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Abstract

Wireless Weigh-In-Motion: using road vibrations to estimate truck weights

by

Ravneet Singh Bajwa

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Pravin Varaiya, Chair

Vehicle count and weight data plays an important role in traffic planning, weight enforcement,
and pavement condition assessment. This data is primarily obtained through weigh stations
and weigh-in-motion stations which are currently very expensive to install and maintain.
This dissertation presents a wireless sensor-based solution that is relatively inexpensive, and
uses the measured pavement vibrations to estimate weight of moving vehicles.
The proposed wireless sensor network (WSN) consists of vibration sensors that report

pavement acceleration and temperature; vehicle detection sensors that report a vehicle’s
arrival and departure times; and an access point (AP) that controls the sensors and processes
the incoming sensor data. The system can enable many new applications in infrastructure
monitoring and intelligent transportation. We present energy-efficient algorithms for three
such applications: automatic vehicle classification for categorizing each passing vehicle based
on its axle count and inter-axle spacings; weigh-in-motion for estimating individual axle
weight and total weight of trucks while they are traveling at normal speeds; and estimating
pavement displacement from measured acceleration.
The wireless vibration sensor developed for this project has a high resolution (≈ 400 µg)

and is immune to traffic sounds that are generally picked up by MEMS accelerometers. The
prototype system was deployed on real highways and results for vehicle classification, weigh-
in-motion, and displacement estimation were compared against reference measurements. The
system passed the accuracy standards for weigh-in-motion (WIM) systems and outperformed
a nearby commercial WIM station, based on conventional technology. Since sensors are
embedded directly in the pavement, the system can also enable real-time monitoring of
pavement condition.
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Chapter 1

Introduction

Roads are one of the most valuable assets owned by the government and contribute signifi-
cantly to a nation’s economy. However, construction and maintenance of road pavements is
currently very expensive. According to the US Federal Highway Administration (FHWA),
$46 billion1 is spent annually on highway construction and maintenance but significant sav-
ings can be made by improving our pavement monitoring and management systems [6].
Pavement monitoring enables engineers to predict road deterioration and design an opti-
mal repair (or rehabilitation) schedule to minimize costs and extend pavement lifetime. In

Figure 1.1: Image showing a general setup of the system.

the United States, the long-term pavement performance (LTPP) program collects impor-
tant data for pavement monitoring and management such as traffic volume, truck weights,
climate, structural and material properties for pavement sections, and other field testing

1Based on a report published by the Congressional Budget Office in 2007.
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data [4]. Since heavy trucks cause significantly more pavement damage [13], accurate truck
count and weight data must be collected. This information is primarily collected using
Weigh-In-Motion (WIM) systems that are installed on highways and are capable of weighing
trucks at high speeds. However, current WIM technologies are very expensive for widespread
deployment, thus, resulting in shortage of data required for accurate assessment of pavement
condition. This work explores an alternative solution that is cheap, accurate, and convenient
to install in new or existing roads.

In this dissertation, we present a wireless sensor network (WSN) that can estimate the
weight of moving trucks from measured road vibrations. Figure 1.1 is a general depiction of
the system. Multiple wireless sensors are embedded in road to detect vehicles, and to mea-
sure vehicle speed and the corresponding pavement acceleration and temperature. Since the
system measures actual pavement response, it can also be used for structural health monitor-
ing of pavements. The wireless system could enable many new applications in infrastructure
monitoring and intelligent transportation. We present energy-efficient algorithms for three
such applications:

1. Automatic vehicle classification: Without disrupting the traffic flow, moving ve-
hicles are automatically classified into categories such as passenger cars, vans, buses,
and trucks of various sizes and configurations.

2. Weigh-In-Motion (or load estimation) for trucks: Trucks traveling at highway
speeds (or lower) are automatically detected and weighed with high accuracy (± 10%
error).

3. Displacement (or deflection) estimation: While MEMS sensors that can measure
acceleration accurately have been available for many years, methods for estimating dis-
placement from these measurements are lacking. Displacement estimation can enable
real-time pavement condition monitoring and many other applications outside the area
of infrastructure monitoring.

We now give a brief introduction to pavement design and maintenance. This will help the
reader understand the broader applicability of the system in enabling smart pavements of the
future that can sense damage at an early stage and request for timely repair. We then state
the problems addressed by this dissertation and related challenges in Section 1.2. Section 1.3
provides a review of related work in literature and existing commercial technologies in the
field. The last section describes the organization of this dissertation.

1.1 History of pavement design

We start this section by describing the famous American Association of State Highway
Officials (AASHO) road test, data from which is still used for pavement design. We then
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give a brief history of the LTPP program and the data it collects to reduce the associated
design and maintenance costs. The mechanistic-empirical pavement design is then described
to explain the state-of-the-art techniques for pavement design. We end the section with a
discussion of our current and future needs in pavement monitoring.

1.1.1 AASHO road test

The AASHO Road Test was a series of experiments carried out by the American Association
of State Highway and Transportation Officials to determine how traffic contributed to the
deterioration of highway pavements. The test was carried out in the late 1950s in Ottawa,
Illinois, and is frequently quoted as a source of experimental data for pavement design,
vehicle taxation etc. The results were used to develop a pavement design guide, first issued
in 1961, with major updates in 1972 and 1993.

The AASHO road test introduced many new concepts in pavement engineering, including
the equivalent single-axle load (ESAL). An ESAL is defined as the single axle load that causes
the same amount of pavement damage as the given load and axle type. It was also found
that the heavier vehicles caused pavement deterioration in a much shorter time than light
vehicles, and the damage caused by a loaded axle is related to the 4th power of its weight.
A major drawback of the AASHO road test data was that it provided little information
on long-term environmental effects and no direct information on pavement response and
performance under actual highway traffic [51]. At the conclusion of the AASHO Road Test,
a program was purposed to establish a series of test roads around the US to study the effects
of different environments, soil types, and pavement materials on pavement performance [13].

1.1.2 LTPP program

The Long-Term Pavement Performance (LTPP) program was started in 1987 with a goal of
extending the life of pavements through investigation of long-term performance of various
designs of pavements under different conditions. Data collection began in 1989 from nearly
2500 in-service pavement test sections throughout US and 10 Canadian provinces. The
LTPP program has operated under the US Federal Highway Administration (FHWA) since
1992 [6]. The benefits of the program over 20 years of its existence can be broadly classified
into three categories: LTPP database; advances in pavement performance measurement; and
contributions to pavement design and management.

The LTPP database has been the foundation for pavement research and advancements in
pavement design and management. It is composed of 21 modules containing data categories
such as truck volumes and loads, climate, materials testing, and pavement testing for distress
(longitudinal and traverse road profile, and structural response) [6]. Truck volume and
weight data are collected through numerous automatic vehicle classification (AVC) systems,
Weigh-In-Motion (WIM) systems, and static weigh stations. The LTPP data led to the
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development of Mechanistic-Empirical Pavement Design Guide (MEPDG) that addresses
many limitations of the previous design procedures from AASHO test.

1.1.3 Mechanistic-empirical pavement design guide (MEPDG)

The previous design procedures involved direct calculation of required layer thicknesses for
the pavement to accommodate specified traffic, materials, environmental conditions, and
performance requirements over a particular design life. However, the results depended on
empirical data that was collected over a limited range for loading and environmental con-
ditions. The Mechanistic-Empirical (M-E) design uses both theoretical pavement response
models and the experimental data. The new approach evaluates the impact of traffic, cli-
mate, materials, and subgrade stiffness on performance and accounts for the interactions
among these components [12, chap. 1].

The MEPDG predicts individual performance measures (e.g. transverse cracking, fatigue,
smoothness, rutting) based on data inputs for a given pavement section [12, chap. 1]. The
design engineer follows the following iterative process under this approach: assume an initial
pavement structure, compute distresses over the required design life, adjust the initial design
if any distress exceeds acceptable levels, re-compute the distresses, and continue in this way
until a satisfactory design is achieved. Three different levels of design are available and
the most accurate level requires extensive and detailed data inputs. As an example, traffic
load data might be available at different levels of detail. The M-E design uses the axle
load distribution obtained from traffic measurements to simulate the effect of applied loads
on pavement performance. At the most detailed level, truck weight information could be
available from a nearby WIM system. At the intermediate level, truck count and classification
data can be used to estimate the axle load distribution. At the lowest level of detail, only
vehicle count data might be available. The best pavement distress predictions are obtained
when accurate weight data is available.

1.1.4 Pavement monitoring needs of today and the future

The FHWA recommends an increase in the number of WIM systems on highways to ade-
quately monitor the truck loads being applied. However, current technologies are too expen-
sive (≈ $0.5 M/installation) and cheaper WIM systems are needed. Further, since pavement
response is significantly affected by pavement temperature [49, 58], the M-E design would
also benefit from accurate temperature data. The current approach uses data obtained by
the nearest weather station to estimate pavement temperature. Lastly, an assessment of
pavement strength for rehabilitation projects is typically done using a Falling Weight De-
flectometer (FWD) test. Calibrated loads are applied to the pavement and the measured
pavement deflection is used to back-calculate the stiffness of various layers of the pavement
structure. The FWD tests, however, are expensive and disrupt the normal traffic flow as they
require lane closures. Consequently, there is a need for novel measurement systems that can
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estimate pavement-stiffness without affecting highway traffic [7]. A pre-weighed truck can
be used for this purspose if the corresponding pavement displacement can be measured [2].

1.2 Problem statements and challenges

1.2.1 Problem statements

The dissertation addresses 4 main problems. The first problem involves building a WSN
to detect on-going traffic and measure corresponding ultra-low pavement vibrations. For
detecting traffic, we use off-the-shelf vehicle detection sensors2 which can also estimate vehicle
speed and length [31].

Problem 1.1. A vehicle moves at an unknown speed, ranging from a few miles per hour to
highway speeds. Design a wireless vibration sensor that can be embedded in the pavement to
measure corresponding pavement acceleration and temperature.

Once a capable WSN is available, we can use it to solve the following application-specific
problems.

Problem 1.2. A vehicle of N axles moves at an unknown speed, ranging from a few miles per
hour to highway speeds. Use the designed WSN to automatically detect axles of the vehicle
and classify it using FHWA’s vehicle classification scheme.

Problem 1.3. A truck of N axles moves at an unknown speed, ranging from a few miles per
hour to highway speeds. Use the designed WSN to estimate the individual axle weights and
the gross-weight of the truck.

The above two applications can enable a cost-effective way of monitoring traffic for pavement
design. To enable real-time pavement condition monitoring, we need to estimate displace-
ment from noisy acceleration data.

Problem 1.4. Loads are applied to the pavement using real trucks or nondestructive testing
tools such as the FWD. Estimate the pavement displacement accurately using noise-corrupted
acceleration measurements.

1.2.2 Challenges

The system needs to overcome several challenges in order to solve the above problems:

Measurement
The road pavement is designed to experience very small vibrations from vehicle move-
ment [16]. The vibration sensor must measure these small vibrations while being immune

2Provided by Sensys Networks, Inc.

www.sensysnetworks.com
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to the high environment noise arising from vehicle sound and traffic in neighboring lanes.
The sensor must also be well-coupled to the pavement for accurate measurements. Finally,
the collected data must be transmitted reliably to the AP in a challenging environment with
vehicles frequently blocking the line-of-sight between the sensor and the AP.

Design
The sensors must be robust enough to withstand the tire forces. The system should also
be insensitive to vehicle wander i.e. vehicles traveling off the lane center. It should also
be cost-effective and convenient to install and maintain, and have a lifetime of at least 4
years [15].

Modeling
The relationship between applied axle load and pavement acceleration is not well-understood.
Most pavement response models use pavement deflection but estimating pavement deflection
from acceleration is a challenging problem in itself [8, 29]. Moreover, the response is highly
dependent on pavement temperature and speed of the vehicle, and these variables must be
properly accounted for. Another challenge is to estimate static load from dynamic load [16].
The suspension oscillations caused by road roughness lead to a time-varying load being
applied to the pavement, and therefore, weight estimated by a single sensor (at a fixed
location) can be much different from the static weight. Current technologies deal with this
challenge by installing a smooth concrete pavement around the force sensor but this approach
is very expensive and undesirable for our system.

Signal processing
The pavement response at any given time and location is an accumulated response due to
all vehicles in the vicinity, therefore response due to other vehicles needs to be filtered out.
An even harder challenge is to extract the pavement response due to each axle because at
any given time, all axles of a vehicle are affecting sensor measurements. Lastly, the signal
processing algorithms have to be simple enough for real-time execution and efficient enough
to conserve energy for a longer sensor lifetime.

1.3 Related work

We identify four areas related to this work: applications of sensor networks in transportation,
applications in infrastructure monitoring, AVC and WIM technologies, and algorithms that
estimate displacement from noisy acceleration.

Intelligent transportation
Applications of WSNs in transportation have been growing over the last decade. WSNs have
been used for vehicle detection using wireless magnetic sensors [19, 37, 55]. Multiple magnetic
sensors, spaced at a fixed distance apart from each other, are used to accurately estimate the
speed and length of the vehicle. These sensors have proven to be a very effective replacement
of wired magnetic loops which are more expensive to install and maintain [31]. They have
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also been used for vehicle re-identification and for accurate travel time predictions [38].

Wireless sensors can be used to determine available spots in a parking lot. In fact, com-
panies like Sensys Networks, Nedap AVI, and Streetline provide commercial wireless sensors
for parking lot management. Further, new cars include increasingly sophisticated sensing
technologies, and wireless communication between vehicles has been proposed to increase
road safety by inter-vehicular information sharing [53]. While sensor networks are having
a major impact on traffic monitoring, much less has been done in terms of monitoring the
road infrastructure itself.

Infrastructure monitoring
Structures like bridges, buildings, dams, pipelines, among others, are complex engineered
systems that are vital for economic and industrial prosperity. In order to ensure the safety
of these structures, standardized building codes and design methodologies have been created.
However, these structures are frequently subjected to harsh environmental and loading con-
ditions that results in long-term structural deterioration [43]. Over the last decade, advances
in MEMS sensors and their availability on small wireless motes have led to an increased inter-
est in using these easy-to-install sensors for structural health monitoring. The measurements
are processed using damage detection algorithms, for example in [36], to screen for structural
damage.

Monitoring infrastructures using network of accelerometers has been studied for structural
monitoring of bridges [35], buildings [17], and underground structures such as caves [40].
Many other examples exist in literature. Wired embedded sensors in concrete structures
have been investigated [46] but usually require complex installation procedures and have
limited lifetime if used in roads.

A novel self-powered strain sensor for continuous structural health monitoring of pavements
is presented in [7]. However, the sensor data is read through a RFID reader mounted on
a moving vehicle. For pavement monitoring and management systems, it would be more
beneficial if the sensors can report useful data to a remote server in order to help authorities
take an appropriate action.

Estimating displacement from acceleration
Estimating pavement deflection (or displacement) from acceleration is a challenging prob-
lem in itself. Simple double integration amplifies the low frequency noise leading to a large
unpredictable drift [17]. Popular techniques for drift correction include fitting a polynomial
to estimate drift, and subtracting it from the calculated displacement [29, 8]. However, cor-
rected signals are highly sensitive to the choice of the drift polynomial, and these techniques
do not perform as well for measurements with a low signal-to-noise ratio (SNR).

WIM and AVC technologies
In 1985, Maine Department of Transportation developed an algorithm, called Scheme ”F”,
that can accurately classify vehicles using their axle count and inter-axle spacings [33]. This
scheme enables vehicle classification using the time of arrival for each axle and speed of the
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vehicle. It also makes AVC and WIM two very closely related problems. In AVC systems,
the goal is to predict whether a load is being applied or not whereas in WIM systems, the
magnitude of this load is also estimated. Regardless of the WIM technology, it is assumed
that a WIM system includes the capability of vehicle classification. On the other hand, there
exist AVC systems that cannot measure vehicle weights.

AVC technologies. Systems for vehicle classification can be divided into intrusive and
non-intrusive technologies [27]. Most common non-intrusive schemes are based on digital
imaging [30], range sensors [32], acoustic [47], infrared [42], and microradar sensors [18].
These systems suffer from loss of accuracy with varying daylight, weather, and traffic con-
ditions; have special requirements for setup; and multiple systems are required for high
accuracy. More importantly, they may require special arrangements for measuring multiple
lanes at sites without an overpass. The most common intrusive systems are based on either
piezoelectric sensors or magnetic loop detectors. Intrusive technologies are generally more
accurate but very expensive to install and maintain.

More closely related to this work, a vehicle classification scheme based on vehicle length and
magnetic signature classification [19] has been proposed and evaluated, but it was shown to
be very data intensive. A WSN system for vehicle detection and classification was proposed
in [26] that combines acoustic, infrared, and seismic sensing. However, its main application is
for classification of vehicles in open fields, and its performance is dependent on environmental
and other conditions.

WIM technologies. The most widely used WIM systems consist of a pair of wired magnetic
loops and a force sensor, as shown in Figure 1.2(a). The magnetic loops detect on-going
vehicles and estimate their speed. The force sensors (piezoelectric plates, load cells or bending
plate sensors) measure the instantaneous load applied by the tires of a vehicle. A major
drawback of these technologies is that they require smooth concrete pavement to be built
around the force sensors to achieve the desired accuracy. Figure 1.2(b) shows the typical
installation procedure: the force sensors are installed first and smooth concrete pavement is
built around it. Pavement roughness excites the vehicle’s suspension system, thus, causing
the instantaneous axle load to be different from the static load. The difference between the
instantaneous and static load, known as the dynamic component of applied load, is reduced
by having a smooth pavement. However, this construction increases the system cost and
the installation time, typically requiring several days or even weeks of lane closure. As an
alternative to this approach, the use of multiple force sensors on existing pavement has been
suggested to improve the estimate of static load [16], but current technologies are too costly
to make this approach practical.

While WIM technologies have not advanced much in the last decade, focus has shifted on
using multiple WIM sensors to improve system accuracy as opposed to requiring special-
material pavement near the sensors [27, 14]. A novel WIM sensor based on perturbation
theory of microwave resonant cavities is presented in [41], and a special fiber optic sensor
based on measuring light loss under mechanical stress is discussed in [45]. However, both sen-
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(a)
(b)

Figure 1.2: Current WIM technologies. (a) A typical WIM system consisting of wired loops
detectors and force sensors. (b) Installation process for a WIM station.

sors were tested in a controlled laboratory setting, and challenges regarding road installation
and sensor durability under heavy loads were not addressed.

1.4 Dissertation organization

In Chapter 2, we describe the wireless sensor network used to measure pavement response
and to detect on-going vehicles. The vibration sensor was specifically created for this project
and is described in detail. The sensor uses a wireless communication protocol designed to
maximize lifetime. The chapter also presents the sensor calibration and testing results.

Chapter 3 describes the used test sites and the experiments performed during the course of
the project. The purpose of each experiment is described along with the sensor layout. We
also provide references to later chapters where the data corresponding to each experiment is
analyzed.

In Chapter 4 we discuss the problem of axle detection and automatic vehicle classification.
Two cases are considered: classification using a sparse sensor array and using a dense sensor
array. We describe an energy-efficient algorithm that distributes the computation between
the AP and the sensors. The sensors extract useful features from the raw acceleration signal
and compress the data before wireless transmission. The AP combines the compressed data
from all sensors to automatically classify vehicles. The algorithm is tested using 525 random
trucks on highway.

