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Abstract

Changes in Neural Activity during Brain-Machine Interface Control:
from Information Encoding and Connectivity to Local Field Potentials

by

Kelvin So

Doctor of Philosophy in Electrical Engineering and Computer Sciences
and the Designated Emphasis

in
Communication, Computation and Statistics

University of California, Berkeley

Professor Jose Carmena, Chair

Brain-machine interfaces (BMIs) are an emerging field of research that seeks to in-
terface the brain directly with prosthetic devices. Researchers have exhibited com-
pelling proof-of-concept experiments for BMIs, with multiple groups showing im-
pressive demonstrations of non-human primates and humans using neural activity to
control external devices. However, significant improvements in both reliability and
performance (achieving control and dexterity comparable to natural movements) are
still needed for BMIs to be clinically viable.
One of the fundamental challenges in developing BMIs is designing the decoding
algorithm (or decoder), which translates the recorded neural activity into a control
signal for an external device. Traditionally, decoders were often designed to mimic
the natural motor system; decoders would be fitted from neural activity recorded
while the subject performed natural movements, so that they could predict or decode
the movement parameters from the neural activity. However, such decoders do not
take into account an important factor that comes into play when the decoder is
used in a real-time BMI system: the feedback that the user receives. BMIs are
inherently “closed-loop” systems; users generate neural activity that is transformed
into a control signal (via the decoder), and the user receives feedback (e.g. visually),
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which in turn will affect the neural activity the user generates next. This feedback
cycle that occurs during BMI operation can have profound impact on the neurons
and the neural activity that is generated.
The first two chapters of this thesis explores differences at the neuronal level between
BMI operation and natural reaching. We leverage techniques and insights from net-
work information theory to characterize information encoding in neural ensembles
and neural network structure in the two conditions, BMI control versus natural reach-
ing. Using measures of redundancy derived from information theory, we found that
neurons directly incorporated in the control of the BMI contained higher and more re-
dundant information regarding the target, compared to surrounding neurons. Using
a novel information-theoretic approach for inferring functional connectivity, we found
a consolidation of the network connections between the control neurons of the BMI
that parallels the learning curve, suggesting the formation of neural circuitry specific
to BMI operation. Together, these findings indicate that fundamental changes are
occurring at the neural level, which may cause the observed neural activity during
BMI control to differ dramatically from during natural reaching.
The subsequent chapter of this thesis describes our progress in building an adaptive
BMI system that takes into account the changes in neural activity that occurs in
closed-loop, as well as our efforts in improving the long-term reliability of the sys-
tem. We demonstrate 2-D BMI control using local field potentials as input with
closed-loop decoder adaptation (CLDA) to fit the decoder parameters. CLDA is a
method of adapting the decoder’s parameters that aims to make the decoder’s output
accurately reflect the subject’s intended movements during closed-loop BMI opera-
tion. Local field potentials (LFPs) are measurements of the extracellular electric
field that reflect contributions from a population of cells. LFPs are an attractive
alternative to single- and multi-unit activity in BMIs because they are more robust
to signal degradation over time. In addition, our study sheds light on the features
of LFP that can potentially be used as input to BMI, with implications for channel
and feature selection.
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Chapter 1

Introduction

The principle behind brain-machine interfaces (BMIs) is to interface neural activity
directly from the brain to an external prosthetic device such as a computer cursor
or robotic arm. It has the potential to restore communication and motor control to
patients with severe motor disabilities such as amyotrophic lateral sclerosis, spinal
cord injuries, and brainstem stroke, by establishing new output pathways for the
brain. Although the concept of BMI has existed for decades, only recently have
various technical improvements in hardware allowed development in BMI feasible.
Advances in electrode arrays have enabled simultaneous stable recordings of neuron
ensembles over extensive periods of time. As a result, a number of recent studies have
demonstrated control of an external device via a BMI system (see [1] for review).
A BMI system (Figure 1.1) generally consists of a decoding algorithm, or decoder,
which translates the recorded neural activity into a control signal, and an external
actuator, which is typically visible to the user in order to provide visual feedback to
the user. One of the biggest challenges in designing a BMI system is determining a
good decoder that is intuitive to the user and accurately reflects the user’s intentions.
In past studies, decoders were often fitted in an “open-loop” fashion, whereby the
user was first asked to perform a series of motor actions while neural activity was
simultaneously recorded. A decoder was then designed to best replicate the motor
action based on the neural activity recorded. Since the neural activity generated is
unaffected by the output of the decoder, there is no feedback, and so this approach is
considered open-loop. While the problem of decoder design in an open-loop setting
can reveal insights on the how natural motor actions are represented in the neural
activity, it is a fundamentally different problem than the decoder design problem in
a BMI system. During BMI usage, the user’s neural activity is affected by the real-
time feedback of the decoder’s output, forming a closed-loop, and resulting in neural
activity that is different than activity generated during natural movement. This
thesis will examine the changes in the user’s neural activity during BMI operation,
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Figure 1.1: General architecture of a brain-machine interface. Neural activity is
recorded directly from the brain, which is then translated by the decoder into a
control signal for an external actuator. Some form of feedback, typically visual, is
given the user, forming closed-loop control.

followed by recent progress made on the engineering front in implementing algorithms
that can address these differences.

Overview

The first chapter of this thesis sheds light on the differences in the information en-
coded in the neural activity and circuitry during BMI operation as compared to nat-
ural motor control. We examine the amount of information carried by an ensemble
of neurons and quantify the redundancy of movement-related information encoded
in the macaque primary motor cortex (M1) by using concepts from information the-
ory. In communication networks, information is often encoded with a certain degree
of redundancy across channels to provide robustness against noise during transmis-
sion. For a network of neurons, it is conceivable that information is redundantly
encoded since many neurons share common afferents [2]. Indeed, past studies have
suggested that correlations (which is an indirect measure of redundancy) in neural
activity can be important for encoding information [3]. During natural arm move-
ment, we found neurons in contralateral M1 to contain higher and more redundant
information about target direction than ipsilateral M1 neurons, consistent with the
laterality of movement control. However, during BMI control, we found that the M1
neurons directly incorporated into the BMI (‘direct’ neurons) contained the highest
and most redundant target information, even if the set of direct neurons were from
the ipsilateral side. This result suggests a change in the information encoding during
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BMI operation.
Next, we investigate the changes in connectivity of the neural circuitry that arises
during BMI operation and how that differs from natural motor control. Neurons
in the brain form highly complex networks through synaptic connections, and these
connections are important in BMI operation as new synaptic connections are likely
to form during learning. Traditionally, the connectivity between neurons has been
explored using methods such as correlations. However, such methods do not contain
any notion of directionality. Recently, an information-theoretic approach based on
directed information theory has been proposed as a way to infer the direction of
influence for intracortical recordings [4]. Applying this method to neural activity
recorded during BMI operation, we found striking differences in the structure of the
neural circuitry as compared to the structure seen in natural motor control. In addi-
tion, we found that the connection strengths in the neuronal ensemble consolidated
as the subject became proficient at using BMI. Overall, these results demonstrate the
changes that occur during BMI operation, and also the potential of using directed
information as a means for inferring functional connectivity.
The subsequent chapter discusses new experimental results on applying closed-loop
decoder adaptation (CLDA) to a BMI system utilizing local field potentials (LFPs).
Closed-loop decoder adaptation is a procedure for updating the decoder during BMI
operation in order to address the changes that occur in the neural activity while
using BMI. This method has been used effectively in updating decoders utilizing
spike activity as the control signal [5–8]. However, an increasing number of studies
have shown the utility of LFPs for decoding motor related signals [9–11]. Local field
potentials are measurements of the extracellular electric field that reflect contribu-
tions from a population of cells, and are considered to be a more robust and stable
signal than single unit spiking activity. Currently, it is unclear how well different
LFP frequencies can serve as features for continuous, closed-loop BMI control. Here,
we demonstrate 2-D continuous LFP-based BMI control using CLDA, which adapts
decoder parameters to subject-specific LFP feature modulations during BMI control.
We trained two macaque monkeys to control a 2-D cursor in a center-out task by
modulating LFP power in the 0–150 Hz range. While both monkeys attained control,
they used different strategies involving different frequency bands. One monkey pri-
marily utilized the low-frequency spectrum (0–80 Hz), which was highly correlated
between channels, and obtained proficient performance even with a single channel.
In contrast, the other monkey relied more on higher frequencies (80–150 Hz), which
were less correlated between channels, and had greater difficulty with control as the
number of channels decreased. We then restricted the monkeys to use only various
sub-ranges (0–40 Hz, 40–80 Hz, and 80–150 Hz) of the 0–150 Hz band. Interest-
ingly, although both monkeys performed better with some sub-ranges than others,
they were able to achieve BMI control with all sub-ranges after decoder adaptation,
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demonstrating broad flexibility in the frequencies that could potentially be used for
LFP-based BMI control. These results demonstrate proficient, continuous BMI con-
trol using LFPs and provide insight into the subject-specific spectral patterns of LFP
activity modulated during control.
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Chapter 2

Changes in information encoding

In this chapter, we explore differences in the information encoding of the neurons in
the primary motor cortex (M1) as the subject learns to control the BMI.

2.1 Redundant information encoding during BMI
control

Redundancy is an integral part of reliable distributed information processing by
providing robustness against component failure and noisy communication channels.
For a neuronal ensemble, redundant information encoding refers to a coding scheme
in which each neuron is encoding a similar signal. Using this scheme, firing rate
information can be reliably transmitted in a short time interval despite variability in
interspike intervals [2, 12, 13]. In the motor system where the firing rate of neurons
carries information about the motor action, a redundant encoding scheme at the
ensemble level may be a possible solution to reliably transmit firing rate information
to produce consistent motor action.
Redundant encoding in the motor system has mainly been studied in the context
of correlations. Experimental work in primates has shown that correlations in firing
activity can be important for encoding movement parameters [14–16]. This is sup-
ported by theoretical work demonstrating that correlations in the variability of firing
rates can improve the accuracy of information encoding [3, 17–19]. More recently,
Narayanan et al. [20] extended the analysis to larger ensemble sizes and found largely
redundant information encoding in the rat motor cortex during a reaction time task.
In this study, we examine the redundancy of movement-related information in the
macaque primary motor cortex (M1) during natural (MC) and neuroprosthetic con-
trol (BC) via a brain-machine interface (BMI). A BMI paradigm enables us to exam-
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ine the ensemble that directly controls movement, since for natural motor control, it
is difficult to identify the corticomotoneuronal cells that connect monosynaptically
to motoneurons [21]. In both experiments, we found that ensembles most associated
to movement control showed highest redundancy in encoding target information. For
natural arm control, this corresponds to the contralateral M1 (left M1). Interest-
ingly, when we retrained the BMI to use ipsilateral M1 activity, we found that these
neurons were more redundant and contained higher information than contralateral
M1 neurons, even though ensembles from this hemisphere were previously less redun-
dant during natural arm movement. This result suggests that information encoding
in the neurons are different during BC than MC. Moreover, these results demonstrate
the ubiquitous nature of redundant information encoding in the motor cortex and
provide evidence of the contribution of redundancy to proficient motor control.

2.2 Materials and methods

2.2.1 Electrophysiology and surgery

The subjects were implanted with arrays of 8x8 Teflon-coated tungsten microelec-
trodes (35µm in diameter, 500µm separation between microwires). Both subjects
were implanted bilaterally in the arm area of the primary motor cortex (M1), posi-
tioned at a depth of 3mm targeting layer 5 pyramidal neurons. Localization of target
areas were performed using stereotactic coordinates of the rhesus brain. Intraopera-
tive monitoring of spike activity was used to guide the depth of electrode placement.
All procedures were conducted in compliance with the regulations of the Animal
Care and Use Committee at the University of California, Berkeley. Single unit ac-
tivity was recorded with a Multichannel Acquisition Processor and sorted using an
online sorting application (Plexon Inc., Dallas, TX). A subset of stable units was
found several months postsurgery whose waveform shape, amplitude and interspike
interval distribution exhibited little change from day to day. These stable units were
then chosen as input to the BMI decoder.

2.2.2 Experimental setup and training

The monkeys were trained to perform a delayed center-out reaching task using his
right arm (manual control, MC) or with a cursor controlled through a brain-machine
interface (BC-Contra and BC-Ipsi, see Figure 2.1). The task involved cursor move-
ments from the center towards one of eight targets distributed evenly on a 14cm
diameter circle. Target radius was set at 0.75cm. Each trial began with a brief
hold period at the center target, followed by a GO cue (center changed color) to
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signal the reach towards the target. The monkey was then required to reach and
hold briefly (0.2-0.5s) at the target in order to receive a liquid reward. In man-
ual control, reaching was performed using a Kinarm (BKIN Technologies, Kingston,
ON) exoskeleton where the monkey’s shoulder and elbow were constrained to move
the device on a 2-D plane. During recording, the subjects were placed in a primate
chair that permits limb movements and postural adjustments, with a headpost for
head restraint. In BC-Contra and BC-Ipsi, spiking activity from the selected (direct)
neurons were mapped to kinematic parameters via the BMI “decoder” (see below)
to provide continuous control to the cursor. In these sessions, the right arm was
restrained.

2.2.3 BMI paradigm

The BMI decoder is a linear regression model where the inputs X(t) are vectors
containing the spike counts of each the direct neurons over a number of time bin
[22]. The output Y (t) is a vector that contains the estimated shoulder and elbow
joint angles. Formally, this linear model can be expressed as:

Y (t) = b+
n∑
u=0

a(u)X(t− u) + ε(t) (2.1)

where the elements of X(t) represents the spike count of each direct neuron at time t
and the columns of Y (t) represents the shoulder and elbow joint angles. The vectors
a(u) for u = 1, . . . , n and b are the causal linear filter parameters, and ε(t) are the
residual errors. Here, we used 10 time lags (n = 10), with spike counts binned at 100
ms. The linear filter parameters are estimated by using linear regression on 10 min
of training data recorded while the monkey performed right arm movements. Cursor
coordinate position is then computed from the joint angles to provide real-time cursor
control.

