
Interactive Code Snippet Synthesis Through

Repository Mining

Zvonimir Pavlinovic
Domagoj Babic

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-23

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-23.html

March 29, 2013

Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Interactive Code Snippet Synthesis Through Repository Mining

Zvonimir Pavlinović
UC Berkeley

zvonimir@eecs.berkeley.edu

Domagoj Babić
Facebook, Inc.

babic.domagoj@gmail.com

Abstract
Programmers repeatedly reuse code snippets. Retyping boil-
erplate code, and rediscovering how to correctly sequence
API calls, programmers waste time. In this paper, we de-
velop techniques that automatically synthesize code snippets
upon a programmer’s request. Our approach is based on dis-
covering snippets located in repositories; we mine reposito-
ries offline and suggest discovered snippets to programmers.
Upon request, our synthesis procedure uses programmer’s
current code to find the best fitting snippets, which are then
presented to the programmer. The programmer can then ei-
ther learn the proper API usage or integrate the synthesized
snippets directly into her code. We call this approach inter-
active code snippet synthesis through repository mining. We
show that this approach reduces the time spent developing
code for 32% in our experiments.

Categories and Subject Descriptors I.2.2 [Artificial In-
telligence]: Automatic Programming–Program Synthesis;
D.2.2 [Software Engineering]: Design Tools and Techniques–
Computer-aided software engineering

General Terms Languages, Algorithms

Keywords program synthesis, code mining, code reuse

1. Introduction
Software development is expensive. In the USA, there were
approximately one million software developers in 2010 [1].
Considering developers’ salaries alone, cost of software de-
velopment amounts to over hundred billion dollars per year,
not including outsourcing. Therefore, even modest improve-
ments in programmers’ efficiency promise significant sav-
ings. Our work focuses on improving programmers’ effi-
ciency by eliminating repetitive coding tasks, like retyping
boilerplate code snippets, and speeding up the learning of
unfamiliar APIs.

Indeed, a substantial portion of coding is a repetitive ac-
tivity [2]. In our user study, programmers repeatedly used
code snippets available locally or online to solve their pro-
gramming tasks. More precisely, we observed two main
types of snippets. The first type are boilerplate snippets,
which represent generic pieces of code that reappear fre-
quently. For instance, such snippets are common in testing

code. Instead of writing test cases from scratch, program-
mers often reused code from previously written test cases.
The second type are snippets containing frequent sequences
of API calls, representing common usage patterns. In order
to learn the proper usage of unfamiliar APIs, programmers
searched for snippets available online. Both types of snip-
pets have one thing in common: they waste programmers’
time.

Learning the correct usage of an unfamiliar API is time
consuming [3], as APIs are often complex and poorly doc-
umented. Programmers hence invest significant effort in de-
veloping even small snippets that use such APIs, which is
why we wish to generate such snippets automatically on de-
mand. For instance, consider the following piece of code that
uses Eclipse’s ASTParser API [4]:

ASTParser parser =

ASTParser.newParser(AST.JLS3);

char[] source = readInputCode();

parser.setSource(source);

CompilationUnit unit = (CompilationUnit)

parser.createAST(null);

Although a quite short one, this snippet took our test
subjects almost 25 minutes to write. Moreover, previous
research [5] also found that writing this example is time
consuming. Development of this piece of code is delicate
because of ASTParser’s inadequate documentation and lack
of available code samples. In contrast, using our tool that
synthesizes code snippets upon request, our test subjects
developed the above snippet in just few minutes.

Reusing boilerplate snippets wastes time as well. Pro-
grammers waste time on manually locating and integrating
appropriate snippets, instead of focusing on the core pro-
gram logic. To illustrate this, we use the following test case:

FileTester f =

TestFactory.createFileTester(filePath);

f.assertExists();

f.assertContentType(FileContent.XML);

f.assertSize(1024, PredicateOperator.LESS);

This code sample is a concrete instance of a generic code
template used for writing test cases that check basic file
properties. Discovering this code sample manually took our

1 2013/3/29

test subjects 13 minutes on average, while only 5 minutes
when using our synthesis approach.

A considerable amount of research has been done on au-
tomatic generation of code snippets [5–11]. Most of the tech-
niques are autocompleting only a single line of code [5, 6,
10, 11]. Existing multi-line synthesis approaches are either
inaccurate [8] or have slow response time [7, 9], in the order
of tens of seconds. Some of the approaches, like [5, 7, 9],
require programmers to manually provide input of a special
format, thus hindering adoption. Ideally, programmers’ in-
teraction with a synthesis procedure should be simple, and
the synthesis procedure fast and accurate. In this paper, we
introduce a new approach that reasonably accurately synthe-
sizes multi-line code snippets, requires minimal interaction,
and is effective in practice. Our work is based on mining
code repositories; we mine frequent repository snippets and
then use them to synthesize suggestion snippets upon a pro-
grammer’s request. We call this approach interactive code
snippet synthesis through repository mining, or shortly IN-
SYREM.

The INSYREM technique works in two phases. The first
phase, executed offline, mines frequent code snippets from
a given repository. Our mining algorithm searches for snip-
pets that occur more often than a given occurrence thresh-
old and are syntactically correct. After the mining process
has finished, discovered snippets are compressed into a suc-
cinct representation that will be used to synthesize sugges-
tion snippets. The second phase is triggered by program-
mers’ requests. Programmers request suggestions by simply
positioning the cursor appropriately and pressing a shortcut.
The code before the cursor is then compared to the discov-
ered snippets, yielding the best fitting code suggestions that
the programmers can either learn from or directly integrate.
We show by experiments that this technique increases pro-
grammers’ productivity. In particular, we make the following
contributions:

• We identify and describe two types of snippets program-
mers frequently use when developing code.

• We describe a practical code mining algorithm that finds
frequent code snippets.

• We introduce the INSYREM approach for automatic gen-
eration of snippets and report results that show a signifi-
cant increase in programmers’ productivity.

2. Overview
In this section, we give an end-to-end description of our ap-
proach using the first example from Section 1. As mentioned
earlier, INSYREM operates in two phases. The first phase
mines frequent code snippets and builds their compressed
representation — a snippet index. This phase is done offline.
The second phase is initiated by programmers, whose code
before the cursor is then used to find the best fitting snip-
pets in the snippet index. Our synthesis algorithm rewrites

the found snippets so as to replace variables in snippets with
variables live at the point where the cursor is in the program,
while matching types. Resulting snippets are then presented
to programmers. We now describe each phase in more detail
using the given example.

2.1 Snippet Mining
The first snippet from Section 1 begins with a statement
that constructs a new ASTParser. Our approach mines the
available repositories for such constructors. To locate such
repositories, one can use tools like S6 [12]. In our approach,
administrators or programmers themselves provide reposi-
tories that contain code using APIs of interest, as well as
an occurrence threshold. For simplicity, we assume that pro-
vided repositories are joined into a single repository. Prior to
mining, the repository code is transformed into an abstract
syntax tree-like data structure that simplifies snippet com-
parison, needed for computing a number of occurrences with
which various snippets appear in the repository.

The mining algorithm first finds statements that occur
more often than a given occurrence threshold, and then pro-
ceeds by finding such statement sequences, i.e., snippets. We
will refer to such statements and snippets as frequent. Dur-
ing the mining, the algorithm also comes across snippets that
are very similar and differ only in, for instance, parameters
to API calls or subexpressions. The mining algorithm enu-
merates all syntactically correct snippets abstracted by sub-
stituting parameters and expressions with a placeholder sym-
bol. Those snippet abstractions are then treated as any other
snippets. This way, we discover similar snippets that would
individually get classified as infrequent.