In Chapter 5 we discuss the problem of load estimation or WIM. We use the observations
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from the various experiments in Chapter 3 and propose a new pavement-vehicle interaction
(PVI) model for the purpose of estimating individual axle loads. A procedure to estimate
axle weights and gross-weight is presented using all raw acceleration data. We test the system
using 75 randomly chosen trucks that were weighed at a static weigh station for accurate
ground truth measurements. We end the chapter by estimating the accuracy of the wireless
WIM.

Chapter 6 starts by presenting various improvements in the PVI model and the load es-
timation procedure. Since collecting all raw data for load estimation is not practical, we
present an adaptive data compression algorithm used by the sensor to extract the required
information from raw data. The AP combines the data reported by all sensors and estimates
the individual axle load and the gross weight of the truck. The system was tested using the
same 75 random trucks and the results obtained were better than a nearby commercial WIM
system.

Chapter 7 discusses the problem of displacement estimation from noisy acceleration mea-
surements. Two novel algorithms are proposed: one applicable for real-time pavement moni-
toring and the other for controlled experiments using testing tools such as the Falling Weight
Deflectometer (FWD) and the Heavy Vehicle Simulator (HVS). The results are compared
against reference measurements from commercial sensors and found to be very accurate.

Chapter 8 presents the conclusions and future work.
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Chapter 2

System Description

This chapter describes the wireless sensor network (WSN) used for detecting on-going ve-
hicles, and measuring corresponding pavement acceleration and temperature. We start by
describing the WSN components: vehicle detection sensors, vibration sensors, and the access
point. The low-noise vibration sensor was built specifically for this project and we present
that in more detail. We then explain the wireless communication protocol and end the
chapter with calibration and testing results for the system.

Figure 2.1 shows a general setup of the sensor network. The system is comprised of wireless
sensor nodes that are embedded in the pavement, and an access point (AP) installed on
the roadside. The sensor nodes are synchronized in time with the AP, and report data for
vehicle detection, pavement acceleration and temperature. The AP controls the nodes and
records the incoming data coming from the sensors and other optional peripherals such as a
PTZ camera.

Figure 2.1: Image showing a general setup of the system.
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2.1 Sensor network components

2.1.1 Wireless sensor nodes

A wireless sensor node consists of 3 main components: a sensor, a microprocessor, and a
wireless transceiver (or radio). Figure 2.2 shows the block diagram for a typical wireless
sensor node. The sensor converts physical quantity like temperature, acceleration, magnetic
field into an analog voltage signal. This signal is passed through an analog filter (signal-
conditioning stage) and sampled using an analog-to-digital converter, typically available
on microprocessors. The sampled data is transmitted wireless using an on-board wireless
transceiver.

Figure 2.2: Bloack diagram for a typical wireless sensor node.

For convenience, we omit the word node and refer to wireless sensor nodes as wireless
sensors from hereon. There are two different types of wireless sensors in our system: vehicle
detection sensors that detect the presence of a vehicle using a magnetometer, and vibration
sensors that measure the vertical acceleration of the road pavement.

Vehicle detection sensor

The vehicle detection sensor measures changes in the local magnetic field to infer the presence
of a vehicle. The sensors have been shown to be very accurate for vehicle detection and have
a lifetime of 10 years [31]. Each sensor samples the on-board magnetometer at 128 Hz and
uses an edge-detection algorithm to estimate the arrival time ta and the departure time td
of a vehicle. A pair of sensors (i, j) can be installed at a fixed distance dij apart from each
other to estimate the speed and length of a vehicle. Given the arrival times tai and taj, and
the departure times tdi and tdj at sensor i and j, the speed v, length L, and the time window
Ti corresponding to the vehicle at sensor i can be estimated as,

v =
dij

|taj − tai|
, (2.1)

L = v|tdi − tai| ≡ v|tdj − taj|, (2.2)

Ti = [tai, tdi]. (2.3)
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(a)
(b)

Figure 2.3: Wireless vibration sensor. (a) Picture of the sensor board. (b) Block Diagram
of WIM Sensor.

Vibration sensor

The vibration sensor is needed to measure the vertical acceleration of the pavement but
has many unique design challenges: sensor needs to have a very low noise level in order to
measure the ultra-low road vibrations; the sensor needs to sample fast enough to capture
the transient pavement vibrations and yet have low power consumption for a long lifetime;
the vibrations due to truck engines and other sounds should have a minimal effect on sensor
readings; the sensor must be well coupled to the pavement and be strong enough to withstand
tire forces from heavy vehicle traffic.

Figure 2.3 shows a picture and the block diagram of the sensor. The MEMS accelerometer
converts mechanical vibrations to an analog voltage signal. This signal is filtered to reduce
noise and sound interference, and amplified to increase the sensor sensitivity (V

g
). The filtered

signal is then sampled by a 12-bit analog-to-digital convertor (ADC) and the samples are
transmitted via a radio transceiver. The accelerometer also includes a temperature sensor
whose output can be sampled by the ADC [24]. The accelerometer and analog filter are
powered by a 2.5 V supply voltage that can be turned off by the microprocessor when
needed.

Accelerometer Selection. The specifications for the vibration sensor were obtained using
simulations done in [52] and previous tests on a highway [9]. It was found that the sensor
needs to have a resolution of 500 µg at 50 Hz bandwidth, and a range of ± 200 mg. For this
purpose, we evaluated two different analog MEMS accelerometers: SD1221-005 from Silicon
Designs and MS9002.D from Colibrys. These were selected for evaluation from amongst
many others in the market because of their very low noise density ( µg√

Hz
) and high sensitivity

(V
g

) [56, 24, 20]. As seen in Table 2.1, SD1221-005 has higher sensitivity and lower noise
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density than MS9002.D, both of which are very desirable. However, SD1221-005 consumes
more than 20 times the current consumed by MS9002.D and has to be operated at a much
higher voltage. Consistent with the table, SD1221-005 outperformed MS9002.D during our
evaluation of the devices but both devices achieved our aimed resolution of 500 µg. MS9002.D
was selected over SD1221 since it is more suitable for embedded wireless applications due its
low power consumption.

Table 2.1: Comparison of accelerometers SD1221-005 and MS9002.D.

SD1221-005 MS9002.D
Sensitivity (V/g) @ 5V 2 1

Noise Density (µg/
√
Hz) 5 18

Current Consumption (mA) 8 ≤ 0.4
Min. Operating Voltage (V) 4.75 2.5

Anti-Aliasing filter design and sound isolation. The filter design is very important to
obtain the desired range (± 200 mg), resolution (≤ 500 µg), and rejection of sound. Typ-
ically, microprocessors for embedded systems have an on-board ADC with 10-12 effective-
number-of-bits (ENOB). If we sampled the accelerometer without any filter gain (or ampli-
fication), the quantization noise from a 12-bit ADC (600 µV at 2.5 V operating voltage)
would dominate the noise from the accelerometer (< 100 µV). The resolution of the system
would be lowered due to relatively high quantization noise. As we increase the filter gain,
the noise from the accelerometer in µV increases but the noise in µg remains unchanged.
However, there is an upper bound on filter gain as it reduces the effective accelerometer
range ( ±2g

filter gain
). A filter gain of 10 achieves the desired acceleration range and resolution.

Another concern that is often underreported about systems using accelerometers is their
sensitivity to sound. A high resolution accelerometer behaves like a low-quality microphone
within the device’s bandwidth. A single pole low-pass filter is not sufficiently aggressive
to prevent interference from sound under 1 kHz, and a simple clapping sound near the
accelerometer is recorded as vibration. Thus, any sensor deployed in the field is vulnerable
to this interference. It was learnt in our previous research [9] that a 3rd order (or higher)
low-pass filter with a cutoff frequency of 50 Hz is sufficiently aggressive to filter out most of
the sound in the audible spectrum. The selected filter has the following transfer function,

H(jω) =
10

(1 + jω
50

)2(1 + jω
500

)
. (2.4)

Analog-to-digital conversion. We used the 12-bit ADC module on MSP430F149 mi-
croprocessor chip for sampling. The module implements a SAR (successive approximation
register) core, includes an internal voltage reference generator, and allows up to 16 indepen-
dent ADC samples to be converted and stored without CPU intervention. We simultaneously
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sample at 512 Hz two independent signals: the filtered acceleration, and the sensor temper-
ature. Since pavement temperature changes slowly, we average the temperature readings so
that only a single temperature reading per wireless packet is sent out.

Figure 2.4: Packaging of a sensor in a sealed case.

Radio and antenna. We use a wireless transceiver from Texas Instruments, CC2420, with
an effective data rate of 250 kbps and operable in the 2.4 GHz ISM band. Since the sensors
are embedded in the road, only a hemispherical wireless coverage is required. We use a patch
antenna to achieve this.

Sensor casing. In order to withstand large forces in a harsh environment, the sensors must
be packaged for durability before installation. The circuit board and the battery are placed
in a hard plastic casing as shown in Figure 2.4. The casing is then filled with fused silica
and sealed air tight. This protects the electronics from rain water, oil spills etc on the road
and further attenuates interference from sound.

2.1.2 Access point

Figure 2.5 shows a block diagram for the access point1. This equipment provides remote
control and observation of the WSN. The AP contains: (i) a processor with attached radio
transceiver and 2 TB hard drive storage; (ii) a power controller that controls power to each
connected device; (iii) an ethernet hub through which a local area network (LAN) is setup
for devices to communicate with each other; (iv) a 3G modem that acts as a gateway to
the wide area network (WAN) and enables remote access to the system; (v) a Wi-Fi bridge
and an ethernet data port for local access to the system; and (vi) an optional pan-tilt-zoom

1Also provided by Sensys Networks.
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(PTZ) camera for taking roadside images. Once a remote computer is connected to the AP,
it can communicate with any of the connected devices through the LAN. It can, for instance,
use the power controller to turn on/off individual components in the box, send commands to
the sensors via the radio, change the settings of the PTZ camera, and start collecting video
and sensor data remotely.

Figure 2.5: Access point.

2.2 Communication protocol

We focus on the communication protocol followed by the wireless sensor nodes and the AP.
Other components use standard protocols and are not discussed here. The architecture of the
protocol consists of three logical entities: an AP, an optional repeater, and wireless sensor
nodes. The AP has a wired and a wireless connection, while the repeater and the sensor
nodes only have a wireless connection. The WSN follows a star network topology where
every node can directly communicate with the AP. Each node is assigned a unique network
address (or node ID) for identification and follows a TDMA (Time division multiple access)
schedule to transmit data. The AP periodically sends out clock synchronization information
and records the incoming data from multiple sensors and other peripherals.
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Physical Layer

The access point and all the nodes use a IEEE 802.15.4 compatible radio transceiver (CC2420).
The transceiver uses the 2.4 GHz ISM radio band and can be operated on one of the 16 com-
pliant RF channels.

Medium Access Control (MAC) Layer

The MAC protocol is TDMA based and uses headers very similar to IEEE 802.15.4 MAC
layer. Time is divided into multiple frames with each frame about 125 ms long. Each frame
is further divided into 64 timeslots, numbered 0 to 63, most of which can be used by the
sensor nodes to transmit data. Timeslot 0 is used by the AP to send clock synchronization
information and other commands to the sensors. The AP assigns every sensor node unique
sets of time slots for data transmission. This schedule ensures that individual sensor nodes
stay awake for a minimum amount of time while preventing any packet collisions in the
network.

Application Layer

There are three main applications in our protocol: clock synchronization, sensor manage-
ment, and firmware update.

1. Clock synchronization. This application runs in the background and ensures clock
synchronization of all nodes within 60 µs. Sync packets are sent by the AP on a periodic basis
with very low jitter. Nodes must first synchronize their clocks before transmitting. When
a sensor node first starts, it listens to sync packets every 125 ms. It learns the difference
between its clock and the AP’s clock, and over time improves its estimate of the AP’s clock.
As the estimate improves, the node converges to a steady state in which it listens for a sync
packet only once in 30 seconds. If a node loses sync, it repeats the above process to get
synchronized again. In addition to sending clock information, the AP can also send one of
the following commands to individual sensors:

Set Mode to change the operational mode of the sensor.

Reset to set the node to factory defaults.

Set Timeslot to assign a timeslot to a sensor.

Set RF Channel to change the RF channel of a sensor.

Download Firmware for over-the-air sensor firmware updates.

Set ID to change the sensor ID.

2. Sensor Management. This is the most important application for both sensors. For
the vibration sensor, the application controls when to turn on the accelerometer and related
circuitry, when to sample, and when to wake up the radio to transmit the measurements.
There are two main modes in this application: idle mode and raw data mode.
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• Idle mode: This is the default power saving mode of each sensor node. In this
mode, the accelerometer and the related conditioning circuitry are powered off by the
microprocessor. Even the microprocessor and the radio are put to a low power state
for the majority of time. Once in 30 seconds, the sensor wakes up to receive the sync
packet and transmit back a stay-alive packet.

• Raw Data mode: In this mode the accelerometer and related circuitry are powered
on. The microprocessor wakes up every 1

512
seconds, and samples the temperature and

the filtered output of the accelerometer. In addition to waking up for the sync packet,
the radio is woken up during the assigned timeslots to transmit the collected data. In
one frame, we collect 64 samples of acceleration data with each sample containing 12
bits of information. Including the two bytes for temperature data, we accumulate 98
bytes of information in every frame to transmit.

For the detection sensor, this application is similar. The key difference is that instead of
the raw data mode there is a vehicle detect mode. The magnetometer is constantly sampled
at 128 Hz and an edge-detection algorithm is used to determine if a vehicle is present or
not. Only in case of a detection is any data transmitted. Since the data throughput from
detection sensors is very small, each packet is retransmitted until an acknowledgement is
received from the AP.

The AP receives data packets from each sensor, appends useful information such as the
timestamp, the Received Signal Strength Indicator (RSSI), the Link Quality Indicator (LQI),
and records it into an ASCII text file for processing.

3. Firmware update. In order to allow for maximum flexibility, the protocol allows a
user to wirelessly reprogram the entire flash memory of a sensor. The general procedure
for downloading new code consists of having the AP transmit new code repeatedly and the
sensor updating its code in small pieces. In order to aid the management of code in the flash
memory, each firmware or program is appended with a header which contains a description of
the program, its address and length, its interrupt vectors, and some other useful information.
The download stream contains two copies of the code linked at different addresses. Only
the data in addresses that do not overwrite the current running program are updated by the
node. Based on all stored program headers after the download, the sensor picks the program
that was most recently downloaded, reboots and starts the program.

2.3 Calibration and testing

2.3.1 Sensor calibration

We use the calibration procedure verified in our previous research [9]. The idea is to use
gage blocks of different heights to change the inclination of the sensor, thus changing the
component of gravity (g) along its sensing direction. Figure 2.6 shows the calibration setup.
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Figure 2.6: Calibration setup for vibration sensors.

We record the accelerometer output for approximately 10 seconds at each height, and cal-
culate the mean and standard deviation of the recorded signal for each height. The mean
value is used for sensitivity estimation while the standard deviation is used to estimate the
sensor resolution as described below.

Let hi be the height of the ith gage block, L be the length of calibration plate, xi = hi
L

, and
v̄i be the mean of sensor measurements when gage block i is used. It can be shown that the
measured output can be modeled as [9], v̄i = A

√
1− x2

i +Bxi +C + εi, where εi represents
random noise. The unknown parameters A, B, and C can be estimated by linear regression,
i.e.

(A∗, B∗, C∗) = arg min
A,B,C

∑
i

(
v̄i − A

√
1− x2

i −Bxi − C
)2

.

The sensitivity (V
g

) of the sensor can be calculated as α =
√
A∗2 +B∗2. Figure 2.7(a) shows

an example of sensitivity estimation for a vibration sensor and Figure 2.7(b) shows the
variation in estimated sensitivity for 40 independent sensors. The mean sensitivity is 4.93 V

g

and the standard deviation is 0.063.

Let σv be the standard deviation of sensor measurements when any one of the gage blocks
is used. The resolution of the sensor can be estimated as σg = σv

α
. This gives us a measure of

noise in the recorded acceleration. For the sensor in Figure 2.7(a), the resolution was found
to be 388 µg. All other sensors had very similar calibration results.

2.3.2 ADC performance

To verify the acceleration sampled by MSP430 of the vibration sensor, we compare the
reported measurements with output of the amplifier stage, Figure 2.3(b), sampled by a 24-
bit data acquisition system from National Instruments. The vibrations were generated by
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(a) (b)

Figure 2.7: Vibration sensor calibration. (a) Sensitivity estimation for a vibration sensor by
curve fitting. (b) Sensitvity for different sensors.

(a) (b)

Figure 2.8: (a) ADC comparison. (b) Current consumption in Raw Data mode.

applying an impulse-like input (using a hammer) to the surface on which the sensor is placed.
Figure 2.8(a) shows that the two signals are in very close agreement. We also measured the
sampling frequency of our sensor using an oscilloscope and it was found to be 512 ± 0.2 Hz.

2.3.3 Power Consumption

We estimated the current consumption in different modes by connecting an appropriate
resistor in series to the circuit board and measuring the voltage drop across it.
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• Raw Data mode: Figure 2.8(b) shows the current consumption in one of the transmit
cycles. The square pulse in the plot occurs when the radio is turned on and actively
transmitting. As expected, sending a packet over the radio is the most powering
consuming process for the wireless sensor. However, since we only transmit for about
2 ms in 62.5 ms, the duty cycle is relatively low and the average current consumption
is found to be 1.96 mA. The oscillations seen in the baseline of this plot correspond to
the ADC being turned on for sampling. The average current consumption is lowered
down to 1.58 mA by using an external source for ADC’s reference voltage. Ignoring
the radio transmissions, the average current consumption drops down to 0.37 mA. This
number provides a lower limit on the sensor’s current consumption.

• Idle mode: In the idle mode, most of the circuitry is turned off and maximum amount
of current is consumed when the radio wakes up to receive a sync packet. The duty
cycle for this mode (once in 30 s) is extremely low and the average current consumption
was found to be 35 µA.

Using a 7200 mAhr battery, the sensor can last over 20 years in idle mode and if we contin-
uously collect raw data from the sensor then it can last more than 6 months. If we collected
data from the sensor twice a week for 12 hours each, the sensor can last over 3 and a half
years. This lifetime is sufficiently long for research purposes and can be increased for com-
mercial applications by compression of raw data before radio transmissions. We discuss the
in-sensor signal processing and compression techniques in the upcoming chapters.

2.3.4 Communication link

Before we analyze the quality of wireless link between sensors and the AP, we must emphasize
that our communication requirements depend on the phase of the project. During the
initial learning phase, we collect all raw sensor data to known load stimuli and the data
transmission scheme minimizes any loss in data corresponding to each load. Since hiring
trucks for calibration or any other testing equipment in pavement engineering is expensive,
having high reliability of data transfer from sensors to AP is very important. However, once
a practical solution to the underlying problem is found, it can be implemented inside the
sensor node to reduce the amount of data that needs to be transmitted. In this phase of
the project, the required data throughput is generally small and each data packet can be
retransmitted if an acknowledgement from the AP is not received back by the sensor. In
case of raw data mode, however, the limited sensor memory is not sufficient to buffer the
data samples for retransmission while the sensor waits for an acknowledgement. Therefore,
any packet loss leads to loss of useful data samples.