2.2.4 Data analysis

We adopted a decoding approach using linear discriminant analysis (LDA) to es-
timate the information contained in an ensemble [23]. The information considered
in this analysis is the target direction contained in M1 neurons during the move-
ment period (~100-800ms for MC and ~100-6000ms for BC) of each successful trial.
To compute the information contained in an ensemble about the target direction,
we apply the concept of mutual information from information theory. The mutual
information between two discrete random variables X and Y is formally defined as:
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Figure 2.1: Experimental setup for (A) MC, (B) BC-Contra, and (C) BC-Ipsi ex-
periments. The monkey performs a center-out reaching task constrained on a two-
dimensional plane. One of eight targets is presented each trial, and liquid reward is
given after a successful reach. In BC-Contra/BC-Ipsi, the position of the cursor is
determined by filtering the output of the M1L-Direct/M1R-Direct units. (D) Waveform
and directional tuning of a typical unit with cosine tuning during each experiment.
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I(X;Y ) =
∑
x

∑
y

pX,Y (x, y)log2

(
pX,Y (x, y)
pX(x)pY (y)

)
(2.2)

where pX,Y (x, y), pX(x) and p(y) represent the joint and marginal distributions of X
and Y . Conceptually, this measure quantifies the information contained in X about
Y . Ideally, we would like to compute the mutual information I(R;T ) between the
neural responses R and target direction T . However, the distribution of R can be
very high dimensional and hard to estimate. Hence, we adopted a decoding approach
wherein we would first “decode” the target direction T̂ , and then compute the mu-
tual information I(T ; T̂ ) from the confusion matrix between the actual and predicted
target. In general, the decoding approach can be applied using any statistical classi-
fier. Here, we used linear discriminant analysis, which models the input distribution
as a mixture of Gaussians and performs the classification by finding the target that
maximizes the posterior distribution. Since LDA performs optimal classification for
Gaussian distributed data, we follow the standard approach of first taking square
roots of the firing rates such that the resulting quantities can be reasonably well
modeled as Gaussians. The mean is estimated from training data for each target
separately, with the covariance assumed fixed across targets. We used up to 10
neurons as input since an n-dimensional input requires approximately n2 number of
parameters to be estimated in the covariance matrix. Therefore, the model would
not be very accurate for larger ensembles, since the number of trials to train our
model is limited (typically <200 trials per session). Once the model is estimated, a
separate test data is used to compute the target predictions and mutual information.
We employed 5-fold cross-validation where the classifier is trained on 80% of the data
and predictions are tested on the remaining 20%, repeated 5 times so that each trial
is part of a test set once. Only late-learning sessions in which animals achieves over
90% of successful trials are used for the analysis.
From the data-processing inequality, I(R;T ) obtained using this decoding approach
represents a lower bound of the true mutual information I(R;T ) between the neu-
ral responses and the targets. Conceptually, this results from the inability of the
classifier to completely extract all target relevant features from the neural responses.
Hence, the gap between I(T ; T̂ ) and the true value I(R;T ) depends on how well the
decoder can capture all the relevant features. The particular classifier used here may
not be the optimal decoding procedure, nor represent the actual method in which
information is encoded in a neural ensemble [24]. However, the decoding approach
has been successfully used to quantify relationships between ensemble responses and
behavior despite the drawbacks [20, 25]. To assess the effect due to the choice of sta-
tistical classifier, we also performed the analysis using learning vector quantization
(LVQ) as the statistical classifier. The results obtained from LVQ and LDA were
highly correlated (R2 = 0.75, p < 0.001).

9



To quantify the amount of redundancy in an ensemble, we compare the ensemble
information with the sum of the individual information of each neuron in the ensemble
[26]. Formally, PEnsemble is defined as [20]:

PEnsemble = IEnsemble −
∑
i

INeuron (2.3)

where IEnsemble is the information contained in the ensemble and INeuron is the in-
formation contained in a single neuron in the ensemble. If PEnsemble is negative,
then the total information of the ensemble as a whole is less than the sum of the
information of the individual neurons in the ensemble, which implies that the infor-
mation encoding in individual neurons are redundantly encoded in other neurons. If
PEnsemble is positive, the total information of the ensemble is greater than the sum
of the individual, and such interactions can be considered synergistic.

2.3 Results

We recorded neural ensemble data from two macaque monkeys performing a center-
out reaching task using natural arm control (“Manual Control”, MC, experiment)
and brain control (“BC-Contra” and “BC-Ipsi” experiments). The recorded ensem-
bles are primarily classified based on location. In MC, units are grouped as con-
tralateral M1 (M1L) or ipsilateral M1 (M1R). In BC-Contra, we also separated the
control units (M1L-Direct, since they were chosen from the left hemisphere). Note that
this label only applied to the sessions where those units explicitly served as control
units for BMI. The remaining units are grouped according to their location: left M1
(M1L-Indirect) or right M1 (M1R-Indirect). For Monkey P, an additional BC experiment
(BC-Ipsi) was performed using control units from the right hemisphere (M1R-Direct).
The number of units and percentages of directionally tuned units for each neuron
group are shown in Table 2.1.
The average information for ensembles of ten units in each neuron group for each
experiment is shown in Figure 2.2. For the MC experiment, M1L ensembles contained
the highest mutual information for both animals (t-test, p = 1 × 10−6). For BC-
Contra, the mutual information of the M1L-Direct units were found to be the highest
(t-test, p = 3 × 10−4 ), while the M1R-Indirect units contained the least amount of
information. Interestingly, for the BC-Ipsi experiment, the M1R-Direct and M1R-Indirect
units contained significantly higher information than M1L-Indirect units (t-test, p =
5× 10−3).
The defining characteristic of redundancy is that information encoded in each neu-
ron is partially encoded in another neuron. Hence, the total information encoded
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  Experiment Sessions 
Number of units Percentage of directionally 

tuned units   

Average ensemble information 
(bits) and accuracy (%) for 

ensembles of size 10 

M1Direct M1L M1R M1Direct M1L M1R M1 Direct M1L M1R 

M
on

ke
y 

P 

Manual Control 

5 - 83±5 59±4 - 77±5 49±6 
Acc - 53±4 33±3 

Info - 1.24±0.09 0.65±0.05 

9 - 41±5 42±4 - 76±3 56±4 
Acc - 50±4 38±2 

Info - 1.1±0.1 0.77±0.06 

BC-Contra 5 40±1 43±5 59±5 85±3 77±9 59±8 
Acc 48±3 42±4 37±2 

Info 1.2±0.1 0.9±0.1 0.8±0.1 

BC-Ipsi 4 14±1 31±7 26±4 90±6 82±7 90±3 
Acc 60±3 44±3 51±3 

Info 1.6±0.1 1.1±0.1 1.35±0.05 

                          

M
on

ke
y 

R Manual Control 4 - 54±2 85±1 - 75±4 69±9 
Acc - 45±1 37±4 

Info - 1.06±0.03 0.85±0.1 

BC-Contra 3 10 125±9 - 63±11 49±18 - 
Acc 42±3 32±5 - 

Info 1.2±0.2 0.9±0.2 - 

Table 2.1: Number of units, percentage of directionally tuned units, and ensemble
information (Info) and predictive accuracy (Acc) for ensembles of size 10 are listed
for each of the different experiments and subjects. The two separate rows for MC
experiments refer to different sets of MC sessions performed five months apart. The
ensemble information and accuracy remain consistent despite the time lapse.
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Figure 2.2: Average information contained in ensembles of 10 neurons in each area
for (A) MC, (B) BC-Contra and (C) BC-Ipsi experiments. (*) implies p < 0.05 and
(**) implies p < 0.01 using t-test to compare the difference. Error bars represent
standard error of the mean across sessions.
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in an ensemble should eventually saturate as more neurons are added since the in-
formation in additional neurons is already encoded in the ensemble. Conversely, if
the information encoded in each neuron is not redundant, namely, if the information
encoded in each neuron is independent of the other neurons in the ensemble, the
total ensemble information should increase proportionally to the ensemble size. To
test this notion of redundancy, we explored the increase in information as the ensem-
ble size grew. For each experiment, we computed the average mutual information
for ensemble sizes up to 10 within each of the neuron groups (Figure 2.3A-C). For
small ensemble sizes (under 3), all possible combinations of units within each group
were considered. For larger ensemble sizes we computed the mutual information for
1000 randomly sampled unique combinations due to computation limitations. For
all neuron groups in both subjects, the information encoded in each neuron is not
independent, as the extra information provided by each additional unit becomes less
at larger ensemble sizes, suggesting redundancy. Secondly, the relative amount of
mutual information for the neuron groups remains consistent for all ensemble sizes,
which suggests that these results can be extrapolated to larger ensembles.
We quantified the degree of redundancy by calculating the difference between the
predictive information of the ensemble and the sum of the individual information
of its constituents (PEnsemble, see Section 2.2.4, Data analysis) for each ensemble
size (Figure 2.3D-F). The information carried in all ensemble sizes across all neuron
groups was generally redundant. For MC, M1L units were most redundant (t-test,
p = 6 × 10−9). For the BC-Contra experiment, M1L-Direct units were found to have
highest redundancy (t-test, p = 10−3). These results were consistent for both sub-
jects. Interestingly, for BC-Ipsi, the M1R-Direct units exhibited highest redundancy,
even though during MC, M1R ensembles had lower redundancy than M1L ensembles.
This was surprising given that cursor control in BC-Ipsi sessions was generated via
a decoder originally fitted using ipsilateral M1 activity during natural arm move-
ments. The remaining M1R-Indirect units during BC-Ipsi also showed a large increase
in redundancy relative to the M1L-Indirect units when compared to the results from
MC.

2.4 Discussion

We examined the redundancy of information encoded in M1 ensembles while monkeys
performed a center-out reaching task under two different types of control: natural
arm control and neuroprosthetic control. Ensembles most associated to movement
control showed highest redundancy and information about the target direction. For
natural control, this corresponds to contralateral M1 ensembles. For neuroprosthetic
control, this corresponds to the laterality of the neural ensemble used in the decoder.
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Figure 2.3: Ensemble information for different ensemble sizes for (A) MC, (B) BC-
Contra and (C) BC-Ipsi experiments. PEnsemble for different ensemble sizes for (D)
MC, (E) BC-Contra and (F) BC-Ipsi experiments. The plots shown represent data
from Monkey P averaged across all sessions (9 sessions in MC, 5 in BC-Contra and
4 in BC-Ipsi). Error bars represent standard error of the mean across sessions. Both
analyses indicate a redundant encoding of information across all neuron groups.
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2.4.1 Redundancy in information encoded in M1

Our results revealed highly redundant levels of target information in M1 ensem-
bles. This result is consistent with the wealth of correlations that M1 neurons have
with motor parameters that have been observed in past studies. These studies have
found M1 neurons that encode hand position, velocity, acceleration, target direction,
movement trajectory, shoulder/elbow angles, muscle coactivation and visual target
[27–31]. For constrained reaching tasks (e.g. across the horizontal plane), many
of these parameters are tightly coupled. Hence, it is reasonable for M1 neuron en-
sembles to contain redundant information about the target, even if the individual
neurons encode different motor parameters. What are the implications of redundant
information encoding? For a communication system, redundancy in the information
transmitted across multiple channels provides robustness against degradations in the
transmission channel, allowing for more reliable decoding of the transmitted message
at a cost of reduced channel capacity. For a neural system, Barlow [32] argued that
a non-redundant, distributed encoding scheme was less efficient than a redundant,
sparse encoding for learning sensory input probabilities. In the motor system, a num-
ber of studies have demonstrated evidence of increased redundancy during learning.
Nudo et al. [33] found a larger area of digit representation in contralateral M1 of
squirrel monkeys after learning a small object retrieval task. An increase in digit rep-
resentation indicated that more neurons were mapped to digit movement, suggesting
higher redundancy in the motor map. A similar increase in wrist representation
associated with learning a novel reaching task was also found in the rodent motor
cortex [34]. These results corroborate with our finding that proficient motor control
is associated with higher redundancy encoding target direction. The results of the
BMI experiments show that redundancy in information encoding in M1 occurs even
in the absence of arm movement. Previous studies have shown that M1 neuron firing
activity can be modulated by higher cortical processes such as decision making and
visual direction of target [35], unrelated to muscle activation. Hence, redundancy
in information encoding in the absence of overt arm movement suggests indepen-
dence from the nature of the actuator being controlled, i.e. musculoskeletal plant vs.
computer cursor.

2.4.2 Implications for brain-machine interfaces

One prominent feature of a redundant information encoding scheme is the robustness
to channel quality degradations. Therefore, redundancy in neural encoding suggests
that the brain can potentially adapt to control a BMI using fewer direct neurons since
the information is encoded across many neurons. Indeed, different BMI studies have
reported successful BMI operation using vastly different number of units. Here, 10-41
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units had been used; Jarosiewicz et al. [36] reported using 23-60 units, while Serruya
et al. [37] used 7-30 units. Although these numbers can depend on task difficulty, the
large range reported by each group points toward a redundant information encoding
scheme that facilitates the brain’s ability to adapt to BMI operation using a large
range of neurons. Ultimately, the optimal number of neurons needed for proficient
control of a prosthetic device will also depend on a number of other factors such as
reliability of the neural interface. However, the redundancy of information found in
our results suggests that in the event of neuron loss, the brain can adapt to using
fewer neurons over time.

15



Chapter 3

Changes in connectivity

We continue our analysis of the differences at the neuronal level by investigating the
changes in the connectivity properties of the underlying neural network using a novel
approach known as directed information.

