
Formal Verification and Synthesis for Quality-of-

Service in On-Chip Networks

Daniel Holcomb

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-228

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-228.html

December 19, 2013

Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Formal Verification and Synthesis for Quality-of-Service in On-Chip Networks

by

Daniel Edward Holcomb

B.S. (University of Massachusetts Amherst) 2005
M.S. (University of Massachusetts Amherst) 2007

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Sanjit A. Seshia, Chair
Professor Andreas Kuehlmann

Professor Lee Schruben

Fall 2013

The dissertation of Daniel Edward Holcomb is approved:

Chair Date

Date

Date

University of California, Berkeley

Fall 2013

Formal Verification and Synthesis for Quality-of-Service in On-Chip Networks

Copyright 2013

by

Daniel Edward Holcomb

1

Abstract

Formal Verification and Synthesis for Quality-of-Service in On-Chip Networks

by

Daniel Edward Holcomb

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Sanjit A. Seshia, Chair

Quality-of-service (QoS) in on-chip communication networks has a tremendous impact on overall system

performance in today’s era of ever-increasing core counts. Yet, Networks-on-Chip (NoCs) are still designed

and analyzed using RTL simulation, or analysis of highly abstracted models. The formal techniques that are

used in core components do not find use in QoS verification due to the scale of the problems of interest, such

as verifying latency bounds of hundreds of cycles.

This dissertation presents my recent work toward leveraging formal methods for NoC design and QoS verifi-

cation. In particular, it addresses the problems of (1) verifying end-to-end latency bounds in a mesh network

using abstraction; (2) scalable latency verification using compositional inductive proofs; and (3) optimal

buffer sizing based on bounded model checking.

Professor Sanjit A. Seshia
Dissertation Committee Chair

i

Contents

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Thesis Statement . 1

1.2 Thesis Contributions . 2

1.3 Thesis Overview . 3

I Background 4

2 On-chip Communication Networks 5

2.1 Motivation for NoCs . 5

2.2 Defining Characteristics of an NoC . 6

2.2.1 Topology . 7

2.2.2 Flow Control . 7

2.2.3 Routing . 8

2.2.4 Architectural Parameters . 8

2.3 Quality of Service . 9

2.4 Modeling NoC . 9

2.4.1 Hardware Description Languages . 10

2.4.2 Analytical Models . 11

2.4.3 Preview of xMAS Formalism . 12

3 Formal Verification 13

3.1 Linear Temporal Logic (LTL) . 13

3.1.1 Safety and Liveness Properties . 14

3.1.2 Bounded Liveness Properties . 14

3.2 Model Checking . 15

ii

3.2.1 Boolean Satisfiability Problem . 16

3.2.2 Bounded Model Checking . 16

3.2.3 Induction . 17

3.2.4 IC3 / Property-Directed Reachability . 18

3.2.5 Model Checking using Satisfiability Modulo Theories 18

4 Formal NoC Modeling 20

4.1 Executable Microarchitectural Specifications (xMAS) . 20

4.1.1 Communication over Channels . 21

4.1.2 Data Types in xMAS . 22

4.1.3 xMAS Primitives . 23

4.2 Implementation of Queues . 27

4.2.1 Queues as Circular Buffers . 27

4.2.2 Queues as Records . 29

4.3 Model of Router Core . 29

4.4 Checking Latency Bound Properties on Network Model . 32

4.4.1 Timestamp Encoding . 33

4.4.2 Stopwatch Encoding . 34

4.5 Formal Traffic Model . 34

4.5.1 Stage 1 of Traffic Model: Generating Candidate Patterns 36

4.5.2 Stage 2 of Traffic Model: Deterministic Rate Constraints 37

II Scalable Latency Verification 40

5 Compositional Reasoning using Traffic Abstraction 42

5.1 Introduction . 42

5.2 Preliminaries . 44

5.2.1 Basic Definitions . 44

5.2.2 Smallest Verifiable Latency Bound . 45

5.3 Traffic Model Inference . 45

5.3.1 Form of Traffic Model . 46

5.3.2 Inferring Traffic Model Parameters from RTL Simulations 48

5.3.3 Creating Traffic Model from Constraints . 48

5.4 Experimental Results . 49

5.4.1 Convergence of Traffic Model Inference . 50

5.4.2 Latency Verification using Inferred Models . 50

5.5 Related Work . 54

5.6 Conclusion and Discussion . 55

iii

5.6.1 BMC Depth and Completeness . 55

5.6.2 Limitations of Proposed Approach . 56

5.6.3 Lessons From this Chapter that Shaped Chapter 6 57

6 Compositional Proofs using Induction 59

6.1 Introduction . 59

6.2 Preliminaries . 61

6.2.1 Modeling Conventions in this Chapter . 61

6.2.2 Sketch of Latency Lemmas . 62

6.3 Formalism . 64

6.3.1 Checking Cumulative Latencies as Age Bounds . 65

6.3.2 Auxiliary Invariants (Ψ) . 66

6.3.3 Proving a Latency Bound . 66

6.4 Latency Lemmas . 66

6.4.1 Generating Age Lemmas (ΦL) using Stage Graph G 66

6.4.2 Deriving Channel Blocking Bounds and Progress Lemmas (Θ) 68

6.5 Experimental Methodology . 76

6.5.1 Evaluating Looseness of TL with Bounded Model Checking 76

6.5.2 Efficient Encoding of Packet Ages . 77

6.6 Illustrative Examples . 78

6.6.1 Single Queue . 78

6.6.2 Credit Loop . 78

6.6.3 Virtual Channel . 80

6.6.4 Token Bucket Regulator . 84

6.7 Non-Stallable Ring Interconnect . 86

6.7.1 Implementation of a Ring Agent . 86

6.7.2 Receive Reservation Logic . 87

6.7.3 Creating Age Lemmas using Stage Graph G . 88

6.7.4 Latency Verification Results for Ring Interconnect 90

6.8 Related Work . 91

6.9 Conclusion . 92

III NoC Parameter Synthesis 93

7 Buffer Sizing 94

7.1 Introduction . 94

7.2 Formal Model and Problem Definition . 95

7.2.1 Modeling Symbolic-Sized FIFOs . 96

iv

7.2.2 Traffic Model Specification . 96

7.2.3 QoS Performance Properties . 97

7.2.4 SMT-based Buffer Sizing . 97

7.3 The CEBUS Approach . 98

7.3.1 Buffer Size Synthesis . 98

7.3.2 Buffer Size Verification . 100

7.3.3 Optimal Buffer Sizing . 100

7.4 Experimental Buffer Sizing Results . 100

7.4.1 Credit Logic . 101

7.4.2 Chip Multiprocessor Router . 103

7.5 Related Work . 106

7.6 Conclusion . 109

8 Conclusions and Future Work 110

Bibliography 112

v

List of Figures

2.1 Types of Interconnection Networks. 6

2.2 Arrival and Service Curves in Network Calculus. 12

4.1 The Signals Comprising an xMAS Channel. 21

4.2 The xMAS Kernel Primitives. 23

4.3 State Machine for Bounded Non-deterministic Sink Primitive. 25

4.4 Router Core. 30

4.5 Two Encodings of Flit Ages. 33

4.6 Block Diagram for a Traffic Model T . 35

4.7 Non-deterministic FSA for Generating Consistent Flit Sequences. 37

4.8 Traffic Regulators. 39

5.1 Challenge of Performance Verification. 43

5.2 Traffic Model and Router Model to Verify. 47

5.3 Rate Constraints Imposed by Regulator . 50

5.4 Convergence of Inferred Traffic Models. 51

5.5 SMT Solver Runtime versus Checked Latency Bound. 54

6.1 Credit Loop Model N with Stage Graph G . 63

6.2 Recurrence Relations for Future Readiness of xMAS Primitives. 71

6.3 Comparison of Stopwatch Age Encoding and Timestamp Age Encoding. 77

6.4 Queue network with Stage Graph G Shown Above. 78

6.5 Runtime versus Problem Size in Queue. 79

6.6 Runtime versus Problem Size in Credit Loop. 80

6.7 Verification Runtime versus Proved Latency Bound in Credit Loop. 81

6.8 Virtual Channel Network N and Stage Graph G . 82

6.9 Runtime versus Proved Latency Bound in Virtual Channel. 83

6.10 Token Bucket Traffic Metering Circuit. 85

6.11 Verification Runtime versus Proved Latency Bound in Token Bucket. 85

vi

6.12 Parameterized Ring Network. 87

6.13 Receive Reservation State Machine. 88

6.14 Product Automaton of Receive Reservation and Occupied Ring Slot. 88

6.15 Stage Graph G for the 3-agent Ring Network. 89

7.1 CEBUS Procedure for Optimal Buffer Size Synthesis. 98

7.2 Modeling Element for Non-pipelined Delay. 101

7.3 Credit Logic Model for Buffer Sizing Experiment. 102

7.4 CMP Network Model for Buffer Sizing Experiment. 105

vii

List of Tables

3.1 LTL operators . 14

4.1 Data Fields of a Typical Flit. 22

5.1 Allowed Turns in XY-routing. 46

5.2 Example of a Simulation Trace. 48

5.3 Maximum Packet Density Constraints. 48

5.4 Proving Latency Bounds using TITAN Models with UCLID. 52

5.5 Proving latency bounds using TITAN models and 30-cycle BMC. 53

6.1 Comparing Verification Engines on Credit Loop. 81

6.2 Comparing Verification Engines on Virtual Channel. 83

6.3 Age Lemmas for 3-agent Ring. 90

6.4 Latency Verification Runtimes for 3-agent Ring. 91

6.5 Latency Verification Runtimes for 8-agent Ring. 91

7.1 Credit Loop Buffer Sizing Results using Circular Buffer Queue Style. 103

7.2 Credit Loop Buffer Sizing Results using Record-based Queue Style. 104

7.3 CMP Buffer Sizing Results using Circular Buffer Queue Style. 106

7.4 CMP Buffer Sizing Results using Record-based Queue Style. 107

7.5 Counterexample Traffic Patterns from BSV in CEBUS on CMP Design. 108

7.6 Buffer Sizes Produced by BSS in CEBUS for CMP Design. 109

viii

Acknowledgments

I wish to thank my family, and especially my Mom and Dad. It would have been impossible to write this

dissertation without their love and their procreation. I am lucky to have shared lunches and holidays with

my sister Christine during our four common years in Berkeley, and fortunate for Julie being so gracious and

understanding about deadlines. I also wish to thank my uncle William Valentine for his encouragement.

I am indebted to the many people who have taught me, and helped me to learn. Professor Sanjit A. Seshia has

always been a great source of knowledge, wisdom, inspiration, and encouragement; working in his lab has

been a wonderful experience. I am thankful to my dissertation committee members Professor Lee Schruben

and Professor Andreas Kuehlmann for their input and support.

Many people outside of our immediate lab have helped and supported my research. The research group

of Professor Li-Shiuan Peh provided the PARSEC benchmark traces that are used in Chapter 5. Professor

Bob Brayton and his research group provided much assistance with tools; in particular, Alan Mishchenko

for supporting ABC, and Jiang Long for supporting VeriABC. I am also indebted to many friends at Intel

Strategic CAD Labs for their contributions to my research and for two immensely fun internships in Hillsboro

Oregon.

I am thankful to all of my friends in the lab; to Bryan Brady, Susmit Jha, Jonathan Kotker, Alexandre Donze,

Indranil Saha, and Rhishikesh Limaye for leading the way; Wenchao Li for taking the journey with me, and

Daniel Fremont, Garvit Juniwal, Dorsa Sadigh, Rohit Sinha, Wei Yang Tan, Nishant Totla, and Zach Wasson

for chasing me out.

I appreciate the financial support that made this work possible. This work was partially supported by the

NSF Expeditions in Computing project ExCAPE: Expeditions in Computer Augmented Program Engineering

(grant CCF-1139138). Additionally, this research was supported in part by the Gigascale Systems Research

Center, one of six research centers funded under the Focus Center Research Program (FCRP), a Semiconduc-

tor Research Corporation entity.

1

Chapter 1

Introduction

Multi-processor systems historically meant multi-chip systems with high-performance links connecting them,

but that has changed in the last 15 years. Technology scaling continues to enable the fulfillment of Moore’s

Law, with ever-increasing numbers of components integrated onto a die. This thesis topic was chosen when

45nm CMOS technology was being rolled out, and industry is now on the cusp of 14nm. Personal com-

puters now routinely contain 8 high-performance processing cores integrated onto a single chip, and much

higher core counts are found elsewhere. Inter-processor communication is no longer occurring over high-

performance inter-chip links, but now occurs on-die.

While a great deal of research has gone into automated design methodologies for on-chip communication net-

works to connect specialized IP blocks, the design methodologies for multiprocessor networks has not kept

pace. This thesis aims to advance the state-of-the art in design methodologies for on-chip communication net-

works in multiprocessor systems. The two specific problems that this dissertation addresses are performance

verification, and synthesis of buffer sizes that guarantee performance goals are met; both of these problems

are addressed using state-of-the-art formal techniques. Addressing these problems in a formal way requires

work toward finding and applying appropriate models for networks and traffic, and choosing appropriate

verification techniques for the chosen models.

1.1 Thesis Statement

The thesis explored in this dissertation is:

Scalable formal methods based on abstraction and compositionality, adapted to the domain of
communication networks, allow performance properties to be addressed using model checking.

The formal techniques that are used in core components have not traditionally found use in performance ver-

ification due to the scale of the problems of interest, such as verifying latency bounds of hundreds of cycles.

2

In this dissertation, scalable model checking of communication networks is achieved using techniques such

as abstraction and invariant strengthening, but applied in a way that is well suited to the problems that arise

in networks. Bringing model checking into performance analysis avoids the use of highly abstracted models,

the creation of which is inherently error prone. Through the application of model checking, performance

properties can be proved with the same highest level of assurance as formally verified functional properties

are today.

1.2 Thesis Contributions

The contributions of this work are in devising domain-specific techniques that allow formal verification to

scale up to the problems arising in NoC performance verification. The novelty comes not from the tech-

niques, but instead from their adaptation to the problems at hand. Experimental data is provided to evaluate

each approach, and to highlight promising future directions and apparent dead ends. Among performance

properties verified, latency bounds play a role in all contributions of the dissertation.

The verification of NoC latency bounds is an important problem to solve because network latency can be a

bottleneck for overall system performance. For example, consider the performance impact of traffic sent from

a processing core to a memory controller and back. A computation on the processor may be stalled while

waiting for data from memory, and the NoC is responsible for delivering the request to the memory controller

and returning data to the core. A large latency for this traffic significantly degrades overall performance.

Proving a worst-case bound on latency enables designers to decide whether the bound is acceptable or whether

the design must be modified for a smaller latency. However, the myriad types of traffic in a CMP make

it challenging to identify the conditions that induce worst-case latency, and this limits the confidence of

any bound determined through simulation alone. Formal verification addresses this problem by providing

guaranteed worst-case latency bounds.

Latency bounds are verified in this dissertation using model checking. Unfortunately, current model checking

engines are unable to scale up to handle problems as large as those arising in naı̈ve formulations of latency

verification. Two factors challenge scalability of model checking latency properties. Firstly, in a SAT-based

model checker, the number of variables generally scales as the product of the number of unrollings and

the number of state bits in the model. Secondly, the number of unrollings is proportional to the worst-

case latency, and this is unacceptably large. Chapter 5 addresses these challenges using abstraction, while

Chapter 6 uses invariant strengthening for inductive verification, and demonstrates that the technique reduces

verification runtime by 2 orders-of-magnitude. An additional contribution of this dissertation is the use of

model checking for synthesizing latency-guaranteeing buffer sizes in Chapter 7.

3

1.3 Thesis Overview

This dissertation is split into two parts: Part I gives motivation and background material about techniques and

models used; Part II gives two approaches for latency verification; Part III gives an approach for synthesis,

and more specifically for buffer sizing. The chapter topics are sketched here, with a description of how myself

and collaborators contributed to the novel material presented in Chapters 5, 6, and 7:

• Part 1 (Background)

– Chapter 2: introduces networks-on-chip, why they are of interest, the need for quality of service,

and typical approaches for modeling and analysis.

– Chapter 3: presents an overview of the current state-of-the art in formal verification.

– Chapter 4: introduces the modeling approach that is employed for the novel contributions of

the subsequent chapters.

• Part 2 (Scalable Latency Verification)

– Chapter 5: presents work on traffic abstraction for latency verification. This work was done

in collaboration with Bryan Brady and Sanjit Seshia at UC Berkeley, and published at the 2011

Design Automation Conference (DAC) [50].

– Chapter 6: presents work on compositional verification using invariant strengthening. This

work was a collaboration with Sanjit, myself, and many people at Intel Strategic CAD Lab in-

cluding Alexander Gotmanov, Mike Kishinevsky, Satrajit Chatterjee, and Yuriy Viktorov. An

early version of this chapter was published in the 2012 Formal Methods and Models for Codesign

Conference (MEMOCODE) [51] with Alexander, Mike, and Sanjit as co-authors. While the ideas

in this chapter were developed both at Berkeley and during an internship at Intel, the published

data and that appearing in this dissertation are from my implementation of the work while at UC

Berkeley. The work appearing in Chapter 6 is extended and improved relative to the version that

appeared at MEMOCODE, and is currently under review as a journal paper.

• Part 3 (NoC parameter synthesis)

– Chapter 7: presents work on buffer sizing done in collaboration with Bryan Brady and Sanjit

Seshia; this work was originally published at the 2011 Design Automation and Test in Europe

Conference (DATE) [14]. Bryan did early work on the implementation, and I later reimplemented

it; Bryan and I were joint first authors on the paper.

4

Part I

Background

5

Chapter 2

On-chip Communication Networks

According to Moore’s law, technology scaling enables an integration of an ever-increasing number of com-

ponents onto each chip. With the increasing number of functional blocks on a chip, the importance of the

communication infrastructure that connects them rivals that of the individual blocks themselves. On chip

networks emerged in the early 2000s as an efficient mechanism for communication between a large num-

ber of components. Network-on-chip (NoC) is a term introduced by Dally and Towles [37] to describe this

paradigm for communication within large many-core, system-on-a-chip designs.

2.1 Motivation for NoCs

Different types of communication fabrics can be used to interconnect a number of processing elements, where

each element is a processor core, memory controller, or other functional block found in a modern VLSI de-

sign. The appropriate choice of communication fabric for a given design depends on a variety of factors

including bandwidth and latency requirements. The advantages and disadvantages of various interconnection

schemes are outlined in the following paragraphs. Whereas buses or point-to-point links were used histori-

cally, the dominant paradigm is now multi-hop communication using a series of on chip routers. A detailed

quantitative comparison of these interconnection schemes is given by Lee et al. [65].

Bus: as shown in Fig.2.1(a), a bus is a communication network one in which all agents communicate over

a single shared resource (the bus). Each agent has a interface to the bus, and through this interface it can

inject and receive traffic. Area cost in a bus is linear in the number of connected agents n. The significant

drawback of a bus interconnect is performance. Due to the global sharing of the bus resource, only two agents

can communicate concurrently. Bus variants exists which can support multiple concurrent communicating

agents, but such schemes are essentially just multiple redundant buses and do not avoid the problem of shared

global resources which make buses undesirable for a system with a large number of agents.

6

Point-to-point: as shown in Fig.2.1(b), a point-to-point network, has a dedicated link between every pair of

communicating agents. Each of the n agents arbitrates among n inputs. Area cost in a point-to-point network

is quadratic in n because all pairs of agents have dedicated connections. Furthermore, the long dedicated

links are not simple metal wires, since combinational repeaters are required to linearize the delay of the long

wires, or else sequential repeaters to pipeline the link for increased bandwidth. Having such a high number of

links constitutes an inefficient use of resources, since it is not possible to use all of the links simultaneously.

Point-to-point networks with properly designed links perform very well, but are infeasible due to the high

area costs.

Multi-hop: as shown Fig.2.1(c), a multi-hop network is a configuration in which traffic travels from one

agent to another by making a series of hops along a path of intermediate routers. Nearly all NoCs are multi-

hop networks. Arbitration is distributed and simple, as each router only arbitrates between a small number

of neighboring routers. The area cost is linear in n because additional agent requires exactly one additional

corresponding router. Yet, contrary to the bus, there is no single globally shared link that constrains the overall

communication. NoCs are therefore a sort of compromise between buses and point-to-point networks, where

area is linear in n but performance is not constrained by a single bus.

(a) Bus (b) Point-to-Point (c) Multi-hop

Figure 2.1: Types of Interconnection Networks. Each shaded block is a an agent comprising a processor core or memory

controller, along with associated logic for interfacing it to communication links which are drawn as arrows.

NoCs for heterogeneous designs tend to be parameterized architectures that are customized according to the

communication needs of each IP block, whereas NoCs for chip-multiprocessors (CMPs) tend to be uniform on

account of the homogeneity of processing elements. Examples of highly-customizable heterogeneous NoCs

include ASOC [66], AEthereal [41], Xpipes [33], NOSTRUM [72], SPIN [49], and QNoC [10]. Examples of

CMP NoCs include the Tilera TILE64 [105], STI Cell BE [25], Intel Larrabee [92], and Intel Terascale [52].

2.2 Defining Characteristics of an NoC

Nearly all NoCs share a set of common characteristics and are based on multi-hop routing to avoid both

the quadratic cost of dedicated point-to-point links and the bandwidth limitations of globally shared buses.

All NoC architectures consist of a network of interconnected agents, where each agent comprises a router,

and a processing element such as a processor core, memory controller, or other functional unit. Each router

7

interfaces to its processing element through a network interface port, and to the routers of a small subset

of other routers. Packet-switching is used to route data packets among routers from a source node to a

destination node. At the physical level, a packet is transferred across a channel as some number of “flits”,

or flow-control-units. A head flit carries information about a packet’s destination address, and is followed by

some number of payload-carrying body flits and a single tail flit. Despite the many significant commonalities

of all modern NoCs, they also vary in a few significant ways. The following subsections highlight briefly a

few characteristics that vary across NoC designs.

2.2.1 Topology

A defining characteristic of an NoC is its topology. In heterogeneous networks, where bandwidth require-

ments vary widely for each node, specialized topologies can be synthesized from communication require-

ments [82]. Chip multiprocessor NoCs, which tend to have a large number of identical processing cores and

a few memory controllers, tend to use a variety of more regular topologies.

A mesh is a topology in which each router exchanges traffic with its neighbors. In an n-dimensional mesh,

each router connects to 2n neighbors. Because integrated circuits are planar, 2-dimensional meshes are com-

mon, with each node connecting to its 4 neighbors, except for the edge nodes which connect to 3 neighbors,

and the corners which connect to 2 neighbors. Examples of industrial 2-dimensional meshes are the Intel

Terascale [52] and Tilera TILE64TM processors [105].

A torus topology is similar to a mesh, except that it lacks edges. A 2-dimensional torus can be constructed

from a 2-dimensional mesh by connecting the left edge to the right edge, and bottom edge to top edge. Hence,

in a 2-dimensional torus every node has 4 neighbors, and in a 3-dimensional torus every node has 6 neighbors

(i.e. N,S,E,W planar neighbors as well as the neighbors above and below). A torus is a common topology

for communication between the many separate chips in supercomputers; for example, IBM Blue Gene uses

a 3-dimensional torus [2]. However, torus networks are not well-suited to single-chip many-core designs

because of the long wires that connect the nodes on opposite edges of the die. A folded torus is proposed to

solve this problem for NoCs [35, 79], but does not appear to be used in any common industrial designs.

Rings are another common topology for NoCs. Rings are used in designs with relatively modest core counts

such the 48-core Intel Larrabee processor [92] or 8-core STI Cell BE [25]. To scale beyond tens of rings,

hierarchical rings can be used. Various configurations of hierarchical rings are competitive with meshes up

to around 128 [88] or 256 [44] cores.

2.2.2 Flow Control

Flow control describes mechanisms for deciding how to allocate channels and buffers to packets. Flow

control has a huge performance impact, and a wide variety of optimizations exist to maximize performance.

A thorough discussion of flow control options in NoCs is given in the dissertation of Peh [81], and in this

8

section only basic mechanisms are described.

At a high level, flow control can be classified as either store-and-forward or wormhole. Store and forward

networks wait until all flits of a packet are received before forwarding any to the next node, while wormhole

networks forward the individual flits of a packet as they arrive. Wormhole networks can have lower latency

and use smaller buffers than store and forward [74], but a single packet can be strung out across the network

blocking the forward progress of many other traffic flows. This type of blocking is known as head-of-line

blocking, and performance analysis of head-of-line blocking is a difficult problem [3]. In some cases, head-

of-line blocking can lead to deadlocks.

Virtual channels are a mechanism for avoiding head-of-line blocking. Virtual channels were initially intro-

duced as a mechanism for deadlock avoidance in wormhole networks [36], and later also shown to have

desirable performance properties [34]. With virtual channels a single physical channel is shared between

multiple logical (i.e. virtual) channels. Each of the virtual channels has its own buffer, but only one virtual

channel can be active in a given cycle on account of their sharing of a physical channel. When one of the vir-

tual channels is blocked, another virtual channel can proceed, thus eliminating head-of-line blocking. Some

additional logic is required to control how the physical channel is multiplexed to the virtual channels, but

virtual channels are ubiquitous in CMP NoCs.

A router will only send traffic across a link to a neighbor if that neighbor is ready to accept the traffic. This

readiness is determined either through the use of a credit system or on/off signaling. With credits, the sending

router keeps track of the number of open buffer slots in the ingress queue of the receiving router, and halts

when the supply of credits is exhausted, as this indicates a full queue. The router only begins sending flits

again once it receives a credit to indicate that a slot has now become available. An alternative to credit-based

flow control is on/off signaling, where a router does not keep track of the number of free slots, but instead

simply keeps sending packets until the receiving router sends a signal to stop.

2.2.3 Routing

Routing in a mesh NoC can be classified as oblivious or adaptive. Oblivious routers use deterministic paths

for packets that are independent of congestion, whereas adaptive routing steers packets around congestion.

The examples in this dissertation use oblivious routing, and more specifically XY (dimension-order) routing.

In XY routing, a packet reaches its destination by first being routed to the appropriate column along the x-

dimension, and then being routed to the appropriate row in the y-dimension. XY-routing is guaranteed not to

introduce deadlock or livelock [38].

2.2.4 Architectural Parameters

Once the topology, flow control and routing of an NoC are decided, remaining parameters such as buffer

depths and channel widths remain to be assigned. The depth of each physical or virtual channel buffer is the

9

maximum number of flits that can be stored in it; deeper buffers improve performance, but increase the area

cost of the NoC [53][55]. Similarly, wider channels (and hence wider flits) allow more data to be transferred

per cycle across a channel, but require wider buffers to store the flits and therefore also lead to increased area

costs. An overview of these considerations in NoC design is given by Ogras et al. [77].

2.3 Quality of Service

A correctly-designed NoC should ensure that performance properties are satisfied. First and foremost, the

NoC should never deadlock or livelock. But guaranteeing that packets reach their destinations is not a suf-

ficient indicator of correctness in an NoC. To ensure that programs executing on an NoC will perform well,

the network must give guarantees on performance of network traffic.

Quality-of-Service (QoS) refers to performance guarantees that are provided by the NoC to users. Some

QoS metrics of interest are minimum throughput offered, end-to-end latency bounds, and maximum jitter.

Minimum throughput is a lower bound on the number of bytes per second that a source can inject under

arbitrary achievable network conditions. Maximum latency is the largest allowable time between when a

packet is injected at the network interface of its source agent, and when it is ejected from the network interface

of its destination. Jitter refers to irregularity in delay and is especially problematic in streaming traffic, where

the existing of jitter may require more conservative buffering. This dissertation focuses primarily on latency

bounds. Satisfaction of QoS requirements depends on spatial and temporal properties of injected traffic, so

in some cases QoS guarantees are conditioned on traffic constraints.

Packets traveling through an NoC are used for many different purposes; for example, packets in an NoC may

be urgent control data, real-time data with deadline requirements, reads or writes between processors and

memory controllers, block transfers of large data, and so on. Some NoCs therefore provide differentiated

service classes, where high priority traffic is given guaranteed service, and other traffic is given best-effort

service. Best effort service refers to the manner in which packets without service guarantees are handled, and

the performance of such traffic depends significantly on the amount of competing traffic in the network. The

focus in this dissertation is on QoS bounds in NoCs with undifferentiated service, where all traffic can be

viewed as best-effort.

2.4 Modeling NoC

There are many different ways to model an NoC, and the right model depends on the purpose for which it

will be used. While modeling approaches such as GeNoC are tailored to proving functional correctness and

liveness [101, 103], the focus in this dissertation is on models more suitable for performance verification.

This section broadly splits modeling into cycle-accurate hardware descriptions, and the variety of analytical

models. Hardware description languages provide highest accuracy, but can be more detailed than is necessary

10

for performance analysis because they don’t hide any irrelevant details of the network behavior. Furthermore,

full hardware descriptions may not exist until late stages of design, potentially making them infeasible for

design space exploration. Analytical models are fast and typically admit closed-form solutions, but may

not capture all the intricacies of real system behavior, and their applicability often only holds under specific

assumptions.

2.4.1 Hardware Description Languages

Before fabrication, every digital circuit first exists as a register transfer level (RTL) model in some hardware

description language such as Verilog or VHDL. To minimize the number of logic bugs that reach silicon,

extensive functional validation through simulation and formal verification are performed on the RTL model.

Performance verification is accomplished by monitoring the timing in simulation of interesting events such

as packet injection and ejection times. Clearly the performance observations depend closely on the inputs

that are applied, and so finding appropriate inputs is a significant challenge.

To perform simulations, the inputs to the RTL model of the system are driven from a testbench, and the state

and output are monitored for violated assertions or unexpected outputs. The execution of the model can be

either cycle-driven or event-driven. In a cycle-driven simulator, all state variables are updated in each cycle,

and in event-driven simulation state variables are only updated on-demand when one of their inputs changes.

Register Transfer Level Model

The canonical example of a simulatable system model of an NoC is the RTL description of the hardware. An

RTL description of a digital circuit is system of Boolean state variables often grouped into bit-vector words,

and transition relations. Each state variable is computed using a deterministic function over the previous state

and the inputs. The RTL representation of a NoC is highly accurate, and captures all logic-level details of a

design. Electrical interactions, timing slack, and other non-logical details are abstracted away in RTL.

Testbench Environment Model

When evaluating performance using a simulatable model, the inputs supplied by the testbench can have a

significant impact on the measured performance. In choosing input patterns to apply there exists a tradeoff

between having models that are highly general or highly representative of the traffic produced by certain

applications of interest.

The most general inputs are those coming from synthetic traffic generators. Synthetic generators can cre-

ate sequences of non-repeating inputs according some basic assumptions on the destination of packets and

the rate at which they are injected. Different distributions such as uniform random and hot-spot are com-

monly used [38]. Results of performance analysis may vary wildly across different types of synthetic traffic

11

generators [60], and therefore to obtain meaningful performance measurements it is important to use highly

representative traffic.

A highly representative set of traffic patterns can be obtained by running applications of interest on architec-

tural simulators and recording the inter-process communication [80]. This provides a trace of highly relevant

inputs that can be simulated. However, the process is very involved compared to using synthetic traffic gen-

erators, the finite traces generated in this manner are not very comprehensive.

A compromise between synthetic traffic and architecture-level simulation traces is to use synthetic traffic

generators with parameters that are tuned to produce traffic resembling the traces; this synthetic traffic can

then be viewed as a generalization of the original traces. Varatkar and Marculescu propose a model for

MPEG-2 traffic that models self-similarity using a Hurst parameter [100]. Later, Soteriou et al. [96] show

that a three parameter model leads to accurate representation of a variety of applications; the three parameters

used are a Hurst exponent for temporal burstiness, a spatial hop distribution parameter, and a spatial injection

distribution parameter.

2.4.2 Analytical Models

Instead of cycle-accurate RTL models, a second way to reason about performance is through the use of an-

alytical models [78]. Analytical models typically lack state variables, transition relations and synchronous

semantics. They instead aim to describe various performance metrics as direct functions of traffic and con-

figuration parameters.

Network Calculus

Network calculus is an analytical technique for reasoning about classes of discrete event systems using max-

plus algebra. Network calculus was first introduced by Cruz for modeling both traffic and network ele-

ments [31][32], and relies on bounding envelopes for traffic. Incoming traffic to an element such as a queue

is upper bounded by an envelop function known as an arrival curve. If function R(t) represents the number of

packets to arrive before time t, then R is bounded by arrival curve a if R(t)−R(s)≤ a(t− s) for all t and s. A

common arrival curve is that of a leaky-bucket [31], with arrival curve a(x) = σ +ρx having a burst-size of σ

and long-time average of ρ packets per cycle. The draining of packets through an element is lower bounded

by a service curve, such as a latency-rate service curve [97] in which the number of packet served from a

backlog of waiting packets in any time window of duration x is lower bounded by s(x) = (x− γ)∗κ . Various

network elements transform and shape arrival and service curves. If arriving and served traffic are bounded

by some arrival and service curves a and s, then closed-form analysis can be used to compute from a and s

the upper bounds on queue occupancy and latency (Fig. 2.2).

While the advantage of network calculus is the existence of closed-form analysis, it is not well suited to

many types of traffic. Burst-sizes in best effort NoC traffic can be very large, and therefore only enveloped

12

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30

P
a
c
k

e
t

N
u

m
b

e
r

 Time

a

s

Figure 2.2: Arrival and Service Curves in Network Calculus. Arrival curve is a leaky-bucket with (σ ,ρ) = (5,1/3).

