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Abstract
Rich client-side applications written in HTML5 proliferate di-

verse platforms such as mobile devices, commodity PCs, and the
web platform. These client-side HTML5 applications are increas-
ingly accessing sensitive data, including users’ personal and so-
cial data, sensor data, and capability-bearing tokens. To fulfill
their security and privacy guarantees, these applications need to
maintain certain data-confinement invariants. These invariants are
not explicitly stated in today’s HTML5 applications and are en-
forced using ad-hoc mechanisms. The complexity of web applica-
tions, coupled with hard-to-analyze client-side languages, leads to
low-assurance data-confinement mechanisms in which the whole
application needs to be in the TCB to ensure data-confinement in-
variants.

We propose a new mechanism called a data-confined sandbox
or DCS. A DCS enables complete mediation of communication
channels in a high-assurance, small-TCB manner. Our primitive
extends currently standardized primitives and has negligible per-
formance overhead and a modest compatibility cost to retrofit into
existing applications. We re-implement four real-world HTML5
applications with our proposed design with a small amount of ef-
fort, achieving much stronger data-confinement guarantees. We
also study over twenty HTML5 applications and find that data-
confinement invariants are implicit in the vast majority of them
and crucial to achieving their privacy expectations.

1. Introduction

Rich client-side HTML5 applications—including browser ex-
tensions [15], packaged browser applications (Chrome Apps) [14],
Windows 8 Metro applications [35], and applications in newer
browser operating systems (B2G [4], Tizen [46])—are fast pro-
liferating on diverse computing platforms. These applications run
with access to sensitive user data, such as browsing history, per-
sonal and social data, and financial documents, as well as capa-
bility bearing tokens that grant access to these data. A recent
study reveals that 58% of the 5,943 Google Chrome browser ex-
tensions studied require access to the user’s browsing history, and
35% request permissions to the user’s data on all websites [13].
In addition, the study found that 67% of 34,370 third-party Face-
book applications analyzed have access to the user’s personal data.
HTML5 applications also form a significant chunk of mobile ap-
plications; a recent survey found that 75% of smartphone appli-
cations on Google Play and in the Apple App Store are HTML5-
based applications [45]. These applications execute with access
to the same sensor data available to native applications, including

private data from GPS receivers, accelerometers, and cameras.
Applications handling sensitive data need the ability to ver-

ifiably confine data to specific principals and to prevent it from
leaking to malicious actors. On one hand, the developers want an
easy, high-assurance way to confine sensitive data; on the other,
platform vendors and security auditors want to verify sensitive
data confinement. For example, consider LastPass, a real-world
HTML5-based password manager with close to a million users [33].
By design, LastPass only stores an encrypted version of the user’s
data in the cloud and decrypts it at the client side with the user’s
master password. It is critical that the decrypted user data (i.e.,
the clear-text password database) never leave the client. We term
this requirement a data-confinement invariant. Data-confinement
invariants are prevalent in a wide variety of applications: for in-
stance, a client-side web application that manages user documents
(such as the Dropbox [19] client-side code) needs to ensure that
user documents are only sent to trusted (i.e., dropbox.com) servers.
Data-confinement invariants are fundamental security specifica-
tions that limit the flow of sensitive data to a trusted set of security
principals. These data-confinement invariants are not explicitly
stated in today’s HTML5 applications but are implicitly necessary
to preserve their privacy and security guarantees.

Confining data in an HTML5 application is a challenging prob-
lem. One approach to enforcing confinement invariants on sensi-
tive data is to encrypt the data and distribute its decryption keys
only to the intended principals. However, this approach is often
undesirable, because attackers can exploit security vulnerabilities
and implementation errors in code handling sensitive data to vi-
olate data-confinement invariants. If an attacker compromises a
principal handling sensitive data, the attacker gains access to its
decryption key; the attacker can then decrypt and leak data to un-
trusted parties. As a real-world example, a cross-site scripting vul-
nerability was recently found in LastPass which allowed for the
theft of the user’s decrypted password database [11]. An alterna-
tive approach is to confine the communication of the code handling
sensitive data to an explicitly allowed set of principals. This pro-
vides safety even when the application may be compromised due
to software vulnerabilities. There are two key challenges in mak-
ing this alternative approach practical: (1) to identify and isolate
subcomponents of an application that access sensitive data, and (2)
to provide complete mediation on the data communication chan-
nels of these isolated subcomponents. Prior work with this ap-
proach focuses on applications on commodity OS platforms. For
example, mediation of data communication channels using sys-
tem call sandboxing techniques has been shown to be relatively
straightforward for current binary applications [32, 41]. Previous



work also developed techniques to automate identification of sub-
components that process sensitive data [7, 8, 32].

Data confinement in client-side HTML5 applications has not
received much prior attention. We observe two hurdles that hinder
practical data confinement in existing client-side HTML5 applica-
tions. First, mechanisms to specify and enforce data-confinement
invariants are absent in HTML5 platforms; as a result, they remain
hidden in application designs. Second, client-side HTML5 appli-
cations (including browser extensions, HTML5 web applications
and Windows 8 Metro applications) have numerous channels to
communicate with distrusting principals, and no unified monitor-
ing interface like the OS system call interface exists. Previous
proposals include numerous mechanisms that limit cross-origin
communication channels like the iframe sandbox [3], Content
Security Policy [43], HTTP Strict Transport Security [26,29], web
workers [27], code analysis [1, 34], or code rewriting [10].As we
explain in §2.3, none of these offer comprehensive mediation, and
most of them are not easy to retrofit into existing applications at a
low compatibility cost [49].

Data-Confined Sandboxes. We introduce the data-confined sand-
box (or DCS), a novel security primitive for client-side HTML5
applications. A data-confined sandbox is a unit of execution, such
as code executing in an iframe, the creator of which explicitly
controls all the data imported and exported by the DCS. Each DCS
executes with no privileges in its own temporary origin, which is
distinct from all other origins.1 Simply isolating subcomponents,
say into iframes hosted at temporary origins, is not sufficient—
iframes do not have any data-confinement properties. Compro-
mised code in an iframe can leak sensitive data to the network
via image, script, style, frame, and anchor tags in addition to a
number of client-side channels like postMessage and fragment
ID messaging. Therefore, in our design, the creator of a DCS re-
ceives a clean security reference monitor interface to interpose on
all communications, privileged API accesses and input/output data
exchanges originating from the sandbox.