Naı̈vely enumerating and memoizing all snippet abstrac-
tions would quickly exhaust all available memory. This
problem is exacerbated when occurrence thresholds are low.
The mining algorithm saves memory by disregarding fre-
quent snippets that are abstractions of other frequent snip-
pets. Such abstractions are redundant since information they
contain is already present in their concretizations, which oc-
cur often enough alone to be identified as frequent. At the
end, the mining procedure builds a compressed representa-
tion of all frequent snippets by exploiting shared statements
and expressions.

2.2 Suggestion Synthesis
To describe the synthesis procedure, we use a program-
mer’s request observed while investigating the INSYREM ap-
proach. Consider the partial code given in Figure 1a. The
“|” symbol denotes the current cursor position. Programmers
initiate a synthesis request by positioning the cursor at a de-
sired position and pressing a shortcut. The synthesis proce-
dure then collects information needed for suggestion synthe-
sis: code located between the cursor and the beginning of a
current method, and all variables live at the point where the
cursor is.

2 2013/3/29

...

a) ASTParser parser = |

ASTParser parser = ASTParser.newParser(AST.JLS3);

b) char[] source = <?>;

parser.setSource(source);

CompilationUnit u = (CompilationUnit) parser.createAST(null);

Figure 1. An example of a) programmer’s input and b) the code synthesized by INSYREM.

The synthesis procedure proceeds by searching for state-
ments in the snippet index that resemble the statement lo-
cated immediately before the cursor (see Figure 1a). We re-
fer to such statements in the snippet index as fixed state-
ments. The rest of programmers’ code, above the cursor line,
is compared to statements in the snippet index that precede
fixed statements; the number of matched statements and ex-
pressions is later used to rank autocompletion suggestions.
Suggestion snippets are generated by taking code from the
snippet index that comes after fixed statements and rewriting
it so as to include programmers’ live variables. The sugges-
tions are then sorted heuristically and presented to program-
mers. The best ranked snippet for the running example is
shown in Figure 1b. The <?> symbol will be described later.
The reader might notice the resemblance to the troublesome
first example from Section 1. Once synthesized, program-
mers can integrate the snippet directly into their code, ob-
taining the desired functionality in the matter of seconds.

3. Definitions and Notation
In this section, we present basic definitions, notation, and
terminology used throughout the paper. To formalize ab-
straction of snippets, we will use unranked trees [13] and
unranked top-down tree transducers [14], defined in the rest
of this section. Tree transducers perform transformations on
tree-structured data, like unranked trees, which makes them
a powerful transformation engine successfully used in term
rewriting and unification [15, 16].

Definition 1. Let Σ be a finite unranked alphabet. An un-
ranked tree over the alphabet Σ is a string over the symbols
from Σ ∪ {‘(’, ‘)’, ‘, ’}, where Σ ∩ {‘(’, ‘)’, ‘, ’} = ∅, of
the form f(t1, ..., tn), such that:

• f ∈ Σ and
• t1, ..., tn are unranked trees over Σ

The f node is the root of the tree, while t1, ..., tn are root’s
child subtrees. For leaves, we omit the parentheses for clar-
ity. The set of all trees over Σ is denoted by TΣ.

Definition 2. A single state propagation top-down unranked
tree transducer is a tuple (Q, Σ1, Σ2, q, R), where Q is a
finite set of states, Σ1 (resp. Σ2) is a finite unranked input
(resp. output) alphabet, q is the initial state, andR is a finite
set of transformation rules. Given c ∈ Σ1, d ∈ Σ2, and
q, p ∈ Q, transformation rules T ∈ R can have two possible
forms; either (q, c) → d or (q, c) → d(p). The first form
substitutes the subtree rooted at c with d, and the second

form renames node c to d and propagates a single state1 p
to all of c’s (after substitution, d’s) child subtrees.

Transformation of an unranked tree t is defined induc-
tively on t’s subtrees. In a state q, transformation T q(t)
transforms a tree t as follows. If the tree is empty (ε), the
transformation will return an empty tree. If the tree is of the
form f(t1, ..., tn), there are two cases that need to be consid-
ered. In the first case, there is no applicable rule for the node
f in state q and the transformation returns an empty tree.
In the case there exists an applicable rule, the tree is trans-
formed as follows. If a matching rule is of the first form,
the tree will be replaced by a single node. If the rule is of
the second form, f will be renamed and the transformation
rules will be applied to its children with the propagated state.
Figure 2 illustrates two possible transformation rules.

T q(a(b, c)) ⇒

a

T q(b) T q(c)

⇒

a

d e

Figure 2. Transforming the a(b, c) tree using the (q, a) →
a(q), (q, b)→ d, and (q, c)→ e transformation rules.

The first transformation propagates the initial state q to a’s
children. Then, node b is transformed into d using the second
rule, and node c is transformed into e using the third rule.

4. Snippet Mining
The goal of the snippet mining is to find all frequent code
segments (i.e., snippets) in a given repository. Moreover,
in our analysis, we observed that infrequent snippets often
have similar counterparts, which differ in only few subex-
pressions. We thus mine such snippets as well by replac-
ing differing subexpressions with a placeholder, effectively
abstracting snippets. The mining algorithm enumerates in-
creasingly abstract snippet abstractions. As snippets become
more abstract, they tend to match an increasing number of
code segments in the repository.

The main challenge during the enumeration is to avoid
excessive memory usage. To circumvent this problem, the
mining algorithm prunes the search to save memory. More
precisely, as soon as an abstraction of a snippet appears of-
ten enough, we stop the further search for abstractions. The

1 Our single state propagation top-down tree transducer is a simplified
version of the uniform top-down tree transducer, introduced by Martens
and Neven [14], which can propagate multiple states.

3 2013/3/29

algorithm then builds an index that compresses all discov-
ered snippet abstractions. The synthesis procedure uses this
index later to synthesize suggestions on demand.

4.1 Code Representation
Before the mining starts, we convert repository code into
an abstract syntax tree-like data structure that enables fast
snippet comparison needed for incrementing snippets’ oc-
currence counters. The main motivation for choosing trees
as the code representation is that checking the tree isomor-
phism, which is how we compare snippets, can be done
in polynomial time [17], while for graphs only exponential
time algorithms are known [17].

Plain abstract syntax trees [18, p. 69] are not a suitable
code representation for accurate snippet comparison. Ab-
stract syntax trees encode variables by their names. Often,
semantically equivalent snippets can have different variable
names. We therefore represent variables by their types, ob-
taining a necessary generalization. Our tree data structure is
similar to the one developed by Raghavan et al. [19]. An
example of the INSYREM code representation is shown in
Figure 3.

STATEMENT

ASSIGNMENT

VAR. DECL.
String

CONSTANT
“OOPSLA”

STATEMENT

METHOD CALL
print

PARAMETERS

FIELD
String

Figure 3. The INSYREM representation of the String s =
“OOPSLA”; print(s); piece of code.

Each node in a tree has a type and a value, where applicable.
For example, the STATEMENTS node does not have an associ-
ated value, while the METHOD CALL node has a value — the
name of the corresponding method.

4.2 Abstract Snippets
We found that there are often many variants of essentially the
same snippet, differing only in few statements or subexpres-
sions. INSYREM mines such snippets as well. We compute
such snippets by enumerating abstractions of snippets from
repositories, i.e., replacing snippets’ expressions with a hole,
denoted <?>.

Snippets are defined by the simplified grammar shown
below. We omitted several productions for brevity. The
grammar defines snippets as sequences of statements. Snip-
pets’ expressions are defined using the expression produc-

tion. Expressions range from simple constructs, like vari-
ables and constants, to chains of method calls and field ac-
cesses.

