the global
asymptotic stability of the Internet congestion control problem with delays by using a small
gain technique. However, in [31] the second derivative of the utility function is bounded
below, which was not a restriction in our example. Thus, we achieve a less conservative
stability estimate by removing this restriction. Other significant results for nonlinear models
of Internet congestion control with delay include [74] and [102], which present stability tests
that account for arbitrarily large delays, and, therefore, may be conservative. Results from
[64] are delay dependent; however, they study a different congestion control algorithm than
the one described in equation (5.63).
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Chapter 6

Conclusions

In Chapter 2 we developed theoretical and numerical tools for quantitative local analysis of
nonlinear systems. Specifically, sufficient conditions for the bounds on the reachable set and
L2 gain of the nonlinear system subject to norm bounded disturbance inputs were derived.
We outlined an approach for verifying the dissipation inequalities describing the L2 gain and
reachability using SOS techniques. These techniques were also used in Chapter 3 to establish
local IQCs and in the example in Chapter 4 to compare to the frequency-domain analysis.

In Chapter 3 we defined the notion of a local IQC and established a method for generating
a particular local IQCs using linear offsets, linear weights and estimates of local L2 gains.
We presented several important technical lemmas and theorems involving extensions of local
operators to global operators and positive combinations of IQC multipliers which were used
in Chapter 4. We established invariants for IQCs based on an input-output scaling and a time
scaling with a variable change. Through dimensional analysis, the number of free parameters
in a ODE model is reduced, which reduces the dimensionality of a parameterized family of
IQCs describing the system. For a simple four parameter first order system, we reduced
the dimensionality to zero, allowing us to express all parameterized IQCs in terms of IQCs
for one, specific system. For a general problem, if the desired, parameterized IQCs must
be generated via numerical means, such as in [82], then the efficiency gain by performing
dimensional analysis is worthwhile.

In Chapter 4 established a frequency-domain stability and performance test for intercon-
nections of systems who satisfy local IQCs. We presented a state-space condition for the
case when the performance metric defined by an IQC describing an input-output gain. An
example of an interconnection of three systems, which each satisfy many IQCs is presented.
In this case, the frequency domain IQC analysis outperformed the direct SOS approach.
Future work will include a state-space test with a general performance IQC, development
of large libraries of small (2-3 state) nonlinear systems and collections of IQCs which they
satisfy, and analysis of larger interconnections of locally stable systems.

In Chapter 5 we presented an IQC approach to analyze the stability of interconnected
passive systems with time delay. This approach employs a roll-off IQC to complement pas-
sivity with time scale information, and yields stability estimates that depend on the duration
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of delay. In the case of a cyclic interconnection, the exact stability bound was derived in
Theorem 5.4. For other interconnection structures where such closed-form stability bounds
are not available, the proposed test can be applied numerically, by constructing a frequency
grid and by evaluating the IQC stability condition for each frequency. However, an impor-
tant problem that arises when applying the test numerically is how to ensure that no crucial
frequencies will be missed. In structured singular value (µ) analysis, the exact meaning
of the finite-frequency grid analysis is known (for all values of uncertainty, no poles cross
the imaginary axis at the frequency grid points), and can often aid in interpreting a finite-
frequency computation. Moreover, adaptive methods to certify that a finite-frequency grid
upper-bound µ analysis is in fact valid over the entire frequency axis have been developed,
[38]. Related, but different approaches to avoid frequency gridding in specific non-rational
applications of IQC theory have also been developed, [48, 50]. A general understanding of
finite frequency gridding in IQC tests remains to be developed.

A further contribution was the equilibrium-independent verification of the OSP and roll-
off IQCs, given a state space model of the subsystems. This problem is important because in
many of our motivating applications, such as biological networks and the Internet congestion
control problem, the equilibrium of an interconnection is not known a priori. Equilibrium-
independent verification of the output strict passivity IQC can be achieved through methods
outlined in [41]. The roll-off IQC was verified here by cascading the system of interest with a
system whose output “rolls-up”, and by estimating the bound on the gain for the cascaded
system. If the state model is described by polynomial vector functions, then elementary L2

gain methods [83], [82], combined with sum-of-squares (SOS) optimization [67], [8], provide
one method to verify the output strictly passivity or roll-off IQC. A future research topic will
be to investigate whether stability bounds similar to the ones obtained here with an input-
output approach can be derived using pure state-space methods. A particularly interesting
problem is whether it may be possible to construct Lyapunov-Krasovskii functionals from
storage functions describing the OSP and roll-off properties the subsystems.
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Chapter 7