Data-confined sandboxes are a fundamental primitive to en-
abling a data-centric security architecture for emerging client-side
HTML5 applications. By moving much of the application code
handling sensitive data to data-confined sandboxes, we can enable
applications that have better resilience to privacy violating attacks
and that are easy to audit by security analysts.

In making this mechanism practical, we make two additional
contributions. First, we implement our data-confinement primi-
tive in the Mozilla Firefox web browser. Our changes to the web
browser are less than 350 lines of code. Our data-confinement
primitive addresses explicit channels and not covert channels, side
channels, or self exfiltration channels; however, we show that it
is still useful for a large class of privacy conscious HTML5 ap-
plications. Addressing explicit channels is a critical first step in
achieving complete confinement. Second, we analyze over twenty
real-world client-side HTML5 applications and make their data-
confinement invariants explicit. These applications include the
top twenty Chrome extensions, a sample HTML5 password man-
ager, an SSO implementation, an electronic medical record sys-
tem, and a database administration interface. We enforce data-
confinement invariants on four applications by re-implementing

1Temporary origins are created on the fly by the web browser
on each execution and destroyed thereafter. Modern different
browsers already support mechanisms to create temporary origins
in HTML5 applications [3].

them using data-confined sandboxes. We show that the effort of
such re-implementation is modest.

Contributions. In summary, this paper makes the following main
contributions:

• We introduce the concept of data confinement for client-side
HTML5 applications which handle sensitive data (§2).

• We identify the limitations of current security primitives in
the HTML5 platform that make them insufficient for imple-
menting data-confinement invariants (§2.3).

• We design and implement a data-confined sandbox, a novel
mechanism in web browsers that provides complete media-
tion on all explicit data communication channels (§3 & §4).

• To demonstrate the practicality of our approach, we modify
four applications handling sensitive data to provide strong
data confinement guarantees. (§5). All our code and case
studies are publicly available online [18].

2. Problem & Approach Overview

In this section, we explain the concept of data-confinement in-
variants, taking several real-world examples. We state our goals
in designing an ideal primitive for data confinement, explain the
central challenges, and outline why existing primitives are insuffi-
cient.

2.1 Data-confinement Invariants

Data confinement is a data-centric property, which limits the
flow of sensitive data to an explicitly allowed set of security princi-
pals. Data confinement is useful for any application handling sen-
sitive user data. We discuss a number of real-world applications
that handle sensitive user data and intuitively explain the concept
of data-confinement invariants.

• Example 1: Cloud-based Password Managers. Password
managers organize a user’s credentials across the web in a
centralized store. Consider LastPass, a popular password
manager that stores encrypted credential data in the cloud.
LastPass decrypts the password database only at the client
side (in a ‘vault’) with a user provided master password.
A number of data-confinement invariants are implicit in the
design of LastPass.

– First, the user’s master password should never be sent
to any web server (including LastPass servers).

– Second, the password database should only be sent
back to the LastPass servers after encryption.

– Third, the decrypted password database on the client-
side should not leak to any web site.

– Finally, individual decrypted passwords should only
be sent to their corresponding websites: e.g., the cre-
dentials for facebook.com should only be used on
facebook.com.

• Example 2: Client-side SSO Implementations. Several sin-
gle sign-on (SSO) mechanisms have emerged on the web
to manage online identities of users, including purely client
side ones. Consider Mozilla’s recent SSO mechanism called
BrowserID. It has the following data-confinement invariants
implicit in its design:



– It aims to share authorization tokens only with specific
participants in one run of the protocol.

– Similar to the ‘vault’ in LastPass, BrowserID provides
an interface for managing credentials in a user ‘home
page.’ This home page data should not leak to external
websites.

– The user’s BrowserID credentials (master password)
should never be leaked to a third party: only the autho-
rization credentials should be shared with the intended
web principals involved in the particular instance of
the protocol flow.

Other SSO mechanisms, like FBConnect, often process cap-
ability-bearing tokens (such as OAuth tokens). Implementa-
tion weaknesses and logic flaws can violate these invariants,
as demonstrated recently for a number of SSO implementa-
tions [23, 44, 48].

• Example 3: Electronic Medical Record Applications. Elec-
tronic medical record (EMR) applications provide a central
interface for patient data, scheduling, clinical decisions, and
billing. Strict compliance regulations such as HIPAA re-
quire data confinement for these applications, with financial
and reputational penalties for violations. OpenEMR is the
most popular open-source EMR application [40], and has a
strict confinement requirement:

– OpenEMR should not leak user data to any principal
other than hospital servers.

Note the dual requirements in this application: first, Open-
EMR’s developers want to ensure data confinement to their
application; second, hospitals need to verify that OpenEMR
is not leaking patient data to any external servers. In the
current design, it is difficult for hospitals to verify this: any
vulnerability in the client-side software can allow data dis-
closure.

• Example 4: Web Interfaces for Sensitive Databases. Web-
based database administration interfaces are popular today,
because they are easy to use. PhpMyAdmin is one such pop-
ular interface with thousands of downloads each week [37].
The following data-confinement invariants are implicit in its
design:

– Data received from the database server is not sent to
any website.

– User inputs (new values to store) are only sent to the
database server’s data insertion endpoint.

Currently, a code injection vulnerability in the client-side
interface can enable attackers to steal the entire database,
as the interface executes with the database user’s privileges.
Moreover, the application is large and not easily auditable
to ensure data-confinement invariants.

These examples are only a sample; any application handling
sensitive data typically has a confinement invariant that it needs
to enforce to fulfill user privacy expectations. In §5, we present a
more exhaustive list of such invariants for the top twenty Google
Chrome extensions and four popular web applications.

2.2 Goals & Challenges

Our goal is to create a practical data-confinement primitive in
the HTML5 platform to enforce such invariants. Ideally, a data-
confinement mechanism should have the following properties:

Table 1: List of channels available for inadvertent data disclosure

Channel
Name

Description Examples

Client-side
pointers

Cross-origin pointer ac-
cess explicitly allowed
by browsers

window.parent.location,
window.parent.frames[0].hash

Client-side
messaging

Client-side messaging
channels

postMessage, MessageChannel

Network
channels

Interfaces that allow a
document to make net-
work requests and thus
leak data

scripts, images, stylesheets, objects,
frames, XMLHttpRequest, fonts,
audio, video, HTTP redirects, plu-
gins

• Minimal TCB. Current implementations require the whole
application to be in the trusted computing base (TCB) to
check if a confinement invariant is enforced. Client-side lan-
guages such as JavaScript are notoriously hard to analyze—
our aim is an application architecture with minimal TCB.
The TCB should be amenable to static verification.