〈statements〉 ::= 〈statement〉 | 〈statement〉 〈statements〉

〈statement〉 ::= 〈for〉 | 〈while〉 | 〈if 〉 | ...

. . .

〈expression〉 ::= 〈field〉 | 〈operation〉

〈operation〉 ::= 〈binoperation〉 | 〈unoperation〉

〈binoperation〉 ::= 〈expression〉 binop 〈expression〉

〈unoperation〉 ::= unop variable

〈field〉 ::= constant | variable |
| 〈methodcall〉 | 〈chain〉

〈chain〉 ::= variable.〈chain〉 | 〈methodcall〉.〈chain〉

〈methodcall〉 ::= method(〈params〉)

〈params〉 ::= 〈expression〉 | 〈expression〉, 〈params〉

We generate abstract snippets by applying transforma-
tions on a given snippet using a transducer from Definition
2. The transducer transforms trees over an unranked alphabet
Σ consisting of all node type labels from the INSYREM code
representation. The alphabet is unranked since our nodes in
general don’t have a fixed number of children. The trans-
ducer has only one (initial) state q and the following two
sets of transformation rules:

{(q, x)→ x(q) | x ∈ Σ}

{(q, x)→ <?> | x ∈ (expression ∪ statement)}

The rules from the first set recurse without modifying the
nodes they are applied to. The rules from the second set
abstract either expressions or a whole statement. More pre-
cisely, the rules replace nodes that root an expression or a
statement with holes.

The rules are non-deterministic, since two different rules
can be applicable to the same construct. Every possible run
of the transducer outputs a unique abstract snippet. This
way, snippet’s subexpressions are abstracted in all possible
ways. Note that the transducer can produce duplicates as
transformations can be applied in an arbitrary order. We
avoid producing duplicates by fixing the order in which we
apply transformations.

Examples of abstract snippets are shown in Figure 4. The
transducer generates the topmost snippet by applying only
the rules from the first set. Such snippets are identical to
snippets passed as input to the transducer and we call them
concrete. The transducer generates the bottommost snippet
by applying a rule from the second set to the root, which
is of the statement type. The arrows in the figure express a

4 2013/3/29

partially ordered and transitive more specific than relation;
a snippet at the start of an arrow is more specific than the
snippet at the end of the same arrow.

<?>

<?> = <?>

<?> = 2 int a = <?>

int a = 2

Figure 4. Abstractions of the int a = 2 snippet.

We now motivate mining of abstract snippets with an ex-
ample. Consider the following scenario. Suppose a given
repository consists of statements int a = 2 and int b =
3, each appearing only once. The mining procedure, with
the occurrence threshold set to two, will discover the snip-
pets shown in rectangles. The mining algorithm creates ab-
stract snippets for both statements and computes their oc-
currence counts. The snippets in rectangles appear twice,
as abstractions of both statements, thus satisfying the oc-
currence threshold condition, while the concrete statements
appear only once each.

4.3 Mining Algorithm
The main goal of the mining algorithm is to find all snippets
that satisfy the occurrence threshold condition. The mining
problem can be stated more precisely:

Given a repository and an occurrence threshold t, find
all abstractions of snippets that appear more often than
t times in the repository.

The mining algorithm starts by finding frequent state-
ments and continues by finding frequent statement se-
quences, i.e., snippets. At the end, the mining algorithm
builds a compressed representation of all discovered snip-
pets by exploiting shared statements and expressions.

4.3.1 Statement Mining
For each statement in the repository, the statement mining
algorithm finds abstractions that occur more often than a
given occurrence threshold. However, the algorithm does not
save all abstractions of a statement. For each statement, we
save only its most specific frequent abstractions. Note that
a statement can have several such abstractions since more
specific than relation is partially ordered, as illustrated by
Figure 4. Discovered abstractions will be used later to find
frequent statement sequences, i.e., snippets.

A straightforward approach to the statement mining
would be to enumerate all abstractions of statements in
the repository. After finishing the enumeration, the algo-
rithm could filter out infrequent abstractions and then save

the most specific ones for each statement. However, such
an approach proved to be impractical. Since the number of
statement’s abstractions is exponential in the number of its
subexpressions, memoizing all abstractions often exhausts
all available memory before filtering takes place.

INSYREM iteratively discovers the most specific frequent
abstractions of each statement, enumerating increasingly
more specific abstractions in each iteration. For example,
suppose that the repository consists of the single statement
from Figure 4. The algorithm starts with the bottommost
abstraction in the first iteration, enumerates the abstraction
located above the bottommost one in the second iteration,
and so on. In other words, the algorithm enumerates abstrac-
tions at increasingly higher levels of specificity. Given some
abstraction, we will refer to all of its abstractions located at
the specificity level below as immediate abstractions.

In each iteration, our algorithm computes increasingly
more specific abstractions while updating their occurrence
counts. As abstractions get more specific, they match fewer
statements in the repository, eventually becoming infre-
quent. Once an abstraction is identified as infrequent, we
use its immediate abstractions to compute the most specific
frequent abstractions for the corresponding statement. For
instance, suppose that the int a = <?> abstraction from
Figure 4 was identified as infrequent. Its immediate abstrac-
tion,<?> = <?>, is a candidate for being the most specific
frequent abstraction for that statement. In the rest of this sec-
tion, we will refer to such immediate abstractions simply as
candidates.

The algorithm removes candidates that are either infre-
quent or not the most specific for the corresponding state-
ment. A candidate is not most specific if it is also an im-
mediate abstraction of some other frequent abstraction. In
our running example, suppose that the <?> = 2 abstrac-
tion, enumerated in the same iteration as int a = <?>, was
found to be frequent. In that case, the <?> = <?> candi-
date is frequent but not the most specific one, as it is more
abstract than the mentioned frequent abstraction. Thus, we
discard that candidate. A candidate can also be infrequent.
Note that the algorithm also encounters infrequent abstrac-
tions that are more specific than some other infrequent ab-
stractions. Thus, some of the immediate abstractions (i.e.,
candidates) of such encountered infrequent abstractions are
also infrequent. We remove such candidates as well. The re-
maining candidates are saved as the most specific frequent
abstractions of the corresponding statement. Additionally,
for each statement, we remember its abstractions enumer-
ated in the current iteration so that the next iteration can enu-
merate abstractions at the next specificity level, upon which
we remove the old abstractions. Note that we use abstrac-
tions enumerated in the previous iteration also to check is a
candidate infrequent or not.

Algorithm 1 finds frequent statement abstractions us-
ing the above described approach. In each iteration, the al-

5 2013/3/29

Algorithm 1 Algorithm for finding frequent statement ab-
stractions.
input: S (set of statements)
output: M (mapping from statements to set of abstract

statements)
init: O = ∅ (mapping from statements and specificity levels

to set of abstract statements), level = 1
1: while |S| 6= 0 do
2: for each st ∈ S do
3: A := enumerateMoreSpecific(st, O, level)
4: if |A| = 0 then
5: S := S/{st}
6: else
7: O[st, level] := A
8: end if
9: end for

10: for each st ∈ S do
11: I := getInfreqAbstractions(st, O, level)
12: C := getImmdtAbstractions(I)
13: P := getInfreqAbstractions(st, O, level − 1)
14: C := C/P
15: F := getFreqAbstractions(st, O, level)
16: T := getImmdtAbstractions(F)
17: C := C/T
18: M [st] := M [st] ∪ C
19: O[st, level − 1] := ∅
20: end for
21: level + +
22: end while
23: return M

gorithm enumerates abstractions of an increasing level of
specificity. We enumerate abstractions of a statement using
the transducer described in Section 4.2 (line 3). The trans-
ducer applies transformations in the breadth-first manner
on statements’ trees. In the first iteration, we abstract the
root node producing the most abstract abstraction of a state-
ment. In the second iteration, we start new transformations
that abstract only root’s children. More precisely, the second
iteration abstracts all root’s children. In other words, we re-
place all statement’s immediate subexpressions with holes.
For instance, applying such transformations, the transducer
produces the second bottommost abstraction from Figure 4.
The subsequent iterations will abstract fewer root’s children
(expressions), eventually continuing to the next tree level.