We analyze the quality of wireless communication for the setup shown in Figure 3.8(a). To
quantify the data loss we define vehicular data loss rate (V DLR) as the percentage of data
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Figure 2.9: Overall packet loss rate for the WSN.

samples lost when a vehicle is over the sensors i.e.

V DLR =
number of lost data samples

∣∣vehicle is over the sensor
total number of samples transmitted

∣∣vehicle is over the sensor × 100.

When each sample is transmitted only once, the number of lost data samples is proportional
to number of lost data packets. We can define vehicular packet loss rate (V PLR) as

V PLR =
number of lost packets

∣∣vehicle is over the sensor
total number of packets transmitted

∣∣vehicle is over the sensor × 100.

The overall packet loss rate (PLR) is the percentage of packets lost regardless of whether a
vehicle is present over the sensor or not,

PLR =
number of lost packets

total number of packets transmitted
× 100.

Figure 2.9 shows the PLR profile (or equivalently profile for overall data loss rate) obtained
by using a dataset of 525 random trucks from Feb 14, 20122. Each sensor location is defined
by its array number and location number that increments from 0 to 12. Note that sensor at
location 11 of Array 1 is closer to the AP than sensor at location 1. There are two trends
expected for this setup: (i) PLR should increase as the distance between the sensor and AP
increases because the received signal strength (RSSI) decreases; (ii) PLR should be higher
for locations that frequently have their line-of-sight to AP blocked by truck wheels. The plot
shown confirms these trends. PLR in each lane increases as the location number decreases

2The sensor at location 4 of Array 3 was not used on this particular day.
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(a)
(b)

Figure 2.10: (a) VPLR for each sensor. (b) Measured RSSI while a 5-axle truck passes over
the sensor.

and there are local peaks at location 3 and 10 in Array 1 that could correspond to regions
that are most frequently blocked by traffic. It should be noted that the local peaks depend
on the traffic lane and general traffic trends. For example, drivers in the right-most lane of
a highway might prefer driving near the right edge of their lane as there is no traffic on their
right (at least in North America!).

The packet loss profile shown in Figure 2.10(a) corresponds to an average increase of 300%
in data loss rate when a vehicle is present over the sensors. This increase can be explained by
the reduction in received signal strength (RSSI) measured by the AP. Figure 2.10(b) shows
an example of measured RSSI when a 5-axle truck goes over a vibration sensor; also shown
are the corresponding measurements. The red lines denote the time when each truck axle
reaches the sensor. The RSSI is lowered as the truck goes over the sensor and the reduction
is quite significant when axles are close to the sensor. In fact, for this particular example
each axle group can be detected from the RSSI values alone, as seen in the plot.

Since we are primarily concerned with VDLR, is this data loss low enough for our applica-
tions?

We use the load estimation application as an example. As discussed later in this dissertation,
multiple vibration sensors are installed in the middle of each lane for measuring pavement
response in order to estimate axle loads. The application requires that at least 3 out of
5 middle sensors in each array successfully report all relevant data samples for each truck.
Since renting calibration trucks is expensive, this requirement makes sure that we successfully
collect data for majority of the trucks. For the most frequently used truck type on highways
(FHWA class-9), a speed greater than 45 mph implies that at most 20 data packets will
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Figure 2.11: Vehicular data loss rate after adding data redundancy in transmission scheme.

be needed to transmit all required samples. We assume that packet transmission for every
sensor is an independent event and does not depend on the past history (or the future) of
event’s success or failure. Let pi be the probability of packet drop for the sensor at location
i of some array, then we can calculate the probability (Pi) that at least one out of 20 data
packets is not successfully transmitted,

Pi = 1− (1− pi)20 .

This can be considered as the probability of sensor’s failure to transmit all relevant data for
a class-9 truck. If Psuccess is the probability that at least 3 out of 5 sensors from some array
have successful data transmission for the truck, then it can be written as

Psuccess = P (no sensor fails)+

P (at most 1 sensor fails) + P (at most 2 sensors fail),

Psuccess =
5∏
i=1

(1− Pi) +
5∑
i=1

Pi
∏
j 6=i

(1− Pj) +
5∑
i=1

∑
j>i

PiPj
∏
k 6=i,j

(1− Pk).

It should be noted that we assume the presence of vehicle as a general condition in this
analysis and ignored the variation from one vehicle to another. We would like Psuccess to be
at least 95% for each array as that implies that the data collection process is successful for
more than 95% of the trucks. We now return to our original question about whether the
data loss rate observed in Figure 2.10(a) is sufficiently low for our application or not. If we
use packet loss rate from this figure as an estimate for pi, we found Psuccess to be only 75%.
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Since the data loss rate increases when a vehicle is present, the data transmission scheme
could send duplicate packets when a vehicle is nearby. For the sake of easier implementation,
we added redundancy throughout our transmission scheme and transmit each data packet
twice. The redundant packets can be removed by the AP using a unique identifier for each
copy of a data packet. As shown in Figure 2.11, VDLR is lowered significantly after the
addition of packet redundancy to the transmission scheme. Using these updated values,
Psuccess was found to be ≈ 99% for all arrays. This level of reliability meets our application
needs.
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Chapter 3

Sites and Experiments

This chapter describes the installation sites and the experiments conducted over the course
of this study. A separate section is devoted to each site and experiments are presented in a
chronological order. Each section starts with a general description of the test site and then
explains the sensor layout, the experiments conducted, and the data collected. References
to data analysis for each experiment are also provided.

3.1 Yolo County

The wired version of the WIM sensor, described in [9], was installed in the middle of a con-
crete pavement road in Yolo county, California. Figure 3.1 shows the site and the installed
sensor. The output wire from the sensor is embedded into the road and connected to a
National Instruments Data Acquisition (DAQ) box. Data is sampled at 2 kHz and trans-
ferred to a local computer. Tests were done in order to verify sensor measurements and to
understand the pavement response for real truck loads. These tests are described in detail
below.

Figure 3.1: Sensor installation on Road 32A in Yolo County, California. (left) Single-lane
road in each direction. (middle) Sensor location being drilled. (right) The output wire from
the sensor is embedded in the road and connected to a road-side NI DAQ box for data
collection.
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(a)

(b)

Figure 3.2: FWD experiment. (a) Sketch of the FWD tool. Load pulses are applied to
the pavement via the loading plate, and pavement displacement is measured at multiple
locations. (b) The wired sensor is installed in the center and the loading plate is moved from
locations 1 to 6, applying multiple loads at each location.

3.1.1 Falling Weight Deflectometer (FWD) Test

A falling weight deflectometer (FWD) is a testing device used by civil engineers to evaluate
the physical and structural properties of the pavement. A plate, shown in Figure 3.2(a),
is lowered to make contact with the pavement, and loads that simulate a rolling wheel are
applied directly to the pavement. The magnitude of the load can be varied and measured
using an on-board load cell. Deflection sensors, usually geophones, are attached in line
with the center of the plate and used to measure surface deflections at multiple nearby
locations. The deflection data is then used to backcalculate various pavement parameters
and to evaluate structural condition of the pavement [54, 60].

Data Collection. Figure 3.2(b) shows the locations at which FWD loads were applied,
numbered from 1 to 6 in chronological order of the tests. Loads of 6, 9, and 16 klbs were
applied at every location and each load was repeated three times. For each test, the applied
load was measured by the FWD load cell and the pavement acceleration was recorded using
the vibration sensor. When the load was placed on locations 5 and 6, the FWD geophones
aligned with the top of vibration sensor and the geophone measurements can be used for
comparison.
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Data Analysis. In Section 5.1, we show that the measured response is highly repeatable for
same applied loads. We also show that measured pavement response is linearly proportional
to applied load and the response decreases exponentially as the distance from the applied
load increases. In Section 7.2.1, we compare the displacement estimated from measured
acceleration with the reference measurements from the FWD geophones.

3.1.2 Tests using a real truck

Truck shown in Figure 3.3 was driven over the pavement multiple times and at different
speeds. Table 3.1 shows the number of test runs at each speed. The data was used to show
the repeatability of measured pavement response, and to analyze the effect of truck speed
on pavement response in Section 5.1.

Figure 3.3: FHWA class 6 truck driven
on the test section.

Speed Runs
15 3
20 3
25 3
35 3
45 2
55 2

Table 3.1: Number of truck runs at dif-
ferent speeds.

3.2 UC Davis Pavement Research Center

Accelerated pavement testing is done at this site to characterize different pavement materials
and structures. The center has a heavy vehicle simulator (HVS) which repeatedly applies
heavy loads to the pavement to simulate the damage caused by real trucks. About 20 years
of road deterioration can be caused in as little as three months, thus helping engineers
understand the mechanisms of road failure caused by traffic and environmental factors.

3.2.1 HVS experiment

Figure 3.4 shows the heavy vehicle simulator. The wheels shown are loaded with weights
and moved back-and-forth on a pavement section. For each HVS test, the user can specify
the load, speed, and number of repetitions to be used. The HVS allowed a sufficient load
range, 30 kN to 80 kN, but the maximum speed allowed was only 5.41 mph.

Figure 3.4 also shows the location of the six vibrations sensors installed at this site. These
locations were carefully chosen in order to measure the pavement response along the direction
of wheel movement and along its perpendicular. A linear variable differential transformer
(LVDT) is placed over sensor 5 in order to compare the measured surface displacement
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Figure 3.4: HVS experiment. (top left) Heavy vehicle simulator. (right) Loading wheels of
the HVS, and vibration sensors installed in its path. (bottom left) Layout for the sensors.
All dimensions shown are in inches.

Table 3.2: HVS experiment design. Number of repetitions for each load level and speed.
Entries are of the form (a, b), where a is the number of repetitions at 92.8 PSI tire pressure
and b is the number of repetitions at 104.4 PSI tire pressure.

Speed /Loads 30kN 40kN 50kN 60kN 70kN 80kN
1.86 mph (60,60) (60,60) (60,60)
3.04 mph (60,60) (60,60) (60,60)
4.22 mph (60,60) (60,60) (60,60)
5.41 mph (0,60) (60,120) (0,60) (60,120) (0,60) (60,120)

with the displacement estimated using the vibration sensors. Since sensor 1 was installed
underneath the path of one tire, it can be used to understand the response when force is
directly applied on the sensor.

Data collection. Table 3.2 summarizes the loads, speeds, tire pressures, and number of
repetitions used for a total of 30 HVS tests. The experiment was conducted on May 28, 2010,
and pavement temperature varied from 17.9 ◦C to 19.7 ◦C. For each test, raw acceleration
data from the vibration sensors and reference data from displacement sensors was recorded.

Data Analysis. At low speeds, the pavement response was minimal and of the same order
as the noise floor of vibration sensor. Therefore, only the highest speed runs were used
for analysis. It is shown in Section 5.1 that measured response is highly repeatable and
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(a) (b)

(c)

Figure 3.5: (a) Picture of the parking lot. (b) Sensor layout and installation. (c) Picture of
the mini-FWD tool.

linearly proportional to applied load. The estimated displacements from vibration sensor
are compared with reference displacements in Section 7.2.2.

3.3 Parking Lot

A parking lot near 9th Street and Dwight Way in Berkeley, CA served as a very convenient
test bed for our system. Figure 3.5(a) shows a Google street-view image of the parking lot.
Testing at this site was very crucial for improving the data communication protocol and for
modeling the pavement response.

3.3.1 Mini-FWD experiment

We built a tool similar to the FWD (Section 3.1.1) to understand how vertical vibrations
traveled in the pavement and the epoxy. The attached weights, shown in Figure 3.5(c), are
dropped from a height of 2 ft to impart a repeatable impulsive force to the pavement.

Figure 3.5(b) shows the experimental setup. Three vibration sensors, numbered from 1 to
3, are installed in a line and surrounded by epoxy channels of width 0, 1.5, and 3 inches
respectively. Note that channel width of 0 just means that there is no epoxy channel but we
will use this terminology for convenience. The mini-FWD applies loads at multiple locations
along each channel in order to understand how they dampen the vibrations. Loads are also
applied on the asphalt-epoxy boundary to study the coupling between the epoxy and the
pavement.

Data Collection. Loads were applied at five different locations along each channel, and
corresponding vibration data was recorded. Table 3.3 displays the weights used, and the
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distance of the applied force from the sensor. Each drop is repeated at least 5 times for
reliability.

Table 3.3: Distance of the mini-FWD from the sensor and weights dropped.

Distance (inch) Weights used (lb)
0 1.25, 2, 3.25, 4.5
9 1.25, 2, 3.25, 4.5
18 4.5
27 4.5
36 4.5

Data Analysis. This experiment was primarily used to understand the effect of load
location on measured response. It can be seen in Figure 5.4(b) that the measured response
decreases exponentially as distance between the sensor and load increases.

3.4 Sunol

Figure 3.6: On-ramp to I-680N highway. (top left) An example truck approaching the
sensors. (top right) Picture of vibration sensors. (bottom) Sensor layout. All dimensions
shown are in inches.
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With the permission of California Highway Patrol, four vibration sensors and four detection
sensors were installed on California Highway I-680N in April, 2010. The site, shown in
Figure 3.6, is a highway on-ramp used by vehicles coming from the Sunol weigh station. The
site was particularly suitable since the vehicles slowed down at the weigh station and gave us
enough time to collect ground truth data. The vibration sensors are strategically installed,
as seen in Figure 3.6, to capture the pavement response along the entire width of the lane.
Since trucks were trying to get on the highway, they often wandered away from the middle
of the lane. Spreading the sensors also ensured that at least one sensor would be close to
the tires to measure the pavement response at a high SNR.

Data Collection. Two researchers collected data: Researcher 1 at the weigh station and
Researcher 2 on the side of the highway, near the AP. Researcher 1 noted the vehicle de-
scription, its number of axles, individual axle loads, and signalled Researcher 2 via a cellular
phone about the upcoming test vehicle. Researcher 2 then triggered the AP to start logging
the vibration and detection data from all sensors. Data for 53 random trucks, ranging from
pickup trucks to 5-axle commercial trucks, was collected. Unfortunately, due to high traffic
at the weigh station, each vehicle was only slowed down for weighing, as opposed to stopping,
and its axle weights were eye-balled from an analog meter. This makes the ground truth
readings for axle loads less reliable.

Data Analysis. An automatic axle detection algorithm was developed and tested using
this dataset in Section 4.1. Axles from all 53 trucks were correctly counted.

3.5 Pinole

(a) (b)

Figure 3.7: Pinole site. (a) Sensors installed in lane 2, location outlined in red. The AP
and camera are installed on the road-side pole. A conventional WIM station is located right
after the overpass. (b) View of the WIM station from the overpass.
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For systematic long-term testing, we installed the wireless WIM system near a conventional
WIM station on California highway I-80 W. The sensors were installed in lane 2 of the
highway, as shown in Figure 3.7(a). The AP and the PTZ camera were mounted on a road-
side pole. The conventional WIM station is located about 300 ft downstream of our system,
right after the overpass seen in the picture. Figure 3.7(b) shows a view of the Caltrans-
operated WIM station from the overpass. The force sensors are outlined in red, and special
concrete pavement has been built around them to reduce error. Vibration and detection data
from our system is used for axle detection and load estimation, whereas the data reported
by conventional WIM can be used as ground truth for calibrating and testing our system.

Data from the previous sites lead to a better understanding of pavement-vehicle interaction
and provided valuable insights for the sensor layout at this site. Figure 3.8(a) shows the
detailed sensor layout. There are 4 arrays of vibrations sensors at a distance of 15 ft from
each other. Each array contains 5 sensors in the middle that are used for load estimation.
Array 1 has additional sensors that cover the entire lane and can be used for estimating
wheel locations along the array. The edge sensors can also be used to study the vibrations
caused by vehicles in neighboring lanes.

(a)
(b)

Figure 3.8: (a) Sensor layout for Pinole. The installation location is shown in Figure 3.7(a).
(b) Google map showing Cordelia weigh station and the Pinole site. The weigh station is 21
miles upstream from the wireless WIM.

3.5.1 Experiments

Calibration truck runs. We hired a 5-axle truck loaded with lumber, and ran it over
the system multiple times on Feb 14, 2012. Table 3.4 lists the different truck speeds used
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and the number of repetitions at each speed. In addition to this, data was recorded for 525
random trucks during the same time period. The goal was to use the hired truck for system
calibration, and compare load estimates of random trucks with the ground truth reported
by WIM station. While the conventional WIM reported accurate vehicle classification data,
the weight data reported was highly inaccurate and could not be used as ground truth (see
Section 6.2.4).

Table 3.4: Summary of cal-
ibration truck runs.

Speed Number
of runs

15 4
35 4
55 4
65 4

Table 3.5: Summary of data collected from static weigh
station.

Date (2012) Trucks Trucks reaching Trucks
weighed Pinole matched

May 29 47 29 18
July 3 60 32 18

Sept 10 50 37 25

Statically weighed trucks. To obtain accurate weight data, we used a static weigh station
about 21 miles upstream from our sensors, as seen in Figure 3.8(b). Random trucks were
stopped and weighed at the Cordelia weigh station on three separate days. Pictures of each
truck were taken and matched with the road-side camera images in Pinole to extract the
sensor data corresponding to these trucks. Since the station is far from our site, some of the
trucks took alternative routes and only a subset of trucks that reached Pinole travelled in the
sensor lane. Table 3.5 shows the number of trucks weighed on each day, the number of trucks
that actually reached Pinole, and the number of trucks that were matched in the correct
lane. Vibration data, pavement temperature, detection data and ground truth weights for
61 trucks were obtained this way.

Data extraction details. In order to extract sensor data for a specific truck, we need to
know the time the truck arrives at the system. For the trucks weighed at cordelia, we compare
the truck images with the pictures from the road-side camera. Once a visual match is made,
we record the timestamps reported by the PTZ camera. The detection data reported around
this time can be used to estimate the vehicle speed. Using the arrival time, departure time,
and the estimated speed, a time window for the vehicle’s presence on each array is calculated.
The vibration and temperature data reported during these time windows is extracted and
saved for further processing.

Similarly, based on the vehicle speed and distance to the convention WIM station, the
truck’s arrival time at the WIM is estimated. Using this time, and by comparing the vehicle
length, a truck match in WIM data is found and corresponding data is extracted.

Data Collection. Combining the 16 calibration truck runs with 61 statically weighed
trucks, we obtain sensor data for 75 trucks with reliable static weights. Corresponding data
from the conventional WIM station is also obtained for comparison. This data includes
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vehicle speed, length, classification, axle spacing, individual axle weights, and gross weight
for each truck. However, data from WIM station was not available for May 29th, leaving a
total of 59 trucks for comparison1. In addition to the 75 trucks, sensor data for 525 random
trucks is available for comparison of axle count and axle spacing with the conventional WIM.