3.1 Functional connectivity of neural ensembles
during BMI control

Changes in the circuitry and connectivity of neural ensembles are known to occur
after learning new motor skills [38]. Traditionally, connectivity in the brain has been
explored from two different angles: anatomical connectivity and functional connec-
tivity. Anatomical connectivity refers to the structural layout of synapses, measured
using staining and fiber tracing techniques [39]. Functional connectivity refers to the
temporal correlations between neurophysiological events, such as action potentials or
hemodynamic response, regardless of the actual anatomical connections, even though
both measures of connectivity are closely related [40]. For in situ recordings, only
functional connectivity can be measured feasibly due to the difficulty in measuring
anatomical connectivity in vivo. In the past few decades, a number of statistical
techniques have been developed for inferring functional connectivity for intracortical
recordings, electroencephalography (EEG) and functional magnetic resonance imag-
ing (fMRI). These include cross-correlation [41–43], spectral coherence [44, 45] and
mutual information [46]. However, these methods do not characterize the direction
that one neuron or ensemble exerts on another. Methods that infer directionality,
such as dynamic causal modeling [47, 48], directed transfer function [49] and struc-
tural equation modeling [50], have largely been limited to EEG and fMRI studies.
More generally, directionality can also be inferred by performing cross-correlation at
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various time lags and determining causality depending on the time lag that results
in the highest correlation, although few studies to date have employed this method.
This problem was recently addressed by Quinn et al [4] using an information-theoretic
measure known as directed information, which is a promising approach that is con-
sistent with the concept of Granger causality. Other recent methods [51, 52] assess
connectivity with likelihood ratios, which is based on the same concept as directed
information. However, it is still unclear whether any additional insight can be gained
beyond conventional nonparametric methods (i.e. correlations) that simply look at
second-order statistics. Here, we first assess directed information under both simu-
lated and experimental data sets. We describe a practical approach to estimating the
directed information and show that this procedure results in higher accuracy than
correlations in detecting simulated connections between spike trains. We further test
the generality of our estimation method in rodent and primate experimental data.
Applying directed information to stimulation experiments in rats, we demonstrate
the method’s ability to infer causal influences in experimental data and illustrate how
directed information can also provide accurate estimates of the conduction delay in
connections between the primary motor cortex and the dorsolateral striatum.
In recordings from a macaque monkey performing a center-out reaching task, the
procedure reveals striking relationships between properties of the neural network
and behaviour. Specifically, we observe a strong relationship between a neuron’s
modulation depth and the number of connections from the neuron when the primate
performs the task under neuro-prosthetic control (i.e. movement controlled directly
via neural activity in the absence of physical movement using a BMI), but a much
weaker relationship when the task is performed under manual control (i.e. using his
natural arm). The number of connections a node in a network makes (also known
as degree centrality) is a commonly used measure in graph theory for evaluating the
relative importance of the nodes to the network. For example, in computer server
networks, nodes with many connections indicate network hubs that are important
for routing network traffic. For a biological neural network, neurons with high degree
centrality are presumably important to the network since their activity is related to
many other neurons. Our analysis using directed information reveals an interesting
relation between a neuron’s importance to the internal network (i.e. neural network)
and its importance to external behaviour (i.e. target reaching). The procedure
also identified a consolidation of the network connectivity within the ensemble that
closely parallels the performance of neuro-prosthetic control and known changes in
the ensemble’s tuning properties [22].
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3.2 Directed information

Directed information is a modified version of the well-known mutual information that
better captures the capacity of a communication channel in the presence of feedback
[53]. Conceptually, directed information is based on the same principle as Granger
causality by measuring how much better we can predict a process Y if past infor-
mation of a process X is given. This metric is particularly attractive for analyzing
connectivity in neural ensemble data for two reasons. Firstly, directed information is
designed to characterize channels with feedback and since a neuron’s spiking activity
is strongly influenced by its past spiking activity, a neuron can be interpreted as a
feedback system transmitting to another neuron. Hence, directed information is well
suited for capturing connectivity between neurons. Secondly, directed information
measures the effect of having past information of another process. This means that
if the connection between two neurons X and Y is unidirectional, as in the activity
of neuron Y is affected by the past activity of neuron X, but X is not affected in a
causal fashion by Y , then directed information will only capture the effect of X on to
Y , but not the reverse. Moreover, unlike the definition of Granger causality proposed
by Granger [54], directed information does not restrict the effect of past information
to follow a linear, autoregressive model. Formally, the directed information between
two stochastic processes X and Y is defined as:

I
(
XN → Y N

)
, E

 N∑
i=1

log
PYi|Y i−1

1 ,Xi
1

(
Yi|Y i−1

1 , X i
1

)
PYi|Y i−1

1

(
Yi|Y i−1

1

)
 (3.1)

where Y n
1 represents the process Y from time points 1 to n, [Y1, . . . , Yn], and Xn

1
represents the process X from 1 to n, [X1, . . . , Xn]. Since this quantity scales with
N, we define a normalized quantity:

I (X → Y ) , lim
N→∞

1
N
I
(
XN → Y N

)
(3.2)

Assuming that the processes X and Y are finite-memory Markov chains that are sta-
tionary and ergodic, it can be shown that a sample average of the log-likelihood ratio
will converge almost surely to the normalized directed information. All subsequent
computations will use the normalized directed information.

3.2.1 Estimating directed information via point process GLM

We adopted a parametric approach to estimate directed information from data.
Specifically, we suppose that spike trains are generated via a point process gen-
eralized linear model (GLM). The point process GLM is an increasingly popular
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approach to modeling the neuron spiking probabilities [4, 51, 55, 56]. Under this
model, the conditional intensity function is explicitly modeled as a function of the
past spiking activity (intrinsic history), the spiking history of another neuron (extrin-
sic history) and any other relevant covariates (not shown in (3.3)). Specifically, we
model the spike train as a Poisson process where the conditional intensity function
is related linearly to the covariates via the log function:

logλi = α0 +
J∑
j=1

αjYi−j +
K∑
k=1

βkXi−(k−1) (3.3)

PYi|Y i−1
1 ,Xi

1

(
Yi|Y i−1

1 , X i
1

)
= λYi

i

Yi!
exp (−λi) (3.4)

where X and Y are as defined above, α0, ..., αJ , β1, ..., βK are estimated parameters,
and J and K are the lengths of the intrinsic and extrinsic histories, respectively. For
a given J andK, the parameters can be readily estimated using maximum likelihood.
One way to estimate J andK is by using model selection techniques such as minimum
description length (MDL)[4]. However, in practice, for neurons with low firing rates
(< 5Hz) there may not be sufficient data to provide reliable parameter estimates.
Furthermore, exhaustively searching over all combinations for J and K to minimize
the MDL-penalized negative log-likelihood can quickly become infeasible. To address
this issue, we impose a smoothness constraint on neighboring parameters to reduce
the number of estimated parameters. Since the parameter sets α0, ..., αJ , β1, ..., βK
represent the effect of spiking activity in the past consecutively, it is likely that the
effect at a time t in the past does not differ widely from the effect at time t − 1.
Specifically, we restrict the parameter sets to lie in a subspace spanned by a set
of raised cosine basis functions (see Appendix). These basis functions have been
successfully used previously to model the spike response of retinal ganglion cells [57].
Since the functions use a log-scaling of time, they allow for a fine resolution to model
the effect of past history near the time of a spike and a coarser resolution farther
back in time. Under this restriction, the modified conditional intensity function is
written as:

logλi = α̂0 +
L∑
l=1

α̂l
〈
bintl · Y i−1

i−R

〉
+

M∑
m=1

β̂m
〈
bextm ·X i−1

i−R

〉
(3.5)

where bintl and bextm are the sets of raised cosine basis functions of length R modeling
the intrinsic and extrinsic history effects respectively. 〈·〉 denotes dot product. With
this constraint, the number of parameters that need to be estimated is simply L +
M + 1. As in [57], we use 10 raised cosine basis functions to represent the intrinsic
history, and 4 basis functions for the extrinsic history to provide sufficient flexibility
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without too many parameters. These functions cover spiking histories up to 100ms
in the past. Conversely, to estimate the conditional distribution without knowledge
of X, we fix the set of β̂m to be 0.

3.2.2 Significance and confidence intervals

Since the log-likelihood with knowledge of X contains all the parameters of the
log-likelihood without X, the directed information as estimated using the method
described in Section 2.2 always results in a non-negative value. Hence, to determine
whether including X significantly improves the maximized log-likelihood, we adopt
two intuitive approaches: 5-fold cross-validation and confidence intervals. Using
cross-validation, we test how well the model generalizes to new data. For new data,
the log-likelihood containing X is no longer necessarily larger than the log-likelihood
without X since the model could overfit. Therefore, if the log-likelihood of the new
data decreases using the model including X, the directed information is set to 0.
Secondly, we compute 95% confidence intervals on the directed information by esti-
mating the largest deviation the maximized log-likelihood takes on when evaluated
at the confidence interval limits on the estimated parameters. Since the parameters
are maximum likelihood estimates, 95% confidence intervals on each of the estimated
parameters can be approximated using the inverse of the Fisher information matrix,
which is known to represent the covariance matrix of the asymptotic distribution for
maximum likelihood estimates [58]. Hence, for each parameter β̂j, the 95% confi-
dence interval is approximated as:

β̂j + 1.96√
I
(
β̂
)
jj

(3.6)

I
(
β̂
)
jj

= −∂
2L

∂β̂2
j

∣∣∣∣∣
α̂0,...,α̂L,β̂1,..., ˆβM

(3.7)

where L is the log-likelihood function. Since the key question is whether knowledge
of X significantly improves the log-likelihood, we focus on the confidence intervals as
a result of uncertainty in the extrinsic history parameters β̂m. Using this approach,
we obtain a confidence interval on the directed information. If this interval includes
0, we again set the directed information to 0.
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3.3 Simulation setup and results

We generated simulated spike trains to systematically compare the effectiveness of
directed information against standard correlation procedures under various condi-
tions and topologies. We simulated spike train data using the sparse generalized
Laguerre-Volterra model (SGLVM), which is a nonlinear model used to characterize
spike trains in the hippocampus [59] (see Appendix for more details). We specifi-
cally chose a different model to test how well our estimation procedure for directed
information (which has an a priori model) can perform for a mismatched model, es-
pecially with non-linearities that are not specified in the a priori model. The preset
parameters were determined from fitting the SGLVM on actual experimental data
in order to generate physiologically realistic simulations. The average firing rates
were chosen to reflect realistic firing rates seen in experimental data (~5-10Hz). Six
different sets of linear/non-linear coupling parameters were randomly chosen from
experimental data, and for each parameter set, we varied the strength from 0.5 to 3
times the original value. For each configuration, 100 sets of 200,000ms spike trains
were generated. In terms of coupling, we tested both two-neuron and three-neuron
coupling topologies (see figure 3.1A). For the three-neuron topology, we randomly
chose a different set of coupling parameters for each of the two connections but var-
ied the strength together. Under the proxy topology, spike train B is first generated
independently, which is then used as the extrinsic history (the variable X in (A.2))
to generate spike train C, and in turn used in simulating spike train A. For the
cascading topology, spike train C is generated independently, which is then used as
the extrinic history for simulating both spike trains A and B. We also generated
independent (“null” case) spike trains to test for false positives.

3.3.1 Metrics for comparison

We computed directed information from the simulated spike trains using two meth-
ods: our proposed method, “CrossVal-DI”, described above and the method origi-
nally used by Quinn et al. [4] (hereafter referred to as “MDL-DI”). We compared the
directed information to commonly used correlation methods for assessing function
connectivity: standard correlation of firing rates (with no time shift) and cross-
correlation. Other directed measures like Granger causality and its variants (e.g.
directed transfer method (DTF)) have mainly been adapted for analyzing fMRI and
EEG data. Since the statistical properties of spike trains are quite different, such
methods do not readily apply. Although Kaminski et al. [49] showed that DTF can
be extended for spike trains after suitable low-pass filtering of the signal, this method
have yet to be applied extensively in experimental data to our knowledge. Hence,
we chose to use more general, non-parametric, correlation measures for comparison.
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Figure 3.1: (A) Two-neuron and three-neuron topologies simulated. Arrows indicate
preset influences, i.e. an arrow from neuron B to A means that neuron B’s spiking
activity is used as input to generating neuron A’s spiking activity. (B) Simulated
spike trains. (C) Distribution of directed information obtained using CrossVal-DI
for the two-neuron topology for one sample set of parameters.

The firing rate used in the correlation analysis is estimated by binning (“Bin/Corr”)
or smoothed with a sliding window (“Conv/Corr”). We varied the binning and
window size over 5, 10, 50 and 100ms. To determine if a correlation was significant,
we followed the standard procedure and transformed the correlation coefficient to
a t-statistic in which we obtained a p-value on the level of significance. For cross-
correlation (“XCorr”), we shifted the spike trains at 1ms time steps from -100ms to
100ms with respect to each other. To determine significance, we computed the t-
statistic and associated p-value for the largest correlation coefficient obtained within
the -200ms to 200ms time interval. In addition, the resulting time lag can be used
to infer directionality. For example, if X(n+m) is found to be most correlated with
Y (n) for a positive value m, this would suggest that Y influences X.

3.3.2 Two-neuron simulations

For each simulation configuration, we measured the overall accuracy (true positive
plus true negative rate) for each metric. For directed information, we also computed
the measure for the opposite direction, wherein the accuracy was simply the number
of true negatives observed. The results for one of the parameter sets at varying
connection strengths are shown in figure 3.2A. Table 3.1 shows the accuracy averaged
across all 6 parameter sets for all metrics. For CrossVal-DI and MDL-DI, only the
accuracy from B to A was included. The binning/window size shown for Bin/Corr
and Conv/Corr corresponds to the bin size with the highest accuracy across the
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Figure 3.2: (A) Accuracy of each metric at different connection strengths for one
set of parameters. Accuracy for (B) proxy topology and (C) for cascading topology.
Connection analyzed is marked in orange.

different connection strengths. For Bin/Corr, we set significance at p < 0.05, which
resulted in ~5% false positive rate under the null connectivity case. For Conv/Corr
and XCorr, a 5% confidence interval on the p-value resulted in a high false positive
rate, so a stricter 0.1% confidence interval was used. Despite the stricter p-value
threshold, XCorr still showed a 64% false positive rate. Out of all the positive
detections using XCorr, on average 77% provided the correct directionality. At all
connection strengths, CrossVal-DI consistently showed the highest accuracy.