Appendix

7.1 Notation

Let N be the set of natural numbers. Let R and C denote the sets of real and complex
numbers. The set of m×n matrices whose elements are in R or C are denoted as Rm×n and
Cm×n. For v ∈ Cm, ‖v‖ denotes the Euclidean norm. A single superscript index denotes
vectors, e.g. Rm is the set of m× 1 vectors whose elements are in R. Let ei ∈ Rn be the unit
vector with zeros everywhere except in the ith element. Let 1 represent the vector whose
entries are all one. For a matrix A let [A]ij denote the (i, j)th entry. Given an m×n matrix
A and a p× q matrix B, their Kronecker product C = A⊗B is an (mp)× (nq) matrix with
elements defined by [C]αβ = [A]ij[B]kl, where α = p(i− 1) + k and β = q(j − 1) + l.

Let RH∞ denote the set of stable, proper systems. The set of m × n matrices whose
elements are stable and proper are denoted as RHm×n

∞ . Let URH∞ denote the set of systems
whose inverses are also in RH∞.

Basic system theory and functional analysis drawn from texts such as [27], [28] and [30]
is used without further citation. Lm

2 is the space of Rm-valued functions f : [0,∞) → Rm

of finite energy ‖f‖2
2 =

∫∞
0
f(t)Tf(t) dt. For u ∈ Lm

2 , û denotes the Fourier (Plancherel)
transform of u. Associated with Lm

2 is the extended space Lm
2e, consisting of functions whose

truncation fT (fT (t) := f(t) for t ≤ T ; fT (t) := 0 for t > T ) is in Lm
2 for all T > 0.

For u, v ∈ L2, define

〈u, v〉 :=

∫ ∞
−∞

û(ω)∗v̂(ω) dω,

which is an inner product associated with the L2 norm. Let ‖u‖2,[a,b] denote the truncated

L2 norm from
√∫ b

a
|u(t)|dt. For notational simplicity, if the bounds of integration are a = 0

to b = 0, we abbreviate this as ‖u‖2,T .
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7.2 Functional Analysis

Fact 7.1. If f, g ∈ Ln
2,[a,b], then fTg ∈ L1,[a,b] and

∥∥fTg∥∥
1
≤ ‖f‖2 ‖g‖2

Proof. ∥∥fTg∥∥
1

=
∫ b
a

∣∣fT (t)g(t)
∣∣ dt

≤
∑

i

∫ b
a
|fi(t)| · |gi(t)| dt

≤
∑

i ‖fi‖2 · ‖gi‖2

≤
√∑

i ‖fi‖
2
2

√∑
i ‖gi‖

2
2

= ‖f‖2 ‖g‖2

Fact 7.2. If M(·) ∈ Ln×m
2,[a,b], then σ̄(M(·)) ∈ L2,[a,b].

Proof. σ̄ is a continuous function, hence σ̄(M(·)) is measurable. Pointwise,

σ̄2(M(t)) ≤
∑
i

∑
j

|Mi,j(t)|2

which completes the proof.

Fact 7.3. If M(·) ∈ Ln×m
2,[a,b], and x ∈ Rm, then Mx ∈ Ln

2,[a,b], and ‖Mx‖2 ≤ ‖x‖2 ‖σ̄(M(·))‖2.

Proof.

‖Mx‖2
2 =

∫ b

a

‖M(t)x‖2
2 dt ≤

∫ b

a

σ̄(M(t))2 ‖x‖2
2 dt = ‖x‖2

2 ‖σ̄(M(·))‖2
2

Fact 7.4. If M(·) ∈ Ln×m
2,[a,b], and x ∈ Lm

2,[a,b] then∥∥∥∫ ba M(t)x(t)dt
∥∥∥2

2
=

∑
i

∣∣∣∫ ba ∑jMij(t)xj(t)dt
∣∣∣2

≤
∑

i

(∫ b
a

∣∣∣∑jMij(t)xj(t)
∣∣∣ dt)2

≤
∑

i

(∫ b
a

∑
j |Mij(t)xj(t)| dt

)2

=
∑

i

(∑
j

∫ b
a
|Mij(t)xj(t)| dt

)2

≤
∑

i

(∑
j ‖Mij‖2 ‖xj‖2

)2

≤
∑

i

(∑
j ‖Mij‖2 ‖x‖2

)2

≤
∑

i ‖x‖
2
2

(∑
j ‖Mij‖2

)2

≤ ‖x‖2
2

∑
i

(∑
j ‖Mij‖2

)2
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Result we want is the bound between initial and final expressions, namely∥∥∥∥∫ b

a

M(t)x(t)dt

∥∥∥∥
2

≤ ‖x‖2

√√√√∑
i

(∑
j

‖Mij‖2

)2

Lemma 7.1. Let F be causal and c ∈ R, c > 0. If ‖Fu‖2,T ≤ c‖u‖2 for all u ∈ L2, then
‖Fu‖2,T ≤ c‖u‖2,T for all of u ∈ L2.

