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Abstract

The Complexity of Optimal Auction Design

by

Georgios Pierrakos

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Christos H. Papadimitriou, Chair

This dissertation provides a complexity-theoretic critique of Myerson’s theorem [57], one
of Mechanism Design’s crown jewels, for which Myerson was awarded the 2007 Nobel Memo-
rial Prize in Economic Sciences. This theorem gives a remarkably crisp solution to the
problem faced by a monopolist wishing to sell a single item to a number of interested, ratio-
nal bidders, whose valuations for the item are distributed independently according to some
given distributions; the monopolist’s goal is to design an auction that will maximize her
expected revenue, while at the same time incentivizing the bidders to bid their true value for
the item. Myerson solves this problem of designing the revenue-maximizing auction, through
an elegant transformation of the valuation space, and a reduction to the problem of designing
the social welfare-maximizing auction (i.e. allocating the item to the bidder who values it
the most). This latter problem is well understood, and it admits a deterministic (i.e. the
auctioneer does not have to flip any coins) and simple solution: the Vickrey (or second-price)
auction. In the present dissertation we explore the trade-offs between the plausibility of this
result and its tractability:

First, we consider what happens as we shift away from the simple setting of Myerson to
more complex settings, and, in particular, to the case of bidders with arbitrarily correlated
valuations. Is a characterization as crisp and elegant as Myerson’s still possible? In Chapter 2
we provide a negative answer: we show that, for three or more bidders, the problem of
computing a deterministic, ex-post incentive compatible and individually rational auction
that maximizes revenue is NP-complete –in fact, inapproximable. Even for the case of two
bidders, where, as we show, the revenue-maximizing auction is easy to compute, it admits
nonetheless no obvious natural interpretation à-la Myerson.

Then, motivated by the subtle interplay between social welfare- and revenue-maximizing
auctions implied by Myerson’s theorem, we study the trade-off between those two objec-
tives for various types of auctions. We show that, as one moves from the least plausible
auction format to the most plausible one, the problem of reconciling revenue and welfare
becomes less and less tractable. Indeed, if one is willing to settle for randomized solutions,
then auctions that fare well with respect to both objectives simultaneously are possible, as
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shown by Myerson and Satterthwaite [56]. For deterministic auctions on the other hand,
we show in Chapter 3 that it is NP-hard to exactly compute the optimal trade-off (Pareto)
curve between those two objectives. On the positive side, we show how this curve can be
approximated within arbitrary precision for some settings of interest. Finally, when one is
only allowed to use variants of the simple Vickrey auction, we show in Chapter 4 that there
exist auctions that achieve constant factor approximations of the optimal revenue and social
welfare simultaneously.
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Chapter 1

Introduction

1.1 Internet and the battle of incentives

The rise of the Internet over the past couple of decades has profoundly transformed the way
we build and analyze computer science systems. One of the biggest challenges so far has
been to understand and address the issue of conflicting incentives, which unavoidably emerge
when a large collection of rational individuals -each one with their own objective- interact
with each other. Economics, and in particular Game Theory, which have long been studying
interactions between rational agents, were instrumental in providing computer science with
the right tools to analyze those large scale computer systems. Meanwhile, economists have
also started using those systems as a promising arena on which to test their theories and
predictions. It should therefore come as no surprise that the Internet sparked an ongoing
research interaction between computer science and economics, resulting in a fruitful exchange
of ideas, where each discipline is having a marked effect upon the other:

On one hand, the computer science community is reinventing its approach to analyzing
its systems. In an attempt to acknowledge the fact that the input is no longer bound to be
“worst case”, but rather “utility-maximizing”, and that it may follow some given distribution
(the standard assumption in economics), computer science theory occasionally deviates from
its standard worst case input assumptions. Economics have been all the more influential in
the design of systems, where concepts such as auctions, that have originated within game
theory, have become the workhorse and theoretical foundation of the multi-billion dollar
industry of internet advertising.

On the other hand, computer science’s main intellectual export, namely complexity the-
ory, has driven the development of the field of Algorithmic Game Theory [62, 59], a research
tradition which can be seen as a complexity-theoretic critique of Mathematical Economics,
with Internet in the backdrop. This point of view has yielded a host of important results and
new insights, for example related to the complexity of equilibria [16, 23], the trade-offs be-
tween complexity, approximation, and incentive-compatibility in social welfare-maximizing
mechanism design [59, 64], and (in an extended sense that includes on-line algorithms as a
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part of complexity theory) the price of anarchy [50, 71, 70].
The present dissertation advances the latter research agenda by focusing this “computa-

tional lens” on Myerson’s theorem [57], one of Mechanism Design’s most celebrated results.
Myerson considers the problem faced by a monopolist who wishes to sell a single item to
a number of interested buyers by means of an auction, in a way that will maximize her
expected revenue. The difficulty is of course that the buyers are strategic and must there-
fore be appropriately incentivized in order to comply to the auction’s rules. Under certain
assumptions, Myerson is able to provide a very clean and elegant solution to this problem;
our goal in this work, is to explore what happens when we relax some of those assumptions.

Before diving into the specifics of this problem, in the next section we do a quick overview
of Mechanism Design, and briefly mention some of the results from this past decade that
gave rise to the (still nascent) field of Algorithmic Mechanism Design.

1.2 Algorithmic Mechanism design

Summarized in a single sentence, Mechanism Design is nothing more than inverse game
theory: given a desired outcome, it is the problem of designing a game (the mechanism)
which implements this outcome in equilibrium, i.e. in a state from which no agent has an
incentive to deviate.

In its full generality, mechanism design is (literally) an impossible problem: In one of the
field’s early results, Gibbard [39] and Satterthwaite [73] show that designing a mechanism for
agents with arbitrary utilities cannot be accomplished in any meaningful way. Fortunately,
the problem is much easier once we introduce money and assume that agents have quasi-
linear utilities, i.e. their utility is linear in the payments, a very common assumption in
economics. Therefore, most of the subsequent work in mechanism design studies settings
with quasi-linear utilities. Even though mechanism design encompasses many problems, in
this dissertation we focus on the problem of auction design, arguably the most extensively
studied one. In an auction design problem we have a number of items for sale and a set
of interested bidders, for which all we know (at best) is their distribution of valuations for
the items; our goal then is to design an auction, namely an allocation rule (who gets which
item), and a payment rule (how much we will charge each person). Thanks to the celebrated
revelation principle [57], as long as the allocation and payment rules of the auction are such
that it is always in every bidder’s best interest to bid her true value (a property called
incentive compatibility), we can wlog restrict our attention to direct revelation mechanisms,
i.e. mechanisms where the bidders will reveal their true value for the item.

There are of course many possible “desired outcomes” that the auction designer could
have, but most of the research focuses on the natural objectives of social welfare and revenue.
In social welfare-maximizing (or efficient) auction design the goal is to award the items to the
bidders who value them the most, while in revenue-maximizing (or optimal) auction design
the goal is to generate as much revenue as possible.
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For an auctioneer who has a single item to sell and is interested in efficiency, the cel-
ebrated second-price or Vickrey auction [75] (arguably mechanism design’s most famous
intellectual export) is the way to go: simply allocate the item to the highest bidder, and
charge her the second highest price. Social welfare optimality is immediate, while it is not
hard to see that, under this allocation and payment rules, no bidder has an incentive to lie
about her value for the item. The Vickrey auction has two additional desirable properties:
first of all, it does not rely on any distributional assumptions about the bidders’ valuations
(which is not the case with the revenue optimal auction as we shall soon see), and more-
over it is easy to implement. Vickrey, Clarke and Groves [75, 18, 43] used the idea behind
the Vickrey auction –charging every bidder her negative externality– to come up with the
VCG mechanism: an efficient, incentive compatible auction for multiple items, albeit one
that cannot be implemented (or even reasonably approximated) in polynomial time. This
tension between incentive compatibility and computational efficiency has been the focus of
a recent surge in the computer science literature studying combinatorial auctions, commenc-
ing with [59] (which also started the field of algorithmic mechanism design) and culminating
with [64] (where the first dichotomy between approximability and incentive compatible ap-
proximability was proved), to be fully resolved only quite recently in a series of papers [31,
35, 33].

Moving to the other important objective of revenue, as we mentioned earlier, the land-
mark paper here is undoubtedly that of Roger Myerson [57]. There were several follow-up
papers by economists (for example [19, 20, 4, 48]), but it was not until very recently (around
2002) that computer scientists started following up on this literature. In [13, 46, 26] for
example, motivated by Myerson’s astonishing result that the optimal auction for certain
simple settings is simply a second-price auction with reserve prices, the authors examine the
extent to which simple auctions can achieve good approximations in more general settings.
Another line of work is prior-free mechanism design, where the goal is to design mecha-
nisms that achieve profits comparable to that of some well-behaved benchmark [40]. This
direction became especially interesting after [45] developed a framework that is grounded in
Bayesian optimal mechanism design, allowing one to design mechanisms that simultaneously
approximate all Bayesian optimal mechanisms. The intermediate approach of having bid-
ders’ valuations coming from a distribution that is nonetheless unknown to the auctioneer
has also been considered [26].

Because of the difficulty of addressing the general problem, most of the work for revenue-
maximizing auction design has focused on auctions where there is only a single item for sale
(we mention some notable exceptions in Section 1.4). In the next section we formally define
this setting, which is going to be the focus of this dissertation as well.

1.3 Single item auctions and Myerson’s theorem

The setting. Imagine n bidders seeking an indivisible good offered in auction. We assume
that each bidder has a private valuation vi for the item and that bidders’ valuations are
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drawn from some distribution which is public knowledge.
In Chapter 2 we will consider joint distributions whose density function we denote by

f(v). We will consider both discrete and continuous f . Discrete distributions are the source
of the combinatorial insights underlying our approach, while continuous distributions provide
continuity with the spirit and methodology of Myerson’s paper, another important source
of inspiration. In the continuous case, we assume that the support is [0, 1]n and we follow
Myerson in making the analytically convenient assumption that f(x) > 0 for all x ∈ [0, 1]n.
This is hardly a loss of generality, since a small minimum value on every point can be achieved
by changing f very little. In stating an algorithm for the two-dimensional continuous case
(Section 2.4), we shall also assume that f is Lipschitz-continuous1 and accessible through an
oracle (in such a way that, for example, it can be approximately integrated over nice regions).
In the discrete case, let Sup(f) denote the finite support of the joint discrete distribution f .
Then f is presented as a finite set of |Sup(f)| (n + 1)-tuples of the form (vi1, v

i
2, . . . , v

i
n, f

i),
one for each point vi ∈ Sup(f), where f i is the probability mass concentrated at the point
(vi) of the support.

In Chapters 3 and 4, we will assume that the distributions of the bidders are independent,
and we will use Fi to denote the distribution of bidder i. The distributions {Fi}i are not
necessarily identical. For simplicity we assume that all Fi’s are differentiable, so we can
define the corresponding probability density functions as fi(x) = F ′i (x). In the discrete case,
we will again use fi(·) to denote the probability density function of bidder i over the discrete
support Supi. We will also use vki and fki , k = 1, . . . , |Supi|, to denote the k-th smallest
element in the support of bidder i and its probability mass respectively.

Definition of an auction. A single item auctionA consists of an allocation rule xi(v1, . . . , vn),
the probability of bidder i getting allocated the item, and a payment rule pi(v1, . . . , vn) which
is the price paid by bidder i. For the most part of this dissertation we focus our attention
on deterministic auctions so that xi(·) ∈ {0, 1}. We demand from our auctions to satisfy
the standard constraints of incentive compatibility (IC), individual rationality (IR) and no
positive transfers (NPT) in the ex-post sense, namely the following:

• IC: ∀i, vi, v′i, v−i : vixi(vi, v−i)− pi(vi, v−i) ≥ vixi(v
′
i, v−i)− pi(v′i, v−i)

• IR: ∀i, vi, v−i : vixi(vi, v−i)− pi(vi, v−i) ≥ 0

• NPT: ∀i, vi, v−i : pi(vi, v−i) ≥ 0

Finally, we are interested in the objectives of revenue and social welfare, defined as follows:

Rev(A) = E

[
n∑
i=1

pi(v1, . . . , vn)

]
and SW(A) = E

[
n∑
i=1

vi · xi(v1, . . . , vn)

]
,

1A function f is Lipschitz-continuous if there exists a constant λ such that |f(x)− f(y)| ≤ λ|x− y| for
all x, y.
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where the above expectations are with respect to value vectors v = (v1, . . . , vn) drawn from
the joint distribution with probability density function f or ×ifi.

A characterization. We say that an allocation function xi(vi, v−i) is monotone if vi ≥ v′i
implies xi(vi, v−i) ≥ xi(v

′
i, v−i) for all i, v−i. For the case of deterministic auctions that we are

chiefly interested in, monotonicity implies that xi(vi, v−i) is a step-function. The threshold
value of such a step-function allocation rule is set to be the minimum winning valuation for
every bidder given the valuations of the other bidders: ti(v−i) = inf{vi ∈ [0, 1] | xi(vi, v−i) =
1}. In complete analogy, in the discrete case ti(v−i) = min{vi ∈ Supi | xi(vi, v−i) = 1},
where Supi is the support of bidder i. The following theorem provides a characterization of
auctions for the setting we are interested in; a proof can be found in [60].

Theorem 1. A deterministic auction satisfies IC, IR and NPT if and only if the following
conditions hold.

1. xi(vi, v−i) is monotone (i.e. it is a step-function).

2. For all i, vi, v−i we have

pi(vi, v−i) =

{
ti(v−i) if xi(vi, v−i) = 1;
0 if xi(vi, v−i) = 0.

Moreover, one can show that, for the discrete setting and for the objectives of welfare
and revenue we are interested in, we can wlog assume that the threshold values ti of any
optimal auction (with respect to either objective) will always be on the support of bidder i.

Relying on the above characterization, we will describe our auctions (in the discrete
case) using the concept of an allocation matrix A: a |Sup1| × . . . × |Supn| matrix where
entry (i1, . . . , in) corresponds to the tuple (vi11 , . . . , v

in
n ) of bidders’ valuations. Each entry

takes values from {0, 1, . . . , n} indicating which bidder gets allocated the item for the given
tuple of valuations, with 0 indicating that the auctioneer keeps the item. In order for an
allocation matrix to correspond to a valid (ex-post IC and IR) auction, a necessary and
sufficient condition is the following monotonicity constraint: if A[i1, . . . , ij, . . . , in] = j then
A[i1, . . . , k, . . . , in] = j for all k ≥ ij. Notice that the payment of the bidder who gets
allocated the item can be determined as the least value in her support for which she still
gets the item, keeping the values of the other bidders fixed. Moreover, when there is only a
constant number of bidders, the allocation matrix provides a polynomial representation of
an auction.

Myerson’s theorem. In [57] Myerson introduced the notion of a bidder’s virtual valuation
function φi, defined as follows:

φi(vi) = vi −
1− Fi(vi)
fi(vi)

.
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In terms of this notion, we say a distribution Fi is regular if the virtual valuation function φi
is non-decreasing, and that it satisfies the monotone hazard rate condition if the ratio 1−Fi(x)

fi(x)

is non-increasing. For distributions that are non-regular, Myerson’s ironing technique [57]
can be used to get the corresponding ironed virtual valuation function φ̂i(vi). The following
result is central to Myerson’s analysis, and we will also use it in this dissertation.

Proposition 1 (Myerson’s Lemma). For any deterministic auction {(xi, pi)}i, satisfying IC
and IR, we can express the expected payment of bidder i as follows (with the expectation
taken over the bidders’ values):

E [pi(v1, . . . , vn)] = E [φi(vi) · xi(v1, . . . , vn)] .

Proof sketch. For the sake of simplicity assume that each bidder’s valuation is supported on
some continuous interval Ti = [ai, bi]. We will show how the above formula for the virtual
valuation functions φi(vi) is derived as a direct consequence of wanting to transform the
following expression for revenue: ∫ bi

ai

pi(v)fi(vi)dvi,

into the following expression for social welfare, where the valuations vi are replaced with
virtual valuations φi(vi): ∫ bi

ai

φi(vi)xi(v)fi(vi)dvi.

Using the characterization theorem (Theorem 1) this boils down to solving the following
functional equation for φi(vi), for every bidder i:

∫ bi

ai

pi(v)fi(vi)dvi =

∫ bi

ai

φi(vi)xi(v)fi(vi)dvi, for all i, v−i

Theorem 1⇐⇒
∫ bi

ti(v−i)

ti(v−i)fi(vi)dvi =

∫ bi

ti(v−i)

φi(vi)fi(vi)dvi, for all i, v−i

⇐=

∫ bi

ti

tifi(vi)dvi =

∫ bi

ti

φi(vi)fi(vi)dvi, for all i, ti

Using elementary calculus we can solve the above functional equation as follows:∫ bi

ti

tifi(vi) dvi =

∫ bi

ti

φi(vi)fi(vi)dvi

⇐⇒ ti(1− Fi(ti)) =

∫ bi

ti

φi(vi)fi(vi) dvi

∂
∂ti⇐⇒ (1− Fi(ti))− tifi(ti) = −φ(ti)fi(ti)



CHAPTER 1. INTRODUCTION 7

⇐⇒ φi(ti) = ti −
1− Fi(ti)
fi(ti)

What the proposition above implies is that, in order to run the revenue-maximizing
auction, it suffices to transform the valuations into virtual valuations, and then run the
social welfare-maximizing auction, namely the Vickrey or second-price auction, on those
virtual valuations. (One caveat is that, for this to work, the resulting virtual valuations have
to be increasing in the actual valuations. If this is not the case, the extra step of ironing is
needed; since ironing is not central to this dissertation, we refer the bidder to [57, 44] for
further discussion.)

In informal, computer science parlance, what Myerson established is the following:

Theorem 2 (Myerson’s Theorem–informal). The problem of designing the revenue maximizing-
auction for a single item and n bidders, whose valuations are distributed according to inde-
pendent (but not necessarily identical) distributions, reduces (in polynomial time) to that of
social welfare-maximization.

1.4 Beyond Myerson’s theorem: our contribution

Myerson’s result is remarkable in several ways. While it is not the first important paper on
auctions of course [75], it pioneers the point of view of its title: auction design, that is, the
exploration and evaluation of a large design space in a mindset that is very much one of
computer science. One of the most interesting aspects of his result is that the auctioneer’s
and the bidders’ actions in a given auction situation are easy to compute: the problem of
designing the revenue-maximizing auction for a single item and independent valuations is
in P. On top of that, the resulting auction has a very simple and intuitive format: it is a
Vickrey auction in a modified domain, that of virtual valuations. In fact, for the special
setting where all bidders have valuations drawn from the same distribution, the resulting
auction is nothing more than a Vickrey auction with a reserve price2. Even though Myerson
did not dwell on this aspect of his auction, i.e. its computational efficiency, it is clearly a
sine qua non: no good auction design should involve solving intractable problems. Keeping
this issue of computational tractability in mind, and looking at Theorem 2 from a computer
scientist’s point of view, a couple of very natural questions arise.

Question 1: Is it possible to obtain a similar result, namely a characterization of the
optimal auction and an efficient way of computing it, for the case of more than one items?

This question –arguably one of the most important questions in mechanism design– is
still for the most part open, however a recent surge in the computer science and economics

2The reader can think of the reserve as an extra bidder with a constant valuation that depends on the
common distribution of valuations – see Chapter 4 for a formal definition.
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literature has provided a lot of new insights into this problem. We can broadly divide
the papers into three categories. Most of the papers in the economics literature identify
special cases of this problem that are more amenable to mathematical analysis, either by
restricting the setting [4], or the class of auctions allowed [48], and then attempt to design the
optimal auction for those cases. The other two trends follow the computer science approach
of settling with a suboptimal, but computationally tractable solution, that provides a good
approximation to the optimal one. One line of work (see for example [5, 14, 13, 3, 6, 49]) aims
at designing simple (for the most part posted-price) auctions for the problem, and achieves
constant factor approximations for a variety of multi-parameter settings. Another line of
work studies the underlying LP implied by the IC and IR constraints, and provides solutions
that can approximate the optimal auction within arbitrary precision ε, in time polynomial
both in the size of the input and 1/ε (see for example [9, 25, 11, 10]). Even though most
of these papers do not enforce any particular structure on the desired solution à-priori, a
very recent paper ([11]) showed that there is in fact structure in the optimal solution of the
multi-parameter setting: in particular they prove that the optimal solution is a distribution
over virtual VCGs, and they provide an efficient algorithm for computing this distribution.
From a lower bound perspective, a recent pre-print shows that the problem of designing the
optimal (randomized) auction for general multi-parameter settings is #P-hard [21].

Question 2: Is it possible to obtain a similar result, namely a characterization of the opti-
mal auction and an efficient way of computing it, for the case where the bidders’ valuations
are allowed to be arbitrarily correlated (i.e. not necessarily independent)?

In Chapter 2 we provide a negative answer to this question: we revisit the problem of de-
signing the revenue-maximizing single item auction, focusing on general joint distributions,
either discrete or Lipschitz-continuous, seeking the optimal deterministic, ex-post incentive
compatible and individually rational auction. We give a geometric characterization resulting
in a duality theorem and an efficient algorithm for finding the optimal deterministic auction
in the two-bidder case, and an NP-completeness result for three or more bidders. From a
philosophical standpoint -if one is willing to interpret NP-completeness as a sign of math-
ematical poverty and lack of sufficient structure- this result is a strong indication that a
characterization theorem as clean and elegant as Myerson’s is unlikely to exist for general
joint distributions. Chapter 2 is based on the work in [63].

Question 3: The reduction of Theorem 2 reveals a lot of similarities and implies a non-
trivial interplay between the revenue- and the social welfare-maximizing auctions. Does this
mean that these two objectives of revenue and social welfare are compatible with each other,
and, if not, what is the trade-off between them?

It is not hard to notice that the whole point of the Vickrey auction is to deliberately
sacrifice auctioneer revenue in order to achieve efficiency and truthfulness (charging the
second highest instead of the highest price). Myerson’s auction on the other hand, in its
very simple format of a Vickrey auction with a reserve price, may sacrifice efficiency by
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never allocating the item to a bidder who has non-zero value for it, in order to achieve better
revenue guarantees. In Chapter 3 we address the natural question of trade-offs between
the two criteria, that is, auctions that optimize, say, revenue under the constraint that the
welfare is above a given level. If one allows for randomized auctions, it is easy to see (and
we will argue about this later in more detail) that, given any point in the trade-off (Pareto)
curve between revenue and welfare, we can efficiently compute an auction that achieves
those revenue and welfare guarantees. We investigate whether one can achieve the same
guarantees using deterministic auctions. We provide a negative answer to this question
by showing that this is a (weakly) NP-hard problem. On the positive side, we provide
polynomial time deterministic auctions that approximate with arbitrary precision any point
of the trade-off between these two fundamental objectives for the case of two bidders, even
when the valuations are correlated arbitrarily. The major problem left open by our work
is whether there is such an algorithm for three or more bidders with independent valuation
distributions. Chapter 3 is based on the work in [30].