3.3.3 Three-neuron simulations

Proxy topology

We tested each metric’s ability to detect indirect connections, namely in the case
where the connection between neurons B and A is through a third neuron C. The
accuracy for each metric at each connection strength is shown in figure 3.2B. As
the connection strength (from B to C and from C to A) is increased, all metrics
showed increased number of significant detections between B and A, with CrossVal-
DI showing highest accuracy when also considering false positive rates for all the
metrics. As expected, the directed information in the opposite direction (from A to
B) measured using both directed information methods aptly remained around the
null case level of significance at all connection strengths.
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Table 3.1: Accuracy in two-neuron topology averaged across all 6 parameter sets

Strength 
Bin/Corr 

(10ms bin) 

Conv/Corr 

(5ms bin) 
XCorr CrossVal-DI MDL-DI 

0.5 0.51±0.03 0.56±0.07 0.49±0.04 0.63±0.1 0.5±0.01 

1 0.65±0.1 0.69±0.1 0.55±0.09 0.79±0.1 0.6±0.2 

2 0.84±0.2 0.88±0.2 0.62±0.2 0.92±0.1 0.83±0.2 

3 0.89±0.09 0.91±0.07 0.64±0.07 0.96±0.02 0.95±0.2 

Cascading topology

We also considered the topology where two neuron A and B are influenced by a
common parent neuron C. Again, we used different coupling parameters for the
two connections but varied the strengths together. The accuracy for each metric
at each connection strength is shown in figure 3.2C. Unlike the proxy topology, a
significant detection between A and B was considered a false positive. For all metrics,
the number of significant connections detected between A and B increased with
higher connection strength (leading to decreased accuracy), including the number of
significant connections in the opposite direction (from B to A) measured by directed
information. The figure also suggested exceptional accuracy for the MDL-DI method.
However, this was to some extent an artifact due to the fact that this topology
simulation only tested for true negatives and no true positives. From the 2-neuron
and proxy topology simulations, we found that MDL-DI in general provided a low
true positive rate, but high true negative rate, which led to high accuracies when true
positives were not tested for. In contrast, XCorr showed particularly poor accuracy
since this method tended to have low true negative rate.
Using directed information, this dependence between A and B can be accounted for
by conditioning the distributions in (3.1) on the activity of C. Hence conditioned on
C, the number of significant connections from A to B and from B to A, measured
using CrossVal-DI decreased to 17% and 18% respectively at the highest connec-
tion strength, which would improve the accuracy of CrossVal-DI by 20% at that
connection strength.
Under the cascading topology, the connectivity in both directions between B to A
(measured using DI methods) appeared to be equally strong, compared to the proxy
topology where the directionality was clearly one-sided. Comparing the strength of
the coupling in both directions could also provide information about the topology
between the two neurons.
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Figure 3.3: (A) Experimental setup. (B) Distribution of first DLS spike time after
ICMS across all units. (right) Distribution of first DLS spike for two individual units.
The peak at ~6ms reflects the conduction delay between M1 and DLS. (C) Effect on
unit firing rate due to ICMS, estimated using CrossVal-DI, for an individual unit.
(D) KS statistic measuring deviation of first-spike latency distribution from uniform
for each unit in descending order. (E) Directed information measuring the effect of
ICMS on each unit in the same order as in (D). (F) Correlation between KS statistic
and directed information.

3.4 Rodent experimental data

3.4.1 Experimental setup

Next, we tested the ability of CrossVal-DI to detect connectivity in experimen-
tal data. We applied CrossVal-DI to measure the influence of intracortical micro-
stimulation (ICMS) applied to the primary motor cortex (M1) on spiking activity in
the dorsolateral striatum (DLS) of the rat (figure 3.3A), which was known to receive
projections from the sensorimotor cortex [60]. A Long-Evans rat weighing approxi-
mately 250 grams was chronically implanted with tungsten microwire arrays in both
M1 and DLS. Each array contained 16 microelectrodes (35µm diameter, 200µm elec-
trode spacing, 300µm row spacing in 8 by 2 configuration; Innovative Neurophysiol-
ogy, Durham, NC). Stereotactic coordinates relative to bregma were used to center
the arrays (anteroposterior 2 mm, mediolateral 2 mm, and dorsoventral 1.5 mm for
M1; and anteroposterior 0.5 mm, mediolateral 4 mm, dorsoventral 4.5 mm for DS).
M1 implants were targeted for layer 5 pyramidal neurons. Monophasic ICMS pulses
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at 300µA and 250µs duration were applied at random intervals between 0.5s to 3s
in M1. Single unit activity from the DLS was recorded with a Multichannel Acqui-
sition Processor (MAP; Plexon Inc., Dallas, TX) and sorted using an online sorting
application (Plexon Inc., Dallas, TX). All procedures were performed in compliance
with the regulations of the Animal Care and Use Committee at the University of
California, Berkeley.
Based on the distribution of the first DLS spike latency following ICMS (“first-spike
latency” distribution, aggregated over all 15 units recorded, figure 3.3B), there was
a sharp excitatory increase in spike probability at approximately 6ms after a brief
inhibitory period. This 6ms latency was consistent with conduction delay estimates
(~1.8 to 10ms) between M1 and DLS reported in [61]. Individually, the effect of ICMS
varied from unit to unit. If the effect of ICMS on a unit was weak, we expected the
first-spike latency distribution for this unit to resemble a uniform distribution. Hence,
we used the deviation from uniform as a rough estimate of the influence of ICMS on
each unit. To quantify this deviation, we computed the Kolmogorov-Smirnov (KS)
statistic which measured the maximum deviation between the empirical cumulative
distribution function (CDF) and the uniform CDF. The KS statistic for each unit’s
first-spike latency distribution is shown in figure 3.3D.

3.4.2 Data analysis

We used CrossVal-DI to estimate the directed information from ICMS to each unit
recorded in the DLS. The data set consisted of 321s of spike train data, binned at
1ms resolution, for 15 units. All parameters (e.g. basis function set) were kept
the same as those used throughout all the simulations. Out of 15 units, 12 showed
significant influence from ICMS (figure 3.3E), while only 1 unit out 15 showed signif-
icant connection in the opposite direction (i.e. the effect of DLS spiking on ICMS).
Aside from significance of connection, directed information also provided informa-
tion on the temporal profile of the effect of ICMS based on the estimated set of
parameters β̂m. From (3.3) and (3.5), the exponential of the extrinsic history factor
exp (βk) = exp

(∑M
m=1 β̂mb

ext
m

)
represented a multiplicative gain on the unit’s firing

rate λ due to an ICMS pulse at k time lags in the past. This factor as a function
of time lags for a representative unit is shown in figure 3.3C. On average, a sharp
increase in gain occured at 5.7 ± 0.5ms, which corresponded well with the conduc-
tion delay estimate from figure 3.3B. In addition, we tested CrossVal-DI’s ability to
quantify the degree of influence. Comparing the directed information obtained using
CrossVal-DI with the KS statistic obtained earlier, we found that directed informa-
tion was strongly correlated with the KS statistic (R2 = 0.83), which suggested that
directed information was a strong indicator of the degree of influence.
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We performed the same analysis using the correlation method with the highest over-
all performance in simulations (Conv/Corr with 5ms sliding window and p < 0.001
threshold). Using this procedure, only 1 out of 15 units showed significant correla-
tions. Secondly, the R2 values obtained from Conv/Corr did not correlate with the
KS statistic (R2 = 0.04). Moreover, the 6ms conduction delay cannot be estimated
from this method. The low correlation likely resulted from the delayed influence from
ICMS on DLS spiking due to the conduction delay. In this case, Conv/Corr with a
larger smoothing window (i.e. > 6ms) or XCorr (which accounts for time shifts) were
much more suitable approaches, even though the accuracies were lower during sim-
ulations. Using a 10ms window, 11 out of 15 units were significantly correlated, but
the R2values did not correlate well with the KS statistic (R2 = 0.17). Using XCorr,
12 out of 15 units showed significant correlations, and the R2 values correlated well
with the KS statistic (R2 = 0.76). Furthermore, the conduction delay could be es-
timated from the time shift that gave maximal correlation. On average, we found
the conduction delay to be 4.5± 2ms, consistent with the previous estimate of 6ms.
Hence, choosing the appropriate method and binning parameters to do correlations
may require some prior knowledge on the data, such as the conduction delay in this
case.

3.5 Primate experimental data

3.5.1 Experimental setup

To further assess the applicability of directed information, we applied the analysis
to spike trains recorded from M1 of an adult male rhesus monkey (Macaca mu-
latta). Data was collected over 16 days from 64 teflon-coated tungsten microelec-
trodes (35µm diameter, 500µm electrode spacing, in 8 by 8 configuration; CD Neural
Engineering, Durham, NC). The arrays were implanted bilaterally in the hand/arm
area of M1, positioned at a depth of 3mm targetting layer 5 pyramidal neurons. Lo-
calization of target areas were performed using stereotactic coordinates of the rhesus
brain. Single unit activity was recorded with a Multichannel Acquisition Processor
and sorted using an online sorting application (Plexon Inc., Dallas, TX). Isolated
units were then verified off-line. All procedures were performed in compliance with
the regulations of the Animal Care and Use Committee at the University of Califor-
nia, Berkeley.
The monkey was trained to perform a delayed center-out reaching task (figure 3.4A)
using his right arm (“manual control”) or with a cursor controlled through a brain-
machine interface (“neuro-prosthetic control”). The task involved cursor movements
from the center towards one of eight targets distributed evenly on a 14cm diameter
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circle. Target radius was set at 0.75cm. Each trial began with a brief hold period at
the center target, followed by a GO cue (center changed colour) to signal the reach to-
wards the target. The monkey was then required to reach and hold briefly (0.2-0.5s)
at the target in order to receive a liquid reward. In manual control, reaching was per-
formed using a Kinarm (BKIN Technologies, Kingston, ON) exoskeleton where the
monkey’s shoulder and elbow were constrained to move the device on a 2-D plane.
In neuro-prosthetic control, spiking activity from a select number of neurons were
mapped to kinematic parameters that determined cursor position. Specifically, units
with stable action potential waveforms and interspike interval distributions over days
(“direct” units) were chosen as input to a linear regression model, which was then
used to produce cursor position (see Section 2.2.3 for more details). Stability of the
unit was the only criteria used for selecting direct units; directional tuning or modu-
lation information was not considered. Stability of unit recording was determined by
visual comparison of the current waveform shape and amplititude to the previously
stored template. The interspike interval (ISI) distributions were also examined to
ensure that the recordings were from stable single units. Finally, we confirmed the
stability of those units using a commercially available software (Wavetracker; Plexon
Inc., Dallas, TX), which decomposed the waveforms into two- and three-dimensional
principal components such that comparisons of the waveforms over time can be read-
ily made. Other units that were also recorded, but not directly linked to the BMI
are referred to as “indirect” units. Neuro-prosthetic control sessions were performed
on the same day as manual control sessions for 7 out of the 16 days.

3.5.2 Degree of connectivity

We applied CrossVal-DI to every pair of units to analyze the degree centrality for the
network of M1 neurons while performing the center-out reaching task under manual
and neuro-prosthetic control. We used 7 recording sessions each for manual and
neuro-prosthetic control. Spike trains were binned at 1 ms resolution. For neuro-
prosthetic control, we analyzed the neural data during the interval as the cursor
moved from the center to the target. For manual control, since the reach times
were shorter, we also included the interval as the monkey returned to the center
target to initiate the next trial. Units with an average firing rate below 1Hz were
excluded due to the difficulty in estimating the parameters for sparse spike trains. An
average of ~50 units from contralateral/ipsilateral M1 were included in the analysis.
All parameters (e.g. basis function set) were exactly the same as those used in
simulations with the addition of the reaching target angle as another covariate to
the GLM. This was used to account for dependencies that may arise purely from
similar directional tuning.
The directed information method proposed here provides direction in connections
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Figure 3.4: (A) Experimental setup. The monkey performs a center-out reaching
task using neuro-prosthetic and manual control. (bottom) Timeline of task. (B)
Sample waveform and directional tuning of a typical unit with cosine tuning. (C)
Connectivity “map” obtained from applying CrossVal-DI to all possible pairs of units.
Each pixel represents the connection strength between the two units. (D) Number
of connections for each unit sorted by directionality.
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between units. For each unit, we defined two separate degree centrality measures:
out-degree, which measured the number of outgoing connections, and in-degree which
was the number of incoming connections (figure 3.4B). For some pairs, we found the
directed information to be significant in both directions. This may be indicative of
a cascade topology between these two neurons (i.e. they are both influenced by a
common neuron) and not a true functional connection. Hence, for these connections,
we applied the following convention: if the connection in one direction was much
stronger (specifically, twice as strong) than the other, we considered the overall
connection to be unidirectional. Overall, the unidirectional connections constituted
approximately 70% of all the connections (figure 3.4C). All subsequent analysis was
focused on the unidirectional connections.
To quantify the relevance to external behaviour for each unit, we computed the
commonly used modulation depth, which was the firing rate difference between the
maximum and minimum of the fitted cosine direction tuning curve (see Appendix).
Figure 3.5 shows the modulation depth plotted against out-degree and in-degree
across all days for the two modes of control, separated by neuron population. The
out- and in-degree were normalized by dividing by the total number of units recorded
for each day. Interestingly, we found that modulation depth was most strongly
correlated with out-degree (R2 = 0.5, p < 0.01) during neuro-prosthetic control,
but only weakly correlated during manual control (R2 = 0.14, p < 0.01). On the
other hand, modulation depth was uncorrelated with in-degree in both control modes
(R2 = 0.002, p > 0.05 and R2 = 0.001, p > 0.05 for neuro-prosthetic and manual
control, respectively). We further separated our analysis between the direct and
indirect neurons. Under neuro-prosthetic control, direct neurons showed higher out-
degree/modulation depth correlation (R2 = 0.74, p < 0.01) than indirect neurons (R2