• Flexible Granularity and Policies. The application should
be able to state confinement invariants with a customizable
granularity, finer than the whole application, such as at the
level of iframes. Additionally, the data invariant specifi-
cation should be flexible, i.e., it should be possible to state
simple access control policies or more complex stateful poli-
cies.

• Complete Mediation. The mechanism should interpose on
all explicit data communication channels. We want to make
the mediation infrastructure reliable, piggybacking on exist-
ing browser implementations as far as possible. We consider
covert channels, side channels, and self exfiltration channels
out of scope for our present work.

• Minimal impact to backwards compatibility. The mecha-
nism should be easy to implement in the current HTML5
platform and in existing HTML5 applications.

Achieving these goals for data confinement is challenging in
the existing web environment, as discussed next.

Large TCB Mechanisms. The present HTML5 platform lacks
mechanisms to explicitly state data-confinement invariants—there
is no clear separation between policy and enforcement mecha-
nism. In existing HTML5 applications, enforcing these invariants
puts the whole application in the TCB. Verifying data confine-
ment requires verifying the whole application. Unfortunately, the
JavaScript language and the DOM interface makes modular rea-
soning about individual components difficult. All code runs with
ambient access to the DOM, cookie, localStorage and network
privileges. Further, techniques like prototype hijacking can vio-
late encapsulation assumptions and allow attackers to leak private
variables in other modules. The DOM API makes confinement
difficult to ensure even in the absence of code injection vulnera-
bilities [25, 52].

Numerous Communication Channels. The HTML5 platform
has a large number of data disclosure channels, as it aims to ease
cross-origin network resource loading and communication. We
outline a number of these channels in Table 1. We categorize these
channels as:

• Network channels. HTML5 applications can make network
requests via HTML elements like img, form, script, and
video, as well as JavaScript and DOM APIs like XMLHttpR



equest and window.open. Furthermore, CSS stylesheets
can issue network requests by referencing images, fonts and,
other stylesheets.

• Client-side cross-origin channels. Web browsers support a
number of channels for client-side cross-origin communica-
tion. This includes legacy channels like fragment messaging
(via the location.hash property of cross-origin windows)
as well as newer channels like postMessage.

Given the wide number of channels available for inadvertent
data disclosure, we observe that no unified interface exists for en-
suring confinement of fine-grained code elements in the HTML5
platform. This is in contrast to system call interposition in com-
modity operating systems that provides complete mediation. In
§2.3, we explain how existing mechanisms are insufficient to con-
fine these aforementioned channels.

Covert Channels. We focus on explicit data communication chan-
nels in the HTML5 platform core, as defined above. Ensuring
comprehensive mediation on explicit data channels is an impor-
tant first step in achieving data-confined HTML5 applications. Our
proposed primitive does not protect against covert and side chan-
nels (such as shared browser caches [30, 31] and timing chan-
nels [5]) or self exfiltration channels [12], which are a subject of
ongoing research. These channels are important. However, we
point out that popular isolation mechanisms on existing systems
also don’t protect against these [9, 50, 53]. We believe explicit
channels cover a large space of attacks, and we plan to investigate
extending our techniques to covert channels in the future.

Scope. In addition to focusing on explicit channels, our primi-
tive only targets the core HTML5 platform; our ideas extend to
add-ons/plugins, however we exclude them from our present im-
plementation. We defend against the standard web attacker model
in which the attacker cannot tamper with or observe network traf-
fic for other web origins and cannot subvert the integrity of the
HTML5 platform itself [2].

2.3 Insufficiency of Existing Mechanisms

Table 2: Comparison of current solutions for data confinement

System Name Complete
Mediation

Fine
Grained

Compatibility
Cost

Small
TCB

CSP Now Noo Highe Yes
JS Static Analysis Nod Possible Highe No
JS IRMs
(Cajole, Conscript)

Nod Yes Highe Yes

Treehouse Yes Yes Highc No
sandbox with
Temporary Origins

Non Yes Low Yes

Data-confined
sandboxes

Yes Yes Low Yes

ccode change dno CSS & DOM edisables eval nall network channels
oorigin whitelist wanchors and window.open

None of the primitives available in today’s HTML5 platform
achieve our stated goals (§2.2). Table 2 shows a comparison of
the existing security primitives available to HTML5 applications
today. Browser-supported primitives, such as Content Security
Policy (CSP), block some network channels but not all. Current
mechanisms are designed with the goal of providing integrity, not
confidentiality. Even the most restrictive CSP policy cannot block
data leaks through anchor tags and window.open.

Another approach to interpose on all data communication chan-
nels is to do static analysis of the application source code [1, 10,
22, 34]. However, static analysis methods have a high compatibil-
ity cost, because they cannot reason about code that uses dynamic
constructs like eval, which are used pervasively in existing appli-
cations [38, 39] and modern JavaScript libraries [28]. When com-
bined with rewriting techniques, such as cajoling [10], mediation
on client-side cross-frame channels in JavaScript can be achieved.
However, even these together do not provide complete mediation
over DOM and CSS channels.

Finally, in recent work, Treehouse proposed using new prim-
itives like web workers and EcmaScript5 sealed objects in the
HTML5 platform to ensure better interposition [27]. Treehouse
proposes to execute individual components in web workers at the
client side. We argue that such mechanisms have two concerns.
First, web workers also run with some ambient privileges: e.g.,
workers have access to XMLHttpRequest, synchronous file APIs,
script imports, and spawning new workers, which attackers can use
to leak data. Treehouse relies on the seal/unseal features of ES5
to prevent access to these APIs, but this mechanism requires intru-
sive changes to existing applications and has a high compatibility
cost. The second concern is that web worker based approaches
have a large TCB. Since web workers do not have direct access
to the DOM, application code executes on a virtual DOM in the
worker that the parent code needs to copy to the main web page.
Ensuring correctness of this mechanism requires a trusted client-
side monitor, which performs the difficult task of sanitizing the
web application; this increases the TCB.

3. Design

We give an overview of our design in this section. First, we
detail the existing primitives that we extend (§3.1); then, we give
an overview of the typical application architecture in our design
(§3.2); and finally, we discuss the details of our new primitive, the
data-confined sandbox (§3.3).

