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Abstract

Secure Virtualization with Formal Methods
by
Cynthia Koren Levine Sturton
Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor David Wagner, Chair

Virtualization software is increasingly a part of the infrastructure behind our online activ-
ities. Companies and institutions that produce online content are taking advantage of the
“infrastructure as a service” cloud computing model to obtain cheap and reliable computing
power. Cloud providers are able to provide this service by letting multiple client operat-
ing systems share a single physical machine, and they use virtualization technology to do
that. The virtualization layer also provides isolation between guests, protecting each from
unwanted access by the co-tenants. Beyond cloud computing, virtualization software has
a variety of security-critical applications, including intrusion detection systems, malware
analysis, and providing a secure execution environment in end-users’ personal machines.

In this work, we investigate the verification of isolation properties for virtualization software.
Large data structures, such as page tables and caches, are often used to keep track of emulated
state and are central to providing correct isolation. We identify these large data structures
as one of the biggest challenges in applying traditional formal methods to the verification of
isolation properties in virtualization software.

We present a new semi-automatic procedure, S2W, to tackle this challenge. Our approach
uses a combination of abstraction and bounded model checking and allows for the verification
of safety properties of large or unbounded arrays. The key new ideas are a set of heuristics
for creating an abstract model and computing a bound on the reachability diameter of its
state space. We evaluate this methodology using six case studies, including verification of the
address translation logic in the Bochs x86 emulator, and verification of security properties
of several hypervisor models. In all of our case studies, we show that our heuristics are
effective: we are able to prove the safety property of interest in a reasonable amount of time
(the longest verification takes 70 minutes to complete), and our abstraction-based model
checking returns no spurious counter-examples.



One weakness of using model checking is that the verification result is only as good as the
model; if the model does not accurately represent the system under consideration, properties
proven true of the model may or may not be true of the system. We present a theoretical
framework for describing how to validate a model against the corresponding source code,
and an implementation of the framework using symbolic execution and satisfiability modulo
theories (SMT) solving. We evaluate our procedure on a number of case studies, including
the Bochs address translation logic, a component of the Berkeley Packet Filter, the TCAS
suite, the FTP server from GNU Inetutils, and a component of the XMHF hypervisor. Our
results show that even for small, well understood code bases, a hand-written model is likely
to have errors. For example, in the model for the Bochs address translation logic — a small
model of only 300 lines of code that was vigorously used and tested as part of our work on
S2W-— our model validation engine found seven errors, none of which affected the results of
the earlier effort.



To my husband, with love and gratitude.



Contents

Contents

List of Figures
List of Tables

1 Introduction

2 Background

2.1 Virtualization Software . . . . . . . . . . .
2.2 Model Checking . . . . . . . . .
2.3 Related Work . . . . . . . e
3 Verifying Large Data Structures using Small and Short Worlds
3.1 Running Example . . . . . . . .
3.2 Formal Description of the Problem . . . . .. ... .. ... ... ......
3.3 Methodology . . . . . . ..
3.4 Evaluation . . . . . . ..
3.5 Related Work . . . . . . .
3.6 Conclusion . . . . . . . . e e

4 Model Validation

4.1 Running Example . . . . . ..o
4.2  Theoretical Formulation and Approach . . . . . .. .. ... ... ... ...
4.3 Implementation . . . . . . ...
4.4  Evaluation: Data-Centric Validation . . . . .. ... ... ... ... ....
4.5 Evaluation: Operation-Centric Validation . . . . . . . .. .. ... ... ...
4.6 Related Work . . . . . . ..
4.7 Conclusion . . . . . . . . . e

5 Conclusion

Bibliography

i

ii

iii

iv



iii

List of Figures

2.1

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

An overview of the model checking work flow. . . . . ... ... ... ... ... 11
An illustration of memory with a simple cache. . . . . . . ... ... ... ... 18
The UCLID expression syntax. . . . . . . . . . . ... .. 19
An illustration of a page table walk. . . . . .. . ... ... 0L 29
An illustration of memory with a CAM-based cache. . . . . . . . ... ... .. 33
An illustration of shadow page tables. . . . . . . . . . . ... ... ... ... .. 35
An overview of the model validation work flow. . . . . .. ... ... ... ... 42
Example code and corresponding model. . . . . . ... 43
The five steps in our model validation process. . . . . . . . . . . ... ... ... 50
Example code with a dynamically determined loop bound. . . . . . . .. .. .. 54
Simplified code from the BPF program.. . . . . . ... .. . ... ... ... .. 56
An illustration of the BPF program. . . . . .. .. ... ... ... .. ..... 56
Simplified code from the ftpd software. . . . . . . . . . ... ..o 57
An illustration of the ftpd program. . . . . . . . . . . ... ... ... 58
Simplified code from the XMHF software. . . . . . . ... ... ... ... ... 59



v

List of Tables

3.1
3.2

4.1
4.2
4.3

The model of the Bochs TLB. . . . . . ... ... ... ... ... ..., 30
Next-state assignments for the shadow paging model. . . . . . . . . ... .. .. 35
Bochs modeling bugs (6 of 7) . . . . . ..o 62
Code and path coverage for model validation. . . . . ... ... ... .. .... 65
Types of modeling bugs found. . . . . ... ... ... 0oL 65



Acknowledgments

I thank my advisor, David Wagner, for his support and guidance throughout my graduate
studies. His keen insights and deep understanding of all things security strengthened my
research, and I learned a tremendous amount from working with him. I am also grateful
to him for helping me to develop collaborations with folks outside of Berkeley’s computer
science division. They have been integral to my growth and development as a researcher.
Any success I have had is due in large part to those collaborations.

I thank my committee members, Brian Carver and Sanjit Seshia, and my collaborators on
the work appearing in this thesis: Rohit Sinha, Michael McCoyd, Sakshi Jain, Thurston
Dang, and Petros Maniatis. I would especially like to thank Sanjit. Through collaborations
with him on this and other work, I have learned to appreciate the power, and limitations, of
using formal verification in a security context. His encouragement and advice throughout the
years has made him a valuable mentor and greatly enriched my graduate school experience.

Although our work together is not a part of this thesis, I would like to thank Sam King and
Matthew Hicks for fun, and fruitful, collaborations over the years. I am particularly grateful
to Sam for his interest in, and encouragement of my studies and future career.

I am grateful to Colleen Lewis for her friendship. We have spent hours together laughing,
stressing, and working, and it has all made for a wonderful graduate school experience.

I am grateful to my family for their ongoing love and encouragement. And I am deeply
grateful to my husband. He has supported me with love, kindness, generosity, and delicious
food throughout the long and circuitous path that led to this point.



Chapter 1

Introduction

Virtualization software, such as CPU emulators, virtual machine monitors (VMM), or hyper-
visors (HV), provides many practical benefits. It typically sits below the operating system
and adds a layer of indirection between the operating system and the hardware platform.
This is useful for a variety of applications. It can be used to present an instruction set
architecture different than that of the actual hardware platform, which is useful for the de-
velopment of operating systems and applications for new platforms. It can be used to mul-
tiplex hardware resources to allow multiple operating systems to co-exist on one platform.
And it provides a vantage point below the operating system for more complete monitoring
and analysis of the system, which is useful in the development and testing of new operating
systems, and for malware analysis.

Virtualization is useful; however, virtualization software is typically complex and executes
with high privilege levels, making it especially vulnerable to attack. In this work, we seek
to verify the correctness of security-critical components of virtualization software. We in-
vestigate the use of formal verification techniques to prove properties about the security of
system virtualization software in order to increase the overall security of the systems that
rely on it.

Virtualization software is well known for its role in cloud computing, and in particular
for infrastructure-as-a-service (IaaS) style cloud computing. With IaaS, the cloud provider
maintains a large data center with many servers and rents out compute time to its cus-
tomers. A customer can execute their entire software stack for as long as necessary on one
of the provider’s servers, and they pay only for the compute time they use. IaaS services
allow customers to grow and shrink their infrastructure on demand. For example, an online
shopping site can increase their capacity to handle high demand during peak shopping times
without the overhead of purchasing, configuring, and maintaining new hardware. During
off-peak hours, the customer can easily reduce their capacity and their costs. Customers of
[aaS include well known online shopping sites, news media organizations, universities, and
social media sites. laaS style cloud computing is the fastest growing segment of the cloud
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computing market and is expected to reach $9 billion in 2013, up from $6.1 billion in 2012 [1].

Cloud providers are able to take advantage of economies of scale to provide cheap compute
capacity by using virtualization software. Hypervisors and virtual machine monitors allow
multiple operating systems to execute on a single hardware platform, and give each guest
operating system the illusion that it is running alone on the hardware. Since the differ-
ent guest operating systems may belong to different customers, possibly even adversarial
customers, customers and cloud providers rely on virtualization software to maintain strict
isolation between guest OSes. In addition to providing a multiplexed hardware platform,
virtualization software enables other tools that make data centers efficient and practical for
cloud providers. For example, live migration of running operating systems allow for efficient
resource allocation [2], and verifiable accounting of resource use allows for efficient billing [3].

Beyond cloud computing, researchers have proposed using system virtualization software
as a platform to increase the security of end-user machines [4,5]. The isolation properties
provided by hypervisors and virtual machine monitors can be used to implement red—green
configurations on client desktops [6-9]. A red-green system allows the user to maintain a
separation between their trusted and untrusted activities. One guest OS, the “green” one, is
locked-down, trusted, has access to private data and a secure network, but has little access
to the public Internet. A second, “red” guest OS has full access to the Internet, but not the
secure network or private data.

Because the virtualization software sits beneath the OS layer in the system stack, it is well
situated for OS introspection: it has a complete view of OS activity, and it protects itself
from access by any code executing within the guest. A wide variety of malware detection and
analysis systems based on virtual machine monitors, hypervisors, and emulators have been
developed to take advantage of this property. Intrusion Detection Systems (IDS) usually
have to choose between existing as a kernel module in the end system or sitting in the
network, entirely outside the system. In the former case, the IDS has a complete view of the
system, but it exists inside the system and so is vulnerable to attack from the very malware
it aims to detect, rendering the IDS ineffective. In the latter case the IDS is inaccessible to
the end system and therefore is protected from compromise, but it has an incomplete view of
an end system’s activity. With virtualization software, the IDS can exist in the virtualization
layer below the OS. In this layer it has a complete view of the system it aims to protect, but
is kept isolated and unreachable by the potentially compromised OS [10,11]. This property
makes virtualization software especially powerful for the detection of rootkits [12-14], which
traditionally have controlled the lowest level of software, making them difficult to detect
from within the infected OS.

Its powerful vantage point also makes virtualization software useful for malware analysis [15-
23]. Malware can be allowed to run in the guest OS, while its behavior is inspected by the
virtualization software. The virtualization software protects itself from any activity in the
guest OS, preventing the malware from shutting down the analysis. Similar techniques have
also been shown to be useful for auditing and debugging operating systems [24,25]. In



CHAPTER 1. INTRODUCTION 3

addition to detection and analysis, virtualization software has also been used to prevent
compromise of the guest OS by preventing any unauthorized code from executing while the
guest is in kernel mode [26-32].

Rather than focus on protecting the guest operating system from infection, a number of
researchers have taken the view that it is better not to trust the OS at all, and tools based
on hypervisors, emulators and virtual machine monitors have been developed to protect user-
level code and data from a malicious OS [33-36]. There has even been work done on using
nested virtualization to increase the security of the hypervisor or virtual machine monitor

itself [37,38].

In all of these systems, the strength of the tool depends on the strong isolation and contain-
ment properties provided by the virtualization software. Because it sits below the operating
system, and because it tends to have a considerably smaller code base than a commodity op-
erating system, some researchers have suggested that virtualization software makes an ideal
platform for building secure systems [4]. However, virtualization software is not necessarily
immune from vulnerabilities. Although smaller than an operating system, the implementa-
tion of virtualization software can still be quite large. The popular Xen hypervisor is roughly
150 KLOC [39], and the KVM kernel module is roughly 42 KLOC.! The code is complex and
previous research has found errors in popular virtualization software [40,41]. Vulnerabilities
that allow a guest to access the host’s memory space have also been discovered [42-45].

The goal of this work is to prove the correctness of the isolation and containment properties
that are fundamental to the security of so many tools and systems based on virtualization
software. To do this, we focus on virtualization software’s management of memory resources.
The memory management components are responsible for providing to the guest the correct
virtual-to-physical memory translation, which is usually provided by hardware. They must
also provide the correct mapping from a guest operating system’s view of physical memory
to the machine’s physical memory. The memory management code typically includes sets of
page tables and caches. Proving safety properties about these large data structures presents
a challenge to formal verification techniques. In this work, we focus on the verification of
existing systems, rather than the development of a new hypervisor or emulator, and we use
model checking to perform the verification.

In the first half of this thesis (Chapter 3), we consider the verification of safety properties in
systems with large arrays and data structures, such as address-translation tables and other
caches. These large data structures make automated verification based on straightforward
state-space exploration infeasible. We present S?W, a new abstraction-based model-checking
methodology to facilitate automated verification of such systems. As a first step, inductive
invariant checking is performed. If that fails, we compute an abstraction of the original
system by precisely modeling only a subset of state variables. This subset of the state
constitutes a “small world” hypothesis, and is extracted from the property. Finally, we
verify the safety property on the abstract model using bounded model checking. We ensure

!Generated using David A. Wheeler’s ‘SLOCCount’ http://sourceforge.net/projects/sloccount/.
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the verification is sound by first computing a bound on the reachability diameter of the
abstract model. For this computation, we developed a set of heuristics that we term the
“short world” approach. We present several case studies, including verification of the address
translation logic in the Bochs x86 emulator, and verification of security properties of several
hypervisor models. Through our case studies we demonstrate that with our approach, model
checking can be successfully applied to large table-like data structures; this removes one key
barrier to automated verification of system virtualization software. The material in this
chapter is based on joint work with R. Sinha, P. Maniatis, S. A. Seshia, and D. Wagner [46].

One limitation of this approach is that the verification is done on a model and not on the
code directly. As a consequence, the result of verification is only as valid as the model; if the
model does not accurately capture the behavior of the system, a property proven true of the
model may or may not be true of the actual system. Therefore, it is essential to validate the
model against the source code from which it is constructed. In the second half of this thesis
(Chapter 4), we present a framework for validating the manually-built model against the
code. The framework consists of two components. The first, data-centric model validation,
checks that, for data structures relevant to the property being verified, all operations that
update these data structures are captured in the model. The second, operation-centric model
validation, checks that each operation is correctly simulated by the model. Both components
are based on a combination of symbolic execution and satisfiability modulo theories (SMT)
solving. We demonstrate the application of our methods on several case studies, including
the model of the address translation logic in the Bochs x86 emulator that we verify in
Chapter 3, the Berkeley Packet Filter, a TCAS benchmark suite, the FTP server from GNU
Inetutils, and a component of the XMHF hypervisor. This demonstrates that it is possible
to validate the model against the code and gain increased confidence that modeling errors
have not affected our ability to find bugs in the code — making formal verification of system
virtualization software all the more compelling. The material presented in this chapter is
based on work done jointly with R. Sinha, T. H. Y. Dang, S. Jain, M. McCoyd, T. W. Yang,
P. Maniatis, S. A. Seshia, and D. Wagner [47].

In summary, the thesis of this work is:

Abstraction-based model checking techniques enable verification of large, sym-
metric data structures in software. In addition, the results of model checking
can be strengthened through model validation techniques based on symbolic ex-
ecution and SMT solving. These two results combine to provide an automated
or semi-automated program verification technique suitable for proving security-
critical isolation properties in virtualization systems.

We expect our results may have applications beyond the security of system virtualization
software. Our work on S?W is applicable to any system with large, table-driven data struc-
tures and gives us a new tool for dealing with the state space explosion problem in that
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setting. And, model validation is a fundamental issue for all users of formal verification; our
techniques may be broadly applicable to many applications of formal methods.



Chapter 2

Background

2.1 Virtualization Software

Virtualization software is a thin layer that sits below an operating system. It presents a vir-
tualized hardware interface to the operating system above, introducing a level of indirection
for the hardware—software interface. This intermediate layer can be used for many purposes:
It can multiplex hardware resources, allowing multiple operating systems to run on a single
platform. It can present to the operating system an instruction set architecture (ISA) that
is different from the actual hardware ISA, allowing an OS and software compiled for one
platform to be run on a different platform. And, this intermediate layer can provide an iso-
lated execution environment in which it mediates all accesses to physical system resources.
CPU emulators, virtual machine monitors (VMM), and hypervisors (HV) are all examples
of virtualization software, and in this work we use “virtualization software” to refer to any
of these software systems.

Virtual Machine Monitors and Hypervisors

Popek and Goldberg first formalized the definition of a VMM in 1974 [48]. They define
a virtual machine (VM) as “an efficient, isolated duplicate of the real machine,” and a
VMM as the software that provides the VM environment. The VM is not any particular
piece of software, rather it is the operating environment within which operating systems and
applications may run. For example, the VM will include a virtual processor. To any software
running in the VM, this processor will behave like a physical CPU. In reality, the virtual
processor is a combination of the VMM software and the physical CPU hardware. Most
instructions executed on the virtual processor are likely executed directly on the underlying
physical CPU, but some are emulated by the VMM. The VMM can take advantage of the
trapping mechanism provided by the physical CPU in order to intervene and emulate some
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instructions when needed. All of this is done in a way that is transparent to software
executing in the VM; the software executes on the virtual processor without being aware
that it is virtual, and actually comprises both hardware and software.

Popek and Goldberg prescribe three properties that a VMM must provide: equivalence,
resource control, and efficiency. Software running in the VM must produce the same effect
as it would if it ran directly on the hardware, and not in the virtualized environment. The
VMM must have control over hardware resources: the VM should not be able to access
resources that have not been allocated to it and the VMM should be able to regain control
of any resource already allocated to a VM. Software running in the VM environment must
run efficiently. More specifically, a majority of the instructions executed must run directly on
hardware without the intervention of the VMM. This last requirement differentiates VMMs
from CPU emulators.