= 0.46, p < 0.01). Under manual control, both populations were weakly correlated
(R2 = 0.04, p > 0.05, and R2 = 0.18, p < 0.01 for direct and indirect neurons,
respectively).
We also used an alternate metric for quantifying the relevance to external behaviour
for each neuron: the mutual information between the neuron’s activity and target
(see Section 2.2.4). We again found that mutual information was more correlated
with out-degree (R2 = 0.21, p < 0.01) during neuro-prosthetic control than during
manual control (R2 = 0.15, p < 0.01). In-degree was uncorrelated with mutual
information during both control modes (R2 = 0.0006, p > 0.05 and R2 = 0.002,
p > 0.05 for neuro-prosthetic and manual control, respectively).
We repeated the analysis using correlation-based approaches to compute the con-
nectivity. Similar to before, we used the correlation method with the highest overall
performance in simulations (Conv/Corr with 5ms sliding window and p < 0.001
threshold). Since correlation is a symmetric measure (i.e. correlation between X and
Y is the same as between Y and X), we could only evaluate the number of connections
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Figure 3.5: Modulation depth plotted against normalized in-degree and out-degree
for neuro-prosthetic control (A, B) and manual control (C, D). Circles refer to direct
neurons, crosses refer to indirect neurons.
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for each unit. Overall, we found modulation depth to be significantly correlated with
the (normalized) number of connections during both modes of operation (R2 = 0.58
and R2 = 0.54 for neuro-prosthetic and manual control, respectively). However, this
analysis could not provide further insight on whether behaviourally relevant neurons
correspond to those that influence many other neurons, or being influenced by many
others.

3.5.3 Stability of connections

In addition, we examined whether the connection strengths changed over the 16
days of neuro-prosthetic control. If the changes in the network connectivity reflected
changes due to learning, the connection strengths between the same neurons should
show gradual consolidation as the task was learned. However, due to the impossibil-
ity of recording from the same neurons across the whole array over days (due to head
movement, scar tissue buildup, etc.), we confined the analysis to the direct neurons,
which were closely inspected to ensure that the action potential and interspike in-
terval were stable over time. The connection strengths computed using CrossVal-DI
between the direct units for days 5, 13 and 14 are shown in figure 3.6A. To evalu-
ate the stability of the connections across days, we performed pairwise correlations
of the connection strengths for each unit across days. We found an initial increase
in the stability of the connections, followed by saturation (figure 3.6B). This result
reveals striking similarity with the stability of tuning properties shown by Ganguly
and Carmena[22].
We replicated the analysis using Conv/Corr (5ms sliding window) to measure con-
nection strength. Although both CrossVal-DI and Conv/Corr showed increased sta-
bility in the connection strength over days, the correlation in connection strength for
Conv/Corr was much weaker, and the consolidation occured at a later stage. This
may have resulted from a lower sensitivity of Conv/Corr to detect weaker connectiv-
ity at the earlier stages of learning.

3.6 Discussion

Directed information has been shown to be a theoretically well-grounded framework
for inferring functional connectivity [4]. Here, we provide a practical assessment on
the usefulness of directed information, compared to standard correlation methods,
when applied to both simulated and experimental data. In addition, we present
a more computationally feasible approach, CrossVal-DI, for estimating the directed
information that shows higher performance than previously proposed estimators. We
tested CrossVal-DI against a number of correlation procedures (Bin/Corr, Conv/Corr
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Figure 3.6: (A) Connection strengths between the direct neurons for 3 different days
as measured using CrossVal-DI. R2 value below refer to the correlation between the
connection strengths on different days, averaged across the direct neurons. (B,C)
Pairwise correlations of the connection strengths across all 16 days, with connection
strength measured using CrossVal-DI and Conv/Corr respectively. Both metrics
show increased stability of connections over time.

and XCorr with various binning/window sizes) across 6 different parameter sets at
4 levels of increasing connection strengths. At all connection strengths, CrossVal-DI
shows high accuracy in estimating the connectivity in both directions on average.
Furthermore, CrossVal-DI is able to correctly identify the direction of influence,
which cannot be determined with correlations. Most importantly, the method is
able to robustly detect connections even when the underlying simulation model is
not a perfect match, but contains different non-linearities and terms that are not
accounted for in the a priori model imposed by CrossVal-DI. This robustness is also
reflected in the proxy topology where the connection between the two neurons is
further obscured by an intermediate neuron. Again, CrossVal-DI can still accurately
detect the direction of influence.
We further demonstrated the robustness of CrossVal-DI by applying the method to
both rodent and primate data. All implementation parameters were kept the same in
all applications. Applying our method to rodent recordings, we show that directed
information can correctly infer the degree of influence of intracortical stimulation
in M1 on neural spiking activity in DLS. The conduction delay between M1 and
DLS can also be approximated from the estimated parameters in the CrossVal-DI
model. We replicated the analysis using correlations for comparison. We first applied
the method with the highest accuracy in simulations (Conv/Corr with 5ms sliding
window), but could not find any significant connections. Instead, XCorr was found
to be a more suitable approach in elucidating these connections.
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Figure 3.7: (A) Illustration of high out-degree and in-degree neurons in relation to
network. (B) Schematic of the task-related network under manual (top) and neuro-
prosthetic control (bottom). Under manual control, the task-related network is likely
wider spread, and so neurons with high out-degree may not be task related. For
neuro-prosthetic control, there is a high correlation between neurons with high out-
degree and modulation depth, which suggests that the observed network is more
relevant to the task.
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Next, we analyzed neural recordings from a macaque monkey performing a center-out
reaching task under manual and neuro-prosthetic modes of operation. We examined
the degree centrality of each neuron, as such measures (i.e. in- and out-degree)
are often useful indicators of importance in a network. We found that a neuron’s
out-degree was more strongly correlated with its modulation depth than in-degree.
Neurons with high out-degree were neurons that influenced the activity of many oth-
ers and could be considered as important drivers of the observed network activity.
Therefore, if these neurons were also highly modulated by the target direction, then
this suggested that the observed network was highly relevant to the motor task. Con-
versely, neurons that were influenced by many others (i.e. high in-degree) may have
received input from non-task related neurons that acted as noise with respect to the
motor task (see figure 3.7A). Hence, such neurons would not necessarily have high
modulation depth, as evident from the lack of correlation with modulation depth.
Comparing between manual and neuro-prosthetic control, the out-degree/modulation
depth correlation was weaker in manual than neuro-prosthetic control. Correspond-
ingly, this weaker correlation in manual control suggested that the observed network
was less related to the task. Even though there were neurons with high modulation
depth, they did not influence the activity of many others, while there were highly
influential neurons that were unrelated to the task. This was likely a result of the
higher complexity and wider spread of the network responsible for controlling the
joints and muscles associated with natural arm movement. Our electrode array may
only have been recording from a portion of the relevant network mixed with neurons
from unrelated networks, resulting in a weak relation between observed network ac-
tivity and modulation depth (see figure 3.7B). In neuro-prosthetic control, however,
movement control was solely determined by the network of direct neurons. Hence,
the strong positive correlation between out-degree and modulation depth for the
direct neurons in neuro-prosthetic control reflects a change in neural activity that fo-
cuses the task-relevant control around the direct neurons. A recent study [62] found
widespread changes in modulation depth between neuro-prosthetic and natural arm
control that occur differently in direct and indirect neurons. Here, our findings sug-
gest that these widespread changes in modulation depth are coupled with changes
in functional connectivity in a coordinated fashion that results in a more focused
network of control.
Lastly, we analyzed the stability of the connections over time. Our method revealed
a consolidation of the connectivity over time that closely follows the consolidation
of directional tuning of the neurons shown by Ganguly and Carmena [22]. In that
study, the authors showed that the directional tuning properties of the direct neurons
stabilized as neuro-prosthetic control became proficient. Our analysis of the func-
tional connectivity of these neurons indicates that not only is the directional tuning
of each neuron individually stabilizing, but the connections among the neurons are
also consolidating, which provides strong evidence that long-term neuro-prosthetic
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control can lead to the formation of a stable cortical map [22].
In conclusion, these results provides further evidence that the neural circuitry changes
during BMI operation. In addition, our method offers a robust, applicable approach
based on directed information for identifying functional connectivity in intracortical
recordings.
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Chapter 4

Tackling the closed-loop BMI
problem

In the previous chapters, we have discussed the various changes that go on in the
brain as a subject learns to control a BMI in closed-loop. In this chapter, we shift our
focus towards designing and implementing algorithms that address the closed-loop
nature of BMI, as well as take advantage of different neural inputs (such as local
field potentials) to maximize robustness and long-term stability.

4.1 Brain-machine interface control using local field
potentials

Intracortical BMI studies have traditionally used single- and multi-unit activity as
control signals, due to the fact that the discharge of motor cortical neurons correlates
with different movement parameters, and that these cells can be volitionally modu-
lated irrespective of physical movement using biofeedback [63]. On the other hand,
certain features of local field potentials (LFPs), which are the extracellular potentials
resulting from the synaptic activity in a neuronal population, have also been shown
to exhibit similar tuning properties [11]. For instance, initiation of arm movement
has been shown to reliably modulate power in the LFP beta band (∼15–30 Hz)
[64]. In addition, other studies have shown that muscle activity, eye movements, and
reaching and grasping kinematics can all be decoded from LFP activity to varying
degrees of accuracy [9, 10, 65]. This makes LFPs an attractive alternative to single-
and multi-unit activity in BMIs because they are more robust to signal degradation
over time [66] and contain more information than other less invasive field potentials
such as electroencephalography (EEG) and electrocorticography (ECoG) signals.
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Despite the promising properties of LFPs for BMI control, only a few studies to date
have used them explicitly as an input signal in BMIs [67–69], with one study demon-
strating 2-D continuous BMI control [69]. In that study, Flint et al. trained decoders
offline biomimetically (using neural activity recorded during overt arm movements)
and held them fixed thereafter. While proficient BMI control was achieved in this
way, biomimetic decoders may not be viable in certain clinical scenarios where the
intended user cannot perform arm movements to fit the BMI decoder. Furthermore,
the biomimetic approach may constrain the subject to modulate neural activity dur-
ing a closed-loop BMI task in a way similar to activity evoked during natural arm
movements. For instance, a low frequency feature known as the local motor poten-
tial (LMP) has been found to be informative in decoding kinematic parameters of
arm-related movements [70], and Flint et al. indeed reported that the LMP and the
0–4 Hz band were the most informative features for LFP-based BMI control [71].
However, little is known about the degree of flexibility of the brain to modulate LFP
oscillations of higher frequencies, or whether a broader range of frequencies can be
used for BMI control with LFPs.
Here, we apply closed-loop decoder adaptation (CLDA) [72] during LFP-based BMI
control to adapt the decoder to subject-specific modulations of different LFP fre-
quency bands. Using CLDA in combination with an assistive control paradigm, we
trained two non-human primates to perform a center-out task using LFP activity
in the 0–150 Hz range. We then analyzed the relative importance of the different
frequency bands towards each monkey’s cursor control. While both monkeys ob-
tained proficient control of the cursor under identical task settings, the frequency
bands most important to control were characteristically different between both mon-
keys. Next, we constrained the BMI control input to various frequency sub-ranges
(0–40 Hz, 40–80 Hz, and 80–150 Hz) and found that our offline analyses accurately
predicted the bands with which the monkeys achieved the best online performance.
Interestingly, while each monkey performed better using certain frequency ranges,
both monkeys were able to achieve BMI control well above chance level with all
sub-ranges after decoder adaptation, suggesting that broad ranges of LFP frequen-
cies can potentially be used for closed-loop BMI control. Finally, we found that the
particular frequency bands most important for each subject’s control influenced the
number of channels they needed, due to differences in the correlations across channels
at different frequencies. Overall, our results demonstrate proficient, continuous BMI
control using LFPs and shed light on the range of frequencies that can potentially
be used, with implications for channel and feature selection.
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4.2 Materials & methods

4.2.1 Electrophysiology and behavioral task

Two adult male rhesus macaques (macaca mulatta) were chronically implanted in the
brain with bilateral microwire arrays of 128 teflon-coated tungsten electrodes (35 µm
diameter, 500 µm wire spacing, 8×16 array configuration; Innovative Neurophysiol-
ogy, Durham, NC), targeting the arm areas of primary motor cortex (M1) and dorsal
premotor cortex (PMd). All procedures were conducted in compliance with the NIH
Guide for Care and Use of Laboratory Animals and were approved by the University
of California–Berkeley Institutional Animal Care and Use Committee.
LFP signals were sampled at 1 kHz using a 128-channel MAP recording system
(Plexon Inc., Dallas, TX) and streamed to a dedicated computer running MATLAB
(The Mathworks, Natick, MA) to implement feature extraction and closed-loop BMI
control. Channels were referenced to ground and signal quality was visually in-
spected each day (channels with clear artifacts were removed). For each channel,
we estimated the spectral power in 15 consecutive 10-Hz bands from 0–150 Hz us-
ing the multi-taper method [73]. Spectral estimation was performed every 100 ms
using a sliding window containing the most recent 200 ms of raw LFP activity. The
estimates of log spectral power in different frequency bands, across multiple LFP
channels, were used as neural features for closed-loop BMI control (Figure 4.1A).
The monkeys were head-restrained in a primate chair and had their arms confined
within the chair while performing a self-paced 2-D center-out task. Monkeys were
previously trained to perform this task using their right arm. Trials were initiated by
moving the cursor under neural control to the center target and holding for 300 ms.
after which the monkeys had to reach to one of eight peripheral targets uniformly
spaced about a 13 cm diameter circle and hold for 400 ms to receive a liquid reward
(target radii = 1.7 cm). The monkeys were then required to move the cursor back
to the center target to initiate the next trial. If the monkeys failed to hold or reach
the target within 10 s, the trial was restarted without reward (Figure 4.1B).