3.1 Leveraging Existing Platform Capabilities

Our solution leverages the predominant isolation mechanism—
iframes. Existing browsers allow iframes to run with a temporary
origin [3]. Iframes with data: URI source in Webkit and Fire-
fox. We use this to isolate the application into partitions: one
privileged parent partition that has the unfettered privileges of a
web origin, and an arbitrary number of child partitions with no
privileges. Since access to privileged APIs is origin bound in
web applications, only the parent has access to the privileged API
interface, such as access to the XMLHttpRequests (for web ap-
plications), browser extension APIs (for browser extensions), and
sensors (on mobile devices). Unprivileged children communicate
with the parent through a tightly controlled postMessage channel
(dotted arrows in Figure 1). The parent can enforce policies on the
requests it receives over this postMessage channel from its un-
privileged children [3]. The parent uses its privileged interfaces to
fulfill approved requests, such as authenticated XMLHttpRequest
calls (curved dotted arrow in Figure 1).

Though this privilege separation architecture provides integrity,
it does not provide data confinement. Any compromised child can
make arbitrary requests on the network through the numerous data
disclosure channels outlined earlier. In this work, we extend this



           ParentDCS Child Iframe

Bootstrap Code

Policy Code
Security

Monitor       

S

H

I

M

Network 

Request 

Monitor 

  Call

SHIM

Browser Page

Application

 Code

HTML 

Parser

HTML 

Content

Content 

Dispatch

Network Engine

URI Parser
Image Src

Browser   Kernel

Figure 1: High-level design of our proposed architecture. The only component that
runs privileged is the parent. The children run in data-confined sandboxes, with no
ambient privileges and all communication channels monitored by the parent. Solid
arrows illustrate monitoring of network requests by the parent. The child asks the
browser to display some HTML content. On encountering say, an image, the browser
asks the URI parser to parse the source URI, and then calls the content dispatch
method. We modified the content dispatch code to call the parent’s monitor code
before requesting the image from the network.

design to enable easy data confinement in HTML5 applications.

3.2 Data-Confined Application Architecture

Figure 1 provides an overview of HTML5 applications in our
design. In this architecture, HTML5 applications have one priv-
ileged parent component that spawns a number of unprivileged
children with null authority. The parent loads the components pro-
cessing sensitive data into these children, and the parent interposes
on all communication channels using our new primitive: a data-
confined sandbox. A data-confined sandbox (or DCS) is like a
sandboxed iframe, but it provides confidentiality in addition to
integrity. The parent defines a security reference monitor, which
interposes on all explicit communication channels available to the
DCS, easing data confinement in a high-assurance manner. The
security monitor in the parent is transparent to the child.

Parent. The parent runs with the ambient privileges of the HTML5
application’s origin, and is minimal in size. When the user navi-
gates to the HTML5 application, a specific part of the parent code
called the bootstrap code executes. This bootstrap code down-
loads the application code and initializes one or more unprivileged
children, each running in its own temporary origin. The parent
also defines a security monitor function in its global namespace.
Our modified browser invokes this monitor function each time
the child attempts to communicate over the network. Our design
also enforces several invariants on the parent code to minimize the
possibility of security vulnerabilities in the small, trusted parent
code [3]. In particular, we disable dynamic code evaluation in the
parent, allow only a text interface with the children, and set appro-
priate MIME types for static code downloaded by the bootstrap
code [3].

Data-Confined Child. Nearly all application logic executes in
unprivileged DCS children with null authority. Application code
running in the data-confined child is subject to the following in-

variants:

• Application code executes in a unique temporary origin.
• Except for a blessed postMessage channel to the parent,

the browser disables all client-side communication channels
in a DCS child.

• The parent monitors all network channels.

Note that the postMessage channel is the only client-side cross-
origin channel available to the data-confined child, and the browser
guarantees that the channel only connects to the parent. The post
Message channel allows the parent to proxy privileged APIs for
the child. Further, the postMessage channel also allows the par-
ent to provide a channel to proxy postMessages to other client-
side iframes—our design only enforce complete mediation by
the parent.

Security Monitor. The key novelty of our architecture is the abil-
ity of the parent to monitor all network channels available to the
child. Such monitoring, similar to system call interposition, en-
ables high-assurance confinement. In our design, this monitoring
is transparent to the child. Any action in the child that causes a
network request results in the browser calling a ‘monitor’ func-
tion defined in the parent (solid arrows in Figure 1). The browser
passes the URL of the network request, the type of the network
request (e.g., image, style sheet, script) and the unique id of the
child iframe that caused this request to the monitor.

Example. Consider the ‘vault’ for the LastPass web application.
In our redesign, when the user navigates to the LastPass applica-
tion, the server returns bootstrap code (the parent) that downloads
the original application code and executes it in a data-confined
sandbox (the child). The code in the DCS starts executing and
makes network requests to include all the complex UI, DOM, and
encryption libraries. Finally, the LastPass child code in the DCS
makes a request for the encrypted password database and decrypts
it with the user provided password. It then proceeds to show the
decrypted vault to the user. Any vulnerability, such as XSS, only
compromises the DCS child, and not the parent. If the compro-
mised child attempts to leak sensitive data from the DCS, our de-
sign (in particular, complete mediation) ensures that the browser
invokes the parent’s monitor function before allowing the request.

The ability to monitor all explicit communication channels al-
lows the parent to enforce a number of interesting policies. A sim-
ple policy is to allow network requests to https://lastpass.c
om only. However, since the parent’s monitor code is in JavaScript,
the parent can also enforce stateful policies: e.g., the monitor func-
tion only allows resource loads (i.e., scripts, images, styles) until
the DCS child loads the encrypted password database. After load-
ing the encrypted database, the security monitor disallows all fu-
ture network requests. In general, since the security monitor func-
tion can store state, it can define a flexible policy based on a finite
state machine. We leave the design of expressive policy languages
for the future; our focus is on mechanisms.

3.3 Data-confined Sandbox: A New Primitive

We introduce a new primitive: the data-confined sandbox. A
data-confined sandbox provides stronger confinement guarantees
than sandboxed iframes, by enforcing mediation on all network
requests and restricting client-side channels. It provides the parent
with the requisite APIs to monitor all the explicit channels avail-



able to the child. To ensure correctness, the parent must block or
monitor all communication channels outlined in Table 1.