Service curve is latency-rate server with (γ,κ) = (10,1/2). For a queue with this arrival curve on input, and service curve at output, the

horizontal arrow shows the maximum latency of 20 through the queue, and vertical arrow shows the maximum queue occupancy of 9.

by arrival curves that are too conservative to yield meaningful results. Furthermore, self-similar traffic cannot

be bounded by any deterministic arrival curve. Work by Qian et al. [87] shows that it is possible to derive

from self similar traffic an arrival curve that envelopes no less than some known percentage of traffic, but

not all of it. From this, probabilistic latency bounds can be obtained using the closed-form network calculus

formulation

Queueing Theory

Queueing theory provides another analytical framework for reasoning about QoS. Whereas network calcu-

lus reasons about worst-case behaviors, queueing theory applies to average-case. Under the assumption of

Poisson arrival of header flits [76] in each buffer, queueing theory gives closed-form expressions for aver-

age buffer utilization, average packet latency per flow, and maximum network throughput. A criticism of

queueing theory models for NoCs is given by Bogdan et al. [9].

2.4.3 Preview of xMAS Formalism

This dissertation uses extensively a modeling formalism known as xMAS. Full description of xMAS is de-

layed until Chapter 4, but for now it suffices to remark that xMAS is akin to a simplified form of RTL. While

not analytical models in the sense of the previous section, xMAS models are simple enough enough to be

reasoned about formally.

13

Chapter 3

Formal Verification

All designed systems are created with the goal of correctly implementing designer intent, but correctness is

more important in some systems than in others. In modern VLSI circuits, the costs of the photolithographic

masks for a design are in the millions of dollars, and therefore significant effort is spent to ensure correctness

before fabrication. In such situations, formal verification techniques are used to prove that a model of a

system satisfies its intended specifications.

An obvious but weak assurance of correctness is obtained from simulation. In simulation, selected inputs are

applied, the system model is executed, and properties over state variables and outputs are monitored to check

for violation of specifications. Simulation is a sound bug finder, meaning that if a property fails, then the

system model is indeed incorrect. However, simulation is woefully incomplete, meaning that no guarantee

of correctness can be given if the simulation is free of failures. If no failures are observed in simulation, it is

still possible that the model can fail, but that the inputs applied were not the right ones to cause the failure.

Formal verification techniques, in contrast to simulation, can guarantee that a model always satisfies some

desirable property. The two main formal verification techniques in use today are model checking and theo-

rem proving; there are significant overlaps between these two techniques, and they are often used in concert.

The applicability of formal verification is limited by its cost, as significant human intuition and computa-

tionally expensive algorithms are generally required to formally verify a model. However, the cost of formal

verification is justified in applications such as VLSI circuits where the cost of failure is also high.

3.1 Linear Temporal Logic (LTL)

Correctness of a system model is always defined in terms of properties that the system must satisfy, or

properties that it must not satisfy. One way to specify such properties is using Linear Temporal Logic (LTL).

Linear Temporal Logic (LTL) was first used for reasoning about systems by Pneuli in 1977 [84], and has

14

true positive literal
false negative literal

p atomic proposition
¬ p negation

p ∧ q conjunction
p ∨ q disjunction

p =⇒ q implication
F Future
G Globally
X Next
U Until

Table 3.1: LTL operators LTL combines propositional logic operators with temporal operators.

found wide application in the time since. Properties in LTL are specified with respect to execution paths,

where an execution path π is a sequence of states s0,s1,s2, The basic LTL operators are given in Tab. 3.1.

In each state along a path, an atomic proposition p evaluates to true or false; a state si where p holds can be

written as p(si), and a state where it does not hold as ¬p(si). The logical operators ¬,∧,∨, =⇒ are applied

over propositions to produce true or false in each state. The temporal operators F, G, X, and U evaluate to

true or false for a state in consideration of the path through the state.

3.1.1 Safety and Liveness Properties

A safety property asserts that some bad condition (e.g. p) must never happen (e.g. GF¬p), whereas a

liveness property asserts that something good (e.g. q) must eventually happen (e.g. GFq). A safety property

is disproved by a finite length witness (counterexample) that ends in a non-p (bad) state. A liveness property

has no finite-length witness because any finite length trace that does not reach a p state may yet reach a p

state in the future. A liveness checking problem can be encoded as safety checking [6], but this causes a

blow-up in the model.

3.1.2 Bounded Liveness Properties

A liveness property (e.g. GFp) specifies only that p must hold in some state subsequent to the current state

on a path, but does not specify how many other states are visited before a state satisfying p. This makes

liveness insufficient for specifying a QoS latency property, where it is necessary to specify that some action

(e.g. packet reaches destination), occurs not just in the future, but within a specific number of cycles in the

future.

Bounded liveness properties are better suited to checking latencies. A bounded liveness property is a liveness

property where a proposition must hold in the future within a specified number of states. A bounded liveness

property is written as F<x p to specify that p must occur no more than x states into the future. A bounded

15

liveness property is really a safety property, and is equivalent to Eq. 3.1, where the final property in the

disjunction has n nestings of the X operator. Kupferman et al. [59] describe a system where all F properties

are bounded as a “prompt” system.

F<n p≡ p∨Xp∨X(Xp)∨X(X(Xp))∨ . . . (3.1)

3.2 Model Checking

Model checking performs verification by exhaustively checking whether a state-transition graph (a model)

satisfies a property. The model is M = (S, I,R,L). The set of states of the model are S, the initial states are

I ⊆ S, the transition relation R⊆ S×S, and a labeling L : S 7→ 2p, where p is the number of propositions that

evaluate to true or false in each state of the model.

Model checking suffers from the so-called state explosion problem. This state explosion problem refers to

the fact that the number of model states is exponential in the number of Boolean variables. Explicit state

model checkers are based on graph-traversal of the model states, and must keep track of visited states. This

quickly becomes infeasible as the size of the model grows. Straightforward implementations of explicit-state

model checking are therefore unable to scale to models with millions of states or more, as can arise from just

20 or so Boolean variables. Symbolic model checking overcomes state explosion by avoiding explicit graph

traversal.

Initial attempts at symbolic model checking [19] are based on Binary Decision Diagrams (BDDs) [17]. Binary

decision diagrams are compact representations of sets, and in symbolic model checking BDDs are used to

efficiently encode the Boolean formulas for sets of reachable states, and for the model transition relation.

A BDD representation of the states that are immediately reachable from a set of current states is computed

by direct manipulation of the BDDs for the current states and transition relation. BDD-based symbolic

model checking enabled for the first time the checking of properties on systems with up to 1020 states [19].

BDD-based model checking, while still used, is limited by the fact that the compactness of BDD-based

representation of formulas depends on the variable ordering used in their construction.

SAT-based symbolic model checking has supplanted BDD-based as the dominant approach. SAT-based sym-

bolic model checking avoids variable ordering issues because there is no significance to variable ordering in

the conjunctive normal form used by SAT-solvers. Due to the nature of SAT-solvers, most time is spent on the

important parts of the problem, where solvers work to resolve conflicts. SAT-based model checking is able to

handle larger problems than BDD-based model checking. SAT-based formulation of various model checking

algorithms are given in the following sections, and a comprehensive survey of SAT-based model checking is

given by Prasad et al. [86].

Model checking can be applied to both Boolean formulas and formulas in various theories; this dissertation

makes use of both of these variants of model checking. Chapters 5 and 7 use SMT-based model checking as

16

will be explained in Sec. 3.2.5, and Chapter 6 uses SAT-based model checking.

3.2.1 Boolean Satisfiability Problem

A significant advantage to SAT-based symbolic model checking is that it leverages the tremendous perfor-

mance improvements in SAT-solvers over the last decade. The Boolean satisfiability problem is, given an

expression using ∧,∨,¬ over Boolean variables, to find an assignment to the variables that causes the ex-

pression to evaluate to true, or else to determine with certainty that no such assignment exists. Boolean

satisfiability problems are typically written in conjunctive normal form (CNF), as a conjunction of disjunc-

tive clauses; 3-SAT refers SAT where each disjunctive clause has up to 3 variables. The 3-SAT problem is

NP-complete [30], meaning that SAT-solvers can be used to solve the variety of interesting problems that are

NP-complete [56]; for this reason SAT solving has been the subject of a large amount of research.

SAT-solvers are now routinely able to solve SAT problems with thousands or millions of variables. Most

SAT-solvers are based on the DPLL procedure [40, 39] for resolution and backtracking. The capabilities of

SAT-solvers showed a dramatic improvement in the last 15 years. The solver GRASP [69] advanced conflict

analysis to enable non-chronological backtracking. The later solver Chaff [73] sped up constraint propagation

using watched literals. Most modern solvers make use of the techniques pioneered by GRASP and Chaff.

This dissertation uses extensively the SAT-solver MiniSat [43].

3.2.2 Bounded Model Checking

SAT-based bounded model checking (BMC) was first introduced in 1999 by Biere et al. [7]. Given a model

M, BMC addresses the problem of whether it is possible within k frames from the initial state, to falsify a

property p. BMC attempts to falsify p by finding a counterexample, which is an input assignment that causes

Eq. 3.2 to be satisfied. BMC finds the shortest possible counterexample by first using a small value of k and

then for as long as Eq. 3.2 cannot be satisfied, unrolling the problem for an additional cycle by increasing k,

until the formula is satisfied (i.e. the property is disproved) or some preset resource limit (e.g. memory or

runtime) is exceeded.

In general, if a safety property cannot be disproved by BMC within allotted resource limits, then the valid-

ity of the property is unknown. Given that the model has finitely many states, it is of course possible for

BMC to be complete when k is sufficiently large, and the value of k required for this is known at the com-

pleteness threshold [27]. In general there is no assumption of completeness when using BMC. Due to its

incompleteness, BMC is used primarily for bug-finding, and not for proving properties.

BMC(M,k, p)≡ I(s0)∧
(∧

i=0...k−1

R(si,si+1)

)
∧
(∨

i=0...k

¬p(si)

)
(3.2)

17

3.2.3 Induction

Informally, induction tries to prove a property by assuming that it has always held previously, and then using

that fact and the model transition relation to show that it holds in all reachable next states. If it can be shown

that no transition exists from state satisfying p to one that does not satisfy p, then p is proved as long as it

holds in the initial state. A property p that can be proved in this way is called an inductive invariant.

Simple Induction

Inductive proof of a safety property p is a two-step process comprising a base case and an inductive step.

The base case checks that the property holds for all initial states (denoted s0). The inductive step checks

that, if the property holds in some arbitrary state sk, then it must hold in all sk+1 that are reachable next

states. If INDBASE and INDSTEP (Eq. 3.3) are both unsatisfiable, then all initial states satisfy p, and all states

reachable from p states are also p states; this constitutes a deductive proof that M � p.

Induction is attractive proof method because it does not require an unrolling of the transition relation past

two frames. This translates to a small SAT problem, and ultimately one that is likely to have a fast runtime

for a SAT-solver. Unfortunately many properties cannot be proved using simple induction, due largely to the

general initial state in INDSTEP. The inductive step begins from an arbitrary state sk, with the only constraint

being that sk is a p state. This allows for the inclusion as sk of many unreachable states that happen to be

p states, and progression of the model from unreachable p states is often erratic because it is anyway not a

meaningful model trajectory.

IndBase(M, p)≡ I(s0)∧¬p(s0)

IndStep(M, p)≡ p(sk)∧R(sk,sk+1)∧¬p(sk+1) (3.3)

K-Induction

Properties that cannot be proved using simple induction require strengthening, and one way of strengthening

an inductive property is to use k-induction [8, 94]. K-induction is stronger than simple induction due to its

handling of the inductive step. Where the inductive step in simple induction assumes that a property holds in

a single state, the equivalent step in k-induction assumes that a property holds in k consecutive states. The

base case in k-induction (KINDBASE) is equivalent to BMC(M,k, p). Property p is proved using k-induction

if KINDBASE and KINDSTEP (Eq. 3.4) are both unsatisfiable.

18

KIndBase(M,k, p)≡ I(s0)∧
(∧

i=0...k−1

R(si,si+1)

)
∧
(∨

i=0...k

¬p(si)

)

KIndStep(M,k, p)≡
(∧

i=0...k

R(si,si+1)

)
∧
(∧

i=0...k

p(si)

)
∧¬p(sk+1) (3.4)

If unique states are enforced in k-induction, then the approach constitutes a complete proof engine if the value

of k is not restricted. The completeness comes from the fact that ultimately there are finitely many unique p

states to visit, and once the induction depth is sufficient to reach all p states, if still no transition is possible to

a non-p state, then p is proved. However, the depth required to reach all p states can be large, and therefore

k-induction is not typically used for its completeness.

Invariant Strengthening

Invariant strengthening plays an important role in inductive and k-inductive proofs. The idea behind invariant

strengthening is to prove a property p by proving a stronger property p′ that implies p but is easier to prove.

Consider for example a model comprising a 10-bit variable x[9 : 0] where the transition relation increments

x in every cycle, except that x=10’d151 is followed by x=10’d0 instead of x=10’d16. Now assume that the

goal is to prove a property p := x[9 : 0] 6= 10’d500. All states are p states except for the single state where

x=10’d500. The state x=10’d17 is a p state, and the next 485 states that follow are all p states, until reaching

the non p state x=10’d500. So the value of k that would be needed to prove p would be at least 485. However,

if the property p′ := x[9 : 4] =6’d0 is proved, then the induction depth required to prove it will be greatly

reduced. Since p′ =⇒ p, proving p′ provides an easier way to prove the original property p.

3.2.4 IC3 / Property-Directed Reachability

The IC3 algorithm developed by Aaron Bradley is considered a recent breakthrough in model checking [12].

An efficient AIG-based implementation of IC3 that is used in this dissertation is referred to as property

directed reachability (PDR) [42]. IC3 is based on automatically finding and refuting candidate incremental

inductive invariants. Ultimately, IC3 terminates by finding invariants that over-approximate reachable states

but are precise enough to show that non-p states are unreachable.

3.2.5 Model Checking using Satisfiability Modulo Theories

An alternative to verifying Boolean formulas with SAT solvers is to use Satisfiability Modulo Theories (SMT)

solvers. SMT solvers extend SAT solvers by replacing Boolean variables with predicates in some underlying

theory or combination of theories.

1In notation borrowed from Verilog, 10’d15 is used here to represent a bit-vector of width 10 that has the decimal equivalent of 15.

19

SMT solvers can be categorized as eager or lazy. An eager solver [62, 93, 4] encodes an SMT problem into an

equisatisfiable SAT instance; all inference is done by the SAT solver in the problem’s Boolean representation.

A lazy SMT solver is based on a generalized DPLL procedure [75], with propagation and learning according

to the underlying theory.

Some theories used that are relevant to this work are bit-vectors and linear arithmetic. Bit-vectors are in-

teresting because they match hardware implementations which are naturally restricted to finite-size data.

Bit-vector SMT problems can be mapped to Boolean SAT problems by bit-blasting, a process in which each

n-bit bit-vector variable is replaced by n Boolean variables.

The majority of SMT solving in this dissertation is performed using the UCLID verification system [18,

62]. UCLID decides properties in first order logic that contain equality, uninterpreted functions, constrained

lambda expressions, integer linear arithmetic, and bit-vector arithmetic. The lambda expressions in UCLID

allow it to model memories, and infinite queues or queues of bounded size. UCLID has been previously been

used to verify hardware systems [63, 61, 13], software systems [26, 45] and discrete-time hybrid systems [54].

Although UCLID can be used for inductive verification, in this dissertation it is used for bounded model

checking. From a given initial state, UCLID performs the necessary unrolling of the transition relation to a

specified depth k, and then either outputs an SMT problem in SMT-lib format, or eagerly encodes the problem

as a decision procedure and dispatches it to a SAT-solver. If the problem is output in SMT-lib format, then

any available SMT solver can be used to check the property.

20

Chapter 4

Formal NoC Modeling

This dissertation uses finite-state NoC models so that QoS problems can be solved using model checking.

To minimize complexity (e.g. the number of states in model), it is therefore desirable to use a model that

is as simple as possible while still capturing with sufficient precision the details that determine QoS. The

approach for minimizing complexity is to use, to the maximum extent possible, a simple modeling language

called xMAS to represent NoC designs. As the xMAS modeling language is not well-suited to certain aspects

of control logic, xMAS models are supplemented with arbitrary combinational and sequential logic where

needed. The modeling methodology presented in this chapter serves as the basis for all contributions in

subsequent chapters of the dissertation.

This chapter is structured as follows. The xMAS modeling language is presented in Sec. 4.1. Two different

implementations of xMAS queues are presented in Sec. 4.2. Modeling of NoC router cores is given in

Sec. 4.3. Approaches for checking latency bounds as simple safety properties are given in Sec. 4.4, and

traffic modeling is in Sec. 4.5. Among the sections of this chapter, Sec. 4.3, Sec. 4.4, and Sec. 4.5 contain

novel modeling contributions.

4.1 Executable Microarchitectural Specifications (xMAS)

As mentioned in the chapter introduction, the modeling language used heavily in this dissertation is xMAS

– standing for executable microarchitectural specifications. The xMAS formalism was developed by re-

searchers at Intel’s Strategic CAD Lab as a way to formally model communication fabrics [22]. The devel-

opment of xMAS was motivated by the observation that communication fabrics are essentially compositions

of queues, arbiters, and routing logic, connected and interfaced to each other with a large amount of ad-hoc

glue logic. The authors pose the following question in the first paper on xMAS [22]:

Do we need this ad hoc glue logic? Instead can we identify a set of primitives that is rich enough
to permit a purely structural description of interesting systems?

21

In response to this question, xMAS is a way to model networks that obviates the need for ad-hoc glue logic by

having all primitives adhere to a uniform interface that allows components to be connected directly without

glue logic. By providing a clean formal model of NoCs, xMAS makes it possible to verify NoC properties

using model checking [21, 23, 89] and other means [48].

Every xMAS model N is a finite state model composed of modeling elements drawn from a library of

eight simple parameterized kernel primitives (Fig. 4.2). All primitives communicate over channels using

a common handshaking protocol. This provides a simple way to create network models by simply wiring

together primitives with channels. xMAS models use synchronous semantics, and each stateful primitive

updates its state variables on the same edge of an implicit global clock that is omitted from diagrams of

network models. An xMAS model is easily translated into the UCLID modeling language (Chapters 5 and 7)

or into synthesizable Verilog (Chapter 6) by mapping each primitive into the appropriate syntax. This provides

a convenient tool flow for verifying properties of xMAS models using UCLID or RTL model checking.

4.1.1 Communication over Channels

Communication in xMAS networks occurs between two primitives over a channel. The primitive that is

initiating the communication is referred to as the initiator of the channel, and the primitive that is receiving

the communication is referred to as the target. Each channel, drawn as a single directed edge in xMAS

network diagrams, comprises three signals that are shared between the initiator and target (Fig. 4.1). For any

channel c, the initiator primitive controls Boolean signal c.irdy (initiator ready) and c.data, while the target

controls c.trdy (target ready). The value of c.data is transferred from initiator to target on any cycle when

c.irdy and c.trdy are both asserted.

c.trdy!
c.data!
c.irdy!c!

initiator! target!

Figure 4.1: The Signals Comprising an xMAS Channel. The upstream primitive, denoted the initiator of channel c,

controls c.data and the Boolean signal c.irdy. The downstream primitive, denoted the target, controls c.trdy. The value of c.data is

transferred from initiator to target when c.irdy and c.trdy are true in the same cycle.

The communication protocol used in xMAS is an instance of latency-insensitive design [20], where functional

correctness is independent of channel latencies. The channels in xMAS networks obey forward (Eq. 4.1) and

backward (Eq. 4.2) persistency. Persistency means that a channel that is ready to initiate or receive data will

remain so until a transfer occurs over the channel. The behavior of each primitive ensures that it will always

obey forward and backward persistency, provided that all primitives it interfaces to also obey forward and

backward persistency.

c.irdy∧¬c.trdy =⇒ Xc.irdy (4.1)

22

c.trdy∧¬c.irdy =⇒ Xc.trdy (4.2)

4.1.2 Data Types in xMAS

Each channel has a designated type, in reference to the data signal on the channel. By convention, each

channel in this dissertation uses one of two data types: the first type is flit data, and the second type is token

data. In xMAS network diagrams with both types, a bold line is used to represent flit data, and a thinner line

is used for tokens.

Flit Data

Flit data are bit-vectors that represent the individual flits of a packet (in Chapters 5 and 7) that are commu-

nicated across links in an NoC. In Chapter 6, flit data is replaced by packet data that represents all of the

collective flits of a packet as one single unit of transfer. Flits and packets are grouped together here into

the single type “flit” because of their similarity. Using data to represent an entire packet is a higher level of

abstraction than representing individual flits, but ultimately the choice of whether to model data at the packet

level or flit level depends on the network model. In chapters 5 and 7, flit-level modeling is used to capture the

granting of output channels to head flits, and releasing of output channels by tail flits. In Chapter 6, it suffices

to model traffic at the packet level.

Flit bit-vectors encode multiple logical fields. The values stored in certain positions of the data bit-vector

represent logical fields such as destination addresses and timing information (discussed further in Sec. 4.4).

Examples of these fields are shown in Tab. 4.1.

bits of data
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

head flit: timestamp / age x dest y dest 01
body flit: timestamp / age payload 10

tail flit: timestamp / age payload 11

Table 4.1: Data Fields of a Typical Flit. Head, body, and tail flits all store a timestamp or age in data[24:10]. The bits

data[9:2] represent destination information in head flits and arbitrary payload for body and tail flits. Bits data[1:0] represent the flit type.

Token Data

Tokens channels are channels where the data value is null. The information communicated over such a

channel is only an agreement by the initiator and target that a transfer has occurred, and the data value is

insignificant. Token channels are used to model the transfer of credits in NoCs.

23

4.1.3 xMAS Primitives

All xMAS networks are compositions of eight simple kernel primitives (Fig. 4.2). The inputs and outputs

drawn for each primitive represent channels, but at a more detailed level the inputs and outputs to each

primitive are the signals within the channels. More precisely, the input signals to each primitive are (1) the

irdy and data signals on each channel of which the primitive is the target; and (2) the trdy signals on each

channel of which the primitive is the initiator . The output signals of each primitive are all the channel signals

going in the opposite direction of the input signals.

Primitives can be either stateful or stateless. The stateful primitives update their state variables on each

clock edge based on their current state and inputs, and also set outputs based on current state and inputs.

The stateless primitives set output signals based directly upon their input signals. Among the eight kernel

primitives, the source, sink, queue, and merge primitives have state, while the join, fork, switch, and function

primitives are stateless.

The primitives as defined in the following paragraphs differ from the original xMAS paper [22] in the type

of data transformations that are used. The original xMAS definition allows join primitives to receive two

flits as inputs and produce a single output with a data value that is a function of both inputs. The convention

is adopted here that the data transformations performed by the primitives are always unary; such primitives

have previously been referred to as restricted primitives [22]. Since all data transformations are unary, it

suffices to use the function primitive for all data transformations. All other primitives do not modify flits

when propagating them from input channel to output channel.

i!
depth!

queue!

o! i!

function!

f! o!

source!

o!

join!

o!a!
b!

i!

fork!

a!

b! b!
switch!

f! a!
i!

merge!

o!
b!

a!i!

sink!

x !

Figure 4.2: The xMAS Kernel Primitives. All xMAS networks are created by instantiating combinations of these eight

primitives, and connecting them using channels.

Source Primitive

A source primitive is an interface between the environment and network, and generates traffic that it injects

into the network through its output channel o. A flit source primitive has a single Boolean state variable

blocked := o.irdy ∧ ¬ o.trdy that is true when a source is blocked from injecting. This state variable

is used to ensure that the source satisfies forward persistency (Eq. 4.1) on its output channel, by continuing

to retry a blocked transfer until succeeding. Source primitives are used for various purposes, and a few

applications are given here:

24

• An Eager Token Source eagerly attempts to inject tokens in every cycle (i.e. o.irdy := true), and

succeeds whenever the target of its output channel is ready to receive.

• An Periodic Token Source with a period of x uses a counter that increments in every cycle and rolls

over to 0 after x−1. It injects a token on channel o whenever the count is x−1

• A Non-deterministic Flit Source non-deterministically decides when to inject, and the data of said

packet is also non-deterministic:

o.irdy := pre(blocked)∧oracle

o.data := oracle ∈ B|i.data| (4.3)

• A Flit Source in a Traffic Model produces a constrained subset of the behaviors of a non-deterministic

source. This is explained in Sec. 4.5.

Sink Primitive

A sink primitive is an interface between the environment and network, and attempts to consume data from

a channel i. Finite latencies can only be achieved if sinks are not permitted to block traffic indefinitely, so

sinks are not allowed to be fully non-deterministic. The two types of sinks that are used are eager sinks and

bounded non-deterministic sinks.

• An eager sink is always ready to accept traffic. All token sinks are eager (i.e. i.trdy := true), and flit

sinks are eager in Chapters 5 and 7.

• A bounded non-deterministic sink uses a non-deterministic oracle to decide when to consume a waiting

flit within x cycles, where x is a parameter of the sink. Data sinks are assured of satisfying liveness

bounds by their transition relations per the state machine of Fig. 4.3; if the blocking condition i.irdy∧
¬i.trdy has been true for the past x cycles, then the sink is forced to assert i.trdy in the current cycle.

waiting := i.trdy∧¬i.irdy

i.trdy := pre(waiting)∧oracle∧ f orce (4.4)

Queue Primitive

A queue primitive is a FIFO buffer that stores flits or tokens. It is parametrized by its depth (or number of

slots), which is the maximum number of items that can be stored in it. The most prominent state variables

of the queue are for its data storage, but the the queue primitive also has bit-vector state variables to store

the current head position, current tail position, and number of items stored in the queue. These variables

25

3!0! 1! 2!
blocked blocked blocked

not
blocked

xfer xfer xfer

Figure 4.3: State Machine for Bounded Non-deterministic Sink Primitive. The state machine shown is for a sink

with a bound of x = 3. Variable f orce is true when in state 3 and false otherwise. Labels x f er and blocked are transitions guards, and

determine the next state based upon whether or not a transfer occurs for the blocked packet at the sink input. Together with Eq. 4.4, this

ensures that data is not blocked for more than 3 cycles before being transferred to the sink and out of the network.

orchestrate reading from, and writing to, the queue. Data is read from the head position, and written to the

tail position.

A queue primitive that holds flits is a model for a typical data-storing NoC buffer such as an ingress or egress

queue of a router. A queue primitive that holds tokens represents a credit counter, and is equivalent to a

binary counter with xMAS channel interfaces to control the incrementing (i.e. writing) and decrementing

(i.e. reading) of the stored count.

Two different implementations of the internal data storage of a queue are given in Sec. 4.2. In either im-

plementation, a queue is ready to receive data (i.e. a write operation can be performed) when the number of

items stored in the queue is not equal to the queue depth. A queue is ready to output data (i.e. a read operation

can be performed) when the number of items stored in the queue is not 0.

Function Primitive

The function primitive is stateless and maps input data on i to output data on o. The mapping from i.data

to o.data is performed according to a deterministic function f that is a parameter of the primitive. The

function primitive directly connects the irdy and trdy signals from its input channel and output channel, and

is therefore transparent with respect to timing.

i.trdy := o.trdy

o.irdy := i.irdy

o.data := f (i.data) (4.5)

Fork Primitive

A fork is a stateless primitive for synchronization. A transfer occurs through the fork when the upstream

primitive is ready to initiate a transfer and both downstream primitives are ready to receive a transfer. A

typical use for a fork is credit return, where a flit at the fork input is transferred through to output b while a

26

token is generated at output a to represent a credit being returned.

i.trdy := a.trdy∧b.trdy

a.irdy := i.irdy∧b.trdy

a.data := null

b.irdy := i.irdy∧b.trdy

b.data := i.data (4.6)

Join Primitive

A join is a stateless primitive for synchronizing data with tokens. A flit channel typically connects to input b

of the join, and a token channel to input a. The flit is then forced to wait for a token before propagating on

through the join to the output channel. A transfer through a join occurs when both upstream primitives are

ready to initiate and the downstream primitive is ready to receive data.

a.trdy := o.trdy∧b.irdy

b.trdy := o.trdy∧a.irdy

o.irdy := a.irdy∧b.irdy

o.data := b.data (4.7)

Switch Primitive

The switch is a stateless primitive that performs all of the routing in xMAS networks. The input channel to a

switch is always a flit channel. The switch routes the incoming flit to output a or output b depending on the

data value of the input channel (i.data). Each switch is parameterized by a switching function f : BN 7→ B,

where N is the width of the data bit-vector (e.g. 24 for the flit data shown in Tab. 4.1). Data consumed from

input i is therefore routed to output a if f (i.data) = true and to b otherwise. Note that the input data is always

produced on both outputs, but only the output channel that is selected by the routing function will have the

irdy signal asserted to initiate the transfer.

27

a.irdy := i.irdy∧ f (i.data)

b.irdy := i.irdy∧¬ f (i.data)

i.trdy := (a.trdy∧ f (i.data))∨ (b.trdy∧¬ f (i.data))

a.data := i.data

b.data := i.data

Merge Primitive

The merge is a stateful primitive that performs arbitration in xMAS models. It receives inputs on channels a

and b, consumes data from at most one of them, and produces data on output o. A Boolean state variable u

represents the current priority among the inputs. A merge can use any priority scheme, such as round robin

priority, where the value of u is negated whenever the high priority input transfers a packet through the merge.

o.irdy := a.irdy∨b.irdy

a.trdy := o.trdy∧ u

b.trdy := o.trdy∧¬u

4.2 Implementation of Queues

The xMAS components that make up the vast majority of network state are the queues. Regardless of whether

the xMAS models are implemented in the UCLID verification system [1] or in RTL (for conversion to AIG

to verify with ABC), the stateful components other than queues are implemented in a straightforward way as

finite state models. However, there is a choice to make in modeling queues when using the UCLID verifier.

Queues of a fixed depth can be modeled as circular buffers, but can also be implemented as an ordered data

structure using lambda notation. The two implementations are both given in the following paragraphs. Recall

from the previous section that in addition to the data storage variables, each queue uses three additional bit-

vector state variables to keep track of the head and tail position and the number of items stored. Both queue

implementations assume the availability of these variables. An experimental comparison of the two queue

implementations in given in Chapter 7.

4.2.1 Queues as Circular Buffers

In a circular buffer queue implementation, the storage element of queue with depth n is implemented using n

bit-vector variables queue0,queue1,. . . , where each such variable represents the data value stored in one

28

queue slot. State update of each queue slot is performed using case statements. If the tail position matches

the index of the slot (i.e. the number x in variable name queuex), and a write operation is being performed,

then the state variable for the slot is updated with the value i data that is being written to the queue over its

input channel. Otherwise, the state variable for the queue slot remains unchanged from its previous value.

The data (o data) that is outputted from the queue on a read operation is also accomplished with a case

statement. One case exists for each queue slot, and if a read is being performed and the head points to that

slot, then the value from the slot is outputted onto the channel via the data bit-vector for the output channel.

The relevant part of the UCLID model for the circular buffer queue implementation is given below. This

queue implementation is also used in the RTL implementation of xMAS networks, as used in the model

checking flow of Chapter 6.

1 VAR

2

3 queue0 : BITVEC[24];

4 queue1 : BITVEC[24];

5 (* add bit-vector variable for each slot up to depth-1 *)

6

7 DEFINE

8

9 o_data := case

10 head = d0 : queue0;

11 head = d1 : queue1;

12 (* add case for each slot up to depth-1 *)

13 default : d0;

14 esac;

15

16 ASSIGN

17

18 init[queue0] := d0;

19 next[queue0] := case

20 (tail = d0) & i_irdy & ˜i_trdy : i_data; (* write to slot 0 *)

21 default : queue0; (* slot unchanged *)

22 esac;

23

24 init[queue1] := d0;

25 next[queue1] := case

26 (tail = d1) & i_irdy & ˜i_trdy : i_data; (* write to slot 1 *)

27 default : queue1; (* slot unchanged *)

28 esac;

29

30 (* repeated for each queue slot up to depth-1 *)

29

4.2.2 Queues as Records

The second model for FIFO buffers in UCLID follows the memory model presented by Bryant et al. [18]. A

brief description is given here, and interested readers can find a thorough discussion in [18]. In this queue

implementation, the queue storage is modeled by a function expression that maps queue positions to the data

stored at those positions. In principle this allows the queue to have arbitrary finite size.

Head and tail pointers are implemented using bit-vector storage variables as in the circular buffer queue

implementation. When a write occurs, the tail position is mapped to the data from the input channel (i data)

and the tail position is then incremented. When a read occurs, the data value on the output channel (o data)

is the value that the head position maps to in the function expression of the queue, and the head pointer is

subsequently incremented. The relevant part of UCLID code for the record-based queue implementation is

shown below.

1 VAR

2

3 queue : BITVECFUNC[24,1]; (* Queue/FIFO related signals *)

4

5 CONST

6

7 a : BITVEC[24];

8

9 DEFINE

10

11 o_data := queue(head); (* Queue function maps head to data *)

12

13 ASSIGN

14

15 (* update queue *)

16 init[queue] := Lambda(a).d0;

17 next[queue] := Lambda(a). case

18 a = tail & i_irdy & i_trdy : i_data; (* a now maps to written data *)

19 default : queue(a);

20 esac;

4.3 Model of Router Core

Chapters 5 and 7 both use models of NoC routers with five input channels and five output channels, as

would be found in a typical two-dimensional mesh network. Those chapters share in common the router

core shown in Fig. 4.4. The router core is implemented in UCLID and augments the basic xMAS primitives

with arbitrary combinational and sequential logic to implement control logic (comprising route computation

and switch allocation) and a crossbar, as shown in Fig. 4.4(b). The route computation, switch allocation,

30

and crossbar components are each described in the following paragraphs; along with the description of each

component, a fragment of UCLID code shows the most relevant details of its implementation.