Data Analysis. We develop and test an automatic vehicle classification system using the
525 random trucks in Section 4.2. Axles of all vehicles were counted correctly and the error
in axle spacings was found to be within ± 0.85 ft at a 95% confidence level. A model
for pavement-vehicle interaction and load estimation is developed and tested in Chapter 5.
The system passed the LTPP accuracy specification for individual axle loads and the gross
weight of a truck. In Chapter 7, we present an algorithm that uses the above tested model
to estimate pavement displacement corresponding to every truck.

1Caltrans could not provide any data for this day due to technical difficulties.
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Chapter 4

Automatic Vehicle Classification

Figure 4.1: FHWA vehicle classification chart [48]. Vehicles can be classified into the 13
categories using their axle count and inter-axle distances (or axle spacings).

An automatic vehicle classification (AVC) system detects an on-going vehicle and catego-
rizes it based on its size, shape, and other attributes. Typical categories include passenger
cars, buses, and trucks of different sizes. Different states use different classification schemes
but majority of them are based on the Federal Highway Administration’s (FHWA) recom-
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mended 13-class scheme shown in Figure 4.1. In 1985, Maine Department of Transportation
developed an algorithm called Scheme ”F” that could accurately classify vehicles based on
their axle count and the inter-axle distances (axle spacings) [33]. The problem of vehicle
classification is, therefore, equivalent to estimating the axle count and axle spacings of a vehi-
cle. Typical scheme ”F” based AVC systems have two important components: a mechanism
for vehicle detection and a mechanism for axle detection. The general setup for our AVC
system is shown in Figure 2.1. Wireless detection sensors are used to automatically detect
an on-going vehicle and ground vibrations measured by vibration sensors are used for axle
detection. In this chapter, we discuss in detail how axles are automatically detected from
pavement vibrations and how the axle spacings are estimated. We present two scenarios for
the problem: axle detection using a sparse sensor array, and axle detection using a dense
sensor array. The following terminology is useful for this chapter:

• Dense sensor array. A sensor array having density greater than 1 sensor/ft across
the width of the traffic lane.

• Sparse sensor array. A sensor array with density less than 1 sensor/ft across the
width of the traffic lane.

• Tire-on-top sensor. If any tire of a vehicle goes directly on top of a sensor, the
sensor is called a tire-on-top sensor for that vehicle.

• Non-tire-on-top sensor. If no tire of a vehicle goes directly on top of a sensor, the
sensor is called a non-tire-on-top sensor for that vehicle.

4.1 Axle detection using a sparse sensor array

We start this section by providing examples of measured pavement acceleration and the mo-
tivation behind the axle detection algorithm. We then present the axle detection algorithm
using a single sensor and using multiple sensors, and end the section with results for the
Sunol dataset. The sensor setup and data collection procedure are described in Section 3.4.

4.1.1 Data examples

Figure 4.2 shows the measured pavement response for two 5-axle trucks (FHWA class 9)
at different speeds. The axles can be visually spotted as each axle causes a separate burst
of energy in the measured response. The force applied by each axle causes the pavement
and sensors to vibrate such that the measured response resembles an exponentially decaying
sinusoidal. An important observation is that the duration of energy burst due to each axle
depends on vehicle speed. A slow moving axle causes lower-amplitude but longer-lasting
pavement vibrations compared to a fast moving axle. The signal bandwidth, in other words,
is directly proportional to vehicle speed.
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Figure 4.2: Measured pavement response for two class-9 trucks at different speeds. The red
curve roughly tracks the energy bursts due to each axle.

4.1.2 Algorithm using a single sensor

Figure 4.3 shows the block diagram of the automatic axle detection algorithm using a single
vibration sensor. The algorithm finds the smooth power signal from measured acceleration,
and locates the peaks that are sufficiently separated in time. The raw signal a(n) is nor-
malized such that in the absence of an axle the magnitude of the signal is below 1. The
normalized signal is then squared to calculate the power p(n). This step further increases
the discrepancy between the peak signal and the noise floor since noise is attenuated after
squaring whereas the peak signal, which is greater than 1, is amplified.

The next step smoothes p(n) by passing it through a moving average filter (MAF) with
M taps. The output of this stage is equal to the average power in last M samples and
therefore proportional to the total energy in past M samples. Since the duration of the
energy burst due to each axle is proportional to vehicle speed, M should also be speed
dependent. We empirically defined M(v) = round(900/v) by observing p(n) for four trucks
at different speeds. An additional stage of a single-pole low-pass Butterworth filter (cutoff
5 Hz) is used for further smoothing. This step is optional and we observed similar results
even in its absence.

The peaks in s(n) corresponding to each axle are assumed to represent axle locations in
the measured response. The last step finds peaks in s(n) that are greater than a threshold
(Pth = 10) and have a minimum time separation ζ(v). This step ensures that local peaks
in noise and local variations around peaks of s(n) are not detected as axles. Weigh stations
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Figure 4.3: Automatic axle detection algorithm using measured response from a single vi-
bration sensor.

typically consider tandem axles as one axle and therefore ground truth data for Sunol dataset
also counted tandem axles as one axle. Tandem axles typically have a spacing between 4
and 5 ft. Minimum peak separation ζ(v) for axles was chosen by assuming that the axles
are at least 6 ft apart i.e. ζ(v) = 6

v
. It is important to note that by reducing the minimum

separation to less than 3 ft the algorithm is able to detect both the axles in a tandem axle,
as shown in Figure 4.5.

4.1.3 Algorithm using multiple sensors

Figure 4.4: Combining data from multiple sensors for axle detection.

A single sensor is not sufficient to capture the vehicle in its entirety. If the axle detection
algorithm is applied to a single sensor, the number of axles will most likely be undercounted.
As the distance between a tire and sensor increases, the measured response decreases expo-
nentially [28]. Therefore, if the sensor is sufficiently away from tires of an axle, the peak
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corresponding to the axle can be below the threshold Pth, resulting in a missed detection.
The number of missed detections will be greater for vehicles with lower speed or lower weight.

To compensate for this effect, we combine measurements from multiple sensors. Individual
sensor measurements are first aligned relative to sensor 1, as shown in Figure 4.4. The time
offset Ti between sensor i and sensor 1 can be computed using the vehicle speed v and the
distance di between sensor i and sensor 1 along the direction of travel i.e. Ti = di/v. The
aligned power signals are then passed through a point-wise MAX block to generate a new
time series p(n). The resulting signal p(n) is equivalent to the maximum energy measured
in time for each axle. This signal can be passed through the filters and the peak detection
stage of the axle detection algorithm as described before.

Let tk be the detection time reported by the algorithm for the kth axle, and let v be the
estimated vehicle speed from the detection sensor data (see Section 2.1.1). The axle spacing
sk between axles k and k + 1 can be determined using

sk = v(tk+1 − tk) = v(4Tk). (4.1)

4.1.4 Results

To illustrate the algorithm, we use the acceleration data collected for a class-8 truck from a
single vibration sensor. Figure 4.5 shows the measured signal a(n), the scaled power p(n),
and the smooth power s(n). The increased discrepancy between the peaks and the noise floor
can be seen by comparing a(n) and p(n). The detected axles are shown as red asterisks on
s(n). Note that only one of the last two peaks in s(n) is detected, thus counting the tandem
axle as only one axle. By reducing the minimum axle separation to 3 ft the algorithm
successfully detects both axles of the tandem axle. It is worth mentioning that the detected
peaks in s(n) do not align with the peaks in a(n) because of the delay introduced by the
filters. However, the time difference between the peaks 4Tk is unaffected.

Axle Count. Table 4.1 compares the axle count results when the algorithm is applied to
each sensor individually and to the combined measurements. Axle count error is defined
as the difference between the estimated axle count and the ground truth axle count. The
worst-case axle count error is -3 when sensor I (Figure 3.6) undercounts 3 axles of a truck.
By combining the measurements from all sensors, the algorithm gives the correct axle count
for all 53 trucks.

Axle Spacing. Figure 4.6 shows the distribution of estimated axle spacings. Since trucks
at the weigh station could not be stopped for measurements, the ground truth data for axle
spacings is not available for this dataset. Instead, we provide a qualitative assessment of the
results. The data appears to be naturally clustered into three different groups separated by
empty bins in the histogram. The first cluster includes axles that are spaced between 3 ft and
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Figure 4.5: Example application of the axle detection algorithm. The axle denoted by the
black circle is detected when ζ(v) = 3 (ft)

v (ft/s)
is used.

6 ft. This is very typical for tandem axles and provides encouraging evidence supporting the
accuracy of the estimates. The second cluster is mostly accounted by pickup trucks, small
two-axle commercial trucks, and the first two axles of larger commercial trucks. The third
cluster is mostly comprised of axles of the trailers. The large variation in the second and
third cluster is expected and is consistent with Federal Highway Administration’s data [5].

4.2 Axle detection using a dense sensor array

The algorithm described in the previous section has a few drawbacks. The measured re-
sponse is lower in amplitude for lighter and lower speed vehicles, resulting in possible missed
detections. A vehicle classification system, on the contrary, is expected to work for all speeds
and weights. Another drawback is that the number of filter taps M and the minimum peak
separation ζ are speed dependent but vehicle speed is unknown to the vibration sensors. One
possible solution is to send average traffic speed to the sensors using sync packets but we
will present an alternative in this section that makes the algorithm speed independent. The
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Count Error Sensor I Sensor J Sensor L Combined

-3 1 0 0 0
-2 1 2 1 0
-1 2 2 3 0
1 3 1 1 0
Correct 46 48 48 53

Performance 86.8% 90.6% 90.6% 100%

Table 4.1: Axle count performance for the algorithm. Count error is the difference between
the estimated axle count and the ground truth. Under each column is the observed frequency
of the errors.

Figure 4.6: Distribution of estimated axle spacings.

biggest drawback is the transmission of raw acceleration data from sensors to access point.
Transmitting data over the radio is the most power consuming process for a wireless sensor
and the amount of data transmitted should be minimized [34]. We present an algorithm
that addresses all these limitations.

4.2.1 Tire-on-top effect

Figure 4.7 compares the measured response by two sensors for the same truck. The top plot
is for a tire-on-top sensor whereas the bottom plot is for a non-tire-on-top sensor. It was
observed that the tire-on-top sensor records higher amplitudes for all axles, independent of
the axle weight. The response is also less dependent on speed when compared to the non-
tire-on-top sensors. This observation makes the tire-on-top sensors very suitable for axle
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detection but very unsuitable for load estimation. Motivated by this effect, we installed a
special sensor array in our Pinole setup (Section 3.5). As shown in Figure 3.8(a), Array 1
has a higher number of sensors covering the width of the lane. The goal is to ensure that
at least one of the sensors will be a tire-on-top sensor for every vehicle and can be used for
axle detection.

Figure 4.7: Comparison of pavement response measured by a tire-on-top sensor and a non-
tire-on-top sensor.

Figure 4.8: Sensor-level axle detection algorithm using a dense sensor array.
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4.2.2 Sensor-level algorithm

Each sensor decides whether it is a tire-on-top or non-tire-on-top sensor by thresholding
the amplitude of the measured signal. If the amplitude is greater than 25 mg, the sensor
considers itself a tire-on-top sensor and applies the modified axle detection algorithm shown
in Figure 4.8. The algorithm is very similar to the one described in Section 4.1.2 but
with a few key differences. The moving average filter is now the only filter used and the
number of taps are chosen to be independent of speed, i.e. M(v) = 12. The amplitudes
from tire-on-top sensors are much higher and therefore, the peak detection threshold is
increased ten folds to Pth = 100. Since vehicle speed is not known to the vibration sensor,
we calculate the minimum peak separation using an upper bound on expected vehicle speed,
i.e. ζ(v) = 2.5 (ft)

132 (ft/s)
. This results in extra peaks reported by sensors for lower vehicle speeds

but the access point can reinforce the separation constraint using the actual vehicle speed
and filter out the redundant peaks. Since each sensor only sends out axle times {tk} and
peaks {s(tk)}, the amount of data transmitted is minimized and battery power is used more
efficiently.

Figure 4.9: AP-level algorithm using a dense sensor array.

Figure 4.10: Example AP-level filtering for axle detection.
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4.2.3 AP-level algorithm

The access point estimates the vehicle speed v from the detection sensor data using the
procedure described in Section 2.1.1. Based on the speed, it calculates the minimum peak
separation as ζ(v) = 2.5 (ft)

v (ft/s)
and reapplies the constraint to all peaks reported by sensors.

The AP filters out redundant peaks and selects the highest peaks that are at least ζ(v) time
apart. This is illustrated in Figure 4.10. The AP filters out redundant peaks reported by four
tire-on-top sensors and the detected axles are circled in red. The resulting axle times {tk}
can be combined with estimated speed v to calculate the axle spacings using Equation 4.1.
The estimated axle count and axle spacings can be used to classify the vehicle using scheme
”F” [33].

Figure 4.11: Histogram of axle spacing errors for 525 random vehicles.

4.2.4 Results

To test the algorithm, we applied the sensor-level algorithm to the raw vibration data col-
lected for each truck. The detected axle peaks were filtered out using the AP-level algorithm
and used to estimate the axle count and axle spacings for 525 random trucks. The sensor
setup and data collection procedure is described in Section 3.5.1.

All axles of the 525 vehicles were successfully detected. Let the axle spacing error be defined
as the difference between the estimated and the ground truth axle spacing. Figure 4.11 shows
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the histogram of axle spacing errors for the 525 vehicles. The 95th percentile error was found
to be ±0.85 ft and 97% of the estimates had an error within ±1 ft.

The above accuracy should be sufficient for classification based on Scheme ”F” but it can
be improved further, if needed. If we ”perfectly” estimate the time difference 4Tk between
two axles, Equation 4.1 can be used to write the axle spacing error as εs = εv(4Tk), where εv
is the error in the speed estimate. One convenient way to improve the axle spacing estimate
is to reduce the error in the speed estimate. This can be accomplished by using more speed
sensors and averaging multiple speed estimates [57]. The relationship also predicts that error
εs will be greater for larger axle spacings as the corresponding 4Tk is larger. Figure 4.12
confirms this dependency of errors on axle spacings.

Figure 4.12: Dependency of axle spacing errors on axle spacing estimates. Only vehicles
with speed between 55 and 60 mph were used for this plot.
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Chapter 5

Load estimation

In this chapter, we discuss how pavement vibrations can be used to estimate truck weights.
We start by presenting some exploratory data analysis for the various experiments described
in Chapter 3. We then propose a model that relates pavement acceleration, pavement tem-
perature, and vehicle speed to axle weights. The procedure for estimating axle weights is
described next and we end the chapter with results for 75 random trucks from the Pinole
site. The collected data and the sensor layout for this site are described in Section 3.5.1.
The following terminology is useful for this and the next chapter.

• Peak acceleration. Figure 5.1(b) shows an example of the pavement response for
a two-axle truck and each negative peak corresponds to a truck axle. We refer to
the magnitude of each such peak as peak acceleration for the corresponding axle.
The global maxima of the signal, on the other hand, is called the positive peak of
acceleration.

• Pulse width. Each axle causes a pulse in the measured signal as shown in Fig-
ure 5.1(b). Pulse width is the time difference between the points on the pulse that are
10% of the peak acceleration.

• Dynamic load. The instantaneous load applied to the pavement by truck wheels
(FI(t)) is different from the static load (F ) because of suspension oscillations of the
truck. The difference between instantaneous and static load is called the dynamic load,
Fd, where Fd(t) = FI(t)− F .

• Relative standard deviation (RSD). The standard deviation of measurements
expressed as the percentage of the mean of measurements.

• Relative range. The range of measurements (under a given test condition) expressed
as a percentage of the mean of measurements. We use relative range to express the
statistical dispersion when the number of measurements is smaller than 10. Note that
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if the measurements follow a normal distribution N(µ, σ2), then the relative range of
measurements is expected to be four times the RSD value at a confidence level of 95%.

• Relative standard error (RSE). Standard error is the standard deviation of the
sample mean (or any other statistic). The relative standard error is simply the standard
error divided by the true mean (or its estimate) and expressed as percentage. It is
important to understand the difference between RSD and RSE. Qualitatively, RSD
is the degree to which individual measurements differ from the sample mean whereas
RSE is an estimate of how close the sample mean is to the true mean. If the sample
standard deviation is σ̂ for N independent measurements, the standard error of mean
is σ̂√

N
.

• Coefficient of determination (R2). We use the most widely accepted definition
of R2 to express the ‘goodness of fit’. R2 value ranges from 0 to 1 and higher values
imply better model fits. Let {yi} be the observations, {ŷi} be the modeled values,

ȳ =
∑N
i=1 yi
N

be the sample mean, then the R2 value can be calculated as

R2 = 1−
∑N

i=1(yi − ŷi)2∑N
i=1(yi − ȳ)2

.

• LTPP error (eλ). The LTPP recommends an error measure for WIM stations that
assumes a normal distribution for measurement errors and calculates the error bound
at a confidence level of 95%. Let {ei}Ni=1 be the observed errors, ē be the mean error,
σ̂e be the standard deviation of observed errors, and tN−1 be the critical value at 95%
confidence level for a Student t-distribution with N − 1 degrees of freedom, then eλ
can be calculated as

eλ = |ē|+ tN−1σ̂e. (5.1)

5.1 Observations from measured pavement response

In this section, we discuss some important observations made from the experiments described
in Chapter 3. The observations provide supporting evidence for the feasibility of wireless
WIM and help understand the pavement response to applied loads.

5.1.1 Measurement Repeatability

A measuring device is said to have high repeatability if the variation in its measurements
is small. A fundamental requirement for a WIM system is high repeatability. The relative
standard deviation (RSD) in typical WIM measurements is expected to be less than 10%.
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The relative range of measurements is expected to be less than 40% at a confidence level of
95%.

The vibration sensor showed high repeatability in our experiments. Figure 5.1(a) shows the
measured pavement response for multiple HVS runs under similar speed and load conditions.
The measurements look similar in shape and the RSD of peak acceleration was found to be
6.2% for this test. The RSD of peak acceleration ranged from 6.2% to 11% for the 12
HVS tests at 5.41 mph and better repeatability is expected at highway speeds. The HVS
experiments were performed at a speed of 5.41 mph (or lower) and pavement response is
minimal at such low speeds. As an extreme example, a static vehicle causes no pavement
vibrations; therefore, it cannot be weighed using the wireless WIM. Similarly, slow moving
vehicles cause pavement vibrations that are barely above the noise floor of the vibration
sensor, resulting in a lower repeatability of measurements. It is very encouraging to get
reasonably high repeatability for such low speeds.

(a)
(b)

Figure 5.1: Measurement repeatability. (a) Measured response for 20 runs of the HVS test
at a speed of 5.41 mph and load of 60 kN. The average sensor (or pavement) response is
shown in red and shown in blue are the upper and lower limits of its confidence interval at
95% confidence level. (b) Measured response for 3 truck runs at 20 mph. The end points for
the pulse width are 10% in value of the peak acceleration.

Figure 5.1(b) shows the response of a concrete pavement for multiple runs of a two-axle
truck. Qualitatively, the response looks very similar in each case. Quantitatively, as shown
in Figure 5.3(a), the peak acceleration is always within 15% of the mean value at different
speeds; therefore, relative range of peak acceleration is less than 30% for each speed. This
level of repeatability is acceptable and one way to improve it is to increase the number of
vibration sensors and aggregate the measurements from them. However, it is important to
note that some of the measurement variation is due to the variation in test conditions: the
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instantaneous load applied by truck axles is different in each run due to suspension oscilla-
tions (dynamic load effect); speeds can be slightly different in each run; and the location of
truck wheels relative to the sensor location varies in each run.