VMMs can be classified into two types [49]. A Type I VMM runs directly on the hardware
platform without an underlying operating system. It has the highest level of privilege on
the machine. Type II VMMs run on top of the host operating system, rather than on the
bare metal. In both cases, the guest operating systems run in a layer above the VMM.
Originally, “hypervisor” was another name for a Type I VMM. However, the lines between
Type I and Type II VMMs are easily blurred and today the terms “hypervisor” and “VMM”
are often used interchangeably, regardless of type. Some examples of well-known VMMs
include VMware [50], Xen [51], KVM [52], and VirtualBox [53].

CPU Emulators

A CPU emulator is software that allows code compiled for one hardware platform to run on
a different platform. For example, an application compiled for the PowerPC processor could
be run on an x86 processor with the help of a CPU emulator. Emulators are not limited to
use by applications; an entire operating system compiled for one architecture may be run on
a different architecture with the help of a CPU emulator.

At its heart, an emulator works by translating the instructions of the guest binary code from
the target (emulated) architecture to that of the host architecture. One way to manage the
translation is by interpreting each instruction as it comes up. In this case, all CPU state,
flags and control registers are implemented as variables in the emulation software and each
instruction is implemented as a software function. Bochs is an example of a CPU emulator
that uses interpretation [54]. A second type of translation works by recompiling the target
binary code to the host architecture; recompilation is usually done one basic block of code
at a time. QEMU is an example of a CPU emulator that uses recompilation [55].

Virtual machine monitors, hypervisors, and CPU emulators all work slightly differently, but
they have in common the need to manage the often complex virtualization of system re-
sources. In this work, we focus on memory and how virtualization software manages the
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mapping from a guest operating system’s view of memory to the machine’s physical mem-
ory. The correct management of physical memory is key to providing the isolation between
guest operating systems, or between the guest operating system and the host’s execution
that the virtualization software is often trusted to do. Virtualizing memory typically in-
volves managing both page tables for address translation and caches of previously translated
addresses. For example, Bochs will allow the OS to set up page tables with up to four levels
of indirection, and it uses a translation lookaside buffer (TLB) with 1024 entries, each 160
bits wide, to cache previously translated addresses. It is the verification of these large data
structures that we focus on in this work.

2.2 Model Checking

Throughout this work we use model checking-based techniques for our program verification.
Model checking is a mature area of research, and there exist many variants. However,
all model checking techniques have in common an approach to verification based on an
exploration of the program’s state space. A benefit of this approach is that if a property
is disproven, the model checking engine can usually provide a counter-example showing the
state, or series of states, that led to the failure.

Model checking was first introduced in the early 1980’s [56-59] as a method for program
verification that could be mostly automated. The original model checking algorithm is a
graph-theoretic approach to program verification. The core idea is to represent the pro-
gram to be verified as a directed graph, with nodes representing program states and edges
representing transitions between states. Using a temporal logic such as Linear Temporal
Logic [60] or Computational Tree Logic [56], properties about the program can be stated as
properties about a path through the graph, or as properties about a sub-tree of the graph
rooted at a particular node. Efficient graph exploration algorithms can then be used to prove
or disprove the property.

While these early model checking algorithms can efficiently explore the state graph of a
system, problems still arise for systems with large state spaces. The state space of a program
is roughly exponential in the number of state variables. In software systems especially, the
size and number of state variables can be large in the presence of large data structures.
This “state space explosion” tends to limit the usefulness of so-called explicit state model
checking, and various techniques have been developed to overcome it. One optimization is
symbolic model checking. Rather than reasoning about individual states and transitions,
symbolic model checking operates over sets of states and transitions. The sets, represented
by Boolean formulas, represent the state space of the program symbolically. One way to store
the Boolean formulas is as a Binary Decision Diagram (BDD). A BDD is a directed, acyclic
graph that can efficiently represent many states; it is essentially a finite state automaton
that takes as input a system state, represented as a sequence of binary digits, and accepts
only those states that are reachable in the system. This type of symbolic model checking
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can handle programs with a couple hundred variables, and state spaces ranging from 103"
to 10% [61], whereas an explicit state model checking algorithm is restricted to state spaces
that are small enough to be fully enumerated.

While BDD-based symbolic model checking can handle vastly larger designs than explicit
state model checking, it still often can not scale to the sizes necessary for model checking
software. Another symbolic model checking approach, bounded model checking [62], can
handle much larger designs. In bounded model checking, the state space and property to
verify are expressed as satisfiability problems and given to a SAT solver to either prove or
disprove the property. SAT-based bounded model checking can scale to handle large designs.
However, the drawback is that the state space of the program is explored only up to a certain
depth. The behavior of the system past that depth is unknown.

Another approach for managing the large state space of software systems is to introduce
some abstraction into the model of the program. In an abstraction, multiple program states
are elided into one, and information about the program is lost. In a sound abstraction, a
property proven true of the abstract model is true of the original program. However, the
reverse may not be true: in a sound abstraction a safety property may be disproven for the
abstract model even though it is actually true of the original program. Abstractions can be
introduced by omitting some details of the original program from the model. For example,
state variables deemed irrelevant for the verification task at hand may be left out of the
model, reducing the total number of program states. Abstractions may also be introduced
for systems with multiple, symmetric variables, processes, or data structures. In these cases
a single instance might be modeled precisely, while the state and transitions of all other
instances are conservatively over-approximated. For example, a single entry in a large array
may be modeled precisely, while all other entries are modeled abstractly. In Chapter 3, we
present a new technique for model checking systems with large data structures using a form
of symmetry-based abstraction.

Although originally developed for the verification of hardware designs and other finite state
systems, model checking techniques have successfully been applied to verifying software
systems [63,64]. Software model checking tools typically comprise an input or modeling
language, a language for formalizing the properties, and the model checking engine. A typical
work flow for model checking is shown in Figure 2.1. Given a program S, the first step is
to build a model M of the program using the input language of the model checking engine.
At the same time the property to be proven, ®, must be formalized using the specification
language of the model checking engine. In our work, we focus on verifying safety properties,
properties that state an invariant of the system. In this case, the model checking engine
checks that ® holds at all system states, or equivalently, that no bad state, in which ® does
not hold, is ever reachable. The model checking engine can output one of three results.
The first is that the property is proven: the engine explored the entire state graph of the
model and found no bad state. The second possible outcome is that the property does not
hold. In this case, the model checking engine was able to find a reachable state in which ®
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was false, and typically, the model checking tool will return a counter-example. The third
possible outcome is that the model checking engine was not able to prove the property holds,
but neither was it able to find a bad state and corresponding counter-example. This result
essentially means the model checking engine either timed out or ran out of memory before
finding a counter-example or successfully proving the property.

Model checking is an automated technique that allows us to prove properties about software
systems relatively quickly and without requiring significant expertise in formal methods.
However, it does have its drawbacks. One concern is that verification is done on a model
of the program, not on the program itself. Typically, the model is built manually and
it is always possible for human error to introduce discrepancies between the model and the
program. Even when a model checking tool operates directly on source code, it will internally
construct a model of the code, and the verification often relies on manual pruning of the
code plus manually created environment models. If a model does not correctly represent its
program, any subsequent verification results do not accurately reflect the correctness of the
program. In Chapter 4 we present a framework for validating a model against its program
to address this weakness. A similar issue arises during code maintenance. Any updates
to a verified software system will require updating and reverifying the model. Keeping the
code and model synchronized throughout the lifetime of the system represents a serious
engineering challenge. We do not address this issue directly, but rather point it out as
evidence of the broad need for model validation research in general. Another consequence
of manually built models is that the modeling effort involved in the verification of large
system software, such as a hypervisor or CPU emulator, can be monumental. Techniques to
automatically derive the model from the program would be useful and would mitigate that
concern. In our work, we manage this limitation by focusing our verification efforts on one
component of the system that is critical to security: the memory management subsystem.

A second concern is that the formal property ® may not be the right property. That is, it may
not accurately reflect the high level system property that we wish to verify. This is a concern
with any formal verification technique, including model checking. Typically, verification is
done with some high-level English language property in mind. However, the verification
tool, in this case, the model checking engine, requires the property be formalized. Correctly
capturing the intended property in a mathematical formalism can be difficult. One way to
protect against this type of error is to clearly define the high level properties of interest at
the beginning of the verification effort and spend some time developing the corresponding
mathematical statement. We do this in Chapter 3, where we discuss the high level security
goals for this verification effort and spend some time developing the related formal properties.
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S

Figure 2.1: Model checking work flow.

Given a system S, a model M is derived; M, along with the property to verify, ¢, are given to the model
checking engine. The model checking engine can output one of three results: the property is proven to hold
for the model, the property is proven not to hold, or the property can not be proven to hold, but neither
has a counter-example been found before the engine times out.

2.3 Related Work

Formal Verification of Systems Software

Verifying the security of virtualization software has its roots in a long history of work verifying
the security of operating systems. Dating back to the late 1970’s, early verification efforts
concentrated on proving properties related to process or data isolation [65]. Typically, the
operating system was designed from the ground up, alongside the verification effort, and
was based on a capability mechanism in order to make verification of isolation properties
more tenable [66]. Formalizing the desired property was a large part of the research effort.
The properties were then proven for an abstract, high-level specification of the system,
and then as the specification was refined and details were added, each new, lower-level
specification was formally shown to refine its predecessor. The last level of refinement was the
implementation, either in a high-level language like C or in the executable machine language,
and this implementation was proven to correctly implement the lowest-level specification.
By transitivity, the property proven true of the abstract specification was shown to be true
of the implementation. These early verification efforts were done using semi-automated,
machine checked proofs. The Provably Secure Operating System (PSOS) [66], the UCLA
Unix Security Kernel [67], and Kit [68,69] are all examples of these systems, known generally
as “security kernels.”

In 1981 Rushby introduced the concept of a separation kernel [70]. Imagined as a way
to make the verification of secure operating systems easier, the basic idea of a separation
kernel is to mimic logically the physical separation provided by a distributed system. In



CHAPTER 2. BACKGROUND 12

a separation kernel, execution contexts are separated into partitions, data is kept isolated
within its partition, and information flow between partitions is always mediated. Typically,
two partitions can communicate only through a small set of communication channels, which
are determined once at initialization and kept invariant thereafter. The behavior and data of
one partition is kept entirely separate from, and can have no effect on, every other partition.

Separation kernels make verification of secure operating systems easier by separating the pol-
icy from its enforcement. A separation kernel is responsible for providing data isolation and
mediation for all information flow between partitions. However, it is up to an initialization
process (usually running above the kernel level) to determine how the partitions should be
set up: how many partitions there should be, which processes should run in each partition,
and which partitions should be allowed to communicate with each other. In other words,
it is up to that initialization process to set up the policy that says what security proper-
ties the system should provide. In this way, a separation kernel can be verified to show it
properly enforces the partitioning, while the security policy of a particular system can be
independently verified to show the system’s policy provides the desired security properties.
Greve et al. formalized the separation policy that a general purpose separation kernel should
provide [71].

More recently, separation kernels have been used in a variety of security- and safety-critical
contexts. Baumann et al. demonstrate the verification of the memory manager in PikeOS, a
separation kernel based on the L4 kernel [72]. They show that memory will never be misal-
located between partitions, and threads can only access memory within their own partition.
The verification is done using a combination of automatic and manual tools. They use the
VCC verifier for concurrent C code to establish certain lemmas hold for the source code,
then a manual proof combines the lemmas into a proof of the isolation properties.

Separation kernels have been successfully used as the basis for systems requiring Common
Criteria certification of level EALG6 or EALTY, the highest levels possible. Richards demon-
strated the formalization and verification of a separation kernel in a real-time operating
system environment used in avionics [73]. The verified separation property ensures fault-
containment: a fault occurring in one partition will have no effect on the behavior of any
other partition. Martin et al. report on the formal specification and development of a separa-
tion kernel for use in a smartcard [74]. The kernel provides the basis for the key management
system of an F22 fighter aircraft and for secure radios used by the navy. Heitmeyer et al.
demonstrate the formalization of a data separation property, and its verification, for an em-
bedded device [75,76]. The kernel provides temporal as well as spatial data separation, as a
partition’s classification could change over time, and memory accessible at one classification
level may not be accessible at a different classification level.

Perhaps the most complete verification, to date, of a modern, general purpose microkernel is
the selL4 project [77,78]. The authors provide complete functional verification down to the
source code level of the kernel, and their verification of information flow security properties
make sel.4 applicable as a separation kernel. The kernel’s functionality is expressive enough
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to allow a complete paravirtualized Linux kernel to run in one partition. However, this
high assurance does come at a cost. Partitions are determined statically, and any desired
communication between partitions must also be set up statically at initialization. Scheduling
of partitions is done in a pre-determined, set round-robin fashion, with each partition getting
a fixed time slice. As such, although an excellent example of verification of system software,
selL.4 is not suitable for use as a general purpose hypervisor. For example, data centers use
hypervisors to try to eke out the most efficient allocation of resources to guest operating
systems with varying workloads.

In all these cases, the formalization of the separation property differs slightly to suit the
operating context, but the main goal — verifying isolation between components — is similar to
our efforts to verify isolation between guest operating systems in a virtualized environment.
The above research differs from ours, though, in that all the above cases, the separation
kernel and its verification were developed together, whereas we focus on the verification of
legacy software systems.

Verification of Virtualization Software

In this section we discuss some of the previous research exploring the possibility of verifying
virtualization software.

Barthe et al. built a model of memory management in a paravirtualized hypervisor based
on a simplified version of Xen [79]. They use the Coq proof assistant [80] to verify three
properties of the model: 1) Isolation: A guest operating system can only read or write its own
memory. 2) Non-interference: the behavior of one guest operating system is not influenced
by the behavior of any other guest. 3) Liveness: a request made by a guest operating system
to the hypervisor will eventually get a response. The model and proofs took around 20
KLOC in Coq’s input language.

The Xenon project takes a step toward the verification of a general purpose hypervisor [81-
83]. Based on the Xen hypervisor, Xenon strips out some non-essential features to make
verification easier. The authors developed a formal specification of a security policy that
guarantees non-interference between domains. This specification served as a guiding doc-
ument during the re-engineering effort. They also developed formal models of some parts
of the hypervisor, such as the hypercall interface. Full verification of an information flow
security policy in a commodity hypervisor not designed for verification is an ambitious goal,
and development of the formal models and specifications are important first steps. However,
the verification of the specified properties was not completed.

The Hyper-V/VCC project represents perhaps the most ambitious hypervisor verification
project to date [84]. The Hyper-V hypervisor is a large general-purpose hypervisor com-
prising roughly 100 KLOC in C and 5 KLOC in assembly [85]. It was not designed for
verification, rather the reverse: the verification tool, VCC, was specifically designed for use
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on large software systems such as Hyper-V. VCC is a verifier for concurrent C code [86].
It requires code be annotated and relies on code contracts, such as function pre- and post-
conditions to develop the verification formula that can then be sent to an SMT solver for
proof of validity. Along the way, the authors of this project developed a “baby hypervisor,”
the verification of which they used to guide the development of VCC [87]. For both the
baby hypervisor and Hyper-V, the authors concentrated their verification efforts on memory
virtualization, in particular that the virtual TLB presented to a guest correctly emulates the
behavior of a physical TLB [88].

Designing Virtualization Software for Verification

Formal verification of large software systems often runs into difficulty handling the complex-
ity in these systems. The research described in this section tackles that problem by building
systems specifically designed to make formal verification feasible. The designs focus on mak-
ing the code modular, with well-defined interfaces, and often with functionality limited in
some way that will considerably reduce complexity, thereby making verification easier.

Nova is an example of a hypervisor specifically designed for verification [89]. Similar to mi-
crokernels, much of the functionality of the hypervisor is moved to the user-level, minimizing
the amount of privileged code that must be verified. Also similar to many microkernels, the
Nova hypervisor is built around capability-based protection domains. The verification goals
are to demonstrate spatial and temporal isolation between guest operating systems. The
authors of Nova concentrate on tackling two challenges present in any verification effort:
correct modeling of the system to be verified and correct representation of the system’s en-
vironment. They tackle the first problem by developing a compiler from a subset of C++ to
a formal semantics suitable for use as input to the PVS interactive theorem prover. This en-
ables direct verification of the source code without requiring a modeling step. This is similar
in some respects to the Hyper-V verification effort, which also included a translation from
annotated C to a logical formula that could be then fed into a theorem prover. To model the
environment, the Nova authors developed a formal description of parts of the IA32 architec-
ture, including models of three memory interfaces provided by the physical CPU: physical
RAM, memory-mapped devices, and virtual memory [90,91]. Although verification of the
Nova hypervisor was not completed, its design, along with the environment models provide
a strong contribution to the field of hypervisor design-for-verification [92].

Another, recent effort of hypervisor design for verification is the XMHF hypervisor frame-
work [93]. The framework is designed to be an easily extended platform for building security-
critical, hypervisor-based applications. The authors make three design choices to enable
verification of the framework and any hypervisors built on top of it: 1) Common hypervisor
functionality is built into the XMHF core, so that it can be verified once and then used by
any hypervisor built on the framework. 2) The framework relies on new hardware support for
virtualization [94], including nested page tables [95,96], DMA protection [97,98], and support
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for dynamic root of trust [99]. This obviates the need to verify complex software implemen-
tations of these systems. However, it does not remove the complexity; rather, it pushes the
complexity down to the hardware level. 3) Hypervisors built on the framework are restricted
to supporting a single guest. This allows the hypervisor to be sequential and single-threaded,
and it allows the guest OS to directly control any peripheral hardware devices. Verification
of the XMHF framework focuses on proving memory integrity, i.e., guaranteeing that no
guest can modify any of the hypervisor’s code or memory. This is done using the CBMC
model checker; however, some aspects of the code base, such as the logic for looping over the
large page table structures, can not be handled by CBMC and for those portions, manual
auditing is used to give confidence in the code’s correctness. Managing large data structures
during verification is a well-known challenge, and in Chapter 3 we present one solution for
how to formally verify such structures.