Proof. Let T > 0, u ∈ L2. Define

uT (t) =

{
u(t) t ≤ T

0 t > T
.

Clearly, uT ∈ L2. Assume ‖FuT‖2,T ≤ c‖uT‖2. Since ‖uT‖2 = ‖u‖2,T ,

‖FuT‖2,T = ‖Fu‖2,T ≤ c‖uT‖2 = c‖u‖2,T . (7.1)

7.3 Lipschitz Extensions

Locally Lipschitz continuous functions can be extended to globally Lipschitz continuous
functions as follows [53, 93].

Lemma 7.2. Let f : Rn → R be Lipschitz continuous on B ⊆ Rn with B 6= ∅ and Lipschitz
constant L. For each x ∈ Rn, define f̃ : Rn → R

f̃(x) := min
y∈B

f(y) + L ‖x− y‖ . (7.2)

Then f̃(x) = f(x) ∀x ∈ B and f̃ is globally Lipschitz continuous (with Lipschitz constant
L).

Proof. Consider first the case x ∈ B. Clearly f̃(x) ≤ f(x), because f̃ involves a minimum
over all y ∈ B and the value obtained at y = x ∈ B is f(x). Next, since f is Lipschitz
continuous on B it follows that f(x) ≤ f(y) + L ‖x− y‖ for all y ∈ B. Minimizing the
right-hand side over y ∈ B (which gives f̃(x)) preserves the inequality, hence f(x) ≤ f̃(x).
Together these imply that for x ∈ B, f̃(x) = f(x).

For global Lipschitz continuity of f̃ , take any x1 ∈ Rn, x2 ∈ Rn. For all z ∈ Rn,

f(z) + L ‖x1 − z‖ ≤ f(z) + L ‖x2 − z‖+ L ‖x1 − x2‖ .

Minimize both sides of this expression over z ∈ B to get f̃(x1) ≤ f̃(x2) + L ‖x1 − x2‖.
Reversing the role of x1 and x2 gives f̃(x2) ≤ f̃(x1) + L ‖x2 − x1‖. Combining these gives∣∣∣f̃(x1)− f̃(x2)

∣∣∣ ≤ L ‖x1 − x2‖ as desired.
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7.4 Polynomials, Sum-of-squares and S-procedure

A monomial mα in n variables is a function defined as mα(x) = xα := xα1
1 x

α2
2 · · ·xαnn for

α ∈ Zn+. The degree of a monomial is defined, degmα :=
∑n

i=1 αi. A polynomial f in n
variables is a finite linear combination of monomials, with cα ∈ R:

f :=
∑
α

cαmα =
∑
α

cαx
α

The set of all polynomials in n indeterminate variables is denoted Rn. The particular
variables are not noted, and usually there is an obvious n−dimensional variable present in
the discussion. The degree of f is defined as deg f := maxα degmα (provided the associated
cα is non-zero).

The notation Σn denotes the set of sum of squares (SOS) polynomials in n variables,

Σn :=

{
p ∈ Rn : p =

t∑
i=1

f 2
i , t > 0, fi ∈ Rn, i = 1, . . . , t

}
.

If p ∈ Σn, then p(x) ≥ 0 ∀x ∈ Rn. The notation Σn+m also appears, referring to SOS
polynomials in n + m real variables, where, again, the particular variables are clear in the
context of the discussion. The following lemma is a trivial generalization of the well known
S-procedure [12], and is a special case of the Positivstellensatz Theorem [11, Theorem 4.2.2].

Lemma 7.3 (Generalized S-procedure). Given {pi}mi=0 ∈ Rn. If there exist {sk}mi=1 ∈ Σn

such that p0 −
∑m

i=1 sipi ∈ Σn, then

m⋂
i=1

{x ∈ Rn : pi(x) ≥ 0} ⊆ {x ∈ Rn | p0(x) ≥ 0}.

Proof. Since p0 −
∑m

i=1 sipi ∈ Σn, so p0 ≥
∑m

i=1 sipi ∀x. For any x̄ ∈
⋂m
i=1{x ∈ Rn | pi(x) ≥

0}, since si(x̄) ≥ 0, so
∑m

i=1 sipi ≥ 0, hence p0(x̄) ≥ 0.
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