N

E

NI

W

S

(a) Router Symbol

controller
route

compute

allocate
switch

route
compute

allocate
switch

route
compute

allocate
switch

route
compute

allocate
switch

route
compute

allocate
switch

crossbar
5 input

channels
{N,S,NI,E,W}

5 output
channels

{N,S,NI,E,W}

Boolean grants from controller

B
oo

le
an

 g
ra

nt
s t

o
cr

os
sb

ar

(b) Router Schematic

Figure 4.4: Router Core. Fig. 4.4(a) gives the symbol representing a router core. Fig. 4.4(b) shows that the router core comprises

a controller and a crossbar. The controller contains combinational route compute blocks for each input channel, and a sequential switch

allocator for each output channel.

Route Compute

Route computation determines which of the five output channels should be requested for incoming head flits.

The appropriate request to make depends on three fields extracted from incoming flit data (see Tab. 4.1);

these fields are the flit type (f type), and the x and y components of the destination address (f addr y and

f addr y respectively). For head flits, based upon the extracted destination address fields and the router’s

own address (r addr y and r addr x), the request for the appropriate output channel is asserted. These

requests are the output of the route compute block and inputs to the switch allocation logic. Note that the

route computation implements XY-routing, and data is not routed to the north or south outputs until reaching

its destination column.

31

1 hf := d1#[1:0]; (* 2-bit constant value for head flits *)

2 f_type := data#[1:0]; (* flit type, i.e. head/tail *)

3 f_addr_x := data#[9:6]; (* x destination address *)

4 f_addr_y := data#[5:2]; (* y destination address *)

5

6 req_w := (f_type = hf) & (f_addr_x <u r_addr_x);

7 req_e := (f_type = hf) & (f_addr_x >u r_addr_x);

8 req_s := (f_type = hf) & (f_addr_x = r_addr_x) & (f_addr_y <u r_addr_y);

9 req_n := (f_type = hf) & (f_addr_x = r_addr_x) & (f_addr_y >u r_addr_y);

10 req_ni := (f_type = hf) & (f_addr_x = r_addr_x) & (f_addr_y = r_addr_y);

Switch Allocation

A switch allocator is used for each of the five output channels of the router to control which input channel

is granted use of it. The input signals to the switch allocator are the Boolean requests made by each input

channel via the route compute. The switch allocator is the only sequential component in the router core.

The state variables of each switch allocator are a bit-vector (gnt) to track which input channel is currently

granted, and 10 Boolean state variables to store the current priority. Each of these 10 Boolean variables

signifies the current priority among a pair of input channels (e.g. pns is the priority ordering between north

and south inputs), and the 10 Boolean variables collectively represent a total order of priority among the five

input channels of the router. The switch allocator grants an output, when available, to the requesting input

with the highest priority. The state variable gnt is then updated to indicate that the channel is granted, and

the priority variables are updated to give the granted input lowest priority going forward. The grant is released

when the tail flit is transferred across the input channel.

32

1 init[gnt] := none;

2 next[gnt] := case

3 (gnt = none) & rn & (˜rs|pns) & (˜re|pne) & (˜rw|pnw) & (˜rp|pnp) : north;

4 (gnt = north) & ˜tail_n : north; (* don’t release output *)

5 (gnt = north) & tail_n : none; (* release output *)

6 (* repeated cases for other 4 inputs in same style as shown for north *)

7 default : idle;

8 esac;

9

10 (* update priority of n vs s inputs, repeat for other nine pairings *)

11 init[pns] := true;

12 next[pns] := case

13 (state = n_sending) : false;

14 (state = s_sending) : true;

15 default: pns;

16 esac;

Crossbar

The crossbar is the means through which the non-xMAS router core interfaces to standard xMAS primitives

that use channels. The crossbar is a stateless primitive that makes connections between the five input channels

and five output channels of the router. Boolean signals from the switch allocator control which input-output

channel pairings are connected by the crossbar. When a particular input channel is logically connected to

some output channel by the crossbar, the irdy and data signals of the output are driven from the input, and

the trdy signal of the input is driven from the output. Note that the crossbar cannot be implemented using

the traditional xMAS switch primitive because the switch primitive routes flits based on their value. In the

crossbar, body and tail flits do not contain any destination information and are routed according the value of

a head flit that preceded them, information that is stored in the state of the switch allocators.

4.4 Checking Latency Bound Properties on Network Model

While any performance property that can be formulated as a safety property is of relevance in this work, the

focus is on latency bounds. The three major components of this dissertation (Chapters 5, 6, and 7) all concern

verifying latency bound properties. The common approach in all these chapters is to compute latencies by

tracking the age of flits. Checking the validity of a latency bound of x cycles is then simply a matter of

checking the validity of a simple safety property stating that no flit ever has an age greater than or equal to x.

Two different simple safety encodings are used, termed “timestamp encoding” and “stopwatch encoding”.

All flits within the network occupy a slot of some queue in each cycle. Checking the age of flit data is then

33

a matter of checking properties on queue slots. Let qi represent the state of the ith queue slot in the network.

Assuming the queue implementation of Sec. 4.2.1, this queue slot is a bit-vector comprising a number of

different logical fields as explained in Tab. 4.1, and checking latency makes use of the field that stores the

timing information. The notation age(qi) is used to signify the age of a flit occupying the ith queue slot in the

network. A latency bound of x cycles is therefore checked on the ith queue slot using a simple safety property

of the form φ := usedi∧age(qi)< x, where usedi is true if slot i is non-empty.

t(qi): 29

q0 q1 q2

35 clk:

30

(a) Timestamp Encoding

age(qi): 6

q0 q1 q2

 5

(b) Stopwatch Encoding

Figure 4.5: Two Encodings of Flit Ages. Both encodings show flits with ages of 5 and 6 cycles. Timestamp encoding stores

a static timestamp with each flit and updates a global variable clk to advance the age. Stopwatch encoding stores the age directly, and

updates each age in-situ.

4.4.1 Timestamp Encoding

Timestamp encoding uses an injection timestamp, denoted t(qi) for the ith slot, and computes age(qi) as the

difference between a global clock (clk) and the injection timestamp. To use timestamp encoding, a network

model is augmented with a single bit-vector state variable clk that implements a global counter from 0 to

tmax−1, where tmax is some number that exceeds the largest age bound that is being checked. In every cycle

of execution, clk is incremented by 1 (mod tmax). The timestamp field of each flit is assigned a static copy of

the value of clk on the cycle when it is injected into the network, and this timestamp propagates from source

to sink unchanged as a part of the flit. Because clk is incremented in every cycle to advance the age, the age

of the data in slot i is computed as age(qi) = clk− t(qi) mod (tmax). The overhead for timestamp encoding

is the inclusion of the clk state variable, and the fact that at least log2(tmax) bits of each queue slot’s state

variable are reserved to store the timestamp as part of the data.

A drawback of timestamp encoding is that ages are not represented canonically. There are tmax equivalent

representations of the same data ages. More specifically, given any state of the network model, equivalent ages

are formed by adding (mod tmax) a common offset x ∈ [0, tmax− 1] to clk and all t(qi) timestamps. To show

that some particular age cannot be reached by flits, the verifier must show that all equivalent representations

of the age are unreachable. This is a burden for the verifier when using induction as a proof engine, and is

34

exacerbated by larger tmax.

4.4.2 Stopwatch Encoding

Stopwatch encoding is denoted as such because it stores within each flit data an age counter that functions

like a stopwatch for measuring latency. This variable is age(qi) for each slot i, and it travels with the flit

through the network model. In contrast to the static timestamp in timestamp encoding, the age field of each

flit begins at 0 when injected and then is incremented in every cycle until the flit is ejected. Therefore, the

value of the stored variable age(qi) is itself the age of the flit occupying slot i, and there is no need for a

global counter. The variable age(qi) is considered a part of the flit just as is t(qi) in the timestamp encoding,

and it similarly requires each queue slot in the network to reserve at least log2(tmax) bits to store it. Because

standard xMAS queues store data without modifying it, some extra logic is added to the queue primitives for

incrementing the ages in each cycle. For the flit that will be stored in each queue slot i, the age field age(qi)

of the stored data is incremented by 1 (mod tmax) relative to the value that would be stored by a normal xMAS

queue. This ensures that the ages are incremented both for flits remaining in slot i from the previous cycle,

and for flits being newly written into slot i over the queue’s input channel.

Compared to timestamp encoding, stopwatch encoding requires a more complex transition relation (incre-

menting values in all queue slots instead of incrementing a single counter), but represents ages canonically.

In stopwatch encoding, an age of x for a flit stored in slot i is unambiguously represented by age(qi) = x.

Chapters 5 and 7 use timestamp encoding; Chapter 6 uses stopwatch encoding, and also presents a comparison

of the two encodings and shows stopwatch encoding to perform better when using induction as the proof

engine. It is unclear whether the work of Chapters 5 and 7 might also benefit from stopwatch encoding, as this

was not evaluated. It is believed that stopwatch encoding would not offer significant benefit in those chapter

because they use BMC as the proof engine and would therefore have less benefit from a more canonical

representation of bad states.

4.5 Formal Traffic Model

A formal traffic model injects traffic into a network while avoiding unrealistic traffic such ill-formed flits that

should never be injected, or flits injected at an overly adversarial rate. The traffic model, denoted T , serves

as a formal environment model for an NoC model N . It is constructed as a modeling element that uses

constrained non-determinism to generate a large finite set of traffic patterns that meet certain qualifications.

Before going into detail about traffic models, notation regarding traffic patterns is introduced.

A concrete traffic pattern, denoted p, is a trace of what data is injected and when. A traffic pattern can refer

to either a single source or collection of sources. For simplicity of notation, the description of a traffic pattern

assumes a single source with channel data width of L. Over N cycles, traffic pattern p is a sequence of pairs

35

〈(irdy1,data1), . . . ,(irdyN ,dataN)〉, where irdyi ∈ B and datai ∈ BL. A source that injects pattern p sends

data into the network for all cycles i such that irdyi is true, and the value injected on cycle i is datai. The

value of datai is irrelevant when irdyi = false. A traffic pattern for a collection of M sources is similar to that

of a single source, except that each scalar irdyi value is replaced by a vector of width M, and each datai of

width L is replaced by a vector of M data values that are each L-bit wide.

Using the definition of traffic pattern, a traffic model T is then a component that non-deterministically

generates a pattern pi from a finite set of possible patterns P = {p0, p1, . . .}. Note that the set of patterns P

for a traffic model T are an implicit set and never explicitly enumerated. For a traffic model T that generates

L-bit wide traffic to inject on M channels over N cycles, the set of patterns P that can be generated is a subset

of BNM(L+1). Note that the L+1 term arises because for each channel, L-bit data values are generated along

with a Boolean irdy signal.

The constraints enforced by the traffic model are of two types: data constraints and rate constraints. Cor-

responding to the two types of constraints, the traffic model T logically comprises two stages (Fig. 4.6).

Stage 1 of T is tasked with using non-determinism to generate a candidate traffic pattern, and stage 2 im-

poses deterministic rate constraints on the candidate traffic from stage 1. For every output channel of T ,

there is therefore a corresponding channel from stage 1 to stage 2 that carries the candidate traffic. In the

following sections, a generic instance of such a channel is denoted as channel x, and so its channel signals

are denoted x.irdy, x.data, and x.trdy.

single
channel

regulators

Stage 1:
non-deterministic

generation

Stage 2:
deterministic

regulation

traffic
pattern

p

candidate
traffic
pattern

single
channel

regulators

N T

ND data-selection
ND-FSA

ND data-selection
ND-FSA

Figure 4.6: Block Diagram for a Traffic Model T . Traffic model uses a two-stage process to generate the traffic patterns

that are injected into the network model N . Stage 1 generates candidate traffic, and stage 2 regulates the rate of the candidate traffic.

36

4.5.1 Stage 1 of Traffic Model: Generating Candidate Patterns

A traffic model must not inject flits with fully non-deterministic data across a channel into a network, as

the network assumes incoming traffic to satisfy certain conditions. These traffic conditions arise because

the different logical fields of the flit data (Tab. 4.1) have defined meanings, and the injected values must be

sensible with respect to those meanings. To motivate the need for constrained data, consider the following

two examples in which unrealistic flit data could foil attempts at verification:

1. A head flit that is injected without a subsequent tail flit may cause a deadlock because a reservation is

made for the head flit but never released by the tail flit.

2. If 3 bits of data are used to encode the five different destination addresses 0 through 4, then injected

data with a destination address of 5 may never be routed to any destination.

Bounded non-deterministic data precludes these two types of unrealistic behaviors. Different mechanisms

within stage 1 of traffic model T are used for handling each of the two cases above. While each field such as

flit type or destination is generated independently using the appropriate mechanism, ultimately the fields are

simply concatenated to generate the overall data that is the output of stage 1 of the traffic model T .

Non-deterministic Finite State Automata

A non-deterministic finite state automaton (ND-FSA) solves the problem of generating appropriately ordered

head, body, and tail flits. An example of such an ND-FSA is shown in Fig. 4.7, and implemented in the

UCLID modeling language. The state of the ND-FSA determines the single-bit value for x.irdy and the 2-

bit value representing the flit-type field of candidate data value x.data; the values on the states in Fig. 4.7

represent x.irdy and the flit-type field of x.data.

When the ND-FSA is in the idle state, it is non-deterministically chosen whether or not to start sending the

flits of a packet by transitioning to the head state. Once in the head state, x.irdy is true, meaning that an

attempt is made to send to data, and x.data[1 : 0] is assigned value 01 to indicate a head flit. The ND-FSA

remains in the head state until the head flit is transferred through stage 2 of T , and then transitions to the

body state to send the body flit, and finally the tail state to send the tail flit. Once the tail flit is sent, a

non-deterministic choice is made to send the head flit of the next packet, or else go to the idle state.

One or more ND-FSA form part of the traffic models T in Chapters 5 and 7. The ND-FSA shown in Fig. 4.7

is exactly the one used in Chapter 5, and the one in Chapter 7 omits the body state, as each packet in that

chapter comprises only a head and tail flit. The traffic models of Chapter 6 do not require an ND-FSA,

because there each data independently represents an entire packet, and there is hence no need to enforce

consistency of flit types.

37

idle
0/00

head
1/01

body
1/10

tail
1/11

x.trdy

x.trdy

x.trdy ^ ¬oracle

oracle
¬oracle

x.trdy ^ oracle

¬x.trdy

¬x.trdy

¬x.trdy

Figure 4.7: Non-deterministic FSA for Generating Consistent Flit Sequences. Variations of this ND-FSA are

part of the traffic models T in Chapters 5 and 7. The values on each state represent the values used, when in that state, for x.irdy and

the bits of x.data that encode the flit type. The ND-FSA non-deterministically transitions from the idle state to the state where a head

flit is being sent, and only advances from the head, body, or tail states when x.trdy is asserted. Because x.irdy is always asserted from

those three states, x.trdy always corresponds to a flit being successfully injected from the traffic model into the network model.

Non-deterministic Data Selection

The injection of flawed data values, as in the motivating example of the incorrect destination addresses, is

prevented using non-deterministic choice among enumerated legal values. A multiplexer controlled by a non-

deterministic oracle selects between the values. Because every oracle value selects a legal output value, there

is no possibility of bad data values.

4.5.2 Stage 2 of Traffic Model: Deterministic Rate Constraints

Rate constraints in T prevent unrealistic behaviors such as, for example, every source injecting flits on ev-

ery cycle. The rate constraining mechanisms receive candidate traffic from stage 1 of the traffic model, and

produce the traffic model outputs that are the inputs to the network model. The specific rate constraints im-

plemented by traffic models in this dissertation are upper bounds on burst size of traffic, and upper bounds

on average injection rate. The constraints are enforced using token bucket regulators built from xMAS prim-

itives, as defined in the following paragraphs. The token bucket regulators are similar to those described by

Dally and Towles [38] among others, but coupling the regulators to non-deterministic candidate traffic allows

for exploration of “bounded” adversarial traffic patterns in a manner suitable for formal verification.

The structures within dotted boxes in Fig. 4.8 are xMAS implementations of token bucket regulators. Each

regulator comprises a join primitive, a token buffer and a periodic token source. The buffer has depth σ and

is filled with tokens in the initial state (e.g. in BMC), and a token is consumed each time data is injected

through the join primitive from the output of stage 1 of the traffic model. Token source srcρ adds a token

38

to the buffer every ρ th cycle, unless the buffer is already full. When a token buffer is empty, no flits can be

propagated through the regulator until more tokens are added.

The token bucket regulators impose the rate constraints on the transition relation of traffic model T , so every

output sequence of T inherently satisfies the regulator constraint. Since at most σ tokens can accumulate in

the buffer, and each injected flit consumes one token, σ constrains the burst size of traffic through the join.

Also, in each regulator, the maximum number of packets sent through the join in N cycles (after a possible

initial burst) is dN
ρ e. In this dissertation the relation σ < ρ always holds, and therefore the maximum burst

size is σ +1, as at most one new token is added to the token bucket during the σ cycles when a burst is being

sent. The following paragraphs give three different applications of token buckets, corresponding to the three

token bucket regulators shown in Fig. 4.8.

Basic Regulator: Fig. 4.8(a) shows a basic token bucket regulator. When the token buffer is empty, no

candidate traffic from stage 1 of the traffic model T can be sent through the join to reach the output of T .

Applying the regulator prevents candidate traffic from being injected at an overly-adversarial rate.

Conjunction of Regulators: Fig. 4.8(b) shows multiple regulators applied in sequence. The ith regulator

constrains burstiness and rate of traffic according to parameters σi and ρi. The traffic at the output of the

overall regulator satisfies all of the burstiness and rate constraints of the individual token buckets. A more

detailed discussion of this style of regulator is given in Chapter 5 where it is used.

Selective Regulator: Fig. 4.8(c) shows a regulator combined with a switch parameterized by a switching

formula f . This regulator constrains the rate of all flits with data satisfying f . In Chapters 5 and 7, formula

f is set to be true for head flits and false otherwise; this allows for the rate of head flits to be constrained

while allowing body and tail flits to flow unimpeded after their head flits. Otherwise, reservations may be

blocked by the regulator for artificially large numbers of cycles while waiting for tail flits to follow their

corresponding head flits.

39

σ

srcρ

(a) Basic Regulator

σ0

srcρ0

σ1

srcρ1

(b) Conjunction of Regulators

f!

σ

srcρ

(c) Selective Regulator

Figure 4.8: Traffic Regulators. Within each dotted line is a type of token bucket regulator that receives on its input channel

candidate traffic , and produces on its output channel rate-constrained traffic for injection into a network. Each regulator constrains the

burstiness of traffic using σ parameters, and the average rate of traffic using ρ parameters. Fig. 4.8(a) bounds the rate of all flits on a

channel. Fig. 4.8(b) bounds the rate by of all flits on a channel by conjunction of constraints. Fig. 4.8(c) bounds the rate of all flits on a

channel that satisfy formula f .

40

Part II

Scalable Latency Verification

41

Compositional reasoning enables scalable model checking of latency properties, and the two chapters in

this part of the dissertation present two different approaches for compositional reasoning. The approach in

Chapter 5 reduces both the number of variables and the number of unrollings by decomposing both the model

and the latency bound. The approach in Chapter 6 keeps the model and property whole, but strengthens the

property such that it can be proved inductively, thus reducing the number of unrollings required, and achieving

scalability.

42

Chapter 5

Compositional Reasoning using Traffic

Abstraction

This chapter presents an approach to formally analyze latency properties of large NoC designs. Industrial-

scale designs are tackled using an abstraction-based approach, where only the routers of interest in the net-

work are modeled precisely and the rest of the network is abstracted away as sources and sinks of traffic.

An automatic technique is given for inferring formal traffic models of sources based on simulation traces

from software benchmarks. Experimental results demonstrate that the inferred models generalize well and

demonstrate that the approach can be applied to industrial-scale models. The significant limitations of this

approach as implemented are also given.

5.1 Introduction

Verifying performance (QoS) properties on NoC designs is challenging. This point is illustrated using the

8× 8 mesh of interconnected routers shown in Fig. 5.1(a). Each router has connections to a processing el-

ement (shown by bold arrows), and connections to neighboring routers. Consider the specific router in the

mesh labeled R9, and suppose that one wants to verify the property that every packet traveling through R9

spends no more than 42 cycles within it. One option is to perform simulations, perhaps derived from software

benchmarks. While software-derived testbenches are a good way to characterize workloads for NoCs, simu-

lations can only prove the presence of performance bugs, not their absence. An alternative approach is to use

a formal verification method such as model checking [29]. The property above can be formalized in temporal

logic, and the overall network can be modeled as a synchronous composition of 64 finite-state machines, one

for each router. However, even a simple router has over 1000 state variables, and a model of the entire mesh

has tens of thousands of state variables and is beyond the capacity of current formal verification tools.

43

R17!

R1!

R9!

R0!

R16!

R25!R24!

R8!

R18!

R2!

R10!

R26!

R19!

R3!

R11!

R27!

R49!

R33!

R41!

R32!

R48!

R57!R56!

R40!

R50!

R34!

R42!

R58!

R51!

R35!

R43!

R59!

R21!

R5!

R13!

R4!

R20!

R29!R28!

R12!

R22!

R6!

R14!

R30!

R23!

R7!

R15!

R31!

R53!

R37!

R45!

R36!

R52!

R61!R60!

R44!

R54!

R38!

R46!

R62!

R55!

R39!

R47!

R63!

(a) 8×8 network

R1,2!

R1,0!

R9!

R0,0!

R0,2!

R1,3!R0,3!

R0,1!

R2,2!

R2,0!

R2,1!

R2,3!

R3,2!

R3,0!

R3,1!

R3,3!

R1,6!

R1,4!

R1,5!

R0,4!

R0,6!

R1,7!R0,7!

R0,5!

R2,6!

R2,4!

R2,5!

R2,7!

R3,6!

R3,4!

R3,5!

R3,7!

R5,2!

R5,0!

R5,1!

R4,0!

R4,2!

R5,3!R4,3!

R4,1!

R6,2!

R6,0!

R6,1!

R6,3!

R7,2!

R7,0!

R7,1!

R7,3!

R5,6!

R5,4!

R5,5!

R4,4!

R4,6!

R5,7!R4,7!

R4,5!

R6,6!

R6,4!

R6,5!

R6,7!

R7,6!

R7,4!

R7,5!

R7,7!

Abstracted !
Network !
Model !

for !
Router R9!

(b) Abstraction

Figure 5.1: Challenge of Performance Verification. The goal of this chapter is to verify latency bounds through individual

routers, such as R9. When the entire network is modeled, there are 64 inputs and outputs representing connections between each router

and its associated processing element (which is not depicted in figure). When modeling a single router and abstracting away the rest of

the network, there are five inputs and outputs representing connections to the router’s single processing element and four neighboring

routers.

The obvious approach for applying formal methods to this problem is to use abstraction. As depicted in

Fig. 5.1(b), one can abstract all nodes in the network other than R9 into an environment model. The traditional

approach to generating an environment abstraction is to liberally use non-determinism: for example, the

environment model can be a state machine that non-deterministically decides at each cycle whether to send

a packet to R9. Such non-deterministic behavior is often restricted using additional constraints. However,

while such modeling is useful for verifying “logical correctness” properties such as absence of deadlock, as

typically used it does not work well for proving performance properties.

Consider again proving a latency property through router R9. With a completely non-deterministic envi-

ronment model that makes no assumptions about typical traffic patterns, it is not possible to prove a useful

latency bound. In the worst case, the environment will inject flits on inputs channels of R9 in all cycles, and

furthermore will configure all packets through R9 to require the same output port. This unrealistic traffic

would only allow overly pessimistic bounds to be proved for R9. The question is: what sorts of constraints

on the environment model would be reasonable?

This chapter presents TITAN, a new abstraction-based approach for performance verification of NoC de-

signs. TITAN1 leverages the presence of testbenches derived from software benchmarks by generating

1TITAN stands for Trace-Inferred Traffic-Abstractions for Network-on-chip verification

44

formal models of network traffic from simulation traces. The inferred traffic models are guaranteed to be

over-approximations of the simulation traces they are derived from, meaning that they can generate not only

the packet sequences in the simulation traces, but also other sequences that have similar traffic characteris-

tics. The generated traffic models have several applications: (i) they enable the use of formal techniques like

model checking to prove QoS properties of NoCs; (ii) they formalize assumptions about traffic patterns under

which QoS guarantees hold; and (iii) they can be used for diagnosing the cause of poor performance observed

on new software benchmarks. To summarize, the main contributions of this chapter are:

• A technique for inferring traffic models and their associated configuration parameters from simulation

traces (Sec. 5.3)

• Experimental results demonstrating formal verification using the inferred traffic models (Sec. 5.4).

The generated results provide tighter bounds than traditional non-deterministic models with equal ef-

ficiency, but have some limitations (Sec. 5.6.2). Results are presented for an industrial-scale NoC de-

sign [81] using simulation data derived from PARSEC benchmarks [80], with verification by UCLID [18],

which uses model checking based on SMT solving [4].

The remainder of this chapter is organized as follows: basic terminology and preliminaries are covered in

Sec. 5.2, traffic model inference is presented in Sec. 5.3, experimental results are given in Sec. 5.4, related

work is discussed in Sec. 5.5, and conclusion and discussion of limitations are in Sec. 5.6.

5.2 Preliminaries

5.2.1 Basic Definitions

In this chapter, a model of an NoC N is a tuple 〈I ,O,C 〉 where

• I is a finite set of input sources;

• O is a finite set of output sinks;

• C is a finite set combinational or sequential of NoC components.

Consider the NoC design of the 8×8 mesh in Fig. 5.1(a). If the entire mesh is used as a network model N ,

then I is the set of 64 sources that inject traffic into the network interface port of each router, and Ois the

set of 64 sinks that receive traffic going in the opposite direction; these inputs and outputs are shown as bold

arrows in Fig 5.1(a).

However, the entire mesh network is too large to formally verify if represented precisely in the model. The

size of the model is reduced by considering N to be a single router instead of the entire mesh of 64 routers.

A model of each single router in the network is denoted N with no differentiation because all routers are

45

identical. If the design to verify is the single router R9, located at position (1,1) in the grid of Fig. 5.1(a), then

it can be represented by a model N with five sources and sinks; one source/sink pair is for the network inter-

face port associated with R9, and four source/sink pairs are for the channels connecting R9 with neighboring

routers. The source and sink for the network interface are an input and output for the entire network, but the

connections to neighboring routers R1,R8,R10, and R17 are only sources and sinks because the remainder of

the mesh network other than R9 is abstracted away. Analyzing R9 in isolation therefore requires a model for

the behavior of these sources and sinks. This model is the abstract environment model for R9, as shown in

Fig. 5.1(b).

5.2.2 Smallest Verifiable Latency Bound

The goal in this work is to verify tight latency bounds of single routers. The timestamp formulation of

Sec. 4.4.1 is used to check latency bounds as simple safety properties on the router model N . The latency

property to check a bound of B cycles is written in this chapter as φB. As each model checking call verifies or

disproves a single latency bound, a binary search (Alg. 1) is implemented around the model checking calls to

find the tightest provable latency bound. If a bound B is disproved, then the tightest possible bound can be no

smaller than B+1; and if a bound B is verified, then there is no need to check any bounds larger than B−1.

At termination of the binary search there are two checked bounds B− 1 and B, such that B− 1 is disproved

and B is verified.

Algorithm 1 Find largest valid latency bound for router i under inferred traffic model Ti.

1: Bmin← 0 . Smallest bound that is not yet disproved

2: Bmax← 30 . Largest bound that is not yet confirmed valid

3: Bvalid ←−1 . Tightest valid bound

4: while Bmax ≥ Bmin do

5: B′← Bmin + int(Bmax−Bmin)

6: if N ‖Ti � φB′ then

7: Bvalid ← B′

8: Bmax← B′−1

9: else

10: Bmin← B′+1

5.3 Traffic Model Inference

As noted earlier, NoC designers might wish to optimize their designs for particular kinds of software bench-

marks from a set of application domains. The PARSEC benchmarks [80] are one such example. However, it

is desirable to optimize the design not just for the specific programs in the benchmark suite, but for all pro-

46

Router Output
Router Input N S E W NI

N X X
S X X
E X X X X
W X X X X
NI X X X X

Table 5.1: Allowed Turns in XY-routing. For a mesh network of routers that use XY-routing, only the input-output

combinations with check marks are possible.

grams that generate “similar” traffic. This section describes the form of traffic model used in this chapter, and

how such a model is inferred from simulation data. The model inference problem addressed in this section

is, for each router, as follows:

Given a finite set of traffic patterns for the 64 inputs to the mesh network, create for each router
Ri a traffic model Ti that generates traffic for the router’s five inputs that is a superset of the
traffic induced on the same five channels when simulating the patterns on the mesh network.

The traffic models used in this chapter follow the methodology of Sec. 5.3.1. For each single router Ri, a

customized traffic model Ti is generated using a three step process.

1. The first step (described in Sec. 5.3.1) is to define the form of constraints to use in the traffic model

Ti for each router Ri, while leaving the parameters of the traffic model (e.g. for burstiness and rate

constraints) unassigned.

2. The second step (described in Sec. 5.3.2) is to simulate benchmarks on the entire 64-router mesh

network to propagate the network-level inputs onto all the channels of the network. Based on the

induced traffic at the inputs of each router Ri, constraints are inferred.

3. The third step (described in Sec. 5.3.3) is to translate the inferred constraints for each router Ri into the

parameters of the traffic model Ti that is used in verification.

5.3.1 Form of Traffic Model

As introduced in Sec. 4.5, traffic models are used for precise modeling of the traffic injected by sources.

A traffic model T precludes injection of ill-formed flits and overly adversarial injection rates. The traffic

models applied in this chapter constrain both the rate and the destinations of packets. As latency verification

is performed on single routers in isolation (Fig. 5.2), a separate traffic model Ti is used for each router Ri.

Because the router has five inputs (N,S,E,W,NI), its traffic model Ti generates traffic to inject on all five of

the inputs. Including the traffic model, the model checking problem for a property φ on a single router Ri

with formal model N is then N ‖Ti � φ .

47

N

E

NI

W

S

ingress
buffers

router
core

N Ti Eager
Sinks

Figure 5.2: Traffic Model and Router Model to Verify. Router Ri with formal model N has neighbors abstracted away

into traffic model Ti. If Ri is R9, this figure is a more detailed view of Fig. 5.1(b). The ingress buffers each have a depth of 8 slots.

For each router Ri, the traffic model Ti imposes the following constraints:

• For each of the five input channels, Boolean constraints restrict the destinations of head flits to preclude

routing paths that cannot occur in a mesh network with XY-routing.

• For each of the five input channels, rate constraints for all traffic crossing the channel and entering into

router Ri.

Boolean constraints restrict the destinations of injected traffic on each of the five input channels. The Boolean

constraints in the traffic models of this chapter serve to impose network-level routing onto individual chan-

nels. The CMP router in this work uses deterministic XY-routing, meaning that a packet with destination

x,y in the mesh is first routed horizontally until reaching column y, and then routed vertically to reach its

destination at x,y. From the perspective of a single router, XY routing leads to restrictions on the destinations

that packets of a channel can have. For example, packets entering a router on north or south inputs must not

exit on east or west outputs, as this would imply that vertical routing occurred before horizontal. The allowed

combinations of input and output ports in XY-routing are shown in Tab. 5.1. In the traffic model, the Boolean

constraints are implemented using the non-deterministic choice methodology from in Sec. 4.5.1, so that a

source can only inject packets with destinations that are consistent with XY-routing.

The motivation for rate constraints is to avoid unrealistic over-injection of traffic. If simulations never show a

case where flits cross a channel in every cycle, then verification allowing this behavior will be unnecessarily

pessimistic. To prove tight bounds, traffic rates must be precisely constrained. The form of rate constraints

used are burstiness and average rate.

Now that the form of the traffic models is specified, the next step is to infer the values to customize the traffic

model for each router.

48

5.3.2 Inferring Traffic Model Parameters from RTL Simulations

The concrete traces used for traffic model inference are generated from RTL simulation of the entire mesh

network. The inputs patterns to the simulation come from the PARSEC benchmarks. The PARSEC bench-

marks are too large to simulate exhaustively, so random sampling is used. During RTL simulation, for each

channel in the network, all the traffic to cross the channel is logged to a file. An example of a trace from a

log file is shown in Tab. 5.2.

Rate constraints are inferred through finding the maximum packet density for different sized time windows

in the simulation trace. For a single channel, the following example demonstrates how to maximum packet

density constraints are inferred for a single input channel to a router. Assume that for this channel, the RTL

simulation trace shows packets crossing the channel on cycles 2,6,23,29,42,50 (Tab. 5.2). For each non-

dominated time window duration t, the maximum number of packets to cross the channel is y(t). Therefore,

y(t) is the maximum packet density constraints for the trace. Since the constraint will be applied in (at most)

a 30 cycle symbolic simulation in this case, any constraints with a time window exceeding 30 cycles can be

neglected since they will not disallow any behaviors in a 30 cycle simulation that are not already disallowed

by one or more other constraints.

cycle 2 3 4 . . . 6 7 8 . . . 23 24 25 . . . 29 30 31 . . . 42 43 44 . . . 50 51 52
p H13 B T H2 B T H33 B T H37 B T H15 B T H72 B T

Table 5.2: Example of a Simulation Trace. Example of a concrete traffic trace across a channel. This trace is an example of

what would be induced by some patterns applied at the 64 inputs of the mesh network. The subscript of each head flit shows the packet’s

destination.

t y(t) Time of Occurrence in Trace
1 1 2-3, 6-7, 23-24, 29-30, 42-43, 50-51
5 2 2-7
20 3 23-43
28 4 23-51
45 5 6-51
49 6 2-51

Table 5.3: Maximum Packet Density Constraints. Packet density constraints inferred from simulation trace in Tab. 5.2.