Testing Virtualization Software

Another way to validate the correctness of virtualization software is by testing. With testing,
the focus is on bug finding, rather than proving correctness. And, although the state space of
these systems is by far too large to allow testing to be complete, several methods have been
developed which have proven effective. Ormandy first used black box fuzz testing to look
for security vulnerabilities in four virtualization software systems: Bochs, QEMU, VMware,
and Xen [100]. He focused on the instruction decoding and handling mechanisms and used
randomly generated inputs to find instructions or I/O activity that would cause the emulator
to crash or exit abnormally. He found bugs in all four systems tested, and the bugs ranged
from buffer and heap overflow errors to divide-by-zero errors. Ormandy showed that, for
each system tested, an attacker could exploit the vulnerabilities found to reliably halt the
virtualization process and, in some cases, take over the host process to run arbitrary code
on the host. The latter is clearly dangerous, and the former can be used by the attacker to
thwart malware analysis.

Martignoni et al. used directed fuzzing combined with differential testing to find bugs in
process emulators, system emulators, and virtual machines [41]. In all cases, testing focused
on finding defects in the emulation software, i.e., test cases or instructions that resulted in
the emulated state differing from what the true state would have been. One of the challenges
in using fuzzing-based methods on emulation software is achieving high instruction coverage;
a random sampling of byte-code patterns is unlikely to achieve full x86 instruction coverage.
A second challenge is determining, for each test case generated, what the correct system state
should be after executing the instruction. Martignoni et al. tackle the first problem using a
combination of purely random byte-code patterns and random data fields with known opcode
fields. The authors tackle the second problem using a physical CPU as the oracle that gives
the correct post-test case state. The authors looked at the system emulators Bochs, QEMU,
VMware, and VirtualBox and found defects in all four of the systems. Paleari et al. applied
a similar technique to x86 disassemblers, and again found bugs in all systems tested [101].
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Disassembly code is similar to the instruction decode algorithms found in CPU emulators
and hypervisors.

A different approach to testing virtualization software was taken by Martignoni et al. with
their technique dubbed “path lifting” [40]. The authors use symbolic execution to explore
paths through one “high-fidelity” emulator and use the results to generate test cases for
a second “low-fidelity” emulator, looking for places where the behavior between the two
emulators diverges. This approach is more complete than fuzz-based testing, but is still
primarily concerned with bug finding. Like all the testing based techniques discussed in
this section, path lifting is effective at finding bugs, but is unable to prove the absence of
bugs or prove the validity of safety properties. That is the essential trade-off made between
testing and formal verification: testing allows more automation at the expense of less strong
results.
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Chapter 3

Verifying Large Data Structures using
Small and Short Worlds

A particular challenge for the verification of CPU emulators, virtual machine monitors, and
hypervisors is their use of large data structures. For example, logical-to-physical address
translation requires data structures to store the CPU’s Translation Look-aside Buffer (TLB)
and page tables. While these structures are finite-length for any given processor, they are
usually too large to represent precisely for verification; often, they are abstracted to be
of unbounded length. The data structures in the resulting model of the system are thus
parametrized: the indices into those structures are parameters, taking values in a very large
or even infinite domain (typically finite-precision bit-vectors or the integers). The techniques
proposed for verifying such parametrized systems fall into two classes: those based on a small-
model or cut-off theorem (e.g., [102-104]), or those based on abstraction (e.g., [105-107]).
While existing approaches are elegant and effective for their respective problem domains,
they fall short for the problems we consider: the small-model approaches usually restrict
expressiveness, while abstraction-based approaches either focus on control properties (as
opposed to equivalence/refinement) or handle only certain kinds of data structures. In both
cases, some of the realistic case studies we consider cannot be handled. (We make a fuller
comparison in Section 3.5.)

In this chapter, we present a new semi-automatic methodology for verifying safety properties
in systems with large data structures [46]. Our approach comprises three steps. First, we
employ standard mathematical induction to verify the safety property, and if that succeeds,
the process is complete. Second, if induction fails, we create an over-approximate abstraction
of the system, the “small world,” in which unbounded data structures are parametrized and,
in general, only a subset of the state is updated as per the original transition relation (e.g.,
only a few entries of the unbounded data structures); the rest of the state is updated with
arbitrary values at each step. With this abstraction, the model is more amenable to state-
space exploration. Third, we attempt to find a bound k£ on the reachability diameter of
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cache | addr | data |
mem
—1bit—
read(addr)
next(cache) := addr o ITE(cache. addr = addr,

cache. data, mem[addr])

Figure 3.1: Running example.

A read-only memory and a single-entry cache. The cache is updated on each read command.

the small world so that, if bounded model checking (BMC) for k steps succeeds in the
small world, then the safety property must hold in the small world, and since that is an
over-approximation of the original system model, then the safety property holds there as
well. Heuristics are presented for finding k that are effective for the class of systems we
consider. We term this BMC-based approach the “short world” method, since it relies
on computing a “short” bound for BMC. Our overall approach, termed Small-Short-World
(S*W ), is implemented on top of the UCLID system [108], which verifies abstract, term-
level models using satisfiability modulo theories (SMT) solving. Note that the temporal
safety verification problem for our class of systems is undecidable. As a result, S?W is a
semi-decision procedure.

3.1 Running Example

We introduce here a running example: a simple read-only memory system with a single-
entry cache. We prove an invariant about the value returned by a read command. We build
a model in our modeling language and demonstrate the verification of the safety property
using S2W. Our example is meant to be small, understandable, and illustrative, rather than
“real-world.”

Our example system (Figure 3.1) takes only one command, read, with a single parameter,
the 32-bit address to be read; it returns a single-bit data value. At each read command, the
cache is first checked. If the cache contains the data for the address requested, that value
is returned. Otherwise, the value is read from memory. In either case, the cache is updated
with the requested address and the returned data value. The update to cache is shown in the
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above figure (we use “o” to mean concatenation). We prove an invariant about the cache:
if the cache holds a valid address, then the cached data value is equal to the value stored in
memory at that address. In other words, we show that the cache is correct.

3.2 Formal Description of the Problem

Notation and Terminology

A system is modeled as a tuple S = (Z, O, V, Init, A) where

7 is a finite set of input variables;

O is a finite set of output variables;

V is a finite set of state variables;

Init is a set of initial states; and

A is a finite set of assignments to variables in V. Assignments define how state variables
are updated, and thus define the transition relation of the system.

Input and output variables are assumed combinational (stateless), without loss of generality.
V is the only set of state-holding variables. Variables can be of two types: primitives, such as
Boolean or bit-vector; and memories, which includes arrays, content-addressable memories
(CAMs), and tables. An output variable is a function of VUZ. When representing a system
without outputs, we will omit O from the representation. The set of initial states, Init,
can either be viewed as a vector of symbolic terms representing any initial state, or as a
Boolean-valued function of assignments to V, written Init()).

Figure 3.2 denotes the grammar for expressions in our modeling language. The language has
three expression types: Boolean, bit-vector, and memory.

bE ::=  true|false|b| —bE | bE; V bEs
‘bEl A bEq ‘ bvE; = bvEsy ‘ bVI‘el(bVEl, RN bVEk> (k > 1)
|UP(bvEy,...,bvEg) (k> 0)

bvE ::= ¢ |v | ITE(bE, bvEy, bvEs) | bvop(bvEy, ..., bvEg) (k
|mE(bvEq, ..., bvE;) | UF(bvEy,...,bvEg) (1> 1,k

mE = A| M| Xz,...,x;).0vE (k> 0)

> 1)
> 0)

Figure 3.2: Expression Syntax.

c and v denote a bit-vector constant and variable, respectively, and b is a Boolean variable. bvop denotes any
arithmetic/bitwise operator mapping bit-vectors to bit-vectors, while bvrel is a relational operator other than
equality mapping bit-vectors to a Boolean value. UF and UP denote an uninterpreted function and pred-
icate symbol respectively. A and M denote constant and variable memories. x1,...,x); denote parameters

(typically indices into memories) that appear in bvE.
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The simplest Boolean expressions (bE) are the constants true and false or Boolean variables
b; more complicated expressions can be constructed using standard Boolean operators or
using relational operators with bit-vector expressions. We also allow a Boolean expression
to be an application of an uninterpreted predicate to bit-vector expressions.

Bit-vector expressions (bvE) include bit-vector constants, variables, if-then-else expressions
(ITE), and expressions constructed using standard bit-vector arithmetic and bitwise op-
erations. Additionally, bit-vector expressions can be constructed as applications of unin-
terpreted functions returning bit-vector values and applications of memories to bit-vector
arguments. Each bit-vector expression has an associated bitwidth. When a bit-vector ex-
pression is used as an index into a memory we may abstract the bitwidth to be unbounded,
meaning that the memory is of arbitrary size.

Finally, the primitive memory expressions (mE) can be (symbolic) constants or variables.
More complex memory expressions can be modeled using the Lambda notation introduced
by Bryant et al. [108] for term-level modeling; this includes the standard write (store)
primitive for modeling arrays, as well as more general operations such as parallel updates to
arrays, operations on CAMs, queues, and other data structures.

A next-state assignment « denotes assignment to a state variable and is a rule of the form
next(z) := e, next(x) := {ey,ea,...,€,}, or next(x) := {x}, where z is a signal in V, and
e,e1,e,...,6, are expressions that are a function of V UZ. The curly braces express non-
deterministic choice. The wildcard “x” is also an expression of non-deterministic choice. It
is translated at each transition into a fresh symbolic constant of the appropriate type. The
set of all next-state assignments defines the transition relation R of the system. Formally,
R = Ngear(@), where r(next(z) := e) = (' = e) and r(next(z) := {e1,e2,...,6,}) =
Vi (@' = e;), where 2’ denotes the next-state version of variable x. We will sometimes write
the transition relation as R(V,Z,V’) to emphasize that it relates current-state variables V
and next-state variables V' based on the inputs Z received.

Example 1 We formally describe our model from Section 3.1. Let Sy = (Z, O,V, Init, A)
be the system, with

e 7 = {addr}. addris the 32-bit address to read from memory.
e O = {out}. outis the value read from either memory or the cache.

e V = {mem, cache}. mem is constant and is modeled as an array of one-bit bit-vectors.
It is represented by an uninterpreted function that maps a 32-bit address to a single bit.
cache is a single 33-bit bit-vector; it holds the one-bit data value and 32-bit address of
that value.

o Init = (memy, cachey). mem is initialized to hold arbitrary data values at each address.
cache is initialized to hold an invalid address, 0x00000000, with an arbitrary data value.
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e A. On each read command cache is updated with the address read and the value
returned by the read; mem remains constant.

Problem Definition

Consider a system S modeled as described in the preceding section. We similarly model the
environment &£ that provides the inputs for & and consumes its outputs. The composition
of § and &, written S||€, is the model under verification, M. The form of the composition
depends on the context; we use both synchronous and asynchronous compositions. We will
represent the closed system M as a transition system (Vpy, Init o, R aq), where the elements
respectively denote state variables, initial states, and the transition relation. In all of our
examples, the environment £ is stateless, generating completely arbitrary inputs to S at each
step; thus Yy =V, Inity = Init and Ry = R.

This paper is concerned with verification of temporal safety properties of the form G &,
where G is the temporal operator “always” and ® is a state invariant of the form

Vi, .o Tk O(T1, ..., Tg) (3.1)

where ¢ is a Boolean expression following the syntax of bE. The parameters zy,...,x; are
bit-vector valued, but usually too large to exhaustively case split on; therefore, it is common
practice to abstract their bitwidths to be unbounded, and perform verification for memories
of arbitrary size.

Example 2 In our running example, we verify G @35, where

G35 = Vz. (addr=x) —
((cache.addr = addr A cache.addr # 0) —
cache.data = mem[addr]) (3.2)

The problem tackled by this paper, temporal safety verification for systems with large data
structures, is formally defined as follows.

Definition 1 (Large Data Safety Verification) Given a model M formed as a compo-
sition of system S and its environment £, and a temporal safety property G ®, determine
whether or not M entails G P.

This problem is known to be undecidable in general since a two-counter machine can be
encoded in our formalism using applications of uninterpreted functions [109]. Hence, we can
only devise a semi-decision procedure for the problem. In the next section, we describe such
a procedure that is based on abstraction.
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3.3 Methodology

S?W is based on a combination of abstraction and bounded model checking (BMC). We
tackle state-space explosion by abstracting away all but a small subset of the space of the
system. We call this mostly abstracted system our “small world.” The abstracted portion
of the system can be considered as being updated with an arbitrary value (“«”) at each step
of execution. All other parts of the system are modeled precisely. Thus, this abstraction is
a form of localization abstraction [110], where the localization is to small, finite portions of
large data structures.

We check the safety property on the small world using BMC. To make BMC sound, we first
find and prove the length of the diameter D of our small world to use as the bound —i.e., D is
an integer such that every state reachable in D+ 1 steps is also reachable in D or fewer steps.
Proving that a conjectured diameter D is correct is undecidable in our formalism [111]. The
key to our approach is a set of heuristics that are effective in our chosen application domain
of emulators, virtual machine monitors, and hypervisors. For our examples, the diameter of
the mostly abstracted system is typically small; we therefore term this the “short world.”

If BMC runs for D steps and does not find a violation of the safety property in our small
world, then the original model is safe. If BMC finds a counter-example, we cannot say
whether the property holds for the original model: BMC can return a spurious counter-
example. Choosing the small world well reduces the likelihood of finding spurious counter-
examples.

To summarize, there are two crucial pieces to our approach: choosing the right small world
and proving the length of the short world. We discuss both of these in more detail below.

As an optimization, we prefix the above approach with an attempt to prove the safety
property using one-step induction (on the original, non-abstract model, M). If that succeeds,
there is no need to continue on to S?W’s abstraction. This step can be generalized to perform
k-step induction as needed.

For the presentation in this section, it is convenient to represent the system under verification
S as a transition system (Z,V, R, Init) where the elements of the tuple have the same mean-
ings as in Section 3.2. The environment £ sets the values of the input variables in Z at each
step; in all our case studies, the inputs from &£ are completely unconstrained. Verification
(using induction or BMC) is performed on the composition of S and &.

Induction

First, S?W attempts to prove the safety property using simple one-step induction on the
non-abstract model M. We check the validity of the following two formulas, as per standard
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practice:

Q(Vat) A Ru(Vm, Vi) = (Vi)

If both checks pass, the verification is complete. We report “Property valid” and exit. If
check 3.3 fails, the property is invalid. We report “Property invalid in initial state” and exit.
If check 3.4 fails, we continue with S?W, to find the small world.

Small World

The objective of this step is to identify a small portion of system state that we should model
precisely during BMC. Everything else will be allowed to take on arbitrary values at each
step of execution.

It is important to note that the soundness of S?W does not depend on the choice we make
for the small world; we could randomly select some portion of the state to model precisely,
abstract everything else away, and if our three steps complete and verify the property, the
property would be true of the original, non-abstracted system. However, choosing the small
world wisely ensures that the short world is indeed short, which allows BMC to complete in
a reasonable amount of time. A well-chosen small world also reduces the number of spurious
counter-examples returned by the BMC step.

We present here a heuristic for choosing the small world when dealing with systems involving
large or unbounded data structures. In our case studies, the heuristic found a small world
whose short world was reasonable in length and for which no spurious counter-examples were
returned by the BMC.

To select those state variables to model precisely, S?W starts with the property G ®, where ®
is of the form Vxq, o, ..., 2. ¢(x1,29,...,2,). If we prove ® by instantiating the quantifier
with a completely arbitrary, symbolic parameter vector (ay, as, ..., a,), that suffices to prove
the original property. Thus, starting with the symbolic vector (ay,as, ..., a,), we compute
a dependence set U for the instantiated property ¢(as,as,...,a,). U is a set of expressions
involving state variables and the parameters aq,...,a, such that fixing the values of the
expressions in this set fixes the value of the instantiated property. For variable M modeling a
memory, these expressions typically involve indexing into M at a finite number of (symbolic)
addresses. For a Boolean or bit-vector variable, either the variable is in ¢/ or not.

Typically, this set of expressions is derived syntactically by traversing the expression graph
of the formula ¢ represented in terms of state and input variables (after performing certain
simplifications).
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Example 3 In our running example, recall that the property is G ®35 where:

$35 = Vr. (addr=z) —
((cache.addr = addr A cache.addr # 0) —

cache.data = mem|addr])

®3 5 has the form Vz. ¢(z). Instantiating = with a, a fresh symbolic constant, we can drop
the quantifier and get ¢(a), for which, by propagating the equality addr = a, we see that its
value is determined by the expressions mem[a] and cache. Thus, we use U = {mem|a), cache}
as our dependence set.

Once we have computed U, using the above heuristic or some other method, we can define
our small world. Recall that S is represented as a symbolic transition system (Z,V, R, Init).
Let R be a transition relation that differs from R by setting all state variables not in U to a
non-deterministic value and leaving all others unchanged. Abusing notation slightly to use
U wherever we use V, this means that R(U, Z,U') = R(U,Z,U'), and RIW,T,W') = true
for W =V \U. Similarly, Init(U) = Init(U) and Init(W) = true.

Then the abstracted small world is S = (Z,V, 7%, Iﬁit). S is an overapproximate, abstract
version of § that precisely tracks only the state in ¢/, and allows all other variables to change
arbitrarily at each step of execution. Thus, the composition of S and £ is an overapproximate
model M. It is important to note that if M was infinite-state, M continues to remain so.

The next step is proving a short world for S and using BMC on M to verify the property.