Finally, in Chapter 4 we study the extent to which simple auctions can simultaneously
achieve good revenue and efficiency guarantees in single item settings. Motivated by the
optimality of the second price auction with monopoly reserves when the bidders’ values are
drawn i.i.d. from regular distributions [57], and its approximate optimality when they are
drawn from independent regular distributions [46], we focus our attention to the second price
auction with general (not necessarily monopoly) reserve prices, arguably one of the simplest
and most intuitive auction formats. As our main result, we show that, for a carefully chosen
set of reserve prices, this auction guarantees at least 20% of both the optimal welfare and
the optimal revenue, when the bidders’ values are distributed according to independent, not
necessarily identical, regular distributions. We also prove a similar guarantee, when the
values are drawn i.i.d. from a –possibly irregular– distribution. Chapter 4 is based on the
work in [24].
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Chapter 2

Optimal Deterministic Auctions with
Correlated Priors

2.1 Introduction

As we mentioned in the Introduction, Myerson left open the case in which the valuations are
correlated; in subsequent work, Crémer and McLean [19, 20] consider correlated valuations
and solve the problem for the case where auctions are only required to be interim individually
rational (i.e. individually rational only in expectation over the other bidders’ valuations).
In fact, in this framework the uncorrelated case is a singularity, in the sense that, in most
cases (when the correlation has “full rank” in a certain precise sense), full surplus can be
extracted in expectation through appropriate offers of lotteries to the bidders. Despite the
elegance of their result, the fact that bidders may be charged merely for participating in
the auction–lottery (including losers) has been criticized as rendering the auction impracti-
cal [53], especially for settings where agents may easily cancel their participation after the
auction is conducted. It is therefore of tantamount importance to consider the question of
designing the optimal ex-post individually rational auction for correlated valuations.

Surprisingly, despite the recent surge in the computer science literature on mechanism
design, there has been little progress in looking at Bayesian auctions à-la Myerson from
this point of view. In particular, Ronen [67] came up with an auction for the correlated
case that achieves half of the optimal revenue, while Ronen and Saberi [68] showed that no
“ascending auction” can do better than 7/8, and they conjectured that all relevant auctions
are ascending (which we disprove by showing that the optimal two-bidder auction may not
be ascending). Missing from these two papers, however, is a concrete sense of the ways in
which this is a difficult problem. We provide this here.

In this chapter we take a complexity-theoretic look at the general, correlated valuations
case of Myerson’s single item auctions. We point out that the optimal auction design problem
can be reduced essentially to a maximum weighted independent set problem in a particular
graph whose vertices are all possible tuples of valuations (an uncountable set, of course,
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in the continuous case). If the distribution is discrete, this is an ordinary graph-theoretic
problem; no such combinatorial characterization had been known, and this had been the
main difficulty in developing an algorithmic and complexity-theoretic understanding of the
problem. For discrete distributions, this leads directly to an efficient algorithm in the case
of two bidders, where the graph is bipartite, while in the case of three or more bidders NP-
completeness (in fact, inapproximability) prevails. For continuous distributions, we prove
a duality characterization through a Monge-Kantorovich-like problem [37], and from this a
fully polynomial approximation scheme for two bidders when the distribution is continuous
enough and accessible through an oracle. As an aside, we also sketch in the last section a
2/3 approximation for three bidders, improving the previously best known approximation of
[67].

Our results rest on a geometric characterization of optimal deterministic auctions. An
important element of our proof is the so-called marginal profit contribution function; it
bears some similarities to Myerson’s virtual valuation function [57], the most important
of them being that they both admit a marginal revenue interpretation in the spirit of [8].
However, despite their similarities and their somewhat common derivation, marginal profit
contribution functions are different from Myerson’s virtual valuations in a number of ways:
they only take positive values, they are not necessarily monotone and they do not admit
a natural interpretation as valuations in some modified domain. One important ingredient
of Myerson’s approach to the design of optimal auctions is an analytical maneuver he calls
ironing; Myerson uses ironing to transform a potentially non-monotone allocation rule into
a monotone one, without hurting revenue. Our approach circumvents ironing by restricting
the space of auctions explored; we achieve that by imposing an additional technical condition
which limits the design space into a subset of all auctions, but one which still contains all of
the optimal ones.

The work most related to ours is that of Dobzinski, Fu and Kleinberg [32], who also
study the problem of designing the optimal auction for the correlated setting. They obtain a
collection of interesting results, which however are quite complementary to ours: their work
focuses on randomized auctions, a large number of bidders and approximation, while ours
focuses on deterministic auctions, a small number of bidders and computational complexity.
Based, among others, on insights from [67], they arrive at efficient algorithms for comput-
ing the optimal randomized auction that is truthful in expectation, and a constant factor
approximation of the optimal deterministic auction for any number of bidders.

2.2 The geometry of optimal auctions

Here we focus on the two-bidder case, and provide an alternative geometric interpretation
of the auction design problem as a space partitioning problem. Our characterization holds
for any number of bidders, with the appropriate generalizations and modifications; however
we only address the multi-dimensional case in Section 2.5, where we will use our geometric
characterization to establish the inapproximability of the problem for three or more bidders.
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We start by noting that the allocation function can be described in terms of a partition
of the unit square (the space of all possible valuation pairs) into three regions: In region
A bidder 1 gets the item, in region B bidder 2 gets the item and in region C neither
gets the item. The shape of those regions is restricted by monotonicity as follows (see
Figure 2.1): Region A is rightward closed, meaning that (x, y) ∈ A and x′ > x implies
(x′, y) ∈ A, while region B is, analogously, upward closed. These regions are captured by
their boundaries: Region A’s boundary is a function α : [0, 1] 7→ [0, 1] where for all y ∈ [0, 1]
α(y) = inf{x : (x, y) ∈ A}, and similarly for region B and its boundary β(x).

Figure 2.1: A pair of valid allocation rules.

Definition 1. A valid allocation pair (α, β) is a pair of functions from [0, 1] to itself
satisfying the non-crossing property: for all points (x, y) ∈ [0, 1]2 we have y ≥ β(x) ⇒ x ≤
α(y).

Notice that it is not necessary for the functions to be monotone; the monotonicity prop-
erty of the allocation is ensured by the fact that α and β are proper functions and therefore
regions A and B are rightward and upward closed respectively. The non-crossing property
ensures that for any valuation pair (x, y) at most one bidder gets the item.

In our proof we will make extensive use of the following notion of marginal profit.

Definition 2. Let m1 (resp. m2) be the marginal profit contribution of a valuation pair
(x, y) for bidder 1 (resp. 2), defined as:

m1(x, y) = − ∂

∂x

[
max
x′≥x

x′ ·
∫ 1

x′
f(t, y) dt

]
,m2(x, y) = − ∂

∂y

[
max
y′≥y

y′ ·
∫ 1

y′
f(x, t) dt

]
wherever the derivative is defined, and is extended to the full range by right continuity.
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Intuitively, m1(x, y) dx dy is the added expected profit obtained from including the in-
finitesimal area dx dy to A, that is, deciding to give the item to the first bidder if the
valuations are (x, y). Near the end of this section we discuss the intuition behind these
functions and their relation to Myerson’s virtual valuation functions in more detail.

Definition 3. Call a valid allocation pair proper if it satisfies the following condition:

α(y) ·
∫ 1

α(y)

f(t, y) dt = max
x′≥α(y)

x′ ·
∫ 1

x′
f(t, y) dt, for all y

β(x) ·
∫ 1

β(x)

f(x, t) dt = max
y′≥β(x)

y′ ·
∫ 1

y′
f(x, t) dt, for all x

 (2.1)

Intuitively, in a proper valid pair (α, β), the curve α (resp. β) never goes through points
that have zero marginal profit contribution m1(x, y) (resp. m2(x, y)), as ensured by the first
(resp. second) of the two equalities above.

Marginal profit contribution functions provide us with an alternative way to express the
objective of expected profit.

Lemma 1. Let (α, β) be a proper valid allocation pair. Then the expected profit of any
auction with payments defined as in Theorem 1 is:∫ 1

0

∫ 1

α(y)

m1(x, y) dx dy +

∫ 1

0

∫ 1

β(x)

m2(x, y) dy dx

Proof. Let p1(x, y), p2(x, y) be the payment functions induced by the allocation rule (α, β)
according to Theorem 1 of the previous chapter. Then the expected profit of our auction is:∫ 1

0

∫ 1

0

p1(x, y)f(x, y) dx dy +

∫ 1

0

∫ 1

0

p2(x, y)f(x, y) dx dy

=

∫ 1

0

[
α(y) ·

∫ 1

α(y)

f(t, y) dt

]
dy +

∫ 1

0

[
β(x) ·

∫ 1

β(x)

f(x, t) dt

]
dx

=

∫ 1

0

[
max
x′≥α(y)

x′ ·
∫ 1

x′
f(t, y) dt

]
dy +

∫ 1

0

[
max
y′≥β(x)

y′ ·
∫ 1

y′
f(x, t) dt

]
dx

=

∫ 1

0

∫ 1

α(y)

m1(x, y) dx dy +

∫ 1

0

∫ 1

β(x)

m2(x, y) dy dx

where in the first equality we used the characterization of truthful payments as every bidder’s
critical value, in the second equality we made use of condition (2.1) and in the last equality
we made use of the definition of marginal profit contribution functions.

The next lemma establishes that without loss of generality we can restrict ourselves to
proper allocation pairs. Let Profit(α, β, f) denote the profit of an auction with allocation
curves (α, β), when the joint distribution of valuations is f .
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Lemma 2. For any f and for any valid allocation pair (α, β) there is a proper valid pair
(α′, β′) such that Profit(α′, β′, f) ≥ Profit(α, β, f).

Proof. For the sake of contradiction suppose this is not true, i.e. Profit(α′, β′, f) < Profit(α, β, f)
for any proper valid allocation pair (α′, β′).

We start by defining the following sets of points:

Y =

{
y ∈ [0, 1]

∣∣∣∣ α(y) ·
∫ 1

α(y)

f(t, y) dt 6= max
x′≥α(y)

x′ ·
∫ 1

x′
f(t, y) dt

}

X =

{
x ∈ [0, 1]

∣∣∣∣ β(x) ·
∫ 1

β(x)

f(x, t) dt 6= max
y′≥β(x)

y′ ·
∫ 1

y′
f(x, t) dt

}
as the set of all coordinates y (resp. x) where condition (2.1) is violated by function α (resp.
β). Consider now the auction defined by the following allocation curves:

α′(y) =

{
α(y) , if y /∈ Y ;

arg maxx′{x′
∫ 1

x′
f(t, y) dt | x′ ≥ α(y)} , if y ∈ Y .

β′(x) =

{
β(x) , if x /∈ X ;

arg maxy′{y′
∫ 1

y′
f(x, t) dt | y′ ≥ β(x)} , if x ∈ X .

where –in the case of ties– arg{·} returns the largest y or x respectively. By construction,
the new pair (α′, β′) satisfies condition (2.1). In what follows we claim that the resulting
allocation pair (α′, β′) is also valid and moreover it has greater revenue than (α, β), thus
reaching a contradiction.

The monotonicity property of the allocation is satisfied since α′ and β′ are proper func-
tions of y and x respectively. The non-crossing property follows from the non-crossing
property of α and β and the fact that α′(y) ≥ α(y) for all y ∈ [0, 1] and β′(x) ≥ β(x) for all
x ∈ [0, 1]. Finally, for the profit of the two auctions defined by the allocation curves (α, β)
and (α′, β′) we have:

Profit(α′, β′, f)

=

∫ 1

0

[
α′(y) ·

∫ 1

α′(y)

f(t, y) dt

]
dy +

∫ 1

0

[
β′(x) ·

∫ 1

β′(x)

f(x, t) dt

]
dx

≥
∫ 1

0

[
α(y) ·

∫ 1

α(y)

f(t, y) dt

]
dy +

∫ 1

0

[
β(x) ·

∫ 1

β(x)

f(x, t) dt

]
dx

= Profit(α, β, f),

where the inequality follows from the definition of α′ and β′. The lemma now follows.

Denote now by AB the set of all proper valid allocations (α, β). The problem of finding
the optimal auction can be restated as the following variational calculus-type problem:
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Definition 4 (Problem A).

sup(α,β)∈AB

{∫ 1

0

∫ 1

α(y)

m1(x, y) dx dy +

∫ 1

0

∫ 1

β(x)

m2(x, y) dy dx

}

In this section we have established the following theorem:

Theorem 3. Finding the optimal auction for two bidders is equivalent to solving Problem
A.

Marginal profit contributions and virtual valuations

There is an intuitive connection between the marginal profit contribution and Myerson’s
(ironed) virtual valuations [57]. As pointed out in the introduction, even though these func-
tions are not identical, the goal in both cases is the same: to capture some notion of marginal
revenue. Indeed, the quantity x ·

∫ 1

x
f(t, y) dt corresponds to the expected profit of the auc-

tioneer from an agent when she is offered a price of x, keeping the value of the other bidder
fixed at y; equivalently, one can write the expected revenue as a function R(q) of the prob-

ability of sale q = 1 −
∫ 1

x
f(t, y) dt (for a thorough discussion of this maneuver the reader

is referred to [44]). Myerson’s virtual valuations then correspond to the derivative of the
function R(q), and ironing corresponds to taking the convex hull R̂(q) of R(q) and then
differentiating. The “ironing” in our case corresponds to the action of taking the derivative
of R′(q) = maxq′≤q R(q′) instead of R(q), which is intuitively the “skyline” one would see
from q = 0. In Figure 2.2 we show an example of a revenue curve R(q) and its corresponding
R̂(q) and R′(q) curves.

Figure 2.2: The revenue curves R, R̂ and R′.
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It has been already noted by Myerson [57] that the allocation rule will remain invariant
across ironed regions: in his case this is a consequence of his proof technique involving ironing.
In our case we explicitly demand that the allocation is invariant by imposing Condition
2.1. Since the invariance of the allocation rule across ironed regions follows from Myerson’s
analysis as well, Condition 2.1 is indeed not a loss of generality in the sense that all optimal
auctions satisfy it. This is exactly what we proved (formally) in Lemma 2.

The geometry of optimal auctions for product distributions

We conclude this section by using the machinery developed here to study product distribu-
tions and to sketch an alternative “proof by picture” of (a weaker form of) Myerson’s result.
In doing so, we will make use of our geometric interpretation of the allocation space, and of
the notion of marginal profit contribution functions. Our result is weaker in that it focuses
on two bidders and the space of deterministic, ex-post IC and IR auctions. Generalizing to
more bidders is relatively straightforward, but we do not know how to extend the analysis
to encompass more general auction formats. In particular, note that Myerson proves that
his auction is optimal among the larger space of all Bayesian truthful auctions.

Recall that Myerson’s optimal auction first computes each bidder’s (ironed) virtual val-
uation φi(vi) and it then runs Vickrey’s auction on the φi(vi). One way to interpret the
resulting auction is the following. First we set a reserve price for every bidder independently,
based on her valuation and her prior distribution; this is the threshold value that a bidder
needs to exceed in order to have a positive virtual value and therefore a chance at being
allocated the item. Then, for every pair of valuations that are both above their respective
reserve prices, the auction carefully optimizes the allocation based on the virtual valuation
of each bidder. The allocation space for this auction looks like the one in Figure 2.3.

Figure 2.3: The allocation regions of an optimal auction for a product distribution.
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In what follows we use the geometric interpretation of optimal auctions introduced earlier
in this section to show that the optimal auction for two bidders and product distributions
must indeed have the structure of Figure 2.3: namely, that the only region where the auc-
tioneer may keep the item is a rectangular area at the bottom left of the unit square. This is
in stark contrast with what happens in the case of correlated distributions, where the alloca-
tion region of the auctioneer may be arbitrarily shaped (subject to monotonicity constraints
of course). We establish this result in two steps through the following two lemmas:

Lemma 3. For a product distribution the allocation curves α(y) and β(x) of the optimal
auction are non-decreasing functions of y and x respectively (see Figure 2.4(a)).

Proof sketch. Let (α, β) be a proper valid allocation pair with the additional property (which
is not a loss of generality) that the area for which the auctioneer keeps the item is maximized;
in other words, if for a given y there are two possible points (α(y), y) that achieve the same
profit, we pick the rightmost such point (and analogously for points (x, β(x))). We prove
that α(y) is non-decreasing and the proof for β(x) is similar.

Suppose that α(y) is not non-decreasing, in particular that there exist y1, y2 with y1 < y2

and α(y1) > α(y2). Consider then the allocation pair (α′, β), where α′(y) = α(y) for all
y 6= y1 and α′(y1) = α(y2), i.e. we “pull” the red curve at y1 to the left until it takes
the same value as in point y2. Because y1 lies “below” y2 and because of the non-crossing
property satisfied by the original allocation pair (α, β), pair (α′, β) is still valid. The crucial
observation now is that, because of the product distribution assumption, the marginal profit
contribution functions for the values y1 and y2 are the same (i.e. m1(x, y1) = m1(x, y2) for
all x ∈ [0, 1]). Using this and the fact that α′(y1) = α(y2) we get that∫ 1

α′(y1)

m1(x, y1) dx =

∫ 1

α(y2)

m1(x, y2) dx >

∫ 1

α(y1)

m1(x, y2) dx =

∫ 1

α(y1)

m1(x, y1) dx

where the inequality is strict because of the fact that ties in (α, β) are broken in favor of
the rightmost point. Therefore, the profit of (α′, β) is strictly larger than that of (α, β), a
contradiction.

Lemma 4. For a product distribution the allocation regions look like the ones depicted in
Figure 2.3, where the curve separating regions A and B is a non-decreasing function with
respect to both x and y.

Proof sketch. Suppose this is not true and that the allocation rules are only monotone –
which must hold as we proved in Lemma 3; in particular suppose that they look like the
ones depicted in Figure 2.4(a) (there are other cases, which nonetheless admit a similar
analysis). Let x1 = α(0); as in Lemma 3 we will exclude the possibility of a tie, so that it is
always strictly better to extend the allocation region A all the way to x1 for all y ∈ [0, y1]
where y1 = β(x1) (see Figure 2.4(b)). Repeating this argument all the way up to y = 1 we
get the new auction defined by the black allocation rule of Figure 2.4(b). This auction is of
the type depicted in Figure 2.3 and has a strictly better profit, a contradiction.
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(a) Optimal auctions have monotone α and β. (b) The auction constructed in Lemma 4.

Figure 2.4: The allocation curves discussed in Lemmas 3 and 4.

Finally, for the special case where the distributions of the two agents are identical (and
regular), it follows easily that the allocation regions need also be symmetric across the y = x
line. In terms of the Figure 2.3, this means that the bottom left rectangular region C where
the auctioneer keeps the item is actually a square, and the curve separating regions A and B
is actually a straight line. We therefore re-derive Myerson’s result, that the optimal auction
for bidders with i.i.d. valuations is the second price auction with a reserve price (the same
for both bidders); see also Figure 2.5.

Figure 2.5: The allocation regions of an optimal auction for i.i.d. bidders.
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2.3 Two bidders: the discrete case

In this section we present an algorithm for computing the optimal auction when there are
two bidders with a discrete joint distribution f with support Sup(f) = [N ]× [N ].

The marginal profit contribution functions defined in the previous section can be appro-
priately modified for the discrete setting in hand:

Definition 5. The discrete analogues of the marginal profit contribution functions (Defini-
tion 2) for each bidder are defined as follows:

m1(i, j) = max

{
i ·
∑
i′≥i

f(i′, j)−
∑
i′>i

m1(i′, j), 0

}
for bidder 1

m2(i, j) = max

{
j ·
∑
j′≥j

f(i, j′)−
∑
j′>j

m2(i, j′), 0

}
for bidder 2

As in the continuous case, we will represent the auction through a pair of functions (α, β):

Definition 6. A valid allocation pair (α, β) for the discrete setting is a pair of functions
from [N ] to itself satisfying the non-crossing property: for all points (i, j) ∈ [N ] × [N ] we
have j ≥ β(i) ⇒ i < α(j). Such a pair partitions the set Sup(f) into three sets A,B,
and C, where A = {(i, j) ∈ Sup(f) : i ≥ α(j)}, B = {(i, j) ∈ Sup(f) : j ≥ β(i)}, and
C = Sup(f)− A−B. We say that (α, β) induces the partition (A,B), where C is implicit.

Suppose that for a valid pair (α, β) representing an optimal auction and j ∈ [n], we have
that m1(α(j), j) = 0. Then the auction represented by the same valid pair, except that α(j) is
increased by one, is also an optimal auction (since it entails the same set of positive marginal
profit contributions). We can therefore consider, without loss of generality, only valid pairs
with m1(α(j), j),m2(i, β(i)) > 0. We call such valid pairs proper. Finally, we define Π(f)
to be the set of all partitions A,B of Sup(f) induced by proper valid pairs.

Now, looking back at the formulation of the optimal revenue auction problem in Problem
A at the conclusion of the last section, it is immediate that obtaining the optimal revenue
auction in the discrete case is tantamount to solving a discrete optimization problem:

max
(A,B)∈Π(f)

∑
(i,j)∈A

m1(i, j) +
∑

(i,j)∈B

m2(i, j).

All that remains now is to provide a useful characterization of the set Π(f). To this end,
notice first that any such pair of sets (A,B) has the following two additional properties, the
first one inherited from incentive compatibility, and the second one following from the fact
that the allocation curves form a proper valid pair:

Definition 7. We call a pair of disjoint subsets (A,B) of Sup(f) monotone if the following
holds:
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• If (i, j) ∈ A and (i′, j) ∈ Sup(f) with i′ > i, then (i′, j) ∈ A.

• If (i, j) ∈ B and (i, j′) ∈ Sup(f) with j′ > j, then (i, j′) ∈ B.

We call such a pair proper if

• If (i, j) ∈ A and (i′, j) /∈ A for all i′ < i, then m1(i, j) > 0.

• If (i, j) ∈ B and (i, j′) /∈ B for all j′ < j, then m2(i, j) > 0.

That is, in proper partitions, all lower boundary points of the regions A and B have positive
marginal profit contributions (the intuition being that otherwise, either this is not an optimal
auction in the case of a negative marginal profit contribution, or there is another optimal
auction with this property in the case of a zero marginal profit contribution).

Let us define now a bipartite graph Gf = (U, V,E):

• U = {ui,j | i, j ∈ [N ]} and V = {vi,j | i, j ∈ [N ]};

• (ui,j, vi′,j′) ∈ E if and only if i ≤ i′ and j ≥ j′. In other words, there is an edge between
u and v if and only if, informally, (i′, j′) “lies to the southeast” of (i, j) (see Figure 2.6);
(Notice that, in our informal sense, a point “lies to the southeast” of all points to its
north and to its west, including the point itself.)

• The weight of any node ui,j is m1(i, j) and the weight of any node vi,j is m2(i, j).

Intuitively, the bipartite graph captures impossibilities in constructing the optimal auc-
tion: an edge (u, v) signifies that it is not possible that both u ∈ A and v ∈ B (slightly
abusing notation).

Figure 2.6: The bipartite graph for 2 bidders with N = 2.

We can now prove the sought combinatorial characterization of Π(f):
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Lemma 5. Let (A,B) be a pair of subsets of Sup(f). Then (A,B) ∈ Π(f) if and only if
(A,B) is monotone and proper, and {ui,j : (i, j) ∈ A} ∪ {vi,j : (i, j) ∈ B} is an independent
set of Gf .