For the FWD experiment, we applied 3 different loads at 6 locations near the sensor. All
18 tests were repeated 3 times each. The relative range of peak acceleration was found to
be between 0.1% and 3.4%, thus, showing very high repeatability.

Observation 5.1. The measured pavement response has high repeatability under similar test
conditions.

5.1.2 Effect of applied load on pavement response

The Euler-Bernoulli beam model for pavement-vehicle interaction suggests that the measured
response is linearly proportional to the applied load at a given vehicle speed [52]. This was
observed in our experiments for non-tire-on-top sensors only. For tire-on-top sensors, the
measured response was found to be uncorrelated to the applied load, thus, making these
sensors unsuitable for load estimation.

(a)
(b)

Figure 5.2: (a) Pavement response at different load levels for the FWD experiment. (b) The
mean of positive peak acceleration from the 20 runs plotted against the applied load in each
run. The error bars correspond to the 95% confidence interval for the estimate.

Figure 5.2(a) shows a plot of peak acceleration against the load applied by the FWD. The
3 linear fits shown in the plot have R2 values of greater than 0.99. Signal features other than
peak acceleration can also be used for load estimation. Figure 5.2(b) shows the mean of the
positive peak acceleration plotted against the applied load. The mean of the positive peaks
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is obtained by averaging the individual positive peaks from the 20 HVS runs at each load.
The linear fit for the HVS experiment has a R2 value of 0.98 and provides more evidence to
support the following observation.

Observation 5.2. At a given vehicle speed, measured pavement response is linearly propor-
tional to the applied load.

5.1.3 Effect of vehicle speed on pavement response

The Euler beam model also suggests that both the shape and amplitude of the pavement
acceleration depends on vehicle speed. However, the relationship between speed and mea-
sured response is complex and depends on the material and structural properties of the
pavement [52]. Figure 5.3(a) shows the peak acceleration for multiple truck runs at vari-
ous speeds. The peak acceleration increases monotonically with speed and approximately
follows the square law. Figure 5.3(b) shows the pulse width of the measured response at
different speeds. The pulse width decreases as vehicle speed increases and vice versa. The
presence of the term ‘vt’ in the Equation (5.2) also suggests that the pulse width is inversely
proportional to truck speed.

(a) (b)

Figure 5.3: (a) Peak acceleration at different speeds for the Yolo County truck. (b) Pulse
width of measured acceleration at different speeds for Axle 1 of the same truck.

Observation 5.3. The measured pavement acceleration increases monotonically with truck
speed. The pulse width of the measured response due to each axle is inversely proportional to
truck speed.
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5.1.4 Effect of load location on measured response

The Euler beam model is a one-dimensional model in space and does not provide any insights
into the effect of wheel (or force) location on the measured response. We use data from the
FWD and the parking lot experiments to study this effect. Similar loads are applied at
different locations relative to the vibration sensor and the measured response is analyzed.

Figure 5.4(a) shows the peak acceleration measured when loads of 28, 45, and 80 kN were
applied at six different locations (setup in Figure 3.1). Each load was repeated three times.
The plot also shows exponential fits of the form ae−bx, where x is the distance from the
sensor and a, b are the unknown parameters. The decay rates b estimated for the 28 kN, 45
kN, and 80 kN cases are 0.28, 0.30, and 0.31 ft−1respectively.

(a) (b)

Figure 5.4: (a) Peak acceleration at different locations and load levels for the FWD experi-
ment. The dotted curves show exponential fits to the data. (b) Peak acceleration at different
locations near the sensor for the parking lot experiment.

Figure 5.4(b) shows a similar plot for the parking lot experiment using the mini-FWD (see
Section 3.3). The measured response is less repeatable but it should be noted that the loads
applied by the mini-FWD are not expected to be as repeatable as the commercial FWD.
The estimated decay rate for the parking lot pavement was found to be 1.09 ft−1. The
decay constant for the asphalt pavement in the parking lot is about 3 times greater than the
concrete pavement in Yolo County.

Observation 5.4. Measured pavement response decreases exponentially as the distance be-
tween the sensor and the location of applied force increases. The decay rate of attenuation
depends on the pavement type.
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5.1.5 Measured pavement response for a moving axle

In order to model the pavement response due a moving axle, we analyzed the sensor measure-
ments for trucks from Yolo County, Sunol, and Pinole. We found that after some low-pass
filtering the measured response due to an axle resembles an inverted Mexican hat function

i.e. f(t) = A(1− t2

σ2 )e
−t2
2σ2 , where A is a negative real number. Figure 5.8 shows an example

of measured response from the Pinole site. The response due to the last axle is isolated
from the other axles and can be considered as the response due to an individual axle. The
responses from the other sites were very similar. A slight adjustment to the low pass filter
was required but this was expected since the measured response depends on pavement type.
This observation provided motivation for the development of a simpler pavement-vehicle
interaction model.

Observation 5.5. The measured acceleration response due to a single truck axle resembles
the Mexican-hat function i.e. second derivative of the Gaussian function. Therefore, the
corresponding pavement displacement can be modeled as a Gaussian function.

5.2 Proposed pavement-vehicle interaction model

Figure 5.5: Euler-Bernoulli beam model for pavement-vehicle interaction [52].

In this section, we propose a model for pavement-vehicle interaction that directly relates
pavement acceleration, vehicle speed, and pavement temperature to applied axle load. We
start by describing the model at a constant temperature and then explain how measurements
can be properly compensated for temperature variation.

The simplest but widely accepted model for pavement-vehicle interaction is shown in Fig-
ure 5.5. In this model, the roadway pavement is considered as a one-dimensional beam
resting on an elastic foundation, and an axle is modeled as a moving force whose magni-
tude changes with time because of the suspension oscillations. A closed form solution to
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the partial differential equation (PDE) governing the system was found in [52] and we now
make some simplifying assumptions based on our experimental observations. If we ignore
the effect of vehicle’s suspension system (i.e. setting ω0 = 0), we can show that the solution
found in [52] can be written as

y(t) = Fγ−1Φ(vt), (5.2)

where y(t) is the vertical displacement or deflection of the pavement, and the function Φ(·)
and γ depend on the structural and material properties of the pavement. It can be seen from
this expression that γ−1Φ(t) can be interpreted as the pavement response due to a unit load,
moving at unit speed. Consistent with Observation 5.2 and Observation 5.3, the model is
linear in F and vehicle speed v just scales the function Φ(·) in time.

Based on Observation 5.5, we now assume that the shape of pavement displacement is
closely approximated by a Gaussian function. This is a simplifying assumption and in general
the shape of the response also depends on v and suspension frequencies of the vehicle [52].
Let η be the amplitude and σ0 be the standard deviation of Gaussian response for a unit
load at a unit speed, then pavement displacement y(t) can be written as:

y(t) = Fγ−1Φ(vt) = Fηe
−v2t2

2σ20 ,

y(t) = Fηe
−t2
2σ2 . (5.3)

The last step is obtained by assuming σ = σ0
v

. Note that both η and σ0 depend on pavement
properties. Since we measure acceleration and not displacement, we can convert the model
into a more appropriate form,

a(t) = ÿ(t) = Fγ−1Φ̈(vt),

= −Fη v
2

σ2
0

(
1− t2

σ2

)
e
−t2
2σ2 .

Now, let Ψ(t, σ) = −
(

1− t2

σ2

)
e
−t2
2σ2 and α = Fηv2

σ2
0

, and we have the following relation for

pavement acceleration due to a single axle load:

a(t) = αΨ(t, σ).

From the definition of α, we see that

F =
σ2

0

η

α

v2
= β

α

v2
, (5.4)

y(t) = α
σ2

0

v2
e
−t2
2σ2 = ασ2e

−t2
2σ2 .
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The last step is obtained by combining Equations (5.4) and (5.3). The unknowns α and
σ can be estimated from the measured acceleration but β depends on axle type (single or
tandem) and pavement properties, and needs to be calibrated using trucks of known weights.
For a K axle truck, with the ith axle arriving at the sensor at time µi and applying a force
Fi, the response can be written as the superposition of individual axle responses (ai(t))i.e.

ai(t) = αiΨ(t− µi, σi), (5.5)

a(t) =
K∑
i=1

αiΨ(t− µi, σi). (5.6)

Using a non-linear curve fitting procedure, described in Section 5.3, we estimate αi, µi, and σi
for each axle. Once individual axle responses have been estimated, each axle can be treated
separately to estimate quantities like individual axle loads (Fi) and pavement displacement
(yi(t)) due to each axle i.e.

Fi = βi
αi
v2
,

yi(t) = αiσ
2
i e
−(t−µi)

2

2σ2
i . (5.7)

Figure 5.6: Percentage change in pavement response with temperature. For the same applied
load, pavement acceleration (or displacement) increases with increasing temperature.

Temperature compensation. The above model is valid for a constant temperature but
pavement response, especially for asphalt-concrete layer, is highly dependent on temperature.
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Using the thickness of different layers and material parameters for the pavement at this site,
we developed a layered elastic theory (LET) model to simulate the effect of temperature
on the pavement response [50]. Figure 5.6 shows how the pavement acceleration changes
with temperature according to the LET model. The plot shows that pavement response can
change over 15% with changes in temperature alone and proper temperature compensation
is needed for accurate load estimation. Appendix A contains more details on the LET model
development1.

Let τ(T ) be the ratio of the modeled response at 25◦C and at temperature T . To compensate
for temperature, we normalize all our measurements to the reference temperature of 25◦C
as a(t, T = 25◦C) = a(t, T )τ(T ), where τ(T ) is obtained using the LET model. It can be
seen from Equation (5.6) that αi(T = 25◦C) = αi(T )τ(T ), and accordingly

Fi = βi
αi
v2
τ(T ). (5.8)

5.3 Load estimation procedure

Figure 5.7 shows a block diagram for the load estimation procedure. Sensor measurements
are first combined to calculate the average pavement response for the truck. A curve-fitting
procedure is then used to estimate individual axle response from the average pavement
response. This estimate is combined with the speed, temperature, and calibrated parameter
βi to calculate the axle weight. We discuss the calibration procedure for βi at the end of this
section.

Figure 5.7: Block diagram for the load estimation procedure.

Average pavement response. The average pavement response requires aligning the mea-
surements from each sensor. Each time-series of measurements (or each signal) is first passed

1Contributions of Erdem Coleri.
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through a cascade of two moving average filters with numbers of taps M and 2M respectively.
The filters are used to smooth the measured signals and are chosen to be speed dependent,
M(v) = 1440/v. Amongst the filtered signals, the highest amplitude signal is designated
as the reference and signals from other sensors are time-shifted to align with the reference.
Let akm(t) be the time-shifted signal for the kth sensor, and I be the number of available
non-tire-on-top sensors, then the average pavement acceleration am(t) can be estimated as:

am(t) =
1

I

I∑
k=1

akm(t). (5.9)

Figure 5.8 shows an example of raw acceleration data from a sensor, and the average pave-
ment response am(t). The figure also highlights another important challenge in estimating
individual axle loads. Because of high speed and relatively short axle spacing, Axle 2 of the
truck arrives at the sensor before the pavement has relaxed from Axle 1’s load. Therefore,
response due to each axle needs to be decoupled and extracted from am(t). To extract each
ai(t) from am(t), we use the following procedure.

Curve Fitting Procedure. Let a(t) be the modeled response for a K-axle truck, given by
Equation (5.6). Let ε(t) be the error between the measured and modeled response for the
truck at time t i.e. ε(t) = am(t)− a(t). We can now write the measured response as:

am(t) = a(t) + ε(t) =
K∑
i=1

αiΨ(t− µi, σi) + ε(t). (5.10)

We estimate the unknown parameters {αi}Ki=1, {σi}Ki=1, and {µi}Ki=1 by minimizing the mean
squared error i.e.

(α∗i , σ
∗
i , µ

∗
i ) = arg min

αi,σi,µi

∫ ∞
−∞

(am(t)− a(t))2dt,

(α∗i , σ
∗
i , µ

∗
i ) = arg min

αi,σi,µi

∫ ∞
−∞

(am(t)−
K∑
i=1

αiΨ(t− µi, σi))2dt. (5.11)

This is a non-linear (and non-convex) least-squares problem and the solution found by stan-
dard optimization algorithms, such as the gradient descent or Gauss-Newton algorithm, is
only guaranteed to be a local minima. However, global minima can be found in our case by
carefully choosing the initial points for the solution search. For µi, we use the corresponding
time reported by the tire-on-top sensors as our initial guess. For αi, we use the corresponding
peak acceleration in the measured signal and the initial guess for σi is made using the mea-
sured speed of the vehicle. Figure 5.8 shows an example of how well the modeled response
fits the average pavement response obtained from sensor measurements.

Load calculation. Once {α∗i }Ki=1, {σ∗i }Ki=1 and {µ∗i }Ki=1 have been estimated, the pavement
displacement due to each axle can be calculated using Equation (5.7). The individual axle
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Figure 5.8: Top plot shows the raw acceleration signal measured by the reference sensor.
Bottom plot shows the average pavement response am(t) and the fitted response a(t). There
are 3 mexican-hat functions in a(t) (at 0.6, 0.8, and 1.2 s resp.), each corresponding to an
axle group. The response due to the last axle is well isolated from the others but the response
for the first two axles needs to be decoupled.

loads can be estimated using Equation (5.8), where the parameter βi is estimated using the
calibration procedure described below.

Model calibration. In general, βi depends on pavement properties at the site but a set of
pre-weighed trucks can be used to estimate it. Let N be the number of trucks in the training
set, f̂ni be the load (or force) estimate for the ith axle of nth truck, fni be the corresponding
true weight, vn be the speed, Tn be the corresponding pavement temperature, αni be the
corresponding fitted parameter α∗i , and eni be the error associated with the load estimates.
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The optimal βi can be calculated by minimizing the mean squared error for load estimates,

f̂ni = βi
αni
v2
n

τ(Tn), (5.12)

eni = βi
αni
v2
n

τ(Tn)− fni ,

β∗i = arg min
β

1

N

N∑
n=1

(eni )2,

β∗i = arg min
β

N∑
n=1

(β
αni
v2
n

τ(Tn)− fni )2. (5.13)

Equation (5.13) is a standard linear least-squares problem and can be solved for β∗i . Once
β∗i is known, individual axle loads can be estimated using Equation (5.12). The estimate for
total truck weight f̂nT is simply the sum of individual axle loads,

f̂nT =
K∑
i=0

f̂ni . (5.14)

5.4 Results

The results discussed in this section serve two important goals: to verify that the proposed
model fits the data well, and to evaluate the accuracy of wireless WIM.

5.4.1 Model verification

We calibrate the model using all 75 trucks and examine how closely it explains the data.
Figure 5.9(a) compares the axle weights estimated by our system with their true weights.
The estimated loads track the true loads very closely, with a R2 value of 0.99 for the fit.
Figure 5.9(b) shows the estimated probability distribution functions of the corresponding
errors. The means and standard deviations associated with these bell-shaped curves are
summarized in Table 5.1.

Figure 5.10(a) shows the percentage errors of load estimates at different pavement tem-
peratures. The errors are uncorrelated to temperature, implying that compensation factor
τ(T ) captures the effect of pavement temperature well. Figure 5.10(b) shows that the er-
rors are much higher when no temperature compensation is used (i.e. τ(T ) = 1 ∀T ). The
mean errors are negative for low temperatures and positive for high temperatures. Consis-
tent with pavement models, without temperature compensation loads are overestimated at
higher temperatures and underestimated estimated at lower temperatures. This is because
pavement response for any load increases with temperature [50]. The error distributions for
both scenarios are summarized in Table 5.1.
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(a)
(b)

Figure 5.9: (a) Plot shows the estimated weights against the ground truth static weights.
(b) Plot shows the probability distribution of percentage errors in load estimates for each
axle and the entire vehicle.

Table 5.1: Effect of pavement temperature on load estimation. The errors are lower when
data is compensated for temperature variation.

Temperature compensation No compensation

Mean of Std of LTPP Mean of Std of LTPP
errors (%) errors (%) Error errors (%) errors (%) Error

Axle 1 -0.35 5.83 11.98 -0.18 6.41 12.95
Axle 2 -0.68 5.36 11.35 -0.22 6.15 12.49
Axle 3 -0.78 5.67 12.08 -0.41 6.26 12.89
Total -0.63 4.46 9.5 -0.25 5.32 10.85

5.4.2 Wireless WIM accuracy

For the results above, we use the entire dataset for training our system. In general, this
leads to overfitting and overestimation of the predictive power of a model. For a more real-
istic evaluation of the system accuracy, we use the repeated random sub-sampling validation
technique of cross-validation.

We simulate 1000 different training and testing trials. In each trial, we randomly select
25 out of 75 trucks for training our model2 and use the calculated βi’s for estimating truck
weights in the testing set. We then calculate the LTPP errors (eλ) for all 1000 test sets and

2The 16 calibration truck runs from February 14th are always included in the training set and the other
9 trucks (out of 25) are chosen randomly.
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(a)
(b)

Figure 5.10: (a) Plot shows the percentage error in load estimates against pavement tem-
perature when measurements are compensated for temperature variation. (b) Plot shows
the percentage errors when temperature compensation is not applied. Errors increase with
increase in temperature.

report the mean LTPP error (ēλ)as an evaluation metric for system accuracy.

Figure 5.11: Plot shows cumulative distribution for the LTPP errors from the 1000 trials.
Majority of trials pass the LTPP specification for allowed errors.

Table 6.5 contains the mean LTPP error (ēλ) from the 1000 trials and the maximum allowed
errors by the LTPP standard. The mean LTPP error for each case is less than the allowed
error, except for the total weight. We discuss in next chapter how the estimate of total weight
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can be improved to pass the LTPP accuracy standards. Figure 5.11 shows the cumulative
distribution of eλ based on the LTPP errors from the 1000 trials. For individual axles, the
LTPP error is less than the maximum allowed error for majority of the trials.

Table 5.2: Mean LTPP errors for 1000 trials.

Wireless Maximum
WIM error allowed error

Axle 1 13.08 20
Axle 2 14.01 15
Axle 3 13.71 15
Total 11.69 10
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Chapter 6

Load estimation: improvements and
adaptive data compression

In the previous chapter we proposed a pavement-vehicle interaction model and presented a
load estimation procedure based on the model. It was shown that the wireless WIM meets
the LTPP’s specification for individual axle loads but fails to meet the specification for total
truck weight. Moreover, the described procedure does not address the challenges posed by
the limited energy and processing power available to wireless sensors.

The first half of this chapter discusses some improvements in the model and the load esti-
mation procedure to increase the system accuracy. The second half of the chapter discusses
the challenges posed by limited sensor resources and presents an energy efficient-algorithm
for the wireless WIM.