Short World

The objective of this phase is to determine a bound on the diameter D of the abstract model
M. For this section, we will assume that &£ is stateless, as is the case for all of our case
studies; the approach extends in a straightforward manner for the general case. Thus, the
diameter of M is the same as that of S.

Suppose we believe the diameter to be D < k. To verify this bound, we check the validity
of the following logical formula:

VV()a V17 s ,Vk+1,11712, s 7Ik‘+1-
k A
[[n@t(Vo) VAN /\R(Vi,Ii_;,_l, Vi—i—l)} —
=0
k—1 k
BV VL VLT, T it (V) A N\ ROVLTL Vi) A\ Ve = V)] (35)

=0 i=0
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Since R modifies state expressions outside U arbitrarily on each step, we can replace V
everywhere in the above formula with U/, and obtain the actual convergence criterion that
must be checked.

Nevertheless, checking the convergence criterion is undecidable for the class of systems we are
interested in, due to the presence of uninterpreted functions, memories, and parameters with
unbounded bitwidth [111]. The quantified formula in (3.5) is also hard to solve in practice.
Therefore, quantifier instantiation heuristics must be devised to perform the convergence
check. In this section, we present two such heuristics that have worked well for the range of
case studies considered in this paper.

The Sub-Sequence Heuristic

The first heuristic checks that for any state reachable in k + 1 steps using k 4+ 1 symbolic
inputs to S’, one can also reach that state using some sub-sequence of length < k of those
k + 1 symbolic inputs. We can express the sub-sequence heuristic as performing a particular
instantiation of the existential quantifiers in criterion 3.5, and checking the validity of the
following formula that results:

VZ/{07Z/{17 B 7Uk+171-17:z-27 B 7Zk+l7u(/]7u{7 s )u],g

k
[[nlt(UO) N (Z/{() = Z/l(’]) A /\ﬁ(ui,liﬂ,uiﬂ)} —

=0

k—1 k
\/ /\ 7%( b T, Ui) A \/Uk+1 =U; (3.6)
i=0

(T} T = (Tt sy Tj1) Li=0

Here the symbol < denotes that (Z7,...,Z}) is a sub-sequence of (Zy, ..., Tx41).

The intuition for the sub-sequence heuristic is that in many systems with large arrays and
tables, locations in those tables are updated destructively based on the current input, mean-
ing that past updates do not matter. The address translation logic in the emulators we
have studied has this nature. Thus, for such systems, it is possible to drop from the input
sequence inputs that have no effect on the k + 1-st step.

Observe the quantifier alternation in criterion (3.5) has been eliminated in the stronger
criterion (3.6). Thus, we can simply perform a validity check of an SMT formula in the
combination of theories required by our model. If the sub-sequence criterion (3.6) holds,
then so does (3.5). However, it is possible that criterion (3.6) is too strong, even when a
short diameter exists. This scenario necessitates an alternative semi-automatic approach,
described next.
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The Gadget Heuristic

The gadget heuristic is an approach to instantiating the existential quantified variables in
criterion (3.5) that is particularly useful for systems in which some state in & depends on
the past history of state updates in a non-trivial manner. A gadget is a small sequence of
state transitions manually constructed to generate some subset of all reachable system state.
A universal gadget set is a set of such sequences that, in concert, can generate any reachable
system state.! The length k of the longest gadget in the universal gadget set is then an
upper bound on the diameter of the system.

In terms of the formula expressed as criterion (3.5), a gadget is a particular guess for a set of
initial states V| (expressed symbolically) and a sequence Z7, 7, . .., Z] (for I < k) of symbolic
input expressions to use. For a finite number of gadgets, the inner existential quantifier in
criterion (3.5) can be replaced as a disjunction over all the formulas obtained by substituting
the gadget expressions for (Vj,Z},Z), ..., Z]). If this instantiated formula is valid, then so is
the original formula (3.5).

We defer further discussion about gadget construction to Section 3.3, where we discuss its
use on our running example.

Performing BMC

Once we have proven k is an upper bound on the length of the diameter of S , we run BMC
on S for k steps. If o(ay,...,a,) holds at each step of the simulation, then it follows that
S satisfies G ®. Because S is an overapproximation of all states reachable by S, it follows
that S satisfies G .

If BMC fails, we return a “short” counter-example. The counter-example will be no longer
than k. If this is a valid counter-example, the property does not hold. If it is a spurious
counter-example, we can return to step two of S?W and expand our set I to include more
state variables and inputs. Such a strategy would be an instance of counter-example-guided
abstraction refinement.

Restricted State Spaces

In some systems, we are interested in proving a safety property over a restricted state space,
where the restriction can be captured by a predicate over state variables. The restriction
predicate is often specified as an antecedent in the temporal safety property. Examples of
such a restriction can be found in Section 3.4. In such cases, we note that it is enough

LOur gadgets are inspired by “state-generation gadgets,” used for automated testing of CPU emulators
from arbitrary but reachable initial states [40], and by gadgets identified for return-oriented programming,
used to produce a Turing-complete command set for malicious exploits [112].
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to compute a bound on the reachability diameter — the short world bound — under that
restriction. It also sufficient to perform model checking under the restriction.

Example

To illustrate the above approach, we apply it to our example. In step one we attempt to
prove property G @3, by induction. For this, we perform the following two checks:

Init(mem, cache) — @34
@3.2 A RT(V, V,) — (1)3.2

Check (3.7) passes, since the cache is initially empty. However, the induction step (check (3.8))
does not pass. Starting from a state in which ®35 holds, it is possible to transition to a state
in which ®3, is violated. To see why this is so, consider the following state for the cache
and two particular entries of mem:

memli] := a, mem[j] := b, cache.addr:= i, cache.data:= z

where 2 # a, the last read was for address j, and the output was b. This state is not reachable
in our model, but one-step induction does not take this into account. Note that ®35 holds in
this state: for every x # j, the antecedent (addr = x) of the property is false and therefore
the property is true; when x = j, the nested antecedent (cache.addr = addrA cache.addr # 0)
is false and therefore the property is true. In this state, a read(i) command will hit in the
cache and the output will be z, making the property evaluate to false in the next state.

Since simple induction failed for our toy example, we move to the next step, identifying
the small world Sy. As described in Section 3.3, we introduce a fresh symbolic constant a
for x, removing the Vz quantifier from the property. We then select U syntactically from
the property to be the set of expressions U = {memla], cache}. In Sy the variables in U
are updated according to the original model (Sr). All other state variables (all entries of
mem other than mem[a]) are made to be fully abstract: they are allowed to update to
non-deterministic values on every step. The same symbolic constant is used throughout the
following short world checks.

The last step of our verification is to identify a short world and then run BMC on the
abstract model for the length of the short world. We describe the gadget heuristic here;
the sub-sequence heuristic would also work, although it finds a slightly looser bound on the
length of the diameter. To build the gadgets we enumerate the possible end-state valuations
for the system’s state variables (cache, mem[a]) and for each, determine how to get there
from a possible starting state. Notice that we only need to consider mem|a] and not all of
mem. This is because in our small world, Sy, all entries of mem other than mem|a] receive
new arbitrary values at the end of each step, so we know they can hold any possible value
at every step of any trace. In theory there are 23* end-states: one for each possible value of
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cache.addr times the two possible values of cache.data and meml|a] each. However, for our
property, we do not really care about the precise valuation of cache.addr, rather, we care
about whether cache.addr = a and whether cache.addr = 0. So we can abstract away the
details of cache.addr and consider the following 16 ending states:

{cache.addr = a, cache.addr # a}
x {cache.addr = 0, cache.addr # 0}
x {cache.data = 0, cache.data = 1}

x {memla] = 0, mem|a] = 1}

Not all of the above 16 states are reachable, and in the end four gadgets are enough to
reach all reachable states. Fach gadget uses either one or two read commands. We build the
gadgets with the appropriate values for addr and show they form a universal gadget set and
therefore, that the short world has length two. We then perform BMC and verify that the
property holds.

3.4 Evaluation

We have evaluated S?WW on six case studies and describe them here: the TLB of the Bochs
x86 emulator, a set-associative cache, shadow paging in a hypervisor, hypervisor integrity
for SecVisor [103], the Chinese Wall access-control policy in sHype [103], and separation
in ShadowVisor [102]. We describe the first three in detail; the last three were verified
using one-step induction and we describe them only briefly. The code for all of our models,
along with their verification, is available online.? All experiments were performed using
UCLID [113] with the Plingeling SAT solver [114] backend on a machine with 8 Intel Xeon
cores and 4 GB RAM.

Bochs’ TLB

Bochs [54] is an open source x86 emulator written in C++ that can emulate a CPU, BIOS,
and I/O peripherals. It can be used to host virtual machines, sandbox operating systems,
and emulate the execution of system-level or user-level x86 code. The code base is large and
previous research has shown that manual analysis and testing, while useful, are not enough
to guarantee the system’s correctness [40,41].

Bochs emulates virtual memory using paging, which includes logic to translate a virtual ad-
dress (VPN) to a physical address (PPN). Figure 3.3 illustrates the steps of a page walk. The
input virtual address vaddr is partitioned into 3 sets of bits (vaddry,, vaddrigpie, vaddrogset)-

2http://uclid.eecs.berkeley.edu/s2w/
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VPN
——— Word

- ‘ paddr
vaddr|dir| table offset{ Word LB

PTE
PTE

VPN | PPN | R/W/X/G
PPN Page VPN | PPN | R/W/X/G
VPN | PPN | R/W/X/G

PDE

> PDE Page Table

Page Directory

Figure 3.3: A page table walk.

On the left, we show a two-level page walk translating VPN to PPN addresses. The TLB caches VPN to

PPN translations along with read/write/execute/global permission bits.

First, the vaddrg;, bits index a page directory entry (PDE) within the page directory region.
The PDE contents, along with the vaddry.p. bits, index into the page tables to retrieve a
page table entry (PTE). The PTE contents identify a 4 KB physical page, and when concate-
nated with the 12 bit vaddrygse:, index a particular byte within this page. Since the above
page walk includes two memory lookups, most x86 processors implement a TLB to cache
VPN-to-PPN translations. The TLB also caches permission bits (r/w/x/g) checked during
memory accesses. With this optimization, Bochs’ address translation logic first checks its
TLB for an entry describing the wanted VPN. If no such entry exists, Bochs performs a
page walk to compute the corresponding PPN, and then stores that translation in its TLB
for future access. We would like to prove that the optimized paging unit (with the TLB) is
functionally equivalent to the original paging unit (without the TLB).

The Bochs TLB + page table system is modeled as a tuple Spoens = (Z, O, V, Init, A) where

e 7 = {waddr, data, pl, rwz, command}. vaddr is the virtual address to translate. data is
used to update the page table memory. pl indicates the CPU’s current privilege level
(either user or supervisor mode). rwz indicates whether this memory access writes
and/or executes this address.

e O = {paddr_-TLB, pagefault_TLB, paddr-noTLB, pagefault-noTLB}. paddr-TLB is the
result of address translation with the TLB. paddr_-noTLB is the result of address trans-
lation without the TLB. pagefault_TLB indicates a page fault occurred during trans-
lation with the TLB. The fault is caused by insufficient permissions. pagefault_-noTLB
indicates a page fault occurred during translation without the TLB.

e V = {mem, TLB, legal}. mem is a 32-bit addressable memory containing both the page
directory and page tables. TLB is an array (2'° entries in Bochs) of structs, where
each struct is 160 bits wide and has 5 32-bit fields, including vpn, ppn, and access bits
(ab). legal is a Boolean variable denoting whether the system reached the current state
via a legal sequence of transitions.
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Command | Modifies | Guard
write_pte mem true
write_pde mem true
translate TLB —present \ —permission
set_cr3 TLB true
invlpg TLB TLB[vaddrigpe). vpngy. s =
(vaddrg, o vaddrigp.)
invlpg_all TLB TLB[vaddripe]. vpng .09 =
vaddr g,

Table 3.1: The allowable operations in our model of the Bochs TLB.

e [nit = (memy, TLBy,true), where TLBy[i].vpn = OxftIftff for all ¢ and memq is an
uninterpreted function from 32-bit addresses to arbitrary 32-bit values. Initializing the
TLB with the vpn field set to Oxfftftf in all entries marks it as empty. legal is initialized
to true.

e A: V evolves via operations write_pde, write_pte, invlpg, invipg_all, setcr3, and translate,
and the environment non-deterministically chooses one of these operations at each step.
Table 3.1 describes each of these commands.

Each command is implemented in distinct functions within Bochs (src/cpu/paging.cc). Since
Bochs executes on a single thread, we can safely model each function as an atomic operation,
i.e., a single step in the state transition system. The commands write_pde and write_pte are
used to update the page directory and page tables respectively, typically to modify access
permissions or page mapping. translate performs address translation and assigns the result
to variables in O. Furthermore, if a page walk was deemed necessary, then translate updates
a TLB entry with the results of that page walk. The setcr3 command is used to switch
to a new page table, typically during a context switch. If global pages are enabled, then
setcr3 flushes all non-global entries in the TLB. Otherwise if global pages are disabled, all
TLB entries are flushed on a setcr3 command. The x86 instruction invlpg flushes a specific
TLB entry containing the translation for vaddr; invlpg is needed to invalidate the TLB entry
following a write to the page table. invilpg_all atomically flushes all TLB entries that have
vaddrygp,e in their vpn (bits 31 to 22); invlpg_all is needed to invalidate a set of TLB entries
following a write to the page directory.

We check equivalence of both the physical address and whether a page fault occurred. Since
the x86 manual only guarantees cache coherency when the TLB is flushed properly, we
only require equivalence on traces where each write_pde is followed by a invilpg_all and each
write_pte is followed by invlpg. This constraint is enforced by legal, which is true only
if the sequence of operations abides by these constraints. Any state that satisfies legal is
guaranteed to be reachable from the initial state via a legal sequence of state transitions.
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The property that we check is:

G339 =VYo,p,r. (vaddr=vApl=pANrwr=r)—
legal — ((pagefault-TLB < pagefault_noTLB) A
(mpagefault- noTLB — (paddr-noTLB = paddr_TLB))) (3.9)

Induction

The one-step induction check consists of proving (3.10) and (3.11) using the UCLID verifier.

[nit(VBochs) — cI)?).Q(])Bochs) (310)
CI)B.Q(VBochS) A R(VBOChS7 Vi?ochs) — ¢)3-9(V£?ochs) (31]_)

Our initial state satisfies ®3 9 because the TLB is initialized to be empty, thereby forcing both
optimized and unoptimized designs to undergo the two-level page walk. However, one-step
induction (check (3.11)) fails because the back-end SMT engine cannot solve the formula,
which has a quantifier alternation. Consequently, we proceed on to the small and short world
steps.

Small World

We syntactically derive the dependence set Us, , by traversing the expression graph of @3 g.
After introducing a fresh 32-bit symbolic constant v = (Vgir, Vsable, Vogset), the dependence set
is

U«I’3,9 = {legala TLB[Utable]7 mem[cr331:12 o Udir]7

mem[mem[cr331:12 o Udir]31:12 o Utable]}

The last three expressions represent the TLB entry, page directory entry, and page table
entry pointed to by v, respectively. (Here ¢r3s;.qo refers to the upper 20 bits of the cr3
control register and is modeled as a symbolic constant.) Our abstract model S Bochs precisely
tracks only the variables in Uy, ,; other state elements get updated with arbitrary values at
each step.

Short World

We use the sub-sequence heuristic to find an upper bound on the diameter of S Bochs- We
find a bound of 9 steps. Finally, we perform bounded model checking for 9 steps, proving
that all reachable states of S Bochs||EBocns satisfy ®39. The sub-sequence check and BMC took
roughly 45 minutes and 25 minutes, respectively.
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Content Addressable Memory

While the TLB functions as a direct-mapped cache (each concrete logical address is associ-
ated with a single TLB entry), S?TV also applies to systems with set-associative caches and
content addressable memories (CAMs). A CAM stores associations between keys and data.
The key is typically stored as part of the data, and is used for comparison during lookups.

Figure 3.4 shows a system containing slow memory and a CAM-based cache. We would like
to prove that a lookup in slow memory yields the same data as a lookup in the CAM-based
cache, provided the data is present in the CAM. We model the CAM’s state using a variable
cam that maps a CAM index to its contents, a 65-bit vector containing fields present, key,
and data. The camli].present bit indicates whether the key caml[i].key and data camli].data
are valid entries. If cam[i].present is true, camli].key and cam]|i].data contain the 32-bit key
and 32-bit data stored at CAM index i. Memory is modeled as a variable mem mapping a
32-bit address to a 32-bit vector. That is, mem|a] refers to the 32-bit data at address a.

We also maintain a state variable map that maps an address a to a 32-bit CAM in-
dex. map is updated when data is added or deleted from the CAM. A read(addr) com-
mand checks the contents of the CAM at index mapladdr]. If cam[map|addr]].key = addr
and cam[map|addr]].present is true, then Scay assigns cam|map|addr]].data to the output
variable out_camg., and trueto the output variable out_campesens. Otherwise, Scay as-
signs falseto out_campresent. Tead also assigns mem|addr] to output variable out_memgatq.
The insert(addr, data) command checks map for an existing mapping of address addr. If
mapladdr] # L, then Scay updates the CAM at index map|[addr] with data data and key
addr.! Otherwise, we arbitrarily choose a new location arb[addr] to insert data and addr, and
update map[addr] with this new location. The set(addr, data) command updates mem[addr]
with data, possibly making the CAM contents stale. The reset(addr) command resynchro-
nizes cam with mem at address addr, provided the CAM contains a valid entry for address
addr. These commands are implemented using atomic operations, and they update map,
mem and cam in parallel.