Proof. (If.) Since {ui,j : (i, j) ∈ A}∪{vi,j : (i, j) ∈ B} is an independent set of Gf it follows
that the sets A and B are disjoint. Now, since (A,B) is a pair of monotone, proper and
disjoint subsets of Sup(f), the following pair of functions (α(j), β(i)) is a proper valid pair
that induces partition (A,B), immediately implying that (A,B) ∈ Π(f): α(j) = min{i |
(i, j) ∈ A} and β(i) = min{j | (i, j) ∈ B}.

(Only if.) If (A,B) ∈ Π(f) then by the definition of Π(f) the sets (A,B) have to be
monotone and proper and they also need to form a partition, i.e. be disjoint. To show
that {ui,j : (i, j) ∈ A} ∪ {vi,j : (i, j) ∈ B} is an independent set of Gf , assume towards
contradiction that there are nodes ui,j and vi′,j′ such that (i, j) ∈ A and (i′, j′) ∈ B, with
an edge between ui,j and vi′,j′ ; from the construction of Gf , it follows that i ≤ i′ and
j ≥ j′. Since A and B are both monotone, it follows that (i′, j) ∈ A ∩ B, contradicting the
disjointness of A and B.

The next Lemma shows that the additional assumptions that (A,B) is a proper and
monotone pair of subsets are not necessary, if one restricts attention to the optimal solution
(i.e. the solution of maximum weight).

Lemma 6. Let (A,B) be a pair of subsets of Sup(f) such that the set {ui,j : (i, j) ∈ A}∪{vi,j :
(i, j) ∈ B} is a maximum weight independent set of Gf , of minimum cardinality among all
independent sets of the same weight. Then (A,B) ∈ Π(f).

Proof. It suffices to show that the set (A,B) is monotone and proper, and then the lemma
follows from Lemma 5. Indeed, the monotonicity of (A,B) follows from the fact that the set
{ui,j : (i, j) ∈ A} ∪ {vi,j : (i, j) ∈ B} is a maximum weight independent set, and all weights
are non-negative. Moreover, since the independent set has minimum cardinality among all
independent sets of the same weight, it follows that it does not contain any node ui,j of
zero weight, i.e. corresponding to some valuation (i, j) such that m1(i, j) = 0, unless it also
includes a node ui′,j corresponding to some valuation (i′, j) with m1(i′, j) > 0 for some i′ < i
(and analogously for vi,j). Hence, by definition, (A,B) is proper as well.

Theorem 4. Given a discrete joint valuation distribution f for two bidders, the optimal
ex-post IC and IR deterministic auction can be computed in time O(|Sup(f)|3).

Proof. It follows from Lemma 6 that computing the optimal auction for two bidders with
a joint valuation distribution f reduces to computing a maximum weight independent set
on the induced bipartite graph Gf . In particular, the optimal allocation rule corresponds
to a partition (A,B) such that {ui,j : (i, j) ∈ A} ∪ {vi,j : (i, j) ∈ B} is a maximum weight
independent set of Gf , with minimum cardinality among all independent sets of the same
weight. Finding the maximum weight independent set by running a min-cost-flow algorithm
yields the desired running time.
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2.4 Two bidders: the general case

In this section we return to the continuous two-bidder problem of Section 2.2. Our main
result is an efficient algorithm that approximates the optimal solution of Problem A within
an arbitrarily small additive ε. Our algorithm is quite natural: we first round the input,
namely the bidders’ distribution, in multiples of some constant ε, and then run the maximum
weight independent set algorithm on the resulting 1/ε × 1/ε grid. The analysis however is
more elaborate: we use as our main tool a duality theorem, generalizing the duality between
the maximum-weight independent set problem in a bipartite graph and a minimum-cost flow
in an associated network. In particular, we show that the maximization Problem A defined
in Section 2.2 is equivalent to a minimization problem, reminiscent in some aspects of the
classic Monge-Kantorovich [37] mass-transfer problem, namely Problem B defined below.

Definition 8 (Problem B).

infγ

{∫ 1

0

∫ 1

0

∫ y1

0

∫ 1

x1

γ(x1, y1, x2, y2) dx2 dy2 dx1 dy1

}
s.t.

∫ y1

0

∫ 1

x1

γ(x1, y1, x2, y2) dx2 dy2 ≥ m1(x1, y1), ∀(x1, y1) ∈ [0, 1]2∫ 1

y2

∫ x2

0

γ(x1, y1, x2, y2) dx1 dy1 ≥ m2(x2, y2), ∀(x2, y2) ∈ [0, 1]2

γ(x1, y1, x2, y2) ≥ 0, ∀(x1, y1), (x2, y2) ∈ [0, 1]2

Problem B is a continuous version of the min-cost flow dual of the maximum weighted
independent set problem of the discrete case. “Continuous” here operates at many levels:
The nodes of the bipartite graph (both sides thereof) are the points in the unit square; the
edges of the bipartite graph are all possible directed edges going from one point in the unit
square to another in the southeast direction. The capacities of the nodes are the values of
the functions m1 (left-hand side) and m2 (right-hand side).

Finally, one way of understanding the min-cost flow problem is the following: Suppose
that the unit square is a garden of a particular geomorphology (hills, peaks and valleys, all
above sea level) captured by the function m1. We want to transform this landscape to the
one captured by function m2, and we want to do this by moving one grain of earth at a time.
For each grain of earth in landscape m1 we have two options: Either (1) we remove it, or
(2) we move it in the southeast direction (or we keep it where it is, this counts as moving it
a zero distance). We then complete our crafting of landscape m2 by repeatedly (3) bringing
in new grains. We want the plan in which the total amount of material moved (irrespective
of distance moved, here is where this problem differs significantly from Monge-Kantorovich)
is minimized.

Let us denote by Γ the set of all functions γ : [0, 1]4 7→ < satisfying the above constraints.
We next show that this problem coincides, at optimality, with the optimal auction:
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Theorem 5 (Duality Theorem). For any joint density function f on [0, 1]2:

sup
(α,β)∈AB

{∫ 1

0

∫ 1

α(y)

m1(x, y) dx dy +

∫ 1

0

∫ 1

β(x)

m2(x, y) dy dx

}
= inf

γ∈Γ

{∫ 1

0

∫ 1

0

∫ y1

0

∫ 1

x1

γ(x1, y1, x2, y2) dx2 dy2 dx1 dy1

}

Proof of the Duality Theorem

General Plan. The proof of the theorem is by discretizing the unit square into domains
of small size, proving a duality result for the discrete version, establishing upper bounds for
the discretization error, and taking the limit for finer and finer discretization. In the course
of the proof we will introduce a number of auxiliary problems.

Discretization. We start by discretizing the continuous functions m1 and m2 defined on
[0, 1] × [0, 1] by two discrete functions md

1 and md
2 defined on the [n] × [n] grid, where n

is an integer greater than one and [n]={0,1,. . . ,n-1}; we denote 1
n

by ε. We subdivide the
[0, 1] × [0, 1] square into ε × ε little squares; we are mapping a little square with southwest
coordinate (x, y) to the grid point n · (x, y). The discrete functions are now obtained by
assigning to each point in the grid the aggregate mass of its corresponding square on the
plane.

md
1(i, j) =

∫ ε(i+1)

εi

∫ ε(j+1)

εj

m1(x, y) dy dx, for i, j = 0, . . . , n− 1

and

md
2(i, j) =

∫ ε(i+1)

εi

∫ ε(j+1)

εj

m2(x, y) dy dx, for i, j = 0, . . . , n− 1.

Figure 2.7: The graph consisting of two grids, one for each bidder, for n = 3.
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The Graph. We next create a weighted bipartite graph G = (U, V,E) as follows: U =
V = [n] × [n]. We use u(i, j) and v(i, j) to denote the vertices of U and V respectively,
and sometimes use the shorthand u and v to refer to nodes of each grid respectively. Vertex
u(i, j) of U has a weight equal to wu = md

1(i, j), and similarly vertex v(i′, j′) of V has a
weight wv = md

2(i′, j′). A pair (u(i, j), v(i′, j′)) is in E if and only if i < i′ and j > j′, that
is, if grid point v is in the (strictly) southeast direction from grid point u (see Figure 2.7 for
an example with n = 3).

Consider now the following problem, familiar from the previous section:

Definition 9 (Problem C: Maximum Weight Independent Set). Given the weighted
bipartite graph G = (U, V,E) above,

max{xu∈{0,1},xv∈{0,1}}
∑

u∈U,v∈V

xuwu + xvwv

s.t. xu + xv ≤ 1, ∀(u, v) ∈ E

The dual of the above problem is the following:

Definition 10 (Problem D: Minimum Cost Transshipment). Given the weighted bipar-
tite graph G = (U, V,E) above,

min{yuv∈<}
∑

(u,v)∈E

yuv

s.t.
∑

v:(u,v)∈E

yuv ≥ wu, ∀u ∈ U∑
u:(u,v)∈E

yuv ≥ wv, ∀v ∈ V

yuv ≥ 0, ∀(u, v) ∈ E

The Inequalities. The crux of the proof is a sequence of inequalities relating the various
solutions and optimal solutions of these four problems. In what follows we use SOL(·) to
denote the cost of a feasible solution of any of the problems defined above, and OPT (·) to
denote the cost of the optimal solution of a problem (sometimes SOL and OPT also denote
the actual solutions). The first such inequality establishes a form of weak duality between
Problems A and B, while the next two show that the discretization error is small.

Lemma 7. For any two feasible solutions of A and B we have: SOL(A) ≤ SOL(B).

Proof.

SOL(A)
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=

∫ 1

0

∫ 1

α(y1)

m1(x1, y1) dx1 dy1 +

∫ 1

0

∫ 1

β(x2)

m2(x2, y2) dy2 dx2

≤
∫ 1

0

∫ 1

α(y1)

∫ y1

0

∫ 1

x1

γ(x1, y1, x2, y2) dx2 dy2 dx1 dy1

+

∫ 1

0

∫ 1

β(x2)

∫ 1

y2

∫ x2

0

γ(x1, y1, x2, y2) dx1 dy1 dy2 dx2

where we used the inequality constraints of Problem B to upper bound the values of
m1(x1, y1) and m2(x2, y2). We next notice that:∫ 1

0

∫ 1

β(x2)

∫ 1

y2

∫ x2

0

γ(x1, y1, x2, y2) dx1 dy1 dy2 dx2

≤
∫ 1

0

∫ α(y1)

0

∫ y1

0

∫ 1

x1

γ(x1, y1, x2, y2) dx2 dy2 dx1 dy1

This inequality follows from the non-negativity of γ and the fact that the (x1, y1, x2, y2)
included in the integral of the LHS are the following set:

{(x1, y1, x2, y2) ∈ [0, 1]4 | y2 ≥ β(x2), x1 ≤ x2, y1 ≥ y2}
= {(x1, y1, x2, y2) ∈ [0, 1]4 | y2 ≥ β(x2), x1 ≤ x2, y1 ≥ y2, x1 ≤ α(y1)}
⊆ {(x1, y1, x2, y2) ∈ [0, 1]4 | x2 ≤ α(y2), x1 ≤ x2, y1 ≥ y2, x1 ≤ α(y1)}
⊆ {(x1, y1, x2, y2) ∈ [0, 1]4 | x1 ≤ x2, y1 ≥ y2, x1 ≤ α(y1)}

which is exactly the set of (x1, y1, x2, y2) included in the integral of the RHS. The first equality
above follows from the fact that the inequality x1 ≤ α(y1) follows from the inequalities
{y2 ≥ β(x2), x1 ≤ x2, y1 ≥ y2}, because we have y1 ≥ β(x2) so the non-crossing property
implies that x2 ≤ α(y1) and therefore x1 ≤ α(y1). The first set inclusion follows from the
fact that y2 ≥ β(x2) ⇒ x2 ≤ α(y2) from the non-crossing property, while the last inclusion
is trivial.

We have therefore concluded that the cost of any feasible solution of A is upper bounded
by: ∫ 1

0

∫ 1

α(y1)

∫ y1

0

∫ 1

x1

γ(x1, y1, x2, y2) dx2 dy2 dx1 dy1

+

∫ 1

0

∫ α(y1)

0

∫ y1

0

∫ 1

x1

γ(x1, y1, x2, y2) dx2 dy2 dx1 dy1

=

∫ 1

0

∫ 1

0

∫ y1

0

∫ 1

x1

γ(x1, y1, x2, y2) dx2 dy2 dx1 dy1

= SOL(B)
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Lemma 8. For the optimal solutions of A and C we have: OPT (A) ≥ OPT (C)− ε.

Proof. Consider the optimal solution of Problem C; we will use it to come up with a feasible
solution for Problem A such that SOL(A) ≥ OPT (C) − ε. We start with the following
solution: we allocate the item to bidder 1 for all valuations (x, y) such that xu(bxε c,b yε c) = 1;

we allocate to bidder 2 for all valuations (x, y) such that xv(bxε c,b yε c) = 1, and xu(bxε c,b yε c) = 0;

and finally, we allocate to nobody for all valuations (x, y) such that xu(bxε c,b yε c) = 0 and

xv(bxε c,b yε c) = 0.

We next show that the resulting allocation regions have the shape of Figure 2.8, meaning
that the borders of those regions consist a valid allocation pair. First notice that for any pair
of valuations (x, y) –including those for which xu(bxε c,b yε c) = 1 and xv(bxε c,b yε c) = 1– only

one bidder gets allocated the item, so the non-crossing property is satisfied. To see why the
regions are rightward and upward closed consider two nodes u(i, j) and u(i′, j) on bidder 1’s
grid, where i′ > i. Notice that the set of nodes on bidder 2’s grid that node u(i, j) of bidder
1’s grid is connected to, is a strict superset of the nodes that node u(i′, j) is connected to.
Hence, if the maximum weight independent set includes node u(i, j) on the grid of bidder 1,
it should also include u(i′, j) for all values i′ > i.

This gives us two stairwise curves which –although being a valid allocation pair– may fail
to satisfy Condition 2.1, and hence may not be a feasible solution for Problem A. To turn
them into a proper valid pair, we can follow the same procedure as the one in the proof of
Lemma 2 and come up with a feasible solution SOL(A) for Problem A.

Because of the aforementioned transformation the cost of this solution is greater or equal
to the cost of the optimal solution OPT (C) minus the contribution to the weight of the
independent set by those nodes v(i, j) for which the corresponding node u(i, j) on the grid
of bidder 1 is also included in the independent set. The reason for that is that for valuations
(x, y) such that xv(bxε c,b yε c) = 1 and xu(bxε c,b yε c) = 1, our solution explicitly allocates the

item only to bidder 1, therefore losing the weight contribution of node v
(⌊

x
ε

⌋
,
⌊
y
ε

⌋)
. In what

follows we argue that this results in the loss of an ε-additive factor, so that the cost of the
resulting solution is at least:∑

u∈U

xum
d
1(u) +

∑
v∈V

xvm
d
2(v)− ε = OPT (C)− ε

To show this we first argue that the number of nodes v(i, j) for which this happens is
small, and in particular that there can only be at most 1/ε such nodes. To see this notice
that in the constructed feasible solution to Problem A, these nodes lie on the boundary
between regions where bidder 1 gets the item and bidder 2 gets the item; any such boundary
has to be monotone (since it corresponds to the overlap of the two allocation curves α, β),
and it can therefore contain at most 1/ε nodes. Next notice that the value of m2 at any

point (x, y) is at most 1: indeed, m2(x, y) is defined as yf(x, y) −
∫ 1

y
f(x, t)dt, wherever

∂
∂y

[
maxy′≥y y

′ ·
∫ 1

y′
f(x, t) dt

]
is defined, and extended to full range by right continuity. It
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follows immediately that m2(x, y) ≤ 1 and wv(i,j) = md
2(i, j) ≤ ε2; therefore the total weight

loss is at most 1
ε
· ε2 and the lemma follows.

Figure 2.8: The solution of Problem A (red and purple curves) resulting from the solution
of Problem C (blue and light-blue shaded regions) as described in Lemma 8.

Lemma 9. For the optimal solutions of B and D we have: OPT (D) ≥ OPT (B).

Proof. Given a feasible solution for Problem D, we will come up with a feasible solution of
the same cost for Problem B. The optimal solution for Problem B has at most that cost
and the lemma follows.

We start by defining γ(x1, y1, x2, y2), for any pair of points (x1, y1), (x2, y2) where the
ε2-area square containing (x2, y2) lies in the (strict) southeast orthant of the ε2-area square
containing (x1, y1), as follows:

γ(x1, y1, x2, y2) = m1(x1, y1) ·m2(x2, y2) · yuv
wuwv

, if
⌊x1

ε

⌋
<
⌊x2

ε

⌋
and

⌊y1

ε

⌋
>
⌊y2

ε

⌋
where u ∈ U (resp. v ∈ V ) is the grid point u

(⌊
x1
ε

⌋
,
⌊
y1
ε

⌋)
(resp. v

(⌊
x2
ε

⌋
,
⌊
y2
ε

⌋)
) that

corresponds to the little ε2-area square containing point (x1, y1) (resp. (x2, y2)). Finally, we
let:

γ(x1, y1, x2, y2) = 0, if
⌊x1

ε

⌋
≥
⌊x2

ε

⌋
or

⌊y1

ε

⌋
≤
⌊y2

ε

⌋
We next verify that the function γ defined above satisfies the constraints of Problem

B. Since the non-negativity constraint is obviously satisfied, we only need to check that γ
satisfies the first and second constraints of Problem B. We only provide the proof for the
first constraint and the proof for the second constraint follows along the exact same lines:∫ y1

0

∫ 1

x1

γ(x1, y1, x2, y2) dx2 dy2
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=
∑

i>bx1ε c,j<b y1ε c

∫ ε(i+1)

εi

∫ ε(j+1)

εj

m1(x1, y1) ·m2(x2, y2) ·
yu(bx1ε c,b y1ε c),v(bx2ε c,b y2ε c)

wu(bx1ε c,b y1ε c) · wv(bx2ε c,b y2ε c)
dy2 dx2

= m1(x1, y1) ·
∑

i>bx1ε c,j<b y1ε c

yu(bx1ε c,b y1ε c),v(i,j)

wu(bx1ε c,b y1ε c) · wv(i,j)

·
∫ ε(i+1)

εi

∫ ε(j+1)

εj

m2(x2, y2) dy2 dx2

= m1(x1, y1) ·
∑

i>bx1ε c,j<b y1ε c

yu(bx1ε c,b y1ε c),v(i,j)

wu(bx1ε c,b y1ε c) · wv(i,j)

· wv(i,j)

= m1(x1, y1) ·
∑

i>bx1ε c,j<b y1ε c

yu(bx1ε c,b y1ε c),v(i,j)

wu(bx1ε c,b y1ε c)
≥ m1(x1, y1)

where in the first equality we split the integration over discretized square regions of area
ε2 (the same that are used in the discrete auxiliary Problems C and D) and in the second
equality we rearranged the order of summation and integration, noticing that the weights
w and flows y remain constant across the discretized squares (independently of the actual
value of (x2, y2)). In the third equality we used the definition of the weight w and in the
last inequality we used the fact that y is a feasible solution for Problem D and therefore∑

v∈E yuv ≥ wu.
We conclude our proof by showing that the cost of the feasible solution we produced is

exactly OPT (D):∫ 1

0

∫ 1

0

∫ y1

0

∫ 1

x1

γ(x1, y1, x2, y2) dx2 dy2 dx1 dy1

=
∑
i,j

∫ ε(i+1)

εi

∫ ε(j+1)

εj

∫ y1

0

∫ 1

x1

γ(x1, y1, x2, y2) dx2 dy2 dx1 dy1

=
∑
i,j

∫ ε(i+1)

εi

∫ ε(j+1)

εj

m1(x1, y1) ·
∑

i′>bx1ε c,j′<b y1ε c

yu(bx1ε c,b y1ε c),v(i′,j′)

wu(bx1ε c,b y1ε c)
dx1 dy1

=
∑
i,j

∑
i′>i,j′<j

yu(i,j),v(i′,j′)

wu(i,j)

·
∫ ε(i+1)

εi

∫ ε(j+1)

εj

m1(x1, y1) dx1 dy1

=
∑
i,j

∑
i′>i,j′<j

yu(i,j),v(i′,j′)

wu(i,j)

· wu(i,j)

=
∑
i,j

∑
i′>i,j′<j

yu(i,j),v(i′,j′)

= OPT (D)

where in the first equality we split the integration of (x1, y1) over discretized square regions of

area ε2 and in the second equality we plugged in the expression for
∫ y1

0

∫ 1

x1
γ(x1, y1, x2, y2) dx2 dy2
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that we had derived from our previous proof establishing that the first constraint of Problem
B was satisfied. In the third equality we once again rearranged the order of summation and
integration, noticing that the weights w and flows y remain constant across the discretized
squares (independently of the actual value of (x1, y1)), in the fourth equality we used the
definition of the weight w and in the last equality we replaced with the objective function of
Problem D.

Proof of the Duality Theorem. First notice that, by strong duality and since the constraint
matrix of Problem C is totally unimodular, we have that OPT (C) = OPT (D); combining
this with Lemmas 8 and 9 we get OPT (A) ≥ OPT (B)−ε. From Lemma 7 we get OPT (A) ≤
OPT (B). By having ε→ 0 we get the result.

The Algorithm

The proof of the Main Theorem suggests a fully polynomial-time approximation scheme
(FPTAS) for the continuous case, that is, an auction that approximates the optimal profit
within additive error ε, and runs in time polynomial in 1

ε
. In the algorithm and the correctness

proof, we assume that the continuous joint distribution f is Lipschitz continuous, and that
it is presented through oracle access. It is easy to see that these assumptions are essentially
necessary, in that no approximation (or meaningful solution of any other nature) is possible
when the function f can be arbitrarily discontinuous, or is inaccessible for large parts of the
domain.

Algorithm 1 OptimalAuction for two bidders with continuous distributions

1: Input: probability distribution f ∈ [0, 1]2

2: Compute m1(·, ·),m2(·, ·)
3: Discretize the unit plane and construct the bipartite graph G as described in Section 2.4
4: Compute a Maximum Weight Independent Set for G
5: Output: (α, β), the valid allocation pair corresponding to the stair-like curves of Figure

2.8

The following theorem establishes that our algorithm has the desired properties.

Theorem 6. Algorithm 1 returns a truthful auction that approximates the optimal profit
within ε additive error; moreover the algorithm runs in time polynomial in both the support
size and 1/ε.