4.2.2 Decoder design

A Kalman filter (KF) decoding algorithm (“decoder”) was used to implement closed-
loop BMI control. The KF assumes the following models for how the kinematic state
of the cursor (xt) evolves over time and how the observed vector of extracted LFP
features (yt) relates to the state:

xt = Axt−1 + wt (4.1)
yt = Cxt + qt (4.2)
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Figure 4.1: Experimental setup. (A) Illustration of the BMI task set-up. (B)
Trial timeline for the BMI center-out task.

where wt ∼ N (0,W ) and qt ∼ N (0, Q) are additive Gaussian noise terms. At each
iteration, the KF estimates xt using yt and its previous estimate of xt−1 (see [74]
for the actual filter equations that perform the state estimation at each iteration).
While there is no explicit delay between the kinematic state and neural activity in
the KF model, each measurement yt contains information from neural activity up to
200 ms in the past.
We used a position-velocity KF, in which the KF state vector xt is defined to include
the position (p) and velocity (v) of the cursor at time t, along both the horizontal
and vertical directions of the screen:

xt =
[
phorizontal,t pvertical,t vhorizontal,t vvertical,t 1

]T
.

The constant term 1 and a corresponding extra column of C are added to account
for neural observations yt with non-zero means. The structures of A and W were
constrained as in [5] such that integrating the velocity from one KF iteration perfectly
explains position at the next iteration. C andQ were initially constructed by shuffling
the rows and columns of a previous set of C and Q matrices that were trained with
native arm reaches from the subject. These initial parameters were then updated
during closed-loop BMI operation using the SmoothBatch CLDA algorithm (see
4.2.3). We typically adapted these parameters only during initial closed-loop control,
and did not perform additional CLDA on the same decoder throughout the rest of
the experiment.
In addition to producing estimates of the state vector xt, the KF also generates an
error covariance matrix Pt at each time-step that represents the filter’s confidence in
its own state estimates. Specifically, the diagonal terms of Pt represent the KF’s error
variances for its estimates of the state vector variables (i.e., larger values reflect lower
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confidence). Note that during standard operation of the filter, Pt quickly converges
to a steady-state matrix P that depends only the model parameters (A,W,C,Q).
During the first training session of each experiment, we utilized an assistive control
paradigm [75] simultaneously with CLDA. After decoder initialization, the cursor
was temporarily assisted towards the target. Specifically, the cursor trajectory was
determined by:

−−−→vcursor = α · −−−→vassist + (1− α) · −−→vuser

where−−→vuser is the decoded output from the Kalman filter, −−−→vassist is a vector that points
directly towards the current target, and −−−→vcursor is a weighted average of the two that
determines the final cursor output shown to the subject. The weighted average was
set by the assist level α ∈ [0, 1], which was manually adjusted in real-time depending
on the subject’s performance (at α = 0, the cursor was fully controlled by the
subject). The assist speed was set to 0.8 cm/s to match the natural speed of the
cursor when the subject performed the center-out task under manual control. All
analyses were performed on data with the cursor under full volitional control (0%
assist).

4.2.3 Closed-loop decoder adaptation

Closed-loop decoder adaptation (CLDA) is an emerging paradigm for improving or
maintaining the online performance of brain-machine interfaces. By adapting the
decoder’s parameters during closed-loop BMI operation (i.e., while the subject is
using the BMI), CLDA algorithms aim to match the decoder’s output to the sub-
ject’s particular pattern of neural activity [5–8, 76–81]. In our experiments, we used
the SmoothBatch CLDA algorithm to adapt the KF decoder’s parameters during
initial closed-loop control. The SmoothBatch CLDA algorithm has been previously
used in spike-based BMI experiments, where it was demonstrated to rapidly improve
BMI performance independent of the decoder’s initialization method [6]. Further-
more, SmoothBatch has also been shown to possess a variety of favorable algorithmic
convergence properties [72].
To illustrate how the SmoothBatch CLDA algorithm operates, let C(i−1) and Q(i−1)

denote the current observation model parameters of the KF decoder. SmoothBatch
first collects a batch of neural activity and cursor kinematics as the subject operates
the BMI cursor in closed-loop control using a decoder with these parameters. Next,
the algorithm generates an estimate of the user’s intended cursor movements. For
example, in our experiments, we used Gilja et al.’s method for inferring intended
cursor kinematics (“innovation 1” of the ReFIT-KF algorithm), which assumes that
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the subject always intends to move to directly towards the current target [5]. Other
methods for estimating intended movements could also be used in conjunction with
SmoothBatch, such as Shpigelman et al.’s supervised method [7] or Li et al.’s un-
supervised method [79]. Using the estimate of intended cursor kinematics and the
recorded neural activity, SmoothBatch then constructs batch maximum likelihood
estimates, Ĉ and Q̂, of the C and Q matrices using the following equations:

Ĉ = Y XT
(
XXT

)−1
(4.3)

Q̂ = 1
N

(
Y − ĈX

) (
Y − ĈX

)T
(4.4)

Finally, the algorithm updates the observation model parameters using a weighted
average:

C(i) = (1− ρ) Ĉ(i) + ρC(i−1) (4.5)
Q(i) = (1− ρ) Q̂(i) + ρQ(i−1) (4.6)

where i indexes discrete batch periods and the weighting parameter ρ ∈ [0, 1] con-
trols the influence of Ĉ and Q̂ on the new parameter settings. Note that Smooth-
Batch does not update the KF transition model parameters A and W . We typically
reparametrize ρ in terms of a half-life h (i.e., the time it takes for a previous maximum
likelihood estimate’s weight in the decoder to be reduced by a factor of 2):

ρh/Tb = 1
2 .

where Tb is the size of the batch (“batch period”) measured in units of time. In
our experiments, batch periods and half-lives were typically chosen in the ranges
Tb ∈ [1, 6] mins and h ∈ [0.5, 15] mins.

4.2.4 Performance evaluation

We quantified performance using target acquisition rate and percent of initiated
trials that succeeded, which was computed using a 5 minute sliding window with
30 s steps. For comparison, we estimated the chance rate (measured to be 0.3
trials/min at a 0% assist level) by simulating 30 minutes of the task performed using
a random walk trajectory (generated with the same transition model parameters
as the Kalman filters used for BMI control). We also measured trajectory quality
using reach time (RT), normalized path length (NPL), movement error (ME), and
movement variability (MV); see [6] for details on each metric.
To perform approximate comparisons of BMI cursor control performance across stud-
ies (see Discussion), we calculated a summary statistic using the Fitts Law derived
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index of difficulty, which has been proposed as a standardized assessment method for
neural prostheses [82]. The index of difficulty, measured in bits, is calculated based
on the distance to target (“Distance”) and target diameter (“Window”) as:

Index of difficulty = log2

(
Distance + Window

Window

)

From this value and the mean reach time, we calculate throughput in Fitts bits/sec
as:

Throughput = Index of difficulty
Mean reach time

We refer the reader to [5] for further details on throughput calculation.

4.3 Results

During an initial set of experiments, we randomly chose 20 channels from the right
M1/PMd implants and extracted the spectral power from fifteen 10-Hz bands, span-
ning 0–150 Hz, as input features to the decoder. Both animals attained full control
of the 2-D cursor after an initial session using CLDA with the assistive control
paradigm. The assistive control was reduced to zero after day 1 and CLDA was
stopped after day 2. Both animals performed the task under full volitional control
for two additional days. The target acquisition rate without assist improved from
day 2 to 4 for both monkeys (Pearson’s correlation coefficient, Monkey S: R = 0.34,
p < 0.001; Monkey J: R = 0.30, p < 0.001). The average target acquisition rates on
the 4th day for Monkey S and Monkey J were 10.6 ± 2.4 trials/min and 5.8 ± 2.9
trials/min, respectively. The average success percentage was 78%± 6% for Monkey
S and 72%± 8% for Monkey J. Figure 4.2A shows typical reach trajectories, rate of
target acquisition, and chance level for both monkeys on the 4th day of the series.
Trial-averaged spectrograms for each of the 8 target directions, along with tuning
curves for each frequency band, are shown in Figure 4.2B–C for the two monkeys.
The modulation depth, defined as the difference between the highest and lowest
points of the tuning curve, is shown for each frequency in Figure 4.2D. Monkey S
showed highest modulation in the 0–20 Hz frequency range, with another peak in the
50–80 Hz range, but decreasing modulation at higher frequencies. In contrast, Mon-
key J showed highest modulation depth in both 0–20 Hz and 80–150 Hz range. In
addition, the LFP modulations during BMI control were also considerably different
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than those during natural arm control. Figure 4.3 shows the trial-averaged spectro-
grams, tuning curves and modulation depth plots in prior training sessions where
Monkey S performed the same center-out task using natural arm reaches (no brain
control). The characteristic decrease in beta band (15–40 Hz) power during move-
ment was clearly evident during natural arm movement, but did not occur during
BMI control.
Although tuning curves are one representation of the relationship between cursor
movement and neural activity, they do not fully capture the exact mechanism by
which the cursor position is generated from the neural activity at each iteration,
since this is specified by the BMI decoder. To provide further insight into the LFP
activity modulated during control, we examined the KF decoder’s observation model
parameters (C and Q), which capture the relationship between cursor kinematics and
observed neural activity. Since our KF state vector models cursor position and ve-
locity, the rows of C reflect the preferred position and velocity directions of different
LFP features. For instance, Figure 4.4A illustrates the preferred velocity direc-
tions for each 10-Hz frequency band (averaged across channels) as assigned in C.
In combination with the covariance structure modeled in Q, these preferred veloci-
ties ultimately determine how feature modulations of different features contribute to
cursor movement at each iteration. For example, Figure 4.4B (top) shows the contri-
butions to the cursor displacement from each LFP frequency band (averaged across
channels) during an example trial. Each individual vector represents the net cur-
sor displacement during the reach due to the modulations of a particular frequency
band (together, the vectors add to produce the overall cursor displacement). The
underlying modulations of neural activity (averaged over the course of the reach)
that were generated to create this trajectory are shown in Figure 4.4B (bottom).
Hence, to generate the trajectory shown, Monkey S increased the 0–20 Hz activity
while reducing activity from 30–80 Hz.
In order to identify the LFP frequencies within the 0–150 Hz range that were most
important for each monkey’s overall BMI control, we calculated a movement contri-
bution profile for each monkey by similarly decomposing the cursor movement across
all successful trials. We considered three broad groups of frequencies — 0–40 (ap-
proximately the delta, theta, mu, and beta bands), 40–80 (low gamma), and 80–150
Hz (high gamma) — and determined the contribution of each frequency group, mea-
sured as a percentage of the total displacement. The resulting percentages directly
measure which frequencies were responsible for moving the cursor on the screen (Fig-
ures 4.4C–D, pie charts). For Monkey S, the 0–40 Hz and 40–80 Hz bands together
accounted for an average of 84% of the cursor movement per reach, while the higher
frequencies (80–150 Hz) only accounted for 16% of the movement. Interestingly,
Monkey J’s movement contribution profile was markedly different than that of Mon-
key S. For Monkey J, the 80–150 Hz and 0–40 Hz bands were most responsible for
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Figure 4.2: Neural activity during closed-loop BMI control. (A) Left: Typical
reach trajectories to the eight center-out targets on the fourth day of the series for
both monkeys. Right: Target acquisition rate on 4th day. Gray line indicates chance
rate. (B) Trial-averaged spectrograms illustrating the z-scored log power on one
channel during successful reaches for both subjects. (C) Tuning curves for each
of the 15 spectral power features (on one particular channel) used for closed-loop
control. Line thickness reflects standard error of the mean. (D) Modulation depth
as a function of LFP frequency.
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Figure 4.3: Neural activity during natural arm movement. (A) Trial-averaged
spectrograms illustrating the z-scored log power on one channel in the contralateral
hemisphere during natural right arm reaches in a center-out task for Monkey S.
Dotted line indicates the go cue. (B) Tuning curves for each of the 15 spectral power
features (on one particular channel). Line thickness reflects standard error of the
mean. (C) Modulation depth as a function of LFP frequency.
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cursor movement (46% and 34%, respectively).
As another way to measure the importance of different LFP frequencies for closed-
loop control, we performed a leave-one-out offline sensitivity analysis by removing
frequency groups from the Kalman filter decoder model and measuring the resulting
increases in the steady-state Kalman error variances. These increases measure the
impact on the decoder’s confidence in its state estimates if the corresponding features
were not used in closed-loop decoding (Figures 4.4C–D, bar graphs). For Monkey
S, removing the 0–40 Hz and 40–80 Hz bands resulted in larger increases (34% and
17%) in the Kalman error variances than removing the 80–150 Hz frequencies (5%),
suggesting that the 0–80 Hz frequencies were relatively more important. On the
contrary, for Monkey J, removing the 80–150 Hz frequencies resulted in the largest
increase (25%) in the error variance compared to removing the 0–40 Hz or 40–80
Hz bands (12% and 6% increase, respectively), suggesting that 80–150 Hz was more
important than the other two frequency groups for Monkey J.