We associate enumerated abstractions to the correspond-
ing statements (line 7). However, if the enumerateMoreS−
pecific function is called on a concrete statement, the func-
tion returns an empty set. In that case, we remove the state-
ment from the statement list (line 5). After we enumerated
abstractions for all statements, the algorithm can identify
infrequent abstractions. Thus, we proceed to computing the
most specific frequent abstractions of each statement. First,
we collect all infrequent abstractions of a statement (line 11).

Then, we collect immediate abstractions, i.e., candidates, of
those infrequent abstractions (line 12). After that, we re-
move candidates that were identified as infrequent in the
previous iteration (line 13, 14). The algorithm next collects
statement’s frequent abstractions enumerated in the same
iteration (line 15) and removes candidates that are more
abstract than those frequent abstractions (line 16, 17). We
save remaining candidates as the most specific frequent ab-
stractions for the corresponding statement (line 18). We then
remove abstractions of a statement enumerated in the previ-
ous iteration (line 19). The algorithm stops when there are
no more statements in the statement list.

We now show an example of the statement mining. Fig-
ure 5b shows the discovered abstractions for the repository
shown in Figure 5a, where the occurrence threshold is set to
two. The first discovered abstraction in Figure 5b is saved as
the most specific abstraction for all statements in the repos-
itory that create a new map. The second discovered abstrac-
tion is saved as the most specific for the last two statements
of the first two snippets in the repository, as both statements
have “a” as the first parameter, but differ in the second pa-
rameter. The third discovered abstraction in Figure 5b is
saved as the most specific only for the last statement of the
third snippet in the repository.

Note that an algorithm that would enumerate statement
abstractions in the other direction, from the most specific to
the most abstract abstractions, is impractical. Such an algo-
rithm would enumerate abstractions at increasingly higher
levels of abstraction. Two different statements can share the
same abstraction at different abstraction levels for each of
the statements. Thus, that abstraction will be enumerated
at different iterations. For example, the abstraction in the
topmost rectangle in Figure 4 would be enumerated in the
second iteration and the same abstraction for the statement
int a = 2 + 3 would be enumerated in the third iteration.
Consequently, the algorithm could not discard infrequent ab-
stractions early on, as they could become frequent in the
subsequent iterations. In our approach, the same abstraction
is always located at the same specificity level and, conse-
quently, enumerated in the same iteration. For instance, the
<?> = <?> abstraction is always one level above the most
abstract abstraction, no matter what the left/right hand sides
of the assignment are.

4.3.2 Statement Sequence Mining
The goal of the statement sequence mining is to find snip-
pet abstractions that occur more often than a given occur-
rence threshold. The algorithm, however, does not save all
abstractions of a snippet in the repository. For each snippet,
we save only its most specific frequent abstractions. The al-
gorithm builds upon results of the statement mining. More
precisely, the algorithm finds frequent sequences of discov-
ered statement abstractions.

Our algorithm iteratively discovers increasingly longer
sequences of statement abstractions. For each statement in

6 2013/3/29

a)
BidiMap m = createMap();
m.put(“a”, “b”);

BidiMap b = createMap();
b.put(“a”, “c”);

BidiMap d = createMap();
d.put(“d”, “e”);

b) BidiMap m = createMap() BidiMap.put(“a”, <?>) BidiMap.put(<?>,<?>)

c)
BidiMap m = createMap()
m.put(“a”, <?>)

BidiMap m = createMap()
m.put(<?>,<?>)

Figure 5. Given a repository composed of snippets in a) and an occurrence threshold t=2, the algorithm discovers abstractions
of statements in b) and abstractions of snippets in c). The algorithm names variables used in discovered abstractions using
names of variables from the repository. In this case, the algorithm used the name from the first snippet in a).

the repository, we enumerate increasingly longer abstract se-
quences starting with abstractions of that statement. When
doing so, we utilize discovered shorter sequences. For each
statement, we take its abstractions and prepend each of them
separately to discovered sequences starting at the next state-
ment.

Algorithm 2 discovers abstract sequences iteratively us-
ing the above described approach. In each iteration, we mine
statement sequences of an increasingly greater length, as fol-
lows. If the following statement of a current statement does
not exist, we remove the current statement from the state-
ment list (line 6). If there exists a following statement, we
first collect that statement (line 9) and then all sequences
starting with that statement that were discovered by the pre-
vious iteration (line 10). The algorithm then computes new
sequences by prepending each abstraction of the current
statement (line 14) to the collected shorter sequences, thus
producing longer sequences (line 15). We associate gener-
ated sequences to the statement (line 16), later removing in-
frequent sequences. The algorithm updates occurrence count
for each sequence it generates (line 17). As statement se-
quences get longer, they match fewer code samples in the
repository. Eventually, sequences become infrequent and we
cannot generate sequences of increasing lengths. Thus, if the
algorithm did not discover any sequence starting with the
following statement in the previous iteration, we remove the
current statement from the statement list (line 12), as we can-
not generate sequences of increasing lengths starting with
the current statement.

Note that the most specific abstraction of one statement
can be more specific than the most specific abstraction of
some other statement, as depicted by the arrow in Figure
5b. Consequently, one sequence of statement abstractions
can be more specific than some other sequence of state-
ment abstractions, as depicted by the arrow in Figure 5c.
Algorithm 2 directly generates only the most specific ab-
stractions of some sequence, without enumerating all of its
abstractions. Thus, the algorithm will not correctly com-
pute occurrence counts for all abstract sequences. To solve
this problem, we do the following. First, we generate all

Algorithm 2 Algorithm for finding frequent snippet abstrac-
tions.
input: S (set of statements), M (mapping from statements

to their set of most specific frequent abstractions, pro-
duced by Algorithm 1), F (mapping from statements
to their following statements), L (mapping from state-
ments and lengths to multiset of abstract sequences; for
length one, statements are mapped to the multiset of
their corresponding abstract statements)

output: P (set of frequent most specific abstract snippets)
init: length = 2

1: while |S| 6= 0 do
2: // Multiset of abstract statement sequences
3: T := ∅
4: for each st ∈ S do
5: if F [st] is not defined then
6: S := S/{st}
7: continue
8: end if
9: ns := F [st]

10: Q := L[ns, length− 1]
11: if |Q| = 0 then
12: S := S/{st}
13: else
14: A := M [st]
15: N := generateNewSequences(A, Q)
16: L[st, length] := N
17: T := T ∪N
18: end if
19: end for
20: T := updateCountsForAbstractions(T)
21: T := removeInfrequentSequences(T)
22: for each st ∈ S do
23: L[st, length] := L[st, length] ∩ T
24: L[st, length− 1] := ∅
25: end for
26: P := P ∪ T
27: length+ +
28: end while
29: return P

7 2013/3/29

abstractions of a sequence using discovered abstractions
of its statements. Then, we increase occurrence counts of
generated abstract sequences by the occurrence count of
the sequence. For instance, the algorithm will increase the
occurrence count of the second sequence from Figure 5c
by the occurrence count of the first sequence, as denoted
by the arrow. In Algorithm 2, this is implemented in the
updateCountsForAbstractions function (line 20). Then,
the algorithm removes infrequent sequences for all state-
ments (lines 21–23). We stop the algorithm where there are
no statements in the statement list.

