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Abstract

A Succinct Control Theory Derivation and New Experiments with the Square-Root

Variant of Fitts’ Law for Heterogeneous Targets

by

Siamak Faridani

Master of Science in Computer Science

University of California, Berkeley

Professor Ken Goldberg, Chair

In this work, we present a succinct derivation for the Square-Root model based on

an explicit model from optimal control theory. Our derivation is intuitive and exact,

makes fewer assumptions, and requires far fewer steps than the two-submovement

derivation presented in Meyer et al. [MAK+88]. To compare the Square-Root model

with statistical significance, we performed two extensive experiments with homoge-

neous and heterogeneous targets that appear in sequence on a plane. Later, we extend

the two-parameter model to a more accurate three-parameter that increases the ac-

curacy of the model over the two-parameter formulation. The succinct and intuitive

derivation and new experimental results may enhance the appeal of the Square-Root

model for design of systems and interfaces with heterogeneous targets.

Professor Ken Goldberg
Thesis Committee Chair
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Contributions

This thesis builds on the research that was started almost six years before the author

joined UC Berkeley as a graduate student. Mathematical derivation for the two

parameter Square-Root Fitts’ model is by Ken Goldberg and Ron Alterovitz. The

web-based experiment data that is used in this thesis was also collected by Goldberg

and Alterovitz.

The contributions of the author in this thesis are as below:

1. An in-lab equivalent of the web-based experiment was designed and conducted

on 46 participants

2. Statistical data analysis and hypothesis testing on the data from both in-lab

and web-based is performed and a comparison with the Logarithmic variant and

Plamondon’s Power variant of Fitts’s model is presented. The results are shown

to be consistent (detailed analysis of this comparison is presented in Chapter

2).

3. Goldberg and Alterovitz provide a two-parameters Square-Root form of the

Fitts’ law. They assume that in the acceleration of the mouse pointer is constant

and its magnitude is proportional to the width (W ) of the target: ẍ = kW .

This assumption results in a two-parameter Square-Root variant of the Fitts

law. In this thesis we relax this assumption and assume that the acceleration is

proportional to both the width of the target (W ) and its distance from the origin

(A): ẍ = kWAβ. We show that this assumption leads to a three-parameter

Fitt’s model (T = a + b
√

Aλ

W
) in which the parameter λ was empirically found

to be λ = 2/3
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In addition to the contributions above, in the appendices section we provide a

detailed derivation of Meyer’s model [MAK+88]. The details of their derivation is

missing from their paper hence reproduced here for interested readers.
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Chapter 1

Introduction

Human motion models facilitate the design of many systems such as human-

computer interfaces, cockpits, and assembly lines. The classic Fitts’ Law, character-

ized by a logarithmic two-parameter relationship between human motion time and

the index of difficulty, the ratio of distance over target size, was based on timing mea-

surements between fixed (homogeneous) targets. Alternative two-parameter models,

such as the Square-Root model, have also been shown to fit this data. Several re-

searchers argue the Square-Root model provides a better fit in cases such as computer

interfaces where targets are heterogenous (have different sizes and relative distances

between sequential motions). In this work, we present a succinct derivation for the

Square-Root model based on an explicit model from optimal control theory. Our

derivation is intuitive and exact, makes fewer assumptions, and requires far fewer

steps than the two-submovement derivation presented in Meyer et al. [MAK+88].

To compare the Square-Root model with statistical significance, we performed two

extensive experiments with homogeneous and heterogeneous targets that appear in

sequence on a plane. The first experiment is a controlled laboratory study based on

timing data for 46 human participants performing 49 motions each. The second ex-
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periment is an uncontrolled study based on timing data for 60,000 motions measured

on our Internet site (from an unspecified variety of participants, mouse types, and

settings). For both experiments we compute RMS error for each model and perform

two-sided paired t-tests on the within subject signed differences in RMS errors for each

condition. For homogeneous targets of fixed width and position, we did not observe a

statistical difference between the models. But for heterogeneous movements between

circles of varying size and position, the Square-Root model fits the data significantly

better than the Logarithmic model. For data from the controlled experiment, the

p-value is 2.15× 10−13 and for data from the uncontrolled experiment, the p-value is

4.74× 10−46.