4.3.1 Testing different frequency bands

To test the predictions derived from our analyses, we conducted multiple experi-
mental series in which both monkeys were restricted to only use features extracted
from various sub-ranges (0–40 Hz, 40–80 Hz, and 80–150 Hz) of the full 0–150 Hz
(from the same 20 channels) for closed-loop BMI control. Each series was composed
of 3–4 days, with CLDA and assistive control performed on the first day starting
from shuffled decoder parameters as before. On subsequent days, CLDA was used
on rare occasions only if performance decreased drastically. Figure 4.5 depicts both
monkeys’ performance, measured using average success percentage, mean reach time
and normalized path length, across these multiple frequency series.
Among the three frequency groups, Monkey S performed best in all metrics (success
percentage, RT, NPL, MV, and ME) when using 40–80 Hz for closed-loop control.
This result is consistent with his movement contribution profile (Figure 4.4C), which
showed that the 40–80 Hz band accounted for an average of 41% of cursor movement
during trials. However, the contribution profile showed that the 0–40 Hz band also
accounted for a large percentage of movement (43%), and furthermore, our Kalman
sensitivity analysis predicted 0–40 Hz to be the most important band for Monkey S.
These analyses suggested that the combination of the two frequency bands (0–40 and
40–80 Hz) might allow Monkey S to achieve a higher level of performance. As such,
we conducted an additional frequency series in which Monkey S used 0–80 Hz for
control. As expected, with respect to all metrics, Monkey S performed best across
all frequency series when using 0–80 Hz. For instance, Monkey S’s reach times were
significantly lower when using 0–80 Hz than any other band (p < 0.001 for compar-
isons to each of the other four frequency series; Kruskal-Wallis ANOVA). Differences
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Figure 4.4: Importance of different LFP features to closed-loop BMI con-
trol. (A) Preferred velocity directions for each 10-Hz frequency band as assigned
in the KF observation model matrix C for Monkey S. (B) Top: Cursor trajectory
(dashed gray line) during an example reach to the top target. Each colored vector
indicates the net cursor displacement during the reach resulting from a particular
frequency band. The vectors from all frequency bands add to produce the overall
cursor displacement. Bottom: The underlying modulations of neural activity gen-
erated during the sample reach. (C–D) Movement contribution profiles (pie charts,
left) and sensitivity analyses (bar graphs, right) across three groups of frequencies
— 0–40, 40–80, and 80–150 Hz, for both monkeys. Movement contribution profiles
were calculated by decomposing the subjects’ movements on successful trials into
contributions from the three groups of frequencies, as in (B, top). Sensitivity analy-
ses reflect increases in the Kalman error variances when certain groups of frequencies
are removed from the KF decoder model.
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in mean normalized path length, movement error, and movement variability when
using 0–80 Hz versus any other band were also all significant (p < 0.001 for ME,
MV, and NPL; Kruskal-Wallis ANOVA).
Conversely, among all bands, Monkey J performed best using 80–150 Hz in all metrics
(p < 0.001 for differences in RT, NPL, ME, and MV; Kruskal-Wallis ANOVA).
Indeed, these findings confirm the results of Monkey J’s movement contribution
profile and Kalman sensitivity analysis, both of which predicted 80–150 Hz to be most
important for his cursor control (Figure 4.4D). Moreover, just as those analyses had
predicted 0–40 Hz to be second most important, Monkey J indeed performed second-
best across all frequency series when using 0–40 Hz. Finally, Monkey J performed
worst across all metrics when using 40–80 Hz, a result that is also consistent with
predictions from the analysis.
Although we found that both monkeys performed better with some frequency sub-
ranges than others, it is interesting to note that they were still able to achieve BMI
control with all sub-ranges after initial decoder adaptation. Overall, these results
suggest that there may be broad flexibility in the frequencies that could potentially
be used for closed-loop LFP-based BMI control.

4.3.2 Testing different numbers of LFP channels

We also investigated the impact of reducing the number of channels on BMI control.
Due to the close proximity of adjacent channels on the electrode array, the correlation
between the raw LFPs from channels on the same array often exceeds 0.95. Hence,
it is possible that multiple channels on the same array may not contribute additional
information or degrees of freedom.
We varied the number of channels used for control in Monkey S from 50 channels
to 1 channel (all from the right hemisphere, split between M1 and PMd) and tested
each configuration for 3–4 days. We found that reach times decreased over time
irrespective of the number of channels used (Figure 4.6A). We repeated the 50 chan-
nel configuration after the last series (1 channel series) and the reach times rapidly
approached that of the previous series and kept decreasing. As mentioned above,
one reason for the apparent low impact of the number of channels may be due to the
high correlation between all LFP channels on a single electrode array. Comparing
the power of each frequency band across 20 channels, we found high correlations
between channels at frequencies below 80 Hz, but lower correlations at higher fre-
quencies (Figure 4.6C). Since Monkey S relied primarily on modulating frequencies
below 80 Hz for control, the redundancy across channels in the input was especially
prominent. For Monkey S, our results suggested that the volitional modulation of
different frequency bands, from even a single channel, was sufficient for 2-D cursor
control.
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Figure 4.5: Closed-loop BMI control with different sub-ranges of LFP fre-
quencies. Experimental performance, measured using (A) success percentage, (B)
reach time (RT, seconds) and (C) normalized path length (NPL, arbitrary units),
of both subjects across multiple experimental series in which various sub-ranges of
the full 0–150 Hz range were used as neural features for closed-loop control. Bars
indicate the mean across the entire series, and error bars indicate standard error of
the mean.
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Figure 4.6: Closed-loop BMI control with different numbers of LFP chan-
nels. Experimental performance of (A) Monkey S and (B) Monkey J, measured
using reach time, across multiple experimental series in which varying numbers of
LFP channels were used in the decoder for closed-loop control. (C) Correlation ma-
trices for Monkey S depicting the correlations across channels for the 0–10 Hz and
110–120 Hz frequency features (i.e., log power in different frequency bands). (D)
Average correlation between features values on different channels for both subjects.

We also tested BMI control in Monkey J with a 20 channel and 1 channel configu-
ration (Figure 4.6B). In contrast to Monkey S, Monkey J’s initial reach times with
1 channel input were dramatically higher than the 20 channel input series that was
used earlier. While the reach times decreased with training, the high initial increase
in reach times when switching from 20 channels to a single channel for Monkey J
suggested that the removal of channels from the same hemisphere had a greater
detrimental effect for Monkey J than for Monkey S. The disparity may result from
the difference in frequency bands most important for cursor control between Mon-
key S and J, and the correlations across channels for those frequency bands. For
Monkey J, the 80–150 Hz band accounted for most of the cursor movement, but was
also less correlated among channels (Figure 4.6D). Hence, there was less redundancy
across channels compared to Monkey S, resulting in a greater effect on performance
when channels were removed. Overall, we found that the effect of the number of
LFP channels used on BMI control can vary depending on the strategy of frequency
modulations used by a particular subject.
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4.4 Discussion

By using an adaptive approach (CLDA) to fit decoder parameters, we match the de-
coder output to the modulations of LFP evoked by the monkeys as they attempted
to move the cursor towards the target. This paradigm allows the cursor to be con-
trolled by LFP modulations specific to the subject. As a result, while both monkeys
were trained on identical task settings, our movement contribution and sensitivity
analyses revealed differences between monkeys in the contribution and relative im-
portance of each LFP frequency band. We tested the analysis results empirically by
requiring the monkeys to perform the same task using only sub-ranges of the entire
0–150 Hz band. For Monkey S, the 0–40 Hz (delta, theta, mu, and beta bands) and
40–80 Hz (low gamma), contributed significantly to the cursor movement (43% and
41%, respectively) based on the movement contribution profile. Subsequently, Mon-
key S performed best across all performance metrics when using frequencies 0–80
Hz and worst when these frequencies were removed. In contrast, for Monkey J, the
80–150 Hz (high gamma) range contributed the most out of the three groups to cur-
sor movement in our analysis (46%), and indeed Monkey J performed significantly
better across all metrics when using 80–150 Hz for closed-loop control. However,
it is interesting to note that both monkeys were able to achieve above chance level
performance using all of the frequency sub-ranges, even when they didn’t include
the most important frequency bands for each monkey.
A prior LFP-based BMI study by Flint et al. also extracted LFP spectral power
as neural features, but sub-divided frequencies in a different way: 0–4, 7-20, 70–
115, 130–200, and 200–300 Hz [69]. In addition, Flint et al. utilized the local
motor potential (LMP) — a very low-pass filtered version of the time-domain LFP
signal — as a feature for closed-loop control. In a related initial study [71], Flint
et al. reported that the LMP and the power in the 0–4 Hz band appeared to be
among the most informative features for control for both subjects (together, they
accounted for 80% and 43% of the features used in their two monkeys). A key
difference compared to the current study was that Flint et al. used a fixed decoder
trained from neural activity collected as the monkey performed natural reaches.
Since the decoder parameters did not adapt, the subjects may have been constrained
to modulate neural activity in ways similar to the activity used to fit the decoder;
namely, those generated during natural reaches. Given that the LMP has been shown
to be informative in decoding movement trajectories and reach direction [70], it is
not surprising that the LMP was found to be the one of the most informative features
for control when using a fixed decoder trained from natural reaches. In the current
study, the decoder was initialized using a random shuffling method and fit with
an adaptive procedure, using neural activity evoked during closed-loop BMI control.
Hence, subjects were not constrained to modulate neural activity in a predefined way.
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The range of informative frequencies in our results indicate that a broader band of
LFP frequencies can potentially be effective for closed-loop BMI control. This result
is consistent with recent findings that LFP power in the 30–50 Hz range and ECoG
power in the 75–105 Hz range can be volitionally modulated during closed-loop BMI
in a operant conditioning paradigm [68, 83, 84].
Are there frequencies that are inherently more readily modulated than others in a
closed-loop BMI setting? Hwang et al. [67] reported that LFP power in the 0–10
Hz and 20–40 Hz bands in the parietal reach region could be volitionally modulated
to initiate trials. Engelhard et al. [68] found that the 30–50 Hz band could be
robustly modulated when a constraint to use this range is directly imposed. When
such constraints are relaxed, our results indicate that the range of frequencies that
subjects modulate can vary from subject to subject. One potential reason for the
variation may be due to the recording quality of high frequencies from the electrode
array. From the time of initial array implantation to the time of the present study,
the LFP power in frequencies above 80 Hz decreased by approximately 10 dB for
Monkey S (~3 years post implant) but only 2 dB for Monkey J (~1.5 years post
implant). Hence, the low contribution of the 80–150 Hz band to BMI control for
Monkey S may be a result of the low signal-to-noise ratio in that frequency band.
Nonetheless, Monkey S was able to obtain control well above the chance level using
both these and other frequency bands (e.g., 0–80 Hz), indicating that broad ranges
of LFP frequencies can potentially be used for a closed-loop BMI.
Another difference between the two subjects is the randomized decoder initialization.
While this difference may have some effect on the subject’s control strategy, we
believe the effect is almost negligible. The trained decoder that is achieved using
the SmoothBatch CLDA algorithm ultimately depends on the patterns of spectral
power modulations evoked by the subject, and the co-occurrence/correlation of those
patterns with different directions of cursor movement. Therefore, if the subject uses
roughly the same control strategy each time a new decoder is trained using CLDA,
then the final trained decoder parameters will end up very similar, regardless of
the initialization. Secondly, due to the high level of assistive control during initial
CLDA, the cursor moves accurately regardless of the decoder’s initialization, thereby
significantly reducing any effect of the decoder’s initialization on the subject’s visual
feedback and resulting control strategy.
An important implication that follows from the monkeys’ choice of modulated fre-
quencies is the effect on BMI control when the number of channels used are reduced,
which relates to broader questions about the range of LFP signals. Past studies have
suggested that LFPs can reflect neuronal processes 0.5–2 mm away [85]. Modula-
tions of low frequencies (8–30 Hz) have been observed across wide areas of the motor
cortex [86], while ECoG studies have reported spatially specific activity at higher fre-
quencies (>40 Hz) [70]. The correlation between channels for the different frequency
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bands in the current study are consistent with these previous studies —namely, low
frequencies were more correlated than high frequencies across the array. Moreover,
the monkeys’ task performance when using varying numbers of channels for control
also confirms these results, as Monkey J performed worse than Monkey S when using
fewer channels due to his greater dependence on higher LFP frequencies.

4.4.1 Comparison of BMI performance

Development of brain-machine interfaces to date have largely focused on spike activ-
ity as the only source of control input. The present study adds to a growing body
of evidence that extracellular field potentials, measured through either intracortical
arrays (i.e. LFP) or electrodes on the cortical surface (i.e. ECoG), are viable alter-
natives for BMIs. To compare the level of BMI performance reported here with that
of other studies in the literature, we calculated the throughput in bits per second
for various studies (see Methods). Throughput is a summary statistic that uses the
mean reach time and Fitts Law derived index of difficulty [87, 88], which has been
proposed as a standardized assessment method for neural prostheses [82]. Table 4.1
compares the BMI performance achieved in this study with a sampling of other no-
table closed-loop BMI cursor control studies using spikes, LFPs, ECoG, and EEG.
For consistency, all studies listed in the table used a 4- or 8-target center-out task,
except for Flint et al., 2013 [69] (we chose to include this study as well because it
represents essentially the first demonstration of closed-loop continuous 2-D control
with LFPs). To calculate throughput for Monkey S and J in the present study,
we used the mean reach times from their 0–80 Hz and 80–150 Hz experimental se-
ries, respectively. Due to a wide range of varying task parameters in the literature
(e.g., center-out vs. point-to-point reaching), it should be noted that the throughput
metric is imperfect and does not allow for an exact comparison of cursor control per-
formance across BMI studies. For instance, the calculation of the index of difficulty
does not incorporate target hold time, an important aspect which undoubtedly af-
fects the difficulty of the task (we have therefore listed the target hold time for each
study as an additional indicator of task difficulty). However, despite its limitations,
the throughput metric captures important aspects of target acquisition tasks such
as target size, target distance, and reach time, and it therefore allows us to perform
approximate comparisons between studies. Overall, with respect to this metric, we
found that our LFP-based BMI performance compares favorably with that of spike-
based studies, and exceeds the performance of other studies using LFPs, ECoG, and
EEG.
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Table 4.1: Performance comparison to other BMI cursor reaching studies. Com-
parison of the BMI performance achieved in this study with a small sampling of
recent closed-loop BMI cursor control studies using spikes, LFPs, ECoG, and EEG.
Throughput in bits per second is computed by calculating an index of difficulty (mea-
sured in bits) based on task settings and dividing by the mean reach time (measured
in seconds). The index of difficulty of a task is calculated based upon the distance
to targets and the target size (see Methods).