An example of abstract snippets is shown in Figure 5c.
The algorithm generates the first snippet abstraction from the
first two repository snippets, thus identifying that sequence
as frequent. The second snippet abstraction is generated only
from the last repository snippet. However, that abstract snip-
pet is an abstraction of the first abstract snippet (denoted
by the arrow). Thus, the algorithm increased the occurrence
count of the second snippet by the occurrence count of the
first snippet; the second snippet then became frequent.

4.3.3 Snippet Index
The mining algorithm finishes by building a compressed
representation of all discovered snippets — a snippet index
— a map that maps statements to the snippets in which those
statements appear. To save memory, snippets in the snippet
index share common statements and expressions.

The snippet index facilitates fast retrieval of snippets by
maintaining a mapping between statement types and snip-
pets that have statements of the corresponding type. The syn-
thesis procedure uses the snippet index to quickly retrieve
snippets that match programmers’ code. During our exper-
iments, the programmers often requested for the following
types of statements: assignment, variable declaration, and
field access.

We proceed by presenting two optimizations: (1) state-
ment and subsequence sharing and (2) eliminating subsumed
snippets. The first optimization saves memory by exploit-
ing shared abstract statements and subsequences. Snippets
in the snippet index are represented as sequences of pointers
to discovered abstract statements. Additionally, two snippets
sharing a subsequence of abstract statements have a pointer
to that subsequence. The second optimization avoids index-
ing of snippets that are a part of some larger snippets. The
synthesis procedure will suggest only those larger snippets,
without withholding any potentially valuable code from pro-
grammers. This way, we save memory and don’t overwhelm
programmers with too many similar suggestions.

5. Interactive Code Snippet Synthesis
We suggest snippets from the snippet index upon request.
Programmer initiates a request by simply positioning her
cursor at a desired position in the program and pressing a
shortcut. Then, we find snippets in the snippet index that best

match her statement located immediately before the cursor.
In the rest of this section, we will refer to such snippets as
the best fitting snippets. Once the best fitting snippets are
found, we rewrite them so as to include variables live at the
point where the cursor is. We use the rest of programmer’s
statements, located above the cursor line statement, to sort
the snippets heuristically. At the end, we suggest the synthe-
sized snippets to the programmer.

5.1 Suggestion Synthesis
Upon a programmer’s request, the synthesis procedure col-
lects data needed for the synthesis. First, it collects code be-
tween the cursor and the beginning of the current method.
Then, we collect all variables live at the cursor position. The
synthesis procedures uses the input code to find and rank the
best fitting discovered snippets, which we then rewrite so as
to include the live variables.

We use only programmer’s statement located immedi-
ately before the cursor to find the best fitting discovered
snippets. We call that last programmer’s statement a cur-
sor statement. We find all snippets in the snippet index that
have statements that resemble the cursor statement, using
the type of the cursor statement. As mentioned earlier, we
refer to those resembling statements in the snippet index as
fixed statements. Synthesized snippets are merely statements
in the snippet index that come after fixed statements. In the
case that the cursor statement is partial, synthesized snippets
also include fixed statements. We then rewrite synthesized
snippets so as to include programmers’ live variables.

String s = “ab”;
s.conc|

String ab = “ab”;
ab.concat(ab);

print(ab);

String ba = “ba”;
ba.concat(ba);

print(ba + <?>);

f=10 f=7

suggestion synthesis
⇓

s.concat(s);
print(s);

s.concat(s);
print(s + <?>);

Figure 6. An example of suggestion synthesis. Program-
mer’s code is shown in the dashed rectangle. The cursor is
represented with the “|” symbol. The occurrence counts of
discovered snippets in the snippet index are denoted by f.

We now describe the example of the suggestion synthesis
shown in Figure 6. The synthesis procedure first collects the
programmer’s code, where the last partial statement is the
cursor statement. Then, we collect all live variables, which
in this case is the single String variable s. Using the type

8 2013/3/29

of the cursor statement (field access), the synthesis proce-
dure retrieves two snippets, pointed to by the arrows, from
the snippet index. Then, we identify the fixed statements,
shown underlined, by traversing the retrieved snippets’ state-
ments and performing a resemblance comparison to the cur-
sor statement. Then, we generate suggestions, shown in bold,
by taking the statements that come after the fixed state-
ments. Additionally, we include the fixed statements since
the cursor statement is partial. The synthesis procedure then
rewrites the suggestions so as to include the s variable. The
synthesized suggestions are shown in the bottommost rect-
angles.

In the case that a synthesized snippet uses a type for
which there is no corresponding programmers’ live variable,
the synthesis procedure declares a variable of that type.
Programmers can then position their cursors immediately
after those declarations and initiate requests to get variable
initialization suggestions. We name those variables using
names of variables from the repository, instead of creating
meaningless names.

5.2 Suggestion Ranking
The synthesis procedure sorts suggestions using a ranking
function and presents them to programmers. We sort sugges-
tions snippets based on their score, heuristically computed
from four parameters: snippet frequency, contextual match,
specificity, and size.
Frequency We consider snippet frequency (f) as an impor-
tant parameter of our ranking function. If some snippet ap-
peared more frequently in the repository used for mining,
then there are higher chances that it will be useful to pro-
grammers.
Contextual match For each synthesized suggestion, we
compare it to programmer’s code above the cursor line state-
ment. We perform the comparison using the INSYREM tree
representation of code. We compute the percentage (m) of
nodes of programmer’s code above the cursor line that match
nodes of statements preceding the fixed statement of a sug-
gestion. We call this value a contextual match. We plan to
research more sophisticated code comparison procedures in
the future, as well as integrate ones from XSnippet [6] and
Strathcona [7].
Abstraction In our initial experiments, we observed that
programmers prefer snippets that have fewer holes. There-
fore, our ranking function uses snippet abstraction parame-
ter (a), computed as the ratio between the number of holes
in a snippet and the number of its subexpressions.
Size We also observed that programmers prefer longer snip-
pets. Thus, we score longer snippets higher. Our ranking
function uses the size parameter (n), computed as the num-
ber of statements in a suggestion snippet.
Snippet score We use the following formula to heuristically
compute the score of a snippet. Formula uses all of the above

described parameters and the occurrence threshold t used to
discover snippets in the repository.

ln(1 +
f

t
)×m× n× a

We now explain the intuition behind our heuristic scoring.
Snippets with higher scores will show up higher in the sug-
gestion list presented to programmers. The first factor gives a
high score to snippets that are highly frequent. However, we
scale the frequency by the occurrence threshold. More pre-
cisely, we consider snippets with frequencies much higher
than the occurrence threshold almost equal; we want to rank
them relatively to each other using the other factors. Using
the contextual match factor, we put highly frequent snippets
at the top of the suggestion list only if they match program-
mers’ code very well. We use the size factor to favor longer
snippets. However, longer snippets might not be useful if
they have a lot of holes, which is why we use the abstrac-
tion factor. The above formula sorts the synthesized sugges-
tions in Figure 6 so that the first suggestion is listed before
the second suggestion, since the first suggestion has higher
frequency, fewer holes, and better contextual match.

6. Evaluation
To evaluate our approach, we implemented a tool based on
INSYREM and conducted a user study to measure develop-
ment time savings. Our tool is an Eclipse [20] plugin that
synthesizes Java suggestions upon a programmer’s request.
The user study consisted of 5 programming tasks. For each
task, we randomly arranged 11 test subjects into two equally
sized groups where one group solved the task with the help
of the tool, and the other without. We now describe imple-
mentation details of our tool and present the results of our
evaluation.