Client-side Channels. Because children execute in temporary
origins, the browser blocks access to any origin bound persis-
tent channels. For example, temporary origins have no persistent
data storage channels like cookie, Storage, and FileSystem
APIs. The same-origin policy restricts JavaScript access across
an iframe boundary: code can freely access the JavaScript ob-
ject of another same-origin window/iframe. Since temporary ori-
gins are cross origin to all other origins, only explicit exceptions
to the same-origin policy can cross the iframe boundary. These
include cross-origin communication channels like postMessage
and cross-origin window properties (like location.hash). These
exceptions can allow disclosure of confidential data. A cross-
origin write, e.g., a write to window.location, allows a data-
confined child to leak data to another origin. In our design, the
browser blocks all cross-origin writes from a DCS to another win-
dow, without calling the security monitor. Cross-origin reads al-
low an origin to read sensitive data from a data-confined child;
thus, our design also block cross-origin reads.

Our design restricts the child to a blessed postMessage chan-
nel that can only communicate with the parent. Note that the child
can still communicate with other origins via the parent, but can-
not use arbitrary cross-origin client-side channels. Therefore, our
design just enforces complete mediation without hindering func-
tionality.

Network Requests. HTML5 applications can request network re-
sources via markup like scripts, images, links, anchors, and forms
and JavaScript APIs like XMLHttpRequest. In our design, the
children can continue to make these network requests; the DCS
transparently interposes on all these network channels. The par-
ent defines a ‘monitor’ function that the browser executes before
dispatching a network request; if the function returns false, the
browser will not make the network request.

We rely on an external monitor (i.e., one running in the parent)
over an inline one because the same-origin policy isolates the mon-
itor from the child. We avoid an inline monitor that shares state
with the unprivileged child in our design because it is harder to
reason about its runtime integrity and correctness. As we discuss
in the implementation section, the security monitor is not hard to
implement—most browsers already have an internal API for con-
trolling network access. We only expose this API to the security
monitor function.

Compatibility Considerations. Our design for network request
mediation is discretionary, as compared to client-side channels that
we block outright. An alternative design is to disallow all net-
work requests too, and only permit network access via the post
Message channel between the parent and child. Such a design has
a significantly higher compatibility cost. Network channels are
commonly utilized in HTML5 applications. In contrast, the use
of client-side channels is rare—for example, Wang et al. report
that cross-origin window.location read and writes occur in less
than 0.1% of pages [42]. Therefore, we find that it is acceptable
to disable cross-origin client-side channels completely, and force
the child to use the blessed postMessage channel to the parent to
access these.

Requests made by the DCS have an empty Referer and Orig
in header. Resource requests that require the application’s origin
in these headers will fail. This design is intentional: the ability
to make requests with the application’s URI in the Referer and

Origin headers is an authority not available to the unprivileged
children.

The lack of the correct Referer and Origin headers did not
affect any of our case studies. Currently, only browsers based on
WebKit send the Origin header, and web applications do not rely
on these headers, as privacy conscious users often turn them off.
To maintain compatibility with servers that rely on these features,
the DCS can send a message to the parent, requesting it to make
the appropriate request. An alternate design, which we have not
investigated, would be to insert the parent’s URI in the Referer
and its origin in the Origin headers automatically.

Security Considerations. Our design of the DCS primitive is
careful not to introduce new security vulnerabilities in the browser.
In particular, we do not want to allow an arbitrary website to learn
information or execute actions that it could not already learn or
execute. The security policy of the current web platform is the
same-origin policy. Our invariants are designed so that we do not
violate any of the existing same-origin policy invariants baked into
the platform. We enforce this goal with the following two invari-
ants:

• Invariant 1: The parent should only be able to monitor ap-
plication code that it could already monitor on the current
web platform (albeit, through more fragile mechanisms).

• Invariant 2: The parent should not be able to infer anything
about a resouce requested by a DCS that is not already pos-
sible on the current web platform.

We explain how our design enforces the above invariants. First,
in our design, a data-confined sandbox can only apply to iframes
with a data: URI source, not to arbitrary URIs. Therefore, a ma-
licious site cannot monitor arbitrary web pages. In an iframe with
a data: URI source, the source code that executes is specified
inline in the src attribute of the iframe. This code is under com-
plete control of the parent. The parent can parse the data: URI
source for static requests and redefine the DOM APIs to monitor
dynamic requests [24]. Thus, even in the absence of our primi-
tive, the parent can already monitor any requests a data: URI
iframe makes. Note that the browser prevents one web origin
from reading arbitrary content (including HTML code) from other
web origins [6].

To ensure Invariant 2, we only call the security monitor for the
first request made for a particular resource. As we noted above,
this request can already be monitored by the parent. Future re-
quests, notably redirects, are not in the control of the parent, and
we do not call the security monitor for them.

For example, consider again the page at http://socialne
twork.com/home that redirects to http://socialnetwork.co
m/username. Consider a DCS child created by attacker.com
parent. If this child creates an iframe with source http://soci
alnetwork.com/home, our modified browser calls the security
monitor with this URI before dispatching the request. But, to en-
sure Invariant 2, the browser does not call the security monitor
with the redirect URI (i.e., http://socialnetwork.com/user
name). Further, since the iframe is now executing in the security
context of http://socialnetwork.com/, Invariant 1 ensures
that any image or script loads made by the socialnetwork.com
iframe do not call the security monitor.

Finally, we point out that due to the semantics of network re-
quests in HTML5, the monitor function runs synchronously: a
long running monitor function could freeze the child. The abil-



ity to cause stability problems via long running synchronous tasks
is already a problem in browsers, and is not an artifact stemming
from our design.

4. Implementation

We implemented our prototype for the Firefox browser, and re-
architected four real-world web applications. In this section, we
discuss the general application design and our Firefox implemen-
tation with one of our case studies: the Clipperz password man-
agement system. We discuss full details of all of our case studies
in §5.

4.1 Data-Confined Application Architecture

As we noted earlier, our data-confined web application archi-
tecture depends on a small, high-assurance parent that executes
the application code in data-confined sandboxes. We focus on the
web application architecture in this section, and discuss our imple-
mentation of the data-confined sandbox in the Firefox Browser in
§4.2.

Parent. In our architecture, the ‘parent’ is the code that executes
first when the user loads the web application. Similar to Akhawe
et al.’s design [3], the parent downloads and executes the applica-
tion code in new data-confined sandbox children with data: URI
sources of the original web application code. We also maintain a
number of invariants for achieving high-assurance. In particular,
we rely on Content Security Policy to restrict script execution to
an origin whitelist, and disable all mechanisms to convert strings
to code (including inline scripts and eval). The CSP policy for
the parent is script-src'self';.