Proof. Algorithm 1 returns a valid allocation pair so it is truthful by construction. However
the allocation pair (α, β) returned may well not satisfy condition (2.1) and may consequently
not be a feasible solution to Problem A. This is problematic since it does not allow us to use
Lemma 1 to compute the profit of the auction returned. To that end we need to establish
that the violation of condition (2.1) is –in some sense– negligible; we do that next.
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Suppose that curve α(y) violates condition (2.1) for some y∗ ∈ [0, 1] and let

x∗ = arg max
x≥α(y∗)

x ·
∫ 1

x

f(t, y∗) dt,

be the minimum x for which we could create a new solution α′ by setting α′(y∗) = x∗ and
have condition (2.1) restored, while not altering the profit of our auction.1 We will argue
that

α(y∗) ·
∫ 1

α(y∗)

f(t, y∗) dt ≥ x∗ ·
∫ 1

x∗
f(t, y∗) dt−Θ(ε). (2.2)

To do that we consider the node corresponding to the little square on the unit plane contain-
ing (α(y∗), y∗). Since this node belongs to the boundary of the allocation region of bidder 1,
we can assume wlog that it has non-zero weight; hence there must exist some point (x1, y1)
in the corresponding square on the unit plane with m1(x1, y1) > 0. By the definition of m1

this immediately implies that

x1 ·
∫ 1

x1

f(t, y1) dt ≥ x ·
∫ 1

x

f(t, y1) dt, for all x ≥ x1

and therefore in particular that, if x∗ ≥ x1 then

x1 ·
∫ 1

x1

f(t, y1) dt ≥ x∗ ·
∫ 1

x∗
f(t, y1) dt. (2.3)

Hence, if x∗ ≥ x1, then, since the l1-distance of points (α(y∗), y∗) and (x1, y1) and of points
(x∗, y∗) and (x∗, y1) is at most 2ε, we get that:

α(y∗)·
∫ 1

α(y∗)

f(t, y∗) dt ≥ x1·
∫ 1

x1

f(t, y1) dt−2λε ≥ x∗·
∫ 1

x∗
f(t, y1) dt−2λε ≥ x∗·

∫ 1

x∗
f(t, y∗) dt−4λε

where in the first and third inequalities we used the fact that x ·
∫ 1

x
f(t, y) dt is Lipschitz-

continuous for some constant λ and in the second inequality we used inequality (2.3).
If on the other hand x∗ ≤ x1, then the points (α(y∗), y∗) and (x∗, y∗) already have l1-

distance at most 2ε and it therefore follows immediately from Lipschitz continuity that:

α(y∗) ·
∫ 1

α(y∗)

f(t, y∗) dt ≥ x∗ ·
∫ 1

x∗
f(t, y∗) dt− 2λε.

The exact same argument applies for β(x) as well.
We are now ready to prove a lower bound on the profit of the auction returned by our

algorithm; in what follows we use α′(y) and β′(x) to denote the allocation curves that would
result by the aforementioned transformation. Note that by construction it holds that

α′(y) ·
∫ 1

α′(y)

f(x, y) dx =

∫ 1

α′(y)

m1(x, y) dx and β′(x) ·
∫ 1

β′(x)

f(x, y) dy =

∫ 1

β′(x)

m2(x, y) dy

(2.4)
1The reader is referred to Lemma 2 for further discussion on this point.
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so the profit of the algorithm is:∫ 1

0

[
α(y) ·

∫ 1

α(y)

f(x, y) dx

]
dy +

∫ 1

0

[
β(x) ·

∫ 1

β(x)

f(x, y) dy

]
dx

≥
∫ 1

0

[
α′(y) ·

∫ 1

α′(y)

f(x, y) dx−Θ(ε)

]
dy +

∫ 1

0

[
β′(x) ·

∫ 1

β′(x)

f(x, y) dy −Θ(ε)

]
dx

=

∫ 1

0

∫ 1

α′(y)

m1(x, y) dx dy +

∫ 1

0

∫ 1

β′(x)

m2(x, y) dy dx−Θ(ε)

= OPT (C)−Θ(ε)

≥ OPT (A)−Θ(ε)

where in the first inequality we used inequality (2.2), in the first equality we used (2.4) and
in the last inequality we used our Main Theorem from the previous section.

In terms of running time, the discretized approximations ofm1 andm2 are trivial (because
of Lipschitz continuity, we can take md

1(i, j) = m1(iε, jε), and similarly for m2). Solving
the Maximum Weight Independent Set problem is done exactly as in the previous
section.

2.5 Three bidders: NP-completeness

In this section we show that, for three bidders, the problem of designing an approximately
optimal (deterministic) auction becomes NP-hard, and in fact from 3SAT via approximation-
preserving reductions. This implies that not only is the computational problem of designing
the optimal deterministic auction intractable, but also that so is the problem of approximat-
ing this optimal auction within some finite relative error ε. Finding a reasonably high value
of the ε for which this statement holds is an interesting open problem.

A geometric reformulation

We are interested in the complexity of the following problem:

Definition 11 (3OptimalAuctionDesign). Given a joint discrete probability distribution
f supported on G = [S] × [S] × [S] for some integer S > 0, find the ex-post IC and IR
deterministic auction –that is, the 3-dimensional allocation matrix A, where A[x, y, z] ∈
{0, 1, 2, 3}, and i is the index of the bidder who gets the item when the valuation vector is
(x, y, z), or 0 if the auctioneer keeps the item– which maximizes revenue.

To calculate the revenue (last phrase of the previous definition), the following notion of
marginal profit contribution, appropriately modified for the three bidder discrete case, will
be useful to our proof.
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Definition 12. The discrete analogues of the marginal profit contribution functions (Defi-
nition 2) for each bidder are the following:

m1(x, y, z) = max

{
x ·
∑
x′≥x

f(x′, y, z)−
∑
x′>x

m1(x′, y, z), 0

}
for bidder 1

m2(x, y, z) = max

{
y ·
∑
y′≥y

f(x, y′, z)−
∑
y′>y

m2(x, y′, z), 0

}
for bidder 2

m3(x, y, z) = max

{
z ·
∑
z′≥z

f(x, y, z′)−
∑
z′>z

m3(x, y, z′), 0

}
for bidder 3

The revenue corresponding to allocation A is therefore∑
A(x,y,z)=1

m1(x, y, z) +
∑

A(x,y,z)=2

m2(x, y, z) +
∑

A(x,y,z)=3

m3(x, y, z)

The segments. Given a distribution f(x, y, z) supported on G, any point (x, y, z) of G with
m1(x, y, z) > 0 is the apex of what we shall henceforth be calling an x-segment : a sequence
of points starting at point (x, y, z) and including all points (x′, y, z) with x′ ≥ x. The weight
of this segment is defined to be

∑
x′≥xm1(x′, y, z), which, according to Definition 12, is equal

to x ·∑x′≥x f(x′, y, z). We define segments across the other dimensions analogously. The
following problem is equivalent to the auction design problem:

Definition 13 (3Segments). Given a joint discrete probability distribution f supported on
G, which induces a set of segments on G as described above, find a subset of non-intersecting
segments with maximum sum of weights.

Lemma 10. The problem 3Segments(f) is equivalent to 3OptimalAuctionDesign(f)
(via approximation-preserving reductions).

Proof sketch. The correspondence between solutions of the two problems is straightforward,
illustrated in Figure 2.9.

2	   2	   2	   1	  

2	   2	   1	   1	  

2	   0	   0	   1	  

0	   0	   1	   1	  

A[x,y] The segments induced on G 

Figure 2.9: The reduction of Lemma 10, shown here for 2 bidders for ease of depiction.
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The reduction

We must therefore show that 3Segments is APX-hard; we prove that by reducing from the
problem Typed3Sat, a special case of Max3Sat:

Definition 14. Let Typed3Sat be the Max3Sat problem with the input formula restricted
to be of the following form. We have three types of variables {xi}i=1...nx , {yi}i=1...ny and
{zi}i=1...nz , i.e. a total of n = nx + ny + nz variables, and m clauses of the following form:
every clause has at most one literal from every type (e.g. (x2∨y3∨z1) or (x5∨z7)). Moreover,
every variable appears at most 7 times in the formula.

Lemma 11. Typed3Sat is APX-complete.

Proof. We reduce from the 3Sat-5 problem, which is 3Sat with the additional constraint
that every variable appears at most 5 times (this was shown in [66] to be APX-complete). In
order to turn an instance φ of 3Sat-5 to an equivalent instance Ψ of Typed3Sat, for every
variable x we create three copies x1, x2, x3, and add the consistency clauses (x1 ∨ x2), (x2 ∨
x3), (x3∨x1) to guarantee that all copies of the variable x will have the same value. We then
consider an arbitrary ordering of the variables within each clause, and replace any occurrence
of variable x at position i ∈ {1, 2, 3} within a clause with xi. Since a variable x can appear
at most 5 times in the original formula, each one of the copies x1, x2, x3 can appear at most
7 times: 5 times in the original formula, if all occurrences of x happen to be at the same
position, and 2 times in the consistency clauses.

NP-hardness is immediate: Any satisfying truth assignment of the original formula yields
immediately a satisfying truth assignment of the resulting formula, and vice-versa. To show
that the reduction is approximation-preserving, suppose that we can satisfy a fraction of
(1− ε) of Ψ. We claim that we can satisfy a fraction of (1− 50 · ε) of the original φ. To see
this, notice that Ψ has m + 3n ≤ 10m clauses, and if an ε fraction of them is unsatisfied,
or at most 10εm, this can affect at most 50εm of the m clauses of φ. This is because each
clause of Ψ either is itself a clause of φ, or it is a consistency clause for some variable, which
therefore affects the at most five clauses in φ in which the variable appears. Therefore, the
remaining clauses of φ are satisfied.

Overview of the construction

The instance of 3Segments we create has three types of segments:

• Literal segments capture the truth assignment to variables; they ensure that every
variable is assigned exactly one of the two possible truth values and that this assignment
is consistent across all appearances of literals of this particular variable.

• Clause segments capture the truth assignment to literals of a particular clause; we
create one such clause segment for every literal that appears in a clause. These segments
intersect with each other and with some of the literal segments corresponding to those
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literals. As a result, if the clause is satisfied with the truth assignment implied by the
literal segments, we will be able to pick at least one clause segment per clause (because
the literal segment that intersects it will not be picked). Moreover, we cannot pick two
or more clause segments per clause, since they will all intersect with each other, so we
will end up picking exactly one such clause segment per satisfied clause.

• The scaffolding segments complete the construction in a way outlined later.

Suppose that the instance of Typed3Sat contains the clause C = (x1 ∨ y1 ∨ z1). The
corresponding 3Segments gadget is presented in Figure 2.10, where literal segments are
depicted in red and clause segments are depicted in blue. There are two intersecting literal
segments α and α for each variable α (the intersections of segments are denoted for clarity
as small circles); as only one of these can be selected in the solution (and it will be clear that
one will be selected in the optimal solution), the solution will imply a truth assignment.

Conversely, for any truth assignment we pick a set of literal segments for our 3Segments
solution as follows: if the truth assignment sets x1 to true we are going to pick the literal
segment labeled x1 in Figure 2.10, otherwise, if x1 is false, we are going to pick the literal
segment labeled x1. Notice each type of variables is assigned its own axis in 3-dimensional
space. Notice also how the fact that these two segments intersect ensures the consistency
of the assignment. The idea now is that any truth assignment that satisfies the clause, i.e.
it sets at least one of the literals x1, y1 or z1 to true, results in a solution of 3Segments
that includes at least one of the literal segments labeled x1, y1, z1. Therefore, the solution
does not include at least one of the complementary literal segments labeled x1, y1, z1; this
allows us to include one of the blue clause segments to our 3Segments solution. In fact,
we can include at most one blue segment corresponding to clause C, because the three blue
segments associated with it intersect.

There are many details missing, of course. For example, recall that an instance of 3Seg-
ments is a probability distribution f , which induces the aforementioned segments as ex-
plained in the paragraph preceding Definition 13. Intuitively, this distribution should assign
non-zero probability mass only at the points at which we want our segments to begin.

This leads to a technical complication, which necessitates the third kind of segments, the
scaffolding segments: consider for simplicity the two-dimensional example of Figure 2.11,
where the distribution is supported on the set {1, 2, 3}2 and our goal is to include the blue
segment depicted. We can achieve this by assigning some non-zero probability mass at
point (1, 1), say f(1, 1) = 1, which will make m2(1, 1) = 1 > 0 and will indeed induce the
blue segment; however, since m1(1, 1) = 1 > 0 as well, the instance will also induce the
undesired red segment. To resolve this issue we introduce a scaffolding segment: we split the
probability mass between points (1, 1) and (3, 1), for example f(1, 1) = f(3, 1) = 0.5, so that
m1(1, 1) = 0 and the undesired red segment disappears. The new green segments starting at
(3, 1) because of m1(3, 1) = 1.5,m2(3, 1) = 0.5, are what we refer to as scaffolding segments.
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x 

y 

z 

x1 

x1 

z1 

z1 

y1 

y1 

Figure 2.10: The gadget of 3Segments resulting from a single clause of Typed3Sat. This picture
is not accurate –especially with respect to the location of the segments’ apices– and is solely meant
to convey the basic idea of the reduction. We give a precise example in the next section.

3	   0	   0	   0	  

2	   0	   0	   0	  

1	   1	   0	   0	  

1	   2	   3	  

3	   0	   0	   0	  

2	   0	   0	   0	  

1	   0.5	   0	   0.5	  

1	   2	   3	  

(a) 

(b) 

The segments induced on G 

The segments induced on G 

φ 

φ 

Figure 2.11: The usage of scaffolding segments.

The detailed construction

In this section we give the full details of the reduction, showing how to construct a probability
distribution f that serves as the input of 3Segments, given an instance of Typed3Sat.
We conclude with a worked out example.

Let n̂ denote max{nx, ny, nz}. The support2 of f is: {s(i)|i = 1, . . . , n̂+ 2m+ 4}3, for
an appropriate choice of the values s(i) which we will fix later; for now all we assume is that
s is an increasing function of i. The size of the support is at most (n̂ + 2m + 4)3, so this is

2The support is actually a subset of this; these are all the points (bidder valuations) with potentially
non-zero probabilities. This will become clear in the actual construction.
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clearly a polynomial time construction.
In what follows we shall abuse notation and write f(x, y, z) instead of f (s(x), s(y), s(z))

when there is no ambiguity. Also, in terms of phrasing, we shall sometimes refer to the
sub-matrices f(i, ·, ·), f(·, j, ·), f(·, ·, k) as the “planes” x = i, y = j and z = k respectively;
finally, remember that a segment that runs parallel to the x (resp. y or z) axis is an x-segment
(resp. y-segment or z-segment).

The construction proceeds as follows: Consider an arbitrary ordering of the clauses 1
through m and suppose the l-th clause is of the form (xi ∨ yj ∨ zk) where xi, yj and zk can
be either positive or negative literals, and i (resp. j, k) = 1, . . . , nx (resp. ny, nz) (the same
construction also works for clauses with less than 3 variables). For this clause we are going
to introduce the set of literal segments and clause segments described below.

Literal segments. To formally define the literal segments we first need to set the proba-
bility mass of the point that is the apex of each segment, and then use scaffolding segments
to ensure that there is exactly one segment starting at each such point, towards the appro-
priate direction. We defer the discussion of scaffolding segments to a subsequent section,
and here we only show which points are picked as apices.

In particular, the probability mass that is assigned to each such apex is c1 (to be deter-
mined later); for notational convenience, and in order to give an idea of what kind of segments
we are expecting to get per type of literal, in what follows we write x-segment(i, j, k) to de-
note that f(i, j, k) = c1 and that we are later going to use scaffolding segments to ensure the
existence of an x-segment only (and analogously for y and z-segments).

• pos(xi)⇒ y-segment(i+ 1, n̂+ 2, n̂+ 2 + l) and z-segment(i+ 1, n̂+ 2 +m+ l, n̂+ 2)
neg(xi)⇒ z-segment(i+ 1, n̂+ 2 + l, n̂+ 2) and y-segment(i+ 1, n̂+ 2, n̂+ 2 +m+ l)

• pos(yj)⇒ z-segment(n̂+ 2 + l, j + 1, n̂+ 2) and x-segment(n̂+ 2, j + 1, n̂+ 2 +m+ l)
neg(yj)⇒ x-segment(n̂+ 2, j + 1, n̂+ 2 + l) and z-segment(n̂+ 2 +m+ l, j + 1, n̂+ 2)

• pos(zk)⇒ x-segment(n̂+ 2, n̂+ 2 + l, k + 1) and y-segment(n̂+ 2 +m+ l, n̂+ 2, k + 1)
neg(zk)⇒ y-segment(n̂+ 2 + l, n̂+ 2, k + 1) and x-segment(n̂+ 2, n̂+ 2 +m+ l, k + 1)

Note that every positive occurrence of a variable of type, say, x results in the following two
segments: a negative literal segment starting at (i+ 1, n̂+ 2, n̂+ 2 + l) that intersects with
the corresponding clause segment starting at (1, n̂+ 2 + l, n̂+ 2 + l) (see next paragraph),
and a literal segment starting at (i+ 1, n̂+ 2 +m+ l, n̂+ 2) that does not intersect with any
clause segment; this is also called a dummy-positive literal segment. Negative occurrences
of variables analogously result in positive and dummy-negative literal segments; Figure 2.10
provided an illustration, minus the dummy segments. Dummy literal segments are introduced
because (for reasons that will become apparent in the proof Lemma 12) we want to ensure
that we have an equal number of positive and negative literal segments (when dummies are
included).
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The point masses described above are depicted in Figure 2.12 for variables of type z. (The
reader should ignore for now the c4 entries of Figure 2.12 which correspond to scaffolding
segments.)

ň+2m+4	  

ň+2m+3	   c4	  

ň+2m+2	   [c1]	  

…	  

…
	  

ň+m+3	   [c1]	  

ň+m+2	   [c1]	  

…	   …
	  

ň+3	   [c1]	  

ň+2	   [c1]	   …	   [c1]	   [c1]	   …	   [c1]	   c4	  

ň+1	  

…	  

1	  

1	   …	   ň+1	   ň+2	   ň+3	   …	   ň+m+2	   ň+m+3	   …	   ň+2m+2	   ň+2m+3	   ň+2m+4	  

positive literal-segments for 
variables of type z 

dummy-positive literal-segments 
for variables of type z 

y 

x 

Figure 2.12: The plane z = k + 1, k = 1, . . . , nz, contains the literal segments of variable zk. By
[·] we mean that this point does not appear at all levels z. Every such level must have an equal
number of c1-entries in line n̂ + 2 and column n̂ + 2; also, since every variable appears at most 7
times, there can be at most 7 entries in line and column n̂+ 2 for each such level.

Clause segments. The point masses below (with the appropriate usage of scaffolding
segments to be specified later) will give rise to an x-segment, a y-segment and a z-segment,
which are the clause segments of the variable of type x, y and z respectively, for clause l.

f (1, n̂+ 2 + l, n̂+ 2 + l) = f (n̂+ 2 + l, 1, n̂+ 2 + l) = f (n̂+ 2 + l, n̂+ 2 + l, 1) = c2

The point masses for clause segments of variables of type z are depicted in Figure 2.13. (The
reader should ignore for now the c3 entries of Figure 2.13 which correspond to scaffolding
segments.)
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ň+2m+4	  

ň+2m+3	   c3	   …	   c3	  

ň+2m+2	  

…	  

ň+m+3	  

ň+m+2	   0	   …	   [c2]	   c3	  

…	   …
	  

…	   …
	  

…
	  

ň+3	   [c2]	   …	   0	   c3	  

ň+2	  

ň+1	  

…	  

1	  

1	   …	   ň+1	   ň+2	   ň+3	   …	   ň+m+2	   ň+m+3	   …	   ň+2m+2	   ň+2m+3	   ň+2m+4	  

y 

x 

Figure 2.13: The plane z = 1. Every time a variable zk appears in clause l, we introduce two
literal segments lying on level z = k+ 1, through c1 points, and a clause segment perpendicular to
this plane, through a c2 point at (l, l, 1), so that it intersects with the non-dummy literal segment.
The only reason why a c2 point might be missing is because of a clause of the form (xi ∨ yj).

An example. To better understand the translation of a Typed3Sat formula into a 3Seg-
ments instance, we consider the following example:

(x1 ∨ y1 ∨ z1) ∧ (x1 ∨ y1) ∧ (x2 ∨ y1 ∨ z1)

According to the construction above, the probability masses of the regular and dummy literal
segments (c1 probability mass) and of the clause segments (c2 probability mass) are assigned
to the coordinates displayed in the following table.

x1 ∨ y1 ∨ z1 x1 ∨ y1 x2 ∨ y1 ∨ z1

x1 y1 z1 x1 y1 x2 y1 z1

regular (2,4,5) (5,2,4) (5,4,2) (2,6,4) (4,2,6) (3,4,7) (7,2,4) (4,7,2)
dummy (2,8,4) (4,2,8) (4,8,2) (2,4,9) (9,2,4) (3,10,4) (4,2,10) (10,4,2)
clause (1,5,5),(5,1,5),(5,5,1) (1,6,6),(6,1,6),(6,6,1) (1,7,7),(7,1,7),(7,7,1)

The resulting set of segments per clause (after the application of appropriate scaffolding
segments which will be explained in the next paragraph) is depicted in Figure 2.14. Fig-
ure 2.15 displays the full set of segments (minus the scaffolding segments) for this formula.
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(a) The gadget for clause x1 ∨ y1 ∨ z1.
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(b) The gadget for clause x1 ∨ y1.
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(c) The gadget for clause x2 ∨ y1 ∨ z1.

Figure 2.14: The gadgets resulting from (x1 ∨ y1 ∨ z1) ∧ (x1 ∨ y1) ∧ (x2 ∨ y1 ∨ z1).
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Figure 2.15: The full set of segments for (x1 ∨ y1 ∨ z1) ∧ (x1 ∨ y1) ∧ (x2 ∨ y1 ∨ z1).