6.1 Improvements in load estimation

In this section, we present some changes to our model and the load estimation procedure
to improve system accuracy. We start by optimizing the dependency of vehicle speed on
pavement response. This leads to a more accurate pavement-vehicle interaction model but a
slightly more complex calibration procedure. We then compare two alternative cost functions
for calculation of β: mean-squared percentage error (MSPE) and the LTPP error (eλ). Next,
we analyze the array-by-array performance of load estimates and discuss how to optimally
combine measurements from different arrays. We derive an analytical solution for optimal
β in Theorem 6.1 and end this section by presenting an alternative procedure for estimating
gross weights.
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6.1.1 Model updates

One of the simplifying assumptions that we made in our model was that the amplitude of
the pavement displacement η is independent of vehicle speed v, see Equation (5.3). How-
ever, there is a weak dependency between η and v as peak displacement decreases with
increasing vehicle speed [16]. We model this dependency as, η(v) = v−θ. Substituting this
in equation (5.3) and following the derivation for a(t) and F , we can obtain the following
equations:

y(t) = Fηv−θe
−t2
2σ2 ,

a(t) = −Fηv
2−θ

σ2
0

(
1− t2

σ2

)
e
−t2
2σ2 ,

α =
Fηv2−θ

σ2
0

=
Fηvρ

σ2
0

, (6.1)

F = β
ατ(T )

vρ
. (6.2)

The updated model has an addition unknown parameter ρ that needs to be calibrated.
However, this parameter can be estimated using a single truck of known or unknown weight.
Equation (6.1) shows that α for each axle increases with speed and follows a power law.
Therefore, repeated runs of the same truck at different speeds can be used to estimate ρ.
For this purpose, we use the 16 runs of the calibration truck1 from February 14th.

Figure 6.1: Effect of speed on measured sensor response.

Figure 6.1 shows the individual axle response α2 plotted against the truck speed. A curve fit
for the power-law is obtained using the data and ρ for Axle 2 is found to be 1.95. Similarly,

1For easier comparisons, we included these trucks in every training set of the 1000 trials used to bench-
mark system accuracy in the last chapter.
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ρ for Axle 1 and 3 were found to be 1.92 and 1.94 respectively. To estimate the LTPP
error after this change in model, we follow the same procedure of 1000 cross-validation trials
described in the last chapter. We estimate the optimal β by minimizing the MSE for the
training set and use it to estimate the loads in each test set. Table 6.1 compares the mean
LTPP errors (ēλ) for the updated model with the previous model. The errors decrease by at
least 1.6% for individual axles and 2% for the gross-weight. The resulting errors now pass
the LTPP specification.

Table 6.1: Effect of speed compensation on system accuracy (LTPP error). ρ is calculated
for each axle using multiple runs of a calibration truck at different speeds.

v2 v2−ρ

Axle 1 13.08 11.06
Axle 2 14.01 12.37
Axle 3 13.71 12.08
Total 11.69 9.74

6.1.2 Cost function for β calibration

Our system performance is based on percentage error in weights and not the error in tons,
whereas we find the optimal β by minimizing the MSE for load estimates in tons. In this
section, we change the cost function c(β) to the MSPE and the LTPP error. We drop the
index i for each axle but the following discussion is applicable to all axles.

MSPE as the cost function. Let n denote the truck number, αn be the estimated
parameter for some axle of the nth truck. We can write the error en for this axle as a fraction
of its true load fn,

en =
f̂n − fn
fn

,

en = β
αnτ(Tn)

vρnfn
− 1 = βγn − 1. (6.3)

The optimal β can be found by minimizing the mean-squared percentage error over the
training set of N trucks,

β∗ = arg min
β

N∑
n=1

(βγn − 1)2. (6.4)

Equation (6.4) is a standard linear least-squares problem with known γn and can be solved
for β∗. Using the new cost function we repeated the cross-validation procedure and Table 6.2
shows the resulting mean LTPP errors. The errors reduced for Axle 2 and the gross weight,
stayed the same for Axle 1, and increased for Axle 3.
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Table 6.2: Effect of cost function c(β) on system accuracy. The mean LTPP errors are lowest
when the LTPP error eλ(β) is minimized for calibration.

MSE MSPE LTPP
Axle 1 11.06 11.07 10.84
Axle 2 12.37 12.13 12.01
Axle 3 12.08 12.22 12.22
Total 9.74 9.64 9.48

LTPP error (eλ) as the cost function. Since we specify system accuracy using LTPP
errors, the most appropriate cost function for calibration is the LTPP function itself. Let
ē = 1

N

∑N
n=1 en be the mean error for the training set, then we can find the optimal β∗ as:

β∗ = arg min
β

(
|ē(β)|+ tN−1σ̂e(β)

)
,

= arg min
β

∣∣∣∣ 1

N

N∑
n=1

en(β)

∣∣∣∣+ tN−1

√√√√ 1

N − 1

N∑
n=1

(en(β)− ē(β))2

 ,

= arg min
β

∣∣∣∣βγ̄ − 1

∣∣∣∣+
tN−1√
N − 1

√√√√ N∑
n=1

(β(γn − γ̄))2

 . (6.5)

The above optimization problem can be solved using numerical convex-optimization tech-
niques or we can use the analytical solution provided in Corollary 6.1. Using the new
estimates of β∗, we calculate the mean LTPP errors using crossvalidation. Table 6.2 com-
pares the errors for the three cost functions. Except for Axle 3, lowest errors are obtained
when LTPP error is used as the cost function. Since error in gross weights is closest to its
maximum allowed error, the cost function that minimizes the errors in gross weight is chosen
i.e. c(β) = eλ(β).

6.1.3 Array-by-array analysis

The suspension oscillations due to road roughness cause the applied load to be different from
static load when the truck reaches each sensor array. We average the measurements from
all arrays to reduce the effect of dynamic load on load estimates. We now analyze how the
system accuracy depends on the number of arrays and then discuss how measurements from
different arrays can be optimally combined to improve the accuracy.

Effect of dynamic load. Let FI(t) be the instantaneous force applied by a truck axle and
F be its static load. The difference between the two (FD(t) = FI(t)-F ), called dynamic load,
is typically within 30% of F [16] and can lead to high errors in load estimates. In commercial
WIM systems, this challenge is overcome by installing a smooth concrete pavement around
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the force sensor to minimize the suspension oscillations. However, this dramatically increases
the cost of the WIM system. An alternative to reduce weight errors is described in [11], where
measurements from multiple force sensors on existing pavement are averaged to estimate the
static load. Based on this concept, we use multiple vibration sensor arrays (setup shown in
Figure 3.8(a)) to reduce the effect of dynamic load. Each array essentially measures the static
load with some uncertainty and by averaging multiple measurements we reduce the amount
of uncertainty in our load estimate. Figure 6.2(a) shows that the LTPP error decreases as
the number of arrays are increased. Thus, adding more sensor arrays to the wireless WIM
can potentially increase its accuracy.

(a)
(b)

Figure 6.2: (a) Plot shows that errors in load estimates decrease as the number of arrays
increase. (b) Percentage error in array-wise load estimates for Axle 2. The dotted lines
represent the mean error for each array.

Optimal scaling coefficients for each array. So far the measurements from different
arrays were combined using equal scaling coefficients. In this section we allow them to vary
for each array and analyze how the system accuracy changes.

Using the procedure described in Section 5.3, we align and average sensor measurements
from each array to obtain the average array response. We then extract the individual axle
response and estimate the weights from each array using the previously estimated β. Fig-
ure 6.2(b) shows a different mean error (or bias) for estimates from different arrays. The
bias suggests that each array should have its own unique β. For instance, Array 4 has a
positive bias which suggests that a smaller β should be used for this array.

We drop the index for axle number in the following discussion but the discussion is relevant
for all axles. Let N be the total number of trucks in the training set, M be the total number
of arrays, β = [β1 β2 ... βM ]> be the vector representing the unknown scaling coefficients
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or calibration factors for each array, αni be an individual axle response for the nth truck
obtained from the ith sensor array, fn be the true load for some axle of the nth truck, f̂n be
our corresponding estimate, vn be the speed, Tn be corresponding pavement temperature,
then we can write the load estimates and the corresponding errors as

f̂n =
M∑
i=1

βi
τ(Tn)αni

vρn
,

en =
f̂n − fn
fn

=
f̂n
fn
− 1 =

M∑
i=1

βi
τ(Tn)αni
vρnfn

− 1 =
M∑
i=1

βiγni − 1, (6.6)

where γni = τ(Tn)αni
vρnfn

. The cost function or LTPP error eλ can be written as

c(β) =

∣∣∣∣ 1

N

N∑
n=1

en

∣∣∣∣+ tN−1

√√√√ 1

N − 1

N∑
n=1

(en − ē)2,

=

∣∣∣∣ M∑
i=1

βiγ̄i − 1

∣∣∣∣+
tN−1√
N − 1

√√√√ N∑
n=1

(
M∑
i=1

βi(γni − γ̄i))2,

=

∣∣∣∣ M∑
i=1

βiγ̄i − 1

∣∣∣∣+
tN−1√
N − 1

√√√√ N∑
n=1

( M∑
i=1

βiδni
)2
,

=

∣∣∣∣β>γ̄ − 1

∣∣∣∣+
tN−1√
N − 1

√
β>δ>δβ,

where δ =
[
δni
]
, δni = γni − γ̄i, γ̄i = 1

N

∑N
n=1 γni, and γ̄ = [γ̄1 γ̄2 ... γ̄M ]>. The calibration

parameters minimize the above cost function, i.e. β∗ = arg min c(β). This convex optimiza-
tion problem can be solved numerically using standard techniques such as the Gauss-Newton
algorithm. Table 6.3 compares the mean LTPP errors for the single-β case with the multi-β
case. Contrary to our expectations, the errors are higher for the multi-β case but we also
observed high variability in the estimated calibration parameters. Figure 6.3(a) shows the
estimated β for Axle 3 in each of the 1000 trials. The plot shows the non-robustness of
the estimated parameters to changes in the training set. To investigate the source of this
non-robustness, we now derive an analytical solution for β∗.

Theorem 6.1. Let β = [β1 β2 ... βM ]> be the M unknown calibration factors and the optimal
β∗ minimize the cost function c(β) i.e.

β∗ = arg min
β

{∣∣∣∣β>γ̄ − 1

∣∣∣∣+
tN−1√
N − 1

√
β>δ>δβ

}
. (6.7)
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Table 6.3: Change in system accuracy after using optimal β’s for each array.

Single β Multiple β’s Multiple β’s
(no regularization) (regularization)

Axle 1 10.84 11.2 11.77
Axle 2 12.01 11.87 11.81
Axle 3 12.22 13.04 12.32
Gross 9.48 9.64 9.45

(a) (b)

Figure 6.3: Robustness of estimated β’s. (a) No regularization is used. (b) Tikhonov regu-
larization is used.

The solution for this convex optimization problem is given by

β∗ =


(δ>δ)

−1
γ̄

γ̄>(δ>δ)−1γ̄
, if

√
γ̄>(δ>δ)−1γ̄ > tN−1√

N−1
,

0, if
√
γ̄>(δ>δ)−1γ̄ < tN−1√

N−1
.

(6.8)

Proof. We start by assuming that the solution lies on some plane β∗>γ̄ = 1 + ε, where
ε ∈ <. Since ε can take on any real value, this plane covers the entire M -dimensional
space as ε is varied. We will show that the ε = 0 for the non-trivial solution which implies
that the optimal solution causes the mean error for the N training samples to be zero, see
Equation (6.6).
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We can now rewrite the optimization problem as,

β∗(ε) = arg min
β|β>γ̄=1+ε

{
|ε|+ tN−1√

N − 1

√
β>δ>δβ

}
,

= arg min
β|β>γ̄=1+ε

β>δ>δβ.

We can now use Lagrange multipliers to solve the problem. The Lagrangian can be written
as

Λ(β, λ) = β>δ>δβ + λ(β>γ̄ − 1− ε).

The critical points can be found as

∂Λ

∂β
= 0 ⇒ 2δ>δβ + λγ̄ = 0,

∂Λ

∂λ
= 0 ⇒ β>γ̄ − 1− ε = 0.

Solving the linear equations leads to

λ =
2(1 + ε)

γ̄>(δ>δ)−1γ̄
,

β∗(ε) =
(δ>δ)

−1
γ̄

γ̄>(δ>δ)−1γ̄
(1 + ε). (6.9)

The corresponding minimum cost is given by

c(β∗, ε) = |ε|+ tN−1√
N − 1

|1 + ε|
γ̄>(δ>δ)−1γ̄

,

= |ε|+ cN |1 + ε|.

This cost is minimized at either ε = 0 or ε = −1, depending on whether cN < 1 or cN > 1.
Substituting the two possible values for ε in equation (6.9) leads to the solution given by the
theorem. �

It should be noted that when ε = −1 the cost function c(β∗) = 1 i.e. the LTPP error is
100%. The optimal solution in this case is trivial i.e. β∗ = 0. This solution was not observed
in any training/testing trials since our measurements are highly correlated to axle loads.

Corollary 6.1. If β is a scalar, then the optimal solution for the corresponding cost function
(equation (6.5)) is given by

β =
1

γ̄
.
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Proof. For the single-β case, γ̄ is a scalar and so is δ>δ. Therefore, the result follows from
Theorem 6.1. �

The analytical solution provides more insight into the non-robustness of the estimated
parameters. Observation of the various terms in the expression for different training sets
revealed that the slight variation in γ̄ in each training set is magnified because the matrix
δ>δ is not well-conditioned. Tikhonov regularization [59] of this matrix results in more
robust estimates of β as shown in Figure 6.3(b).

Table 6.3 compares the mean LTPP errors found for the three scenarios: (i) single-β case, (ii)
multi-β case without regularization, and (iii) multi-β case with the matrix δ>δ regularized
using Tikhonov regularization. It is clear that regularization helped in reducing errors for
the multi-β case. However, compared to the single-β case the improvements are insignificant,
if any. The increased complexity in the model lead to lower errors in training sets but the
predictive power of the model, based on the errors in test sets, is practically unchanged.
Thus, a single-β for all arrays is preferred over the multi-β case.

6.1.4 Separate regression for gross weight

Until now the estimate of gross weight was simply the sum of individual axle weights. We
now consider a separate model for the gross-weight estimates and calibrate this model by
minimizing the LTPP error. Let the gross weight estimate for a truck be modeled as

f̂T =
K∑
i=1

βT i
αiτ(T )

vρi
, (6.10)

where αi is the decoupled response for the ith axle and βT i is the corresponding scaling
coefficient. The calibration factors (βT i) can be estimated by minimizing the LTPP error for
gross weights over the training set. Theorem 6.1 can also be used for estimating βT i. The
only difference is that index i represented measurements from different arrays and now it
represents the measurements for different axles. We repeated the 1000 cross-validation trials
and found the mean LTPP error for gross weights to be 11.88% using this new model. Thus,
there is no improvement from doing a separate regression for gross weights.

Remark 6.1. Based on our discussion in this section, the following steps lead to the best
load estimates:

1. Individual axle response αi for the ith axle is extracted from the average pavement
response.

2. Calibration parameter ρ is estimated using multiple runs of the same truck at different
speeds.

3. Calibration of a single β is done by minimizing the LTPP error for the training set.
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4. Individual axle loads are calculated using Equation (6.2).

5. The gross weight is estimated as the sum of individual axle weights.

6.2 Energy-efficient algorithm for load estimation

The load estimation procedure described so far is very inefficient for a resource constrained
wireless sensor network. All raw data is transmitted by the sensors; however, wireless data
transmission is the most power consuming process and the amount of data transmitted
should be minimized. This section discusses how adaptive rate sampling and the distribution
of computation between the access point and sensors can lead to increased sensor lifetime
while only minimally affecting the system accuracy. The algorithm presented in this section
was tested using offline processing of collected data. Actual implementation of this algorithm
in the wireless sensor network needs to be tested.

One possible approach to compress data is to implement the curve-fitting procedure in-
side the wireless sensor and transmit just the fitted parameters. However, there are many
drawbacks to this approach:

• It is not clear if the computationally intensive procedure can be implemented in a
wireless sensor with limited processing power.

• The curve-fitting procedure is performed using acceleration for the entire truck but
the vibration sensors do not know the time window for the truck’s presence. This
information can be transmitted by the AP but the delay through the network is too long
and the limited sensor memory is not enough to store the data until the information
is received.

• The parameters for curve-fitting are initialized based on tire-on-top sensor data and
speed of the vehicle, both of which are unknown at sensor level. Without good initial
parameters, the non-convex optimization problem can converge to a local minima and
lead to inaccurate estimates of individual axle response.

An alternative to the above approach is to perform the curve-fitting procedure at the AP
level but reduce the sensor data required for the fitting procedure. The vibration sensor
consumes an average current of 370 µA without the radio transmissions and the required
current consumption for a 2 year lifetime (using a single battery) is 410 µA. Assuming that
an axle arrives about every 4.5 seconds (based on Caltrans data) and the required average
current consumption to be 410 µA, we estimated a data budget of L0=72 samples/axle for
the vibration sensor. Equivalently, the duty cycle of the radio needs to be less than 0.2%.
The goal now is to figure out which L (≤ L0) samples should be chosen for each axle and
we discuss this problem below in the context of an isolated axle.



73

6.2.1 Adaptive sampling

The filtered acceleration corresponding to each axle (axle pulse) can be modeled as a Mexican-
hat function in the presence of additive random noise, i.e.

m(n) = −α
(

1− n2

σ2

)
e
−n2
2σ2 + ε(n).

The amplitude α is linearly proportional to axle load, σ is inversely proportional to axle
speed, and the time of axle arrival µ is assumed to be zero. The vibration sensor sees a
continuous stream of acceleration data that may or may not contain an axle pulse, depending
on whether an axle drives over the system or not. When we send out all raw data (no
redundant packets), the duty cycle for the radio is 3.2% and the average current consumption
is 1.01 mA, both of which exceed our budget. The expected lifetime, based on a single 7200
mA battery, is slightly less than 10 months.

To reduce the amount of data transmitted, sensors should report data only when a loaded
axle is detected. To detect an axle the vibration sensor can filter measured data and look for
any negative peaks that have a magnitude greater than a chosen threshold. Alternatively, the
axle detection algorithm presented in Section 4.1.2 can be adapted: M(v) can be calculated
based on the average traffic speed received periodically from the AP. The time period during
which the axle pulse is“dominant” is called the pulse span (PS) and only the measurements
that lie in this span should be transmitted. For the m(n) above, we define the PS to be
[-3σ,+3σ] as majority of the pulse energy belongs to this span. This change alone drastically
reduces the amount of data being transmitted by the sensor. The conventional WIM at
Pinole reports that our sensor lane, on average, receives a new axle after every 4.5 seconds.
If we transmit just the pulse data from the time-series of measurements, we effectively reduce
the duty cycle for the radio to 0.36%. The corresponding average current consumption is
0.441 mA with an expected sensor lifetime of 1.86 years or 22 months.