Child. Application code executes in data-confined sandboxes,
with temporary origins, monitored by the parent. The application
code can access two types of resources: privileged and unprivi-
leged.

Unprivileged resources are resources available to all origins on
the web platform. For example, the Clipperz web application in-
cludes a number of images using a data: URI source. When ex-
ecuting in a DCS, access to unprivileged resources is transparent
to the application code. The monitor code (discussed below) can
deny access to any of these resources, causing the browser not to
load them.

Privileged resources are resources only available to the origi-
nal application. Since application code in the DCS executes in a
temporary origin, it does not have direct access to these resources.
We rely on existing shim code [3] to proxy privileged APIs, such
as XMLHttpRequest to the parent.

Security Monitor Code. The key new primitive of our implemen-
tation is the monitor providing complete mediation. Our monitor
code provides complete mediation on all communication channels
available to the DCS child. In particular, this includes all the net-
work and client-side channels available to the application code ex-
ecuting in a DCS.

The parent needs to define a monitor function in the global
namespace (i.e., assign a function to window.monitor) and the
browser calls this function before dispatching any requests. Our
prototype (discussed below) invokes the monitor function with one
argument, the params object. The params object consists of three
fields: the id of the DCS frame that made the request, the type of

request, and depending on the request, the URL of the request, or
the message body. The browser refuses to dispatch a request if the
monitor function returns false.� �

1 window.monitor = function(p){
2 if (p.id !== 'mainframe ') return false;
3 switch(p.type) {
4 case "IMAGE" : return img_whitelist(p.url);
5 case "SCRIPT": return script_whitelist(p.url);
6 case "postMessage": return postMsg_policy(p.msg);
7 }
8 return false;
9 }� �

Listing 1: Security monitor code for Clipperz

Listing 1 lists code for a simple monitor for the Clipperz web
application. Depending on the type of the request (Lines 3-7), the
parent calls the appropriate function that checks the URL against
a whitelist of allowed loads. It is immediately apparent that this
security monitor only permits image and script loads, disabling
fonts, objects, iframes, and videos. A request of type postMe
ssage indicates a postMessage from the child. The security
monitor function checks the message against the parent’s policy
(Line 6) for privileged API calls, and forwards them to the usual
postMessage event listeners, or drops the message if it violates
policy.

4.2 Implementation of Data-Confined Sandbox

We implemented support for data-confined sandboxes in the
Firefox browser. Our implementation has three distinct compo-
nents: first, we implement support for the dcfsandbox attribute
for the iframe tag. Second, we block client-side channels. Fi-
nally, we implement the security reference monitor for network
requests. Our modifications are open source and available on-
line [18].

dcfsandbox support. We modified the HTML parser to imple-
ment support for the dcfsandbox attribute for the iframe tag.
An iframe that has this attribute only supports a data: URIs for
its src attribute. Such an iframe implements all the restrictions
that a sandboxed iframe supports, but adds further restrictions
on client side and network channels, as we explain below.

Blocking Client-Side Channels. Recall that since the child exe-
cutes in a temporary origin, it is cross origin to all other origins,
including other sandboxes. Thus, all access outside of the ifra
me is cross origin. The same-origin policy restricts cross-origin
JavaScript access to a restrictive whitelist of properties. In Firefox,
this whitelist is present in js/xpconnect/wrappers/AccessCh
eck.cpp. We modified the IsPermitted function to block all
cross-origin accesses, except for the blessed postMessage chan-
nel.

Implement Network Monitor. The NSIContentPolicy inter-
face is a standard Firefox API used to monitor network requests.
Popular security and privacy extensions, such as NoScript, Ad-
Block, and RequestPolicy, rely on this API. We register one of
these listener to forward requests for monitored children to the par-
ent’s security monitor function. To identify the iframe, we use its
id attribute, which the parent specifies at creation time. For ease
of development, we have implemented this as a Firefox extension
written in JavaScript. In total, our implementation is fewer than
214 lines of code, with only 60 lines being the core functionality
of our extension.



Correctness Argument. We make significant changes to the in-
ternals of Firefox, and we rely on previously existing invariants to
maintain correctness.

Client-Side Channels The list of cross-origin objects (including
messaging constructs like postMessage) is a strict white-
list, explicitly specified in all browsers. Our implementation
adds a flag that disables all such accesses for a data-confined
sandbox. Any cross-origin access other than this list is a
same-origin policy bypass, a bug with the highest severity
rating on all browsers.

Network Channels We do not add our own implementation of a
new monitor: we just hook into an existing monitor. In par-
ticular, we rely on the NSIContentPolicy interface for im-
plementing our monitor. Popular extensions like NoScript,
RequestPolicy, as well as internal browser services like the
Content Security Policy and the HTML5 sandbox imple-
mentation, rely on this interface for enforcing mediation. A
network request that goes through without calling the inter-
face would be a critical bug, allowing for same-origin policy
bypass.

We do not protect against data disclosure by browser exten-
sions, as we consider extensions part of the browser TCB.

Performance. Our modifications synchronously block all network
requests, until the parent’s monitor returns. To measure the over-
head of calling the parent’s monitor code, we measured the in-
crease in latency caused by a simple monitor that allows all re-
quests. We measured the time required for script loads from a web
server running on the local machine, and found that the load time
increased from 16.73ms to 16.74ms. This increase is statistically
insignificant, and pales in comparison to the typical latencies of
100ms observed on the web.

5. Case Studies

We retrofit our application architecture to four web applica-
tions to demonstrate the practicality of our approach. All our case
studies, like our browser modifications, are open-source and freely
available [18].

Table 3 lists our case studies and summarizes our results. We
find that our redesigns are minimally intrusive (fewer than 184
lines changed in each of our case studies) and achieve significant
TCB reduction. We evaluate our design on these case studies by
measuring (a) the TCB reduction, (b) the lines of code changed
to implement our redesign, and (c) the invariants we are able to
enforce on the redesigned applications.

5.1 Clipperz

Clipperz is an open-source HTML5 password manager that al-
lows a user to store a variety of sensitive data, such as website
logins, bank account credentials, and credit card information [17].
Sensitive data is stored encrypted in the cloud and is decrypted at
the client side with the user provided password. Users access their
data in a single ‘vault’ page. Users can also click on ‘direct login’
links that load a site’s login page, fill in the user name/password,
and submit the login form.