The CAM + memory system is modeled as a tuple Scay = (Z, O, V, Init, A) where
e 7 = {addr, data, command}.

o O = {out_camggia, OUt_CAMpresent, OUL-MEM qtq}-

e V = {cam, mem, map, legal}. These are all modeled as bit-vector functions. cam re-
turns a 65-bit vector: 1-bit present, 32-bit data, 32-bit addr. Both mem and map
return a 32-bit vector. legal is a Boolean variable denoting whether the system legally
reached the current state.

'Note that L in our model equals 0x00000000; it is an acceptable design choice to not cache that address.
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insert(key, data) N
next(C_present) := Ak . (k = key) V C_present[k]
next(C_data) := Ak . ITE(k = key, data, C_datalk])
C next(M _data) :== Nk . ITE(k = key, data, ]\Ldata[k:& M
‘ delete(key)
data | p next(C_present) == Ak . (k # key) A C_present[k]| > data |

y set(key, data) k |
24 next(]\,[_data) = \k ITE(k' = key»
data, M _datalk])

reset(key)
next(C_data) := Nk . ITE((k = key) A
C_presentlk|, M _data[k],C_data[k])

Figure 3.4: Our model of a slow memory and its CAM-based cache.

e [nit = (cy, mg, map,, true). mapyla] = L for all a, the present field of each CAM entry
is initialized to false, memory is initialized to arbitrary values, and legal is initialized
to true.

e A: The state evolves via commands insert, delete, set, reset and read. The environment
non-deterministically chooses one of these commands at each step. Figure 3.4 defines
the state transition relation for each command.

The safety property @315 checks that the CAM and memory have the same data for all keys
present in CAM. Note that the CAM only guarantees cache coherency if it is resynchronized
with memory after each set. The state variable legal enforces this constraint: it is true if
every set is followed by a reset.

®315 = Va. (addr = a) — legal —

(out_campresent — (OU_CAMgaty = OUL-MEMGaty)) (3.12)

Since @3 15 is expressed over output variables, we check if a state s satisfies ®3 15 by perform-
ing a read operation on state s with a fresh symbolic constant for a.

Induction

We first try one-step induction on this system to prove ®31,. The initial state satisfies @3 1o
because both the CAM and map are empty. However, the inductive check fails because of
the quantifier alternation, similar to the TLB case study. Hence, we continue onto the small
world step of our approach.
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Small World

We syntactically derive the dependence set by traversing the expression graph of ®31,. We
introduce a fresh 32-bit symbolic constant a for the address that we precisely track in map
and mem. We precisely track legal, map|a], mem|a], and cam|[map|al].

Us, ,, = {legal, cam[maplal], mem[a], map|a]} (3.13)

Our abstract model Sy precisely tracks updates to only these variables.

Short World

Using the sub-sequence heuristic, we find an upper bound on the reachability diameter of 5
steps. Finally, we perform bounded model checking for 5 steps, proving that all reachable
states of SCA || Ecan satisty @315, The sub-sequence check and BMC takes about 15 seconds
and 5 seconds respectively.

Shadow Paging

For our third case study, we model a shadow page table system. A hypervisor may use shadow
page tables to assure address space separation between the guest and host. The guest page
tables can be updated arbitrarily by the guest operating system, while the shadow page
tables are updated only by the hypervisor. The hardware uses the shadow page tables for
address translation. It is the hypervisor’s responsibility to make sure the shadow page tables
stay synchronized with the guest tables, while at the same time ensuring no translation
will ever allow the guest to access memory outside its allocated sandbox. We model the
synchronization process and verify that the physical address returned by translation never
exceeds some constant limit, LIMIT.

Our shadow paging model (Figure 3.5) is as follows. There are two page table structures:
guest and host. Each is a two-level structure: a page directory table (PDT) and a page
table (PT). We refer to the guest and shadow page tables as gPDT, gPT and sPDT, sPT,
respectively. Entries in the PDT have three fields: present (p), page-size-extension (pse),
and address (addr). Entries in each nested PT have two fields: present (p) and address
(addr).

Let Sgp = (Z, V, Init, A) be the shadow paging model with

e 7 ={i,j,command}. i and j index into the PDT and PT, respectively. command is one
of page-fault, inval-page, new-context, or adversary.

e V = {gPDT,gPT,sPDT,sPT,LIMIT}. gPDT, gPT, sPDT, and sPT are modeled as
functions that map indices to bit-vectors. gPDT and sPDT return 34-bit vectors (1-bit p,
1-bit pse, 32-bit addr). gPT and sPT return 33-bit vectors (1-bit p, 32-bit addr). LIMIT
is a constant 32-bit vector.
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sPDT sPT gPDT gPT
addr 3 p |addr : p | pse |addr p |addr
addr i— p |addr : p | pse |addr p |addr
addr j p |addr : Al p| pse |addr P p |addr
addr i p |addr : p | pse |addr|«id || p |addr
] 0
: 0
0

adversa page-fault

Figure 3.5: An illustration of the shadow page table model.

e Init = (sPDTy,sPTy, gPDT,,gPT,). sPDT and sPT are both initialized with the p bit
cleared in all entries. gPDT and gPT are initialized to arbitrary values.

e A. The four commands update state in the following way: page-fault synchronizes the
shadow tables with the guest tables. inval-page conditionally invalidates (zeros out) entries
in sPDT and sPT. new-contexrt unconditionally invalidates entries in sPDT. adversary
writes to gPDT and gPT. The assignments to gPDT, gPT, sPDT, and sP'T are summarized
in Table 3.2.

Command Modifies Guard
. gPDTi].pse A gPDT[i].pA
sPDT(] (gPD[T}[i].addr < LH\/[H}T)
gPDTJi].pse A —=(gPDTJ:].pA
(¢PDT[i].addr < LIMIT))
—gPDTJ¢].pse A gPDT[i].pA
sPDT[i],sPT[j] | (gPDT[i].addr < LIMIT)A
gPT[j].p A (gPT[j].addr < LIMIT)
—gPDTVi].pse A gPDT[i].pA
page-fault(i, j) SPDT[i] (gPDT[é].addr < LIMIT)A
~(gPT[j].p A (gPT[j].addr < LIMIT))A

—(sPDT[i].p A =sPDTi].pse)
—gPDTi].pse A =(gPDTi].pA

sPDT][i]

sPDTi]

(gPDT[i].addr < LIMIT))
—gPDTVi].pse A gPDT[i].pA
SPT[j] (gPDT[i].addr < LIMIT)A
~(gPT[j].p A (gPT[j].addr < LIMIT))A
(sPDT[i].p A —=sPDT[i].pse
(sPDT[i].p A -gPDT[z].p)V
sPDTJi] (sSPDTI[i].p A gPDT[i].pA
inval-page(i, j) (sPDTYi].pse V gPDT[i].pse))
SPTj] sPDT:].p A gPDT[¢].pA
—gPDT[i].pse A =sPDT(z).pse
new-context gPDT true
adversary gPDT true
gPT true

Table 3.2: Next-state assignments for the shadow paging model.

Our model is based on the ShadowVisor model [102], but has been extended to introduce
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pointers. The safety properties we verify are similar to those of ShadowVisor. We verify
that a translation using the shadow page tables will never return an address above a fixed
limit.

314 = Vi. (sPDT[i].p A sPDT[i].pse) —

sPDT[i].addr < LIMIT (3.14)
O35 = Vi, j. (sPDT[i].p A =sPDTi].pse A sPT[j].p) —
sPT[j].addr < LIMIT (3.15)

Induction

The property G ®314 is proven by induction. However, one-step induction fails to prove
G ®335. If sPT[j] is marked as present, but has an address greater than LIMIT, ®3 ;5
is still true as long as sPDT[i] is marked not present. From that state, it is possible to
update sPDT([i] to present without updating sPT[j], so that in the next state the sSPDT][i]
and sPT[j] entry are both marked present and the data in the sPT[j] entry is greater than
LIMIT, violating ®3 15. Therefore, we move on to the small and short world steps for G ®3 ;5.

Small World

The properties are concerned with a single entry ¢ in sPDT and a single entry j in sPT.
Therefore we use a fresh symbolic constant to choose an arbitrary entry from each. In
particular, our conditional dependency set is Uy, ,, = {sPDT[a;],sPT[a;]}. In our abstract
symbolic transition system, Ssp, we track precisely only the state in Uy, .. a;,a; stay
constant.

Short World

The sub-sequence short-world heuristic does not work for page tables, because page table
entry updates can depend on previous writes to the entry or to other entries; it is not always
possible to drop one step of a trace to achieve an equivalent final state. Instead, we use
gadgets to find and prove the short world. We manually construct a universal gadget set to
prove the length of the diameter of Ssp.

To build the gadgets we case split on the possible end-state valuations for the variables in
Uy, 5, and for each, determine how to get there from a valid starting state. The model
has only four commands and it was usually obvious which commands were needed to get
to a particular state. The gadgets must also specify the parameters (i, j) to the command,
and, in the case of the adversary command, the value that gets written to the guest tables.
Figuring out the correct parameters to use for each command was more difficult. In this

/

case, the parameters were always either i := a; or i := a, (where a; # a; is arbitrarily
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chosen), and similarly for j. The adversary data that gets written to the guest tables was a
combination of the addr field of the (symbolic) end-state valuation we were trying to achieve
and a particular value for the p and pse bits, which we chose according to the particular
gadget we were building.

We needed a total of thirteen gadgets, each four commands or less, to prove the short
world has length four. We then ran BMC on Ssp for four steps and verified the property
held at each step. The verification of the short world took less than a minute; BMC took
approximately five seconds.

Other Hypervisor Models

We applied our abstraction technique to three additional hypervisor models. All were verified
using one-step induction, each within 5 seconds.

SecVisor

SecVisor [29,103] is a small hypervisor that supports a single guest OS. It virtualizes the
memory management unit by implementing shadow page tables and synchronizing them with
the guest page tables. The model assumes an adversary can write arbitrary values to the
guest page tables. SecVisor aims to execute only approved code in kernel mode; therefore,
the page-table synchronization must prevent adversary-provided code from having execute
permissions while in kernel mode. We verified the security property using one-step induction
on a model given by Franklin et al. [103].

sHype

sHype [103] is an access control system used by the Xen [51] hypervisor. Based on the
Chinese Wall policy, it establishes “conflict of interest” classes and guarantees each virtual
machine will never access two pieces of data from the same conflict of interest class. We
verified the security property using a model presented by Franklin et al. [103].

ShadowVisor

Shadow Visor [102] served as the starting point for our shadow page table model. It models
the page tables of a simple hypervisor that assures address space separation between guest
and host by maintaining separate guest and shadow page tables. Like our shadow page table
model, ShadowVisor guarantees that if an address is marked as present, it will never exceed
a certain fixed limit. We model ShadowVisor in our modeling language and use one-step
induction to verify the property.
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3.5 Related Work

Verification of infinite-state or parametrized systems has been well-studied. Here we present
the most closely-related work.

Franklin et al. [102,103] present a small-model approach to verifying systems with parametrized
data structures, specifically, arrays. In essence, they present a formal language such that if
the system can be modeled in their language, then a small-model theorem applies, stating
that the unbounded arrays can be reduced to arrays with one designated element alone.
Finite-state model checking can then be employed on the resulting system. While this ap-
proach is elegant, it does make a trade-off in expressiveness. Our modeling language is more
expressive, allowing us to model the Bochs TLB, CAM, and shadow paging examples which
cannot be modeled in their language. And, our approach is just different: we compute an
abstraction based on localization within the large data structures, and we use bounded model
checking.

The use of inductive invariant checking is common in this problem domain. The method of
invisible invariants [115,116] is an example of an inductive verification technique applied to
systems of IV identical finite-state processes. The core idea in this method is to generalize
from the reachable states of a small number of processes into a quantified inductive assertion
of the form Vi.¢(i), where the index i ranges over process IDs. Namjoshi [104] also discusses
the so-called cutoff method, which is a small-model approach for such systems of parametrized
processes, drawing connections between inductive methods, small-model approaches and
compositional reasoning. In general, these approaches are not easily applied to our examples
since they are not naturally decomposed into a system of N identical finite-state processes.
Instead, in our problem domain, the number of interacting processes is usually finite and
small, but the shared data structures are large and complicated.

Abstraction-based approaches have also been presented for infinite-state or parametrized sys-
tems similar to those studied in this work. Lahiri and Bryant [105] presented an approach
for verifying universally quantified invariants on parametrized systems using predicate ab-
straction. While predicate abstraction can be quite effective for verifying control-related
properties, especially when one can guess suitable predicates, it is not suitable for verifying
equivalence of two code versions (such as in the Bochs TLB case study), which is a highly
data-dependent property. McMillan [117] presents a semi-automatic approach to composi-
tional reasoning using an abstraction similar to ours. Given a system with large arrays, he
uses a form of localization abstraction guided by case splitting performed by the user to
only model a few entries in the arrays precisely. All other entries are allowed to be updated
by an arbitrary value L. This abstraction is used to compute a finite state abstract model
on which reachability analysis is performed. In contrast, our method computes an abstrac-
tion based on index terms derived from the property, and uses a BMC-based approach to
verify the system. Bjesse [106] describes an automatic approach for verifying sequential cir-
cuits with large memories, if the memories are “remodelable” as formally defined by Bjesse.
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The work takes a small-world approach, transforming an initial netlist into another with
memories with precise updates only to a small number of entries in memories, and uses
counter-example-guided abstraction refinement. Our work does not require the remodelable
restriction. German [107] presents a novel approach for constructing sound and complete
abstractions for similar systems. The approach is based on performing static analysis on
the system model, and, in contrast to Bjesse’s work, can handle unbounded delays between
the time the array is read and when the read value propagates to the output. While the
approach is completely automatic, it cannot handle certain data structures such as CAMs,
in which a read, in principle, requires scanning the entire array. Our approach, while not
always automatic, does handle structures such as CAMs (see Section 3.4).

Efficient memory modeling is a technique used for bounded verification problems, either
symbolic simulation (e.g., [118]) or bounded model checking (e.g., [119]). In contrast, our
approach focuses on unbounded verification based on abstraction and a sound application
of BMC based on heuristics to find the reachability diameter.

3.6 Conclusion

In this chapter, we presented S?W, a new approach to verifying systems with large or
unbounded data structures that combines induction and abstraction-based model checking.
We presented experimental results on several examples of emulators and hypervisors and
demonstrated that this technique can be used to handle the large data structures present
in virtualization software. In the next chapter we investigate how to validate the types of
models necessary in this, or any, model checking-based approach.
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Chapter 4

Model Validation

Modeling is the crucial first step in formal verification techniques based on model checking.
A model may be constructed manually from source code or extracted automatically by a
tool. In either case, the inherent weakness of this approach is that successful verification
means the property has been proven true of the model, but not necessarily of the original
system. This weakness is fairly clear for manually constructed models, but it is important
to note that it also holds for tools operating directly on source code. Such software model
checkers construct and internally maintain a model of the code, on which the analysis is
actually performed. Moreover, in order to scale to large code bases, such tools often require
human guidance in the form of code annotations or modifications. Thus, in these approaches
too, one implicitly trusts that the model is correct: if verification of the model succeeds, one
assumes the verification would hold for the original system as well.

In this work we present a framework for validating that assumption. We formalize the process
of validating a model against the original source code implementation of the system to prove
that a property proven true of the model is also true of the system. We concentrate solely on
validating models that will be used for the verification of safety properties. Our framework
is targeted towards systems implemented in imperative languages such as C/C++. A special
focus is on systems software that exports several “logical operations” that client programs can
use (or misuse). Examples include a virtual machine monitor that provides memory isolation
and other services to operating systems hosted on it, or an FTP server implementing several
commands. Such systems are best understood as being logically concurrent, even if they are
single-threaded. Each logical operation (or set of operations) has an associated collection of
data that it operates upon. Therefore, the corresponding models are usually best specified
as transition systems with several logical operations that can be interleaved in a specified
manner to operate on their associated data structures based on client inputs. The complexity
of the associated data structures often necessitates the use of abstraction using first order
logic with suitable background theories.

In order to be sound, in the general case, model validation must show that all states reachable
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in the original system are also reachable in the model. However, often a large system will
have many states that are equivalent with respect to the property to be verified. When
building a model, modelers often take advantage of this fact and do not bother to model
irrelevant portions of the system. For example, the Bochs CPU Emulator [54] is a large
system comprising over 400 C/C++ files, in addition to several files in other languages, and
requires more than 200 KLOC.! Building a model of the entire system would be a daunting,
and possibly unnecessary task. A property about the correctness of address translation,
for example, might require only a small handful of the modules be included in the model.
Modules that manage peripheral devices or handle the instruction fetch and decode functions
of the CPU might safely be left out of the model. The first phase of model validation,
therefore, is to show that in constructing the model, the modelers did the pruning correctly:
there is no portion of the system that is relevant to the property under consideration, but
that was left out of the model. We do that by showing, for all variables relevant to the
property, there is no program code that writes the variable, but that was pruned out during
modeling.

The second phase of model validation is to show that the model is an overapproximate rep-
resentation, with respect to the property under consideration, of the corresponding portion
of the original system. We do that by showing that the model simulates this portion of
the code. The simulation check is performed by checking that each logical operation in the
code is overapproximated by a corresponding logical operation in the model. This check is
formulated as checking validity of a logical formula and discharged using an SMT solver [120].

We propose the following work flow (see Figure 4.1):

1. System Pruning: Before the model is built, the modelers first prune out irrelevant code.
Given a system S and a property @, the relevant portions of the code, Fp, are identified.
This is typically a manual step that requires some domain expertise.

2. Data-Centric Model Validation (DMV): In the first phase of model validation, the pruning
done in the previous step is validated. If DMV finds that Fp is missing some relevant
code, the process returns to Step 1.

3. Model Construction: Given Fp, modelers build a formal model M of the pruned system.

4. Operation-Centric Model Validation (OMYV): In the second phase of model validation, M
is validated as a safe abstraction of Fp with respect to ®. If OMV finds any discrepancies,
the process returns to the previous step.