The rate constraints for this channel are represented by the vector of pairs [(1,1),(5,2),(20,3),(28,4),(45,5),(49,6)].

5.3.3 Creating Traffic Model from Constraints

Once the maximum packet density constraints are inferred for each channel of each router, the next step is

to translate these into the traffic models that are suitable for verification. The Boolean destination constraints

49

are implemented using non-deterministic choice. The rate constraints are implemented using regulators. The

steps given here are for implementing the rate constraints of a single input channel to a single router.

1. The starting point is the inferred rate constraints for the channel from RTL simulation. More precisely,

the starting point is a vector of pairs (t,y(t)), where t is the shortest time during which y(t) packets

cross the channel. Consider the maximum packet density constraints in Tab. 5.3, that were derived from

the trace in Tab. 5.2. In Fig. 5.3(b), these points are denoted by the symbol ’+’, and y(t) is considered

to be the function that interpolates between these points with straight line segments.

2. Next, a set of (σ ,ρ) regulators are inferred. Each is conservative with respect to y(t). As described

in Sec. 4.5.2, each regulator constrains and maximum burst size using parameter σ , and average rate

using parameter ρ . Letting B be the largest number of packets observed within a time window size that

is equal to the symbolic simulation depth (e.g. 30), the parameters for each regulator i = 1 . . .B are

chosen by first assigning burst size (σi) to i, and then choosing the maximum ρi such that the regulator

(σi,ρi) yields a function ŷ(t) which bounds y(t). The final regulator is always (B,∞), since a burst size

of B is conservative with respect to any 30 cycle symbolic simulation without ever replenishing the

token bucket.

3. The rate constraint for the channel is then modeled by the conjunction of all learned token bucket

constraints as shown in Fig. 5.3(a).

The regulators generated in the above steps are (1,5), (2,14),(3,28), and (4,∞) for the constraints in Tab. 5.3.

The mechanism to implement this channel’s traffic model is shown in Fig. 5.3(a). The constraint imposed

by each token bucket regulator individually, and the constraint imposed by the conjunction of all regulators

is shown in Fig. 5.3(b). Each regulator in Fig. 5.3(b) is shown in the figure as the continuous function

ŷ(t) =
(

σ + t
ρ

)
; note that the exact constraint imposed by the regulator is actually a step function through

the same points, with each step corresponding to a token being added to the regulator’s queue. All traffic

patterns that fall below the line are modeled by our regulator, and those above it (e.g. sending 3 packets

within 5 cycles) are not.

5.4 Experimental Results

TITAN is evaluated on selected routers from the 8 × 8 mesh, where each router has five input ports and five

output ports [81]. Each input port has a single buffer with a depth of 8 slots. The traffic injected into the

network during RTL simulation is generated from architectural simulation [96] of the PARSEC benchmark

suite [80]. The architectural simulation traces are provided at the packet-level; for RTL simulation, each

packet is assumed to be a single head, body, and tail flit injected on the same cycle. RTL simulation is

performed using Icarus Verilog.

50

srcρ=5
srcρ=14

srcρ=28
srcρ=∞

f!

(a) Conjunction of Regulators in Traffic Model T

 0

 1

 2

 3

 4

 0 5 10 15 20 25 30

P
ac

k
et

 N
u
m

b
er

 Time

max pkt. dens.

all regulators

(1,5)-regulator

(2,14)-regulator

(3,28)-regulator

(4,∞)-regulator

(b) Constraints imposed by Traffic Model Components

Figure 5.3: Rate Constraints Imposed by Regulator The modeling element in (a) implements inferred rate constraints.

The switching function f routes all head packets to the upper switch output, and body and tail packets to the lower switch output. This

constrains the rate of head flits while allowing body and tail flits to follow without regulation. The constraints imposed by each of the

four token buckets in (a) are plotted in (b). All constraints are conservative with respect to all parts of the simulation trace. The dotted

black line is the overall constraint enforced by the mechanism in (a).

5.4.1 Convergence of Traffic Model Inference

Each trace of architectural simulation of the PARSEC benchmarks contains hundreds of thousands of packets

injected over a span of millions of cycles, making exhaustive RTL simulation a costly proposition. Instead of

exhaustive simulation, TITAN infers formal models from RTL simulation of a small, random subset of the

traces. For each router, 5 constraints are inferred. As explained in Sec. 5.3.1, the constraints are on the rate

of each of the five sources.

The TITAN models are inferred from 500 RTL simulations, where each simulation is a randomly chosen

sample of 5000 cycles from a randomly chosen PARSEC benchmark. It is then evaluated whether the traffic

models inferred from the first i− 1 traces remain valid for the ith trace; i.e., whether the ith trace could be

generated by the models inferred from the first i−1 traces. Fig. 5.4 shows the fraction of all models that are

valid for the first i−1 simulations and violated by the ith simulation. As the number of simulations performed

approaches 500, the vast majority of inferred models remain valid with respect to further RTL simulations.

This gives some confidence that the models are largely representative of those that might be inferred from

RTL simulation of the exhaustive set of traces.

5.4.2 Latency Verification using Inferred Models

Latency verification experiments show that tighter bounds can be proved by using inferred traffic models

instead of fully non-deterministic inputs. To verify a latency property on a router Ri with formal model N ,

using an inferred traffic model Ti, the overall model is as shown in Fig. 5.2; all five input channels of the

51

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 100 200 300 400 500

F
ra

c
ti

o
n

 o
f

M
o

d
e
ls

 V
io

la
te

d

 Number of Simulations Performed

Figure 5.4: Convergence of Inferred Traffic Models. Traffic models inferred from hundreds of RTL simulations tend to

be valid with respect to further simulations.

router are replaced by a bounded non-deterministic traffic model, and all five output channels are replaced by

eager sinks. A latency bound of B cycles is checking using property φB. The router model N is symbolically

simulated for 20 or 30 cycles (depending on the solver used), and the validity of formula N ‖Ti � φB is

checked for various values of B. A result of valid means that it is not possible to exceed latency bound B

while also conforming to the traffic model Ti. The minimum verifiable bound is found using iterated SMT

solving to check different values of B (Algorithm 1). Experiments are performed to find the tightest provable

latency bounds for the routers along a diagonal of the 8×8 mesh. Two different solvers are used; the first is

UCLID, and the second is Boolector [16].

Using UCLID for Symbolic Simulation and SMT-solving

Table 5.4 shows the tightest proved latency bound in a 20 cycle symbolic simulation for each router along

a diagonal of the 8× 8 mesh, as well as a single router with fully non-deterministic traffic inputs. The

total runtimes for each router are given, and broken down into the runtimes for symbolic simulation, decision

procedure encoding, and SAT-solving using MiniSat v2 [43]. The first router in the table is the one using fully

non-deterministic inputs, and for this router a latency bound of 15 cycles is disproved with a counterexample,

while a bound of 16 cycles is proved2. With traffic models, the proved latency bounds for some routers are

smaller than the 16 cycle bound obtained with fully non-deterministic inputs. For example, on the routers at

the corners of the network (i.e. R0 at position 0,0 and R63 at position 7,7) a latency bound of 13 cycles is

proved. The tighter bound exists on the corner routers because two the five input channels are unused and

inject no traffic; this is reflected in the rate constraints of traffic models T0 and T63. For some other routers

2In the case of latency verification with fully non-deterministic traffic, the model checking call to check a latency bound of B is
N � φB, instead of N ‖Ti � φB as would be used with a traffic model Ti.

52

i Pos
Runtimes in Seconds Min.

Symb.
Sim.

Dec. Proc.
Encod.

SAT
Solv.

Total
Latency
Proved

non-det 19 174 1399 1592 16
0 0,0 16 134 806 957 13
9 1,1 23 243 3412 3678 15

18 2,2 27 289 1712 2028 16
27 3,3 22 215 3319 3555 15
36 4,4 29 289 2292 2610 16
45 5,5 23 241 3604 3868 15
54 6,6 22 217 4386 4625 15
63 7,7 18 134 672 824 13

Table 5.4: Proving Latency Bounds using TITAN Models with UCLID. Results are for a 20 cycle BMC, for a

router with fully non-deterministic traffic, and for 8 routers using inferred TITAN traffic models from an 8× 8 mesh (Fig. 5.1). The

runtime is broken down into symbolic simulation, UCLID’s decision procedure encoding, and SAT solving. The final column gives

the tightest latency bound that can be proved. In some cases, TITAN models lead to tighter provable bounds than those achieved with

non-deterministic inputs.

in the network (i.e. R18 and R36), the inferred traffic models are too conservative to successfully verify any

latency bounds that are tighter than what is achieved with fully non-deterministic traffic.

Verification using a Strengthened Traffic Model

In 20-cycle BMC, the verified bounds using inferred traffic models are only slightly smaller than the 16 cycle

bound obtained using fully non-deterministic traffic (Tab. 5.4). Two changes are made in an attempt to obtain

better results: the BMC depth is increased to 30; and additional constraints are added for a more precise traffic

model. To facilitate the increase in BMC depth, the SMT solver used is changed from UCLID to Boolector

version 1.4.1 [16]. This change circumvents the decision procedure encoding and SAT-solving that were the

runtime bottlenecks with UCLID (Tab. 5.4). In this modified experiment methodology, UCLID performs

the 30-cycle symbolic simulation, and then outputs the SMT problem in SMT-LIB format for solving with

Boolector.

Strengthening Traffic Model with Aggregate Constraint: The traffic model Ti of each router Ri is aug-

mented with rate constraints on the aggregate sum of all traffic entering Ri across the five input channels.

This prevents all five inputs from sending their maximum bursts at the same time, by enforcing that the

aggregate burstiness does not exceed what is observed in RTL simulation of the 8× 8 mesh. Just as with

single-channel regulators in Sec. 5.3, aggregate regulators are parameterized by σ and ρ terms inferred from

simulation traces. However, aggregate regulators are implemented differently than the standard token bucket

regulators. Instead of a token bucket that imposes the rate constraint on the transition relation of traffic model

Ti (Fig. 4.8), the aggregate regulator constraints are implemented as a logical property T agg
i . Property T agg

i

53

i Pos

Standard Model Strengthened Model Strengthened vs. Standard
Ti Ti and T agg

i
Runtime Latency Runtime Latency Runtime Latency

[seconds] [cycles] [seconds] [cycles] [% change] [% change]
non-det 1621 25 1621 25 - -
0 0,0 2160 18 3083 15 +42.7% -16.7%
9 1,1 7626 23 17454 20 +128.9% -13.0%

18 2,2 5413 24 4444 24 -17.9% 0.0%
27 3,3 12060 24 16014 23 +32.8% -4.2%
36 4,4 2851 25 4880 24 +71.2% -4.0%
45 5,5 5848 24 18555 20 +217.3% -16.7%
54 6,6 6486 24 9927 23 +53.1% -4.2%
63 7,7 3372 17 4468 14 +32.5% -17.6%

Table 5.5: Proving latency bounds using TITAN models and 30-cycle BMC. Standard model uses only the

single channel regulators for each of a routers five input channels, while the strengthened model adds the aggregate rate constraint across

all five channels. The row marked non-det is a fully non-deterministic traffic model (i.e. unconstrained), and is repeated in both columns

only for comparison against the other routers. The final two columns compare solver runtime and proved bound across the two traffic

models. The SMT solver used is Boolector 1.4.1 [16].

is checked using counters that saturate at σ , are incremented once every ρ cycles, and decremented in each

cycle by the number of head flits3 sent from Ti to N across the five input channels of Ri. Property T agg
i is

true if the counter values are always non-negative, as a negative count is analogous to a packet being injected

when a token bucket is empty. The model checking problem for a property φ on router Ri with aggregate rate

constraints is then Eq. 5.1.

N ‖Ti � T agg
i =⇒ φ (5.1)

Evaluating Impact of Aggregate Constraint: Table 5.5 shows the tightest verified bounds for each router

in a 30-cycle BMC using two different traffic models. The first, denoted “standard model”, is the same traffic

model Ti used in Tab. 5.4, while the second, denoted “strengthened model”, is the standard traffic model

augmented by the aggregate traffic constraint T agg
i . The strengthened traffic model increases the runtime and

decreases the proved bound for all routers except R18 at position (2,2); in R18 the strengthened traffic model

(i.e. T18 and T agg
18) proved the same bound in less runtime.

Relative Difficulty of Checking Different Bounds with SMT

Recall that the tightest verifiable latency bound is discovered by iterated model checking of different bounds

within an overall binary search loop (Algorithm 1), and that property φB checks the validity of a latency bound

3The fact that the count is decremented by the number of head flits in each cycle is the reason why the aggregate regulator is
implemented as a logical property and not as a token bucket. If implemented as a token bucket, it would not be possible to drain two
tokens from the bucket during cycles when two head flits are injected into the router.

54

of B cycles. Using the router R18 at position (2,2) and the standard traffic model T18, an exhaustive check

of all bounds is performed by individually checking properties φ1,φ2, . . . ,φ29, and the results are shown in

Fig. 5.5. It is observed that the solver runtime is lower whenever verifying a bound that is much larger than

the tightest verifiable bound, or much smaller than the largest disprovable bound. The runtimes grow largest

as the checked bound approaches the true bound from either side, as the problem then becomes harder for the

SMT solver to decide.

 0

 500

 1000

 1500

 0 5 10 15 20 25 30

R
u
n
ti

m
e

[s
ec

o
n
d
s]

Latency Bound [cycles]

Disproved

Proved

Figure 5.5: SMT Solver Runtime versus Checked Latency Bound. SMT solver runtime versus checked latency

bound for router R18 at position (2,2) in the 8×8 mesh (Fig. 5.1). The SMT problem is more difficult for the solver to decide when the

checked bound is close to the true worst-case bound. The SMT solver used is Boolector 1.4.1 [16], and the SMT problem is created

from a 30-cycle symbolic simulation using UCLID.

5.5 Related Work

NoC designs can be modeled in various ways for latency verification. Synchronous dataflow (SDF) graphs [64]

are suited to modeling networks with regular traffic such as multimedia applications. Network calculus is

suited to reasoning about bursty traffic, as in the Internet. Statistical models are suited to average-case analy-

sis. There is much crossover between the approaches.

SDF: While several efforts have used SDF to model NoCs (e.g. [85]), such modeling is limited to only

a subset of NoCs. Assumptions of periodic sources and data-independent routing make SDFs well-suited

to modeling multimedia NoCs, but not for general-purpose chip multiprocessor (CMP) NoCs. In a CMP,

the injected traffic at each node can vary in burst size, have irregular periods, and choose destinations non-

uniformly over time. Additionally, due to the lack of support for conditionals, SDFs are not expressive enough

to model NoC designs with detailed routing and arbitrary logic.

Network Calculus: The analysis of general-purpose CMPs is typically based on simulation or probabilistic

reasoning. Cruz [31, 32] presented network calculus as an efficient way to compute delay bounds in a FIFO

network with sources satisfying burstiness constraints. Stochastic automata networks (SAN) [83] have also

55

been used to model network traffic in SoCs [68]. While SANs allow for efficient reasoning about average case

results, they are not suitable for worst-case analysis, as is addressed in this chapter. Addressing limitations in

the probabilistic analysis of stochastic models, adversarial queuing theory has been proposed [11]. Networks

with arbitrary aggregate multiplexing may not satisfy the global FIFO property that is a precondition for tight

bounds in network calculus [91].

Statistical modeling: Various statistical traffic models have been used to characterize network traffic. Varatkar

and Marculescu [100] show that NoC traffic for a multimedia application is temporally self-similar, and char-

acterize it using a Hurst parameter. Soteriou et al. [96] model traffic flow as a 3-tuple consisting of a Hurst

parameter and parameters for hop distance and spatial injection distribution. However, these statistical mod-

els are not a formal and conservative representation of the underlying traffic, and it has been reported that

designing according to such models can be misleading [55].

Formal Methods: The abstraction of a latency-insensitive system [20] has been explored as a verification aid.

A latency-insensitive system assumes only that component delays are multiples of a shared clock, and can be

functionally verified independent of the component delays. This abstraction is a useful way for propagating

global invariants that can greatly speed up RTL model checking of functional properties of networks [22],

and can make certain properties inductive [21]. However, such formal modeling has not previously been

demonstrated to be useful for performance (QoS) properties.

5.6 Conclusion and Discussion

The chapter proposes a new formalism to model traffic in an NoC design. An automatic technique is given to

infer the traffic model parameters using simulation traces derived from software benchmarks. Experimental

results demonstrate that this abstraction-based approach can verify latency bounds for routers in an industrial-

scale 8×8 mesh design. Apart from the application to formal verification, it would be interesting to explore

other applications of the proposed model such as performance diagnosis.

5.6.1 BMC Depth and Completeness

In this chapter, all verification is performed using BMC. The deepest BMC performed is 30 cycles. The 30

cycle BMC depth appears to be too small to prove results, but there is reason for optimism regarding the

results that might be obtained from a deeper BMC.

The Need for a Deeper BMC

Aside from special cases where a completeness threshold is reached [27], BMC is well-known to be an

incomplete verification engine. This means that a latency bound that cannot be disproved within 30 cycles

of the initial state may be disproved during later cycles. Due to the manner in which latency is verified in

56

this work, it is not possible to disprove any bounds greater than 29 within a 30 cycle BMC; this would hold

even if a network was deadlocked and the true latency bound was infinite. If the proved latency bound is

(suspiciously) close to the BMC depth, it is reasonable to guess that the BMC depth is the limiting factor in

what latency bounds can be disproved, and that the verified latency bounds are not true bounds. Many of the

latency bounds in Tab. 5.4 and Tab. 5.5 are close to the BMC depth and therefore might be disproved with a

deeper BMC.

Optimism Regarding a Deeper BMC

While BMC depth is currently limited by tools and the size of the models being verified, the inferred traffic

models will become less pessimistic as the BMC depth increases. Recall that the traffic models must be

conservative with respect to all of the worst-case behaviors that can occur within the symbolic simulation

depth. So for a 30 cycle BMC, the inferred traffic model of a channel must be conservative with respect to

the maximum number of packets to cross the channel within any 30 cycle window of RTL simulation. If the

BMC depth was increased to 60 cycles, then clearly the traffic model of the channel would need to allow

more injected packets, but the number of injected packets in any 60 cycle window is always less than (or

equal to) twice the maximum number injected in 30 cycles. In this way, the average injection rate allowed by

the traffic model becomes less adversarial as BMC depth is increased.

5.6.2 Limitations of Proposed Approach

The TITAN method presented in this chapter is viewed as a first step toward formal traffic modeling. The key

idea is to create a formal model of traffic to serve as an interface specification that is less pessimistic than fully

non-deterministic traffic assumptions. While the given procedure for deriving traffic model parameters from

simulation is a novel contribution, there are some limitations in how such traffic models could be applied.

Open Question about Applicability of Approach

Fig. 5.4 shows that the inferred traffic models in TITAN generalize well with respect to simulation traces,

but there remains a valid concern about whether the inferred models are conservative with respect to future

traffic patterns. Although network calculus may suffice in special cases, this dissertation does not give any

general approach for determining whether inferred models are representative of the traffic generated by new

software benchmarks without first simulating them. As simulating a benchmark reveals a latency bound for

the exact pattern in the benchmark, this might be viewed as obviating the need for formal latency verification

using generalized models. However, the latency bounds obtained by simulation alone are less general than

the bounds verified using the inferred model.

The significant contribution of this chapter is the notion that traffic models can serve as interface specifications

for decomposing network models when performing latency verification. This contribution is considered only

57

a first step toward model decomposition. Further applications are left as open questions.

Relaxing the Eager Sink Assumption

As mentioned in Sec. 5.4.2, when performing analysis on a single router, the environment model that repre-

sents the rest of the network acts as an eager sink of traffic. This eager sink assumption is akin to assuming

that neighboring routers never present backpressure to the router being verified. This assumption is optimistic

and will likely not hold in practice, as significant backpressure occurs during times of high congestion. It is

theoretically possible to use a sink model that is conservative with respect to the backpressure observed in

simulation, but as the following example illustrates, this requires a very large BMC depth.

Theory: Consider two routers: R9 and its north neighbor R17. Fig. 5.1(a) shows that traffic exiting the north

output of R9 enters the ingress buffer of the south input channel of R17. If the south channel ingress buffer

of R17 is full, then it is unready to receive traffic and asserts backpressure. It is possible to measure during

simulation the maximum number of consecutive cycles for which the ingress buffer is full; let this number

be x. When router R9 is then analyzed in isolation, the channel to abstracted router R17 can then be received

in the abstract environment model by a sink satisfying bounded liveness; this sink can block traffic but must

always accept waiting flits within x cycles. This notion of bounded-liveness on sinks is used extensively in

Chapter 6.

Practice: The smallest modification to an eager sink would be a sink that accepts waiting traffic after at

most 1 cycle. At a minimum, this causes a doubling of the worst-case latency through each router; but given

that nearly all latency bounds proved in this work are already greater than 50% of the BMC depth, it is not

possible to verify any meaningful bounds without increasing the BMC depth beyond the current capacity of

the tools used.

5.6.3 Lessons From this Chapter that Shaped Chapter 6

A variety of significant challenges were uncovered while developing the work presented in this chapter. As

explained, some of these challenges were not successfully addressed. The following list gives an overview

of how the lessons learned in this chapter’s work shaped the subsequent compositional approach presented in

Chapter 6:

• Given that in most cases latency bounds verified using traffic models are only marginally smaller than

those verified using fully-nondeterministic traffic, Chapter 6 eschews rate-constrained traffic models

and instead allows injections with arbitrary rate.

• The bounded liveness model suggested here for traffic sinks is adopted in Chapter 6.

• The compositional reasoning approach in this chapter can be viewed as decomposing both the end-to-

end latency bound property and the network model. The bound is decomposed into individual router

58

bounds, and the model is decomposed into individual router models. The decomposition of the model

proved challenging because neighboring routers are very much intertwined by the traffic and blocking

between them. The approach of Chapter 6 avoids decomposing the model.

• As a corollary of not decomposing the model, the examples considered in Chapter 6 are significantly

smaller than the 64-router mesh that motivated this chapter. The largest example there (an 8-agent ring

interconnect) has a size, in number of state variables, that is roughly equal to a single five input router

from this chapter.

• To achieve greater scalability, the next chapter uses a higher level of abstraction in representing com-

munication, with xMAS data representing entire packets instead of the individual flits of a packet.

• The incompleteness of BMC proved problematic (Sec. 5.6.1), so Chapter 6 instead focuses on prov-

ing latency properties using complete verification methods such as induction and property directed

reachability (PDR).

59

Chapter 6

Compositional Proofs using Induction

This chapter presents a compositional approach to formally verify latency properties of NoC designs. A ma-

jor challenge to scalability is the need to verify latency bounds for hundreds to thousands of cycles, which

are beyond the capacity of state-of-the-art model checkers. The challenge is addressed in this chapter using

a compositional model checking approach in which the overall latency bound problem is strengthened with

a number of smaller sub-problems, termed latency lemmas. The sub-problems strengthen the overall latency

bound property, but are easier to prove on account of being inductive. A method is presented for computing

these lemmas based on the topology of the network and a subset of relevant state, and verification using

latency lemmas is performed using both k-induction and the IC3/PDR model checking engines. The effec-

tiveness of this compositional technique is demonstrated on illustrative examples and a ring interconnection

network motivated by an industrial design. In the ring network, a latency bound that cannot be verified in

10,000 seconds without lemmas is proved inductively in just 75 seconds when the lemmas are used.

6.1 Introduction

High-level modeling of NoCs [22, 21, 24, 23] and automatic abstraction [50] help to hide unnecessary details,

easing the way for formal analysis. Even so, verifying QoS properties can be challenging for industrial NoC

designs, both due to the scale of the design and the property to be verified. Consider for instance the problem

of proving an upper bound on the latency of sending a packet from one node in the network to another.

In principle, this property can be expressed in linear temporal logic (LTL), and the problem can be solved

using model checking. The LTL property expresses a bounded liveness property, written in English as “every

packet from source A gets to its destination B within N cycles.” Bounded liveness can be encoded as a

safety assertion where one adds some extra logic to track the progress of time. One can use state-of-the-art

model checking strategies such as k-induction [94], interpolation [71], and IC3/property-directed reachability

(PDR) [12, 42] to verify this property. However, regardless of the strategy, it is generally necessary to analyze

60

at least N consecutive cycles to either prove or disprove the latency bound, assuming that N is tight. Typical

latency bounds for NoCs can be in hundreds or thousands of clock cycles, and unrolling of model transition

relation to such depth is beyond the capacity of state-of-the-art model checking engines. Property-directed

reachability [12, 42], while avoiding explicit unrolling of the transition relation, still does not scale past tens

of clock cycles, as will be shown in Sec. 6.6 and Sec. 6.7.

This chapter addresses the scalability challenge using a tried-and-tested approach in formal verification: com-

positional reasoning. In compositional reasoning, one breaks up the overall proof obligation (proving a la-

tency bound of N cycles) into a number of “smaller” proof sub-goals, which are much easier to verify, such

that if all of the sub-goals are proved, then so is the original property. The key is to devise a decomposition

that is well-suited to the verification task at hand. A natural approach for latency bounds is to first prove

smaller bounds on a packet’s progress through the network; e.g., how much time does it spend along a par-

ticular subpath, etc. These proof sub-goals are termed latency lemmas. Methods to discover and apply them

are the core contributions of this work in this chapter.

Specifically, this chapter shows that for some common network topologies, one can enumerate finitely many

stages that a packet can go through. Each location in the network belongs to at least one stage at every time

moment. Stages are arranged into a directed, acyclic stage graph, to capture the order in which they can be

visited by a packet. A stage graph is defined through the use age lemmas that bound the total time between

when a packet is injected into the network and when it exits each stage. The age lemmas are in turn created

through the use of progress lemmas, which bound the number of cycles that a packet can spend in each stage.

Age lemmas and progress lemmas are collectively referred to as latency lemmas, and by proving the latency

lemmas one proves bounds corresponding to all paths through the network.

To summarize, the approach presented in this chapter makes the following novel contributions:

• A compositional approach to proving NoC latency bound properties by decomposition using latency

lemmas.

• Methods of formulating latency lemmas for xMAS models using a stage graph.

• A method for encoding packet ages that is tailored for inductive latency verification, and experimental

results demonstrating its efficacy.

• Experimental results on illustrative examples showing that the use of latency lemmas can reduce by

20-50x the runtime for inductively verifying latency bounds, and causes k-induction to verify latency

bounds 4-10x faster than can be achieved with the state-of-the-art IC3/PDR technique using all of the

same strengthenings. Furthermore, it is demonstrated that verification runtime can be traded off against

tightness of proved latency bounds.

• Experimental results on an industrial-style ring interconnection network showing that latency lemmas

give a speedup of greater than 50x, and in all cases allow latency bounds to be proved inductively with

61

a small induction depth. For an 8-agent ring, latency is verified using k-induction in 75 seconds with

latency lemmas, and cannot be verified in 10,000 seconds without them.

The rest of this chapter is organized as follows. Sec. 6.2 introduces basic terminology and sketches the

latency lemma approach using a simple example. Sec. 6.3 presents notation. Sec. 6.4 describes the approach

in detail, including rules for creating the stage graph. Sec. 6.5 presents methodology used to evaluate the

approach, and demonstrates efficient encoding of packet ages. Results for illustrative examples are presented

in Sec. 6.6, and for the ring network in Sec. 6.7. Related work is given in Sec. 6.8, and conclusions are in

Sec. 6.9.

6.2 Preliminaries

As introduced in Chapter 4, NoC designs are described using a high-level modeling formalism called exe-

cutable micro-architectural specifications (xMAS models) [22]. Recall that xMAS models are compositions

of simple primitives (Fig. 4.2), communicating data over channels (Fig. 4.1). In this chapter, the information

that is communicated over a channel c represents either packets, where c.data encodes various properties

of the packet such as destination address and timing information (similar to Tab. 4.1), or else tokens where

c.data is null.

As described in Section 4.1.1, a transfer from initiator to target occurs whenever the channel signals c.irdy

and c.trdy are both asserted during the same cycle. A channel c is said to be blocked (by the target) when

c.irdy is asserted and c.trdy is not. A channel c obeys a liveness bound x if the temporal logic formula

G
(
c.irdy =⇒ F≤x c.trdy

)
holds, where G is the temporal operator “Globally” and F is “Eventually”. In

other words, x is the largest number of consecutive blocked cycles on channel c; a liveness bound of x = 0

means that a channel never blocks. Recall that transfer attempts are persistent (Eq. 4.1), meaning that if a

transfer is blocked on a channel c, c.irdy remains asserted until the block is resolved and the eventual transfer

occurs [48].

An xMAS NoC model N is a composition of the kernel primitives described in Sec. 4.1.3, with each prim-

itive implemented as combinational logic or a finite state machine. The network has an initial state in which

token queues are full and packet queues are empty. Each packet queue comprises one or more queue slots,

and every packet queue slot in the network model N is indexed by a unique identifier i.

6.2.1 Modeling Conventions in this Chapter

While the methodologies of Chapters 5 and 7 are almost identical but used to solve two different problems,

the methodology in this chapter has some significant differences. For clarity, the differences are highlighted

here.

62

• This chapter uses bit level model checking. Instead of describing xMAS network models in the UCLID

modeling language, the models are described using Verilog, and then converted to And Inverter Graphs

(AIGs) for verification using the SAT-based model checking tool ABC. For models comprising bit-

vector state variables, the translation is straightforward. The only significant difference is that UCLID

variables can be assigned non-deterministic values, whereas non-determinism is created in Verilog by

assigning non-deterministic state variables from primary inputs that can take any values.

• The data values carried on (non-token) channels represent entire packets. This differs from the conven-

tion used in Chapters 5 and 7, where data represents individual flits of a packet.

• Traffic injection rates from sources in this chapter are unconstrained.

6.2.2 Sketch of Latency Lemmas

The approach of this chapter, described in more detail in Sec 6.4, adds two kinds of latency lemmas, termed

progress lemmas and age lemmas. An informal sketch is given here to show how each type of lemma is

derived and applied, using a credit loop as an illustrative example.

Description of Credit Loop

The credit loop model in Fig. 6.1, adapted from work by Chatterjee et al. [21], implements credited flow

of packets from a master agent to a target agent. Credited flow control is similar to the use of token bucket

regulators, except that new tokens are not generated periodically, but are instead generated upon completion

of processing some prior packet. The network has three queues: “available tokens” in the master, and “out-

standing credits” and “ingress” in the target. The ingress queue stores packets, and the other two store tokens.

The master’s source non-deterministically injects packets on channel a. Injected packets consume one avail-

able token when propagating through the join and onward to the ingress. Packets stored in the ingress can be

consumed only if there are outstanding credits, and if so the data sink on channel d cannot block progress for

more than 5 cycles. Whenever the data sink consumes a packet from the ingress, an outstanding credit is also

consumed by the token sink. The token source simultaneously adds tokens to both the available tokens and

outstanding credits queue in every cycle when both have free space.

Progress Lemmas – Bounds on Time to Make Progress

The first step toward proving an end-to-end latency bound for the credit loop is to compute a conservative

upper bound on how long a packet might wait to advance once it is inside the ingress queue. When computing

this bound it can be assumed that the ingress queue holds at least one data packet (i.e. n1 6= 0) and this is used

a starting point to reason about different conditions for the rest of the network state.

63

b!
a!

ingress
(n1)!

outstanding
credits !
(n2)!

available
tokens !
(n0)!

d!
bound=5!depth=2!

c!

Master Agent! Target Agent!

s2!s1!s0! s3!

7(8)! 7(15)!1(1)! 0(15)!

δabs=6!
0! 1!

Figure 6.1: Credit Loop Model N with Stage Graph G . The dashed arrows show the automatically-derived corre-

spondence between queue slots in N and stages in G . Channels in N that are drawn using bold lines carry packets and the remainder

carry tokens. The ni associated with each queue is the variable representing the number of items stored in it. The first number above

each stage in G is an upper bound on the time spent in the stage, and the second (in parenthesis) is an upper bound on the age of a packet

in the stage.

(a) If a token is in the outstanding credits queue, then signal d.irdy is asserted and the data sink may at

any time consume a packet from the ingress while the token sink consumes an outstanding credit. The

liveness bound of the data sink limits it to 5 cycles of blocking, so c.trdy occurs within 5 cycles from

states satisfying n2 6= 0.

(b) If the outstanding credits queue is empty, and available tokens queue is not full, then the token source

will add an outstanding credit, causing d.irdy to be asserted in the next cycle. The sink can only block

for 5 cycles once d.irdy is asserted, so in the worst case c.trdy will occur within 6 cycles from states

satisfying n2 = 0∧n0 6= 2.

(c) If the outstanding credits queue is empty, and the available tokens queue is full, then no token can ever

be injected into the outstanding credits queue, and the packet in the ingress will never advance.

It is then hypothesized that every reachable network state with an ingress packet awaiting progress will satisfy

either (a) or (b) described above. This hypothesis is formalized as the candidate inductive invariant θc,STAT E

(given by Eq. 6.1 for the credit loop). If θc,STAT E is valid, and all reasoning is sound, a packet in the ingress

should always make progress in, at-worst, the 6th future cycle (denoted by δabs = 6 in Fig. 6.1), and property

θc,T IMING (Eq. 6.2) explicitly checks this on channel c.