Later, we extend the two-parameter model to a more accurate three-parameter

model and show that it is 69% more accurate than the logarithmic variant of the Fitts’

law. We empirically show the concavity of the performance function versus the third

parameter and use this property to calibrate this new parameter. The appendices

section for this work contains a detailed derivation of the Meyer et al., [MAK+88] that

is missing from their paper and also a comparison of our model with Plamondon’s

Power variant of the Fitts’ law.

The succinct and intuitive derivation and new experimental results may enhance

the appeal of the Square-Root model for design of systems and interfaces with het-

erogeneous targets. All of our data is available online for future studies1.

1http://www.tele-actor.net/fitts/
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Chapter 2

Experiments for Two-Parameter

Square-Root Variant of Fitts’ Law

Many human-computer interfaces require users to move a mouse or related input

device to manually direct a cursor to targeted areas (e.g., menu items, buttons) on a

computer screen. Some motions can be performed more efficiently than others. To

facilitate efficient human-computer interfaces, designers seek effective models of such

motions.

The inherent tradeoff between speed and accuracy of such movements was first

quantified by Paul Fitts of Ohio State University in 1954 [Fit54]. Fitts studied ho-

mogeneous reaching movements, between targets of fixed size and distance, which are

common in industrial settings for tasks ranging from installing parts on an assembly

line to stamping envelopes in an office. In a series of experiments, Fitts required

participants to repetitively move a stylus between two fixed contact plates as quickly

as possible for 15 seconds. Fitts set the width W of the plates and the amplitude

(distance) A between the plates, as shown in Figure 2.1, which were constant during
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each experiment and varied between experiments. Fitts measured the movement time

T between moving back and forth between these two targets.

Figure 2.1. In 1954, Paul Fitts measured movement time T for homogeneous motions:
each participant used a stylus to repetitively tap between two targets of fixed width
W separated by a distance A. In this report we also consider heterogeneous motions
in which A and W change after every tap.

Figure 2.2. Using a Java applet, sequences of rectangular and circular targets are
presented, where target distance A and width W can remain constant (homogeneous)
or vary (heterogeneous) after every click.

Inspired by Shannon’s Information Theory, Fitts empirically fitted a logarithmic

model to the data he collected from 16 participants. Since then, many researchers

have repeated these experiments under varying conditions and proposed alternative

models and derivations based on human perception and physiology.

We review related work in the next Section. Our results focus on the Square-Root

model studied in depth by Meyer et al. in [MAK+88]. In section 2.1.7 we review the

Meyer derivation for comparison.

In this chapter, we present a succinct derivation for the Square-Root model based

on two assumptions: acceleration is (1) piecewise constant (as predicted by optimal
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control theory) and (2) proportional to target width: wider targets are perceived

as easier to reach and hence correspond to larger accelerations. This derivation is

intuitive and exact, makes fewer assumptions, and requires far fewer steps than the

two-submovement derivation presented in Meyer et al. [MAK+88].

Researchers have argued the Square-Root model provides a better fit for com-

puter interfaces where targets are heterogenous (have different sizes and relative dis-

tances between sequential motions) [Kv̊a80], [MAK+88]. Since Meyer et al. report

experiments on wrist rotation movements to heterogenous targets for only four par-

ticipants, we performed extensive new experiments with homogeneous and hetero-

geneous targets that appear in sequence on a plane. To our knowledge, this is the

largest study evaluating Fitts law and the Square-Root model. We analyze the tim-

ing data collected in both experiments by computing RMS error for each condition

(two-parameter model) and perform two-sided paired t-tests on the within subject

signed differences in RMS errors for each condition.