5. Verification: Once model validation is done, model checking-based verification can be
completed.

In this work we focus on Steps 2 and 4 of the work flow; we assume the pruning and
modeling are done manually, and that any one of a number of standard model checking
techniques can be used in Step 5. In our theoretical framework, the DMV and OMV steps
are sound. However, our current implementation does not share this property. We use

!Calculated for Bochs 2.6.2 using SLOCCount (http://www.dwheeler.com/sloccount/).
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Figure 4.1: Workflow for model checking-based verification.

Model validation comprises the DMV and OMV processes, which are shown shaded in the figure.

symbolic execution [121] and SMT solving [120] to implement the OMV and DMV steps.
The former is used to explore all possible feasible paths through the code, and the latter
is used to check the validity of queries generated in the DMV and OMV steps. Due to
limitations of current symbolic execution tools, the DMV step will, in some cases, fail to
catch portions of § that were omitted from Fp. We rely on the domain knowledge and
expertise of the modelers to identify the relevant portions of the system to model and use
the DMV step to help find any missed code. While our implementation does not guarantee
that all relevant code will be identified during this step, it does give the modelers increased
confidence that no relevant portions were missed.

Our implementation currently uses KLEE [122] for symbolic execution, the UCLID [108]
language for building our models, and the UCLID decision procedure for proving the SM'T
queries that check validation. The methodology can be made to work with other tools as
well.

4.1 Running Example

We present here an example snippet of code and the corresponding model, which we will use
in subsequent sections as we describe our algorithm. The code snippet, shown in Figure 4.2,
is based on code taken from the Bochs CPU emulator [54]. It is a simple if, then, else
statement that tests, for memory pages marked as supervisor-only, whether the CPU has a
current privilege level (CPL) of 3. If it does, a page fault will be raised (the page-fault flag
is set to 1), indicating a protection check has failed for this supervisor-only page. Otherwise,
the page-fault flag is set to 0. After a successful check for a page fault (not shown), the access
and dirty bits of the page table entry are updated. In this example curr privilege level
and page_fault are both integer variables.

The modeler asserts that the update_access_dirty function is irrelevant as far as the CPL
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if (curr_privilege_level = 3) page_fault := (cpl[0] & cpl[1]);
page_fault = 1;
else page_fault = 0;

update_access_dirty (...);
Code. Model.

Figure 4.2: Running example.

A snippet of code taken from the Bochs CPU emulator and its corresponding hand-written model. In the

model, curr_privilege_level is abbreviated to cpl.

is concerned, so she excludes it from validation and from modeling.

The corresponding model is also shown in Figure 4.2. In the model, if bits 0 and 1 of the
variable storing the current privilege are both set, the page-fault flag is set to 1, otherwise,
the page-fault flag is set to 0. In the model, cpl is modeled as a 32-bit bit-vector, and
page_fault is modeled as a 1-bit bit-vector.

4.2 Theoretical Formulation and Approach

Notation and Background

We introduce here some terminology and background material used in the rest of this chapter.

Program Throughout this chapter, we use “system” or S to refer to the original software
system to be verified; ® is the property to be proven or disproven during verification.

The system S is represented as a tuple S = (Zs, Vs, Inits,Cs), where
ZIs is a finite set of input variables;

Vs is a finite set of state variables;
Inits is a predicate characterizing the set of initial valuations to variables in Zs and Vs;

Cs is the code for the program, written in an imperative programming language such as
C or C++, and describing how the system variables are updated.

The input variables, Zs, are the read-only variables of the system. The state variables, Vs,
are all other variables of the program, including any global variables and return variables.

We make no assumptions about Cs except the availability of a function o that maps Cs to a
transition relation between pairs of system states, given a notion of a step. In other words,
o gives relational semantics to S.
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We use the term “annotated system” or A to mean a representation of S that highlights
particular code fragments as being relevant to the verification task at hand. More formally,
we define A as a tuple: A = (Z4, V4, Init 4, F4) where

T4 is a finite set of input variables: Z4 = Zs;

V4 is a finite set of state variables: V4 = Vs;

Init 4 is a predicate characterizing the set of initial valuations to variables in Z4 and V4;
Fa=A{f1sfs- s [Ny fmise, fore} 18 a finite set of code fragments in Cs, where f1, fa, ..., fn
are code fragments that capture the relevant parts of Cs, fumisc, which is disjoint from
f1, fay ..., fn, represents the code in Cg deemed irrelevant, and f,,. is the code that orches-
trates how program execution interleaves between the code fragments fi, fo, ..., fn, fmisc-

For the rest of this discussion, we assume the code fragments fi1, fo, ..., fn, fmisc t0 be termi-
nating.? We do not make this assumption about the orchestration code f,. since in general,
for reactive systems like an operating system or an emulator, f,.. is designed to run forever.
Often, the code fragment f; (1 < i < N) is a single C/C++ function in Cg, but in general
we only require that each code fragment have clearly specified entry and exit points. We
also require that each of f1, fo,..., fn executes atomically.

The code fo.. dictates how the code fragments fi, fa, ..., fn, fmisc are composed together.
For example, f,.. might simply be the sequential composition of two code fragments. A more
complicated orchestrator f,. might iterate over a “while(1)” loop repeatedly selecting a code
fragment to execute based, for example, on a scheduling policy or on a sequence of external
inputs. An example of the latter is a CPU emulator that repeatedly emulates instructions
within a loop, where each instruction type has an associated function that emulates it. The
form of the orchestrator depends heavily on the type of system under verification.

The function o applies to fi, fo, ..., fn, fmisc in exactly the same way as it applies to Cs — it
characterizes the code fragments in terms of their underlying transition relation, given the
notion of a step. In this work, since we assume that fi, fo, ..., fn, fumisc are terminating, the
notion of a step will be taken to be a single execution of a code fragment. Thus, o(f;) is the
set of (pre, post) state pairs of f;. We will often abbreviate o(f;) by ;.

From A, we can create a program P by dropping fmis from the set F4 and treating any
invocation of fys. from fo.. as a no-op (stuttering step). We define P as a tuple analogously
to A: P = (Zp, Vp, Initp, Fp) where

Ip is a finite set of input variables: Zp C Z4 U Vy;

Vp is a finite set of state variables: Vp C Vy;

Initp is a predicate characterizing the set of initial valuations to variables in Zp and Vp;
Fpr=A{f1,fa, -, [n, forc} is a finite set of code fragments. The f; and f,,. are defined as

2Note that it may be possible to lift the assumption about fmisc, the code deemed irrelevant to the
verification task, provided that the technique for checking this irrelevance can handle non-terminating code.
However, we retain this assumption in the present discussion.
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in A.

The transition relation of the overall program P is determined from those of its code frag-
ments by the form of composition, i.e., by for; we will denote it as 67 .

As an example, consider the program in Figure 4.2. This program is modeled as the tuple
P = (Zp, Vp, Initp, Fp), where Tp = {current_privilege_level}, Vp = {page_fault}, Initp =
true (allowing arbitrary values to page_fault and curr_privilege_level), and Fp = {f1, forc}
where f; includes all the code except the function update_access_dirty and fu. is the
sequential composition f1; fimise. In the corresponding A, fuise was defined to include only
update_access_dirty.

Symbolic Execution One approach to computing the relational semantics of a code frag-
ment f is to enumerate its paths, using symbolic execution [121] to compute path conditions
which can then be combined to form the transition relation o(f).

A program is symbolically executed in the following way. Initially, the variables in Zp and
Vp are each represented as a symbolic value. Each variable starts with a fresh, unconstrained
symbolic value. As the program executes, operations are computed symbolically. At the first
conditional branch, execution can continue down one of two paths. The symbolic execution
engine forks execution, and for each path, creates a new path condition, which is a predicate
P(Zp,Vp) on the input and state variables that is true along that path. At each subsequent
conditional branch and execution fork, the path condition for the current path of execution
is updated with the new predicate. If pc is the current path condition and a conditional
branch creates the two predicates P,—P, then after forking execution, the two new path
conditions will be pc; = pc A P and pc, = pc A—P. After execution has completed, for every
path explored, there is a path condition pc, which is a conjunction of predicates on the input
and state variables. Restricting Initp to values that satisfy the path condition and executing
the program will always force execution down the same path. Along with each pc we can
also take note of the final value of the state variables of the program, Vp'. These values
may be concrete or symbolic or some combination of the two. Any subsequent execution of
the program along the path described by pc will produce the output or next-state consistent
with Vp/.

Once the symbolic execution engine has explored all possible paths through the program
fragment, we have a set R = {(pc, Vp')} of pairs of path conditions and their corresponding
output state. This set effectively describes the input—output relation of the program.

Going back to the example in Figure 4.2, note that there are two possible paths through the
code with corresponding path conditions

peq : curr_privilege level = 3

pey = curr_privilege_level # 3.
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The corresponding next-states for each path are:

Vp| @ page_fault = 1
Vph : page_fault = 0.

Model We now formalize the class of models considered in this work. Our models are
constructed as transition systems where state variables have one of three possible types:
Boolean, bit-vector, and memory. The last type can be used to model arrays or various data
structures. The grammar for expressions in our modeling language is the same as described
in Section 3.2 and shown in Figure 3.2.

A formal model is represented as a tuple M = (Zy, YV, Initpg, Orq) where

T is a finite set of input variables;
Vu is a finite set of state variables;
Init \ is a predicate characterizing the set of initial valuations to variables in Zy, and V;
Onxm = {opy, 0ps, ..., 0py, main} is a finite set of operations that determine how the state
variables evolve, where main is a specially designated “top-level” operation that determines

how the remaining operations are composed together. O, defines the transition relation
oM of the model, as described below.

Each operation is a finite set of assignments to variables in V). Assignments define how
state variables are updated in a single step of the transition system. As in Section 3.2, a
next-state assignment o updates a state variable and is a rule with one of the following
forms:

next(x) := e,

next(x) := {ey,ea,...,€,},0r

next(x) := %
where z is a signal in V), e, e, es,..., e, are expressions in the grammar of Figure 3.2 that
are a function of VyUZx, and “x” is a wildcard that is translated at each transition into a

fresh symbolic constant of the appropriate type. The curly braces express non-deterministic
choice.

The transition relation corresponding to an operation op;, denoted M, is computed as
M = Naeop, (@), Where

r(next(x) :=e) = (z' = e);
r(next(:v) = {61,62, . 76n}) = \/(l’/ — 61'); and

r(next(z) := *) = (z' = *);
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and 2’ denotes the next-state version of variable z.

The overall transition relation of the model M is determined by the form of composition
expressed in main. For example, if main defines {op,, op,, ..., 0py} to be composed asyn-

chronously, then the overall transition relation 6™ = \/ZN:1 oM.

As an example, consider the model in Figure 4.2. It is expressed as the tuple (Zyq, Y,
Initpg, Op), where Ty = {epl}, Vi = {page_fault}, Initp is true (allowing arbitrary
values to ¢pl and page_fault), and O has a single operation op which in turn contains only
the following next-state assignment:

next(page_fault) := ITE(cpl[0] = 1 A epl[1] =1,1,0)

Environment The environment £ that provides inputs to the program is similarly modeled
as a transition system, where the input variables in M are the state variables of £. The final
model that is to be verified is the composition of M and &, written M||€. The form of the
composition depends on the context; both synchronous and asynchronous compositions are
possible. However, for this work, and in all of our examples, the environment £ is stateless,
generating completely arbitrary inputs to M at each step.

Transition Systems and Simulation Notice that the original software system S, the
program P, and its model M are all transition systems with the same basic form. Once
composed with an environment model &, the resulting transition system has the form 7T
= (V, Init, &), where V are the state variables, Init is the initial condition, and § is the
transition relation. A state s of T is a valuation to the variables in V.

Given a transition system 7 and a set of variables V;, C V), each state s of T can be labeled
with a valuation to variables in V. We denote this labeling as L(s).

Given two transition systems 7; and 75 sharing a common labeling function £, 77 is said
to simulate Ty if there exists a simulation relation H relating states in 7; and 75 with the
following properties:

(1) ‘v’sl,SQ.H(Sl,s2) — L(Sl) = ;C(SQ)

(ii) Vs1, s9, 8h.[H(s1,52) A da(s2,s5)] = Ts].61(s1,8)) ANH(s], 5)

(111) VSQ.[nitQ(SQ) — (351.]n@.t1(51) /\H(Sl,SQ))
We write “7T; simulates 75”7 as To < T;.

A slight variation is the notion of stuttering simulation. We say that Ty stutter simulates Ty
if there exists a relation Hy between states in 7; and 75 where the second condition above
is modified as follows:

(i) Vs1, 82, 8h.[H (51, 82) A da(s9,85)] = [H(s1,85) V Ishd1(s1,8,) AH(s), s5)].3

3Note that this definition is a slight variant of the standard one which allows any finite number of
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We write “7T; stutter simulates 75”7 as T <4 71.

Problem Definition and Approach

Models are always constructed based on the properties to be verified. Therefore, a model
must be validated with respect to a specific property ®.

In this work, we focus on the verification of temporal safety properties of the form G¢, where
G is the temporal operator “always” and ¢ is a state predicate, i.e., a Boolean expression
over state variables with no temporal operators.

The overall model validation problem definition is as follows:

Definition 2 (Software Model Validation) Consider the transition systems Ts formed
by composing S and &, and Ty formed by composing M and E. Determine whether Ty
satisfies ® only if Ts satisfies P.

This work takes a particular approach towards solving this problem, which can be formalized
using the notions of simulation and stuttering simulation. Specifically, we use the following
result, a proof of which one may find in any standard book on model checking, such as the
one by Clarke et al. [123].

Proposition 1 Given two transition systems Ty and Ty, and a property ® of the form Go.
If, using a labeling function L based on variables appearing in ¢, To = Ti, then Ts satisfies
O if Ty satisfies ®.

The above result applies also when one uses stuttering simulation instead of “plain” simula-
tion.

Let V* C Vs UZs be a set of variables deemed to be relevant to proving or disproving that
S satisfies . For soundness, V* must contain all variables that influence the value of ¢.
However, this set of variables is difficult to determine exactly. Instead, we generate V* based
on the “relevant” code fragments left after pruning.

At a minimum, we include in V* the set V, of variables that syntactically appear in ¢.
Conservatively, the rest of V* could be computed syntactically from the cone of influence of
V, on the entire code base [123]. However, this can lead to a highly overapproximate set V*.
An alternative is to compute V* as the syntactic cone of influence of V, only on the code
excluding fmisc- In this latter case, if we additionally verify that V* is not modified in fisc,
we can conclude that there is no code in f that influences the value of ¢. This is the
approach we adopt in this work.

stuttering steps in 77, but we chose this for simplicity and since it fits our problem context.
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Label the states of 7s and Ty, using valuations to the variables in V*. Then, the approach
of this work can be outlined as follows:

1. Transform S to A by identifying code fragments Fp in S;

2. From A, obtain a new program P by dropping fuisc from the set F4 and treating any
invocation of fis. from fo. as a no-op (stuttering step);

3. Check that § =4 P using the labeling function based on V*;

4. Create a model M of P (manually or automatically), where each operation op, has a 1-1
correspondence with a code fragment f; in P, and

5. Validate M by checking that: (i) Zy = Zp; (ii) Vi 2 Vp; (iil) Initaq is equivalent to Initp
when projected on the common variables, and (iv) P < M using the labeling function
based on V*.

The third step above is what we implement as data-centric model validation (DMV), and
the fifth step is operation-centric model validation (OMV). Note that we allow M to have
more variables than P and S, since models often have extra specification variables for use in
the proof. If the two simulation checking steps pass, then we can conclude that M stutter
simulates § and therefore satisfies ® only if S satisfies ®. Note that this is only true for
safety properties, which is what we consider in this paper. It is possible for a model that
stutter simulates S to satisfy a liveness property, even though & does not.

The two simulation checking steps are the most important ones. We implement them as
follows:

e Checking if § =< P: To do this, it is sufficient to verify that fi;c does not modify the
values of variables in V*. There are several ways to do this, and we take the approach
of using an assertion checking tool based on symbolic execution, described further in
Section 4.3.

e Checking if P =< M: For this, we check that the transition relation 6 of each op;
overapproximates that of the corresponding code fragment f;, denoted 7. The transition
relations are computed using symbolic execution, and the check 67 = §M is discharged
using SMT solving.

In theory, our methodology is sound, meaning that we never wrongly conclude that a model
M satisfies @ when the system S does not. However, in practice, our implementation has
encountered significant practical limitations of symbolic execution tools, especially in the
DMYV step. Therefore, the implementation described in the following sections is used as
more of a bug-finding tool rather than a verifier. Nevertheless, we demonstrate that it is
useful in practice in weeding out various kinds of bugs in our models.
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Figure 4.3: The five steps in our model validation process.

Example

Consider applying our problem definition to validate the model in Figure 4.2 against its cor-
responding program. Assume that we have already performed the DMV step and determined
that update_access_dirty does not modify any relevant state variables.

Our OMV methodology then produces the following two SMT queries, a query for each pair
(pc, Vp') in the program’s symbolic summary. The model is valid if and only if both queries
are proven correct by the backend solver.

1. (page_fault’ = ITE(cpl]0] = 1 A epl[1] = 1,1,0) A epl = 3) = (page_fault’ = 1)

2. (page_fault’ = ITE(cpl[0] = 1 A ¢pl[1] = 1,1,0) A cpl # 3) = (page_fault’ = 0)

The first query is proven valid by our SMT solver. However, the second query is invalid,
indicating that our model does not correctly capture the behavior of the code. The returned
counter-example is this: when ¢pl = 7, the two low-order bits are both set, and therefore,
page_fault is set. The model makes an implicit assumption that cpl will never be higher
than 6. This seems reasonable, considering a physical CPU’s CPL is never higher than 3.
However, the C code enforces no such assumption, and so the model is incorrect.