64

Properties θc,STAT E and θc,T IMING are collectively called progress lemmas. The progress lemmas are conser-

vative and generally over-approximate reachable state. As will be shown later (by Eq. 6.35 in Sec. 6.6.2),

the condition (n2 = 0) is unsatisfiable when the ingress contains packets, so condition (b) from the above

discussion is unachievable.

θc,STAT E := c.irdy =⇒ (n2 6= 0)∨ (n2 = 0∧n0 6= 2) (6.1)

θc,T IMING := c.irdy =⇒ F≤6c.trdy (6.2)

Age Lemmas – Bounds on Time Since Injection

If packets visit queue slots in a known order, and the progress lemmas provide a way to bound the time spent

at each slot, then it becomes possible to compute a bound on the total propagation delay through the network.

The credit loop has an obvious ordering among queue slots, as a packet injected from the data source first

occupies the tail of the ingress (or bypasses it), then the head of the ingress, then reaches the sink. The

progress lemmas assert that channel c will transfer any waiting packet in the 6th future cycle in the worst

case. This means that a packet will advance every 7 cycles. If a packet cannot spend more than 7 cycles in

either ingress slot, an age bound of 8 cycles is implied for the ingress tail slot, and 15 cycles for the ingress

head slot; we call these specialized bounds age lemmas, and formulate them using a stage graph as shown at

the top of Fig. 6.1.

It is clear that the total latency is bounded by 15 if the age lemmas can be proved, yet including the latency

lemmas makes the 15 cycle bound compositional and easier to verify using k-induction. Proving the 15 cycle

latency bound requires an induction depth of 13 frames without latency lemmas, versus just 8 frames with

them; the reduced induction depth translates to a 2x speedup in this illustrative example. In general, the

induction depth required to prove a latency bound property without the lemmas is proportional to the total

latency, while induction depth to prove the same bound using lemmas is proportional to the time for a packet

to make progress. The speedup from using latency lemmas is therefore more pronounced when proving large

latency bounds, as will be shown in Sec. 6.6 and 6.7.

6.3 Formalism

As sketched in the previous section, a set of conjectured latency lemmas makes it possible to efficiently verify

a bound on the end-to-end latency from any packet source in the network to any packet sink. The model being

verified is an xMAS model N . Every queue slot in the network that stores packets (as opposed to tokens) is

assigned a unique index i, and variable qi refers to the content of the ith queue slot.

65

6.3.1 Checking Cumulative Latencies as Age Bounds

As introduced in Sec. 4.4, a latency bound is translated to a simple safety property by checking the age of

a packet in each cycle. The age of the packet in slot i is denoted age(qi). Section 6.5.2 evaluates different

ways of encoding age(qi) using specification variables1, and shows that the choice of encoding significantly

impacts verification runtime.

The mapping from queue slots in N to stages in G can depend on the state of N . This allows the same

queue slot to represent different stages of progress depending on certain aspects of network state. The possible

mapping from the ith queue slot to the jth stage is defined by a formula pi, j; the ith slot maps to the jth stage

whenever pi, j is true.

pi, j : Qi×W 7→ B (6.3)

• Qi is the set of states of queue slot i; qi denotes a state of Qi.

• W is the set of states for selected global variables including the number of items in any queue and the

status of reservations in networks that use reservations; w denotes a state of W .

A few special cases are worth mentioning. If a slot i never maps to stage j, then pi, j = false regardless of qi

and w. If slot i always maps to stage j, then pi, j = true regardless of qi and w.

Each stage j in the stage graph G has an associated t j that is a claimed upper bound on the age of any packet

that maps to the stage. An age lemma for the ith slot and jth stage of progress is written as φ(i, pi, j, t j)

(Eq. 6.4). For each slot i, assume the existence of a specification variable usedi that is true in every state

where slot i stores a packet. The property φ(i, pi, j, t j) checks that, whenever the network state satisfies pi, j,

any packet stored in slot i must have been injected into the network less than t j cycles prior.

φ(i, pi, j, t j) := usedi∧ pi, j =⇒ age(qi)< t j (6.4)

In this chapter, property ΦL is true in a state of N if and only if the age lemmas hold for all progress stages

in the stage graph G .

Φ
L :=

∧
i∈[0,M−1],s j∈G

φ(i, pi, j, t j) (6.5)

Property ΦG
t denotes a global latency bound of t. The global bound differs from stage bounds in that it is

checked on packets stored in all queue slots regardless of the state of N .

Φ
G
t :=

∧
i∈[0,M−1]

usedi =⇒ age(qi)< t (6.6)

1Specification variables are defined here as variables in N that record expressions over system variables but do not influence them.

66

6.3.2 Auxiliary Invariants (Ψ)

An advantage of modeling microarchitectures using the xMAS formalism is automated invariant strength-

ening. The automatically generated invariants are unrelated to QoS, but are essential for verifying any type

of property in xMAS networks because they prevent the verifier from exploring unreachable states that may

include deadlocked states. The set of auxiliary invariants is denoted Ψ and comprises local invariants on

queues [22, 24], persistency invariants on channels [48], and design-specific numeric invariants ψnum [21, 23].

Note that the design-specific numeric invariants are automatically derived in earlier works [21, 23], and added

manually in this work.

6.3.3 Proving a Latency Bound

In this chapter, the model checking problem for proving a latency bound t is N � ΦG
t . With auxiliary

invariants the problem becomes N � ΦG
t ∧Ψ. The latency lemma approach, described in detail in the next

section, further strengthens the checked property using progress lemmas Θ and age lemmas ΦL, such that the

overall problem becomes N � ΦG
t ∧Ψ∧ΦL∧Θ. This strengthened property is shown to be compositional,

and it leads to inductive proofs with shorter induction depths and smaller runtimes.

6.4 Latency Lemmas

A distinguishing feature of this work is to strengthen overall latency properties using precise bounds termed

age lemmas for different stages of progress arranged in a stage graph G . Computing the amount of time

that a packet can spend in each stage further requires computing transfer bounds for different channels in

the network. This section presents algorithms for automatically deriving age lemmas for a subset of possible

xMAS networks. The power of age lemmas is more general than just the subset of designs that can be handled

automatically, as will be demonstrated in the ring interconnect example of Sec. 6.7. The rest of this section

first presents an automated approach for creating a stage graph, and then presents an automated approach for

computing the transfer bounds that are required for computing the ages of each stage in the stage graph.

6.4.1 Generating Age Lemmas (ΦL) using Stage Graph G

A stage graph is a tool for constructing age lemmas that lead to compositional proofs of overall latency

bounds. In each state of the network, every queue slot that stores a packet maps to a stage in G . The stage

that a packet maps to determines the age bound to check on the packet.

Formally, a stage graph is an acyclic digraph G = (S,E) with vertices s0,s1, . . . ,sL−1 ∈ S called stages. Each

stage has an associated age lemma that checks a specialized bound on the age of any packets mapping to the

stage. A stage s j has an associated lemma φ(i, pi, j, t j) asserting that any packet in slot i of N that maps to

67

stage s j in G must have an age less than t j. The conjunction of all age lemmas is denoted ΦL (Eq. 6.5).

Stage graph construction is automated for acyclic networks. Acyclic networks are those without cycles in

data paths, where “data path” is defined as any sequence c0,c1, . . .cN of packet channels with each ci and ci+1

being input and output channels of the same xMAS primitive. One can trivially check whether a network

N is acyclic, for example by using depth-first search from each packet channel. An automated approach

to construct stage graphs for acyclic networks is presented as a two step process: first creating stage graph

topology, and second adding the age annotations to the stages.

Creating Stage Graph Topology

The queue slots of an acyclic network will always have a partial ordering with respect to when a packet can

occupy them. The stage graph topology reflects this ordering. Each queue slot (i; i ∈ [0,M− 1]) in network

model N maps to a stage (s j; j ∈ [1,M]) in stage graph G . The mapping from queue slots to stages is

accomplished by setting pi, j to true for combinations of i and j where i = j−1. A special source stage (s0) is

added for all packet sources, and a sink stage (sM+1) is added for packet sinks. These source and sink stages

are nonstandard in that no packets can ever map to them while in the network.

Edges in the stage graph reflect transitions that packets can make in N . All data sources map to a stage s0,

and all data sinks map to stage sM+1. Stages sx and sy in the stage graph G are connected by an edge if the

components (source, sink, or queue slot) mapping to sx and sy are adjacent slots within a single queue, or if

there exists a queue-free data path in N from the first component to the second.

Assigning Age Bounds to Stages

Once the stages and edges of the stage graph are created, age bounds must be assigned to each stage. The

first step toward this is computing for each stage s j, a value d j that is the maximum residence time of the

stage. Source stage (s0) is assigned d0 = 1, and sink stage (sM+1) has dM+1 = 0; all other stages correspond

to packet queue slots. For a stage (s j) corresponding to a queue slot, the maximum residence time (d j) cannot

exceed 1 greater than the maximum blocking time of the channel that is the output of the queue containing

this slot. While the maximum blocking time of each channel is not known a priori, the next subsection gives

a way to compute an upper bound on it, and this upper bound on blocking time is denoted δabs. Therefore, d j

is assigned 1+δabs.

Now that each stage in the network is assigned a residence time (d j), age bounds for each stage are computed.

The maximum age in any stage depends on the maximum residence time of that stage, and the maximum age

of a packet when it enters the stage. For each stage s j, this maximum age then depends on the path from s0

to s j in G for which the sum of d j is largest. This path sum is called t j and it is the age bound of stage s j.

68

Global Age Bound TL from Age Lemmas

If every data packet in every reachable state of N maps to a stage in G , then the largest t j associated with

any stage is a claimed global age bound for N . The largest t j among all stages is denoted TL, and therefore

ΦL =⇒ ΦG
TL

provided that coverage of G is complete. TL is therefore a global age bound, and property ΦG
TL

is the global age bound property that is being strengthened with the latency lemmas. TL is often conservative

for several reasons:

• The channel blocking bounds that are computed are conservative, causing the residence times of each

stage to be over-approximated. This occurs in the credit loop (Sec. 6.2.2) where the blocking time of

packets in the ingress queue is overestimated.

• The stage graph conservatively over-approximates the connectivity of the network by ignoring logical

propagation conditions.

• It may be impossible for any one packet to experience all of the the worst-case progress bounds, even

if each is individually achievable.

Cyclic vs. Acyclic Networks

No automated procedure is given to construct a stage graph for cyclic networks. In such a network, a straight-

forward mapping from each slot to a single stage will induce cycles in G , and this leads to infinite age bounds

even if each stage has a known finite residence time. In such a case, the progress stages must be made more

precise by refining the pi, j formulas to consider more than just the slot that a packet occupies. Using a ring

interconnect as an example, Sec. 6.7 will demonstrate that a manual refinement can be used to obtain an

acyclic stage graph from a cyclic network.

6.4.2 Deriving Channel Blocking Bounds and Progress Lemmas (Θ)

The preceding section shows that blocking bounds on output channels of packet queues determine the resi-

dence times of stages in the stage graph G . A heuristic is now given to derive the blocking bounds by prop-

agating timing guarantees across xMAS primitives. As the heuristic generates the blocking bounds, it also

generates “progress lemmas” that formalize the assumptions made in deriving the bounds. These progress

lemmas are added to the overall verification problem to check the assumptions.

Given a channel c, a blocking bound of x cycles is the claim of c.irdy =⇒ F≤xc.trdy. The blocking bound of

a channel c is derived by first computing for the channel a guarded bound set rc.trdy (Eq. 6.7). Each guarded

bound 〈gi,δi〉 ∈ rc.trdy is gi a predicate on network state, and δi a bound on the number of cycles until c.trdy

becomes true after any network state satisfying gi. In other words, the guarded bound set rc.trdy can be used

to make the claim of Eq. 6.8.

69

rc.trdy ≡ {〈g0,δ0〉,〈g1,δ1〉, . . . ,〈gN ,δN〉} (6.7)

g0 =⇒ F≤δ0c.trdy

g1 =⇒ F≤δ1c.trdy

...

gN =⇒ F≤δN c.trdy (6.8)

From the guarded bound set, a generalized guarded bound 〈gabs,δabs〉 is created, where gabs := g0∨g1∨·· ·∨
gN and δabs := max(δ0,δ1, . . . ,δN). The intuition behind the generalized guarded bound is that, whenever

some guard holds, then some delay bound must also hold (Eq. 6.9).

gabs =⇒ F≤δabsc.trdy (6.9)

guard coverage holds︷ ︸︸ ︷
c.irdy =⇒ gabs ∧

guard bound holds︷ ︸︸ ︷
c.irdy∧gabs =⇒ F≤δabsc.trdy (6.10)

θc,STAT E := c.irdy =⇒ gabs (6.11)

θc,T IMING := c.irdy =⇒ F≤δabsc.trdy (6.12)

θc := θc,STAT E ∧θc,T IMING (6.13)

If the generalized guard condition holds in all states where a queue attempts to send a packet across the chan-

nel, then the generalized bound is an unconditional channel blocking bound that can be used for computing

stage residence times. Eq. 6.10 is invariant if guard coverage is complete and the guard bounds are correct.

Property θc,STAT E (Eq. 6.11) checks that guard coverage holds when the initiator of channel c is attempting

to send a packet. Assuming that θc,STAT E is valid, then Eq. 6.10 simplifies to property θc,T IMING (Eq. 6.12).

Property θc,T IMING checks that the bound (δabs) implied by the guards does in fact hold in the network. For

each channel c, property θc (Eq. 6.13) is ultimately checked.

Given that the stage graph approach ultimately only makes use of δabs for computing stage residence times,

the motivation for proving θc,STAT E and θc,T IMING is only to formalize and validate the assumptions made

in deriving δabs. If any modifications are needed in the approach for generating the guarded bound sets,

counterexamples to θc,STAT E and θc,T IMING will indicate where the modifications are required. If property

θc,STAT E fails, then a counterexample reaches a state where c.irdy is true and gabs is false; this can be

remediated by adding to the guarded bound set a new guarded bound 〈gi,δi〉 such that gi is true for the bad

70

state of the counterexample. If property θc,STAT E passes and θc,T IMING fails, then it means that there exists

some 〈gi,δi〉 in the guarded bound set such that the guard (gi) does not imply the bound (δi); this would

indicate unsoundness in the propagation rules for creating the guarded bound.

The preceding paragraphs demonstrate how to derive a conservative bound δabs for a single channel c. The

residence times for each stage in the stage graph G are created by deriving such a bound for each channel

c that is the output of a packet queue. The property checked on the network is then Θ (Eq. 6.14). The

following sections present an approach for computing a guarded bound set for each such channel. This is done

using operations for combining guarded bound sets, applied according to the xMAS network connections. A

primitive has operations to determine the guarded bound set for each of its output signals using recurrence

relations guarded bound sets of its input signals.

Θ :=
∧

∀c∈ pkt queue outputs

θc,STAT E ∧θc,T IMING (6.14)

Recurrence Relations for Future Readiness

Guarded bound sets represent future readiness of channel initiators and targets in a way that is analogous to

how irdy and trdy signals represent their current readiness. For any signal irdy or trdy, R(irdy) or R(trdy) de-

notes a symbolic representation of the guarded bound set describing its future readiness. Just as the readiness

signals irdy and trdy are defined using recurrence relations over other readiness signals and state variables,

the guarded bound sets for future readiness are defined using recurrence relations over other guarded bound

sets and state variables. The recurrence relations for R(irdy) and R(trdy) use the three operations MAX,PLUS,

and ITE. MAX is used when readiness depends on the latest-arriving signal among two signals described by

guarded bound sets. PLUS is used when readiness depends on the two events in sequence. ITE is used when

readiness depends on one of two guarded bound sets, and the choice is determined by some Boolean state

condition.

Guarded bound sets in symbolic form (e.g. R(trdy)) are ultimately expanded into their concrete form (e.g.

rtrdy ≡ {〈g0,δ0〉,〈g1,δ1〉, . . . ,〈gN ,δN〉}). The first step toward concretizing the symbolic guarded bound sets

is defining recurrence relations between inputs and outputs for each xMAS kernel primitive. The relations for

each primitive are shown in graphical form in Fig. 6.2 and explained in the subsequent text; note that these

specific relations are just one solution among many possible, and alternative relations can be defined that are

more precise or more general.

Packet Source: Because a packet source non-deterministically injects data packets onto channel o, there

is never an upper bound on when a packet transfer will be initiated on the channel. The guarded bound is

therefore the empty set {}; there is no state condition of the network for which it is claimed that o.irdy will

become true within a known time bound in the future. In other words, there is no assurance that the source

will ever again attempt to inject a packet.

71

{}!

R(o.irdy)!

Plus!
{⟨T,x⟩}!

R(i.trdy)!

R(i.irdy)!

{⟨T,0⟩}!

R(i.trdy)!

{⟨T,0⟩}!

R(o.irdy)!

Max!

R(o.irdy)!

Max!

R(a.trdy)!

R(o.trdy)!R(b.irdy)!

Max!

R(b.trdy)!

R(a.irdy)!

Max!

R(i.trdy)!

Max!

R(a.irdy)!

R(b.trdy)!

Max!

R(b.irdy)!

R(i.irdy)! R(a.trdy)!

ni≠0!
{⟨T,0⟩}! Plus!

{⟨T,1⟩}!

R(o.irdy)!

ni=0!

R(i.irdy)!

ni≠depth!

{⟨T,0⟩}! Plus!

{⟨T,1⟩}!

R(i.trdy)!

ni=depth!

R(o.trdy)!

{⟨T,1⟩}!Plus!

R(a.trdy)!

R(o.trdy)!

Plus!

{⟨T,1⟩}!Plus!

R(b.trdy)!

Plus!
Max!

R(o.irdy)!

R(a.irdy)! R(b.irdy)!

R(o.irdy)! R(i.trdy)!

R(i.irdy)! R(o.trdy)!

Data !
Source!

Token !
Source!

Data !
Sink!

Token !
Sink! Queue (ni = num of items)!

Merge!
Switch!

Join!Fork! Function!

R(a.irdy)! R(b.irdy)!

Max!

R(i.trdy)!

R(a.trdy)! R(b.trdy)!

{}! {}!

R(i.irdy)!

ITE! ITE!

Figure 6.2: Recurrence Relations for Future Readiness of xMAS Primitives. Each box corresponds to a kernel

primitive, with outputs at top and inputs at bottom. Guarded bound sets for outputs are defined over inputs and constants using operations

MAX, PLUS, and ITE.

R(o.irdy) := {} (6.15)

Token Source: A token source is the initiator of a single token channel o, and from any network state it tries

to transfer a token across o in every cycle. In the guarded bound 〈>,0〉, > is a guard that is always true, and

0 indicates that o.irdy occurs in the current cycle.

R(o.irdy) := {〈>,0〉} (6.16)

Packet Sink: A packet sink is the target of a single packet channel i. The sink provides to the network a

service guarantee to always receive a waiting packet within x cycles. This means that i.trdy is guaranteed to

be true no more than x cycles after i.irdy is true. Given that R(i.irdy) is a (recurrence-defined) guarantee on

when i.irdy will occur, R(i.trdy) is obtained by unconditionally adding x to it.

R(i.trdy) := PLUS(R(i.irdy),{〈>,x〉}) (6.17)

72

Token Sink: A token sink is the target of a token channel i. Token sinks are eager and always ready to accept

a token regardless of network state.

R(i.trdy) := {〈>,0〉} (6.18)

Queue: A queue is the target of channel i and the initiator of channel o. The queue’s recurrence relations

for future readiness use ITE to introduce a case-split depending on the number of items stored in the queue

(denoted ni). Consider for demonstration R(o.irdy), which evaluates to {〈>,0〉} if ni 6= 0, and otherwise

evaluates to PLUS(R(i.irdy),{〈>,1〉}). In the first case the queue is non-empty, and the value {〈>,0〉}
reflects that the output is currently trying to initiate a transfer. In the second case the queue is empty, and

the value PLUS(R(i.irdy),{〈>,1〉}) reflects that the output is ready to initiate no more than 1 cycle after

the input is ready to initiate a transfer. This relation holds because any attempted transfer from the input is

immediately received into the empty queue to cause an attempted output transfer in the next cycle. Target

readiness R(i.trdy) is handled similarly, with a case split depending on whether or not the queue is currently

full.

R(o.irdy) := ITE(ni 6= 0, {〈>,0〉}, PLUS(R(i.irdy) ,{〈>,1〉})) (6.19)

R(i.trdy) := ITE(ni 6= depth,{〈>,0〉}, PLUS(R(o.trdy),{〈>,1〉})) (6.20)

Merge: A merge primitive arbitrates between two input channels a and b, and is the initiator of a single output

channel o. The merge primitive uses a Boolean state variable u to store the current priority among the two

input channels. To create a round robin arbitration policy, the state of u is inverted whenever the high priority

input transfers a packet through the merge. The recurrence relations abstract away the arbitration priority u to

give a conservative bound for each input that does not depend on the current value of u. The high priority input

channel can only be blocked for R(o.trdy) cycles before transferring a packet and causing a priority inversion;

because of this, the low priority input always attains high priority in at most PLUS(R(o.trdy),{〈>,1〉}) cycles.

Therefore, the overall progress bound for an input channel of undetermined priority is the time to attain high

priority added to the progress time once high priority is attained.

R(o.irdy) := MAX (R(a.irdy),R(b.irdy)) (6.21)

R(a.trdy) := PLUS (PLUS (R(o.trdy),{〈>,1〉}) , R(o.trdy)) (6.22)

R(b.trdy) := PLUS (PLUS (R(o.trdy),{〈>,1〉}) , R(o.trdy)) (6.23)

Switch: A switch primitive is parameterized by a switching function f . Because no assumptions are made

on the data value of a packet arriving on the input channel i, it cannot be determined whether the function f

73

would route the packet to output channel a or output b. Therefore no upper bound is asserted on the future

readiness of irdy for either output channel. This can optionally be refined using ITE to take into consideration

the data value of packets on input channel i.

R(a.irdy) := {} (6.24)

R(b.irdy) := {} (6.25)

R(i.trdy) := MAX(R(a.trdy),R(b.trdy)) (6.26)

Join: A join primitive consumes a packet from input channel a and a token from channel b to produce a

single output packet on channel o. The join is only ready to produce a packet on o if the upstream primitives

of both input channels are ready to initiate. It is only ready to consume an input packet from input a or b

when the other input is ready to initiate and the output channel is ready to receive. The future readiness of

each of the three signals depends on the latest future readiness of two other signals, and therefore the MAX

operator is used on the guarded bound sets.

R(o.irdy) := MAX(R(a.irdy),R(b.irdy)) (6.27)

R(a.trdy) := MAX(R(o.trdy),R(b.irdy)) (6.28)

R(b.trdy) := MAX(R(o.trdy),R(a.irdy)) (6.29)

Fork: A fork primitive consumes a single input packet from channel i and produces one packet on output

channel a and a token on b. As in the join, the fork uses the MAX operator on the guarded bound sets because

each output signal is triggered by the latest to occur among two input signals.

R(i.trdy) := MAX(R(a.trdy),R(b.trdy)) (6.30)

R(a.irdy) := MAX(R(i.irdy),R(b.trdy)) (6.31)

R(b.irdy) := MAX(R(i.irdy),R(a.trdy)) (6.32)

Function: A function primitive transforms data, but passes irdy directly from input to output, and passes trdy

directly from output to input. Whenever the initiator of input channel i is ready, then the function primitive is

itself ready to initiate. Whenever the target of output channel o is ready to receive, then the function is itself

ready to receive.

R(i.trdy) := R(o.trdy) (6.33)

R(o.irdy) := R(i.irdy) (6.34)

74

Concretizing Guarded Bound Sets

The guarded bound sets that describe bounds on future readiness (e.g. rc.trdy) are created by expanding the

symbolic representations of the same (e.g. R(c.trdy)) using the dependency graph of the recurrence relations.

The dependency graph is created by composing the recurrence relations (Fig. 6.2) for each primitive in the

network according to common signals. Each irdy or trdy signal in N is an input of one primitive and

an output of another; analogously, each R(irdy) or R(trdy) depends upon the recurrence relations of one

primitive, and is also depended upon by those of another primitive. Note that circular dependencies can exist.

For each packet queue in the network, with output channel denoted c, CREATEGUARDEDBOUNDSET (Al-

gorithm 2) is called to extract the concretized guarded bound set rc.trdy from the dependency graph. Starting

from node R(c.trdy) in the dependency graph, function EXPANDSUBTREE recursively computes guarded

bound sets for each supporting node’s future readiness, and includes a check to detect cyclic dependencies

and break them by returning an empty set. The guarded bound sets for each node are computed in the tail

of the recursion, and thus computed over two already-concretized guarded bound sets. The steps of the al-

gorithm for combining the guarded bound sets of a node’s left and right children are chosen according to

whether the node is implementing a MAX (line 18), PLUS (line 21), or ITE (line 24) operation. For MAX

and PLUS, the guarded bound sets are combined as Cartesian products augmented by the appropriate numeric

operation. The ITE operation does not use a Cartesian product because the guards of the two children are

made disjoint by including the ITE predicate in opposing polarities.

CREATEGUARDEDBOUNDSET returns to line 2 with a guarded bound set (rc.trdy) for target readiness of

channel c. Because channel c has a queue as its initiator, and only cases where channel c is blocked are

relevant, all guards are strengthened with the condition that the initiating queue is non-empty (lines 3-5). A

pruning step is then applied (line 6) to remove from the set any guarded bounds (〈gi,δi〉) that are trivially

unsatisfiable. One example of this a guard that asserts that a single queue is both full and empty2. Finally,

CREATEGUARDEDBOUNDSET returns the final concretized guarded bound set rc.trdy, which is then used as

explained at the start of this section (Eq. 6.7) to derive residence times of stages in G .

Limitations in Deriving Blocking Bounds

This work presents recurrence relations that are found to be useful for deriving blocking bounds in the moti-

vating example networks, but these specific recurrence relations are not precise enough to handle all possible

networks. Property Θ (Eq. 6.14) is formulated such that its failure will indicate when these recurrence rela-

tions are insufficient for a given network. Furthermore, a counterexample to Θ can guide the development

of rules that lead to a more precise set of recurrence relations. Some situations that would require modified

recurrence relations are highlighted here.

One abstraction used in the recurrence relations is to consider only whether a queue is full or empty, and not

2Some guards that are not pruned away on account of trivial unsatisfiability may still in fact be unsatisfiable in all reachable network
states.

75

Algorithm 2 For channel c that is initiated by a packet queue storing number of items nx, expand recurrence

relations to obtain a concretized guarded bound set rc.trdy. The members of set rc.trdy are guarded bounds

〈gi,δi〉, where guard gi is a condition on network state, and δi is a claimed bound on when c.trdy will become

true starting from any state satisfying gi.
1: procedure CREATEGUARDEDBOUNDSET(channel c)

2: rc.trdy← EXPANDSUBTREE(R(c.trdy),{})
3: nonEmpty := (nx 6= 0) . a queue initiating transfer on c can be assumed non-empty

4: for 〈gi,δi〉 ∈ rc.trdy do

5: 〈gi,δi〉 ← 〈gi∧nonEmpty,δi〉
6: rc.trdy← PRUNE(rc.trdy) . prune away guarded bounds where guard gi is trivially false

7: return rc.trdy . rc.trdy ≡ {〈g0,δ0〉, . . .〈gN ,δN〉}

8: function EXPANDSUBTREE(node,visited)

9: if node ∈ visited then . cycle detected when node is visited for second time

10: return {}
11: else if node is childless then . node is a constant (e.g.{〈>,1〉}) and requires no expansion

12: return node

13: else . need to expand children before creating guarded bound set

14: visited← visited∪node

15: rn←{} . initialize guarded bound set for node

16: rle f t ← EXPANDSUBTREE(le f t,visited)

17: rright ← EXPANDSUBTREE(right,visited)

18: if node = MAX(le f t,right) then

19: for 〈gi,δi〉 ∈ rle f t , 〈g j,δ j〉 ∈ rright do

20: rn← rn ∪ 〈gi∧g j,max(δi,δ j)〉 . add to guarded bound set for node

21: else if node = PLUS(le f t,right) then

22: for 〈gi,δi〉 ∈ rle f t , 〈g j,δ j〉 ∈ rright do

23: rn← rn ∪ 〈gi∧g j,δi +δ j〉 . add to guarded bound set for node

24: else if node = ITE(predicate, le f t,right) then

25: for 〈gi,δi〉 ∈ rle f t do

26: rn← rn ∪ 〈gi∧ predicate,δi〉 . add to guarded bound set for node

27: for 〈g j,δ j〉 ∈ rright do

28: rn← rn ∪ 〈g j ∧¬predicate,δ j〉 . add to guarded bound set for node

29: rn← PRUNE(rn)

30: return rn

76

the number of items in the queue. A similar abstraction is made in proving deadlock freedom by Verbeek et

al. [102]. The significant change in this chapter’s approach relative to Verbeek’s is that it goes beyond dead-

lock freedom to include numeric progress bounds in the reasoning. Yet, like Verbeek’s work, this formulation

is sound but incomplete in light of the abstraction.

A second conservative abstraction in the recurrence relations presented is that no assumptions are made about

data values of packets. This prevents the recurrence relations from giving any bounds on readiness outputs of

the switch primitive. Refinement would be needed in a network where progress of a data packet depends on

switch output3. It is suggested to handle this situation with manual refinement, such as replacing the recur-

rence relations of the switch with ones that take consider the data value of the input packet. Ongoing work

by Viktorov and Gotmanov [104] aims to overcome this limitation by propagating rules that can be automat-

ically refined to handle cases such as this. Counterexample-guided abstraction-refinement techniques [29]

could also be used.

6.5 Experimental Methodology

The methodology used across all experiments in this chapter is described here. The xMAS models are

created within a C++ framework4, with primitives as objects. Progress lemmas and age lemmas are added

automatically, and flattened word-level Verilog is generated with all properties added as assertions. The

Verilog is bit-blasted to an and-inverter-graph5 (AIG) using the VeriABC flow [67]. Properties are verified

on the AIG using the bit-level model checker ABC [15]6 on a 2.4GHz Intel Core i5 processor with 4GB of

RAM. The bounded model checking7 (BMC), property directed reachability8 (PDR) [42], and k-induction9

calls are performed by ABC.

6.5.1 Evaluating Looseness of TL with Bounded Model Checking

The global age bound (TL) that is implied by the age lemmas can be loose. The tight latency bound for a

given network is not generally known, but the looseness of TL is bounded by comparison to TFEAS, where

TFEAS is the smallest number such that N � ΦG
TFEAS

cannot be disproved by BMC within allotted resource

bounds. TFEAS is found by iteratively increasing T and using BMC to disprove each ΦG
T until reaching the

first value of T that cannot be disproved; that value serves as TFEAS. There cannot exist a tighter bound than

TFEAS because ΦG
TFEAS−1 is disproved with a counterexample. However, due to the incompleteness of BMC

3For example, consider a network in which a data packet is one input to a join primitive and the second input comes from a switch
output. If data abstraction precludes determining whether the switch output ever becomes ready to initiate, then no finite bound on
progress can be inferred for the packet waiting at the join input.

4https://github.com/danholcomb/xmas-front-end
5http://fmv.jku.at/aiger
6Rev. d0170182dbd6; at http://www.eecs.berkeley.edu/˜alanmi/abc/
7ABC commands ”read aiger foo.aig; bmc3; write counter -n foo.cex;”
8ABC commands ”read aiger foo.aig; pdr -v;”
9ABC commands ”read aiger foo.aig; orpos; ind -avw; bmc3 -F k;” where k is the depth used by the ind command

https://github.com/danholcomb/xmas-front-end
http://fmv.jku.at/aiger
http://www.eecs.berkeley.edu/~alanmi/abc/

77

ΦG
TFEAS

may not be proved, and could instead be an artifact of the BMC resource limits.

6.5.2 Efficient Encoding of Packet Ages

The formulation of an age bound property requires that the age of a packet in slot i (denoted age(qi)) can be

checked as a simple safety property; in other words, the age of a packet can be evaluated in a single state of

N . Two different simple safety encodings for age are given in Section 4.4.1, termed “timestamp encoding”

and “stopwatch encoding”. While semantically equivalent, experimental results in this section show several

orders of magnitude speedup in inductive verification when using stopwatch encoding instead of timestamp

encoding. The primary difference between the encodings, and the apparent cause of the speedup, is that

stopwatch encoding represents ages canonically whereas timestamp encoding does not.

The runtimes for timestamp and stopwatch encodings are compared using a network with a non-deterministic

source injecting packets into a single queue of depth 6 that is drained by a sink with a blocking bound of 5

(i.e. Fig. 6.4 with parameters set differently). Using BMC, TFEAS is found to be 36, and for each encoding the

property ΦG
36∧Ψ is verified across different values of the largest representable time tmax. The plot in Fig. 6.3

compares the two encodings. When tmax is increased from 26 to 212, the runtime to prove the property with

timestamp encoding increases by 13x, while the runtime to prove the same property with stopwatch encoding

increases by only 2x. Similar relative performance for the two encodings is observed on a variety of problems.

All experiments in the remainder of this chapter implicitly use stopwatch encoding.

 10

 100

 1000

10000

2
6

2
8

2
10

2
12

R
u
n

ti
m

e
[s

]

tmax

timestamp
 encoding

stopwatch
 encoding

Figure 6.3: Comparison of Stopwatch Age Encoding and Timestamp Age Encoding. Runtime to prove

N � ΦG
36 ∧Ψ with ABC’s induction engine, for different values of tmax. The verification runtime scales better with tmax when using

stopwatch encoding instead of timestamp encoding.