6.1 Implementation
We implemented the INSYREM approach as an Eclipse plu-
gin targeted for Java programs. The plugin provides func-
tionality for mining repositories and synthesizing sugges-
tions on demand using snippets discovered in those repos-
itories. In the rest of this section, we will assume that repos-
itories have been already mined. Programmers interact with
the tool by positioning their cursors at a desired position and
pressing the Ctrl + Space shortcut. This is the standard
Eclipse shortcut used for built-in autocompletion. The sug-
gestion synthesis is then carried on as described in Section
5. Figure 7 shows an example of suggested snippets.

Programmers can use synthesized suggestions in three
ways. Firstly, programmers can integrate suggestions at po-
sitions where their cursors are located. Programmers can
accomplish this by simply double-clicking on suggestions.
Secondly, programmers can copy a snippet and then paste
it at a desired position in the program. This can be done
by simply clicking on a suggestion, upon which suggestion

9 2013/3/29

Figure 7. An example of suggestions synthesized by IN-
SYREM in Eclipse.

code is copied to the clipboard. Lastly, programmers can
learn from suggestions and write the code on their own.

The major challenge in developing the tool was to ac-
curately parse partial cursor line statements. The Eclipse’s
built-in parser [4] performs recovery steps on syntactically
invalid code by removing lexems. Given a partial statement,
the parser thus produces a syntax tree that does not corre-
spond to the statement. Using such incorrect trees, our syn-
thesis procedure would inaccurately synthesize suggestions.
Instead, we listen for error messages from the Eclipse’s
parser. Using those messages, we infer what recovery steps
the compiler made and then reconstruct the syntax tree so
it corresponds to the programmers’ cursor statement. Effec-
tively, we try to undo Eclipse’s error recovery. This tech-
nique works well for partial code that programmers seem to
use most often, although it does not work for all cases. If
we cannot reconstruct the programmers’ cursor statement,
we indicate to programmers that the synthesis was not ac-
curate. We indicate this by setting the plugin icon’s back-
ground color to red. Otherwise, we set the background color
to green, as shown in Figure 7.

6.2 Scalability
We now analyze the complexity of INSYREM algorithms.
Let n be the number of statements in the repository, l the
maximal specificity level of all statements (see Figure 4), a
the maximal number of statement abstractions at any speci-
ficity level, s the length of the longest frequent sequence of
abstract statements, and m the number of frequent abstract
snippets. The time complexity of the statement mining algo-
rithm is O(l · n · a); the algorithm iterates at most l times,
traversing at most n statements where it performs constant
time operations on at most a statement abstractions. The al-
gorithm has the O(n · a) space complexity, as it remembers

all abstractions enumerated in the previous and the current
iteration. The statement sequence mining algorithm iterates
at most s times. For each statement, the algorithm creates
at most as new sequences. After traversing the statements,
the algorithm updates occurrence counts for all abstractions
of discovered sequences, which takes at most m · as steps.
Thus, the time complexity of the sequence mining algorithm
is O(s · as · (m + n)). In any iteration, the algorithm keeps
track of at most as sequences, which gives the O(as) space
complexity. The synthesis algorithm finds at most m best
fitting snippets. Locating fixed statements in those snippets
requires at most s constant time comparisons. The synthe-
sis procedure thus has O(m · s) time complexity and O(m)
space complexity. Note that all complexities are highly con-
servative and that variables a and s are small in practice.

6.3 Experiments
We evaluated our tool by conducting a user study, in which
we asked our test subjects to solve 5 Java programming
tasks. For each task, we asked half of the subjects, chosen
randomly, to solve the task with the help of our tool, and the
other half without. We chose the groups so that each subject
solved at least 2 tasks with the help of the tool. During the
evaluation, the subjects were allowed to use all available
resources, like Web, just as they would normally do in the
classical working environment. In our experiments, our tool
improved programmers’ efficiency by saving 32% of time
per task on average. Additionally, four test subjects gave up
on solving a task when they were not using the tool, while
only two subjects who used the tool quit a task.

6.3.1 Setup
We now present more details on how we conducted the
study. Our test subject group consisted of 11 UC Berkeley
undergraduate students. All subjects had experience in de-
veloping Java software using Eclipse IDE. None of the sub-
jects had any experience in using our tool prior to the user
study. Upon arrival, we gave our test subjects a 30 minute in-
troductory session to INSYREM, which included a brief tuto-
rial and three simple exercises. We introduced the subjects to
the approach at a high level and then explained the main fea-
tures of the tool. Additionally, we asked the subjects to solve
three simple programming tasks consisting of constructing
an object with the help of our tool.

In our preliminary experiments, we noticed that test sub-
jects can negatively affect each other. More precisely, fin-
ishing a task earlier by one subject distracts other subjects
or makes them uncomfortable for being slower. In this user
study, we gave our test subjects all tasks at once and asked
them to solve one task at a time. Instead of notifying others,
we asked the subjects to write the start and finish times for
each task. Additionally, we gave the subjects a difficult 6th
task that requires at least couple of hours of development
time. Using such a lengthy task, we avoided the situation
where one subject finishes all the tasks before other subjects,

10 2013/3/29

since in that case other subjects can clearly see she is done.
When we saw that all the subjects reached the sixth task, we
stopped the testing. We don’t report results for that 6th task.
We asked all subjects to write comments on how the tool
helped them on each task, if they were allowed to use it.

We chose 5 Java programming tasks that require usage
of unfamiliar APIs or boilerplate code. For each task that
requires usage of unfamiliar API, we collected Java files
from the Web that use that API. We used the API names as a
search keyword. Using the keyword, we queried GitHub [21]
for relevant code samples. We collected the first 10 Java
files that were returned as a search result. Additionally, we
collected all Java files needed for collected files to compile
correctly. Note that some of the search result files were
irrelevant since their authors declared their own classes with
the name same as the name of the corresponding unfamiliar
API. We discarded such irrelevant files.

Together with the files collected from GitHub, we also
used files from our INSYREM implementation project. We
did that for two reasons. First, our project was using some
of the APIs our testing tasks required. Second, we wanted
to simulate API diversity in repositories, which we expect
in practice. We summarized all the files into one repository.
Altogether, the repository consisted of 20,000 lines of code,
measured by cloc [22]. We mined the repository on a 4
core Lenovo T420si laptop with 4GB of RAM and Ubuntu
11.04 installed. The mining took roughly around 30 seconds
with an occurrence threshold set to 3, where 21 second
was spent on code transformation. We did not parallelize
our algorithms to utilize the multi-core environment. The
resulting snippet index occupied 601 KB of RAM, while the
size of the repository was 3.07 MB.

6.3.2 Results
We now present the results of our experiments. The graph
in Figure 8 shows the times required for solving each task
by each test subject. Additionally, the graph shows the mean
time and the standard deviation for each task and the subject
group. Our tool reduces the time spent on developing code
for 32% on average in our experiments. Moreover, using
our tool, only two test subjects were not able to solve a
task, while four test subjects quit a task when they were
not using the tool. We now describe the results of each task
in detail, show examples of synthesized suggestions, and
explain motivation the behind each task.
Task 1. The first task required subjects to write code that
operates over the BidiMap [23] object. More concretely,
the subjects were asked to initialize a bidirectional BidiMap
map, put their last name as a value with their first name as the
key, and then construct an inverse of the map. The purpose
of this task was to find out how much time our tool saves on
developing small pieces of code that use unfamiliar APIs.
Test subjects who were not allowed to use the tool spent 7.2
minutes on average on solving this task, while the subjects

M
in

u
te

s

Task 1 Task 2 Task 3 Task 4 Task 5

 0

 10

 20

 30

 40

 50

 60

B
aseline

Insyrem

B
aseline

Insyrem

B
aseline

Insyrem

B
aseline

Insyrem

B
aseline

Insyrem

Figure 8. The times test subjects required to solve program-
ming tasks with and without the help of the INSYREM tool.
The cross symbols denote the times when a test subject de-
cided to quit a task.

who used the tool only 2.2 minutes. All test subjects who
used the tool were faster than those who didn’t.