Scaffolding segments. The reduction relies on the fact that the only intersections involv-
ing literal and clause segments will be between literal segments of literals that are negations
of each other, between clause segments of the same clause and between clause segments and



CHAPTER 2. OPTIMAL DETERMINISTIC AUCTIONS WITH CORRELATED
PRIORS 41

their corresponding literal segments. To ensure this, we need the aforementioned scaffold-
ing segments; these will ensure that the only segments starting from the c1 and c2 points
specified in the previous paragraphs will indeed be the desired literal and clause segments
mentioned above.

c3: We first ensure that there is exactly one segment starting from every point c2, which
is perpendicular to the plane x (or y, z ) = 1; in other words we ensure that there are no
other segments starting at c2 that lie on the plane, by introducing: f (1, n̂+ l + 2, n̂+ 2m+ 3) =
f (1, n̂+ 2m+ 3, n̂+ l + 2) = f (n̂+ l + 2, 1, n̂+ 2m+ 3) = f (n̂+ 2m+ 3, 1, n̂+ l + 2) =
f (n̂+ l + 2, n̂+ 2m+ 3, 1) = f (n̂+ 2m+ 3, n̂+ l + 2, 1) = c3, for all l = 1, . . . ,m; see
Figure 2.13 for an illustration. In order to force the marginal profit contribution func-
tion to be zero at a c2 point for some appropriately chosen bidder/direction, we impose
the requirement that:

s(n̂+ l + 2) · (c2 + c3) ≤ s(n̂+ 2m+ 3) · c3, ∀l = 1, . . . ,m (2.5)

For example, suppose that we want point (1, n̂+ 2 + l, n̂+ 2 + l) to be the apex of an
x-segment only, and that no y or z-segment should start at this point. We achieve this
by including the points f (1, n̂+ l + 2, n̂+ 2m+ 3) = f (1, n̂+ 2m+ 3, n̂+ l + 2) = c3;
the above inequality then ensures that

m2 (1, n̂+ 2 + l, n̂+ 2 + l) = h (1, n̂+ 2 + l, n̂+ 2 + l) = 0

and therefore there are no y or z-segments starting at this point.

c4: We next ensure that there are no segments starting from c1 points that go along row or
column n̂+2, by introducing: f (i+ 1, n̂+ 2, n̂+ 2m+ 3) = f (i+ 1, n̂+ 2m+ 3, n̂+ 2) =
f (n̂+ 2, j + 1, n̂+ 2m+ 3) = f (n̂+ 2m+ 3, j + 1, n̂+ 2) = f (n̂+ 2, n̂+ 2m+ 3, k + 1) =
f (n̂+ 2m+ 3, n̂+ 2, k + 1) = c4, for i = 1, . . . , nx, j = 1, . . . , ny, k = 1, . . . , nz; see
Figure 2.12 for an illustration. Since we have at most 7 occurrences of any variable,
and hence at most 7 c1-entries on any row or column n̂ + 2 at a given level, the
requirement we impose (along the same lines as above) is that:

s(n̂+ l + 2) · (7c1 + c4) ≤ s(n̂+ 2m+ 3) · c4, ∀l = 1, . . . , 2m (2.6)

c5: Finally, we ensure that there are no x-segments (resp. y-segments and z-segments)
starting from a point c1 on plane x = i + 1 (resp. y = i + 1, z = i + 1) for i =
1, . . . , n̂, by introducing: f (n̂+ 2m+ 4, l, n̂+ 2) = f (n̂+ 2m+ 4, n̂+ 2, l) = c5 (resp.
f (n̂+ 2, n̂+ 2m+ 4, l) = f (l, n̂+ 2m+ 4, n̂+ 2) = c5 and f (l, n̂+ 2, n̂+ 2m+ 4) =
f (n̂+ 2, l, n̂+ 2m+ 4) = c5) for all l = n̂ + 3, . . . , n̂ + 2m + 2; see Figure 2.16 for
an illustration. Noticing that c1 can appear at position (i + 1, l, n̂ + 2) only for one
i ∈ {1, 2, . . . , n̂} (and analogously for the other positions of c5 points) it suffices to
impose the requirement that:

s(i+ 1) · (c1 + c5) ≤ s(n̂+ 2m+ 4) · c5, ∀i = 1, . . . , n̂ (2.7)
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There is one final issue to address: from each of the scaffolding points defined above,
there is not one, but three segments starting from it. Since the scaffolding segments do
not intersect with any of the literal and clause segments but only with each other, for the
purposes of our reduction it suffices to consider the most profitable set of scaffolding segments
we can include in our solution. This way, when we prove our reduction’s guarantees, we can
make sure to tune the target profit in a way that will ensure the inclusion in the optimal
solution of this most profitable set, so that we won’t have to worry about the other scaffolding
segments. In the remaining of this paragraph we will point out the most profitable set of
segments in each of the three cases above. To facilitate the exposition we will move across
planes z = 1, . . . , n̂+2m+4, so that the reader can consult Figures 2.12, 2.13 and 2.16 along
the way.

Starting with plane z = 1 and the c3 scaffolding points, we will focus wlog on the points
(n̂ + 2 + l, n̂ + 2m + 3, 1), l = 1, . . . ,m, the apices of an x-segment of weight s(n̂ + 2 + l) ·
(m− l + 1)c3, a y-segment of weight s(n̂ + 2m + 3) · c3 and a z-segment of weight s(1) · c3.
The y-segment of every point clearly dominates the z-segment of the same point, while the
whole set of all m y-segments from all such points (with total weight m · s(n̂+ 2m+ 3) · c3)
is better than any combination of l y-segments followed by a (long) x-segment (with total
weight l · s(n̂+ 2m+ 3) · c3 + s(n̂+ 2 + l) · (m− l)c3). Therefore, the most profitable set of
segments consists of m y-segments, each with a weight of s(n̂+ 2m+ 3) · c3.

Moving on to planes z = k + 1, k = 1 . . . nz and the c4 scaffolding points, we will focus
wlog on the points (n̂+2, n̂+2m+3, k+1), the apices of an x-segment of weight s(n̂+2) ·c4,
a y-segment of weight s(n̂+ 2m+ 3) · c4 and a z-segment with weight s(k+ 1) · (nz−k+ 1)c4.
The y-segment of every point clearly dominates the x-segment of the same point, while the
whole set of all nz y-segments from all such points (with total weight nz · s(n̂+ 2m+ 3) · c4)
is better than any combination of k y-segments followed by a (long) z-segment (with total
weight k · s(n̂ + 2m + 3) · c4 + s(k + 1) · (nz − k)c4). Therefore, the most profitable set of
segments consists of nz y-segments, each with a weight of s(n̂+ 2m+ 3) · c4.

Finally, for plane z = n̂ + 2m + 4 and the c5 scaffolding points, we will focus wlog on
the points (n̂+ 2, n̂+ 2 + l, n̂+ 2m+ 4), l = 1, . . . , 2m, the apices of an x-segment of weight
s(n̂+ 2) · c5, a y-segment of weight s(n̂+ 2 + l) · (2m− l+ 1)c5 and a z-segment with weight
s(n̂ + 2m + 4) · c5. The z-segment of every point clearly dominates the x-segment of the
same point, while the whole set of all 2m z-segments from all such points (with total weight
2m · s(n̂+ 2m+ 4) · c5) is better than any combination of l z-segments followed by a (long)
y-segment (with total weight l ·s(n̂+2m+4)·c5+s(n̂+2+l)·(2m−l)c5). Therefore, the most
profitable set of segments consists of 2m z-segments, each with a weight of s(n̂+2m+4) · c5.

The support. We are now ready to set the values of the support s(·) and of the variables
c1, . . . , c5. Those values will need to satisfy the aforementioned constraints (2.5,2.6,2.7), and
since s(·) is increasing, it actually suffices to satisfy the following stronger constraints:

(2.5) ⇐ s(n̂+ 2m+ 2) · (c2 + c3) ≤ s(n̂+ 2m+ 3) · c3 (2.8)

(2.6) ⇐ s(n̂+ 2m+ 2) · (7c1 + c4) ≤ s(n̂+ 2m+ 3) · c4 (2.9)
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Figure 2.16: The plane z = n̂+ 2m+ 4.

(2.7) ⇐ s(n̂+ 2m+ 2) · (c1 + c5) ≤ s(n̂+ 2m+ 4) · c5 (2.10)

Moreover, the values chosen need to satisfy the following inequality, which we will use later
in the proof of soundness of our reduction:

m · s(1)c2 ≤ n · s(n̂+ 2)c1 (2.11)

where n denotes the total number of literal occurrences in the formula.
It is easy to check that if we pick the values for s(·) as follows:

s(i) =


1 + i−1

n̂+2m+1
for i = 1, . . . , n̂+ 2m+ 2

4 for i = n̂+ 2m+ 3
5 for i = n̂+ 2m+ 4

,

then constraints (2.8,2.9,2.10,2.11) above are all satisfied with equality, as long as the vari-
ables c1, . . . , c5 satisfy the following system (where we can choose the value c1 so that all of
the entries across f(·, ·, ·) sum up to 1 and we get a proper probability distribution):

c2 =
n

m

(
1 +

n̂+ 1

n̂+ 2m+ 1

)
c1

c3 = c2

c4 = 7c1
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c5 =
2

3
c1

We are now ready to provide completeness and soundness guarantees for our reduction.

Lemma 12. The construction described above is an approximation-preserving reduction
from Typed3Sat to 3Segments.

Proof. We first note that regardless of the instance of Typed3Sat we are reducing from, we
can always obtain a fixed profit for 3Segments from the scaffolding segments; by picking
the most profitable set of segments, as discussed above, we get a total profit of:

F = 6m · s(n̂+ 2m+ 3)c3 + 2n · s(n̂+ 2m+ 3)c4 + 12m · s(n̂+ 2m+ 4)c5

Let n be the total number of literal occurrences in the formula. We then have the
following:

• If the Typed3Sat formula is satisfiable then the optimal profit of 3Segments is
exactly:

m · s(1)c2 + n · s(n̂+ 2)c1 + F (2.12)

To see this first consider the following way to pick the literal segments according to the
truth values assigned to the corresponding variables: if a variable is set to true3 we
include its positive literal segments (both regular and dummies). Notice that –thanks
to the dummy literal segments– there is an equal number of positive and negative
literal segments overall (dummies included), with a total of 2n of them. We include
exactly half of them for every variable (either the positive or the negative ones), so the
total profit from these segments is exactly n · s(n̂+ 2)c1.

Moreover, since the formula is satisfiable, at least one literal per clause is satisfied.
If this is a positive3 literal, then the variable has been set to true and the literal
segments for this variable included in our 3Segments solution will be the positive
ones. Furthermore, since the variable appears as a positive literal at this clause, our
construction ensures that the corresponding clause segment intersects only with the
negative literal segment of this variable. Hence, since we have already included the
positive literal segment in our solution, the negative literal segment is not included,
and we are therefore free to include the clause segment in our solution as well. Each
one of these clause segments contributes s(1)c2; noticing that we cannot include more
than one clause segment from each clause (because they intersect) we get that their
total contribution is exactly m · s(1)c2.

• If the optimal assignment for Typed3Sat satisfies at most a (1 − ε) fraction of the
clauses, then the optimal profit for 3Segments is at most:

(1− ε)m · s(1)c2 + n · s(n̂+ 2)c1 + F (2.13)

3The other case is completely symmetrical.
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Notice that, since the quantities F, n, n and n̂ are all linear in m, this claim immediately
establishes that the reduction is approximation-preserving.

To prove this we show how to transform a solution of profit ≥ (1 − ε)m · s(1)c2 + n ·
s(n̂+ 2)c1 + F to a truth assignment that satisfies more than a (1− ε) fraction of the
clauses. First notice that, wlog, any solution of 3Segments that achieves this profit
will always include the most profitable set of scaffolding segments discussed above:
these segments do not intersect with any literal or clause segments, so it makes no
sense not to include them. Clause and literal segments do intersect with each other,
however in order to achieve the additional profit of n · s(n̂ + 2)c1, we need to include
exactly n literal segments: Obviously we cannot include any more literal segments
without having intersections between them. More importantly though, we cannot
substitute any literal segments for clause segments. Indeed, even if we included one
clause segment per clause (remember that all clause segments of a given clause intersect
with each other), and skipped some of the literal segments, we would only get a profit
of m · s(1)c2 which, as (2.11) guarantees, is less than the required profit n · s(n̂+ 2)c1.
Finally, we include exactly one clause segment per clause for a certain fraction of the
clauses: we cannot include more than one clause segment per clause without having
intersecting clause segments.

The n literal segments that are included in our solution correspond to a truth assign-
ment to the variables of the formula as described above: we set every variable whose
positive (resp. negative) literal segments are included to true (resp. false). The claim
follows by noticing that this truth assignment satisfies every clause for which a clause
segment was included in the 3Segments solution. If the fraction of the clauses for
which we included a clause segment is more than (1−ε), this means that this particular
truth assignment satisfies more than a (1 − ε) fraction of the clauses of the original
formula, a contradiction.

Combining Lemmas 10 and 12 immediately yields our main theorem for this section:

Theorem 7. 3OptimalAuctionDesign is APX-complete.

2.6 Discussion and open problems

Even though in this chapter we focused on deterministic auctions, our geometric characteri-
zation has interesting consequences for randomized auctions as well. Remember that for the
discrete case the optimal (deterministic) auction immediately follows from solving the inte-
ger program of Problem C in Section 2.4, i.e. computing a maximum weight independent set
in the corresponding graph. Our first observation is that the linear programming relaxation
of this integer program corresponds to computing the optimal randomized auction. For two
bidders, where the graph is bipartite and the integer program is totally unimodular, the
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optimal integer solution is also the optimal of the relaxed linear program. Therefore, for two
bidders, the program of Problem C computes a deterministic auction that is optimal among
all randomized auctions: this is reminiscent of Myerson’s original result, where the deter-
ministic auction obtained is optimal for the (larger) class of Bayesian truthful randomized
auctions [57]. For a constant number of three or more bidders, the appropriate generalization
of our geometric characterization (which was not discussed at length in this chapter) gives
polynomial-time algorithms for computing the optimal randomized auction. This is in sharp
contrast with the intractability of computing the optimal deterministic auction, already from
three bidders. Of course, for a large number of bidders the size of this linear program be-
comes exponentially large and therefore this approach is infeasible. For an alternative linear
program that computes the optimal randomized auction for any number of bidders, when
the distribution is given explicitly, the reader is referred to [32].

The main insight in deriving the auction for two bidders is the connection of the discrete
case with the weighted independent set problem in a bipartite graph. To derive the solution
to the continuous case, we resorted to a long-winded proof of a duality theorem. We believe
the theorem is quite interesting in its own right, but the question remains: is there a direct
argument, through a simple quantization of the distribution? There is a technical problem
which has thwarted our attempts at such a direct proof, relating to the fact that the curves
in Figure 2.1 may not be Lipschitz continuous. We do not know whether this obstacle is real
(that is, whether there are Lipschitz continuous distributions that yield optimal auctions that
are not Lipschitz continuous), or whether such a more direct proof is ultimately possible.

Our APX-completeness proof establishes that there is some constant lower bound on
the approximability of the optimal auction design problem. An important open problem
of this work is to close the gap between the best approximation algorithm known for the
optimal auction problem (which was improved from the 0.5 of [67] to 0.6 in [32]) and this
tiny constant. We believe that progress there is attainable, by more sophisticated reductions.
Indeed, two different papers have recently brought the two bounds closer to each other: In [17]
the authors bring the best known approximation ratio up to 0.622 through a tighter analysis
of the k-lookahead auction of [67], while [12] provides the first explicit inapproximability
threshold for the three bidder optimal auction design problem, which is around 0.983.

Our work also implies an approximation of 2/n for n bidders: before having the bidders
announce their bids, the auctioneer looks at their joint distribution and privately runs the
optimal auction for all possible pairs of bidders. Since solving for the optimal auction is
nothing but a maximum weight independent set problem on the corresponding graph, it is
easy to prove that the profit of the best of those

(
n
2

)
auctions is at least 2/n of the overall

profit. The auctioneer then rejects a priori all but the bidders who were part of the most
profitable two-bidder auction and then runs it. The overall auction is obviously truthful as
long as bidders are rejected before even submitting their bids. For 3 bidders this gives an
approximation ratio of 2/3, improving over Ronen’s auction [67], but for n = 4 already, the
approximation ratio drops below 1/2.
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Chapter 3

Efficiency-Revenue Trade-offs in
Auctions

3.1 Introduction

The objectives of social welfare and revenue are arguably of singular and paramount impor-
tance. It is therefore a pity that they seem to be at loggerheads: It is not hard to establish
that optimizing any one of these two criteria can be very suboptimal with respect to the
other. In other words, there is a substantial trade-off between these two important and
natural objectives. What are the various intermediate (Pareto) points of this trade-off? And
can each such point be computed –or all such points summarized somehow– in polynomial
time? This is the fundamental problem that we consider in this chapter. See Figure 3.1 (a)
for a graphical illustration.

The problem of exploring the revenue/welfare trade-off in auctions turns out to be a rather
sophisticated problem, defying several naive approaches. One common-sense approach is to
simply randomize between the optima of the two extremes, Vickrey’s and Myerson’s auctions.
This can produce very poor results, since it only explores the straight line joining the two
extreme points, which can be very far from the true trade-off (Figure 3.1 (b)). A second
common-sense approach is the so-called slope search: To explore the trade-off space, just
optimize the objective “revenue + λ· welfare” for various values of λ > 0. By modifying
Myerson’s auction this objective can indeed be optimized efficiently, as it was pointed out
seven years ago by Likhodedov and Sandholm [51]. The problem is that the trade-off curve
may not be convex (Figure 3.1 (c)), and hence the algorithm of [51] can miss vast areas of
trade-offs:

Proposition 2. There exist instances with two bidders with monotone hazard rate distribu-
tions for which the Pareto curve is not convex; in contrast the Pareto curve is always convex
for one bidder with a monotone hazard rate distribution.

Proof. We start with a simple example with 2 bidders (presented in Figure 3.2), for which
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Figure 3.1: The Pareto points of the bi-criterion auction problem are shown as squares (a);
the Pareto points may be far off the line connecting the two extremes (b), and may be non-
convex (c). The Pareto points of randomized auctions comprise the upper boundary of the
convex closure of the Pareto points (d). Even though the Pareto set may be exponential in
size, for any ε > 0, there is always a polynomially small set of ε-Pareto points, the triangular
points in (e), that is, points that are not dominated by other solutions by more than ε in
any dimension. We study the problem of computing such a set in polynomial time.

the Pareto curve is not convex, while the bidders’ valuations are drawn independently from
two non-identical distributions of support 2; since any binary-valued distribution satisfies
the monotone hazard rate condition (for the discrete case) the first part of the claim follows.

On the positive side we can show that the Pareto curve is convex for a single bidder with
valuation drawn from a monotone hazard rate distribution. Since in the discrete case one
can simply enumerate the set of all feasible auctions in linear time anyway, this result is of
interest only in the continuous case.

Let M(r) be the single-bidder auction (pricing) that makes a take-it-or-leave-it offer of
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Figure 3.2: The objective space of all two-bidders auctions when (v1
1, v

2
1) = (11, 20), (v1

2, v
2
2) =

(2, 5) and (f 1
i , f

2
i ) = (1/3, 2/3) for i = 1, 2.

r to the bidder; notice that in this case the Pareto curve is a mono-parametric curve on the
plane where x = SW(M(r)) and y = Rev(M(r)). We next show that this monoparamet-
ric curve is in fact convex; the following is a necessary and sufficient condition for (local)
convexity of mono-parametric (continuous) curves [52]:∣∣∣∣ x′(r) x′′(r)

y′(r) y′′(r)

∣∣∣∣ = x′(r)y′′(r)− y′(r)x′′(r) ≥ 0

Substituting x = SW(M(r)) =
∫ 1

r
vf(v) dv and y = Rev(M(r)) = r

∫ 1

r
f(v) dv and doing

the algebra we get the following necessary and sufficient condition:

r(f(r))2 +

∫ 1

r

f(v) dv · [f(r) + rf ′(r)] ≥ 0 (3.1)

By definition, for monotone hazard rate distributions the ratio 1−F (r)
f(r)

is a non-increasing

function of r; taking derivatives1 we get that for these distributions it must hold that:

(1− F (r))f ′(r) + (f(r))2 ≥ 0 (3.2)

By substituting f ′(r) from (3.2) into the LHS of (3.1) we get that it is indeed ≥ 0.

An interesting open question is whether the property of convex Pareto curves extends to
2 or more bidders with valuations distributed identically according to some monotone hazard
rate distribution.

1We make the analytically convenient assumption that f is differentiable here.
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It follows that the slope search approach of [51] is incorrect. However, the correctness
of the slope search approach is restored if one is willing to settle for randomized auctions:
The trade-off space of randomized auctions is always convex (in particular, it is the convex
hull of the deterministic auctions (Figure 3.1 (d)). It is easy to see (and it had been actually
worked out for different purposes already in [56]) that the optimum randomized auction with
respect to the metric “revenue + λ· welfare” is then easy to calculate:

Proposition 3. The optimum randomized auction for the objective “revenue + λ· welfare”
can be computed in polynomial time. Hence, any point of the revenue/welfare trade-off for
randomized auctions can be computed in polynomial time.

Our results

In this chapter we consider the problem of exploring the revenue/welfare trade-off for deter-
ministic auctions, and show that it is an intractable problem in general, even for two bidders
(Theorem 9). Comparing with the tractability of the corresponding randomized problem
(as pointed out in the previous section), this result adds to the recent surge in literature
pointing out complexity gaps between randomized and deterministic auctions [63, 32, 35,
31]. Randomized auctions are of course a powerful and useful analytical concept, but it is
deterministic auctions that we are chiefly interested in. Hence such complexity gaps are
meaningful and onerous. We also show that there are instances for which the set of Pareto
optimal auctions has exponential size.

On the positive side, we show that the problem can be solved for two bidders, even
for correlated valuations (Theorem 12). By “solved” we mean that any trade-off point can
be approximated with arbitrarily high precision in polynomial time in both the input and
the precision — that is to say, by an FPTAS. It also means (by results in [65]) that an
approximate summary of the trade-off of polynomial size (the ε-Pareto curve – see Figure
1(e)) can be computed in polynomial time. The derivation of the two-bidders auction (see
Section 3.4) is quite involved. We first find a pseudo-polynomial dynamic programming
algorithm for the problem of finding an auction with welfare (resp. revenue) exactly a given
number. This algorithm is very different from the one in [63] for optimal auctions in the
two bidder case, but it exploits the same feature of the problem, namely its planar nature.
We then recall Theorem 4 of [65] (Section 3.2) which establishes a connection between such
pseudo-polynomial algorithms for the exact problems and FPTAS for the trade-off problem.
However, the present problem violates several key assumptions of that theorem, and a custom
reduction to the exact problem is needed.

Unfortunately for three or more bidders the above approach no longer works; this is not
surprising since, as we discussed in the previous chapter, just maximizing revenue is an APX-
hard problem in the correlated case. The main problem left open in this work is whether
there is an FPTAS for three or more bidders with independent valuation distributions.

We also look at another interesting case of the n-bidder problem, in which the valuation
distributions have support two. This case is of some methodological interest because, in
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general, n-dimensional problems of this sort in mechanism design have not been characterized
computationally, because of the difficulty related to the exponential size of the solution
sought. Binary-valued bidders have served as a first step towards the understanding of
auction problems in the past, for example in the study of optimal multi-object auctions [4].
We show that the trade-off problem is in PSPACE and (weakly) NP-hard (Theorem 13).

Related work

Efficiency-revenue trade-offs. Although [51] appears to be the only previous paper ex-
plicitly treating optimal auction design as a multi-objective optimization problem, there has
been substantial work in studying the relation of the two objectives. The most prominent
paper in the area is that of Bulow and Klemperer [7] who show that the revenue benefits
of adding one extra bidder and running the efficiency-maximizing auction surpass those of
running the revenue-maximizing auction. In [2] the authors show that for valuations drawn
independently from the same monotone hazard rate distribution, an analogous theorem holds
for efficiency: by adding Θ(log n) extra bidders and running Myerson’s auction, one gets at
least the efficiency of Vickrey’s auction. This paper also shows that for these distributions
both the welfare and the revenue ratios between Vickrey and Myerson’s auctions are bounded
by 1/e: in our terms this implies that the extreme points of the Pareto curve lie within a
constant factor of each other and so constant factor approximations are trivial. We note
that no such constant ratios are known for more general distributions (not even for the case
of regular distributions), assuming of course that the ratio between all bidders’ maximum
and minimum valuation is arbitrary. This kind of revenue and welfare ratios are also studied
in [69] for keyword auctions (multi-item auctions), and in [58] for single item english auctions
and valuations drawn from a distribution with bounded support. In [1] the authors present
some tight bounds for the efficiency loss of revenue-optimal auctions, which depend on the
number of bidders and the size of the support.

Multi-objective optimization. Trade-offs are present everywhere in life and science; in
fact, one can argue that optimization theory studies the very special and degenerate case in
which we happen to be interested in only one objective. There is a long research tradition
of multi-objective or multi-criterion optimization, developing methodologies for computing
the trade-off points (called the Pareto set) of optimization problems with many objectives,
see for example [47, 36, 54]. However, there is a computational awkwardness about this
problem: Even for simple cases, such as bicriterion shortest paths, the Pareto set (the set of
all undominated feasible solutions) can be exponential, and thus it can never be polynomially
computed. In 2000, Papadimitriou and Yannakakis [65] identified a sense in which this is a
meaningful problem: They showed that there is always a set of solutions of polynomial size
that are approximately undominated, within arbitrary precision; a multi-objective problem
is considered tractable if such a set can be computed in polynomial time. Since then, much
progress has been made in the algorithmic theory of multi-objective optimization [74, 28, 29,
41, 22, 15, 27], and much methodology has been developed, some of which has been applied to
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mechanism design before [42]. In this chapter we use this methodology for studying Bayesian
auctions under the two criteria of expected revenue and social welfare.