2.1 Related Work

2.1.1 Classic Fitts’ Law

In “choice reaction time tasks,” a set of stimuli are assigned unique responses, and

participants must give the correct response when receiving the stimulus [JF03a]. In

1885, J. Merkel designed an experiment in which the stimulus was a number selected

from a set of size N with uniform probability and the participant was required to press

a key corresponding to the number [JF03a]. As N increased, so did the reaction time

TR. Merkel found that the reaction time increased by a constant for every doubling

of the set of possible numbers.
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In 1948, Claude Shannon published the foundational paper on Information Theory,

defining the information capacity for a communication channel, C, as:

C = B log2

(
S +N

N

)
, (2.1)

where B is the channel bandwidth, S is signal strength, and N is noise power. Shan-

non also defined the information I of a symbol based on the probability of receiving

the symbol, I = log2
1
p
.

Adopting Shannon’s model, Merkel’s reaction time can be viewed as proportional

to the amount of “information” received by the participant:

TR = a+ b log2N

where a and b are experimentally determined constants.

In 1953, J. Hyman extended Merkel’s work to the case where an element i in the

set of possible numbers was selected with non-uniform probability pi [Hym53]. Hyman

found that the average reaction time was consistent with the Shannon’s model [JF03a].

In 1954, Fitts hypothesized that the information capacity of the human motor

system is specified by its ability to produce consistently one class of movement from

among several alternative classes of movements [Fit54]. Fitts then defined the dif-

ficulty of a task based based on the minimum amount of “information” required to

complete it on average. For the “tapping task”, Fitts defined a tap between two

targets of distance (amplitude) A with width of W as a movement class. Using Shan-

non’s definition of information as a guideline, Fitts defined the index of difficulty (I)

to be the “information” transmitted during the task:

I = log2

(
2A

W

)
.

Fitts noted that the choice of the numerator for this index “is arbitrary since the
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range of possible amplitudes must be inferred,” so 2A was selected rather than A to

ensure that the index is positive in “all practical situations.”

Fitts then modeled movement time T as a linear function of the “information”

transmitted, producing his classic two-parameter Logarithmic model:

T = a+ b log2

(
2A

W

)
. (2.2)

2.1.2 Alternative Information Theory Models of Human Mo-

tion

In 1960, Welford proposed a revised model based on a Weber fraction where

the user must select “a distance from a total distance extending from his starting

point to the far edge of the target” [Wel60], [Wel68]. For some constant b, Welford’s

formulation is given by:

T = b log

(
A+ 1

2
W

W

)
= b log

(
A

W
+ 0.5

)
.

I. Scott MacKenzie developed a model that is more closely based on Shannon’s

Theorem [Mac92]. MacKenzie’s communication channel model of Fitts’ data con-

siders noise N to be the variation around a specific signal S, so the signal strength

equals the movement amplitude (S = A) and the noise equals the width (N = W ).

By analogy to Shannon’s model (equation 2.1), movement time is given by:

T = a+ b log2

(
A+W

W

)
. (2.3)

Other researchers, such as Crossman and Welford [Wel68], proposed further mod-

ifications to Fitts’ Logarithmic model to make it more closely resemble Shannon’s

communication theorems using methods such as effective target widths to model

channel noise.
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2.1.3 Alternative Models of Reaching Movements

Alternative models of human reaching movements consider properties of the neu-

romuscular system, such as minimizing jerk or a sequential impulse model. Crossman

and Goodeve [CG83] proposed a movement time model based on a sequence of dis-

crete positional corrective motion impulses, which resulted in a Logarithmic model like

Fitts’ law. Flash and Hogan developed a mathematical model of voluntary reaching

movements based on maximizing the smoothness of trajectories [FH85]. They pro-

pose that the human motor system minimizes jerk, the derivative of acceleration. The

formula for the time integral of the square of the magnitude of jerk is

C =
1

2

∫ tf

0

n∑
i=1

((
d3xi
dt3

)2
)
dt

where n is the dimension of the space, x is the vector coordinate of the pointer as a

function of time, and tf is the time to reach the end point. Minimizing this formula

results in 5th order polynomials with 6 unknown parameters for each dimension.