78

6.6 Illustrative Examples

Several examples highlight strengths and weaknesses of using latency lemmas. The primary strength is a

dramatic improvement in verification runtime, and the weakness is that the bounds proved using lemmas are

in some cases loose. All latency lemma reasoning including the stage graph construction is automated for the

examples in this section. The subsequent example of a ring interconnect in Sec. 6.7 is an xMAS extension

where some manual reasoning is needed to create an acyclic stage graph and apply latency lemmas.

6.6.1 Single Queue

An example of a single packet queue (Fig. 6.4) demonstrates scalability of latency lemmas in a simple network

without arbitration, routing, or flow control. The liveness bound of the sink is fixed to 3, and the depth of the

queue is varied. The progress lemmas give a bound of δabs = 3 for the queue’s output channel, and therefore

each slot in the queue maps to a stage s j in G with a residence time of d j = 4. The global bound implied by

the lemmas is TL = 1+4∗depth. For each queue depth it is found that TFEAS = TL−1 (Fig. 6.5), indicating

that TL is one cycle larger than the tightest feasible bound. The bound TL at each queue depth is proved

inductively, using two different strengthenings of the latency property ΦG
TL

. The first property (ΦG
TL
∧Ψ)

proves latency bound TL without lemmas, strengthened only by auxiliary invariants Ψ. The second property

(ΦG
TL
∧Ψ∧ΦL∧Θ) proves the same bound strengthened by the age lemmas (ΦL) and progress lemmas (Θ).

Without latency lemmas, the induction depth required for the proof is never less than TFEAS. With latency

lemmas, the induction depth is 4 independent of the queue depth, demonstrating the compositionality of

the approach. In a queue with depth 10, a latency bound of 41 cycles is proved in less than 2 seconds of

verification runtime with latency lemmas versus 267 seconds without.

s2!s1!s0! s3!

4(5)! 4(9)!1(1)! 0(9)!

!
bound=3!

depth=2!

0! 1!
δabs=3!

Figure 6.4: Queue network with Stage Graph G Shown Above. For the particular depth of 2 that is shown, the

global age bound implied by the lemmas (TL) is 9.

6.6.2 Credit Loop

The credit loop (Fig. 6.1) introduced in Sec. 6.2.2 is now revisited in more detail. Experiments are performed

to explore the scalability of the latency lemma approach, different verification engines, and the tradeoff of

verification runtime versus tightness of proved bounds. A credit loop has a numeric invariant ψnum [21]

79

 0

 50

 100

 150

 200

 250

 300

 2 3 4 5 6 7 8 9 10

R
u
n

ti
m

e
[s

]

ΦTL

G
 ^ Ψ

ΦTL

G
 ^ Ψ ^ Φ

L
 ^ Θ

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 2 3 4 5 6 7 8 9 10

In
d

u
ct

io
n

 D
ep

th

 o
r

L
at

en
cy

 B
o

u
n
d

Queue Depth

TL

TFEAS

ΦTL

G
 ^ Ψ ^ Φ

L
 ^ Θ

ΦTL

G
 ^ Ψ

Figure 6.5: Runtime versus Problem Size in Queue. Sweeping the queue depth in a network comprising a single queue,

and a sink with liveness bound of 3. The Y-axis in the lower plot has a slightly different meaning for each of the plotted datasets: For

the two properties, the Y-axis is the induction depth required to prove them; for TFEAS and TL, the Y-axis is a latency bound (either the

tightest feasible bound, or the bound proved by the lemmas).

(Eq. 6.35) asserting that each outstanding credit corresponds to exactly one available token or ingress queue

packet; this numeric invariant is included as part of auxiliary invariant Ψ.

ψnum := n0 +n1 = n2 (6.35)

Sweeping the Depth of Queues

As the depth of the credit loop queues are swept from 2 to 10 (Fig. 6.6), the bounds implied by the lemmas (TL)

at each depth exceed the tightest feasible bound (TFEAS) on account of the conservativeness of the progress

lemmas. As in Sec. 6.2.2, the bound of the sink is 5. The inclusion of latency lemmas yields inductive latency

proofs in 8 frames of unrolling and less than 11 seconds of runtime for all depths. For a queue depth of 10,

including the lemmas gives a speedup of 120x.

Comparing Proof Engines

Induction is evaluated against the PDR verification engine when the latency property is formulated with and

without the strengthening of the latency lemmas. In this experiment, the queue depths are fixed to 6 and the

sink bound is again 5. Attempts are made to prove 2 different bounds; the first is the tightest feasible bound

(TFEAS), and the second is the looser bound (TL) implied by the latency lemmas. The results are shown in

80

 0

 200

 400

 600

 800

1000

1200

1400

 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e

[s
]

ΦTL

G
 ^ Ψ

ΦTL

G
 ^ Ψ ^ Φ

L
 ^ Θ

 0
 10
 20
 30
 40
 50
 60
 70
 80

 2 3 4 5 6 7 8 9 10

In
d

u
ct

io
n

 D
ep

th

 o
r

L
at

en
cy

 B
o

u
n
d

Queue Depth

TL

TFEAS

ΦTL

G
 ^ Ψ ^ Φ

L
 ^ Θ

ΦTL

G
 ^ Ψ

Figure 6.6: Runtime versus Problem Size in Credit Loop. Comparing runtime and induction depth for proving latency

bounds with and without latency lemmas while varying the depth of the queues in a credit loop (Fig 6.1).

Tab 6.1. When proving tight bound TFEAS, the PDR engine gives a 3x speedup over induction, and adding

latency lemmas does not significantly impact runtime. When proving the looser bound TL, adding latency

lemmas causes a dramatic speedup in inductive verification. The speedup is 34x compared to induction

without the lemmas, and over 7x compared to PDR with or without lemmas. The speedup is caused by the

latency lemmas making the proof compositional and hence provable in only 8 frames of unrolling.

Precision vs Scalability

When using latency lemmas, there exists a tradeoff of inductive verification runtime against looseness of

proved bounds. This generalizes the speedup observed in Tab 6.1 when proving the looser bound TL instead of

tight bound TFEAS. The tradeoff is shown by proving individually each bound from TFEAS to TL+5 (Fig. 6.7).

The black vertical line indicates the tight bound T = TFEAS = 35 and the gray indicates T = TL = 43. As the

latency bound increases from TFEAS to TL, the property strengthened by the lemmas gets progressively easier

to prove, as evidenced by the reduction in both verification runtime and the number of frames needed for the

proof. The points where the plotted data cross the black and grey vertical lines correspond to the four rows

in Tab. 6.1 that use k-induction as the verification engine.

6.6.3 Virtual Channel

The virtual channel model in Fig. 6.8 comprises two credit loops that are independent except for a shared

channel e. Non-deterministic sources inject packets at a0 and a1; packets injected on channel a0 are routed

81

disprove
bound

34

Runtime (s) Frames Cex Engine Property

52.79 42 Y bmc ΦG
34

1045.62 200 - bmc ΦG
35

verify
bound
TFEAS
≡ 35

Runtime (s) Frames Proved Engine Property

118.79 37 Y kind ΦG
35∧Ψ

95.89 37 Y kind ΦG
35∧Ψ∧ΦL∧Θ

29.57 41 Y pdr ΦG
35∧Ψ

27.97 41 Y pdr ΦG
35∧Ψ∧ΦL∧Θ

verify
bound

TL
≡ 43

Runtime (s) Frames Proved Engine Property

150.97 37 Y kind ΦG
43∧Ψ

3.41 8 Y kind ΦG
43∧Ψ∧ΦL∧Θ

30.61 40 Y pdr ΦG
43∧Ψ

25.73 47 Y pdr ΦG
43∧Ψ∧ΦL∧Θ

Table 6.1: Comparing Verification Engines on Credit Loop. Proving latency bounds for credit loop with queue depths

of 6 and a sink blocking bound of 5. The tightest feasible bound (TFEAS) is 35 cycles and the the bound implied by the lemmas is 43

cycles. The latency lemmas do not significantly effect runtime when proving the tighter bound, but allow the looser bound of 43 cycles

to be proved in only 3.41 seconds and 8 frames.

 0

 50

 100

 150

 200

 34 36 38 40 42 44 46 48

R
u
n

ti
m

e
[s

]

 ΦT
G

 ^ Ψ

 ΦT
G

 ^ Ψ ^ Φ
L
 ^ Θ

 0
 5
 10
 15
 20
 25
 30
 35
 40

 34 36 38 40 42 44 46 48

In
d
u
ct

io
n
 D

ep
th

T: Global Bound Checked by ΦT
G

 ΦT
G

 ^ Ψ

 ΦT
G

 ^ Ψ ^ Φ
L
 ^ Θ

Figure 6.7: Verification Runtime versus Proved Latency Bound in Credit Loop. When proving a latency

bound property strengthened by latency lemmas, a larger latency bound (T) leads to a reduced runtime and reduced induction depth.

82

to d0, and a1 to d1. To appropriately route packets from each source, function primitives “tag” the packets

by appending a single 0 or 1 bit before they cross the shared channel, and the target’s switch primitive

routes incoming packets according to this tag. The tags are removed by additional function primitives before

entering their respective ingress queues. Similar to the credit loop example, the numeric invariant ψnum

(Eq. 6.36) is included in the auxiliary invariant Ψ.

ψnum := (n0 +n1 = n2)∧ (n3 +n4 = n5) (6.36)

s2 s1

s0 s11

5(6) 5(11)

1(1) 0(41)
s4 s3

5(16) 5(21)

s5

5(26)

s7 s6

8(9) 8(17)

s9 s8

8(25) 8(33)

s10

8(41)

(a) Stage graph G for virtual channel with queue depths of 5

a0

ingress
(n1)

outstanding
credits
(n2)

available
tokens
(n0)

d0
bound0=3

a1

ingress
(n4)

d1
bound1=6

e

available
tokens
(n3)

outstanding
credits
(n5)

tag 0

tag 1 untag

untag

Master Agent Target Agent

(b) Network model N for virtual channel

Figure 6.8: Virtual Channel Network N and Stage Graph G . (a) All packets injected on a0 are routed toward sink

d0, and packets injected on a1 are routed toward d1. (b) Stage graph for virtual channel network with all queues assigned depth 5. The 5

slots of the upper ingress queue map to stages s1 through s5, and the 5 slots of the lower ingress queue map to stages s6 through s10.

When all queues in the virtual channel are assigned a depth of 5, and the sink bounds are 3 and 6 respectively,

the stage graph G that is generated is shown in Fig. 6.8(a). The global latency bound (TL) implied by the

latency lemmas is therefore 41 on account of stage s10. Latency verification runtimes for the virtual channel

network are shown in Tab. 6.2. The tightest feasible bound (TFEAS) is discovered using BMC to be 35 cycles,

and the PDR engine is faster than k-induction when proving TFEAS. When proving the looser bound (TL),

strengthening the property using latency lemmas allows the induction engine to prove the property 4x faster

83

than any other approach at verifying the same bound. Fig. 6.9 generalizes the tradeoff between verification

runtime and tightness of proved bound that is made possible by the latency lemmas.

disprove
bound

33

Runtime (s) Frames Cex Engine Property

90.95 40 Y bmc ΦG
33

3348.12 200 - bmc ΦG
34

verify
bound
TFEAS
≡ 34

Runtime (s) Frames Proved Engine Property

217.36 35 Y kind ΦG
34∧Ψ

166.72 35 Y kind ΦG
34∧Ψ∧ΦL∧Θ

51.53 35 Y pdr ΦG
34∧Ψ

49.07 38 Y pdr ΦG
34∧Ψ∧ΦL∧Θ

verify
bound

TL
≡ 41

Runtime (s) Frames Proved Engine Property

276.78 35 Y kind ΦG
41∧Ψ

12.23 9 Y kind ΦG
41∧Ψ∧ΦL∧Θ

66.27 35 Y pdr ΦG
41∧Ψ

47.36 44 Y pdr ΦG
41∧Ψ∧ΦL∧Θ

Table 6.2: Comparing Verification Engines on Virtual Channel. Results correspond to virtual channel model shown

in Fig. 6.8(b), with all queues having depth 5, and sink bounds of 3 and 6. The tightest feasible bound (TFEAS) is 34, and the bound

implied by the latency lemmas (TL) is 41.

 0

 50

 100

 150

 200

 250

 300

 34 36 38 40 42 44 46

R
u

n
ti

m
e

[s
]

 ΦT
G

 ^ Ψ

 ΦT
G

 ^ Ψ ^ Φ
L
 ^ Θ

 0
 5
 10
 15
 20
 25
 30
 35
 40

 34 36 38 40 42 44 46

In
d

u
ct

io
n

 D
ep

th

T: Global Bound Checked by ΦT
G

 ΦT
G

 ^ Ψ

 ΦT
G

 ^ Ψ ^ Φ
L
 ^ Θ

Figure 6.9: Runtime versus Proved Latency Bound in Virtual Channel. When sweeping the checked latency

bound, as the bound approaches TL, the induction runtime and induction depth are both reduced on account of the latency lemmas.

84

6.6.4 Token Bucket Regulator

Traffic metering is an alternative to the credit-based flow control used in the credit loop and virtual channel

examples. One example of a metering circuit is a token bucket regulator, in which tokens are periodically

added to a fixed sized bucket, and consumed whenever a packet is sent. As discussed in Sec. 4.5 in the context

of traffic modeling, the size of the token bucket limits the burstiness of the traffic because packets must wait

for tokens once the bucket is emptied. The period at which new tokens are added to the bucket serves to

constrain the average injection rate.

In this chapter, a token bucket is implemented differently than in Chapter 4 so as not to require periodic

token sources. Here a token bucket is implemented in a master agent using an eager token source and two

parallel branches of token queues (Fig. 6.10); injected packets from the packet source consume a token from

each branch of the token bucket and therefore can only be injected when both branches have tokens in their

bottommost positions. The numeric invariant ψnum (Eq. 6.37) arises due to the parallel branches of the token

bucket. The left branch is a single queue that sets the capacity of the token bucket to σ ; this is the largest

number of packets that can be injected consecutively before the bucket becomes empty. The sequence of ρ

queues with depth 1 controls how quickly the bucket can be replenished. If a token is consumed from each

branch the source will add a new token to each branch in the next cycle, but that token will not be usable

during the next ρ cycles while it propagates through the right branch. Therefore the i+σ th data packet cannot

be sent within ρ cycles of the ith data packet; this limits the long-term average injection rate to σ/ρ .

ψnum := n0 = n1 (6.37)

Experiments are performed using a token bucket configured with σ = 2 and ρ = 10, for a maximum burst

size of 2 and a long-term average injection rate of 1 packet per 5 cycles. The target’s ingress has depth of 5,

and its sink has bound of 4. The sink will drain an ingress packet at least once per 5 cycles, matching exactly

the maximum sustainable injection rate of the token bucket. Because the injection rate matches the sink rate,

the ingress can only fill due to bursty traffic; the token bucket limits the burst size to 2, thus preventing the

ingress from ever filling with packets. Therefore only the 2 slots at the head of the ingress can ever be used,

and the other 3 slots are unused in all reachable states of N .

Our reasoning using stage graph G infers a bound of TL = 26 because it is unaware of the maximum realizable

ingress capacity of 2; yet the tight bound is much smaller (TFEAS = 9) on account of it. Since a full ingress

will take 25 cycles to drain given the sink rate, proving any bound much smaller than TL using induction will

need to block off unreachable initial states where the ingress is full. When checking a bound of 10 cycles

inductively using property ΦG
10, initial states with a full ingress lead to latency violations in 10 cycles and are

then blocked off. Yet, when checking a larger bound of (e.g.) 15 cycles, the blocking off does not occur until

the 15th cycle, and this leads to a higher verification runtime. This trend is observed in Fig. 6.11 where the

runtime and induction depth to prove a bound of T increase as T is swept from TFEAS to TL + 5. However,

once the latency bound approaches TL, the proof succeeds without needing to block off initial states where

85

the ingress is full. The difficulty of the proof is then equivalent to a queue of depth 5 with a non-deterministic

source, and the runtime and induction depth drop accordingly.

ingress

c
bound=4

depth=5

ρ=10
(n1)

σ=2
(n0)

a b

Master Agent Target Agent

s2 s1 s0 s6

5(6) 5(11) 1(1) 0(26)

s4 s3

5(16) 5(21)

s5

5(26)

Figure 6.10: Token Bucket Traffic Metering Circuit. Parallel queues collectively constrain the burstiness (σ) and average

rate (ρ/σ) of traffic injected by the master.

 0

 50

 100

 150

 200

 250

 300

 10 15 20 25 30

R
u

n
ti

m
e

[s
]

 ΦT
G

 ^ Ψ

 ΦT
G

 ^ Ψ ^ Φ
L
 ^ Θ

 0
 5
 10
 15
 20
 25
 30
 35

 10 15 20 25 30

In
d

u
ct

io
n

 D
ep

th

T: Global Bound Checked by ΦT
G

 ΦT
G

 ^ Ψ

 ΦT
G

 ^ Ψ ^ Φ
L
 ^ Θ

Figure 6.11: Verification Runtime versus Proved Latency Bound in Token Bucket. Comparing runtime and

induction depth required to prove different latency bounds in token bucket network (Fig. 6.10). The difficulty of the problem increases

as the global bound T is increased, but the latency lemmas simplify the problem once the bound approaches TL

86

6.7 Non-Stallable Ring Interconnect

A ring network [38] is a topology for routing traffic amongst a number of agents. Each agent in the ring com-

prises arbitration logic, a ring queue slot, and an ingress queue (Fig. 6.12). Packets reach their destinations

by circling around the ring until being admitted into their destination agent’s ingress. The ring network is

parameterized by the number of agents, depth of the ingress queues, and the liveness bound of each agent’s

sink.

A packet that is injected at agent i and destined for agent j will first occupy the ring slot of agent i. The packet

circles the ring thereafter (i.e. occupying slots 6,7,8,6, . . . in Fig. 6.12) and requests admission to the ingress

whenever arriving at agent j. If the request is denied, the packet bounces back onto the ring to repeat the

request after making a trip around the ring. Unfair arbitration logic prioritizes traffic in the ring over traffic

attempting to enter the ring from a source. This unfair arbitration ensures that packets in the ring are never

blocked, but it does permit sources to be blocked indefinitely.

Each packet that a source injects into the ring is non-deterministically assigned a destination address between

0 and n−1 that indicates the agent to which it should be routed. This non-deterministic choice is implemented

using the methodology of Sec 4.5. The destination is encoded in a designated field of the packet data,

analogous to how destinations are encoded for head flits in Tab. 4.1. For a packet stored in queue slot i, let

dst(qi) denote its destination address. The auxiliary inductive invariant Ψ includes ψdst (Eq. 6.38) to block

off unreachable states where packets in the network have invalid destinations.

ψdst :=
∧

i∈[0,M−1]

usedi =⇒ dst(qi) ∈ [0,n−1] (6.38)

6.7.1 Implementation of a Ring Agent

Each agent in the ring is created in xMAS design style using modified versions of the basic xMAS primitives

(Fig. 4.2) to implement reservations and unfair arbitration. When a packet is transferred from one ring agent

to the next, the first primitive encountered is a switch that routes the packet downward toward the admission

logic if this agent is the packet’s destination, and upward to the bypass channel otherwise. Packets that are

routed to the admission logic encounter a demultiplexer that is controlled by sequential reservation logic.

The state of the sequential reservation logic and the number of free slots in the ingress determine whether the

packet is admitted or bounced. A merge primitive then propagates onward a bounced packet or bypass packet,

or no packet at all. Finally, a merge primitive unfairly gives priority to any packet propagating through the

ring, and allows the source to inject packets only if there is no competing packet on the ring.

87

numAgents!

depth!
 =2!

!
bound!
 =2!

4!
5!

8!

agent 2!

rsv2!

bounce!

admit!

bypass!

ingress!

2!
3!

7!

agent 1!

rsv1!

bounce!

admit!

bypass!

ingress!

0!
1!

6!

agent 0!

rsv0!

bounce!

admit!

bypass!

ingress!

Figure 6.12: Parameterized Ring Network. Ring network shown is instantiated with 3 agents and an ingress queue depth

of 2. All channels in ring network carry packets, and control is implemented using sequential reservation logic instead of tokens.

6.7.2 Receive Reservation Logic

A naı̈ve ring implementation can have infinite latency even though all sinks obey bounded liveness. A single

packet on the ring may never be granted access to the ingress of its destination, despite an unbounded number

of other packets being granted access to the same ingress. Receive reservations [70] are a mechanism to

enforce fairness; together with bounded liveness of sinks, receive reservations ensure that packets on the ring

have finite latency bounds. The receive reservation scheme used by the ring agents is described here:

1. Each agent can issue a single receive reservation. If an agent’s reservation is available, then the agent

issues it to any packet that is bounced (due to a full ingress queue). The next ingress slot to become

free is reserved for this packet.

2. If the agent has an outstanding receive reservation, packets without the reservation are denied entry to

the ingress queue unless more than 1 slot is free.

3. When a packet with a receive reservation returns to its destination agent after circling the ring, it is

granted entry to the ingress queue if any slots are free, and the reservation then becomes available for

other packets. If no slots are free, the reservation is renewed by the packet and remains unavailable.

The receive reservation logic for each agent in a 3-agent ring implements the state machine shown in Fig. 6.13.

The reservation is tracked by a state variable, denoted rsvi for agent i, that operates as a sort of counter. When

the receive logic state (rsvi) is n, it indicates that the packet with the reservation will return in n cycles. When

the state reaches 0, the next arriving packet on the ring is the same one for which the reservation was made.

The state of rsvi is ⊥ when the reservation is available. Receive reservations are fair with respect to packets

88

in the ring. Whenever one packet returns the reservation (see edge return reservation in Fig 6.13), the packet

trailing it on the ring has a chance to make the reservation in the next cycle. Each packet in the ring gets a

turn at making a receive reservation in order.

The dashed edge labelled renew reservation in Fig. 6.13 is taken when a packet holding the reservation

returns to its destination agent and bounces on account of there not yet being any free slots in the agent’s

ingress queue. This can only occur if the sink’s blocking bound is larger than the delay around the ring (i.e.

the number of agents). It is assumed that the sink bound is smaller than the ring delay, and therefore the

dashed edge is ignored. This means that packets arriving when the reservation state (rsvi) is 0 will always

have a free ingress slot and be admitted to the ingress.

Ring_rsv_state_machine/

�!2! 1! 0!
return!

reservation!

issue reservation!

renew reservation!

reservation!
remains !
available!

Figure 6.13: Receive Reservation State Machine. The state machine shown is implemented within every agent in a

3-agent ring. The reservation state (rsvi) is ⊥ when the reservation is available, and is 0,1, or 2 when the reservation is outstanding.

When rsvi is 0, the packet holding the reservation is the next to arrive, and when rsvi is 2, the reservation has just been made for bounced

packet that now occupies the ring slot of agent i.Ring_combined_state_machine0

�,6 2,6 1,6 0,6

rsv2 �{2,1,0,�} !
(reservation state of agent 2)!

�,8 2,8 1,8 0,8

�,7 2,7 1,7 0,7

queue slot �{6,7,8}!
(current location of

packet in ring)!

Figure 6.14: Product Automaton of Receive Reservation and Occupied Ring Slot. Each state corresponds to

one reservation state and the index of a currently occupied ring slot from the 3-agent ring in Fig. 6.12.

6.7.3 Creating Age Lemmas using Stage Graph G

The location of packets in the ring network is not a precise enough indicator of progress to create an acyclic

stage graph because a packet can occupy the same slot many times as it circles the ring. Progress of a

89
Ring_stage_graph-

s5!s2! s11! s8!

s1!s10! s4!

s9!s6! s3! s12!

s13! s14! s15!

s0 !

1(1)!

1(2)!

1(3)!

1(4)!

1(5)!

1(6)!

1(7)!

1(8)!

1(9)!

1(10)!

1(11)!

1(12)!

1(13)!

3(16)! 3(19)! 0(19)!

s7!

Figure 6.15: Stage Graph G for the 3-agent Ring Network. Above each stage s j is stage residence time d j and age

bound t j in parentheses

packet circling the ring is instead marked both by changes in the location of the packet, and changes in the

reservation state of its destination agent. In an n-agent ring, every combination of the n ring slots, the n packet

destinations, and the n+1 reservation states, must correspond to a stage in G , so the total number of stages

for the ring slots is n×n× (n+1). For clarity, the explanation here deals only with the n× (n+1) stages for

packets that have agent 2 as their destination; in implementation all destinations are considered.

Using the 3-agent ring as an example, composing the reservation state machine of Fig. 6.13 (without dashed

edge) with the packet’s behavior of advancing to the next ring slot in every cycle produces the state machine

of Fig. 6.14. This product machine is the key to creating a stage graph for packets in the ring. Each state in

Fig. 6.14 has two labels, the first is the state of the reservation state machine (Fig. 6.13) and the second is the

index of a ring slot (Fig. 6.12). As a packet destined for agent 2 moves around the ring, in every cycle it maps

to some state of this product automaton. For example, state (0,7) in Fig. 6.14 is the state that a packet in slot

7 maps to when the receive reservation of agent 2 has state rsv2 = 0. The mapping from packets to states in

Fig. 6.14 could serve as an indicator of progress if only the product automaton were acyclic. An acyclic stage

graph is obtained from the product automaton by showing that there are pairs of edge-connected states in

Fig. 6.14 that no single packet can map to. When these transitions are removed, an ordering among progress

stages is revealed.

• (0,7)→ (⊥,8) can never be made by a packet destined for agent 2 because it corresponds to a packet

bouncing at agent 2 (from slot 7 to slot 8) while agent 2 has its reservation returned (i.e. it transitions

to state rsv2 = ⊥ that indicates that a reservation is available). The transition is impossible because

bouncing and returning a reservation are exclusive; only packets admitted to the ingress cause the

reservation to return to the available state.

• (⊥,7)→ (⊥,8) can never be made by a packet destined for agent 2 because it corresponds to a packet

90

that bounces (from slot 7 to slot 8) while an available reservation remains available. The transition is

impossible because any packet bouncing while the reservation is available would result in the reserva-

tion being issued to it.

Without the two transitions described above, Fig. 6.14 becomes acyclic and can be used to order the progress

stages of a packet in the ring. The product automaton of Fig. 6.14 becomes the stage graph of Fig. 6.15

by simply removing the two unrealizable transitions, and adding stages for sources, ingress slots, and the

sink. The mapping from queue slots in the ring network to stages in Fig. 6.15 is given by the age lemmas in

Tab. 6.3.

stage s j d j
age lemma φ(i, pi, j, t j)

Fig. 6.15 i pi, j t j

s0 1 - - 1
s1 1 8 dst(q8) = 2 ∧ rsv2 =⊥ 2
s2 1 6 dst(q6) = 2 ∧ rsv2 = 2 3
s3 1 7 dst(q7) = 2 ∧ rsv2 = 1 4
s4 1 8 dst(q8) = 2 ∧ rsv2 = 0 5
s5 1 6 dst(q6) = 2 ∧ rsv2 =⊥ 6
s6 1 7 dst(q7) = 2 ∧ rsv2 = 2 7
s7 1 8 dst(q8) = 2 ∧ rsv2 = 1 8
s8 1 6 dst(q6) = 2 ∧ rsv2 = 0 9
s9 1 7 dst(q7) = 2 ∧ rsv2 =⊥ 10
s10 1 8 dst(q8) = 2 ∧ rsv2 = 2 11
s11 1 6 dst(q6) = 2 ∧ rsv2 = 1 12
s12 1 7 dst(q7) = 2 ∧ rsv2 = 0 13
s13 3 4 true 16
s14 3 5 true 19
s15 0 - - 19

Table 6.3: Age Lemmas for 3-agent Ring. The age lemmas are shown only for packets with agent 2 as their destination.

The first column is the stage in G (from Fig. 6.15) that corresponds to the age lemma described on the row.

6.7.4 Latency Verification Results for Ring Interconnect

The latency lemma approach is evaluated on a 3-agent ring and an 8-agent ring, each with ingress depth

of 2 and sink bound of 2. For the 3-agent ring, the tightest feasible bound (TFEAS) is 18, and the bound

implied by the latency lemmas (TL) is 19; for the 8-agent ring, TFEAS is 78 and TL is 79. The runtimes and

number of frames for proving a bound of TL on each ring, with and without latency lemmas, are shown

in Tab. 6.4 and 6.5. Property ΦG
TL
∧Ψ proves the latency bound TL without latency lemmas, and property

ΦG
TL
∧Ψ∧ΦL ∧Θ proves it with the lemmas added. Strengthening the global latency bound property with

latency lemmas reduces the verification runtime for both k-induction and PDR in both sizes of the ring

networks.

91

The latency bound for the 8-agent ring (Tab. 6.5) is proved within 10,000 seconds by each engine only when

the lemmas are used. The induction engine is able to verify the property with the lemmas 9x faster than PDR

verifies the same, and at least 130x faster than either engine does without lemmas.

disprove
bound

17

Runtime (s) Frames Cex Engine Property

24.12 20 Y bmc ΦG
17

868.28 200 - bmc ΦG
18

verify
bound

TL
≡ 19

Runtime (s) Frames Proved Engine Property

62.34 18 Y kind ΦG
19∧Ψ

1.31 4 Y kind ΦG
19∧Ψ∧ΦL∧Θ

88.39 12 Y pdr ΦG
19∧Ψ

6.57 14 Y pdr ΦG
19∧Ψ∧ΦL∧Θ

Table 6.4: Latency Verification Runtimes for 3-agent Ring. Proving latency bounds for 3-agent ring with ingress

depth 2 and sink bound 2. The 19 cycle bound that is implied by the lemmas exceeds TFEAS by only 1 cycle.

disprove
bound

77

Runtime (s) Frames Cex Engine Property

3901.95 80 Y bmc ΦG
77

10,000.00 111 - bmc ΦG
78

verify
bound
≡ TL
≡ 79

Runtime (s) Frames Proved Engine Property

10,000.00 - - kind ΦG
79∧Ψ

75.28 10 Y kind ΦG
79∧Ψ∧ΦL∧Θ

10,000.00 - - pdr ΦG
79∧Ψ

662.15 73 Y pdr ΦG
79∧Ψ∧ΦL∧Θ

Table 6.5: Latency Verification Runtimes for 8-agent Ring. Proving latency bounds for 8-agent ring with ingress

depth 2 and sink bound 2. The 79 cycle bound that is implied by the lemmas exceeds TFEAS by only 1 cycle. This latency bound can be

proved within 10,000 seconds only when latency lemmas are used.

6.8 Related Work

One way of addressing QoS guarantees at the architectural level is to use resource reservation and contention-

free routing [47]. Analysis can be performed manually, but formal verification is still useful for providing

guarantees.

Network calculus [31] has been demonstrated as a useful tool for NoC performance analysis [107]. How-

ever, it has limited applicability and precision for networks with backpressure and complex circular message

92

dependencies. Network calculus formalism relies on very high-level abstraction of arbiters, often modeling

them as latency-rate servers. Recent abstraction-based formal approaches have been applied to NoC compo-

nents [50], but they only address scalability problems arising from the size of the network, rather than from

proving a large latency bound, while the present work addresses the latter issue.

The notion of using LTL properties where all eventually properties have time bounds is also referred to as

a prompt system [59]. Prior works compare liveness and safety methods for verifying grant latencies on a

particular style of weighted round robin arbiter [57].

Several works have explored (unbounded) liveness verification of communication fabrics. The standard ap-

proach of verifying liveness using a liveness-to-safety transformation [6] does not scale to large networks in

practice [48]. Alternative approaches include reducing deadlock conditions to a set of equations [48, 102],

and proving liveness using the help of intermediate safety assertions [90].

The use of latency lemmas is conceptually similar to ranking functions [99], i.e. numeric functions of model

state that measure progress toward some goal. Typically, ranking functions are useful in proving termination

or liveness properties, but they are also applicable for latency bounds. In fact, a stage graph can be viewed as

a structural description of a ranking function for the model. Note, however, that stage graphs specify partial

orders, rather than the linear orders that are typical for ranking functions. Viktorov and Gotmanov [104]

propose a theorem-proving approach to latency verification in xMAS networks that is based on ranking

functions. Their inference rules are analogous to the rule-based propagation used in this work.

6.9 Conclusion

The work presented in this chapter gives a compositional approach to verifying latency bound properties

of NoC designs. The key idea is to decompose the overall proof into a finite number of latency lemmas,

based on the notion of stages that a packet can be in. These latency lemmas are then used to strengthen the

global latency bound property. The approach is fully automated for classes of acyclic networks constructed

from basic xMAS primitives, and some manual input is required for cyclic xMAS networks or xMAS-like

networks that use an extended set of primitives. Further automating the stage graph construction for cyclic

networks is a topic for future work. The latency lemma approach is applied to several examples including

an industry-inspired ring design, and is shown to decrease runtime for proving latency bounds, while also

decreasing the induction depth needed to prove latency bounds.

93

Part III

NoC Parameter Synthesis

94

Chapter 7

Buffer Sizing

The quality of network-on-chip (NoC) designs depends crucially on the size of buffers. Buffers impose a

significant area and power overhead, but are essential for ensuring high throughput and low latency. This

chapter presents a new approach for minimizing the cumulative buffer size in on-chip networks, so as to

meet throughput and latency requirements, given high-level specifications on traffic behavior. The overall

approach is to use model checking based on satisfiability modulo theories (SMT) solvers, within an overall

counterexample-guided synthesis loop.