3.2 Preliminaries

The Bi-Criterion Auction problem. We want to design deterministic auctions that
perform favorably with respect to (expected) social welfare, defined as SW = E [

∑
i xivi]

and (expected) revenue, defined as Rev = E [
∑

i pi]. Based on the characterization with
allocation matrices (see Section 1.3), we can view an auction as a feasible solution to a
combinatorial problem. An instance specifies the number n of bidders and for each bidder
its distribution on valuations. The size of the instance is the number of bits needed to
represent these distributions. We map solutions (auctions) to points (x, y) in the plane,
where we use the x-axis for the welfare and the y-axis for the revenue. The objective space
is the set of such points.

Let p, q ∈ R2
+. We say that p dominates q if p ≥ q (coordinate-wise). We say that p

ε-covers q (ε ≥ 0) if p ≥ q/(1 + ε). Let A ⊆ R2
+. The Pareto set of A, denoted by P (A),

is the subset of undominated points in A (i.e. p ∈ P (A) iff p ∈ A and no other point in
A dominates p). We say that P (A) is convex if it contains no points that are dominated
by convex combinations of other points. Given a set A ⊆ R2

+ and ε > 0, an ε-Pareto set
of A, denoted by Pε(A), is a subset of points in A that ε-cover all points in A. Given
two auctions M,M ′ we define domination between them according to the 2-vectors of their
objective values. This naturally defines the Pareto set and approximate Pareto sets for our
auction setting.

As shown in [65], for every instance and ε > 0, there exists an ε-Pareto set of polynomial
size. The issue is one of efficient computability. There is a simple necessary and sufficient
condition, which relates the efficient computability of an ε-Pareto set to the following GAP
Problem: Given an instance I, a (positive rational) 2-vector b = (W0, R0), and a rational
δ > 0, either return an auction M whose 2-vector dominates b (i.e. SW(M) ≥ W0 and
Rev(M) ≥ R0), or report that there does not exist any auction that is better than b by
at least a (1 + δ) factor in both coordinates (i.e. such that SW(M) ≥ (1 + δ) · W0 and
Rev(M) ≥ (1 + δ) · R0). There is an FPTAS for constructing an ε-Pareto set iff there is an
FPTAS for the GAP Problem [65].

Remark 1. Even though our exposition focuses on discrete distributions, our results easily
extend to continuous distributions as well. As in [63], given a sufficiently smooth contin-
uous density (say Lipschitz-continuous), whose support lies in a finite interval [v, v],2 we
can appropriately discretize (while preserving the optimal values within O(ε)) and run our
algorithms on the discrete approximations.

2This is the standard approach in economics, see for example [57].
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From exact to bi-criterion. We will make essential use of a result from [65] which reduces
the multi-objective version of a linear optimization problem A to its exact version: Let A
be a discrete linear optimization problem whose objective function(s) have non-negative
coefficients. The exact version of a A is the following problem: Given an instance x of A,
and a positive rational C, is there a feasible solution with objective function value exactly C?
For such problems, a pseudo-polynomial algorithm for the exact version implies an FPTAS
for the multi-objective version:

Theorem 8 ([65]). Let A be a linear multi-objective problem whose objective functions have
non-negative coefficients: If there exists a pseudo-polynomial algorithm for the exact version
of A, then there exists an FPTAS for constructing an approximate Pareto curve for A.

To obtain our main algorithmic result (Theorem 12), we design a pseudo-polynomial
algorithm for the exact version of the Bi-Criterion Auction problem and apply Theo-
rem 8 to deduce the existence of an FPTAS. However, it is not obvious why Bi-Criterion
Auction satisfies the condition of the theorem, since in the standard representation of the
problem as a linear problem, the objective functions typically have negative coefficients.
We show however (Lemma 13) that there exists an alternate representation with monotonic
linear functions.

3.3 The complexity of Pareto optimal auctions

Our main result in this section is that –in contrast with randomized auctions– designing
deterministic Pareto optimal auctions under welfare and revenue objectives is an intractable
problem. In particular, we show that, even for 2 bidders3 whose distributions are independent
and regular, the problem of maximizing one criterion subject to a lower bound on the other
is (weakly) NP-hard.

Theorem 9. For two bidders with independent regular distributions, it is NP-hard to decide
whether there exists an auction with welfare at least W and revenue at least R.

Before proving Theorem 9, we will first provide a reduction for the exact problem for the
welfare objective; quite simple and intuitive, it also captures the main idea in the (signif-
icantly more elaborate) proof for the bi-criterion problem. In particular we will prove the
following theorem.

Theorem 10. For two bidders with independent regular distributions, it is NP-hard to decide
whether there exists an auction with welfare exactly equal to W .

Proof. The reduction is from the Partition problem: we are given a set B = {b1, . . . , bk}
of k positive integers, and we wish to determine whether it is possible to partition B into
two subsets with equal sum. We assume that bi ≥ bi+1 for all i. Consider the rescaled values

3Note that for a single bidder one can enumerate all feasible auctions in linear time.
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b′i := bi/(10k · T ), where T =
∑k

i=1 bi, and the set B′ = {b′1, . . . , b′k}. It is clear that there
exists a partition of B iff there exists a partition of B′.

We construct an instance of the auction problem with two bidders whose independent
valuations vr (row bidder) and vc (column bidder) are uniformly distributed over supports
of size k. (To avoid unnecessary clutter in the expressions, we assume w.l.o.g –by linearity–
that the “probability mass” of all elements in the support is equal to 1, as opposed to 1/k.)
The valuation distribution for the row bidder is supported on the set {1, 2, . . . , k}, while the
column bidder’s valuation comes from the set {1 + b′1, 2 + b′2, . . . , k + b′k}. Since b′i ≥ b′i+1

and
∑k

i=1 b
′
i = 1/(10k), it is relatively straightforward to verify that both distributions are

indeed regular; we do that in the next claim:

Claim 1: The distributions defined above are regular.

Proof of Claim 1. We define the virtual valuation of a bidder with valuation vi, taking values
from {v1

i , . . . , v
k
i } with probabilities {f 1

i , . . . , f
k
i }, as follows:

φji = vji − (vj+1
i − vji )

f j+1
i + . . .+ fki

f ji

Substituting for the setting in hand, we get that the virtual valuation of the row bidder is
φjr = 2j − k, while the virtual valuation of the column bidder is:

φjc = j + b′j − (b′j+1 − b′j + 1)(k − j)

A distribution is called regular iff φji ≤ φj+1
i ; it follows immediately that the row bidder’s

distribution is regular, while for the column bidder we need that

j + 1 + b′j+1 − (b′j+2 − b′j+1 + 1)(k − j − 1) ≥ j + b′j − (b′j+1 − b′j + 1)(k − j)

and since b′j+1 ≥ b′j+2 it suffices that

j + 1 + b′j+1 − (k − j − 1) ≥ j + b′j − (b′j+1 − b′j + 1)(k − j)

Rearranging terms and doing some calculations we get that it suffices to have b′j+1 ≥ b′j−2/k,

which follows from the fact that
∑k

i=1 b
′
i = 1/(10k).

The main idea of the proof is this: appropriately isolate a subset of 2k feasible auctions
whose welfare values encode the sum of values

∑
i∈S b

′
i for all possible subsets S ⊆ [k]. The

existence of an auction with a specified welfare value would then reveal the existence of a
partition. Formally, we prove that there exists a partition of B′ iff there exists a feasible
auction M∗ with (expected) welfare

SW(M∗) = (2/3) · (k − 1)k(k + 1) + (1/2) · k(k + 1) +
k∑
i=2

(i− 1)b′i + 1/(20k) (3.3)
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Consider the allocation matrix of a feasible auction. Recall that an auction is feasible
iff its allocation matrix satisfies the monotonicity constraint. The main claim is that all
auctions that could potentially satisfy (3.3) must allocate the item to the highest bidder,
except potentially for the outcomes (vr = i, vc = i + b′i) (i.e. the ones corresponding to
entries on the secondary diagonal of the matrix) when the item can be allocated to either
bidder. Denote by R the aforementioned subclass of auctions. We prove the claim above
next, showing that auctions in R maximize welfare:

Claim 2: We have maxM/∈R SW(M) < minM∈R SW(M) < SW(M∗).

Proof of Claim 2. Recall that this lemma implies that only auctions in R can potentially
satisfy (3.3). To prove it we proceed as follows: Consider a partition of the allocation matrix
A into three subsets: (i) the subset of the matrix above the secondary diagonal, (ii) the
subset below the diagonal and (iii) the diagonal itself. The gist of the proof is this: The
contribution to the welfare for subsets (i) and (ii) is maximized for auctions in R. The
welfare contribution from (i) and (ii) for any other auction (i.e. not in R) is strictly smaller
by a quantity sufficiently large that outweighs any effects on the welfare from subset (iii).

Let us first compute minM∈R SW(M), the minimum welfare of an auction in R. It is
easy to see that the welfare minimizing auction is the one that assigns the item to the row
bidder for all entries in the diagonal. Hence, we have:

min
M∈R

SW(M) = (2/3) · (k − 1)k(k + 1) + (1/2) · k(k + 1) +
k∑
i=2

(i− 1)b′i.

So, we obtain the second inequality of the lemma. To bound from above maxM 6∈R SW(M) we
consider three cases: Consider first the subset of the allocation matrix above the diagonal.
If any entry of this subset is allocated to the column bidder, then it is not hard to see that
this would lower the welfare value by at least 1 − maxi b

′
i ≥ 1 − 1/(10k) ≥ 0.9. Similarly,

if any entry is not allocated al all (i.e. the auctioneer keeps the item), this would cost
us at least 1. For the subset below the diagonal the situation is analogous; if an entry
is allocated to the row bidder, this costs us at least 1, same if an entry is not allocated
at all. This decrease in the value of the welfare cannot be compensated by the diagonal
entries; indeed, if all such entries are allocated to either bidder, contribution to the welfare
lies in [k(k + 1)/2, k(k + 1)/2 + 1/(10k)] (an interval of length 1/(10k) ≤ 1/10). As a
consequence, any auction that disagrees with R either below or above the diagonal has
welfare strictly smaller than minM∈R SW(M). Now consider an auction that agrees with R
except potentially at the diagonal. Note that a non-allocated entry of the diagonal costs
at least 1, and again this cannot be compensated by the 1/10 potential contribution of the
column bidder.

To complete the proof, observe that all 2k auctions in R satisfy monotonicity, hence
are feasible. Also note that there is a natural bijection between subsets S ⊆ [k] and these
auctions: we include bi in S iff on input (vr = i, vc = i + b′i) the item is allocated to
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the column bidder. Denote by M(S) the auction in R corresponding to subset S under
this mapping; we will compute the welfare of M(S). Note that the contribution of each
entry of the allocation matrix (input) to the welfare equals the valuation of the bidder who
gets the item for that input. By the definition of R, for the entries below the secondary
diagonal, the row bidder gets the item (since her valuation is strictly larger than that of
the column bidder – this is evident since maxi b

′
i < 1/(10k)). Therefore, the contribution of

these entries to the welfare equals
∑k

i=2 i(i − 1) = (1/3)(k − 1)k(k + 1). Similarly, for the
entries above the diagonal, the column bidder gets the item and their contribution to the
welfare is

∑k
i=2(i+ b′i)(i−1) = (1/3)(k−1)k(k+ 1) +

∑k
i=2(i−1)b′i. Finally, for the diagonal

entries, if S ⊆ [k] is the subset of indices for which the column bidder gets the item, the
welfare contribution is

∑
i∈S(i+ b′i) +

∑
i∈[k]\S i = k(k + 1)/2 +

∑
i∈S b

′
i. Hence, we have:

SW(M(S)) = (2/3) · (k − 1)k(k + 1) + (1/2) · k(k + 1) +
k∑
i=2

(i− 1)b′i +
∑
i∈S

b′i (3.4)

Recalling that
∑k

i=1 b
′
i = 1/(10k), (3.3) and (3.4) imply that there exists a partition of B′ iff

there exists a feasible auction satisfying (3.3). This completes the proof.

We are now ready to provide the proof of Theorem 9.

Proof of Theorem 9. The idea is similar to that of the previous proof for the exact version
of the welfare objective but the details are more elaborate. At a high-level, the difficulty is
that the two objective functions (welfare, revenue) depend on each other in a subtle way.
Thus, a more complicated construction is required to “decouple” these two criteria. (It is
not hard to see that the construction presented for the exact version fails for the bi-objective
problem.) Very roughly, the reduction ends up using non-uniform distributions on larger
and carefully selected supports.

As before, our reduction is from Partition. We start with a set A = {a1, . . . , ak} of
positive numbers (rescaled so that they sum to a sufficiently small positive constant) and we
want to decide whether there exists a partition of this set. We will construct an instance of
the auction problem with 2 bidders and distributions of support size 2k+1. Before presenting
the actual instance we first give some intuition behind the construction.

Similarly, our goal is to establish a bijection between an appropriate subset of feasible
auctions and subsets S of [k]; since the number of feasible auctions greatly exceeds that
of subsets of A, we have to limit our attention to a subset of feasible auctions. To that
end, we are going to appropriately pick the target values for welfare and revenue, so that
the only relevant auctions in our reduction will be those that allocate the item to bidder 2
(column bidder) for entries above the secondary diagonal (i.e. (vi1, v

j
2) with j > i) and to

bidder 1 (row bidder) for entries below the secondary diagonal (i.e. (vi1, v
j
2) with j < i). We

will also rule out the possibility of not allocating the item across the diagonal entries of the
allocation matrix. As a result, the only relevant auctions will be the 22k+1 different auctions
that allocate to either bidder 1 or 2 across the diagonal, all of which respect monotonicity
and are therefore feasible. Call this subset of auctions R. We will then use the i-th odd
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entry of the diagonal to encode the decision of including or not the i-th element of A in the
set S: we shall include element ai iff bidder 1 gets allocated for entry (2i− 1, 2i− 1) of the
allocation matrix.

The first step is to ensure that the only relevant auctions are the ones with the above
property. To this end we ask that the following relation between the bidders’ valuations
holds:

vi1 < vi2 < vi+1
1 < vi+1

2 < vi+2
1 , for i = 1 . . . 2k − 1 (3.5)

As a result of relation (3.5), the social welfare from entries other than those on the diagonal
is maximized by an auction that allocates to bidder 2 on top of the diagonal and to bidder
1 below the diagonal. Therefore, by setting a sufficiently high welfare target W in our
reduction we will be able to guarantee that the only relevant auctions will be of this format.

More specifically, the distributions are defined as follows (where ε > 0 a sufficiently small
parameter that we will fix later):

The (unnormalized) probabilities of the two bidders are:

f ij =

{
1 if i is odd;
ε if i is even.

for both bidders j = 1, 2. (The point of the small probability elements is to achieve the
desired decoupling between welfare and revenue; it may be convenient for the reader to
think of ε as if it was 0. In the course of the proof we will provide a sufficient upper bound
on its magnitude.)

The values of bidder 1 are:

vi1 =


i+ a i+1

2
for i ∈ {1, 3, . . . , 2k − 1};

i+ a i
2

(
1 + 4

(2k−i+2)(1+ε)

)
for i ∈ {2, 4, . . . , 2k};

2k + 1 for i = 2k + 1.

The values of bidder 2 are:

vi2 =


i for i ∈ {1, 3, . . . , 2k − 1};
i for i ∈ {2, 4, . . . , 2k};
2k + 1 for i = 2k + 1.

We note that there are 3 different scales of numbers in the reduction. The values of the
elements in the support (big scale), the magnitudes of the elements of A (medium scale),
and the magnitude of ε (small scale).

What we would like to do next is to make the sum of welfare and revenue remain constant
across all auctions in R. By doing so we can ensure that, whenever an auction achieves the
target welfare and revenue values, the relations will in fact hold with equality, allowing us to
encode an instance of Partition. To achieve that, we impose an even stronger requirement:
In particular, consider the following entries of the allocation matrix: (vi1, v

j
2), j = i . . . 2k+ 1

and (vj1, v
i
2), j = i . . . 2k + 1, where i is an odd number. Assuming our auction has the
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format discussed above, entries (vi1, v
j
2), j = i+ 1 . . . 2k + 1 are allocated to bidder 2, entries

(vj1, v
i
2), j = i+ 1 . . . 2k + 1 are allocated to bidder 1, and we are left to decide which bidder

to allocate entry (vi1, v
i
2) to. Now let SWi

j (resp. Revij), where i is odd and j ∈ {1, 2},
denote the welfare (resp. revenue) that results from the aforementioned entries if we allocate
entry (vi1, v

i
2) to bidder j. The stronger requirement that we impose is that SWi

1 + Revi1 =
SWi

2 + Revi2 for all odd i. To see what this entails we next write the expressions for SWi
j

and Revij:

SWi
1 = vi1 +

k∑
j= i+1

2

v2j+1
1 +

k∑
j= i+1

2

v2j+1
2 + ε ·

 k∑
j= i+1

2

v2j
1 +

k∑
j= i+1

2

v2j
2


Revi1 = vi1

(
2k − i+ 1

2
(1 + ε) + 1

)
+ vi+1

2

(
2k − i− 1

2
+

2k − i+ 1

2
ε+ 1

)

SWi
2 =

k∑
j= i+1

2

v2j+1
1 + vi2 +

k∑
j= i+1

2

v2j+1
2 + ε ·

 k∑
j= i+1

2

v2j
1 +

k∑
j= i+1

2

v2j
2


Revi2 = vi+1

1

(
2k − i− 1

2
+

2k − i+ 1

2
ε+ 1

)
+ vi2

(
2k − i+ 1

2
(1 + ε) + 1

)

Notice that SWi
1−SWi

2 = vi1− vi2. In order to have SWi
1 + Revi1 = SWi

2 + Revi2 we ask that:

Revi1 − Revi2 = vi2 − vi1 (3.6)

The only difficulty in satisfying the relation above, is that equation (3.6) necessarily
imposes some additional constraints on the values vi+1

1 , vi+1
2 . We get around this by using

a support of roughly twice the size of A, and using only half of the points in the support
to encode the elements of A; the remaining points are assigned a very small probability, so
that they have a negligible effect on the overall welfare and revenue. It is now easy to verify
that the aforementioned choice of distributions for the two bidders satisfies properties (3.5)
(since the ai are assumed to be sufficiently small) and (3.6) above.

For the aforementioned choice of values vij the social welfare contributions now become:

SWi
1 = vi1 +Xi = i+ a i+1

2
+Xi and SWi

2 = vi2 +Xi = i+Xi,

for some Xi whose exact value is irrelevant (and can be derived from the expressions above).
Analogously for revenue we have:

Revi1 = vi2 + Yi = i+ Yi and Revi2 = vi1 + Yi = i+ a i+1
2

+ Yi,

for some Yi. We therefore have SWi
1 + Revi1 = SWi

2 + Revi2 = 2i + Xi + Yi + a i+1
2

and we

have thus ensured that all auctions with the property of allocating to bidder 2 on top of the
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diagonal and to bidder 1 below the diagonal have a sum of (total) revenue and welfare that
can be upper-bounded as follows:

SW + Rev ≤
∑
odd i

(2i+Xi + Yi + a i+1
2

) + v2k+1
1 + v2k+1

2 + ε · 2n2(2k + 1),

where the last term is an upper bound on the contribution in revenue and welfare of the
even rows and columns (where we took into account that the maximum contribution of any
entry is at most the maximum value appearing in the support of any bidder, namely 2k+1).
We next fix the value of ε so that the quantity

ε · 2n2(2k + 1)

is smaller than the accuracy used in the rational numbers ai. Note that this can always be
done with an ε that has polynomially many bits – since the ai’s are by assumption rational
numbers with polynomially many bits.

We are now ready to argue that there exists a partition of A iff there exists an auction
with:

SW ≥
∑
odd i

(i+Xi) + 2k + 1 +
1

2

k∑
i=1

ai and Rev ≥
∑
odd i

(i+ Yi) + 2k + 1 +
1

2

k∑
i=1

ai (3.7)

Given any partition S of A, we can turn it into an auction with the above welfare and
revenue guarantees by allocating to bidder 2 on top of the diagonal, bidder 1 below the
diagonal and allocating to bidder 1 for entries (2i− 1, 2i− 1), i = 1 . . . k, for all i s.t. ai ∈ S;
the even entries on the diagonal, as well as the entry (2k + 1, 2k + 1) can be allocated to
either bidder.

Conversely, given an auction with welfare and revenue as above we can get a partition
of A. To see how, first notice that because of property (3.5) above (and because the ai are
much smaller) the only auctions that can achieve a social welfare of at least

∑
odd i i+Xi and

revenue of at least
∑

odd i i+Yi are those that allocate to bidder 2 above the diagonal, bidder
1 below the diagonal, and always allocate to either bidder 1 or bidder 2 on the diagonal. In
the discussion above we established that for those auctions it holds that:

SW + Rev ≤
(∑

odd i

(i+Xi) + 2k + 1 +
1

2

k∑
i=1

ai

)
+

(∑
odd i

(i+ Yi) + 2k + 1 +
1

2

k∑
i=1

ai

)
+ ε · 2n2(2k + 1) (3.8)

By our choice of ε and inequalities (3.7) and (3.8) it follows that the inequalities in (3.7)
must hold with equality. We then get a partition by including in S all elements ai for which
(2i− 1, 2i− 1) is allocated to bidder 1. This completes the proof.

Finally, we also prove that the size of the Pareto curve can be exponentially large (in
other words, the problem of computing the entire curve is exponential even if P = NP).
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Theorem 11. There exists a family of two-bidders instances for which the size of the Pareto
curve for Bi-Criterion Auction grows exponentially.

Proof. The construction is similar to the reduction for the exact problem in Theorem 9. We
will construct a two-bidder auction and we will argue that there exists an appropriate subset
of the Pareto curve with exponential size.

We describe an instance with two bidders, both with uniform distributions over the
following supports of size k: Bidder 1 has values in {1 + a1, 2 + a2, . . . , k + ak}, and bidder
2 has values in {1, 2, . . . , k}, with all ai << 1; the exact value of ai will be determined
later. Assuming as usual that bidder 1 is the row bidder, consider an auction that allocates
the item to bidder 2 for all entries above the diagonal (i.e. (vi1, v

j
2) with j > i), to bidder

1 for all entries below the diagonal (i.e. (vi1, v
j
2) with j < i), and to either bidder on the

diagonal (see Table 3.1). Such an auction can be concisely described through the diagonal
entries of its allocation matrix. In what follows we write SW(A[v1

1, v
1
2], . . . , A[vk1 , v

k
2 ]) and

Rev(A[v1
1, v

1
2], . . . , A[vk1 , v

k
2 ]) to denote the welfare and revenue respectively of this auction.

We note that this subset of feasible auctions maximizes the welfare over all feasible auctions;
hence, it suffices to show that the Pareto set of this subset of auctions is exponential. In
fact, we will choose the ai’s appropriately so that all these auctions are undominated.