The application relies on open-source components including
the MochiKit library suite [36] and the YUI library [51]. In sum,

Clipperz consists of 1.4MB of JavaScript code, all of which runs
in a single security principal, with access to all sensitive data. The
Clipperz application uses inline scripts and data: URIs exten-
sively. We found that enforcing strong CSP restrictions to protect
against XSS breaks several subcomponents of the Clipperz appli-
cation.

Privilege Separation. We modified Clipperz to execute its ap-
plication code in an unprivileged DCS. We reused existing shim
code [3] to achieve seamless privilege separation. The one key
change was to proxy handling links (such as Clipperz help page)
and ‘direct logins,’ to the parent, since our design does not grant
a DCS the privilege to open pop-up windows. Privilege separat-
ing the Clipperz application required changing 67 lines of code.
Note that privilege separation in and of itself does not ensure data
confinement: if an attacker compromises the code in the child, it
can send data to an attacker website, for example, by loading an
image.

Data-Confinement Invariants. Our privilege-separated design
executes the Clipperz application code in a data-confined child,
which allows the parent to enforce a confinement policy. One im-
plemented policy was simple, like the security monitor in List-
ing 1, which allows the DCS child access only to postMessage
and a whitelist of images and JavaScript libraries. However, the
flexibility of our primitive allows for a powerful policy that can be
temporal in nature. Our more expressive monitor function allows
the Clipperz application to make network requests only until it
downloads the password database; once the DCS child downloads
the password database, the monitor function disallows further net-
work access.2 Note that relying on a whitelist of network resources
means that we can guarantee the secrecy of the user entered master
password, an invariant impossible to ensure in the current HTML5
platform without DCS.

Although our redesign makes data theft significantly harder,
a compromised instance of Clipperz still has one (self) exfiltra-
tion channel. Clipperz’s ‘direct login’ functionality navigates to
a saved webpage and auto-fills the login credentials. A malicious
script, executing in the compromised DCS, can request the parent
to ‘direct login’ to an attacker controlled webpage, and provide
the username and password for (say) facebook.com. This would
allow the attacker controlled webpage to learn the user credentials
for facebook.com.

In our redesign, we mitigate the above attack by creating two
children: the UI component and the non-UI component. The UI
component does not have direct access to the ‘direct login’ feature.
Instead, a direct login requires sending a message to the non-UI
component. The new component retrieves the associated creden-
tials and completes the direct login process. In contrast to the vault
page, this component does not need complex UI code and other
supporting JavaScript libraries. In our implementation, this com-
ponent executes with a strong CSP, providing higher assurance.

The DCS approach affords us the flexibility of enforcing a
different policy on each child. The security monitor allows im-
ages and scripts to be loaded in the UI component from a set of
whitelisted URLs. The direct login component has no UI and
the security monitor disallows image loads in that component.
Both components are always allowed access to the parent via po
stMessage. Again, the policy is temporal in nature, where upon
database access, the security monitor blocks all communication in

2Except for navigation to pages like the help page.



Table 3: List of our case studies, as well as the individual components and policies in our redesign.

Application Initial
TCB

New
TCB

Lines
Changed

Component Confinement Policy Other Policies

Clipperz 1.4MB 6.3KB 67
Vault UI Only to Clipperz server & Direct Login Child None
Direct Login Open arbitrary websites CSP Policy disabling dynamic code

BrowserID 206.9KB 5.7KB 184
Management Only to BrowserID server None
Dialog Only to BrowserID server, secure password input API requests must match state machine

OpenEMR 149.1KB 6.1KB 51 Patient Information Whitelist of necessary request signatures None

SQL Buddy 100KB 2.97KB 11 Admin UI Only to MySQL server User confirmation for database writes

both components except to the parent.

5.2 BrowserID

BrowserID is a new authentication service by Mozilla. Sim-
ilar to other single sign-on mechanisms like Facebook Connect
and OpenID, BrowserID enables websites (termed Relying Par-
ties) to authenticate a user using the BrowserID centralized ser-
vice. Users create a single username/password to log in to the
trusted BrowserID service and can register any number of email
addresses as identities. Other single sign-on mechanisms share
similar designs, and our results are more generally applicable to
other single sign-on systems.

The implementation has the following components, typically
hosted on the https://login.persona.org origin:

• A dialog window that is opened by the Relying Party when
the user chooses to login using BrowserID. This window
prompts asking the user to sign in using pre-registered email
ids. We call this the dialog page.

• Other pages that contain public information materials and
account management options for the authenticated user. We
call these pages the management component.

The production BrowserID front end includes 101.1KB and
105.8KB of minified JavaScript in the management and dialog
components respectively. The actual TCB is larger, since Browser-
ID uses the EJS templating system [20]. Similar to a number
of modern JavaScript templating languages [28], EJS loads tem-
plate files from the server and converts them to code at runtime
using eval. Note that all modern templating languages rely on
eval, which limits the applicability of CSP and static analysis
techniques.

Privilege Separation. We moved all the application code to an
unprivileged DCS. Minor changes were required for compatibil-
ity. In particular, we modified code that reads the window loca-
tion, and added a base tag to ensure that links navigate the parent
window. The EJS library uses synchronous XMLHttpRequests
to download the templates. Since the same-origin policy restricts
XMLHttpRequests to the same origin, the shim code proxies re-
quests in the parent via the asynchronous postMessage channel.
We modified the EJS templating code to download the templates
asynchronously. The authentication component uses postMessag
e to communicate with the Relying Party: shim code enforces par-
ent mediation on this exchange. In total, 184 lines of code were
modified.

Data-Confinement Invariants. Executing in a data-confined sand-
box, we are able to provide two key guarantees as part of our im-
plementation:

• The login and credential managers (management compo-
nent) do not communicate with any servers other than the
BrowserID servers. This allows us to enforce secrecy on the
main BrowserID username/password.

• In one instance of the BrowserID protocol, only 3 specific
web principals interact. Our design guarantees sensitive to-
kens are never leaked to parties outside these three partic-
ipants. In particular, the parent ensures that the child exe-
cutes the whole protocol with the same principal and same
Relying Party window. In the past, single sign-on mecha-
nisms have had implementation bugs that allowed a MITM
of an authentication flow [44, 48]; our design prevents such
bugs.