The work in this chapter was originally published in the 2011 Design Automation and Test in Europe (DATE)

conference [14]. The approach as presented in this chapter is identical to that used in the published version,

but the experimental results are expanded. This work makes use of the traffic models introduced in Chap-

ter 4.5. Contrary to Chapter 5 where the traffic models are inferred from simulation, the traffic models in

this chapter are assumed to be given a priori as a specification. The traffic model is inconsequential to the

buffer sizing technique that is the contribution of this chapter, and the same technique can be applied with

any traffic model or even fully non-deterministic packet sources. The regulated traffic model is used only to

create a more interesting sizing problem, as fully-nondeterministic traffic leads to solutions with buffers that

are drastically over-provisioned for common use cases.

7.1 Introduction

Recall that an NoC architecture consists of a network of interconnected routers, where each router commu-

nicates with neighboring routers and a processor core or a specialized IP block. Inter-node communication

is performed by the transmission of data packets through routers, where they are typically stored in buffers.

This chapter addresses a key problem in the design and implementation of NoCs — the minimization of total

buffer size while still guaranteeing a particular quality of service.

95

Buffers play a critical role in NoC design: increasing the sizes of the buffers can significantly reduce the

average latency of packets and increase the throughput. However, even with scalable mesh architectures

where routers only exchange data with their neighbors (e.g., [58]), the size of the ingress buffer for each

input channel has a serious impact on the area and power of an NoC router design. For example, Hu and

Marculescu [53] indicate that changing the buffer size at each input channel from 2 words to 3 words will

increase the overall network area by 30%. The buffer sizing problem is further complicated by the hetero-

geneity of traffic patterns in NoCs. For example, more buffers must be allocated in heavily loaded channels.

Hence, a technique is needed to judiciously allocate buffer capacity for each channel in accordance with a

given traffic model specification.

This chapter proposes a formal technique for minimizing the cumulative buffer size while meeting design

and performance constraints with respect to specified traffic models. Given a formal NoC model, SMT-

based model checking is used to find the minimal buffer sizes that guarantee some throughput and latency

for the specified traffic model. The approach is based on counterexample-guided synthesis, where an SMT-

based model checker is repeatedly invoked both for synthesizing buffer sizes and for checking whether the

synthesized buffer sizes guarantee the performance property for specified traffic patterns. Buffer sizings

found with this approach guarantee performance for all traffic patterns that can be generated by a traffic

model, without having to explicitly enumerate each one.

In summary, this chapter makes the following novel contributions:

1. Proposing a new SMT-based model checking technique, based on counterexample-guided synthesis,

for minimizing the cumulative buffer size in an NoC design.

2. Showing how a formal term-level approach can effectively model NoC designs and traffic patterns.

3. Demonstrating the effectiveness of the buffer sizing technique on NoC designs involving arbitration

and credit logic.

4. Experimental evaluation comparing two different representations of symbolically-sized buffers.

This chapter is organized as follows. Section 7.2 describes the models used for NoC designs and defines the

buffer minimization problem. The SMT-based approach is given in Section 7.3. Experimental results are

presented in Section 7.4, related literature is reviewed in Section 7.5, and Section 7.6 concludes.

7.2 Formal Model and Problem Definition

The approach in this chapter uses a network model N and a traffic model T . The network model uses

the router core from Chapter 4.3 and stateful and stateless xMAS primitives communicating over channels.

Let B represent the set of xMAS queue components in the model N . Recalling that each xMAS buffer is

parameterized by its depth, each buffer bi ∈B has associated size, which is the number of entries that can

96

be stored in it. However, as the task of this chapter is to determine buffer sizes, the sizes are now symbolic

constants, and the problem at hand is to determine appropriate values for these constants.

7.2.1 Modeling Symbolic-Sized FIFOs

New to this chapter is the use of symbolically sized queues. Symbolically sized queues require only a minor

modification to the UCLID queue implementations presented in Chapter 4.2. Recall that queues can be

implemented using as the underlying storage mechanism either fixed-size circular buffers (Sec. 4.2.1) or

arbitrary-sized records (Sec. 4.2.2). Both options are explored in this chapter. In each queue implementation,

a bit-vector state variable keeps track of the number of items stored in the queue. When this variable is equal

to the size of the queue, the queue is said to be full, and trdy on its input channel is de-asserted to block

incoming flits until slots become free. Representing the size of the queue with a symbolic constant instead of

a specific constant causes the queue to be symbolically sized.

Some care must be taken when using symbolically sized queues that are implemented as circular buffers. The

symbolic constant is restricted to taking values that are less than or equal to the physical size of the queue.

Because the physical size of the queue is fixed in the model, an upper bound on the symbolic queue sizes must

be known in advance to ensure that the circular buffer is sufficiently large. When bounded model checking

is used, one conservative upper bound is the BMC depth since no more than one packet can enter the queue

each cycle, but often a more practical smaller bound can be used. No such limitation exists in the record-

base queue implementation, which can store an arbitrary finite number of elements; using a 24-bit symbolic

constant for size limits the number of items stored to 224, but in practice the sizes used never approach this.

7.2.2 Traffic Model Specification

Traffic patterns for NoC designs vary widely depending on the environment in which the NoC is being used.

NoC designs used in multimedia applications usually experience more regular traffic patterns. On the other

hand, traffic patterns for NoC fabrics within CMP designs are less regular. It is not unreasonable to be

concerned with NoC performance for specific classes of traffic patterns [38].

The traffic model T used in the chapter for injecting traffic into the network follows the formulation Sec. 4.5.

Specifically, the constraints enforced by the traffic model in this chapter are:

• Every injected head flit is immediately followed by a tail flit in the next cycle. This is enforced using a

state machine similar to the one shown in Fig. 4.7, except lacking a state to generate body flits.

• Token bucket rate constraints are enforced. The specific rate constraints vary according to the experi-

ment performed.

A new twist on traffic models in this chapter is that counterexample traffic patterns are collected and replayed

later for use in synthesis. A counterexample traffic patterns is one generated by the traffic model T that

97

causes a property in network model N to fail. Each counterexample pattern pi is therefore a sequence of

packets transferred across the channels from T to N . Traffic model T is removed when replaying the

pattern pi, and instead the inputs to N in each cycle are assigned the values from the pattern pi.

7.2.3 QoS Performance Properties

While the approach of this chapter can size buffers to meet any performance property that can be formulated

as a safety property, the properties considered here are latency and non-blocking.

A latency property, φlatency, is parameterized by a maximum number of cycles x allowed for packet transit.

Following the timestamp encoding of Section 4.4.1, property φlatency is true in the ith cycle if and only if no

buffer slot stores a flit that was injected into the network before time ni− x.

A non-blocking property, φnon−block, enforces that packets are never forced to wait at the interface between

the traffic model T and the network N . Property φnon−block is true if, for each channel c from T to N ,

c.irdy =⇒ c.trdy. This property is defined by Chatterjee et al. [21].

A correct NoC must satisfy property φ (Eq. 7.1) in all reachable states. The overall property φ can be

considered a throughput specification, because φnon−block specifies that traffic is always admitted into the

network N , and φlatency specifies that all traffic to enter the network will also exit the network (and does so

within a given time bound, although this is not required for throughput).

φ := φlatency∧φnon−block (7.1)

7.2.4 SMT-based Buffer Sizing

Given a formal NoC model N with symbolically-sized queues as described in Sec. 7.2.1, a traffic model T

as described in Sec. 7.2.2, and a performance property φ as described in Sec. 7.2.3, the buffer size synthesis

problem is to compute a buffer sizing S such that the composition of the sized NoC model and T satisfies φ .

A buffer sizing S is defined as a mapping from buffers to sizes S : B→ N, where S(bi) denotes the size of

buffer bi, and its cumulative size is denoted |S| = ∑bi∈B S(bi). An NoC N with buffer sizing S is denoted

N [S], and its composition with traffic model T is denoted N [S]‖T . Thus, a correct sizing of an NoC is

one that satisfies N [S]‖T � φ .

For a sized NoC N [S], N [S]‖T � φ is decided by SMT-based bounded model checking (BMC). The need

for SMT arises from the presence of symbolic variables in the composite model N [S]‖T , including non-

deterministic choice variables used to model traffic patterns and abstract terms or uninterpreted functions

used to model packet content. Buffer synthesis is built upon the above SMT-based verification method, and

the next section presents the overall SMT-based technique for optimal buffer size synthesis.

98

7.3 The CEBUS Approach

The counterexample-guided buffer size synthesis (CEBUS) approach finds the minimum cumulative buffer

sizing S such that N [S]‖T � φ , and |S| is minimized among all possible solutions.

This is accomplished by iteratively solving two problems:

1. Buffer size verification (BSV): This step tries to find a traffic pattern p that is generated by T and

disproves N [S]‖T � φ , where S is computed in the previous BSS step, or is the initial sizing S0. If

such a traffic pattern p is found, it is added to a set P of patterns to be used for synthesis by BSS.

2. Buffer size synthesis (BSS): For an NoC model N and a set of traffic patterns P generated by T , this

step computes a buffer sizing S that has minimal cumulative size |S| among all solutions to N [S]‖P� φ .

This sizing is only correct with respect to set of traffic patterns P; it may or may not be correct with

respect to the more general T , as T can generate many more patterns than just those in P.

As shown in Fig. 7.1, the iterations between BSS and BSV continue until the process terminates successfully

upon finding a minimal buffer sizing that ensures correctness for all traffic patterns that can be generated by

T , or else terminates unsuccessfully by finding a set P of patterns for which no sizing can ensure correctness.

BSS BSV Si

initial sizing S0

Compositional Performance Verification of NoC
Designs

November 6, 2013

Find a counterexample pattern
pi generated by T to show that
N [Si]kT 2 f

Find a minimal buffer sizing Si
such that N [Si]kP ✏ f , where
P = {p0, p1, . . . , pi�1}

No pattern exists (@pi).
Terminate successfully.

Output Si

No size exists (@Si).
Terminate unsuccessfully.

Output “fail”.

P P[pi
i i+1

1

Compositional Performance Verification of NoC
Designs

November 6, 2013

Find a counterexample pattern
pi generated by T to show that
N [Si]kT 2 f

Find a minimal buffer sizing Si
such that N [Si]kP ✏ f , where
P = {p0, p1, . . . , pi�1}

No pattern exists (@pi).
Terminate successfully.

Output Si

No size exists (@Si).
Terminate unsuccessfully.

Output “fail”.

P P[pi
i i+1

1

Compositional Performance Verification of NoC
Designs

November 6, 2013

Find a counterexample pattern
pi generated by T to show that
N [Si]kT 2 f

Find a minimal buffer sizing Si
such that N [Si]kP ✏ f , where
P = {p0, p1, . . . , pi�1}

No pattern exists (@pi).
Terminate successfully.

Output Si

No size exists (@Si).
Terminate unsuccessfully.

Output “fail”.

P P[pi
i i+1

1

Compositional Performance Verification of NoC
Designs

November 6, 2013

Find a counterexample pattern
pi generated by T to show that
N [Si]kT 2 f

Find a minimal buffer sizing Si
such that N [Si]kP ✏ f , where
P = {p0, p1, . . . , pi�1}

No pattern exists (@pi).
Terminate successfully.

Output Si

No size exists (@Si).
Terminate unsuccessfully.

Output “fail”.

P P[pi
i i+1

1

Compositional Performance Verification of NoC
Designs

November 6, 2013

Find a counterexample pattern
pi generated by T to show that
N [Si]kT 2 f

Find a minimal buffer sizing Si
such that N [Si]kP ✏ f , where
P = {p0, p1, . . . , pi�1}

No pattern exists (@pi).
Terminate successfully.

Output Si

No size exists (@Si).
Terminate unsuccessfully.

Output “fail”.

P P[pi
i i+1

1

Figure 7.1: CEBUS Procedure for Optimal Buffer Size Synthesis. Starting with a candidate sizing Si (or initial

sizing S0), find a traffic pattern pi that is generated by T and causes N [Si]‖T 2 φ . Add this traffic pattern pi to the set P of traffic

patterns and move to the next iteration by incrementing i. Then find a buffer size assignment Si such that N [Si]‖P � φ holds. Repeat

BSV using using this new sizing Si, and continue iterating around the loop until reaching a termination condition.

7.3.1 Buffer Size Synthesis

The goal of buffer size synthesis (BSS) is to find a buffer sizing S such that |S| is minimum and N [S]‖P � φ

for a set of traffic patterns P that have been generated by T . BSS is broken down into two steps, satisfiability

99

and minimization. The satisfiability problem is referred to as BSS-SIZE and the minimization problem is

referred to as BSS.

BSS-SIZE (N ,P,size) is the problem of determining whether there exists a sizing S smaller than size such

that N [S]‖P � φ holds. More precisely, BSS-SIZE(N ,P,size) returns an S such that N [S]‖P � φ ∧ |S| ≤
size, if one exists; otherwise, it returns ⊥.

Solving BSS-SIZE only requires a satisfiability check (instead of checking a quantified Boolean formula)

because P is a finite set of traffic patterns. The SMT formula for this is constructed as the conjunction of

BMC unrollings with the patterns in P applied, where a common set of symbolic constants serves as the

buffer sizes across all the unrollings.

∃S.
∧

pi∈P

N [S]‖pi � φ (7.2)

A solution to BSS-SIZE, if one exists, is a buffer sizing S such that N [S]‖P � φ , but this S is not necessarily

the minimum solution. In order to find the minimum sizing S such that N [S]‖P � φ , BSS performs a binary

search over size using a sequence of calls to BSS-SIZE (N ,P,size). Algorithm 3 shows pseudo code for

BSS. Intermediate variables MinBufSize and BufSizeLB keep track of the minimum buffer size seen thus far

where φ holds, and the maximum buffer size such that ¬φ , respectively; these two variables bound the range

to search for a minimal solution. The BSS procedure terminates with MinBufSize as the minimum cumulative

buffer size. At this point, MinBufSize = BufSizeLB+1, and there does not exist an S smaller than MinBufSize

such that N [S]‖P � φ .

Algorithm 3 Procedure BSS(N ,P,LB): Compute minimum cumulative buffer size for NoC model N and

set of traffic patterns P.

1: MinBufSize←UB . UB is a known upper bound on optimal size

2: BufSizeLB← LB . LB is a lower bound on optimal size that is already ruled out

3: while BufSizeLB+1 6= MinBufSize do

4: size← (MinBufSize−BufSizeLB)/2+BufSizeLB

5: SRES← BSS-SIZE(N ,P,size) . check existence of sizing with size total buffer slots

6: if SRES 6=⊥ then . found correct sizing, sizing is best result yet

7: S← |SRES|
8: MinBufSize← |S|
9: else . no sizing exists using size total buffer slots

10: BufSizeLB← size

11: return S . optimal buffer sizing, all smaller sizes ruled out

100

7.3.2 Buffer Size Verification

The solution to BSS provides a minimal buffer sizing S such that N [S]‖p � φ for all traffic patterns p ∈ P,

but this sizing may not ensure correctness for all p generated by T . Buffer size verification (BSV) addresses

this by checking whether T can generate a pattern p that disproves N [S]‖T � φ

BSV (N [S],T) is the problem of determining whether N [S]‖T 2 φ . As noted earlier, this can be solved as

a BMC problem. A solution (satisfying assignment) to this problem is a traffic pattern p generated by T that

causes ¬φ . If BSV has no solution (returns ⊥) then traffic model T cannot generate a pattern for sized NoC

N [S] that will cause φ to fail. If BSV has a solution, it produces a traffic pattern as proof that the sized NoC

is insufficient for meeting the performance property; in this case, a new sizing will need to be synthesized.

7.3.3 Optimal Buffer Sizing

A procedure denoted CEBUS uses a combination of BSS and BSV to find the minimum cumulative buffer

size for NoC model N and traffic model T . Let S0 be the initial sizing with all buffers minimum sized,

except for network interface buffers which have size of 2 to enable storing both flits of a packet. CEBUS

begins by calling BSV (N [S0],T) to generate from T a traffic pattern p0 such that N [S0]‖T 2 φ . Create

a set of patterns P with p0 as its only member. Then CEBUS calls BSS (N ,P,|S0|) in order to obtain the

minimum buffer sizing S1 such that N [S1]‖P � φ holds. Then call BSV again to find a traffic pattern p1 to

disprove the sizing S1. If one is found, add p1 to P and repeat BSS to find S2. When performing synthesis

for the second time, the buffer sizes from the prior synthesis round (S1) are discarded, and only the total size

(|S1|) is retained as a lower size bound in the current synthesis round. This lower bound is retained across

iterations because any size that did not permit a solution in a previous iteration can not permit a solution in

the current iteration, on account of the set of patterns P in the current iteration being a superset of those in

the previous iteration. The CEBUS loop continues to alternate between BSS and BSV until terminating due

to one of the following reasons: 1. BSS (N ,P,|Si−1|) returns ⊥, which means no buffer size exists for the

current set of traffic patterns P; or 2. BSV (N [S],T) returns ⊥, meaning that no traffic pattern exists that

causes N [S]‖T 2 φ . Algorithm 4 gives the pseudo code for this procedure.

7.4 Experimental Buffer Sizing Results

Two case studies are performed to evaluate the CEBUS approach. The first is a small example of credit-based

flow control. The larger second example is credited flow control through a chip-multiprocessor (CMP) router.

Each example verifies the performance properties described in Section 7.2.3. Network and traffic models are

created in UCLID [1] using the ATLAS [13] system to manage and flatten hierarchy. The UCLID verifier

performs bounded-model checking within the CEBUS loop, using its internal SMT solver with the MiniSat

SAT solver [43] as a back end. Experiments are run on a Linux workstation with 64-bit 3.0 GHz Xeon

101

Algorithm 4 Procedure CEBUS (N ,T): Compute the optimal buffer sizing for NoC model N and traffic

model T .
1: i← 0

2: S0← initial buffer sizes

3: P← /0 . set of patterns begins empty

4: while true do

5: pi← BSV(N [Si],T) . check for traffic pattern that disproves candidate sizing Si

6: if pi 6=⊥ then

7: P← P∪ pi . new pattern to consider in subsequent rounds of synthesis

8: i← i+1

9: Si← BSS(N ,P, |Si−1|) . find optimal sizing for current set of patterns

10: if Si =⊥ then

11: return “failure, no buffer sizing exists” . @Si such that φ for all P

12: else

13: return “success, optimal sizing Si found” . @pi generated by T such that N [Si]∧¬φ

processors and 2 GB of RAM.

Figure 7.2: Modeling Element for Non-pipelined Delay. This modeling element is used to implement a delay on the

token return path in buffer sizing experiments.

7.4.1 Credit Logic

A first experimental evaluation of CEBUS is performed on credit logic. Credit logic is a common NoC design

pattern used to control channel usage within a router, as was introduced in Chapter 6. The credit logic used

in buffer sizing experiments is shown in Fig. 7.3. A master router uses credited flow control to send flits to a

target router. The master can only send flits when one or more tokens are stored in the available tokens queue

denoted by b2, and one or more slots are free in the ingress queue denoted by b3. A non-pipelined delay of

7 cycles (implemented as in Fig. 7.2) is added to the channel on which tokens are returned from target to

master.

The setup for the credit logic experiment is as follows. The traffic model T implements token bucket reg-

ulation as in Fig. 4.8(a), with parameters (σ ,ρ) = (2,9), and the latency bound checked in property φ is 8

cycles. In the initial state of BMC, the network interface and ingress queues are empty, and the available to-

102

T

ingress
(b3)

outstanding
credits
(b1)

available
tokens
(b2)

Master
Agent

Target
Agent

7

network
interface
(b0)

N

Figure 7.3: Credit Logic Model for Buffer Sizing Experiment. This example models credit-logic commonly used in

NoCs. The formal network model N includes a master and target agent, with the the four buffers being sized labelled. A 7 cycle delay

element, depicted here by a circle but implemented as in Fig. 7.2, is added to the token return path. Traffic model T injects data into the

network. The channel from T to N is specified as a non-blocking channel.

kens and outstanding credits queues are filled with tokens. The traffic model allows a burst of up to 2 packets

(4 flits) to be sent. Because it takes 7 cycles for a token to be returned and the latency bound is 8 cycles,

the latency property φlatency will be violated if each flit must wait for the returned token from the previous

flit. The non-blocking property φnon−block disallows any solutions that would achieve low latency by blocking

injections from T when tokens are not available. Upsizing the buffers ensures that flits do not need to wait

too long for tokens, and furthermore ensures that flits will never be blocked at the input.

Table 7.1 and Table 7.2 present the SAT problem sizes and UCLID runtimes for each iteration of the CEBUS

loop on the credit loop model; Table 7.1 uses the circular buffer implementation of queues (Sec. 4.2.1) and

Table 7.2 uses the record-based implementation (Sec. 4.2.2). The overall trends are the same across the two

queue implementation styles. The size of the SAT problem for solving BSS increases with CEBUS iterations

as the set P of traffic patterns grows, while the size of the SAT problem for solving BSV is the same for all

iterations. The runtime for BSV increases at later iterations of the CEBUS loop, because there are fewer

traffic patterns that can violate the buffer sizes, as the sizes are already checked in synthesis against numerous

challenging patterns. It is likely insignificant that CEBUS required one extra iteration to converge in the

record-based queue implementation. While it is not possible to find the same sizing on different iterations

of the CEBUS loop, it is possible to find different sizings with the same total number of buffer slots. This

occurs in iterations 2 and 3 in Tab. 7.1.

103

i
Buffer-Size Synthesis (BSS) Buffer-Size Verification (BSV)

|Si| CNF Size Runtime (sec) CNF Size Runtime (sec)
Vars Clauses SAT Enc SSim Total Vars Clauses SAT Enc SSim Total

0 - - - - - - - 73k 220k 0.6 17.4 0.8 18.8
1 5 43k 130k 0.7 9.7 1.7 12.0 73k 220k 3.4 17.3 0.8 21.5
2 11 74k 223k 0.9 19.1 1.8 21.9 73k 220k 2.2 17.2 0.8 20.2
3 11 98k 294k 1.3 24.2 4.7 30.3 73k 220k 1.9 17.3 0.8 19.9
4 12 133k 399k 1.9 34.1 7.0 42.9 73k 220k 3.7 17.4 0.8 21.9
5 13 179k 538k 3.7 44.6 10.2 58.5 73k 220k 3.5 17.4 0.8 21.6
6 14 210k 630k 4.4 54.0 13.9 72.3 73k 220k 8.3 17.3 0.8 26.4

Table 7.1: Credit Loop Buffer Sizing Results using Circular Buffer Queue Style. On each iteration i of the

CEBUS loop, BSS uses a sequence of calls to BSS-SIZE in order to find the minimal sizing S that is correct for all patterns in set P,

and BSV finds a counterexample traffic pattern that demonstrates N [S]‖T 2 φ . The column headings are as follows: i is the iteration

number for the CEBUS loop; |Si| is the minimum cumulative buffer size found by BSS in iteration i; Vars and Clauses represent the

number of variables and CNF clauses in the corresponding SAT problem(s); SAT is the time spent in satisfiability solving; Enc is the

time taken encoding the word-level input to CNF; SSim is the time taken by symbolic simulation; Total is the overall time spent in the

respective iteration. Note that the problem sizes and runtimes for BSS are the average problem sizes over all the sizes tried in the binary

search for finding the minimal size.

7.4.2 Chip Multiprocessor Router

This second buffer sizing case study is a model of a chip-multiprocessor (CMP) router based on a design

by Peh [81]. This CMP design is designed to be part of an on-chip communication fabric for connecting

processors, memories, and other IP blocks to one another. Credited flow control is used for communication

between each router and its neighbors. This experiment considers interactions between the three routers R1,

R9 and R17, as shown in Fig. 7.4. The parts of the three routers that are modeled are described here and shown

in Fig. 7.4(b). For each router, the 5-input, 5-output router core is modeled as described in detail in Sec. 4.3,

but the unused ports are removed from the router core. The credit logic connecting the north output of R1 to

the south input of R9 is modeled, as is the credit logic connecting the south output of R17 to the north input

of R9. The token return path in each credit loop has a 5-cycle non-pipelined delay added.

Experiments are performed using BMC with a depth of 22. As in the credit logic example, all flit queues are

empty in the initial state of BMC, and token queues are filled. Property φ checks that the two channels from

the traffic model are non-blocking, and checks a latency bound of 8 cycles.

Traffic model T injects flits into the network interface buffers of R1 and R17. The traffic model imposes that

head flits injected into the network interface of R1 obeys token bucket regulation with (σ ,ρ) = (1,7), and

that head flits injected into network interface of R17 obey (σ ,ρ) = (1,9) regulation. An additional constraint

enforces that no more than 3 packets (6 flits) are injected during any execution. Since the two sources can

cause contention by routing packets to the same destination, the choice of destination addresses in the traffic

model now matters. The destination addresses of head flits are generated from uninterpreted functions.

104

i
Buffer-Size Synthesis (BSS) Buffer-Size Verification (BSV)

|Si| CNF Size Runtime (sec) CNF Size Runtime (sec)
Vars Clauses SAT Enc SSim Total Vars Clauses SAT Enc SSim Total

0 - - - - - - - 69k 206k 0.6 11.4 7.5 19.5
1 5 37k 113k 0.2 5.9 2.2 8.3 69k 206k 0.4 11.5 7.5 19.4
2 6 54k 161k 0.4 8.0 6.3 14.7 69k 206k 1.4 11.3 7.5 20.2
3 7 88k 265k 1.3 13.0 13.6 27.9 69k 206k 3.0 11.5 7.5 22.1
4 11 109k 328k 1.6 16.9 25.1 43.7 69k 206k 0.7 11.4 7.5 19.7
5 13 134k 404k 2.7 22.4 41.1 66.2 69k 206k 2.9 11.4 7.5 21.9
6 13 180k 540k 3.3 27.9 63.7 94.9 69k 206k 4.1 11.5 7.5 23.1
7 14 212k 636k 4.1 33.2 90.0 127.3 69k 206k 9.0 11.5 7.5 28.0

Table 7.2: Credit Loop Buffer Sizing Results using Record-based Queue Style. See caption of Table 7.1 for

explanation of column headings.

Discussion of BSV and BSS Runtimes

Table 7.3 and Table 7.4 show the problem sizes and runtimes for the CMP router buffer sizing experiments;

Table 7.3 uses the circular-buffer queue implementation style, and Table 7.4 uses the record-based implemen-

tation style. Interesting contrasts are drawn between the BSS and BSV problems based on these results:

• The size of the BSS problem grows linearly with the number of patterns that are used in synthesis; this

is observed in the roughly linear increase in the number of CNF clauses and variables, and the decision

procedure encoding and symbolic simulation time. This is expected, as each new pattern requires an

additional unrolling of the model transition relation for 22 cycles (the BMC depth) from the initial state.

However, the large SAT problems that arise from BSS at later CEBUS iterations are not especially hard

for the solver, and the SAT solving runtime is a minor contributor to the overall runtime.

• The size of the BSV problem is unchanged at each iteration of the CEBUS loop as the BSV problem

is always just to disprove a single candidate buffer size. However, finding a counterexample is increas-

ingly difficult as CEBUS progress. Very carefully crafted patterns are necessary to disprove a sizing at

later iterations. This is seen in Tab. 7.5, where the final1 BSV counterexample traffic pattern p10 has

all traffic being sent to the same destination, and all traffic injected in a single burst. By contrast, the

first pattern in Tab. 7.5 appears quite unexceptional, and was discovered quickly by the sat solver.

The CMP buffer sizing experiment also provides a good point of comparison for circular-buffer (Table 7.3)

and record-based (Table 7.4) implementations of symbolically sized queues. The problem sizes using each

implementation are similar in terms of the number of SAT variables and CNF clauses. However, the symbolic

simulation runtimes are 1 to 2 orders of magnitude slower when using the record implementation, while the

decision procedure encoding is marginally faster. Overall, the circular buffer implementation appears to be

more scalable in this experiment.

1Note that BSV in the 11th and final CEBUS iteration does not produce a counterexample because the candidate sizing (S11) is

105

R17!

R1!

R9!

R2!R0!

R16! R18!

R25!

(a) High-Level View

ingress
(b7)	

outstanding
credits 	

(b5)	

available

tokens 	

(b6)	

R9

N

E

NI

W

S

ingress
(b3)	

outstanding
credits 	

(b1)	

available

tokens 	

(b2)	

N

E

NI

W

S

network	

interface
(b0)	

N

E

NI

W

S

network	

interface
(b4)	

R17

R1

5

5

T N

(b) Detailed View of network model N being fed by traffic model T

Figure 7.4: CMP Network Model for Buffer Sizing Experiment. Fig. 7.4(a) shows high level view of network

model, which is basically a subset of larger mesh (e.g. as shown in Fig. 5.1). Traffic is injected on the network interface ports of R17 and

R1 as indicated by the bold arrows. Only routers R1,R9, and R17 are modeled in detail in N . Fig. 7.4(b) shows detailed view of the three

routers modeled in N , and shows the eight buffers that are being sized in experiments. Traffic model T injects traffic into N , and the

two channels from T to N are specified as non-blocking.

Discussion of BSS and BSV Counterexamples

In the CEBUS experiments using circular-buffer implementations of queues (Tab. 7.3) applied to the CMP

router, each call to BSS or BSV returns a counterexample until a termination condition is reached. The

counterexamples in BSV are traffic patterns that cause a property to fail, and the counterexamples in BSS

are buffer sizes that prevent properties from failing.

Each failed verification attempt in BSV returns as a counterexample a traffic pattern for which a candidate

buffer size is inadequate. For the ith iteration of the CEBUS loop, this counterexample pattern is denoted pi.

The counterexamples for the first 10 candidate sizes are shown in Table 7.5; the 11th candidate size (S11) is

successfully verified, as no pattern can be generated by traffic model T to disprove it. As more iterations

of the CEBUS loop are completed, the traffic patterns become increasingly adversarial. The final counterex-

ample traffic pattern, p10 in the 10th iteration, overwhelms the network by sending the global maximum of

3 packets in a single burst and all having the same destination. The packets are sent starting in the 7th cycle

and not at the start of the pattern, because the traffic model for the source of R1 has a token bucket that is

verified as correct, meaning that no pattern can be found to disprove it.

106

i
Buffer-Size Synthesis (BSS) Buffer-Size Verification (BSV)

|Si| CNF Size Runtime (sec) CNF Size Runtime (sec)
Vars Clauses SAT Enc SSim Total Vars Clauses SAT Enc SSim Total

0 - - - - - - - 180k 540k 2.4 41.7 1.8 46.0
1 10 78k 235k 1.3 18.7 3.0 23.1 180k 540k 6.7 41.6 1.8 50.2
2 12 118k 354k 1.6 29.5 7.2 38.4 180k 540k 1.4 41.6 1.8 44.9
3 14 209k 626k 3.3 56.1 11.3 70.7 180k 540k 5.0 41.4 1.8 48.3
4 15 253k 760k 3.5 76.6 13.1 93.3 180k 540k 5.9 41.3 1.8 49.0
5 15 288k 865k 5.2 83.8 23.1 112.2 180k 540k 8.6 41.6 1.8 52.1
6 16 372k 1116k 7.8 108.6 30.8 147.3 180k 540k 9.1 41.6 1.8 52.6
7 18 434k 1303k 9.5 133.3 41.8 184.7 180k 540k 73.8 41.7 1.8 117.3
8 19 486k 1459k 14.4 152.3 50.8 217.6 180k 540k 43.8 41.8 1.8 87.4
9 20 525k 1577k 16.3 172.5 61.6 250.6 180k 540k 40.4 41.5 1.8 83.8

10 21 578k 1735k 13.5 209.5 65.7 288.8 180k 540k 16.9 41.6 1.8 60.3
11 21 646k 1937k 20.1 203.6 88.6 312.4 180k 540k 113.4 41.6 1.8 156.8

Table 7.3: CMP Buffer Sizing Results using Circular Buffer Queue Style. See caption of Table 7.1 for

explanation of column headings.

replenished by a periodic token source in the 8th cycle (See Chapter 4.5.2). By starting the burst in the 7th

cycle, the token bucket is reloaded while the tail flit of the first packet is injected, allowing the head flit of a

second packet to follow immediately.

The minimal buffer sizing (Si) at each iteration i of the CEBUS loop is given in Tab. 7.6. A significant fact to

note is that individual buffer sizes do not monotonically increase over the iterations. This is allowed because

buffer size assignments are not retained from one iteration to the next. Instead, only the total buffer sizing

(|Si|) is retained, and is used as a lower bound for BSS in future iterations.

7.5 Related Work

The problem of buffer minimization has been widely studied in the digital signal processing (DSP) commu-

nity. Synchronous dataflow (SDF) models [64] in particular are used to reason about the minimum buffer size

required for a feasible schedule to exist in order for the model to be deadlock-free and to conform to timing

constraints [98]. In general, this buffer minimization problem is NP-complete [5].