Our goal is to pick values a1, . . . , ak such that all 2k different auctions of the above type
will be Pareto optimal. To do that we observe that, under some mild conditions on the ai,
satisfied by picking for example ai = 3i−1 (and normalizing so that the normalized sum is
small, e.g. < 1/1000), we can impose orderings on the welfares and revenues of those 2k

auctions that go in opposite directions, i.e. one auction has larger revenue than another iff it
has smaller welfare. To this end we make the following two claims, which can be verified by
explicitly writing down the expressions for revenue and welfare and doing some elementary
calculations:

Claim 1: If ai > 0 and ai <
n−i
n−i+1

ai+1 for all i, it holds that:

1. SW(ξ1, . . . , ξi−1, 1, ξi+1, . . . , ξk) > SW(ξ1, . . . , ξi−1, 2, ξi+1, . . . , ξk)

2. Rev(ξ1, . . . , ξi−1, 1, ξi+1, . . . , ξk) < Rev(ξ1, . . . , ξi−1, 2, ξi+1, . . . , ξk)

for any values of the ξi ∈ {1, 2}, i = 1 . . . k.

Claim 2: If
∑i−1

j=1 aj < ai and ai <
n−i

2(n−i+1)
ai+1 for all i, it holds that:

1. SW(1, . . . , 1, 2, ξi+1, . . . , ξk) < SW(2, . . . , 2, 1, ψi+1, . . . , ψk)

2. Rev(1, . . . , 1, 2, ξi+1, . . . , ξk) > Rev(2, . . . , 2, 1, ψi+1, . . . , ψk)

for any values of the ξi, ψi ∈ {1, 2}, i = 1 . . . k; note that in general we may have ψi 6= ξi.
Intuitively, Claim 1 says that switching any 1 into a 2 on any entry of the diagonal has

the effect of decreasing the welfare while increasing the revenue. Claim 2 on the other hand
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says that the (negative) effect that a 2 on the diagonal has on the welfare, is bigger for 2’s
that are placed in higher positions –and the opposite is true for revenue.

Using the above two claims one can now prove that for any two auctions M1 = (ξ1, . . . , ξk)
and M2 = (ψ1, . . . , ψk), it holds that SW(M1) > SW(M2) iff Rev(M1) < Rev(M2), and
therefore all the 2k auctions are Pareto optimal. We convey the idea by means of the following
example, for k = 5. Consider the two auctions M1 = (1, 2, 1, 1, 1) and M2 = (1, 1, 2, 2, 1).
We then have:

SW(M1) = SW(1, 2, 1, 1, 1) > SW(2, 2, 2, 1, 1) > SW(1, 1, 1, 2, 1) > SW(1, 1, 2, 2, 1) = SW(M2)

with the inequalities above following from Claims 1.1, 2.1 and 1.1 respectively. In complete
analogy we can show that Rev(M1) < Rev(M2).

vk2 = k 2 2 2 . . . 1 or 2

vk−1
2 = k − 1 2 2 . . . 1 or 2 1

...
...

...
...

...
...

v2
2 = 2 2 1 or 2 . . . 1 1
v1

2 = 1 1 or 2 1 . . . 1 1

v1
1 = 1 + a1 v2

1 = 2 + a2 . . . vk−1
1 = k − 1 + ak−1 vk1 = k + ak

Table 3.1: An instance with an exponential size Pareto set

3.4 An FPTAS for 2 bidders

In this section we give our main algorithmic result:

Theorem 12. For two bidders, there is an FPTAS to approximate the Pareto curve of the
Bi-Criterion Auction problem, even for arbitrarily correlated distributions.

In the proof, we design a pseudo-polynomial algorithm for the exact version of the problem
(for both the welfare and revenue objectives) and then appeal to Theorem 8. There is a
difficulty, however, in showing that the problem satisfies the assumptions of Theorem 8: in
the most natural linear representation of the problem, the coefficients for revenue, coinciding
with the virtual valuations, may be negative, thus violating the hypothesis of Theorem 8.

We use the following alternate representation: Instead of considering the contribution
of each entry (valuation tuple) of the allocation matrix separately, we consider the revenue
and welfare resulting from all the single-bidder auctions (pricings) obtained by fixing the
valuation of the other bidder.

Definition 15. Let ri1,i21 and wi1,i21 be the (contribution to the) revenue and welfare from
bidder 1 of the pricing which offers bidder 1 a price of vi11 when bidder 2’s value is vi22 :
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ri1,i21 =
∑

j≥i1 v
i1
1 ·f(vj1, v

i2
2 ) and wi1,i21 =

∑
j≥i1 v

j
1 ·f(vj1, v

i2
2 ), where f(·, ·) is the joint (possibly

non-product) valuation distribution. (The quantities ri1,i22 and wi1,i22 are defined analogously.)

Lemma 13. The Bi-Criterion Auction problem can be expressed in a way that satisfies
the conditions of Theorem 8.

Proof. We consider variables xij, yij, i ∈ [|Sup1|], j ∈ [|Sup2|]. The xij’s are defined as
follows: xij = 1 iff A[i, j] = 1 and A[i′, j] 6= 1 for all i′ < i. I.e. xij = 1 iff the (i, j)-th entry
of A is allocated to bidder 1 and, for this fixed value of j, i is the smallest index for which
bidder 1 gets allocated. Symmetrically, yij = 1 iff A[i, j] = 2 and A[i, j′] 6= 2 for all j′ < j.
It is easy to see that the feasibility constraints are linear in these variables. We can also
express the objectives as linear functions with non-negative coefficients as follows:

Rev(x, y) =
|Sup1|∑
i=1

|Sup2|∑
j=1

xijr
i,j
1 +

|Sup1|∑
i=1

|Sup2|∑
j=1

yijr
i,j
2

SW(x, y) =
|Sup1|∑
i=1

|Sup2|∑
j=1

xijw
i,j
1 +

|Sup1|∑
i=1

|Sup2|∑
j=1

yijw
i,j
2

An algorithm for the exact version of Bi-Criterion Auction

The main idea behind our algorithm, inspired by the characterization of Lemma 13, is to
consider the contribution from each bidder (fixing the value of the other) independently, by
going over all (linearly many) single-bidder auctions for both bidders. The challenging part
is to combine the individual single-bidder auctions into a single two-bidders auction, and to
this end we employ dynamic programming.

Assume that both bidders have valuations of support size h. The subproblems we con-
sider in our dynamic program correspond to settings where we condition that the valuation
of each bidder is drawn from an upwards closed subset of her original support. Formally,
let M [i, j,W ] be true iff there exists an auction that uses the valuations (vi1, . . . , v

h
1 ) and

(vj2, . . . , v
h
2 ) and has welfare exactly W . In what follows, Ni,j is the normalization factor for

valuations (jointly) drawn from (vi1, . . . , v
h
1 ) and (vj2, . . . , v

h
2 ), namelyNi,j =

∑
k≥i,l≥j f(vk1 , v

l
2).

Lemma 14. We can update the quantity M [i, j,W ] as follows:

M [i, j,W ] =
∨
k≥j

M [i+ 1, j,
(
W ·Ni,j − wi,k2

)
·N−1

i+1,j]

∨
∨
k≥i

M [i, j + 1,
(
W ·Ni,j − wk,j1

)
·N−1

i,j+1]

∨
∨
k>i
l>j

M [i+ 1, j + 1,
(
W ·Ni,j − wk,j1 − wi,l2

)
·N−1

i+1,j+1]
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Proof. We start by fixing a pair (i, j) and considering what A[i, j] can be, given the entries
of A for either larger i, or larger j, or both. First note that any allocation matrix A can
have one of the following four formats:

F1: There exist i′ and j′ such that A[i, j′] = 1 and A[i′, j] = 2.

F2: There exists i′ such that A[i′, j] = 2 but there is no j′ such that A[i, j′] = 1.

F3: There exists j′ such that A[i, j′] = 1 but there is no i′ such that A[i′, j] = 2.

F4: There exist no i′ and j′ such that A[i, j′] = 1 or A[i′, j] = 2.

Because of monotonicity, it follows immediately that no allocation matrix of format F1
can be valid, while the other three formats correspond to the three terms of the recurrence.
Finally, note that for format, say F2, the second term of the update rule for M [i, j,W ] runs
over all possible pricings for bidder 1 (keeping the value of bidder 2 at vj2) and checks whether
they induce the required welfare.

We omit the straightforwards details of how the above recurrence can be efficiently im-
plemented as a pseudo-polynomial dynamic programming algorithm. The algorithm for
deciding whether there exists an auction with revenue exactly R is identical to the above by
simply replacing R (the revenue target value) for W and ri1,i2j for wi1,i2j .

3.5 The case of n bidders

When the number n of bidders is part of the input, the allocation matrix is no longer a
polynomially succinct representation of an auction. In fact, it is by no means clear whether
Bi-Criterion Auction is even in NP in this case. We next show that for the case of n
binary bidders, the problem is NP-hard and in PSPACE.

Theorem 13. For n binary-valued bidders Bi-Criterion Auction is (weakly) NP-hard
and in PSPACE.

Proof sketch. For simplicity, we prove both results for the exact version of the problem for
welfare; the bi-objective case follows by a straightforward but tedious generalization.

Lower bound. The NP-hardness reduction is from Partition. Let B = {b1, . . . , bn} be a
set of positive rationals; we can assume wlog (because of rescaling) that

∑n
i=1 bi = 1/100. We

construct an instance of the auction problem as follows: there are n bidders, with uniform
distributions (again, we will assume unit masses for simplicity) over the following supports
{li, hi}, i = 1 . . . n, where li < hi. We set li = bi and demand that {hi}i=1,...,n forms a super-
increasing sequence (i.e. hi+1 >

∑i
j=1 hj), with h1 > maxi bi. The claim is that there exists

a partition of B iff there exists an auction with welfare equal to
∑n

i=1 hi + (1/2)
∑n

i=1 bi.
To see this notice that – since the sequence {hi}i=1...n is super-increasing – any auction
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with the above welfare value must must allocate to bidder i for exactly one valuation tuple
(vi, v−i) where vi = hi; the corresponding contribution to the welfare from this case is hi.
Monotonicity then implies that this auction can allocate to bidder i for at most one valuation
tuple (vi, v−i) where vi = li; the corresponding contribution to the welfare from this case is
bi. We therefore get a bijection between subsets of B and auctions, by including an element
bi in the set S iff bidder i gets allocated the item for some valuation tuple (vi, v−i) where
vi = li. The first part of the theorem now follows.

Upper bound. For the PSPACE upper bound, we start by noting that the problem of
computing an auction with welfare (or revenue) exactly W , can be formulated as the problem
of computing a matching of weight exactly W in a particular type of bipartite graphs (first
pointed out in [32]) with a number of nodes that is exponential in the number of bidders:
Assuming that each bidder has two values {v1

i , v
2
i }, with v2

i > v1
i , we create a node labeled

by (vkii )i=1...n, where ki ∈ {1, 2}, for each one of those 2n valuation tuples. We then connect
two such nodes if their labels differ in exactly one coordinate, say the i-th one; the weight of
this edge is

∏
j 6=i f

kj
j · (f 1

i v
1
i +f 2

i v
2
i ) for welfare and

∏
j 6=i f

kj
j ·v1

i (f
1
i +f 2

i ) for revenue. We also

introduce a set of dummy nodes: for every node with label (vkii )i=1...n, where |{i | ki = 2}| = r,
we introduce r dummy nodes and associate each one of them with the bidder i for whom
vkii = v2

i . We then add an edge between this node and all its dummy nodes; the weight of

the edge connecting to the dummy node of the i-th bidder is
∏

j 6=i f
kj
j · f 2

i v
2
i both for welfare

and revenue.
It is easy to verify that every matching in the above graph corresponds to a deterministic

truthful auction as follows. For each valuation tuple consider the corresponding node in the
graph. If it is not matched to any other node, then allocate nothing; if it is matched to a
dummy node, then allocate the item to the bidder that is associated with this dummy node;
otherwise, it is matched to another non-dummy node and these two nodes differ in exactly
one coordinate, say the i-th, in which case we allocate to the i-th bidder. It is easy to check
that the resulting auction is both feasible and monotone (IC and IR). Moreover, the welfare
(or revenue depending on the kind of weights used) is equal to the weight of the matching.

The Exact Matching problem is known to be solvable in RNC [55]; since our input
provides an exponentially succinct representation of the constructed graph, we are interested
in the so-called succinct version of the problem [38, 61]. By standard techniques, the succinct
version of Exact Matching in our setting is solvable in PSPACE, and the theorem follows.

We conjecture the above upper bound to be tight (i.e. the problem is actually PSPACE-
complete) even for n bidders with arbitrary supports.
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3.6 Open questions

Is there is an FPTAS for three bidders with independently distributed valuations? We con-
jecture that there is, and in fact for any constant number of bidders. Of course, the approach
of our FPTAS for two bidders cannot be generalized, since it works for the correlated case,
which is APX-complete for three or more bidders. We have derived two different dynamic
programming-based PTAS’s for the uncorrelated problem, but so far, despite a hopeful out-
look, we have failed to generalize them to three bidders. Finally, we conjecture that for n
bidders the problem is significantly harder, namely PSPACE-complete and inapproximable.

On a different note, it would be interesting to see if we can get better approximations for
some special types of distributions; we give one such type of result in Section 3.1. Are there
improved approximation guarantees for more general kinds of distributions and n bidders?
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Chapter 4

Simple, Optimal and Efficient
Auctions

4.1 Introduction

Somewhat surprisingly, as we have already discussed, when the bidders’ values are indepen-
dently and identically distributed according to some regular1 distribution, the Vickrey and
Myerson auctions behave very much alike: Myerson’s auction is just Vickrey’s auction with
an additional reserve price. Motivated by this astonishing similarity (and the somewhat
peculiar format of Myerson’s auction in more general settings), [46] showed that a Vickrey
auction with appropriately chosen reserve prices can approximate the revenue of the optimal
auction in more general settings. Inspired by their result, and the fact that the auction
of Myerson and Satterthwaite [56] is at least as complicated as Myerson’s auction and po-
tentially randomized, in this chapter we ask the question of whether one can design simple
and deterministic auctions that achieve approximately-optimal guarantees for both objectives
simultaneously.

For the remaining of this chapter we will use the term simple auction to refer to a Vickrey
auction with appropriately chosen reserve prices, formally defined as follows:

Definition 16. The Vickrey auction with reserve prices r = (r1, . . . , rn), denoted Vicr, is
the following auction:

1. Reject all bidders whose values are vi < ri.

2. Allocate the item to the remaining bidder with the highest valuation (or to none if no
one clears their reserve in Step 1). Tie-break lexicographically if there are multiple
highest bidders.

3. Charge the winner the maximum of the second highest bidder (among those who were
not eliminated in Step 1) and her reserve price.

1See Section 1.3 for a definition.



CHAPTER 4. SIMPLE, OPTIMAL AND EFFICIENT AUCTIONS 67

Two cases of particular interest are the Vickrey auction with an anonymous reserve, where
a common reserve r is used for all bidders, and the Vickrey auction with monopoly reserves,
denoted by Vicm, where mi = φ−1

i (0), the monopoly reserve of bidder i.

At first glance it is not obvious why such simple auctions that achieve approximately-
optimal guarantees for both objectives simultaneously should even exist. Indeed, despite the
fact that Vickrey’s auction achieves at least half of the optimal revenue, when the values
are drawn i.i.d. from regular distributions (see e.g. [34]), this is no longer the case when
the values are independent but drawn from different regular distributions. In particular, it
is easy to see that the revenue of Vickrey’s auction can be arbitrarily far from the optimal
revenue: just consider n − 1 bidders distributed independently and uniformly in [0, 1], and
a single bidder distributed uniformly in [h, h + 1], for some large h > 1. We can try to fix
that by using the Vickrey auction with monopoly (player-specific) reserves. However, despite
the revenue guarantees provided in [46], the auction now can be arbitrarily inefficient even
for a single bidder whose value is distributed according to a regular distribution. Indeed,
consider the (almost) equal revenue distribution, where the bidder’s value is supported on
{1−ε, 2−ε, . . . , h−ε}, for some ε ∈ (0, 1) and h > 1, and the probability that it is larger than
or equal to i−ε is exactly 1/i, for i = 1 . . . h. In this chapter, we show that, by appropriately
tweaking the reserve price of each bidder, we can fix this inefficiency:

Main Result (Theorem 14 of Section 4.2): In every single item setting with n
bidders whose values are distributed according to independent (possibly non-identical) regular
distributions, and for every p ∈ [0, 1], there exists a Vickrey auction with (generally non-
anonymous) reserve prices that simultaneously achieves a p-fraction of the optimal social
welfare and a

(
1−p

4

)
-fraction of the optimal revenue. In particular, there exists a Vickrey

auction with reserve prices that achieves at least a 20% of the optimal social welfare and
revenue.

We can use our techniques to prove a similar approximation guarantee for non-identical
distributions satisfying the monotone hazard rate condition (which has already been obtained
by [26]). We also show that a Vickrey auction with an anonymous reserve simultaneously
approximates both objectives for general (possibly non-regular) distributions, as long as all
values are i.i.d (Theorem 16). We summarize our results together with already known welfare
and revenue guarantees for various settings in Table 4.1.

i.i.d. independent

mhr
(
1, 1

e

)
and

(
1
e
, 1
)

[2]
(

1
e
, 1

2

)
[26]

regular
(
1, 1

2

)
[34]

(
1
5
, 1

5

)
and

(
p, 1−p

4

)
, for all p ∈ [0, 1] [24]

non-regular
(

1
2
, 1

2

)
[24] ?

Table 4.1: (α, β) stands for α-approximation for welfare and β-approximation for revenue.
Notice that our result for regular distributions gets a handle on the whole Pareto boundary
achieved by the Vickrey auction with non-anonymous reserve prices.
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Two questions left open are whether one can extend our results to the setting of n
bidders distributed according to independent, but not necessarily identical, and possibly
non-regular distributions, and to general single-dimensional settings (such as matroids and
general downward-closed environments).

Related Work

The work closer in spirit to ours is that of [46], where the authors show that, for a vari-
ety of single-dimensional settings, Vickrey auctions with carefully chosen reserve prices are
approximately revenue-optimal. In particular, when the bidders’ values are independently
drawn from (possibly different) regular distributions, they show that Vickrey’s auction with
monopoly reserve prices achieves at least half of the optimal revenue. Moreover, they show
that, for single item settings, Vickrey’s auction with an anonymous reserve achieves a factor
4 approximation to the optimal revenue. Finally, [46] also extends Bulow and Klemperer’s re-
sult (which we discussed in the previous chapter) to more general single-dimensional settings,
as follows: They show that by duplicating all bidders (whose values are drawn independently
from not necessarily identical, regular distributions), and then running the VCG auction,
one can guarantee at least half of the optimal revenue (while being optimal with respect to
welfare). Our result shows that in single item settings with independent (but not necessar-
ily i.i.d.) bidders, one can simultaneously achieve constant factor approximations to both
the optimal revenue and welfare without adding any extra bidders, via the use of a Vickrey
auction with appropriate (non-anonymous) reserve prices.

The work presented in the previous chapter is obviously very relevant to the problem
at hand as well. The two-bidder auction we presented there however, despite being deter-
ministic, is far from simple; this chapter complements the previous one by showing that,
if one is willing to settle for less than an arbitrarily small loss in performance, simple auc-
tions are possible, even when the number of bidders is large. Moreover, the existence of
an auction that simultaneously achieves a constant factor approximation to both objectives,
characterizes the “knee” of the Pareto curve, a structural result which is of independent
interest.

The literature mentioned in the related work section of the previous chapter, which studies
the revenue and welfare guarantees of welfare-maximizing and revenue-maximizing auctions
respectively, is also very relevant. In particular, in [2] the authors show that, for values
drawn independently from the same monotone hazard rate distribution, both the welfare
and revenue ratios of Vickrey and Myerson’s auctions are bounded by 1/e (see the top-left
square of Table 4.1). Furthermore, in [34] and [26] the authors present simple auctions
that simultaneously achieve constant factor approximations to both objectives in single item
settings where bidders’ values are either i.i.d. from a regular distribution (see the middle-left
square of Table 4.1), or independently (but not necessarily identically) distributed according
to a monotone hazard rate distribution (see the top-right square of Table 4.1). Some of their
results also hold for more general single-dimensional settings, namely when the feasibility
constraints form a matroid.
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Finally, despite our different motivation, methodologically our work is somewhat related
to [3]: in that paper the goal is to provide a general reduction from the mechanism design
problem for many bidders to that of a single bidder, while preserving the value of a separable
objective (such as welfare or revenue) within a constant factor. In Lemmas 17 and 19 we
establish analogous many-to-one reductions; however, our goal is not only to preserve the
approximation factor, but also for the resulting auction to be of a specific simple format, in
contrast to the much more generic reduction of [3].

Notation

We say that an auction A is an α-approximation for welfare (resp. revenue) if SW(A) ≥
α · SW(Vic) (resp. Rev(A) ≥ α · Rev(Mye)), where Vic denotes Vickrey’s auction and
Mye denotes Myerson’s auction. We say that an auction is an (α, β)-approximation if it is
simultaneously an α-approximation for welfare and a β-approximation for revenue. Also,
given an auction A, and a set of bidders B ⊆ {1, . . . , n}, we may write A(B) to denote
the auction A run only on the subset B of bidders. When we use this notation it will be
clear from the context how the “projected” auction operates. Finally, for convenience, we
sometimes write RA =

∑n
i=1 pi(v1, . . . , vn), so that Rev(A) = E [RA].

4.2 The regular, independent case

In this section we focus on the setting of n bidders whose values are distributed according to
regular, but not necessarily identical, distributions. We start with a couple of probabilistic
lemmas –not requiring regularity– which have easy proofs. Since those proofs make use of
the notion of stochastic dominance of measures we remind this to the reader first.

Definition 17 (Stochastic Dominance). Let F1 and F2 be distributions over R. We say
that F2 stochastically dominates F1 iff there exist random variables X1 and X2 that are
marginally distributed according to F1 and F2 respectively, and a coupling of X1 and X2,
such that X1 ≤ X2, with probability 1.

Lemma 15. Let X and Y be independent random variables and g : R → R a (weakly)
increasing function. Then, for any constant c ∈ R,

Pr [X ≥ Y | g(X) ≥ c] ≥ Pr [X ≥ Y | g(X) ≤ c] .

Proof. Fix c, let I := {x | g(x) = c} and, without loss of generality, assume that Pr[g(x) ≤
c] ≤ Pr[g(x) ≥ c]. Let F1 be the distribution of X, conditioning on g(X) ≤ c, and F2 the
distribution of X, conditioning on g(X) ≥ c. We claim that F2 stochastically dominates F1.
Indeed, let X1 be a random variable distributed according to F1 and X2 a random variable
distributed according to F2. Define any coupling of X1 and X2 enforcing that whenever
X2 ∈ I, X1 = X2. This is easy to achieve since, at every point x ∈ I, F1 has more
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probability mass than F2 (using our assumption that Pr[g(x) ≤ c] ≤ Pr[g(x) ≥ c]). It is
now easy to verify that any such coupling satisfies that X1 ≤ X2, with probability 1. (For
completeness, we note that, if instead we had Pr[g(x) ≤ c] ≥ Pr[g(x) ≥ c], we would pick
any coupling satisfying that whenever X1 ∈ I, X2 = X1.)