One can constrain the position of the start and end points and assume the velocity

and acceleration are zero at the start and end of the movement, and then solve for

the parameters. The resulting trajectories have smooth position and velocity curves

qualitatively similar to experimentally measured data. However, this model differs

from Fitts’ Logarithmic variant because it does not explicitly consider the tradeoff

resulting from varying the size of a target region.

In 1992, Réjean Plamondon proposed an alternative to Fitts’ Logarithmic model

using a neuromuscular impulse response model [Pla92a], [Pla95a], [Pla95b]. Plam-

ondon’s theory for rapid human movements is based on the synergy between the

agonist and antagonist neuromuscular systems [Pla95a]. In his model, the agonist

and antagonist systems synchronously receive an impulse input U0(t− t0) at time t0

scaled by Di, where i = 1 for the agonist system and i = 2 for the antagonist system.

Each system independently responds in parallel to the input with impulse response
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functions Hi(t) to generate output velocities vi(t) for i = 1, 2. Although the two sys-

tems may be coupled in reality, Plamondon assumed the output v(t) of the synergy is

obtained by subtracting the two parallel outputs. Plamondon proposed defining the

impulse response using a log-normal function, a very general formulation based on 7

parameters that can qualitatively predict a variety of velocity profiles including single

peaks, double peaks, triple peaks, asymmetric peaks, and multiple peaks with no zero

crossing. Reaching movements from one point to another point terminate at a time

T when the velocity of motion v(T ) equals zero. Solving the velocity equation for the

zeros using constraints set by Fitts’ experiment, Plamondon modeled movement time

T = K

(
2A

W

)α
(2.4)

with parameters K and α.

Equation 2.4 defines a power model, an alternative two-parameter formulation

based on a fitted log-normal approximation of the velocity profile.

2.1.4 Applications of Fitts’ Logarithmic Model

Although Fitts’ Logarithmic model was originally developed for industrial pick-

and-place tasks [Fit54], it has been applied to a variety of human reaching move-

ments. The first application of Fitts’ Logarithmic model to human-computer in-

teraction dates from before the commercialization of modern personal computers.

Card, English, and Burr at Xerox PARC studied the relative speed of four input

devices: mouse, joystick, step keys, and text keys [CEB78]. They found that Fitts’

Logarithmic model accounts for the variation in movement time to select text on a

CRT monitor using mice and joysticks. Subsequent studies applied Fitts’ Logarith-

mic model to pen input devices [MSB91]. Fitts’ Logarithmic model has also been

applied to robotics applications including telemanipulation tasks with remote video
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viewing [Dra91] and pairs of participants performing tapping motions using a robot

manipulator [RPCP04].

Friedlander et al. found that a linear model for movement time fits selection in a

non-visual (tactile or auditory) bullseye menu more closely than Fitts’ Logarithmic

model [FSM98]. Also, Kristensson proposes using context information, such as pat-

tern recognition of likely key presses on a stylus keyboard, to develop input devices

that increase the speed of input beyond what would be predicted by Fitts’ Logarith-

mic model [Kri05].

Plamondon and Alimi review studies on speed/accuracy trade-off models and

their applications [PA97]. They categorize the experimental procedures used for the

speed/accuracy trade-offs into two different categories: spatially constrained move-

ments and temporally constrained movements. For the procedures in the first cate-

gory, distance (A) and the width (W ) are usually given and the time (T ) is measured.

In the temporal group, movement time is given and the accuracy of reaching the tar-

get is being measured. With this definition, Fitts’ Law falls into the first category.