4.3 Implementation

In Section 4.2, we outlined our formal approach to validating a model. In this section, we
describe our practical implementation. Figure 4.3 depicts the data flow of the process.
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Pruning the System

The pruning step of our implementation corresponds to steps 1 and 2 of the outline given
in Section 4.2. In our implementation, the pruning stage is manual, and performed by a
domain expert. Given the system, S, and the property, ®, the expert decides which code
fragments are relevant and creates A, with the set Fp identified. The expert then returns
P, in which code in fsc has been replaced with no-ops.

DMV

Although pruning is performed by people with expert knowledge of S, the process is error
prone. Some function or module in S that is relevant to & may get overlooked and be
mislabeled as fu during the annotation of A. DMV takes as inputs S, ¢, and P and
returns a Yes/No answer, indicating whether P and S are equivalent with respect to ®. If
the answer is No, the domain expert repeats the pruning stage until DMV can return Yes.
The step corresponds to step 3 of the theoretical approach given in Section 4.2. In that step
we prove S =< P by checking that f.ic does not modify the values of variables in V*. In our
implementation, we relax this requirement, and check only for a subset of V*. As a result,
we can not prove the simulation, only find instances when it fails.

We start by identifying the program variables V, that the property ® directly depends on.
This can be done syntactically: the variables in V, are those variables mentioned in ¢.
We wish to establish that any state change described in fp;sc does not affect, directly or
indirectly, the state described by Vy; i.e., those pruned state changes are stuttering steps
with respect to V,. To do this, we attempt to show variables in V, do not change value
within fiis.. We tackle this by keeping track of the last valuation of V, and ensuring that it
does not change after any statement that appears in fc.

More specifically, we create a system S’ that is identical to S, except for the following
modifications. For each variable v € V;, we create a new shadow variable v’ in §’. After
every (atomic) statement in &’ that is also in P, we add a statement that assigns the value
of v to /. In other words, we attempt to keep the value of v/ synchronized with the value
of v across P statements in S§’. In contrast, after every atomic statement in S’ that is a
statement in fis, we add an assertion that v equals v’ for each v € V;, which asserts that
these statements do not write to any variable in Vg, or equivalently, that every statement in
fmisc 18 a stuttering step with respect to V,. Note that, since v" variables do not appear in
S and do not alter the control flow, they do not alter the behavior of " with respect to S
state.

We then use KLEE to search for a path through &" where one of the inserted assertions
fails. If KLEE is successful, we have found a fiis statement that updates V,, so our DMV
algorithm returns No. The path and inputs that cause the violation are passed back to the
pruning stage, allowing the expert to refine the definition of P to incorporate the previously
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missed V; update.

In practice, the extra statements in S increase the size of the original system, S, by V|,
which complicates and prolongs the execution time of the dynamic analysis performed by
KLEE or other symbolic-execution engines. What is more, many of the added statements
are ineffectual: in most practical systems, V; will not be updated in every single statement,
so checking even one assertion per statement can be overkill. To ease the burden on the
symbolic execution engine, our prototype relaxes the strict definition of &’ and aims to
capture commonly missed V, updates, but at the expense of soundness. Specifically, our
prototype adds v’ := v statements into S’ only after P statements that the domain expert
knows to be updating v. Furthermore, our prototype adds v" = v assertions into S’ only
before P statements known to be updating v (contrast that to the original definition, which
adds assertions after every fuis. statement). The rationale for this last relaxation is that
updates to v’ are good enforcement points for the equality between v’ and v, and this requires
fewer changes to the program. Finally, our prototype checks the v' = v assertion at all exit
points from &', to capture any V, updates on execution suffixes that do not include a known
‘P update.

Our prototype’s relaxation is unsound. It may miss successive updates to a v between known
updates to it; if a statement reads such a missed v update, affecting the result of P, our
validation down the pipeline may be unsound as well. Since our prototype is a bug-finding
tool inspired by our idealized methodology, this unsoundness is acceptable for our purposes.
A more effective, sound relaxation would be to assert that v = v before every read of v, but
finding all reads of v is, in itself, another hard problem, with similarities to alias analysis.
The use of dynamic slicing [124] may also be useful.

Modeling the Program

From the selected P, a model M is built using UCLID’s modeling language. We are agnostic
as to how the modeling is done; it can be a manual or an automated process. This corresponds
to step 4 of the outline given in Section 4.2.

Validating the Model

In the last step — step 5 of the outline in Section 4.2 — we validate that the model M correctly
simulates the program P. We use KLEE for this step. KLEE is a symbolic interpreter for
LLVM [125] programs. It performs a combination of symbolic and concrete execution, based
on which inputs and state bits are made symbolic. We use KLEE to learn R = {(pcp, Vp')},
the set of path conditions and corresponding outputs describing the input—output relation
of P. First, we set all global state Vp and input variables Zp to be unconstrained, symbolic
values. When execution reaches a conditional branch point, KLEE forks and follows all
feasible branches. As KLEE explores these program paths, it maintains a path condition for



CHAPTER 4. MODEL VALIDATION 53

each path that is a function of Vp UZp. When a path terminates via an exit statement or at
the end of the program, we note the path condition pcp for that path and the state of Vp'
at the point of termination. Once KLEE has explored all possible paths, we have R.

Once we have computed R, we use UCLID’s decision procedure to verify that for every
path condition describing a partition of the input space in P, both M and P produce
equivalent symbolic output. Our queries to the UCLID decision procedure take the form of
decide(pcp = (VM = Vp')), and we have a separate query for each (pcp, Vp') pair in R.
If one of the queries fails, UCLID will return a counter-example with concrete values for Zp
and Vp that satisfy the path condition, but for which V' # Vp'.

Translating Path Conditions to SMT queries

In order to create each query, we must first translate the pc, generated by KLEE to a format
suitable for UCLID’s input language. KLEE’s path conditions are written in KQuery,* the
input language to KLEE’s backend constraint solver (Kleaver). The symbolic states of Vp
are given in a similar syntax. We built a tool to translate path conditions and symbolic
state from KLEE into SMT queries in UCLID’s input language. Our tool requires the user
provide an input file that maps variable names used in P to variable names used in M.
All variables in KQuery are represented as an array of bits; these are easily translated to
UCLID’s bit-vector type. UCLID allows two additional types: Boolean, and uninterpreted
functions. Currently, we require UCLID models to not use Boolean types; bit-vectors of
length 1 can be used instead. Seamlessly converting between the two is functionality that
can be added to future versions of our tool. UCLID models are free to use uninterpreted
functions, but we do not handle verification with respect to properties that include universal
quantification over an uninterpreted function. For example, if f is an uninterpreted function
in a UCLID model and 7 is a bit-vector variable in that model, our tool can validate a model
with respect to the property ¢(f(7)), but would not be able to validate a model with respect

to the property ¢(f).

Handling Loops

For programs that contain loops, the number of paths possible through the code can explode
quickly. In cases where the loop bound can be determined statically, this is not a problem.
However, when the loop bound is determined at run time, complete path coverage requires
exploring all possible loop bounds, causing an exponential blow-up in the number of paths
through the program.

In some cases we can handle this using a divide & conquer approach. Figure 4.4 illustrates
the idea. For a program P with a single loop, we can divide the source code of the program
into three parts: the code from program entry to the loop, the loop code itself, and the code

‘http://klee.1llvm.org/KQuery.html
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1 int loop_prog(int bound) {

2 int retval = 0; //E2L, lines 2,3,/
3 if (bound <= 0)

4 return —1;

5 for (int i = 0; i < bound; i++)

6 retval++; //L2L, lines 5,6
7 return retval; //L2E

s }

Figure 4.4: A program with a dynamically determined loop bound. Validation of this pro-
gram’s model is done in three parts.

from loop exit to program exit. In Figure 4.4, these sections are labeled E2L, L2L, and L2E,
respectively. We then explore each section of code independently of the other two. At the
start of each exploration we set the current constraints on Zp and Vp to reflect the invariants
of the previous section(s). These invariants are determined manually and care must be taken
to not over-constrain the starting conditions of each section. At a minimum, the following
weak invariants can safely be used: no constraints set for E2L, the loop guard forms the
constraints for L2L, and no constraints set for L2E. These constraints will form part of
the path conditions created during subsequent exploration of the section. For example, in
Figure 4.4, execution of E2L starts with no constraints on bound or retval and the starting
path condition is pcge;, = True; execution of L2L is started with the path condition (and
corresponding constraints) pepor, = (i > 0) A (i < bound); and execution of L2E is started
with no constraints.

We divide the model into three parts as well. We create a separate model for the E2L, L2L,
and L2E program fragments, and separately validate each model against its corresponding
program fragment. Because each fragment is explored starting from an overapproximation of
reachable starting states, the explored paths through the fragments will constitute a superset
of reachable paths in the original program. If the model is shown to be consistent with each
of these paths plus the corresponding output, a property proven true of the model will be
true of the program. However, this method is not complete, and a property that is disproven
for the model may in fact be true of the program.

In some cases, it may be possible to strengthen the invariant through manual inspection of
the code. For example, in Figure 4.4, the execution of L2L can be started with the path
condition pcpq, = (i > 0) A (i < bound) A (bound > 0) A (retval > 0), and execution of E2L
can be started with the path condition pej,p = (i > bound) A (bound > 0) A (retval > 0).
This will increase the completeness of model validation for some programs, but still does not
guarantee it. Furthermore, our divide & conquer approach is suitable to code with single
loops, but is not applicable to code with nested loops or recursion.
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4.4 Evaluation: Data-Centric Validation

BPF

The Berkeley Packet Filter (BPF) is a kernel module that filters network packets, sending
only the desired ones to the user. The user provides a filter program, written in the BPF
pseudo-machine language. The BPF kernel module contains an interpreter that runs the
filter program on each network packet. The property ® asserts that the BPF interpreter,
bpf_filter (Figure 4.6), has a monotonically increasing program counter; this is desirable,
since it implies that all filter programs must eventually halt. We restricted our analysis to
the kernel mode version of the code, since the user mode version is known to violate this
property (e.g., for efficiently implementing IPv6 protocol header chain parsing), though we
did not enable “zero-copy memory buffers,” which we considered out of scope.

One challenge is that it is not practical to explore all reachable states by running the BPF
interpreter on all filter programs of n fully symbolic instructions. Therefore, we overapprox-
imate its behavior: we run one iteration of the interpreter loop on a single, fully symbolic
BPF instruction, starting from a fully symbolic state. This overapproximation may lead to
spurious counter-examples involving states that are not ordinarily reachable.

In particular, we made the accumulator, the index registers, the temporary variable k£, and
the memory fully symbolic. The inputs were fully symbolic, two-instruction BPF programs
that had passed the bpf_validate function (Figure 4.5).> We encountered no spurious counter-
examples. We were able to efficiently explore all paths of bpf_filter using KLEE in less than
5 seconds and confirm that we had identified all writes to the program counter. Thus, our
data-centric model validation was successful.

ftpd

ftpd is GNU'’s File Transfer Protocol server, included in their Inetutils package (v1.8). The
main loop reads input from the network client, parses the command, and runs the appropriate
block of code to respond to the client. The called code may be inline or in a separate function.

It would be interesting to model the blocks of code that affect whether the user is considered
to be logged in. There are many FTP commands, but we would expect few to be relevant
— for example, PASS (authentication password), but not PWD (print working directory) —
thus being able to safely prune functions would greatly reduce the amount of modeling.

A simple syntactic approach of searching for “logged_in =" identifies only the PASS function
(Figure 4.7), so we used our DMV approach to check for other writes to logged_in.

5A valid BPF program must end with a return instruction, so our input approximates a fully symbolic
“one-instruction” program.
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int bpf_validate(filter, len) {
for i =0;i < len; ++i) {
switch (BPF_CLASS(filter[i].code)) {
case BPF ST:
if (filter[ij—>k >= BPF_MEMWORDS)
return 0;
break;
case BPF _DIV:
// Check for division by 0.
if (filter[i]—>k == 0)
return 0;

break;

© 00 N O Ut ks W N =

e U T =Sy
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}
15 }
16 return BPF_CLASS(filter[len—1].code) == BPF_RET;
17 }

Figure 4.5: Simplified code from bpf.-validate, which checks that the BPF program cannot
write out-of-bounds, cannot divide by zero, and ends with a return.

\

‘ switch (pc->code) ‘

\

case case case case
BPF _RET: BPF LD: BPF ST: BPF_JMP:

B RN
S +

pc += ‘

Figure 4.6: The bpf_filter function interprets instructions one at a time. We used DMV to
confirm that only the BPF_JMP family of instructions modifies the program counter.
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pass (const char xpasswd) {
if (cred.logged_in || askpasswd == 0)
return,;
askpasswd = 0;
cred.logged_in = 1; }

user (const char sname) {
if (cred.logged.in)

end_login (&cred);
askpasswd = 1; }

end_login (struct credentials *pcred) {
memset (pcred, 0, sizeof (xpcred)); }

Figure 4.7: Simplified pseudo-code for pass and user functions in the ftpd software.

We modified the ftpd software so that its input was partly symbolic: it could choose to
explore any of USER and PASS (with a prespecified, known-good combination), nine other
commands that had no parameters (e.g., NOOP, PWD, QUIT), and nine commands with
partly symbolic parameters (two alphanumeric characters). We excluded other commands
because there were parsing issues with some parameters, they were not implemented by ftpd,
or they modified the system (e.g., RMD), which is not well handled with KLEE. In some
cases, we also modified functions (e.g., CWD) to remove system calls or side effects. We then
added the shadow credentials data structure,® copying cred to shadow_cred after the known
write to logged_in, and placed “assert (cred.logged_in == shadow_cred.logged_in);” before the
write and in the body of the parser loop.

We started the analysis from a partly symbolic state, with the askpasswd global variable and
all of the credentials data structure made symbolic (for each string, we stored two symbolic
characters). KLEE produced a test case where the assertion failed: when the client is
already logged in, and issues another USER command, the entire credentials data structure
is zeroed out by END_LOGIN() (Figure 4.7). This is non-trivial to identify syntactically,
because unlike the previous case where cred.logged_in = 1;, this write syntactically involves
neither cred, logged_in, nor =.

After adding the update to shadow_cred.logged_in after the write in the user function, we
verified with DMV that we had not missed any writes. In a separate experiment, we con-
firmed that DMV would also have been able to identify a missing write to cred.logged_in in
the PASS function. Each experiment required less than 3 minutes of run-time. Data-centric

6It is tempting to place the shadow copy of logged_in inside the original credentials (i.e.,
cred.shadow_logged_in), but as will be observed, this would be unwise as any writes to cred may also overwrite
the shadow variable.
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Figure 4.8: ftpd interprets commands one at a time. Only the USER and PASS commands
modify the logged_in variable. This is significantly more complex than the BPF example,
with some cases resulting in nested function calls across multiple files.

model validation therefore has been able to identify a missed write to cred.logged_in, and pro-
vide some degree of confidence that none of the blocks of code that were explored, including
those corresponding to FTP commands, the parser implementation, and some dependencies,
do not write to this variable (Figure 4.8).

XMHF hypervisor

The eXtensible Modular Hypervisor Framework (XMHF) [93] is a hypervisor with a small
trusted core of about 6000 lines of code that is amenable to formal verification. To demon-
strate this, Vasudevan et al. [93] have proven a memory integrity property of XMHF. A
hypervisor runs at a higher privilege level, and supports the execution of guest software run-
ning at a lower privilege level. Whenever a guest executes a privileged instruction (e.g., to
set the CR3 register), the CPU transfers control to the hypervisor, which uses an intercept
handler to take the necessary action. The XMHF intercept handler can be summarized by
Figure 4.9. The intercept handlers are worth modeling to verify that their updates do not
violate a security property.

Consider the following property: the extended page tables must remain constant after
setup. This property requires us to model all program paths in interceptHandler that
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void interceptHandler(VCPU xvcpu,struct registersk regs){
switch(vepu—>vmes.vmexit_reason) {
case CRX_ACCESS: handle_crx_access(vepu,regs); break;
case 10: handle_ioport_access(vepu,regs); break;
case WRMSR: handle_wrmsr(vepu,regs); break;
case EPT_VIOLATION: handle_pagetable(vcpu,regs);break;

!

Figure 4.9: Simplified code for XMHF intercept handler.

might update relevant state such as the vepu—vmaz_vaddr_ept_pmly_table field, which shad-
ows the address pointing to the base of the extended page tables. Instead of modeling
all intercept handlers, we like to prune away handlers that provably do not update the
vepu—vma_vaddr_ept_pml4_table field. Forcing the input data structures vepu and regs to be
symbolic, we use KLEE to symbolically explore paths in interceptHandler. DMV found no
writes to the vepu—vma_vaddr_ept_pmlj_table field in each handler that the expert decided
to prune away. This allows us to prune away the following handlers: set CRO register, set
CRA4 register, read MSR register, write MSR register, read CPU id, access 10 ports. This
experiment used KLEE to evaluate 300 lines of C code in 5 seconds.

Note that the intercept handlers rely on inlined assembly instructions to perform certain oper-
ations such as reading the MSR register. Since we do not model the x86 hardware, we assume
that none of the inlined assembly operations impact the vepu—vma_vaddr_ept_pmlj_table
field. While we are confident of this assumption, we do recognize this as a potential weak-
ness of this case study.

4.5 Evaluation: Operation-Centric Validation

Bochs address translation function

Bochs [54] is the open-source x86 emulator whose address translation function we verified in
Section 3.4. In this case study, we validate that the model we used in Chapter 3 correctly
overapproximates Bochs’ address translation function.