This task is difficult as it requires significant amount of
time to find examples on the Web that show how to construct
an object implementing the BidiMap interface. The subjects
noted that the following synthesized suggestion helped them
in solving the task:

BidiMap map = new DualHashBidiMap();

map.put(<?>, <?>);

The snippet shows how to initialize the map and how to put
values into it. The parameters of the put method differed in
the repository so INSYREM replaced them with placehold-
ers. The test subjects integrated this snippet automatically
into their code and then used the standard Eclipse’s auto-
completion to construct the inverse map.

11 2013/3/29

Task 2. The second task had a similar purpose as the first. We
asked the subjects to create a CompressorInputStream [24]
object with the Gzip compression method and a proprietary
file as an input. Test subjects who were allowed to use the
tool were faster by 3 minutes on average. Moreover, one test
subject who was not allowed to use the tool quit a task after
20 minutes, while all test subjects using the tool completed
the task.

Initializing CompressorInputStream is not trivial since
it is created by a factory class, as suggested by our tool:

InputStream is;

CompressorInputStream s =

new CompressorStreamFactory().

createCompressorInputStream("bzip2", is);

The suggested snippet shows how to create Compressor-

InputStream. The first parameter to the method that con-
structs a compressor hints how to specify the compression
method. The second parameter, object InputStream is,
hints how to set the input to the compressor. At the time
when the corresponding requests were made, the test sub-
jects did not have any live InputStream variables. Our tool
hence declared the is variable. The subjects then requested
suggestions that initialize that variable, upon which the tool
suggested snippets that create InputStream using a File,
a well known API.
Task 3. We used the third task to evaluate our approach on
tasks that require reuse of boilerplate snippets. First, we cre-
ated our own proprietary FileTester API that is used to
perform various checks on files. Then, using this API, we
implemented 20 tests that we included in the repository. We
gave the subjects who were not allowed to use the tool a sep-
arate repository where they could find those tests and reuse
the boilerplate code. Additionally, that repository contained
other irrelevant files, just as repositories do in practice.

The task required subjects to write a test that checks that a
file contains some XML content and that the file size is less
than 1KB. Subjects who were not allowed to use the tool
resorted to browsing the repository, which made them 5.39
minutes slower on average. Moreover, two of them were not
able to complete the task. The subjects who were allowed
to use the tool found the suggested snippets helpful and they
were not compelled to browse the repository. We present one
of the few suggested snippets:

FileTester t = TestFactory.

createFileTester(<?>);

t.assertExists();

t.assertContentType(FileContent.XML);

The suggestions did not provide the exact snippet the sub-
jects needed, but it suggested snippets that contained lines
that the subjects integrated into their code. The above snip-
pet is one such example. The snippet shows how to create a
FileTester object where the hole represents a placeholder

for the file path parameter, which differed in the repository
from test to test.
Task 4. We designed the fourth task so that it requires
more complex solution and usage of a significant amount
of code that our mining repositories did not contain. We
simulated the scenario where programmers’ tasks require
usage of freshly developed unfamiliar APIs for which ex-
ists only a small number of examples that can be used for
mining. We asked the subjects to parse a given Java file into
a CompilationUnit [4]. The task required the subjects to
read the contents of a given file and parse it using the men-
tioned API. The subjects allowed to use the tool were 37%
faster on average.

A similar, but shorter, problem was used by Jungloid [5],
XSnippet [6], and Strathcona [7], since at that time it was
hard to find relevant examples on the Web. We decided to
use this problem even though examples of the ASTParser

API usage can be found quickly. The subjects reported that
the tool was very helpful by providing the following snippet:

ASTParser parser;

CompilationUnit u = (CompilationUnit)

(parser.createAST(null));

The snippet shows how to construct a CompilationUnit

object. Then, the test subjects had to initiate a request for
an ASTParser [4] object. The tool responded with several
suggestions, one of them being the following snippet:

String source;

ASTParser p = ASTParser.newParser(AST.JLS3);

p.setSource(source.toCharArray());

The subjects integrated this snippet and then proceeded to
reading the contents of the file. They reused examples from
the Web since our tool did not suggest any useful snippets;
our repository did not contain enough relevant samples to be
mined. The files we collected from GitHub did not contain
code that reads from a file and the files from our projects
did not use such code frequently. More precisely, we imple-
mented a single method that reads contents from a file and
then reused that method whenever needed.
Task 5. The fifth task had the same purpose as the fourth
task, but this time the task was even more complex. The sub-
jects were asked to parse an XML file using the Document-
BuilderFactory [25] and then traverse the document and
count the number of XML nodes that satisfy a given pred-
icate. We provided the description of the XML format, as
well as an example file.

The tool suggested the useful snippet shown below. The
snippet shows how to construct a parser and parse XML
content from a file given its path. However, INSYREM had
little impact on the overall solving time for this task. The
tool did not provide any suggestions that were valuable for
traversing an XML file and extracting its content, which was
the most difficult part of the task.

12 2013/3/29

String path;

DocumentBuilderFactory f =

DocumentBuilderFactory.newInstance();

DocumentBuilder b = f.newDocumentBuilder();

Document doc = b.parse(path);

We would like to note that all suggestions for each task
were synthesized in less than 400 milliseconds.

7. Future Work
We identified few directions in which one can improve the
INSYREM approach. We believe that solving the following
challenges can make the INSYREM approach more accurate.

INSYREM checks for the equivalence between snippets
by comparing hashes of their corresponding trees. This ap-
proach classifies two semantically equivalent snippets as
different even if they slightly differ syntactically. Moreover,
our current implementation does not account for data-flow
dependencies between statements. Two data-flow dependent
statements that appear frequently can be separated by an ar-
bitrary number of unrelated statements in each occurrence.
Our mining algorithm misses such dependent statements,
since it directly mines whole sequences. Additionally, a
snippet might be wrapped by a single method that is reused
throughout the code. In that case, our algorithm will not
discover such snippets since its code does not appear often
enough, although it might be used frequently. We believe
that by canonicalizing code one can improve the accuracy of
the mining algorithm and provide a higher synthesis quality.

For the mining purposes, we define the snippet similar-
ity only in terms of the syntactic (structural) resemblance.
More precisely, we identify snippets that differ in only few
subtrees as similar. Our future work will investigate more se-
mantic approaches to computing similarity between snippets
like, for instance, using subtyping information.

We currently compare programmer’s code before the cur-
sor line to discovered snippets to compute how well does
programmer’s current context match suggestions. We com-
pute the match by counting the number of matched nodes
in corresponding trees. In our future work, we plan to de-
sign more advanced techniques for quantifying similarity be-
tween code. Additionally, we will consider techniques that
take into account more of programmer’s current code con-
text than just statements before the cursor.

8. Related Work
There has been a considerable amount of research done on
synthesizing code snippets using code repositories. We now
shortly present that work and compare it to INSYREM.

Jungloid [5] automatically synthesizes jungloid code
fragments that help programmers write code using unfa-
miliar APIs. A jungloid is a sequence of object and method
call chains synthesized from API signatures and other jun-
gloids discovered in repositories. Our work differs in two

aspects. First, our approach can synthesize snippets with no
restrictions on the code format, while Jungloid synthesizes
snippets of chains of objects and method calls. Second, pro-
grammers initiate a Jungloid request by writing a query in
a dedicated language, while in our approach programmers
only position their cursors and press a key.