They classify different studies on the Fitts’ Logarithmic model based on different

types of movements (tapping, pointing, dragging), limbs and muscles groups (foot,

head, hand, etc), experimental conditions (underwater, in flight, etc), device (joy-

stick, mouse, stylus, touchpad, etc), and participants (children, monkeys, adults of

different ages, etc). More recently, Hoffmann and Hui study the movement of dif-

ferent arm components like fingers, wrist, forearm and full-arm for reaching a target

in an industrial setting. They show for the cases that an operator can use different

arm components to reach a target, the limb with the smallest mass moment of inertia

should be used to optimally reach the target [HH10].
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2.1.5 Extensions to Fitts’ Logarithmic Model

Fitts’ Logarithmic model, which was originally developed for one-dimensional

reaching movements, has been extended to the two-dimensional movements that are

common in graphical user interfaces [MB92], [Mac95]. For general two-dimensional

targets, both the shape of the target and angle of approach must be considered. For

circular targets, the assumptions of the one-dimensional model remain largely intact

with target width W being defined by the circle’s diameter1. For rectangular targets,

Card et al. propose the status quo model defines W by the width of the target while

ignoring height. This model can result in a negative index of difficulty for near wide

targets [Mac95], [CEB78]. MacKenzie et al. proposed two models for rectangular

targets [MB92]. The smaller-of model sets W to the smaller of the target width or

height. The effective width model sets W by considering an additional parameter:

the angle between the start point and the target center. MacKenzie tested the sta-

tus quo, smaller-of, and effective width models and found that the linear correlation

of movement time to Fitts’ index of difficulty was significantly greater for both the

smaller-of and effective width models compared to the status quo model [MB92].

Gillan et al. examined how Fitts’ Logarithmic model can be applied to point-drag

movement sequences rather than simply point-click operations. They found that

Fitts’ Logarithmic model must first be applied as the user points to the left edge of

the text object and then applied separately for the dragging distance [GHA+90].

Accot et al. investigated extensions for Fitts’ Logarithmic model for trajectory-

based interactions, such as navigating through nested menus, drawing curves, or

moving in 3D worlds [AZ97]. They developed a “steering law” similar to Fitts’ Log-

arithmic model except the index of difficulty for steering a pointer through a tunnel

is defined by the inverse of the width of a tunnel integrated over the length of the

1In this work we use the diameter of circular targets for W as suggested by MacKenzie [Mac95].
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tunnel. They applied the steering law to participants using 5 input devices (tablet,

mouse, trackpoint, touchpad, and trackball), and the linear correlation of movement

time to the index of difficulty for steering exceeded 0.98 [AZ99]. Apitz et al. build a

crossing-based interface, CrossY [AGZ08]. Unlike point-and-click interfaces, crossing-

based interfaces allow participants to trigger an action by crossing a target on the

screen instead of clicking on it. Apitz et al. show that a crossing task is as fast as,

or faster than a point-and-click task on for the same index of difficulty [AGZ08].

In a related line of research, Wobbrock et al. derive a predictive model for error

rates instead of mean times [WCHM08]. Error rate models have practical applications

in designing text entry devices and video games [WCHM08].

2.1.6 Input device settings and Fitts’ Logarithmic Model

Modern mice and other pointing devices usually offer configurable parameters that

adjust the mapping between movement of the device and movement of the cursor

on the screen. The most common is mouse speed, a type of “control-display gain”

[MC91]. The control-display gain scales the distance d the mouse moves on the

table to a distance p in pixels that the cursor moves on the screen. The setting of

the gain can have a significant impact on movement time to a target. Thompson

et al. experimentally verified that lower gains are better for low amplitude or small

target movements while higher gains are better for large amplitude or large target

movements [TSB04]. This mixed result makes it difficult to select a single optimal gain

for standard computer usage. Blanch et al. introduce semantic pointing, a technique

that improves target acquisition by decoupling the visual size of a target from the

motor size of the target by dynamically adjusting the control-display gain when the

cursor moves over a target [BGB04]. The technique is effective because user movement

times are determined primarily by the motor rather than visual space.
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Another input device configuration parameter that can be adjusted on many mod-

ern personal computers is mouse acceleration. In its most basic form, mouse acceler-

ation includes two parameters, acceleration and threshold [MC91]. When the mouse

speed exceeds the threshold, the control-display gain is scaled by the acceleration pa-

rameter. Recent operating systems commonly use more complex mouse acceleration

models, e.g. multiple thresholds [Mic03]. Mouse speed is defined as the maximum

of the x or y axis displacement of the mouse per unit time. When the mouse speed

exceeds the first threshold, the operating system doubles the gain. When the speed

exceeds the second threshold value, the system quadruples the gain.