For further hardening, we modified the dialog’s login process to
move the password entry to the trusted parent. The parent prompts
the user for her password and sends it to the server. This way, a
compromised dialog will never see the user’s password. We also
implemented a state machine in the security monitor policy based
on the intended dialog behavior. In particular, this state machine
ensures that the dialog component performs a series of requests
consistent with transitions possible in the state machine. This pre-
vents a compromised dialog from making arbitrary requests in the
user’s session.

5.3 OpenEMR

OpenEMR is the most popular open-source electronic medi-
cal record system [40]. With support for a variety of records like
patients, billing, prescriptions, medical reports amongst others,
OpenEMR is a comprehensive and complex web application. Pa-
tient records, prescriptions and medical reports are highly sensitive
data, with most jurisdictions having laws regulating their access
and distribution, possibly with penalties for inadvertent disclosure.

We focus on the patient information component of the Open-
EMR application. OpenEMR accesses the patient details by set-
ting a session variable, namely the patient id. Once the patient id
is set, all future requests, such as ‘demographic data,’ ‘notes,’ and
so on, are returned for the particular patient. If the user wants to
navigate to another patient, the user has to use the search interface
to reset the patient id.

Setting the patient id for a particular session just requires a
GET request with a set_pid parameter. This can be achieved
by any content injection. If an attacker successfully injects any
content (e.g., an image tag) that causes a user to make a network
request, a properly crafted request can set the patient id to that of
Alice. As a result, the OpenEMR server will return Alice’s medi-
cal records for the attacker. Note that this is not an XSS attack, but
a content injection attack.



Privilege Separation. We focus on demographics.php which
presents patient data. It loads with a set_pid parameter in the
URL and the server sets the patient id accordingly. Scripts on the
page then use XMLHttpRequest to download patient details, such
as history and notes. We modified this page to serve its content
as plain text, and a loader page requests the code and runs it in a
DCS. The loader page proxies the XMLHttpRequest and cross-
frame procedure calls through the parent using postMessage.

Data-Confinement Invariants. First, the DCS verifiably ensure
that sensitive medical data does not leak to untrusted principals.
The DCS can also prevent the page from making arbitrary calls to
the large, feature-rich application. In our case, we programmed the
security monitor to allow only a short whitelist of (method, URL)
pairs necessary for the page to function. For example, the mon-
itor denies any request with a set_pid parameter. This protects
against the content injection attack discussed above. This would
not be possible with an origin-based whitelist.

5.4 SQL Buddy

SQL Buddy is an open-source web-based application to handle
the administration of MySQL databases. Written in PHP, it allows
browsing of possibly sensitive data stored in a MySQL DBMS and
supports standard database operations, including SQL queries and
the creation, modification, and deletion of databases, tables, fields,
and rows. It also allows for management of MySQL users.

Privilege Separation. We re-architected SQL Buddy to execute
all code in a DCS. We re-used most of the privilege separation
open sourced in [3], only adding a monitor function in the parent.
The key change was in the script that logged a user into MySQL.
The original implementation returned a new login page upon a
failed login attempt, an action disallowed within a DCS. In our
redesign, we return an error code over XMLHttpRequest. The
client-side code utilizes this code to display the new login page.
This modification required changes to only 11 lines of code. The
SQL Buddy code does not use any of the client-side communica-
tion channels we blocked in a DCS: as a result, modifying it to run
in a DCS is essentially the same as privilege separating it.

Data-Confinement Invariants. By executing the SQL Buddy ap-
plication code in a DCS, the parent can enforce strong confiden-
tiality policies. The application runs in two logical stages; the
flexibility of the DCS monitor allows us to enforce a policy for
each stage.

• Initially, the monitor function restricts communication to
only SQL Buddy resources. The monitor allows the appli-
cation to load a number of whitelisted JavaScript libraries
and stylesheets.

• After loading the code and stylesheets, the application no
longer requires network access except for loading SQL Buddy
resource images and making XMLHttpRequests to SQL Buddy
PHP code, which are proxied at the parent via postMessag
e. Our monitor code now locks down communication to
these two channels.

Our monitoring function restricts all explicit communication
channels: if the SQL Buddy code gets compromised, it still can-
not send data to arbitrary servers. Separating out a small, trusted
parent allows us to enforce finer grained policies. For example, our
implementation also limits writes to the database. Any writes to

the database require the user to explicitly confirm the write with
a simple confirmation prompt created by the parent. Compro-
mised code can not modify the database in the background; the
user needs to confirm that she wants to modify the database.

5.5 Chrome Extensions

To demonstrate the prevalence of data-confinement needs, we
also studied the top 20 most popular extensions for the Google
Chrome platform and identified their data-confinement invariants.
Our analysis indicates that data confinement is a widely prevalent
requirement; with 16 of the 20 extensions we studied maintain-
ing an invariant implicitly. The TCB size for the extensions varies
from 7.5KB to 1.24MB. Sensitive data available to the extensions
vary from access to the user’s browsing history to the user’s so-
cial media information. The remaining four extensions without
an invariant dealt with the UI appearance of websites, and did not
access sensitive data and made no network communications. Full
details of our study are available online [47].

6. Related Work

A number of previous works share our goals of improving as-
surance in web applications. We gave a detailed comparison to
closely related works in §2.3. We discuss other approaches target-
ing data isolation in HTML5 applications.

Khatiwala et al. propose a technique for data confinement for
binary applications [32]. IceShield demonstrated the efficacy of
modern ES5 features to create a tamper-resistant mediation layer
for JavaScript in modern browsers [24]. Data-confinement invari-
ants can be violated by non-scripting attacks, and thus a more gen-
eral primitive is needed [25, 52].

Recent work on information flow and non-interference show
promise for ensuring fine-grained data-confinement in JavaScript;
unfortunately, these techniques currently have high overhead for
modern applications [16]. IBEX proposed writing extensions in a
high-level language (FINE) that can later by analyzed to ensure
conformance with specific policies [21]. In contrast, our work
does not require significant changes to web applications.

7. Conclusion

Modern HTML5 applicaitons handle increasingly sensitive per-
sonal data, and require strong data-confinement guarantees. How-
ever, current approaches to ensure confinement are ad-hoc and do
not provide high assurance. We presented a new design for achiev-
ing data-confinement that guarantees complete mediation with a
small TCB. Our design is practical, has negligible performance
overhead and does not require intrusive changes to the HTML5
platform. We empirically show that our new design can enable
data-confinement in a number of applications handling sensitive
data, and achieve a drastic reduction in TCB. Future work includes
investigating and mitigating covert channels.
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