To further reduce the data transmitted, we now subsample the axle pulse such that the
reconstructed signal is minimally affected. Since peak acceleration is very important for
load estimation, we always retain the time and the magnitude of each axle peak. Also,
Observation 5.3 and the term Φ(vt) in our model suggest that the frequency bandwidth
of each axle pulse is directly proportional to the axle speed and inversely proportional to
the pulse span (PS). This presents an opportunity to adapt the sampling rate depending on
vehicle speed (or equivalently the pulse span) i.e. sample slower for slower vehicles and faster
for faster vehicles. To calculate the PS, we use an important feature of the measured signal:
the zero-crossings around each axle peak. It should be noted that the zero crossings of the
noise-free function m(n) are at n=±σ and an estimate of the zero crossings of the measured
signal can be found by setting m(n)=0. Let tz+, tz− be the time of the positive and negative
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zero-crossings, we can calculate the PS as

PS = [+3σ,−3σ] =

[
+

3

2
.2σ,−3

2
.2σ

]
,

≈
[

+
3

2
.2̂σ,−3

2
.2̂σ

]
=

[
+

3

2
|tz+ − tz−|,−

3

2
|tz+ − tz−|

]
.

We now select L points around each axle peak with the peak being the central sample and
with a sampling interval of

∆TL =
3|tz+ − tz−|
L− 1

. (6.11)

To check the proposed procedure we simulated different functions m(n) using Gaussian ran-
dom noise, and adaptively sampled and reconstructed the underlying signals. The proposed
adaptive sampling worked well at even a low sampling rate of 9 samples/axle. Figure 6.4(a)
shows an example of the chosen samples and the curve-fit obtained using these samples.

(a) (b)

Figure 6.4: Adaptive sampling (a) Simulated signal to demonstrate the adaptive sampling
for a isolated axle (b) Example fit for a class-9 truck.

For the multi-axle case, we independently sample around each axle peak and use the samples
corresponding to the entire truck to perform the curve fitting described in Section 5.3.
Figure 6.4(b) shows an example of a class-9 truck. It should be noted that we cannot just
use the peaks of the measured response for load estimation because the response of the first
two axles is strongly coupled. The signal between the peaks of two strongly coupled axles
is of high importance for extracting the individual axle response accurately. The adaptive
sampling procedure automatically chooses more points in the overlapping region if the axles
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are closer. We now present the load estimation algorithm at both the sensor level and the
AP level.

6.2.2 Sensor-level algorithm

Figure 6.5: Algorithm followed by non-tire-on-top vibration sensors.

Figure 6.5 shows the block diagram of the sensor-level algorithm. If measured acceleration
suggests that a truck’s tire is directly on top of the sensor, the tire-on-top axle detection data
is transmitted (see Section 4.2.2). For a non-tire-on-top sensor, the measured acceleration is
filtered and adaptively chosen samples around each axle peak are transmitted over the air.

Raw acceleration signal is first filtered using the same cascade of moving average filters as
before but M(v) is calculated using average traffic speed that can be sent by the AP every 30
seconds. The negative peaks in the filtered signals are detected while enforcing the minimum
threshold and minimum time separation constraint similar to the axle detection algorithm
in Chapter 4. To choose the L samples, sampling period based on the zero crossings around
each peak is calculated using Equation (6.11). Instead of reporting the time corresponding
to each sample, we only report the time of the axle peak and the sampling period. Since the
signal is sampled relative to the axle peak, the AP can calculate the times corresponding to
each sample. Therefore, each sensor transmits L acceleration samples, peak time, and the
sampling period ∆TL for each detected axle.

6.2.3 AP-level algorithm

Figure 6.6 shows the block diagram for the algorithm followed by the access point. Using
the detection sensor data and the tire-on-top axle data, the AP calculates the truck speed,
time window of the truck for each sensor, and the timestamps of each axle as described in
previous chapters. The AP then performs the curve-fitting for each sensor using the reported
samples during the trucks’s time window. An example is shown in Figure 6.4(b). The initial
points are guessed using the axle times, truck speed, and the measured peak acceleration as
described before. If a false peak is detected by the sensor, the corresponding data is ignored
by the AP since the same axle will not be detected using tire-on-top sensor data.
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Figure 6.6: Algorithm followed by the access point.

The fitted parameter αi is averaged across all non-tire-on-top sensors to obtain the mean
response ᾱ for each axle. The AP then calculates individual axle weights and the gross
weight by following steps 2-5 in Remark 6.1.

6.2.4 Results

We now present the results obtained by applying the above algorithms on the raw acceleration
data. In effect, this helps us simulate any degradation in system performance from the data
compression. We end this section by estimating the lifetime of a sensor using the above
described algorithm.

Load estimation after adaptive sampling

Using the previously described cross-validation procedure, we evaluated the accuracy of load
estimates using the compressed data. Table 6.4 lists the mean LTPP error for the individual
axles and gross weight using L = 9 samples/axle. For comparison, we provide the results
from Section 6.1.2 where raw signals from all sensors are averaged first and the entire time-
series of the average pavement response is used for curve-fitting. Comparing the first two
columns, we see that the errors in load estimates increase significantly for Axle 1 and the
total weight.

To find the cause of error increase, we analyze the change in estimated α’s after compres-
sion. Figure 6.7(a) shows the percentage change in α’s relative to the ones obtained using
uncompressed data. It is clear that Axle 1 of the 4 calibration runs at lowest speed is affected
significantly by data compression. These runs have the lowest signal-noise-ratio because of
low speeds (15 mph). Since these 4 trucks are always used in the training set, we can use
all the raw data for curve-fitting. All the other trucks, including the other calibration runs,
use L=9 for each axle. The last column of Table 6.4 shows that the corresponding errors
pass the LTPP specification for each axle and the gross weight. Compared to the case of
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Table 6.4: Effect of data compression on system accuracy.

Before compression After Compression
L=9 L=9, except for

calibration runs
Axle 1 10.84 15.05 10.93
Axle 2 12.01 12.32 11.79
Axle 3 12.22 12.03 11.84
Total 9.48 10.41 9.1

uncompressed data, the errors are slightly higher for Axle 1 but lower for the other axles
and the gross weight.

Figure 6.7(b) shows the cumulative distribution for the LTPP errors for 1000 cross-validation
trials. The wireless WIM errors for individual axles are below the LTPP allowed errors in
every trial. The errors in gross weight are below the allowed limit for 95% of the trials.

(a) (b)

Figure 6.7: (a) Effect of data compression on load estimates. (b) Cumulative distribution of
LTPP errors for 1000 random test sets.

For real deployments, there are two options to consider for low speed trucks. The first
option is to specify a lower bound on speed for the wireless WIM. This is an acceptable
solution since majority of the time truck speeds are higher than 15-20 mph on highways.
The other option is to sample more points for lower speed trucks i.e. if the pulse span is
greater than a threshold, sample more points per axle. However, it is important to realize
that there is a more fundamental lower bound on speed because of the physics of pavement-
vehicle interaction. A static truck causes no pavement vibrations and vibrations caused at
very low speeds are below the noise floor of the sensor to be measured accurately.
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Comparison with the conventional WIM

We now provide a one-on-one comparison of wireless WIM with the nearby WIM station.
Due to technical difficulties, weights from this station were not available for one of our
testing days (May 29, 2012). This leads to a reduced dataset for comparison, containing 59
truck runs, where 16 runs correspond to the a single calibration truck and remaining 43 runs
correspond to random trucks that were stopped and individually weighed. While the weights
reported for the calibration truck had low errors, the overall accuracy of the conventional
WIM was below expectations. Table 6.5 compares the accuracy of both systems. The wireless
WIM clearly outperforms the conventional WIM in every category. The conventional WIM
meets the required LTPP accuracy levels for Axle 1 and 2 but fails for Axle 3 and the gross
weight.

Table 6.5: Comparison of mean LTPP errors between our system and the nearby conventional
WIM. The errors for the conventional WIM are much higher than the errors allowed by the
LTPP standard.

Wireless Conventional Maximum
WIM error WIM error allowed error

Axle 1 10.93 10.96 20
Axle 2 11.79 14.53 15
Axle 3 11.84 24.65 15
Total 9.1 13.13 10

Estimated sensor lifetime

The conventional WIM station reports that an axle arrives at the sensors about every 4.5
seconds. Based on the time it takes to transmit a payload of 48 bytes, we calculate that
duty cycle for the radio to be (L+ 1)/720 % if we send out L samples per axle. For a more
conservative estimate and to account for future increase in freight traffic, we use a larger
duty cycle of (L+1)/72 %. For L=9, the duty cycle is 0.139% and the expected current
consumption can be calculated as

Iavg = 20 mA× 0.00139 + 0.37 mA× (1− .00139) = 397µA.

Using a single 7200 mA battery, the sensor lifetime is slightly over 2 years. While this does
not achieve our target lifetime of 4 years, we have alternatives of achieving that. We can use
two batteries to double the lifetime; this will increase the sensor cost slightly and increase
the sensor size. The other alternative is to use a lower current consuming accelerometer;
the current consumption of the current MEMS accelerometer is about 300 µA by itself.
While not available at the time of our sensor design, newer acceleromters are available in
the market today that have similar noise density to our current sensor but lower current
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consumption. In fact, the manufacturer of the current MEMS accelerometer (Colibrys) now
has a lower current consuming alternative that can be easily added to the current circuit
board. According to the datasheet, the current consumption of the newer accelerometer,
Colibrys MS7002, is half of the the current accelerometer [23].
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Chapter 7

Displacement Estimation

The loads reported by a WIM station are used to asses pavement condition and predict
its remaining lifetime. This analysis helps a pavement design engineer to schedule timely
repairs and reduce the maintenance cost. However, using cumulative information about
applied loads and approximate pavement deterioration models is an indirect way to assess
pavement condition [1, chap. 5]. A more direct approach is measure the pavement deflection
for each applied load. In fact, the same principle is used in popular non-destructive testing
methods such as the FWD and HVS. Calibrated loads are applied to the pavement and
the measured deflection is used to backcalculate pavement stiffness using layered-elastic
theory [44, 60]. Stiffness is a measure of strength of the pavement and can be combined with
pavement roughness and cracking information to make decisions regarding road maintenance
and rehabilitation.

The vibration sensors measure pavement acceleration and estimating displacement from
noisy acceleration data is a challenging problem in itself. In this chapter, we present and
compare three algorithms for displacement estimation. To check the accuracy of the esti-
mates, we compare them with reference sensor data obtained during the FWD and HVS
experiments. The details for the experiments are provided in Sections 3.1.1 and 3.2.1.

7.1 Algorithms for displacement estimation

We present and compare three different displacement estimation algorithms in this section.
The goal is to develop and test algorithms for two potential applications:

• Controlled experiments. The FWD and HVS experiments fall under this category.
The user can control conditions like the time, type, and magnitude of the applied loads.

• Smart pavement monitoring system. This is a futuristic application where pave-
ments are monitored in real-time and preventative repair is scheduled before the ap-
pearance of any significant pavement damage. The pavement displacement correspond-
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ing to each passing vehicle is measured and combined with weight information to assess
pavement condition on a regular basis.

7.1.1 Algorithm 1: Double-integration

This algorithm is based on the fundamental relationship between acceleration and displace-
ment. Pavement velocity v(t) and displacement y(t) can be written in terms of acceleration
a(t),

v(t) = v(0) +

∫ t

0

a(τ)dτ,

y(t) = y(0) + v(0)t+

∫ t

0

∫ ξ

0

a(τ)dτdξ,

where v(0), y(0) depend on the initial condition of the pavement and can be set to zero
if the pavement was at rest. However, simple double integration of measured acceleration
leads to unexpected drifts in estimated displacement. The integration operation dispropor-
tionately amplifies the measurement errors at low frequencies leading to a significant drift
in displacement. Figure 7.1(a) shows a simulated acceleration signal and a signal obtained
by adding random Gaussian noise to it. Figure 7.1(b) shows the displacement estimated by
double-integration. The estimate contradicts the physical principles since pavement returns
to rest after the load has passed but the estimated final displacement is ≈ 50 µm and not
zero. To compensate for the drift, a popular method in literature is to estimate the drift
by fitting a polynomial and subtracting it from the double-integrated signal [8, 29] but we
follow a slightly simpler method in Algorithm 2.

7.1.2 Algorithm 2: constrained least-squares estimation

This algorithm discretizes the relationship between acceleration and displacement, and cal-
culates displacement using constrained least-squares estimation. The sampled acceleration
a(n) can be written in terms of pavement velocity v(n) and displacement y(n) as

v(n) =
y(n)− y(n− 1)

T
, (7.1)

a(n) =
v(n)− v(n− 1)

T
=
y(n)− 2y(n− 1) + y(n− 2)

T 2
. (7.2)

Rewriting in matrix form,

a︷ ︸︸ ︷
a(n)

a(n− 1)
...

a(0)

 =

M︷ ︸︸ ︷
1

T 2


1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

...
0 0 0 0 · · · 1


y︷ ︸︸ ︷

y(n)
y(n− 1)

...
y(0)

 . (7.3)
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(a)
(b)

Figure 7.1: Displacement estimation using the three algorithms. (a) Simulated acceleration
measurements. Acceleration estimated by fitting a Ricker wavelet to noise-corrupted mea-
surements is almost identical to the actual acceleration. (b) The estimated displacement
using the three algorithms.

We can now solve for y by minimizing the mean-squared error between a and the measure-
ments am while enforcing the initial and final conditions on the pavement state i.e.

y∗ = arg min
y|Cy=d

‖a− am‖2,

= arg min
y|Cy=d

‖My − am‖2 (7.4)

This is a least squares problem with linear equality constraints and can be solved using
Lagrange multipliers or using standard numerical routines such as lsqlin in MATLAB. The
initial and final conditions in our case can be set to zero by assuming that pavement is at
rest before and after the load is applied. Let the rest period be defined using k samples at
the beginning and m samples at the end i.e.

C =

[
Ik×k 0k×(n+1−k)

0m×(n+1−m) Im×m

]
,

d = [0 0 . . . 0︸ ︷︷ ︸
k+m

]>.
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Figure 7.2: Effect of imposed constraints on displacement estimates.

Figure 7.1(b) shows that the displacement estimated using constrained least-squares is more
accurate than the one estimated using double integration. Figure 7.2 shows the estimated
displacement for different values of k and for convenience we chose m = k. The estimates
change drastically as k is increased from 0 to 2 but increasing k further does not cause any
significant change in the estimate. This can be explained using Equations (7.1) and (7.2). As
we increase k from 0 to 3, we progressively add important constraints for pavement’s “rest”
state. For k = 1, the only final condition imposed is y(N) = 0 but for k = 3, in addition
to the constraints on y(N), y(N − 1), y(N − 2), we also indirectly impose the following
constraints on pavement speed and acceleration,

v(N) =
y(N)− y(N − 1)

T
= 0,

v(N − 1) =
y(N − 1)− y(N − 2)

T
= 0,

a(N) =
y(N)− 2y(N − 1) + y(N − 2)

T 2
= 0.

As we increase k beyond 3, we effectively impose the above constraints at the edges of a
smaller time-window (by 2×[k − 3]) samples) and estimated displacement does not change
significantly as long as the pavement starts and ends at rest during the new time-window.
This algorithm is more robust to measurement errors than double-integration; however, re-
sults can be inaccurate if majority of the samples in the new time-window correspond to
the pavement at rest. Figure 7.3(a) shows the time-windows for different values of k and
Figure 7.3(b) shows the corresponding displacement estimates. Since the displacement esti-
mates are much worse for larger time-windows, the smaller time-window spanning the signal
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of interest must be chosen. We can estimate this window by thresholding the measured
energy in the signal or by using features like zero-crossings of the measured signal (see Sec-
tion 6.2.1). Alternatively, a user input can be provided to select the time-window, especially
in case of controlled experiments.

(a) (b)

Figure 7.3: Effect of time-window choice on displacement estimates. (a) Simulated acceler-
ation measurements. The dotted-lines of matching color represent the time-windows chosen
for displacement estimation. (b) The estimated displacement corresponding to each time-
window. The smallest window that encompasses the loading event leads to the best estimate.

7.1.3 Algorithm 3: model-based estimation

This algorithm is motivated from our pavement-vehicle interaction model in Section 5.2. This
algorithm is most suitable when the measured response can be represented using a family of
functions f(κ, t) paramterized by κ. The appropriate family of functions can be chosen based
on experimental observations or based on some underlying model for pavement response.
The previous two algorithms estimate the pavement displacement directly from the noise-
corrupted measured acceleration. This algorithm de-noises the acceleration measurements
am(t) first and then calculates the displacement d(t) by integrating clean acceleration a(t)
twice. Let am(t) = a(t)+ε(t) = f(κ, t)+ε(t), where ε(t) is the measurement error or noise at
time t and κ is vector of unknown model parameters. The acceleration a(t) can be estimated
as follows,
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κ∗ = arg min
κ
‖am(t)− f(κ, t)‖2, (7.5)

a(t) = f(κ∗, t), (7.6)

y(t) = y(0) +

∫ t

0

∫ ξ

0

f(κ∗, τ)dτdξ.

Assuming that the pavement was at rest at t = 0 i.e. y(0) = 0, we have

y(t) =

∫ t

0

∫ ξ

0

f(κ∗, τ)dτdξ. (7.7)

Figure 7.1 compares the estimated displacement for the three algorithms. The estimate using
Algorithm 3 is the most accurate but this was partly because we used the correct function
family to model pavement acceleration. We chose f(κ, t) to be the family of Ricker wavelets
(Mexican-hat functions) with the same three parameters used in Chapter 6. Algorithm 3
is also the least sensitive to the chosen time-window and can decouple the response for
successive axle loads as explain in previous chapters.

7.2 Experimental results

We report the results for three different types of applied loads: the FWD, the HVS, and real
truck axles.

7.2.1 FWD tests

Loads are repeatedly applied at different locations relative to the sensor. The measured
acceleration for different loads is shown in Figure 7.4 and also shown are the displacements
estimated by Algorithm 1 and 2. As expected, Algorithm 1 suffers from low-frequency drift
and is outperformed by Algorithm 2.

Figure 7.5(a) compares the estimated displacements with surface displacements measured
by the FWD geophones. The estimates are highly correlated (ρ = 0.998) with the reference
measurements. Figure 7.5(b) shows the peak estimated displacement at different locations
relative to the applied load. As expected, the measured response decreases exponentially
when the distance between the sensor and the load increases.

7.2.2 HVS tests

The heavy vehicle simulator was used to apply different loads to the pavement at a speed
of 5.41 mph. Figure 7.6 shows the average pavement acceleration obtained by averaging
20 repetitions of the same load and also shown are the pavement displacements estimated
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(a) (b) (c)

Figure 7.4: Comparison of displacement estimates for FWD tests. Loads of 25 kN, 45 kN
and 80 kN are applied to the pavement and repeated 3 times each. (a) Measured pavement
acceleration. (b) Displacement estimated using Algorithm 1. (c) Displacement estimated by
Algorithm 2.

(a) (b)

Figure 7.5: Estimated peak displacement for FWD tests (a) The estimated peak displacement
is highly correlated to the surface displacement measured by FWD geophones. (b) The peak
displacement decreases as the distance between the sensor and the load increases.

using Algorithm 2. The shape of the response is very similar for different loads and the peak
displacement is larger for heavier loads as expected.

Figure 7.7(a) compares the displacement estimates with surface displacement measurements
from a reference LVDT sensor and there is high correlation (ρ = 0.99) between the two. It
should be noted that displacement measured by the vibration sensor is expected to be smaller
than the surface deflection since the sensor is embedded inside the pavement. Consistent
with pavement models, the estimated displacement is shown to be linearly proportional to
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applied load in Figure 7.7(b).