Suppose that X1 and X2 are coupled as above and sample Y independently from X1

and X2. In the joint distribution F thus defined, whenever X1 ≥ Y , it must also be that
X2 ≥ Y (since by stochastic domination Pr [X2 ≥ X1] = 1). Hence under F : Pr [X2 ≥ Y ] ≥
Pr [X1 ≥ Y ]. The lemma now follows by simply noticing that the marginal of F over the pair
(X1, Y ) is identical to the distribution of X and Y conditioning on g(X) ≤ c, and similarly
for (X2, Y ).

Lemma 16. Let X and Y be independent random variables and g : R → R a (weakly)
increasing function. Then

E [g(X)] ≤ E [g(X) | X ≥ Y ] .

Proof. For any constant c ∈ R:

E [g(X)] = E [g(X) | X ≥ c] Pr [X ≥ c] + E [g(X) | X ≤ c] Pr [X ≤ c]

= E [g(X) | X ≥ c] + (E [g(X) | X ≤ c]− E [g(X) | X ≥ c]) · Pr [X ≤ c]

≤ E [g(X) | X ≥ c] , (4.1)

where the inequality follows from the fact E [g(X) | X ≤ c] ≤ E [g(X) | X ≥ c]. This is true
since g is a non-decreasing function, and the conditional distribution of X, conditioning on
X ≥ c, stochastically dominates the conditional distribution of X, conditioning on X ≤ c
(this is a special case of what we argued in the beginning of the proof of Lemma 15).

To conclude the lemma, let f(y) be the density function of Y . Notice that:

E [g(X)] ≡
∫
y

E [g(X)] f(y)dy ≤
∫
y

E [g(X) | X ≥ y] f(y)dy ≡ E [g(X) | X ≥ Y ] ,

where the equalities follow from the independence of X and Y and the inequality follows
from applying (4.1) pointwise for all y.

Our next lemma shows that if we take the Vickrey auction and add a reserve price for
each bidder, such that the probability of any single bidder’s value exceeding her reserve price
is at least p, then the resulting welfare is at least a p fraction of Vickrey’s (optimal) social
welfare E [maxi{vi}]. In what follows we use I(·) to denote the indicator function.

Lemma 17 (Many-to-One Reduction—Welfare). Suppose that X1, . . . , Xn are independent,
non-negative random variables (possibly non-identically distributed), t1, . . . , tn are (possibly
different) thresholds, and p ∈ [0, 1]. If it holds that Pr [Xi ≥ ti] ≥ p, for all i = 1 . . . n, then:

E
[
max
i
{Xi · I(Xi≥ti)}

]
≥ p · E

[
max
i
{Xi}

]
.
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Proof. Let Ei = {Xi = maxj{Xj}}. Then E [maxi{Xi}] is:

n∑
i=1

E [Xi | Ei, Xi ≥ ti] Pr [Ei, Xi ≥ ti] + E [Xi | Ei, Xi ≤ ti] Pr [Ei, Xi ≤ ti]

To proceed we need the following claims:

Claim 1: Pr [Ei, Xi ≥ ti] ≥ p
1−p · Pr [Ei, Xi ≤ ti].

Proof of Claim 1.

Pr [Ei, Xi ≥ ti] = Pr [Ei | Xi ≥ ti] · Pr [Xi ≥ ti]

≥ Pr [Ei | Xi ≤ ti] ·
p

1− pPr [Xi ≤ ti]

=
p

1− p · Pr [Ei, Xi ≤ ti] ,

where in the inequality above we used the following facts: First, we use that

Pr [Ei | Xi ≥ ti] ≥ Pr [Ei | Xi ≤ ti] ,

which follows from Lemma 15 taking X = Xi, c = ti, g the identity function, Y =
maxj 6=i{Xj}, and noticing that the event Ei is the same as the event X ≥ Y . The sec-
ond fact we use is that Pr [Xi ≥ ti] ≥ p

1−pPr [Xi ≤ ti], which in turn follows from the fact

that Pr [Xi ≥ ti] ≥ p and Pr [Xi ≤ ti] ≤ 1− p.

Claim 2: E [Xi | Ei, Xi ≥ ti] ≥ E [Xi | Ei, Xi ≤ ti] .

Proof of Claim 2. Just note: E [Xi | Ei, Xi ≥ ti] ≥ ti ≥ E [Xi | Ei, Xi ≤ ti].

From the above claims and the non-negativity of Xi it follows that:

E
[
max
i
{Xi}

]
≤ 1

p
·

n∑
i=1

E [Xi | Ei, Xi ≥ ti] Pr [Ei, Xi ≥ ti] . (4.2)

Next we write E
[
maxi{Xi · I(Xi≥ti)}

]
as follows:

n∑
i=1

E [Xi | Ei, Xi ≥ ti] Pr [Ei, Xi ≥ ti] + E [Xi | ¬Ei, Xi ≥ ti] Pr [¬Ei, Xi ≥ ti]

≥
n∑
i=1

E [Xi | Ei, Xi ≥ ti] Pr [Ei, Xi ≥ ti] ,

where in the last inequality we used the non-negativity of Xi. The lemma follows by com-
bining the above lower bound on E

[
maxi{Xi · I(Xi≥ti)}

]
with (4.2).



CHAPTER 4. SIMPLE, OPTIMAL AND EFFICIENT AUCTIONS 72

Lemma 17 immediately implies the following corollary, already known from [26].

Corollary 1 (mhr, independent). In every single item setting with n bidders whose values
are distributed according to independent (possibly non-identical) distributions that satisfy the
monotone hazard rate condition, the Vickrey auction with monopoly reserves is a (1/e, 1/2)-
approximation.

Proof. It is known from [46] that, if m is the vector of monopoly reserve prices, then Vicm
(the Vickrey auction with monopoly reserves) is a 1/2-approximation to the optimal revenue.
The welfare guarantee follows from Lemma 17 and the following fact from [2]: if v is drawn
from a monotone hazard rate distribution, then Pr [v ≥ φ−1(0)] ≥ 1/e.

Unfortunately, as discussed in Section 4.1, the Vickrey auction with monopoly reserve
prices may be arbitrarily inefficient when we allow for regular distributions. In particular,
we cannot employ Lemma 17 directly as the probability of any single bidder being above
her monopoly reserve may be arbitrarily small. To fix this, we recall a lemma for regular
distributions from [9]. For a single bidder setting, this lemma guarantees that there is always
a reserve price r (which generally needs to be smaller than the monopoly reserve) that
achieves a constant factor of the optimal revenue, while at the same time is smaller than the
bidder’s value with constant probability.

Lemma 18 ([9]). Let F be a regular distribution, and let RF (x) = x · F−1(1 − x), for all
x ∈ [0, 1],2 be the revenue curve in quantile space. Then, for all 0 < q̃ ≤ q ≤ p < 1,

RF (q̃) ≤ 1

1− pRF (q).

If we try to use Lemma 18 to generalize Corollary 1 to regular distributions, we run into
an additional difficulty. Indeed, if we lower the bidders’ reserve prices to some vector r ≤m
below their monopoly reserves and run Vicr, the bidders will start contributing negative
virtual values to the expected virtual welfare of the auction (i.e. its expected revenue). So
we need to control the absolute value of the overall negative contribution to the expected
virtual social welfare. This is not straightforward and is established in the following lemma,
which alongside our main result is one of the main contributions of the work in this chapter.

Before providing its proof, it is worth noting that the obvious approach of decomposing
the auction’s virtual welfare into every bidder’s contribution (using the law of total expec-
tation) and then comparing each bidder’s contribution under different reserve prices poses
technical challenges. In particular, the terms of the decomposition cannot be directly com-
pared as each of these terms depends on the probabilistic experiment that determines the
winner of the auction, and this experiment depends on the reserves in ways that make it
hard to find a useful coupling that enables term-by-term comparisons. Our technique tries
to disentangle the contribution of each bidder to the virtual welfare of the auction from

2See the discussion in [9] for why F−1 is a well-defined function for a differentiable regular distribution.
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the competition among the bidders, enabling us to first relate the revenue of Vicr with the
revenue of a hybrid auction, instead of Vicm (for which we have good revenue guarantees
from [46]). Our hybrid auction uses the tweaked reserves r to truncate the bidders’ values,
but only gives the item to the winner of Vicr if the winner also meets her monopoly reserve.
Next we relate the revenue of our hybrid auction to Vicm. This is quite more challeng-
ing and involves a calculation that matches events where the hybrid auction makes no sale
while Vicm makes a sale to events where both auctions make a sale, establishing a factor 2
approximation. We expect our technique to find broader use in auction design.

Lemma 19 (Many-to-One Reduction—Revenue). Consider a single item setting with n
bidders whose values are distributed according to independent (possibly non-identical) regular
distributions. Let also r = (r1, . . . , rn) be a vector of reserve prices such that, for all i ∈
{1, . . . , n}, ri ≤ φ−1

i (0) (i.e. ri is no larger than the monopoly reserve for bidder i) and
Rev(Vicri({i})) ≥ (1 − p) · Rev(Mye({i})), for some p ∈ (0, 1). (That is, if bidder i were
considered in isolation, then the Vickrey auction with reserve price ri would achieve a (1−p)-
fraction of the optimal revenue.) Then it holds that Rev(Vicr) ≥ 1−p

4
· Rev(Mye).

Proof. Let Ei denote the event that i is the winner of the Vikrey auction with reserves r,
i.e. i = arg maxj{vj · I(vj≥rj)} 3 and vi ≥ ri. Using Proposition 1 we can write Rev(Vicr) in
terms of the bidders’ virtual values as follows:

Rev(Vicr) =
n∑
i=1

E [φi(vi) | Ei, φi(vi) ∈ [φi(ri), 0]] Pr [Ei, φi(vi) ∈ [φi(ri), 0]]

+ E [φi(vi) | Ei, φi(vi) ≥ 0] Pr [Ei, φi(vi) ≥ 0] . (4.3)

In the course of the proof, we use the following inequalities:

E [φi(vi)|φi(vi) ∈ [φi(ri), 0]] ≤ E [φi(vi) | Ei, φi(vi) ∈ [φi(ri), 0]] (≤ 0) (4.4)

(0 ≤) E [φi(vi)|φi(vi) ≥ 0] ≤ E [φi(vi) | Ei, φi(vi) ≥ 0] (4.5)

|E [φi(vi) | φi(vi) ∈ [φi(ri), 0]] | · Pr [φi(vi) ∈ [φi(ri), 0]] ≤
p · E [φi(vi) | φi(vi) ≥ 0] · Pr [φi(vi) ≥ 0] (4.6)

Inequalities (4.4) and (4.5) follow from Lemma 16 when g is φi and Y = maxj 6=i{vj · I(vj≥rj)}.
Inequality (4.6) involves a single bidder, and follows immediately from our assumption that
Rev(Vicri({i})) ≥ (1− p) · Rev(Mye({i})) and noting that

Rev(Vicri({i})) = E [φi(vi) | φi(vi) ∈ [φi(ri), 0]] · Pr [φi(vi) ∈ [φi(ri), 0]]

+ E [φi(vi) | φi(vi) ≥ 0] · Pr [φi(vi) ≥ 0] ;

3Throughout the proof we assume that all maximizations have a unique maximizer. This is ok, since we
consider continuous distributions so this happens with probability 1.
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Rev(Mye({i})) = E [φi(vi) | φi(vi) ≥ 0] · Pr [φi(vi) ≥ 0] .

Using (4.4), (4.5) and (4.6), we can bound the terms of the negative contribution to the
expected revenue (4.3) as follows:

|E [φi(vi) | Ei, φi(vi) ∈ [φi(ri), 0]] | · Pr [Ei, φi(vi) ∈ [φi(ri), 0]]

≤ |E [φi(vi) | φi(vi) ∈ [φi(ri), 0]] |Pr [φi(vi) ∈ [φi(ri), 0]]︸ ︷︷ ︸Pr [Ei | φi(vi) ∈ [φi(ri), 0]]︸ ︷︷ ︸
≤

︷ ︸︸ ︷
p · E [φi(vi) | φi(vi) ≥ 0] · Pr [φi(vi) ≥ 0] ·

︷ ︸︸ ︷
Pr [Ei | φi(vi) ≥ 0]

≤ p · E [φi(vi) | Ei, φi(vi) ≥ 0] · Pr [Ei, φi(vi) ≥ 0]

where for the first inequality we used (4.4) (and the fact that both sides of the inequality
are non-positive), for the second inequality we used (4.6) and Lemma 15 taking g equal to
φi, X = vi (conditioned on X ≥ ri), Y = maxj 6=i{vj · I(vj≥rj)} and c = 0, and in the third
inequality we used (4.5). We can now bound the revenue as follows:

Rev(Vicr) ≥ (1− p) ·
n∑
i=1

E [φi(vi) | Ei, φi(vi) ≥ 0] · Pr [Ei, φi(vi) ≥ 0] . (4.7)

To continue, we observe that the summation on the right-hand-side of (4.7) can be
interpreted as the revenue of the following hybrid auction, H, which lies “between” Vicr
and Vicm: H truncates all bidders at their respective reserve prices ri; among the surviving
bidders it identifies the larger bidder i∗ as a potential winner, but only allocates the item to
i∗ if she clears her monopoly reserve mi∗ ; if this happens, i∗ pays the maximum of her reserve
price mi∗ and maxj 6=i∗{vj · I(vj≥rj)}. We can clearly lower bound the expected payment of
bidder i in the hybrid auction by the following expression:∫ mi

x=0

Pr

[
max
j 6=i
{vj · I(vj≥rj)} = x

]
·mi · Pr [vi ≥ mi] dx.

Hence:

E [RH] ≥
n∑
i=1

∫ mi

x=0

Pr

[
max
j 6=i
{vj · I(vj≥rj)} = x

]
·mi · Pr [vi ≥ mi] dx. (4.8)

Next we compare the revenue of H to that of the Vickrey auction with monopoly reserves
Vicm. Our first observation is that whenever (i.e. for any value vector for which) H sells to
some bidder i, Vicm also sells to the same bidder i; moreover, the payment of bidder i in H
is at least as large as her payment in Vicm.4 So the contribution of bidder i to the revenue

4The reason for this is that H uses lower reserves to truncate the bidders’ values. So if i wins in H her
value is larger than her monopoly reserve as well as all other bidders’ values truncated at the reserves r. So
her value must also be larger than the other bidders’ values truncated at the (higher) monopoly reserves m.
By the same token, the second highest truncated value will be higher if truncation happens at r than if it
happens at m.
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from the event where she gets the item in both auctions is larger in the hybrid auction. This
implies that the revenue in the event that both H and Vicm sell the item is larger in H than
Vicm. Let us call this event the good event G. We have just argued that

E [RH | G] · Pr[G] ≥ E [RVicm| G] · Pr[G]. (4.9)

So it suffices to bound the revenue of Vicm under the event that Vicm sells to some
bidder, but the hybrid auction does not sell to any bidder. Let us call this event the bad
event, B. We claim that the bad event is contained in the union of the following disjoint
events:

Bi =

{
vi · I(vi≥ri) = max

j
vj · I(vj≥rj) and vi ≤ mi

}
, for all i.

Indeed, if the bad event happens it must be that the winner j∗ of Vicm does not satisfy
vj∗ · I(vj∗≥rj∗ ) = maxj{vj · I(vj≥rj)}. Suppose instead that vi · I(vi≥ri) = maxj{vj · I(vj≥rj)}. For
i not to be the winner in the hybrid auction it must be that vi ≤ mi. Hence Bi is satisfied.

Now, in event Bi, the maximum possible revenue that any auction (and hence Vicm)
could be making is maxj 6=i vj · I(vj≥rj). Hence, the revenue of Vicm from the event Bi can be
upper bounded as:

E [RVicm| Bi] · Pr[Bi] ≤
∫ mi

x=0

Pr

[
max
j 6=i
{vj · I(vj≥rj)} = x

]
· x · Pr [x ≤ vi ≤ mi] dx

≤
∫ mi

x=0

Pr

[
max
j 6=i
{vj · I(vj≥rj)} = x

]
· x · Pr [vi ≥ x] dx

≤
∫ mi

x=0

Pr

[
max
j 6=i
{vj · I(vj≥rj)} = x

]
·mi · Pr [vi ≥ mi] dx (4.10)

where the last inequality follows from the definition of the monopoly reserve mi.
Hence, the revenue of Vicm from the bad event B can be upper bounded as:

E [RVicm | B] · Pr[B] ≤
n∑
i=1

E [RVicm | Bi] · Pr[Bi] ≤ E [RH] , (4.11)

where for the first inequality we used that B ⊆ ∪iBi, and for the second inequality we
combined (4.10) and (4.8). Combining (4.11) and (4.9) we obtain:

Rev(H) ≥ 1

2
· Rev(Vicm). (4.12)

The lemma follows by combining (4.7), (4.12) and noticing that the revenue of Vicm is known
by [46] to be a 1/2-approximation to the optimal revenue, i.e. Rev(Vicm) ≥ 1

2
·Rev(Mye).

We are now ready to prove our main theorem:
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Theorem 14 (Main). For every single item setting with n bidders whose values are dis-
tributed according to independent (possibly non-identical) regular distributions, and any p ∈
[0, 1], there is a vector of reserve prices r = (r1, . . . , rn) such that Vicr is a (p, (1 − p)/4)-
approximation.

Proof. We argue that, for all i, there exists a price ri such that the following are satisfied:

Pr[vi ≥ ri] ≥ p; and

Rev(Vicri({i})) ≥ (1− p) · Rev(Mye({i})).
Indeed, we distinguish two cases. If 1 − F (φ−1

i (0)) ≥ p, we take ri = φ−1
i (0) and the above

are satisfied automatically. Otherwise, the existence of a reserve with the above properties is
implied by Lemma 18. Given reserves r1, . . . , rn as above, the theorem follows immediately
from Lemmas 17 and 19.

Picking p = 1/5 we obtain a (1/5, 1/5)-approximate auction for regular distributions.

Corollary 2 (regular, independent). For every single item setting with n bidders whose
values are distributed according to independent (possibly non-identical) regular distributions,
there exist reserve prices r such that Vicr achieves a (1/5, 1/5)-approximation.

4.3 The non-regular, i.i.d. case

In this section we show that the Vickrey auction with an anonymous reserve price achieves
a constant factor approximation to both objectives for general distributions, when the bid-
ders’ values are distributed independently and identically. We will follow the approach
of [14], which makes use of prophet inequalities [72] to show that this auction achieves a
1/2-approximation to the optimal revenue.

We first describe prophet inequalities. Imagine a gambler facing a series of n games
in a casino, one on each of n days. Game i has a prize associated with it, whose value is
distributed according to some distribution Fi. The distributions of the prize values are known
to the gambler in advance, but their exact realization is not known in advance, and neither
is the order of the games. On day i a game is chosen by an adversary trying to minimize
the gambler’s profit, and its prize value is drawn from the corresponding distribution; the
gambler needs to decide whether to pick the prize and leave the casino, or ignore it and keep
playing. Clearly the gambler’s optimal strategy can be computed using backwards induction;
on the other hand, there exists a simple threshold strategy that guarantees the gambler at
least half of the expected value of the maximum prize. A threshold strategy is a single value
t, such that the gambler accepts the first prize i with vi ≥ t; the proof of the following
theorem can be found in [72, 44].

Theorem 15. There exists a threshold t such that, independently of the order the games are
played, the expected prize of the gambler is at least half of the expected value of the maximum
prize, and the probability that the gambler receives a prize is exactly 1/2.



CHAPTER 4. SIMPLE, OPTIMAL AND EFFICIENT AUCTIONS 77

In [14] they leverage this theorem to show that the Vickrey auction with an anonymous
reserve price achieves at least half of the optimal revenue. We can easily extend this to show
a guarantee for both social welfare and revenue.

Theorem 16. In every single item setting with n bidders whose values are drawn indepen-
dently from the same (possibly non-regular) distribution, a Vickrey auction with an anony-
mous reserve price achieves a 1/2-approximation to both the optimal revenue and welfare.

Proof. For the sake of completeness we first sketch the proof for revenue. (For full details
we refer the reader to [44].) Observe that the problem a revenue-optimizing auctioneer faces
is similar to the gambler’s problem described above, if prizes are taken to be the bidders’
ironed virtual values (assuming that the gambler’s strategy treats all values in every flat
region of the ironed virtual valuation functions the same). Indeed, let t be the threshold
that is guaranteed by Theorem 15, and pick the reserve price to be p = φ̂−1(t), where φ̂
denotes the ironed virtual valuation of the bidders. If there are multiple p’s mapped to t
by φ̂ pick the smallest such p. Given this tie-breaking, observe that the Vickrey auction
with reserve price p treats all flat regions in the ironed virtual valuation function the same;
hence its revenue is equal to the expected ironed virtual value of the winner (prize picked),
which by Theorem 15 is at least 1/2 of the optimal expected ironed virtual surplus (expected
maximum prize). Since the latter is an upper bound to the optimal revenue, the revenue of
the Vickrey auction with reserve p is a 1/2-approximation to the optimal revenue. Moreover,
Theorem 15 guarantees that a prize will be picked with probability exactly 1/2, and so

Pr
[
max
i
{vi} ≥ p

]
≥ 1/2 ≥ Pr

[
max
i
{vi} ≤ p

]
. (4.13)

Note that the way we defined our tie-breaking rule is important for this to hold. Next we
show that this auction achieves at least half of the optimal social welfare as well:

E
[
max
i
{vi}

]
=

∫ p

0

x · Pr
[
max
i
{vi} = x

]
dx+

∫ ∞
p

x · Pr
[
max
i
{vi} = x

]
dx

≤ p ·
∫ p

0

Pr
[
max
i
{vi} = x

]
dx+

∫ ∞
p

x · Pr
[
max
i
{vi} = x

]
dx

(4.13)

≤ p ·
∫ ∞
p

Pr
[
max
i
{vi} = x

]
dx+

∫ ∞
p

x · Pr
[
max
i
{vi} = x

]
dx

≤
∫ ∞
p

x · Pr
[
max
i
{vi} = x

]
dx+

∫ ∞
p

x · Pr
[
max
i
{vi} = x

]
dx

= 2 · E
[
max
i
{vi · I(vi≥p)}

]
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[71] Tim Roughgarden and Éva Tardos. “How bad is selfish routing?” In: J. ACM 49.2
(2002), pp. 236–259.

[72] Ester Samuel-Cahn. “Comparison of Threshold Stop Rules and Maximum for Inde-
pendent Nonnegative Random Variables”. English. In: The Annals of Probability 12.4
(1984), pp. 1213–1216. issn: 00911798. url: http : / / www . jstor . org / stable /

2243359.

[73] Mark Allen Satterthwaite. “Strategy-proofness and Arrow’s conditions: Existence and
correspondence theorems for voting procedures and social welfare functions”. In: Jour-
nal of Economic Theory 10.2 (Apr. 1975), pp. 187–217. url: http://ideas.repec.
org/a/eee/jetheo/v10y1975i2p187-217.html.

[74] S. Vassilvitskii and M. Yannakakis. “Efficiently computing succinct trade-off curves”.
In: Theoretical Computer Science 348 (2005), pp. 334–356.

[75] William Vickrey. “Counterspeculation, Auctions, and Competitive Sealed Tenders”.
In: The Journal of Finance 16.1 (1961), pp. 8–37. url: http://jmvidal.cse.sc.
edu/library/vickrey61a.pdf.