Strathcona [7] suggests code samples from repositories
that heuristically match programmers’ code. Upon a pro-
grammer’s request, Strathcona searches through all avail-
able repositories for code samples that heuristically match
programmer’s code and then presents them to programmers.
Our work differs in two ways. First, Strathcona does not
synthesize snippets and, consequently, does not provide pro-
grammers with an autocompletion option. Second, the au-
thors of Strathcona reported that suggesting relevant snippets
sometimes takes dozens of seconds, which we consider to be
a significant impediment to adoption. INSYREM synthesizes
suggestions in less than half a second.

XSnippet [6] introduces new heuristics for synthesizing
object instantiation snippets. XSnippet mines repositories
to extract useful snippet information that is later used to
heuristically synthesize relevant object instantiation snippets
on demand. Our work differs in that INSYREM does not
impose any constraints on the code format, and thus can
synthesize snippets beyond object instantiation.

PARSEWeb [9] helps programmers instantiate objects
of an unfamiliar type using code search engines. Program-
mers manually provide a query specifying the source object
type and destination object type. More precisely, program-
mers ask for chains of method calls and field accesses, start-
ing with an object of the source type, that return an object
of the destination type. PARSEWeb then searches for such
chains using code search engines. In contrast to INSYREM,
PARSEWeb requires programmers to manually craft the
synthesis request. Moreover, INSYREM synthesizes snippets
faster, as it mines repositories offline. Finally, PARSEWeb
suggests only object initialization snippets, while INSYREM
does not impose such constraints.

Hill and Rideout [8] propose an approach that autocom-
pletes whole method bodies by employing machine learn-
ing techniques on frequent snippets in repositories. This ap-
proach is not very accurate, as reported by its authors. Gvero
et al. [10] propose an approach that synthesizes single-line
expressions by taking into account polymorphic type con-
straints of programmers’ values in scope and API usage
patterns in repositories. Perelman et al. [11] developed a
technique that completes programmers’ partial expression in
a type-directed fashion. Hipikat [26] recommends artifacts
from project archives to programmers depending on the task
they are trying to solve.

9. Conclusion
In this paper, we presented INSYREM, a new approach to
improving programmers’ efficiency by eliminating repeti-

13 2013/3/29

tive coding tasks and speeding up the learning of unfamil-
iar APIs. INSYREM automatically synthesizes code snippets
upon a programmer’s request using available code reposito-
ries. INSYREM operates in two phases. In the first phase, exe-
cuted offline, we discover frequent code snippets from given
repositories and save them into a compressed data struc-
ture called a snippet index. Programmers trigger the second
phase by initiating a request, upon which they are served
with snippets in the snippet index that best match their code
before the cursor. Programmers can then integrate the snip-
pets directly into their code or they can learn from the snip-
pets.

This work was motivated by observing that programmers
waste time developing repetitive coding tasks. More pre-
cisely, programmers often waste time by looking for code
samples that use API they are unfamiliar with. Likewise,
programmers spend precious time on reusing boilerplate
code. To save programmers’ time, we suggest code snip-
pets to programmers upon their requests using the INSYREM
approach.

Finally, we presented the results of our evaluation of
the INSYREM approach. We developed a tool based on IN-
SYREM and performed a user study where we measured how
much the tool speeds up code development. In our experi-
ments, the INSYREM approach reduced the time spent de-
veloping code for 32% on average.

References
[1] U.S. Department of Labor-Bureau of Labor Statistics. Oc-

cupational outlook handbook, 2012-13 edition, software de-
velopers. http://goo.gl/kFnkD. [Online; visited Feb. 08,
2013].

[2] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva,
and Scott R. Klemmer. An empirical investigation of op-
portunistic programming: Interleaving web foraging, learning,
and writing code.

[3] M.P. Robillard. What makes apis hard to learn? answers from
developers. Software, IEEE, 26(6):27 –34, Nov.-Dec. 2009.

[4] Eclipse documentation Archived Release. Astparser api.
http://goo.gl/EgEWp. [Online; visited Feb. 08, 2013].

[5] David Mandelin, Lin Xu, Rastislav Bodı́k, and Doug Kimel-
man. Jungloid mining: helping to navigate the api jungle.
In Proceedings of PLDI, pages 48–61, New York, NY, USA,
2005. ACM.

[6] Naiyana Sahavechaphan. Xsnippet: mining for sample code.
In Proceedings of OOPSLA, pages 413–430. ACM Press,
2006.

[7] Reid Holmes and Gail C. Murphy. Using structural context
to recommend source code examples. pages 117–125. ACM
Press, 2005.

[8] Rosco Hill and Joe Rideout. Automatic method completion.
In Proceedings of ASE, pages 228–235, Washington, DC,
USA, 2004. IEEE Computer Society.

[9] Suresh Thummalapenta and Tao Xie. Parseweb: a program-
mer assistant for reusing open source code on the web. In

Proceedings of ASE, pages 204–213, New York, NY, USA,
2007. ACM.

[10] Tihomir Gvero, Viktor Kuncak, and Ruzica Piskac. Code
completion using quantitative type inhabitation. In EPFL-
REPORT-170040. EPFL, 2011.

[11] Daniel Perelman, Sumit Gulwani, Thomas Ball, and Dan
Grossman. Type-directed completion of partial expressions.
In Proceedings of PLDI, pages 275–286, New York, NY,
USA, 2012. ACM.

[12] Steven P. Reiss. Semantics-based code search. In Proceedings
of ICSE, pages 243–253, Washington, DC, USA, 2009. IEEE
Computer Society.

[13] Hubert Comon, Max Dauchet, Remi Gilleron, Florent Jacque-
mard, Denis Lugiez, Sophie Tison, and Marc Tommasi. Tree
automata techniques and applications. 2002.

[14] Wim Martens and Frank Neven. Typechecking top-down
uniform unranked tree transducers. Database Theory–ICDT
2003, pages 64–78, 2002.

[15] Franz Baader. Unification theory. Word Equations and Re-
lated Topics, pages 151–170, 1992.

[16] Sophie Tison. Tree automata and term rewrite systems.
In Rewriting Techniques and Applications, pages 27–30.
Springer, 2000.

[17] Alfred V. Aho and John E. Hopcroft. The Design and Analysis
of Computer Algorithms. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 1st edition, 1974.

[18] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D
Ullman. Compilers: principles, techniques, and tools, volume
1009. Pearson/Addison Wesley, 2nd edition, 2007.

[19] S. Raghavan, R. Rohana, D. Leon, A. Podgurski, and V. Au-
gustine. Dex: a semantic-graph differencing tool for studying
changes in large code bases. In Proceedings of ICSM, pages
188 – 197, Sept. 2004.

[20] The Eclipse Foundation. Eclipse - the eclipse foundation open
source community website. www.eclipse.org. [Online;
visited Mar. 14, 2013].

[21] Inc. GitHub. Github - build software better, together. https:
//github.com/. [Online; visited Feb. 09, 2013].

[22] sourceforge.net. Cloc — count lines of code. http://cloc.
sourceforge.net/. [Online; visited Mar. 16, 2013].

[23] The Apache Software Foundation. Bidimap (commons col-
lections 3.2.1 api). http://goo.gl/pju8c. [Online; visited
Mar. 16, 2013].

[24] The Apache Software Foundation. Compressorinputstream
(commons compress 1.0 api). http://goo.gl/52PAm. [On-
line; visited Mar. 16, 2013].

[25] Oracle and/or its affiliates. Documentbuilderfactory (java 2
platform se 5.0). http://goo.gl/PKeBg. [Online; visited
Mar. 17, 2013].

[26] Davor Cubranic and Gail C Murphy. Hipikat: Recommending
pertinent software development artifacts. In Proceedings of
ICSE, pages 408–418. IEEE, 2003.

14 2013/3/29