The address translation function in Bochs is 98 lines of code and the corresponding UCLID
model is about 300 lines of code. The set of inputs contains three elements: the linear address
to be translated, read or write permissions requested of the address, and the emulated CPU’s
current privilege level. The Bochs linear to physical address translation requires either a
two-step page table walk or a lookup in the translation lookaside buffer (TLB), a cache of
previously translated addresses. We make symbolic the three inputs, the two page table
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entries, and the single TLB entry that the translation could access, plus all global variables.
Because our model validation is motivated by our previous verification effort, we use the
returned physical address as the output of the function, and our model validation checks
whether the physical address returned by the model is always equivalent to the physical
address returned by the code.

During symbolic execution, KLEE explored 219 paths through the code.” KLEE achieves
full code coverage of the function, as seen in Table 4.2. There is one branch not taken by
KLEE; manual analysis reveals that taking this branch would not lead to any new state in
the code. For each of the 219 paths explored by KLEE, we captured the path constraints
describing the path and check whether the symbolic state of the physical address at the end
of execution of the C++ function is equivalent to the physical address resulting.

Model validation found seven discrepancies between the behavior of the source code and the
behavior of the model, each traced to a model bug. We categorize these bugs by the likely
cause of the modeling error; there was one typo, two implicit assumptions, and four logic
errors. In the assumptions, the modeler made some implicit assumption about either an
invariant of the system or a pre-condition to the function being modeled. One of these was
the bug we used in our running example (Section 4.1) in which the modeler assumed the
CPU privilege level was never greater than 3. While this is a reasonable assumption for x86,
it causes the model and code to have divergent behaviors. In one logic error, an incorrect
ordering of case statements in the model caused incorrect behavior. Table 4.3 summarizes
the results of the model validation, while Table 4.1 shows the source and model code for six
of the seven bugs. The seventh bug, not shown here, was an error in a large case statement.

Code Model

Typos

if (!(pte & 0x1)) { next[pagefault] := (priv_check = zero_bit) |
CPU—>pagefault = 1; ((pde # [0:0]) = zero_bit) |
return 0; ((pde # [0:0]) = zero_bit);

}

/* Model reads bit 0 of pde twice

if (I(pde & 0x1)) { and never reads bit 0 of pte.
CPU—>pagefault = 1;
return 0; The syntaz ‘pde # [0:0] extracts

} bit 0 from the pde bitvector. */

False Assumptions

“Ignoring inline functions that gcov counts as branches.



CHAPTER 4. MODEL VALIDATION

unsigned pl = (curr_pl == 3);

61

pl := (curr_pl # [0:0]) &&
(curr-pl # [1:1]) );

/% Model assumes curr_pl is less than 7.

The syntax ‘€39’ denotes a bit—wise
AND operation. */

bx_bool isExecute = (rw == 2);

isExecute := (rw # [1:1]) &&
H(rw # [0:0]);

/* Model assumes Tw is less than 6.

The syntaz ‘!!(rw ...)" denotes
bit—wise negation. */

Logic Errors

combined_access = (pde & pte) & 0x06;

privindex = /x value of priv_index
depends on combined_access */

if (!priv_check[priv_index]) {
CPU-—>pagefault = 1;
return 0;

}

combined_access |= (pte & 0x100);

combined_access := (
((pde && pte) && 0x06)
|| (pte && (0x100)) );

priv_check := /x value of priv_check depends
on combined_access x/

next[pagefault] :=
(priv_check = zero_bit) |
((pde # [0:0]) = zero_bit) |
((pte # [0:0]) = zero_bit);

/% Model updates combined_access with all
writes before checking for pagefaults. x/
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if (/* TLB hit and permissions OK /)
return paddress;
else

/* page walk x/

/* Check for pagefault conditions
that occurred during page walk. */
if (I(pde & 0x1)) {
CPU—>pagefault = 1;
return 0;

}
if (I(pte & 0x1)) {
CPU—>pagefault = 1;

init[paddress] := 0x0;

next[paddress] :=

case
next[pagefault] : 0x0;
“permission| present : /* page walk */
default : /+ TLB entry =/

esac;

/* The model checks whether a page walk
would incur a pagefault without first
checking if there is a TLB hit, which
would make the page walk unnecessary.
The corrected model puts the TLB check
first, then the check for pagefaults,

and finally, the default action is to

return 0; return the address calculated by a page
walk. x/
if (!priv_check[priv_index]) {
CPU—>pagefault = 1;
return 0O;
}
return paddress;
if (! (t1bEntry—>accessBits & permission :=

((isExecute<<2) |

(isWrite<<1) | pl)) ) {
/* TLB entry has correct
permissions. */

(I ((tlbentry(TLB_index) # [98:96]) &&
((isExecute << 2) || (isWrite << 1)
[ p1))) = 000;

/* Model uses a complicated double
negative that evaluates incorrectly. */

Table 4.1: Bochs modeling bugs (6 of 7)

TCAS

Traffic Collision Avoidance Software (TCAS) [126, 127] is an aircraft collision avoidance
system that is in use onboard all large aircraft today. Its use is complementary to air traffic
control and is meant to reduce the occurrence of mid-air collisions. A TCAS system consists
of an onboard transponder, which is used to detect and communicate with other aircraft, and
the TCAS software, which calculates the necessary corrective action required by the pilot in
the case of impending collision with another aircraft. The TCAS software is complex and
safety-critical, and verification of its correctness is well-suited to model checking. In this
case study, we used a simplified and publicly available version of TCAS that the software
engineering research community uses to evaluate the efficacy of various test case generation
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techniques [128]. Though only 133 lines of C code,® the code includes 9 functions and has
some complicated patterns of control flow.

From the TCAS code, we created 23 different models, each injected with a different fault
developed by Hutchins et al. [129]. The 23 models were chosen as a subset of the 41 faults in
Hutchins test suite. We chose the subset to avoid duplication of similar faults. For example,
if Hutchins’ set contained two related but different faults, such as replacing x = 300 with
x = 400 or with x = 500, we used only one of those faults. Each fault is meant to mimic
the type of bug a programmer might accidentally introduce while building the model. We
use these 23 different versions to evaluate the effectiveness of model validation at finding
these programmer errors; we validate each model against the TCAS source code, and check
whether model validation was able to find the injected fault. To avoid leading our model
validation technique to find the known bug, we had one author create all the models and a
second author complete the model validation.

We made symbolic all 12 inputs to the TCAS program. During symbolic execution, KLEE
explored 29 paths through the code. There was one line of code not covered by KLEE, see
Table 4.2, and manual analysis revealed this line of code to be unreachable. It is an error
state in which the suggested corrective action for the pilot is to both climb and descend.
There were eight branches not taken by KLEE and these were either infeasible or redundant
branches. Redundancy in branches is an artifact of how gcov counts branches. For example,
the statement if (A && B) has two possible branches: taken and not taken. To cover the
not taken branch, it is sufficient to find a path in which either A or B is false. However,
each logical conjunction or disjunction is counted as introducing a new branch in gcov,
and if KLEE does not explore all possible combinations of A and B, gcov considers those
unexplored combinations to be branches not taken, even though all actual branches through
code may have been explored.

Our model validation found faulty behavior in all 23 models. It is difficult to categorize
these bugs since they did not naturally arise during the translation from code to model.
However, they included: using a less-than-or-equal (<) sign in place of a less-than sign (<),
or vice versa; using a logical AND (&) in place of a logical OR (]), or vice versa; leaving
an entire clause out of a series of conjunctions and disjunctions; and typographical errors
such as setting a variable to the wrong value. In addition to the 23 injected faults, model
validation also revealed two model bugs that were introduced unintentionally during the
modeling phase, see Table 4.3. That is, neither the modeler nor the validator were expecting
these bugs to be in the model. The first bug was a typographical error: a variable that
should have been set to 0x2e4 was instead set to 0x284. The second bug was a logic error.
An int variable in the code was used as a flag: non-zero is true and zero is false. In the
model, greater than zero was treated as true, while zero or less was treated as false.

8Calculated using SLOCCount (http://www.dwheeler.com/sloccount/).
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BPF

The Berkeley Packet Filter (BPF) uses an interpreted filter program to filter network pack-
ets. The interpreted pseudo-machine language includes instructions for load/store, ALU
operations, branch, and return. A badly or maliciously written program could crash the
BPF interpreter. Prior to running a filter, BPF runs a validator to ensure the filter is valid
and satisfies three properties: 1) any jumps in the program move forward (no loops are
allowed), 2) any jumps move to a legitimate place in the program (i.e., do not jump past
the end the program), and 3) the program always terminates with either an accept or reject.
Validate before use is a common strategy for security-critical code. For example, software
fault isolation may compile a program to obey strict control flow policies and then statically
validate just the compiled program [130-133]. The benefit of this approach is that it requires
trusting only the relatively small validator and not the large compiler. In this scenario, as
with BPF, it is important to verify that the validator will catch any failing programs.

In this case study, we show how one might verify that filter programs are marked valid if
and only if they satisfy the three properties above. We build a model of the validator for
use in a model checking-based proof. Before doing the model checking, though, we want to
validate our model to make sure it accurately represents the validator function.

Program validators commonly loop over each program instruction, processing it before ex-
amining the next. The loop’s bound typically can not be determined statically, making full
path exploration using symbolic execution challenging. Non-statically bounded loops are not
commonly seen in hardware designs and so are not handled by model validation techniques
used for hardware designs. The bpf-validate case study demonstrates the validation of this
software feature.

bpf-validate takes two inputs, filter program pointer, and filter program length. It has two
local variables, current program instruction pointer, and loop iteration counter. Because the
for-loop does not have a bound that can be determined statically, we use the divide & conquer
technique for model validation outlined in Section 4.3. We transform the single bpf-validate
function into three separate functions: E2L, L2L, and L2E and we build a model with three
separate modules, one for each new function. E2L sanity checks the length parameter. L2E
checks that the filter program ends correctly with a return instruction. L2L does the bulk
of the filter program validation. Each iteration of the loop checks a new instruction in the
BPF program to make sure it is valid, does not perform illegal arithmetic such as division
by zero or illegal memory accesses, and does not jump to an illegal point in the program.
We also introduce a new return value return_happened to indicate whether the next function
should execute. For example, if return_happened is 1 after execution of E2L in a particular
run, the execution of L2, and L2E are unnecessary; the original composed code would not
have gotten that far.

For all these functions, we create a program of length one (a single instruction). We make
the contents of that program fully symbolic, and we make the length parameter symbolic as
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well. We constrain length to be less than or equal to the length of the program. Omitting
this constraint causes KLEE to find the potential memory error when the for-loop tries to
access the next instruction in the program at an array index that is out of bounds. This
is useful for checking the memory safety of the C program, but not relevant for our model
validation.

Because our technique assumes a bounded input, we bound the length of our BPF program
to a single instruction. Coming up with a reasonable size for the bound will depend on the
code being modeled; in this case the bpf-validate function only accesses a single instruction
in each iteration of the loop, and saves no state from the processing of one instruction to the
next, so a bound of one is reasonable. At the start of L2L and L2E, we add constraints on the
symbolic variables to match the program constraints at that point in the code. For example,
if execution makes it to the start of the for-loop, neither of the preceding if statements were
true, else the program would have exited, and so we constrain the symbolic variables with
the negation of the if conditions. Similarly, at the start of L2E, we constrain the index of
the current instruction to be greater than or equal to the length variable.

Model validation found four bugs in the model, all in the for-loop. Two of the bugs involved
an inverted logic statement. The third and fourth were errors in calculating the return values,
return and return_happened. Both are computed using switch statements in the model, and
in both cases there was a case missing.

Lines Lines Branches
Program of Code Executed Branches Taken
Bochs 98 98 30 29
TCAS 60 59 68 60
BPF-validate | 71 69 28 24

Table 4.2: Code and path coverage achieved during symbolic exploration of the code by
KLEE. The total lines of code given refers only to the pruned program, not the original
system.

Assumption about
Program Typo Logic Error System Invariants Total
Bochs 1 4 2 7
TCAS 1 1 - 2
BPF-validate | - 4 - 4

Table 4.3: Model bug types found during operation-centric model validation. For TCAS,
only the bugs introduced unwittingly during the modeling phase are categorized.
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4.6 Related Work

Techniques for validating a model against an implementation have been explored in the
hardware community. In that setting, the goal is to show equivalence between designs written
in a high-level language like C, and register transfer level (RTL) implementations written
in a hardware description language, such as Verilog or VHDL. The basic idea is similar to
our operation-centric model validation: derive an expression, for both the C program and
the RTL program, describing the input—output transition relation of the program and use a
SAT solver to show equivalence between the two expressions.

Clarke and Kroening describe how to transform both a C function and a corresponding
RTL implementation to a bit-vector expression of the transition relation and use a SAT
solver to prove equivalence between the two [134]. Others have shown how to use symbolic
simulation to derive an expression describing the set of input—output relations of a C function
and show equivalence to the RTL [135-139]. In all these cases, it is assumed that the C
function is written for eventual implementation in hardware and therefore some restrictions
can be placed on the expressiveness of the C code. For example, the works of Clarke and
Kroening [134], and Koelbl et al. [137-139] require that all loops and recursive function
calls have bounds that can be determined statically, so that they can be unrolled before
deriving the input-output transition relation. Feng [135] and Hu et al. [136] assume the
software model and corresponding RTL implementation can be reduced to a combinational
equivalence problem.

Model validation in the software community has been less widely studied. Heitmeyer et al.
show that partitioning the code, and concentrating verification efforts only on those portions
of code that are relevant to the property can greatly reduce the verification effort [75,76].
This is similar in spirit to our pre-processing phase, although our approach is automated and
focused on bug-finding, whereas Heitmeyer et al. provide a proof that only code within the
verified partition is relevant for the property at hand. The proof is built manually and relies
on the source code being fully annotated with pre- and post-conditions for all functions.
Their technique applies well for a smaller code base — they demonstrate their approach on
an embedded device kernel that is approximately 3 KLOC of C and assembly combined —
and might not scale well to software systems as large as Bochs or XMHF. Static analysis
techniques such as alias analysis, Mod/Ref analysis, and program slicing (e.g., [124,140,141])
can be used to perform DMV and scale to large code bases, but at the cost of much lower
precision, resulting in a high false alarm rate.

Caballero et al. [142] use a combination of concrete and symbolic exploration of a function at
the binary level to derive a set of path predicates that describe the behavior of that function.
They focus on security-sensitive functions, and in particular filtering functions, and use the
derived set of path predicates of one function and a manually written model of a second
function to examine whether the two functions implement the same filter. Their set of path
predicates is not complete, and rather than proving equivalence between the two versions,
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they are focused on finding violations of equivalence (i.e., bug finding). They use a decision
procedure to find any instances that will be blocked by one filter, but allowed through by
the other.

Outside of model validation, using symbolic execution to compare two versions of the same
software code block has applications for checking code optimizations, version tracking, re-
gression testing, and code refactorization. In these settings, there tend to be significant
similarities between the two versions being compared, which can be exploited during the
validation process; such similarities cannot be relied upon in our model validation setting.
Ramos and Engler extend KLEE to run on two different blocks of C code, saving the sym-
bolic state of each run for comparison [143]. This is similar in spirit to our operation-centric
model validation technique, although we are comparing C code to a UCLID model, rather
than comparing two blocks of C code.

Siegel et al. showed how to use symbolic execution with the SPIN model checker to verify
a parallel implementation of numeric computations was equivalent to the original sequential
implementation [144,145]. They impose a bound on the number of iterations taken by any
loop and further reduce the complexity of the verification by only accepting as equivalent two
symbolic expressions that can be made the same through simple symbolic algebra. In cases
where more sophisticated theorem proving techniques are required to prove equivalence, their
tool may return “not equivalent.”

Person et al. show how to use symbolic execution to characterize differences between two
versions of the same software [146]. Their definition of functional equivalence is analogous
to our equivalence defined for operation-centric model validation. They reduce complexity
of the symbolic exploration by using uninterpreted functions to describe blocks of code that
are textually identical in the two versions being compared. Since we are not comparing
two versions of the same code, but rather code and a newly generated model, using this
technique of overapproximating the software’s behavior does not work for us. Instead, we
use our divide & conquer approach for handling data-path complexity such as loops whose
bound can not be determined statically.

4.7 Conclusion

We have proposed a formal framework for validating a model of a software system against
the code it was created from. Using an implementation based on symbolic execution and
SMT solving, we have demonstrated the utility of our approach on several case studies.
Among the many directions for future work, we believe the most important is to improve
the implementation of the DMV check, potentially by combining scalable static analysis
methods with selective assertion checking.
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Chapter 5

Conclusion

Virtualization software provides isolation properties that make the virtualized environment
well suited to a wide variety of security applications. In this work, we tackle the problem
of verifying those isolation guarantees. We focus on memory isolation and show how a
combination of abstraction and model checking can be used to verify the correctness of
memory management modules. This is software that typically involves very large data
structures, and that has not been amenable to previous model checking-based techniques.
One weakness of a model checking-based approach is that the verification is completed for
the model, not the original source code. We address this issue by presenting a framework and
implementation for validating the model against the source code. We show that a property
proven true of the validated model will also be true of the original source code.

Although motivated by virtualization software, our work has applications beyond CPU emu-
lators and VMMs. Our small and short world verification technique is potentially applicable
to any system involving large, symmetric data structures. And, model validation is useful
any time a model-based verification technique is used. The results of our case studies sug-
gest that even models of small, well understood programs are likely to have some errors; we
propose that adding model validation to the verification work flow is a necessity.

Software model validation is a relatively new area of study, and one that we believe will
make model checking-based verification techniques more broadly applicable. For example,
one deterrent to formally verifying software systems is the high overhead required for software
maintenance. Any updates to a system invalidate the previous verification efforts. Model
validation can help with this problem by detecting whether updates to the software will
also require updates to the model and, therefore, re-running the verification. In the case
that updates to the model are required, a model validation tool could provide hints to the
modeler about where in the model the updates are required. We envision a future in which
there exist a wide variety of model validation tools, just as today there exist many model
checking tools.
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