Various techniques have been applied to address the NP-completeness. Poplavko et al. [85] use an SDF

model of an NoC to perform timing analysis and for rate-optimal buffer sizing. Geilen et al. [46] use model

checking to determine whether there exists a buffer sizing smaller than some bound that admits a deadlock-

free schedule; the minimal sizing is found using iterated calls to the model checker. Stuijk et al. [98] present a

dynamic programming algorithm that generates a set of candidate buffer sizings that is guaranteed to contain

all Pareto-optimal points in the buffer-size versus throughput space; the Pareto-optimal points among the set

are then found by self-timed simulation. Wiggers et al. [106] approximate minimal buffer sizing for a given

107

i
Buffer-Size Synthesis (BSS) Buffer-Size Verification (BSV)

|Si| CNF Size Runtime (sec) CNF Size Runtime (sec)
Vars Clauses SAT Enc SSim Total Vars Clauses SAT Enc SSim Total

0 - - - - - - - 173k 520k 2.4 29.1 65.2 96.9
1 10 54k 164k 1.1 8.4 10.8 20.4 173k 520k 2.0 29.3 65.2 96.6
2 12 79k 237k 2.2 12.8 43.6 58.7 173k 520k 2.4 29.1 65.3 96.9
3 14 149k 449k 5.3 24.4 90.5 120.3 173k 520k 7.1 29.3 65.4 101.9
4 15 183k 549k 6.5 28.7 159.4 194.7 173k 520k 7.4 28.9 65.0 101.3
5 15 235k 706k 9.8 39.4 264.5 313.7 173k 520k 22.7 29.6 65.3 117.7
6 16 278k 834k 10.2 49.0 398.2 457.4 173k 520k 78.4 29.5 65.3 173.2
7 17 334k 1002k 15.1 60.3 541.9 617.4 173k 520k 52.8 29.3 65.4 147.6
8 19 371k 1114k 17.7 65.3 805.3 888.4 173k 520k 135.1 29.1 65.2 229.5
9 19 427k 1282k 20.4 75.1 1067.1 1162.8 173k 520k 161.3 29.4 65.4 256.2

10 21 468k 1424k 23.1 84.5 1301.9 1409.5 173k 520k 230.7 29.8 65.2 325.8
11 21 503k 1593k 27.8 89.3 1567.4 1684.6 173k 520k 393.4 29.6 65.2 488.2

Table 7.4: CMP Buffer Sizing Results using Record-based Queue Style. See caption of Table 7.1 for explanation

of column headings.

throughput using a network-flow formulation, but the closeness of approximation is not bounded.

SDF can model only a limited class of NoCs. Assumptions of periodic sources and data-independent rout-

ing make SDFs well-suited to modeling multimedia NoCs, but not for general-purpose chip multiprocessor

(CMP) NoCs. In a CMP, the injected traffic at each node can vary in burst size, have irregular periods, and

choose destinations non-uniformly over time. Additionally, due to the lack of support for conditionals, SDFs

are not expressive enough to model NoC designs with detailed routing and arbitrary logic.

Thus, analysis of general-purpose CMPs is typically based on simulation or probabilistic reasoning. Using

a trace-driven approach, Kahng et al. [55] show that sizing buffers without considering burstiness can cause

significant error in maximum latency prediction. Using network analysis, injected traffic with bounded bursti-

ness leads to bounds on required buffer sizes [31][32]. Stochastic automata networks (SAN) [83] have also

been used to model network traffic in SoCs [68]. While SANs allow for efficient reasoning about average

case results, they are not suitable for worst-case analysis. Addressing limitations in the probabilistic analysis

of stochastic models, adversarial queuing theory has been proposed [11]. If traffic injection is modeled as

a Poisson distribution, queuing theory provides a closed form solution to find the buffers most likely to be

full [53]. For the same total buffer budget, increasing the size of these oft-used buffers has a better impact on

latency than uniformly upsizing [53].

The approach of this chapter attempts to find some middle ground between limitations of SDF and the lack of

guarantees from simulation-based approach. In particular, the following features differentiate this chapter’s

approach from the rest:

• Reasoning about NoC models occurs at the micro-architectural level. This means that instead of char-

acterizing the network with routing probability at each node, the routing logic of each router is modeled

108

traffic node Cycle
pattern 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

p0
1 H1 T H1 T
17 H9 T

p1
1 H8 T
17 H0 T H0

p2
1 H1 T H0 T
17

p3
1 H9 T
17 H9 T H9 T

p4
1
17 H9 T H9 T

p5
1 H16 T H16
17 H0 T

p6
1 H9 T H9 T
17 H0 T

p7
1 H9 T H9 T
17 H9 T

p8
1 H9 T
17 H17 T H9 T

p9
1 H1 T H9 T
17 H9 T

p10
1 H9 T H9 T
17 H9 T

Table 7.5: Counterexample Traffic Patterns from BSV in CEBUS on CMP Design. On each iteration i, BSV

disproves a candidate size by generating from the traffic model T a pattern pi that causes a property to fail. Some of the traffic patterns

are shorter than the 22 cycle BMC depth; in these patterns a property fails before the 22nd cycle of BMC. The subscript of each head flit

is its destination address. These patterns are produced in experiments using the circular buffer queue implementation, corresponding to

the results shown in Tab. 7.3

exactly, with sufficient details of its control flow. This level of abstraction is similar to the Boolean Data

Flow (BDF) model, while buffer minimization is more commonly investigated for the less expressive

SDF model.

• An SMT-based approach for determining the minimum buffer capacity for a NoC that satisfies the

performance properties.

The counterexample-guided approach has been used before, for computing abstract models [28] and for pro-

gram synthesis [95]. The work described in this chapter is the first to adapt this methodology for synthesizing

buffer sizes in NoC designs.

109

i Buffer size assignment S |S|
S(b0) S(b1) S(b2) S(b3) S(b4) S(b5) S(b6) S(b7)

0 2 1 1 1 2 1 1 1 10
1 1 1 1 1 2 2 3 1 12
2 2 1 2 1 2 2 3 1 14
3 2 1 2 1 3 2 3 1 15
4 2 1 2 1 2 2 3 2 15
5 2 1 2 1 2 2 4 2 16
6 3 1 2 1 2 2 4 2 17
7 2 2 3 2 3 2 4 1 19
8 3 2 3 1 2 2 4 2 19
9 2 3 4 2 3 2 4 1 21

10 2 3 4 2 2 2 4 2 21

Table 7.6: Buffer Sizes Produced by BSS in CEBUS for CMP Design. On each iteration i, BSS produces a

size that causes property to be satisfied. Each buffer bi corresponds to the ones shown in Fig. 7.4(b). These results are from the CMP

experiment using the circular buffer queue implementation, corresponding to the results shown in Tab. 7.3.

7.6 Conclusion

This chapter presents a novel approach for minimizing the cumulative buffer size in on-chip networks, so

as to meet throughput and latency requirements, given high-level specifications on traffic behavior. The

approach uses model checking based on satisfiability modulo theories (SMT) solvers, within an overall

counterexample-guided synthesis loop. Experimental results on models of NoC components show the promise

of the proposed technique. While this chapter has focused on using quantifier instantiation to resolve quanti-

fier alternation, an alternative approach to consider would be using the same modeling technique with a QBF

solver to address the alternating quantifiers in a single monolithic solver call.

The ability to a give a formal guarantee of QoS for a buffer is a unique contribution compared to prior works,

yet the approach may not scale up to problems that contain more than a few tens of queues, or problems with

large latency bounds that can only be checked with a deep BMC. In such a problem, not only does the size of

the problem grow, but the number of iterations of the CEBUS loop is also likely to grow.

110

Chapter 8

Conclusions and Future Work

This dissertation presents work toward formal verification and synthesis of on-chip networks for satisfying

performance properties. An overarching theme that ties the chapters together is verifying latency bound

properties with model checking. The two applications presented for model checking latency properties are

latency verification, and synthesis of optimal buffer sizes while ensuring that latency bounds are satisfied.

The main challenges that are addressed throughout this dissertation are the creation of appropriate models,

and techniques for scalable model checking. Both challenges arise from the scale of the problems of interest,

where a model may contain many thousands of state variables, and the latency properties being checked

can be hundreds or even thousands of cycles. Techniques are given for using simple sequential models that

are expressive enough for model checking of latency properties, while significantly less complex than the

arbitrary RTL that typically describes NoCs. Domain-specific techniques for scalable model checking are

also given, based on both SAT solving and SMT solving.

Chapter 4 presents the modeling approach, based on the xMAS formalism developed by Chatterjee et al. [22].

Network models in xMAS resemble a simplified RTL with unnecessary details hidden, and are created as

compositions of a set of simple xMAS primitives. The xMAS models in this dissertation are modified to be

amenable to latency verification. Furthermore, it is shown that xMAS can be used to describe traffic models

in addition to network models. The models in this dissertation are created by hand, and a useful direction for

future work is to explore automatic generation of xMAS models from arbitrary RTL. If this is not possible,

then it may be useful to formally check latency equivalence of the original RTL and its hand-crafted xMAS

representation.

Chapter 5 presents the first of two approaches for compositional latency verification. This approach reduces

both the number of variables, and the number of unrollings of the model transition relation, by decomposing

the model and the latency property along router boundaries. To allow the overall network model to be de-

composed into individual routers, inferred traffic models serve as interface specifications between the routers.

A promising direction for future work is using the inferred traffic models for diagnosing the root causes of

111

large latencies on new benchmarks. Whenever the latency induced by a new benchmark exceeds the latency

proved using models inferred from previous benchmarks, then the new benchmark must cause one or more

of the traffic models to be violated, and the model that is violated indicates the root cause of the high latency.

Chapter 6 presents the second of two approaches for compositional latency verification. This approach keeps

the model and property whole, but strengthens the property using latency lemmas. The latency lemmas allow

the property to be proved inductively, reducing the number of unrollings required, and achieving scalability.

This approach produces very promising results, and is able to verify a 79 cycle bound on an 8-agent ring

interconnection network with more than two orders of magnitude speedup over alternative approaches. As

the generation of latency lemmas is not automated for all possible xMAS networks, future work building

upon this chapter could consider further automating the generation of latency lemmas.

Chapter 7 presents an approach for optimal sizing of buffers while ensuring that performance properties are

met. A counterexample-guided approach is used to iteratively generate and then verify or disprove candidate

buffer sizes.

The challenging model checking problems generated in this dissertation are being used as solver bench-

mark problems. The SMT problems from Chapter 5 were submitted in SMT-LIB format for inclusion in

SMT-COMP 1. The aiger files from Chapter 6 were submitted for inclusion in the hardware model checking

competition 2. The UCLID problems from Chapter 7 are being used internally within Sanjit Seshia’s research

group at UC Berkeley.

1http://www.smtcomp.org
2fmv.jku.at/hwmcc/

112

Bibliography

[1] UCLID Verification System. Available at http://uclid.eecs.berkeley.edu.

[2] N Adiga, M Blumrich, D Chen, P Coteus, A Gara, ME Giampapa, P Heidelberger, S Singh,

BD Steinmacher-Burow, T Takken, M Tsao, and P Vranas. Blue Gene/L torus interconnection net-

work. IBM Journal of Research and Development, 49, March 2005.

[3] V S Adve and Mary Vernon. Performance analysis of mesh interconnection networks with determin-

istic routing. Parallel and Distributed Systems, January 1994.

[4] C Barrett, R Sebastiani, Sanjit A Seshia, and Cesare Tinelli. Satisfiability modulo theories. Handbook

of Satisfiability, 2009.

[5] SS Bhattacharyya, PK Murthy, and Edward A Lee. Software synthesis from dataflow graphs. 1996.

[6] A Biere and C Artho. Liveness Checking as Safety Checking. Electronic Notes in Theoretical Com-

puter Science, 2002.

[7] A Biere, A Cimatti, and E Clarke. Symbolic model checking without BDDs. Tools and Algorithms for

the Construction and Analysis of Systems, 1999.

[8] Per Bjesse and Koen Claessen. SAT-based verification without state space traversal. Formal Methods

in Computer-Aided Design, 2000.

[9] Paul Bogdan and Radu Marculescu. Statistical physics approaches for network-on-chip traffic charac-

terization. In Proceedings, pages 461–470. New York, NY, USA, 2009.

[10] E Bolotin, I Cidon, and R Ginosar. QNoC: QoS architecture and design process for network on chip.

Journal of Systems Architecture, 2004.

[11] Allan Borodin, Jon Kleinberg, Prabhakar Raghavan, Madhu Sudan, and David P Williamson. Adver-

sarial queuing theory. J. ACM, 48(1):13–38, 2001.

[12] Aaron R Bradley. SAT-Based Model Checking Without Unrolling. Verification, Model Checking, and

Abstract Interpretation, 2011.

http://uclid.eecs.berkeley.edu

113

[13] Bryan A Brady, R Bryant, Sanjit A Seshia, and John W O’Leary. ATLAS: Automatic Term-level

abstraction of RTL designs. ACM/IEEE International Conference on Formal Methods and Models for

Codesign, 2010.

[14] Bryan A Brady, Daniel E Holcomb, and Sanjit A Seshia. Counterexample-Guided SMT-Driven Opti-

mal Buffer Sizing. Design Automation and Test in Europe, 2011.

[15] Robert Brayton and Alan Mishchenko. ABC: An Academic Industrial-Strength Verification Tool.

Computer Aided Verification, 2010.

[16] R Brummayer and A Biere. Boolector: An efficient SMT solver for bit-vectors and arrays. Tools and

Algorithms for the Construction and Analysis of Systems, 2009.

[17] Randal E Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactions

on Computers, (8):677–691, 1986.

[18] Randal E Bryant, Shuvendu K Lahiri, and Sanjit A Seshia. Modeling and verifying systems using

a logic of counter arithmetic with lambda expressions and uninterpreted functions. Computer Aided

Verification, pages 78–92, July 2002.

[19] J R Burch, E M Clarke, K L McMillan, D L Dill, and L J Hwang. Symbolic model checking: 1020

states and beyond. In Proceedings of Fifth Annual IEEE Symposium on Logic in Computer Science,

1990 (LICS ’90), pages 428–439, 1990.

[20] Luca P Carloni, Kenneth L McMillan, and Alberto L Sangiovanni-Vincentelli. Theory of latency-

insensitive design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

20(9):1059–1076, September 2001.

[21] Satrajit Chatterjee and M Kishinevsky. Automatic Generation of Inductive Invariants from High-Level

Microarchitectural Models of Communication Fabrics. In Computer Aided Verification, 2010.

[22] Satrajit Chatterjee, M Kishinevsky, and Umit Y Ogras. Quick Formal Modeling of Communication

Fabrics to Enable Verification. In High Level Design Validation and Test Workshop (HLDVT). HLDVT,

2010.

[23] Satrajit Chatterjee and Michael Kishinevsky. Automatic generation of inductive invariants from

high-level microarchitectural models of communication fabrics. Formal Methods in System Design,

40(2):147–169, 2012.

[24] Satrajit Chatterjee, Michael Kishinevsky, and Umit Y Ogras. xMAS: Quick Formal Modeling of

Communication Fabrics to Enable Verification. IEEE Design & Test of Computers, 29(3):80–88, 2012.

[25] T Chen, R Raghavan, J N Dale, and E Iwata. Cell Broadband Engine Architecture and its first

implementation–A performance view. IBM Journal of Research and Development, 51(5):559–572,

2007.

114

[26] M Christodorescu, S Jha, S A Seshia, Dawn Song, and Randal E Bryant. Semantics-Aware Malware

Detection. IEEE Symposium on Security and Privacy, 2005.

[27] Edmund Clarke, Daniel Kroening, Joël Ouaknine, and Ofer Strichman. Completeness and Complexity

of Bounded Model Checking. In Verification, Model Checking, and Abstract Interpretation, pages

85–96, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[28] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Counterexample-

guided abstraction refinement. In 12th International Conference on Computer Aided Verification (CAV.

[29] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press, 2000.

[30] Stephen A Cook. The complexity of theorem-proving procedures. In the third annual ACM symposium,

pages 151–158, New York, New York, USA, 1971. ACM Press.

[31] Rene L Cruz. A calculus for network delay, part I. Network elements in isolation. IEEE Transactions

on Information theory, 37(1):114–131, 1991.

[32] Rene L Cruz. A calculus for network delay, part II: Network analysis. IEEE Transactions on Informa-

tion theory, 37(1):132–141, 1991.

[33] Matteo Dall’Osso, Gianluca Biccari, Luca Giovannini, Davide Bertozzi, and Luca Benini. Xpipes: a

latency insensitive parameterized network-on-chip architecture for multiprocessor SoCs. In Proceed-

ings of the 21st International Conference on Computer Design (ICCD’03), pages 536–539, 2003.

[34] W J Dally. Virtual-channel flow control. Parallel and Distributed Systems, IEEE Transactions on,

3(2):194–205, 1992.

[35] W J Dally and C L Seitz. The Torus Routing Chip. CALIFORNIA INST OF TECH PASADENA DEPT

OF COMPUTER SCIENCE, 1986.

[36] W J Dally and C L Seitz. Deadlock-Free Message Routing in Multiprocessor Interconnection Net-

works. Computers, IEEE Transactions on, (5):547–553, 1987.

[37] William J Dally and Brian Towles. Route packets, not wires: on-chip interconnection networks. Design

Automation Conference, 2001.

[38] William J Dally and Brian Towles. Principles and Practices of Interconnection Networks. Morgan

Kaufmann Publishers Inc., 2003.

[39] M Davis, G Logemann, and D Loveland. A machine program for theorem-proving. Communications

of the ACM, 1962.

[40] Martin Davis and Hilary Putnam. A Computing Procedure for Quantification Theory. J. ACM,

7(3):201–215, July 1960.

115

[41] J Dielissen, Andrei Radulescu, Kees Goossens, and E Rijpkema. Concepts and implementation of the

Philips network-on-chip. In Proceedings, pages 1–6. Citeseer, 2003.

[42] Niklas Een and Alan Mishchenko. Efficient implementation of property directed reachability. In

Proceedings of IWLS, 2011.

[43] Niklas Een and Niklas Sörensson. An extensible SAT-solver. Theory and Applications of Satisfiability

Testing, 2004.

[44] C Fallin, X Yu, G Nazario, and O Mutlu. A high-performance hierarchical ring on-chip interconnect

with low-cost routers. SAFARI Technical Report No. 2011-007, Computer Architecture Lab, Carnegie

Melon University, 2011.

[45] Vinod Ganapathy, Sanjit A Seshia, Somesh Jha, Thomas W Reps, and Randal E Bryant. Automatic

discovery of API-level exploits. In the 27th international conference, page 312, New York, New York,

USA, 2005. ACM Press.

[46] Marc Geilen, Twan Basten, and Sander Stuijk. Minimising buffer requirements of synchronous

dataflow graphs with model checking. In Proceedings of the 42nd annual Design Automation Confer-

ence, pages 819–824. New York, NY, USA, 2005.

[47] Kees Goossens, J Dielissen, and Andrei Radulescu. Æthereal network on chip: concepts, architectures,

and implementations. Design Test of Computers, IEEE, 22(5):414–421, September 2005.

[48] Alexander Gotmanov, Satrajit Chatterjee, and Michael Kishinevsky. Verifying Deadlock-Freedom of

Communication Fabrics. Verification, Model Checking, and Abstract Interpretation, 2011.

[49] Pierre Guerrier and Alain Grenier. A generic architecture for on-chip packet-switched interconnec-

tions. Proceedings of the conference on Design Automation and Test in Europe, 2000.

[50] Daniel E Holcomb, Bryan A Brady, and Sanjit A Seshia. Abstraction-Based Performance Analysis of

NoCs. Design Automation Conference, June 2011.

[51] Daniel E Holcomb, Alexander Gotmanov, Michael Kishinevsky, and Sanjit A Seshia. Compositional

Performance Verification of NoC Designs. In Proceedings of the 10th ACM/IEEE International Con-

ference on Formal Methods and Models for Codesign (MEMOCODE), July 2012.

[52] Y Hoskote, S Vangal, A Singh, N Borkar, and S Borkar. A 5-GHz Mesh Interconnect for a Teraflops

Processor. Micro, IEEE, 27(5):51–61, 2007.

[53] Jingcao Hu and Radu Marculescu. Application-specific buffer space allocation for networks-on-chip

router design. In International Conference on Computer Aided Design, pages 354–361. Washington,

DC, USA, 2004.

116

[54] Susmit Jha, Bryan A Brady, and Sanjit A Seshia. Symbolic Reachability Analysis of Lazy Linear

Hybrid Automata. In Formal Modeling and Analysis of Timed Systems, pages 241–256. Berlin, Hei-

delberg, 2007.

[55] Andrew B Kahng, Bill Lin, K Samadi, and Rohit Sunkam Ramanujam. Trace-driven optimization of

networks-on-chip configurations. Design Automation Conference, 2010.

[56] Richard M Karp. Reducibility among Combinatorial Problems. In Complexity of Computer Computa-

tions, pages 85–103. 1972.

[57] B A Krishna, J Michelson, V Singhal, and A Jain. Liveness vs Safety–A Practical Viewpoint. 7th

international Haifa Verification conference on Hardware and Software, 2011.

[58] S Kumar, A Jantsch, JP Soininen, M Forsell, M Millberg, J Oberg, K Tiensyrja, and A Hemani. A

network on chip architecture and design methodology. In IEEE Symposium on VLSI, pages 117–124,

2002.

[59] Orna Kupferman, Nir Piterman, and Moshe Y Vardi. From liveness to promptness. Formal Methods

in System Design 2009, January 2009.

[60] K Lahiri, A Raghunathan, and S Dey. Evaluation of the traffic-performance characteristics of system-

on-chip communication architectures. In 14th International Conference on VLSI Design, pages 29–35.

IEEE Comput. Soc, 2001.

[61] Shuvendu K Lahiri and Randal E Bryant. Deductive Verification of Advanced Out-of-Order Micro-

processors. In Computer Aided Verification, pages 341–354. 2003.

[62] Shuvendu K Lahiri and Sanjit A Seshia. The UCLID Decision Procedure. Computer Aided Verifica-

tion, 2004.

[63] Shuvendu K Lahiri, Sanjit A Seshia, and Randal E Bryant. Modeling and Verification of Out-of-Order

Microprocessors in UCLID. Formal Methods in Computer-Aided Design, 2002.

[64] Edward A Lee and David G Messerschmitt. Synchronous data flow. Proceedings of the IEEE,

75(9):1235–1245, 1987.

[65] Hyung Gyu Lee, Naehyuck Chang, Umit Y Ogras, and Radu Marculescu. On-chip communication

architecture exploration: A quantitative evaluation of point-to-point, bus, and network-on-chip ap-

proaches. Transactions on Design Automation of Electronic Systems (TODAES, 12(3), August 2007.

[66] Jian Liang, Sriram Swaminathan, and Russell Tessier. ASOC: a scalable, single-chip communications

architecture. In Proceedings of International Conference on Parallel Architectures and Compilation

Techniques, pages 37–46, 2000.

117

[67] Jiang Long, Sayak Ray, Baruch Sterin, Alan Mishchenko, and Robert K Brayton. Enhancing ABC for

LTL Stabilization Verification of SystemVerilog/VHDL Models. International Workshop on Design

and Implementation of Formal Tools and Systems, January 2011.

[68] Radu Marculescu, Umit Y Ogras, and Nicholas H Zamora. Computation and communication refine-

ment for multiprocessor SoC design: A system-level perspective. In DAC ’04: Proceedings of the 41st

annual Design Automation Conference, page 592. ACM Request Permissions, July 2006.

[69] Joao Marques-Silva and Karem A Sakallah. GRASP: a search algorithm for propositional satisfiability.

IEEE Transactions on Computers, 48(5):506–521, 1999.

[70] Matthew Mattina, George Z Chrysos, and Stephen Felix. Method and apparatus for synchronous

unbuffered flow control of packets on a ring interconnect. US Patent 7,539,141, May 2009.

[71] K L McMillan. Interpolation and SAT-based model checking. Computer Aided Verification, 2003.

[72] M Millberg, E Nilsson, R Thid, and A Jantsch. Guaranteed bandwidth using looped containers in

temporally disjoint networks within the Nostrum network on chip. In Design Automation and Test in

Europe. IEEE Computer Society Washington, DC, USA, 2004.

[73] Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:

Engineering an efficient SAT solver. In Proceedings of the Design Automation Conference, 2001.

[74] L Ni and P McKinley. A survey of wormhole routing techniques in direct networks. COMPUTER,,

January 1993.

[75] R Nieuwenhuis and A Oliveras. Solving SAT and SAT Modulo Theories: From an abstract Davis–

Putnam–Logemann–Loveland procedure to DPLL (T). Journal of the ACM, 2006.

[76] Umit Y Ogras, Paul Bogdan, and Radu Marculescu. An analytical approach for network on chip per-

formance analysis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

2010.

[77] Umit Y. Ogras, Jingcao Hu, and Radu Marculescu. Key research problems in NoC design: a holistic

perspective. In CODES+ISSS ’05: Proceedings of the 3rd IEEE/ACM/IFIP international conference

on Hardware/software codesign and system synthesis, pages 69–74, New York, NY, USA, 2005. ACM.

[78] Umit Y Ogras and Radu Marculescu. Modeling, Analysis and Optimization of Network-on-Chip Com-

munication Architectures. Springer, March 2013.

[79] P Pande, C Grecu, and M Jones. Performance evaluation and design trade-offs for network-on-chip

interconnect architectures. IEEE Transactions on Computers, 2005.

[80] PARSEC Benchmark Suite. Available at http://parsec.cs.princeton.edu/. Technical

report.

118

[81] Li-Shiuan Peh. Flow control and micro-architectural mechanisms for extending the performance of

interconnection networks. portal.acm.org, 2001.

[82] Alessandro Pinto, Luca P Carloni, and Alberto L Sangiovanni-Vincentelli. Constraint-driven commu-

nication synthesis. In Design Automation Conference, page 788, 2002.

[83] Brigitte Plateau and Karim Atif. Stochastic Automata Network of Modeling Parallel Systems. IEEE

Transactions on Software Engineering, 17(10):1093–1108, 1991.

[84] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of Computer

Science (sfcs 1977), pages 46–57. IEEE, 1977.

[85] P Poplavko, Twan Basten, Marco J G Bekooij, J van Meerbergen, and B Mesman. Task-level timing

models for guaranteed performance in multiprocessor networks-on-chip. In Proceedings of the Inter-

national Conference on Compilers, Architectures and Synthesis for Embedded Systems, CASES 2003,

pages 63–72. New York, NY, USA, 2003.

[86] M Prasad, A Biere, and A Gupta. A survey of recent advances in SAT-based formal verification.

International Journal on Software Tools for Technology Transfer, 2005.

[87] Yue Qian, Zhonghai Lu, and Wenhua Dou. Applying network calculus for performance analysis of

self-similar traffic in on-chip networks. In Proceedings of the 7th IEEE/ACM international conference

on Hardware/software codesign and system synthesis, CODES+ISSS ’09, pages 453–460. New York,

NY, USA, 2009.

[88] G Ravindran and M Stumm. A performance comparison of hierarchical ring- and mesh-connected

multiprocessor networks. Third Annual Symposium on High-Performance Computer Architecture,

pages 58–69, 1997.

[89] S Ray and R K Brayton. Scalable progress verification in credit-based flow-control systems. In Design,

Automation & Test in Europe Conference & Exhibition (DATE), 2012, pages 905–910, 2012.

[90] Sayak Ray and Robert K Brayton. Well-foundedness in Credit-Based Flow-Control Systems. Interna-

tional Workshop on Logic Synthesis, pages 1–8, March 2012.

[91] G Rizzo and J LeBoudec. “Pay bursts only once” does not hold for non-FIFO Guaranteed Rate nodes.

Performance Evaluation, 2005.

[92] L Seiler, D Carmean, E Sprangle, T Forsyth, P Dubey, S Junkins, A Lake, R Cavin, R Espasa, E Gro-

chowski, T Juan, M Abrash, J Sugerman, and P Hanrahan. Larrabee: A Many-Core x86 Architecture

for Visual Computing. Micro, IEEE, 29(1):10–21, 2009.

[93] Sanjit A. Seshia. Adaptive Eager Boolean Encoding for Arithmetic Reasoning in Verification. PhD

thesis, Carnegie Mellon University, 2005.

119

[94] M Sheeran, S Singh, and Gunnar Stalmark. Checking safety properties using induction and a SAT-

solver. Formal Methods in Computer-Aided Design, 2000.

[95] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodı́k, Sanjit A. Seshia, and Vijay A. Saraswat.

Combinatorial sketching for finite programs. In Proc. 12th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), pages 404–415. ACM Press,

2006.

[96] V Soteriou, Hangsheng Wang, and L Peh. A statistical traffic model for on-chip interconnection

networks. In Conference, pages 104–116, 2006.

[97] Dimitrios Stiliadis and Anujan Varma. Latency-rate servers: a general model for analysis of traffic

scheduling algorithms. IEEE/ACM Transactions on Networking (ToN), 1998.

[98] S Stuijk, Marc Geilen, and Twan Basten. Throughput-Buffering Trade-Off Exploration for Cyclo-

Static and Synchronous Dataflow Graphs. IEEE Transactions on Computers, 57(10):1331–1345, Oc-

tober 2008.

[99] Alan M Turing. Checking a large routine. Conference on High Speed Automatic Calculating Machines,

1949.

[100] Girish Varatkar and Radu Marculescu. Traffic analysis for on-chip networks design of multimedia

applications. In Proceedings, pages 795–800. New York, NY, USA, 2002.

[101] F Verbeek and J Schmaltz. Formal specification of networks-on-chips: deadlock and evacuation. In

Design, Automation & Test in Europe Conference & Exhibition (DATE), 2010, pages 1701–1706, 2010.

[102] Freek Verbeek and Julien Schmaltz. Hunting deadlocks efficiently in microarchitectural models of

communication fabrics. Formal Methods in Computer-Aided Design, 2011.

[103] Freek Verbeek and Julien Schmaltz. Easy Formal Specification and Validation of Unbounded

Networks-on-Chips Architectures. Transactions on Design Automation of Electronic Systems, 17(1):1–

28, January 2012.

[104] Yuriy Viktorov and Alexander Gotmanov. Latency Analysis in Microarchitectural Models of Com-

munication Fabrics. Problems of Advanced Micro- and Nanoelectronic Systems Development (MES),

pages 67–72, 2012.

[105] David Wentzlaff, Patrick Griffin, Henry Hoffmann, L Bao, B Edwards, C Ramey, M Mattina, C Miao,

John Brown, and Anant Agrawal. On-chip interconnection architecture of the tile processor. Micro,

2007.

[106] Maarten H Wiggers, Marco J G Bekooij, and Gerard J M Smit. Efficient computation of buffer ca-

pacities for cyclo-static dataflow graphs. In Design Automation Conference, 2007. DAC ’07. 44th

ACM/IEEE, pages 658–663. New York, NY, USA, 2007.

120

[107] Maarten H Wiggers, Marco J G Bekooij, and Gerard J M Smit. Modelling run-time arbitration by

latency-rate servers in dataflow graphs. In 10th Workshop on Software & Compilers for Embedded

Systems, pages 11–22. New York, NY, USA, 2007.

	List of Figures
	List of Tables
	Introduction
	Thesis Statement
	Thesis Contributions
	Thesis Overview

	I Background
	On-chip Communication Networks
	Motivation for NoCs
	Defining Characteristics of an NoC
	Topology
	Flow Control
	Routing
	Architectural Parameters

	Quality of Service
	Modeling NoC
	Hardware Description Languages
	Analytical Models
	Preview of xMAS Formalism

	Formal Verification
	Linear Temporal Logic (LTL)
	Safety and Liveness Properties
	Bounded Liveness Properties

	Model Checking
	Boolean Satisfiability Problem
	Bounded Model Checking
	Induction
	IC3 / Property-Directed Reachability
	Model Checking using Satisfiability Modulo Theories

	Formal NoC Modeling
	Executable Microarchitectural Specifications (xMAS)
	Communication over Channels
	Data Types in xMAS
	xMAS Primitives

	Implementation of Queues
	Queues as Circular Buffers
	Queues as Records

	Model of Router Core
	Checking Latency Bound Properties on Network Model
	Timestamp Encoding
	Stopwatch Encoding

	Formal Traffic Model
	Stage 1 of Traffic Model: Generating Candidate Patterns
	Stage 2 of Traffic Model: Deterministic Rate Constraints

	II Scalable Latency Verification
	Compositional Reasoning using Traffic Abstraction
	Introduction
	Preliminaries
	Basic Definitions
	Smallest Verifiable Latency Bound

	Traffic Model Inference
	Form of Traffic Model
	Inferring Traffic Model Parameters from RTL Simulations
	Creating Traffic Model from Constraints

	Experimental Results
	Convergence of Traffic Model Inference
	Latency Verification using Inferred Models

	Related Work
	Conclusion and Discussion
	BMC Depth and Completeness
	Limitations of Proposed Approach
	Lessons From this Chapter that Shaped Chapter 6

	Compositional Proofs using Induction
	Introduction
	Preliminaries
	Modeling Conventions in this Chapter
	Sketch of Latency Lemmas

	Formalism
	Checking Cumulative Latencies as Age Bounds
	Auxiliary Invariants ()
	Proving a Latency Bound

	Latency Lemmas
	Generating Age Lemmas (L) using Stage Graph G
	Deriving Channel Blocking Bounds and Progress Lemmas ()

	Experimental Methodology
	Evaluating Looseness of TL with Bounded Model Checking
	Efficient Encoding of Packet Ages

	Illustrative Examples
	Single Queue
	Credit Loop
	Virtual Channel
	Token Bucket Regulator

	Non-Stallable Ring Interconnect
	Implementation of a Ring Agent
	Receive Reservation Logic
	Creating Age Lemmas using Stage Graph G
	Latency Verification Results for Ring Interconnect

	Related Work
	Conclusion

	III NoC Parameter Synthesis
	Buffer Sizing
	Introduction
	Formal Model and Problem Definition
	Modeling Symbolic-Sized FIFOs
	Traffic Model Specification
	QoS Performance Properties
	SMT-based Buffer Sizing

	The CEBUS Approach
	Buffer Size Synthesis
	Buffer Size Verification
	Optimal Buffer Sizing

	Experimental Buffer Sizing Results
	Credit Logic
	Chip Multiprocessor Router

	Related Work
	Conclusion

	Conclusions and Future Work
	Bibliography