Neural
signal

Study Target
hold
time
(ms)

Index of
difficulty
(bits)

Reach
time
(s)

Through-
put
(bits/s)

Spikes Taylor et al., 2002 [8] N/A 0.80 1.50 0.53
Kim et al., 2008 [89] 500 2.89 5.51 0.52
Ganguly & Carmena, 2009 [22] 100 2.37 2.30 1.03
Orsborn et al., 2012 [6] 400 1.36 1.23 1.10
Gilja et al., 2012 [5] 500 1.07 0.59 1.81

LFP Flint et al., 2013 [69] 100 N/A N/A 0.73
Present study (Monkey S) 400 1.27 1.31 0.97
Present study (Monkey J) 400 1.27 1.35 0.94

ECoG Schalk et al., 2008 [90] 0 1.71 2.13 0.80
EEG Wolpaw et al., 2004 [91] 0 1.18 1.90 0.62
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4.4.2 Practical considerations for neuroprosthetics

LFPs have potential advantages over single-unit activity as control signals for neu-
roprosthetics because of their robustness and longevity. Our paradigm for achieving
LFP-based BMI control is an important step forward towards clinically viable neu-
roprosthetics. We show that BMI control with LFPs can be achieved from initial
arbitrary decoder parameters by using CLDA. In a similar study involving closed-
loop LFP-based BMI control, Flint and colleagues recorded neural activity while
the subject performed the cursor control task using overt arm movements to train
a biomimetic decoder. However, this procedure may not be possible for paralyzed
individuals who cannot move their limbs.
Our BMI paradigm allows the decoder’s parameters to be uniquely optimized for the
specific set of neural features preferred by the subject. Using CLDA and an assistive
control paradigm, both monkeys in this study achieved proficient performance with
different ranges of LFP frequencies. Such flexibility in the neural features used for
closed-loop BMI control could be important for patients with deficits in their ability
to volitionally modulate certain LFP frequencies.

4.5 Multi-tasking using LFP BMI

As the subject operated the BMI system using LFP, we observed stereotypical arm
and leg movements as the subject attempted to move the cursor towards the target.
Hence, we were interested in determining whether such overt movements were neces-
sary for the modulation of LFPs, or simply a “good enough” solution that the subject
happened to settle on. To test this hypothesis, we used a multi-tasking experimental
paradigm that required the subject to simultaneously perform the center-out task
with the LFP BMI system while maintaining a steady isometric force with their hand
on a force sensor. Under this paradigm, the force constraint will require the sub-
ject to modulate their LFP without the previously observed overt hand movements.
Hence, if multi-tasking can be achieved, this would suggest that overt movements
are not necessary for modulation of LFPs.

4.5.1 Task setup and training

The experimental setup was largely the same as before, with the additional require-
ment of maintaining a steady force in the range of 0.75N±0.5N on the force sensor
(see Figure 4.7). The force sensor was placed within the chair, positioned approx-
imately where the heel of the animal’s palm would normally lie. A circle with a
radius proportional to the force measured was used to provide visual feedback. A
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Figure 4.7: Experimental setup for multi-tasking paradigm

teal donut was used to demarcate the accepted force limits. The cursor only ap-
peared on the screen when the force applied was within the limits, and the trial was
restarted without reward if the force applied was outside of the limits at any time dur-
ing the course of the trial. To instruct the subject on the multi-tasking paradigm,
we trained the subject on three intermediary stages: force-only, BMI/force block
switching, BMI/force task switching.

1. Force-only stage: The subject was required to press and hold the force at one
of three levels of force: 0.5, 0.75 and 1N (±0.25N at each level) for 400ms in
order to receive reward for the trial. The subject was then required to release
the force level back to baseline to start the next trial. The force target was
randomly chosen each trial.

2. BMI/force block switching: The subject performed interleaving 10 minute
blocks of force-only and BMI center-out.

3. BMI/force task switching: The subject performed interleaving trials of force-
only and BMI center-out.

CLDA for multi-tasking: posture-adjusted vs. original

Since the placement of the force sensor affects the positioning of the subject’s hand,
it may be possible that the change in posture can render the previously trained
decoder to no longer be usable. Hence, we also trained a separate “posture-adjusted”
decoder, whereby CLDA was used to update the decoder during a pure BMI session
in which the subject’s hand was placed over the force sensor (even though force was
not required).
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4.5.2 Results

The intermediary training stages took 15 days in total, and multi-tasking sessions
were performed for another 23 days. Figure 4.8 shows the average target acquisi-
tion rate and average reach times for each day for the various conditions, including
the pure BMI sessions done before multi-tasking training began, as a comparison.
Multi-tasking was initially performed with no target hold time requirement, and
was increased to 200ms once performance improved. The overall performance using
the posture-adjusted decoder steadily improved over a period of 8 days. While the
average reach time appeared to increase over time, the target acquisition rate was
actually improving since initially, the subject had a hard time maintaining the force,
and so the only success trials were extremely quick reaches, leading to a low average
reach time, but also low target acquisition rate.
After switching to the original, non-posture-adjusted decoder, multi-tasking perfor-
mance initially dropped. Interestingly, performance readily increased back up prior
levels over the next 4 days. During these sessions, CLDA was still performed at times
when performance was consistently poor, but the force sensor was removed, to allow
the subject to maintain their prior posture.
We subsequently increased the force requirement to 1N±0.5N, effectively doubling
the minimum force required. As expected, target acquisition rate dropped substan-
tially as the subject was not used to sustaining the higher force minimum. However,
the subject was eventually able to apply the higher force level while modulating LFP
activity, leading to higher target acquisition rate (although reach times remained
roughly constant).

Neural activity

Figure 4.9 shows trial-averaged spectrograms for pure BMI, BMI trials during task-
switching, multi-tasking with posture-adjusted decoder and multi-tasking with orig-
inal decoder. Although a slight drop in performance was seen when the subject
switched from the posture-adjusted decoder back to the original, the spectrograms
were nearly identical, suggesting that both decoders were in fact quite similar. In-
terestingly, comparing pure BMI with multi-tasking, we see largely similar neural
activity, except for a decrease in power in the 30–50 Hz range approximately 200ms
after the Go cue. In fact, this decrease in 30–50 Hz range was also visible during the
BMI trials in the task-switching paradigm, where the subject was required to apply
force on the sensor in order to initiate the trial.
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4.5.3 Discussion

In summary, we show that LFP BMI can still be accomplished while simultaneously
applying a sizable isometric force with their right hand. With practice, the tar-
get acquisition rate approached that of pure BMI. We also tested whether CLDA
was needed with his hand on the sensor to account for posture differences (posture-
adjusted decoder) and found that the original decoder largely worked just as well,
suggesting minimal effect on the decoder due to posture. Comparing the trial-
averaged spectrograms between pure BMI and multi-tasking, the primary difference
was a decrease in 30–50 Hz activity shortly after the Go cue. This may be a result
of the need to maintain the isometric force over the course of the trial. Overall, our
results suggest that modulation of LFP is not necessarily tied to overt arm move-
ments. Furthermore, our results indicate that BMI using LFP can still be used while
the subject’s arm is performing a different (albeit, simple) task, which can be useful
from a practical standpoint.
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Chapter 5

Conclusion

Realizing robust closed-loop brain-machine interface control presents challenges in
both neuroscience and engineering. The progress described here represents important
steps towards understanding how the brain interacts with a BMI, and how to leverage
that interaction to enable stable, long-term control.

5.1 Thesis contributions

Specifically, this thesis contributes to a number of areas regarding BMI control:

• Applying a metric from information theory, mutual information, we quantified
the amount of information encoded in a neural ensemble about the intended
direction of reach. We report two main findings. First, information encoding
was largely redundant, consistent with past studies. Secondly, information
encoded in the output neurons during BMI control was highest, even when
they were located in the ipsilateral hemisphere where information encoding
was lower during natural reaching [92, 93].

• We examined the connectivity of the neural network using a recently proposed
information-theoretic metric known as directed information. We applied the
metric extensively on simulated and rodent neural data and showed that di-
rected information provides higher accuracy and more insight than conventional
correlation methods [94]. Applying the method to neural data collected during
BMI control, we found a gradual consolidation of the neural network connec-
tions that parallel the changes in behavioral performance and in directional
tuning, providing further evidence suggesting that BMI control can lead to
formation of a stable cortical map [95].
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• We implemented 2-D closed-loop BMI control using local field potentials as
input, with a CLDA algorithm (SmoothBatch) to adapt to the neural changes
that occur during BMI operation. This study adds to the growing body of
evidence that field potentials (LFP or ECoG) can be volitionally modulated
well enough to provide 2-D cursor control. Moreover, we found substantial
differences in the pattern of LFP modulations between the two subjects. Hence,
adaptive methods such as CLDA may be useful to account for these inter-
subject differences [96, 97].

5.2 Future work

Our preliminary result demonstrating volitional modulation of LFP spectral power
through a BMI paradigm serves as a springboard for a number of other research
directions. The relationship between spiking activity and LFP are still unclear; how
independent are these two signal sources? Do they carry redundant or independent
information? If spiking activity is coupled to the phase of particular frequencies of the
LFP, how strong is this connection and can it be changed? Using a BMI paradigm, we
can begin to explore these directions by monitoring the spiking patterns as a subject
learns to volitionally modulate LFP oscillations and vice versa. These insights can
in turn inform BMI decoder design that can leverage both spiking activity and LFP,
either treating both as relatively independent sources of information to contribute
to higher degrees of freedom, or using them as observations of the same process in
order to improve signal-to-noise ratio and robustness.
Outside of BMI development, using the tools developed for inferring functional con-
nectivity, we can move beyond analyzing the local network of neurons in M1 to
understanding how connections may be formed with other brain structures that gov-
ern learning and higher cognitive processes. Combined with advances in multi-site
long-term intracortical recordings, we are in a position to gain fundamental insight
on how different parts of the brain communicate.
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Appendix

A.1 Raised cosine basis functions

bj =


1
2 cos

(
a log(t)− π

2 (j − 1)
)

+ 1
2 a log(t) ∈ [ π

2 (j − 1)− π
π
2 (j − 1) + π ]

0 otherwise.
(A.1)

where t ∈ {1, ..., 100}. For the intrinsic history effect, j ranges from 1 to 10, and
a = 3.5. For the extrinsic history effect, j ranges from 1 to 4 and a = 1.5. Figure
A.1 is a plot of the two sets.

Intrinsic history basis set bint Extrinsic history basis set bext 

Figure A.1: (left) Intrinsic history basis set and (right) extrinsic history basis set
using raised cosine functions.

A.2 Sparse generalized Laguerre-Volterra model
(SGLVM)

Under this model, we generate spike trains where the spiking probability µi for neuron
Y is determined as follows:
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Φ−1(µ) = α0 +
4∑
l−1

αl
〈
vl · Y i−1

i−100

〉
+

4∑
m=1

βm
〈
vm ·X i−1

i−100

〉
+

4∑
j=1

j∑
k=1

βj,k
〈
vj ·X i−1

i−100

〉 〈
vk ·X i−1

i−100

〉 (A.2)

Φ (x) = 1√
2π

∫ x

−∞
exp

(
−x

2

2

)
dx (A.3)

where Φ−1 (·) is the inverse Gaussian CDF, X is the activity of another simulated
neuron. The set α0, ..., α4 are preset parameters that determine the effect of past
spiking activity, while the sets β1, ..., β4 and βj,k for j, k ∈ {1, ..., 4} determine the
strength of the linear and nonlinear coupling between the two spike trains. v is a set
of orthonormal Laguerre basis functions of the following form [98]:

vj(t) =



(−1)t α 2j−t
2 (1− α)

1
2

×
t∑

k=0
(−1)k

(
t
k

)(
2j
k

)
αt−k (1− α)k

0 ≤ t < 2j

(−1)2j α
t−2j

2 (1− α)
1
2

×
2j∑
k=0

(−1)k
(
t
k

)(
2j
k

)
α2j−k (1− α)k

2j ≤ t ≤ R

(A.4)

where α = 0.6, R = 100, and j ∈ {0, ..., 3}, see figure A.2 for plot. To determine
physiologically realistic values for the parameters (α0, ..., α4,β1, ..., β4 and βj,k for
j, k ∈ {1, ..., 4}), we first fit the SGLVM on experimental data. We use spike trains
recorded from M1 of a rhesus monkey while performing a center-out reaching task
using natural arm movement (see Section 3.5.1 for more details). The parameters are
then determined by maximizing the likelihood function formed from (A.2) - (A.4),
with the exception of α0, which is manually adjusted to provide an average firing rate
of ~5-10Hz. This procedure is repeated using six randomly selected pairs of neurons
to obtain different parameter sets that reflect a variety of excitatory and inhibitory
connections.

A.3 Calculating modulation depth

To compute modulationd depth, we first calculate the mean firing rate for each
target. A cosine tuning curve is fitted to the mean firing rates by estimating the set
of coefficients in (A.5).
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Laguerre basis func!on set v 

Figure A.2: Laguerre basis function set used in the simulation model.

f = B1 +B2 sin θ+B3 cos θ (A.5)

MD =
√
B2

2 +B2
3 (A.6)

whereMD is the modulation depth. A standard F-test is used to assess the goodness
of fit, and the modulation depth is subsequently computed if the fit is significant
(p < 0.05).
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