(a) (b)

Figure 7.6: Displacement estimates for HVS tests. (a) The average pavement acceleration
obtained from averaging measurements for 20 HVS runs at each load level. (b) Estimated
pavement displacement for each load.

(a)
(b)

Figure 7.7: Verification of displacement estimates for HVS tests. (a) Comparison of esti-
mated peak displacement with the surface displacement measured by a LVDT sensor. (b)
Estimated pavement displacement increases linearly with applied force.
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7.2.3 Real truck loads on highways

We follow the same model described for load estimation and assume that

τ = [α µ σ]>,

f(α, µ, σ, t) = α

[
1− (t− µ)2

σ2

]
e−

(t−µ)2

2σ2 .

The Ricker wavelet f(α, µ σ, t) models the acceleration corresponding to each axle and the
response due to entire truck is the sum of individual axle responses. The model parameters
can be estimated using the curve-fitting procedure described in Section 5.3. The pavement
displacement can then be estimated using Equation (7.7) of Algorithm 3.

Figure 7.8 compares the estimated displacement for a two-axle truck using Algorithm 2 and
3. The shape of the estimated displacements is similar but the peaks corresponding to the
second axle differ by ≈ 15%.

Figure 7.8: Comparison of estimated displacement for a two-axle truck using Algorithm 2
and 3.

7.3 Discussion

Algorithm 2 does not require any prior knowledge about the measured pavement response
and is therefore more suitable for researching new pavement materials and structures. This
algorithm is less robust to measurement noise but errors can be minimized by carefully
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choosing the time-window for considered measurements. Thus, it is ideal for experiments
where the time, speed, and magnitude of applied loads are controlled and monitored.

Algorithm 3 assumes a model for pavement response and error in estimated displacement
can be high if the model is inaccurate. However, a more accurate model can be developed
by using estimates from Algorithm 2. A major advantage of using Algorithm 3 is that the
displacement estimates do not suffer from low frequency drifts as noise is removed from
measured acceleration before integrating it twice. The algorithm is also more suitable long-
term pavement monitoring as the assumed model can be used to develop efficient compression
algorithms and reduce the amount of data sensor needs to transmit. An example of how this
concept is used to extend sensor lifetime is given in Section 6.2.2.

For long-term pavement monitoring, vibration sensors can be used to report compressed
acceleration data when a loaded axle is detected. The AP can average the data from multiple
sensors and estimate the pavement displacement (similar to Section 6.2.3). The data can be
reported to a server for future analysis.
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Chapter 8

Conclusions and Future Work

This chapter concludes this dissertation by summarizing the major contributions of this work
and suggesting directions for future work.

8.1 Summary of contributions

Existing weigh-in-motion (WIM) technologies are too expensive for widespread deployment
and there is insufficient data for pavement management, resulting in higher maintenance
costs. The goal of this project was to develop an inexpensive but accurate weigh-in-motion
system that can be easily installed on new or existing roads. Current WIM systems have
high costs because they use large, expensive load sensors and require special pavement con-
struction around them. Motivated to reduce costs, we decided to use the road pavement
itself as our weighing scale. Multiple wireless sensors are embedded in the pavement to sense
its response to passing vehicles and the measured response is then used to estimate the mag-
nitude of applied axle loads. The challenges involved in enabling this concept are discussed
in Section 1.2.2 and the rest of the thesis describes in detail how these were overcome.

As a part of this work, we built a prototype wireless WIM system and tested it under
real highway traffic to show that it meets the required accuracy standards (LTPP specifica-
tion [3]). The wireless WIM also outperformed a commercial WIM station using conventional
technology. It can be considered a final product once the following two tasks are completed:

• Increase sensor lifetime by doubling the battery or by upgrading the MEMS accelerom-
eter to the latest low-power device (Section 6.2.4).

• Implement adaptive sampling procedure on the sensor nodes (Section 6.2.1), and test
the resulting system under different traffic, climate, and pavement types.

We now summarize the major contributions of this work.
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Wireless sensor-based platform for intelligent transportation and pavement
monitoring

We built and tested a platform consisting of wireless vibration sensors, vehicle detection
sensors, and a roadside access point (AP) that controls the sensors and processes incoming
data from them. A camera is installed with the AP to capture and record pictures of on-
going traffic. The AP is time synchronized using Network Time Protocol (NTP) and all other
network devices are synchronized to it. The platform is used to detect vehicles, estimate
their speed, capture roadside traffic images, and collect pavement vibration and temperature
data corresponding to each vehicle. As shown in this dissertation, the platform can be used
for many new applications in intelligent transportation and pavement engineering. The
wireless communication protocol, based on Sensys NanoPower protocol [31], was tested on
highways with live traffic and high reliability (≥ 99%) of data transmission was achieved
(Section 2.3.4). The sensor firmware can be updated over the air, if needed.

Wireless vibration sensor for measuring road vibrations

Road pavements are designed to experience very small vibrations in response to heavy loads
driving over them. We designed, built, and tested a new wireless sensor that can be embedded
in the road to measure the transient vibrations due to different applied loads. As discussed
in Chapter 2, the sensor also measures pavement temperature which is very important for
modeling and load estimation. The sensor has very low measurement noise (typically ≤ 400
ug) and is practically immune to traffic noise (sound) that is generally picked up by MEMS
accelerometers. The pavement response measured by the sensor is highly repeatable under
similar conditions (0.1% - 3.4% for the most applied loads). The sensor can last more than
6 months when all raw acceleration data, sampled at a high rate of 512 Hz, is continuously
reported to the AP. We showed that the lifetime can be increased for many applications by
using techniques such as in-sensor signal processing and adaptive rate subsampling. Using
these techniques, the sensor can last more than two years for WIM and automatic vehicle
classification (AVC).

System modeling and application-specific data processing solutions

We used the above platform for solving three problems: AVC, WIM, and displacement
estimation. These are formally described in Problem 1.2, 1.3, and 1.4.

The number of axles and the inter-axle spacings of a vehicle can be used to accurately
classify it [33]. In Chapter 4, we present our solution for automatic vehicle classification
via axle detection. Our model assumes that each axle causes a burst of energy in measured
vibrations. A data processing algorithm is presented which uses acceleration data from
multiple sensors to detect individual axles of each passing vehicle. The solution was tested
using 53 random trucks on a highway, and axles for all the trucks were successfully detected.
This algorithm forms the basis of the energy-efficient axle detection algorithm.
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In Chapter 5 and 6, we present our solution to the weigh-in-motion problem. In Chapter 5,
we propose a new model that relates pavement acceleration to moving axle loads. It is
based on the Euler beam model for pavements [52] and we confirm important results of the
model in Observations 5.1- 5.5. The model can be summarized by the following equation
(see Section 5.2 for details):

F = β
α

v2
τ(T ). (8.1)

The parameter α is the peak acceleration caused due to each individual axle. However,
the individual response due to closely-spaced axles needs to be decoupled and estimated
from the measured response. To accomplish this, we propose a parametric model for the
measured response and estimate the model parameters by minimizing the error between the
measured and the modeled response. The initial parameters must be chosen carefully in order
to ensure that solution to this nonlinear optimization problem corresponds to the global
minimum error. We choose these initial parameters based on signal features and vehicle
speed. The estimated α’s are combined with vehicle speed and pavement temperature to
calculate individual axle loads. To test the model and the load estimation algorithm, we used
75 randomly chosen trucks that were stopped and weighed individually at a weigh station.
The above linear model fits the data with a R2-value of 0.99, as shown in Figure 5.9(a).

In Chapter 6, we make improvements to our model by optimizing the effect of vehicle speed
on pavement response and choosing a different error measure (LTPP error) for parameter
estimation. To benchmark the accuracy of wireless WIM, we used random sub-sampling
cross-validation. In each of the 1000 cross-validation trials, 25 truck runs with known axle
weights are used to calibrate the system and remaining 50 trucks are used for determining
predictive accuracy. The accuracy levels passed the LTPP specifications and errors were
found to be less than 12.5% for individual axles and 9.5% for total weight.

In Chapter 7, we present the problem of displacement estimation from noisy acceleration
measurements. Two new algorithms were developed for different uses: Algorithm 2 for con-
trolled experiments (eg. FWD, HVS), and Algorithm 3 for real-time pavement monitoring.
Algorithm 2 estimates displacement by discretizing the relationship between acceleration
and displacement, and solving a constrained least-squares problem. This algorithm is more
suitable for controlled experiments where initial and final pavement conditions are easy to
obtain. Algorithm 3 should be used when the measured response can be represented by
a family of functions with unknown parameters. For example, the measured displacement
due to each loaded axle is assumed to be a Gaussian function with unknown amplitude and
variance. Just like the axle weights, pavement displacement can be recorded in real-time
for each and every passing truck. The estimated displacements are highly correlated to
measurements from reference instruments, see Section 7.2 for details.
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Energy-efficient algorithms for different applications

Enabling the above solutions using wireless sensors requires that the algorithms reduce the
computational and data transmission load on each sensor in order to extend its lifetime. We
use techniques like in-sensor feature extraction, adaptive rate subsampling, and distributed
computation to reduce the power consumption of sensor nodes at the expense of the access
point.

In Section 4.2.2, we present an in-sensor feature extraction algorithm that reports the
amplitude and timestamp for each detected axle peak. The AP combines data from multiple
sensors to estimate the axle count and axle spacings for each passing vehicle. Thus, in
comparison to the raw data mode, the amount of data transmitted is reduced by more than
1000 times. This results in huge power savings and extending the battery life from months
to years.

In Chapter 6, we use a similar in-sensor feature extraction algorithm to detect each in-
dividual axle, and use adaptive rate sampling around each peak to reduce the amount of
data transmitted for load estimation. The AP reconstructs the measured signal for each
sensor from these strategically chosen samples, and combines measurements from multiple
sensors to estimate axle weights and gross weight of the truck. The details can be found
in Section 6.2.3. Using these techniques, the sensor lifetime increased from 6 months to 2
years without any degradation to system accuracy. The error (LTPP) in estimated weight
is typically less than 12% for individual axles and 9.1% for the total. The wireless WIM
proposed here outperformed a nearby in-service WIM station whose errors were as high as
24% for individual axles and 13% for gross weight.

The same algorithm for wireless WIM also estimates in real-time the pavement displacement
corresponding to each on-going axle and truck. This information can be combined with
weight information to estimate the strength of the pavement [2]. Thus, unlike conventional
WIM systems, the wireless WIM can be used as a tool for regular assessment of pavement
condition.

Other contributions

An analytical solution was derived for determining the optimal scaling coefficients to combine
noisy measurements from multiple arrays in Chapter 6. The solution is used for calibration
of β by minimizing the LTPP error, a system accuracy measure for WIM systems. The
LTPP error includes both the bias and the variance terms of system error and the result
could be useful in many other applications.
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8.2 Future Work

We tested the prototype system for AVC, WIM, and displacement estimation but more
engineering work is required before it can considered a commercial product. We suggest
some possible directions to extend the current work.

Automatic Vehicle Classification

The AVC system presented in this dissertation has a lifetime of only two years. However,
majority of current consumption is due to the low noise MEMS accelerometer that we are
using. In Section 4.2, we increased the density of sensors across the width of the lane and
made sure that at least one of them will be a tire-on-top sensor. The amplitude measured
by tire-on-top sensors is much higher and does not require such low noise accelerometers.
The analog MEMS sensor on the board was replaced by a low power consuming digital
accelerometer and is being tested by Sensys Networks in a commercial setting. The system
provides a wireless alternative to current technologies; an alternative that is very accurate,
easy-to-install, and cheaper than existing technologies.

Wireless Weigh-In-Motion

While the prototype system outperformed a commercial WIM station in terms of accuracy, it
needs improvement in other areas. The sensor lifetime, currently 2 years for this application,
needs to be at least doubled. As suggested in Chapter 6, this can be done easily by doubling
the sensor battery. An alternative is to replace the MEMS accelerometer with one that has
a similar noise floor but a lower current consumption [23].

The wireless WIM algorithm, presented in Section 6.2, was tested by offline application of
algorithm on the raw sensor data. The algorithm needs to be implemented and tested on
sensor nodes. Some other unanswered questions are:

• How does the system perform for other classes of vehicles? Is the calibration parameter
β different for different classes? If yes, this can make the calibration procedure more
complex and expensive as more vehicles will be required.

• How does the system accuracy change with pavement deterioration? The answer to
this question determines how often calibration is required for the system. We tested
the system on 4 different days, spanning from February to September, and observed
no significant change in accuracy.

• Can we improve the accuracy further by adding additional arrays of vibration sensors?
We showed in Figure 6.2(a) that increasing sensor arrays from 1 to 4 progressively
reduces the errors in load estimates. Some European WIM specifications require the
errors to be as low as 5%, and adding sensor arrays is one possible way of achieving
this.
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• Can we quantify the effect of vehicle wander (driving off the lane center) on load
estimates? This requires a method to accurately determine the location of the wheels
relative to the sensors. If possible, this can also help reduce the weight errors.

The wireless WIM technology presented here has the potential to replace the current WIM
systems at less than one-tenth of cost. The system can also be used as a Prepass WIM near
static weigh stations. Prepass stations estimate the weight of trucks in motion and direct
them to the weigh station if they are likely to be overweight. If truckers can be incentivized
to carry wireless tags for automatic identification, more intelligence can be added to the
system. For example, anytime a truck with a tag is flagged for static weighing, the data
obtained from the weigh station can be used to automatically re-calibrate the wireless WIM.
Finally, as discussed below, the wireless WIM can provide important pavement monitoring
data that existing technologies are currently incapable of.

Displacement Estimation

The system presented here has many applications in pavement engineering and opens up
new research avenues. The vibration sensor, combined with the algorithms, can be easily
embedded in new or existing pavements and used as a wireless displacement sensor. Algo-
rithm 2 is ideal for controlled research experiments and can be used to test new materials
and structures for pavements. Once a material is characterized, the modeled response can
be incorporated in Algorithm 3 to estimate pavement deflection in real-time for each passing
vehicle.

Monitoring pavement displacements and loads simultaneously provides much more valuable
data than just weight information. Each time a truck with known weight drives over the
system, the displacement measured by different sensors can be used to backcalculate the
pavement stiffness [2]. This provides a much cheaper way of assessing current pavement
condition than using the typical FWD test. Further testing needs to be done in order
to determine the accuracy of estimated stiffness. Finally, the sensor data can possibly be
combined with damage detection algorithms to detect pavement damage at an early stage.

Road to smart pavements

The concept of smart pavements is a futuristic concept where small wireless sensors are used
to monitor pavements and detect structural damage at an early stage, thereby reducing the
maintenance costs and extending pavement lifetime. Currently, pavement instrumentation
for condition monitoring is done on a localized and short term basis, mainly for research pur-
poses. The current technology does not allow for continuous long-term monitoring because
of many limitations.

The wireless sensors described in this work can be used for this purpose but some improve-
ments need to be made. We built and tested sensors that are 2.5 inch3 in size and cost a
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few hundred dollars. As power consumption is reduced, smaller battery can be used and
sensor size can be reduced to 1 inch3. As cost of sensors comes down (or using a cheaper
alternative), the density of these sensors on roads can be increased for monitoring the entire
road network. This can enable pavements to monitor their own structural health and request
repair or assistance when any damage is detected.

Other applications

The platform can be used in many other applications. We list a few interesting ones here:

• Rail WIM: Just like roads, vibrations sensors can be attached to rail ties in order
to measure vibrations on the rail track when a train goes by. These vibrations can be
used to detect and weigh individual train cars. If possible, the system can provide an
alternative to current rail WIM systems that are much more expensive.

• Footstep detection in buildings: We used the vibration sensors for detecting foot-
step traffic in buildings. Each footstep is an impulsive load applied to floor and the
corresponding vibrations are used for detecting each step. The algorithm used is very
similar to the axle detection algorithm. We found that coverage of a single vibration
sensor can be up to 5-10 feet, except for ground floors that have a stronger base and
produce almost no vibrations to footsteps. As a bonus, the sensor also measure room
temperature. Multiple sensors in a building can be used to estimate which areas are
populated and this information can be used to control the lighting, HVAC etc to mini-
mize the energy footprint. Another application is intrusion detection and data reported
from sensors can be incorporated into the building’s security system.

• Structural health monitoring (SHM): SHM involves continuous measurement of a
structure’s response, extraction of damage-sensitive features from these measurements,
and statistical analysis of these features to determine the current state of system health.
The underlying concept is similar to smart pavements [7] but has been used for other
civil infrastructure like bridges and buildings, for example in [36, 35, 17].

• Wireless seismic monitoring: The high resolution vibration sensor is a natural
candidate for seismic monitoring. It can be used to detect even the lowest magnitude
earthquakes. The AP can analyze the data reported from sensors and trigger alarms
when interesting seismic events happen. The fact that the sensors are wireless makes
it very cheap and convenient to scale the sensor network and monitor a large area.
Seismic monitoring is also used for oil exploration as discussed in [39].
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Appendix A

Temperature Compensation

Asphalt concrete is a composite engineering material which consists of aggregates, air-voids
and asphalt mastic. Due to the viscoelastic nature of asphalt mastic, composite asphalt
concrete mixtures show a viscoelastic response when subjected to traffic loads. Temperature
dependent behavior of asphalt concrete layer needs to be modeled in pavement engineering to
determine the changes in pavement response with temperature [10, 22, 25, 49, 58]. Since the
vibration sensors were embedded in asphalt concrete layer of the pavement, a temperature
compensation model for this layer is developed using the following steps:

1. Determine the pavement layer thicknesses for the section where vibration sensors were
installed.

2. Determine the typical unbound layers’ stiffnesses from previous falling weight deflec-
tometer (FWD) test results [21] and assume a typical concrete layer stiffness (35 GPa).

3. Determine the asphalt layer stiffnesses for asphalt materials used in California for
temperatures ranging from 10◦C to 40◦C. The change in stiffness with temperature for
one of the asphalt material types is given in Figure A.1(a).

4. Create a layered elastic theory (LET) model for a typical dual-tandem axle (8 tires)
on the pavement with structural properties determined in steps 1 to 3.

5. Using the developed LET model, determine the deformations directly under the center
of the dual tandem axle for all asphalt materials in the given temperature range. De-
formation profile for one of the asphalt material types at 24◦C is given in Figure A.1(b).

6. Normalize the deformation versus temperature curves by dividing all deformations by
the deformation at 25◦C (reference temperature). This leads to a unique temperature
compensation function τ(T ) for each asphalt type.
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7. Determine the asphalt material type by using τ(T ) for each material to estimate the
weight of calibration trucks. The τ(T ) for the correct asphalt material is assumed to
minimize errors in load estimates.

Alternatively, a data-driven temperature compensation model can be developed by measuring
pavement response for the same applied load at different temperatures. For example, a
calibration truck can be driven over the system multiple times on a day with a temperature
range of ≥ 10◦C.

(a) (b)

Figure A.1: Temperature compensation for asphalt layer. (a) Change in asphalt stiffness
with temperature. (b) Deformation profile for one of the asphalt material types at 24◦C.
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