Modern input devices like tablets have inspired new research. Hoffmann and

Drury study the effect of figure width on Fitts’ model and adjust the target width W

by considering the width of the target, its proximity to another target and the width

of the finger [HD11]. They show that in the case that two keys are adjacent to each

other and the width of the finger pad is larger than the clearance between the two

key, W can be replaced by “Available W” whose value is Wavail = 2S −W − F :. In

this equation W is the target size, F is the width of the finger pad on the device and

S is the target center spacing.

2.1.7 The Square-Root Model

Several researchers have argued that the Square-Root model is superior to the

Logarithmic model [Kv̊a80], [MAK+88]. Using the experiment data for 16 partici-

pants from the original Fitts’ paper [Fit54], Meyer et al. showed that the Square-Root

model fits the original data better than the Logarithmic model [MAK+88].

Meyer et al. provided a complex derivation of the Square-Root model. They

do not provide the details of their derivation in the paper but we have presented

a detailed derivation of their model in the Appendix section A. The derivation as-
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sumes that motion can be partitioned into two submovements, a primary ballistic

submovement and a secondary corrective submovement, with near-zero velocity at

the transition. The derivation is an approximation based on several strong assump-

tions: 1) two submovements with a stop between them, 2) submovement endpoints

have Gaussian distributions around the center point of the target, and 3) the stan-

dard deviation of each Gaussian is linearly related to the average velocity during that

submovement, and 4) there are strong numerical bounds on values of A and W for

which the approximation holds.

They derive the time T to reach the target as the sum of the average time for the

primary submovement T1 and for the corrective submovement T2. They estimate T

by minimizing its derivative with respect to the submovements and show that when

A/W > 4/z
√

2π the value of T can be approximated by

T = a+ b

√
A

W
. (2.5)

where z is the z-score such that 95% of the area under a standard Gaussian distribu-

tion N(0, 1) falls inside (−z, z).

In addition to its complexity vis a vis Occam’s Razor, there are other drawbacks

to this derivation [RG12]. As Meyer et al. note, if the participant reaches the target

in a single movement, the derivation collapses to a linear model which fits the data

very poorly. The approximation requires numerical bounds on values of A and W .

Furthermore, Guiard et al. note that for a fixed positive value of A/W Meyer’s model

approaches 1 as the number of submovements n approaches infinity [GBMBL01],

[RG12]. Meyer et al. evaluated their model with one-dimensional movements using

wrist rotation of a dial that can be rotated to different angular targets. In their

experiments, 4 participants are presented with 12 target conditions with A/W values

ranging from 2.49 to 15.57. This range of A/W does not violate the assumption made
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for their derivation. However, our experiments presented in Sec. 2.3 suggest that the

Square-Root model does not require this assumption and holds even in the range 1.25

to 25.27.

2.2 A Succinct Derivation of the Square-Root

Model

In this section we provide a succinct derivation for the Square-Root model2 that

assumes only that acceleration is (1) piecewise constant as predicted by optimal con-

trol theory, and (2) proportional to target width: wider targets are perceived by

participants as “easier” to reach and hence humans apply larger accelerations as they

have a larger margin for error. These are the only two assumptions required.

In control theory, it is well known that the optimal time to reach a target is

obtained by “bang-bang” control, where maximal positive acceleration is maintained

for the first half of the trajectory and then switched to maximal negative acceleration

for the second half [MS82], [JF03a].

To reach a target at distance A, the halfway point (the point reached at the

switching time) is defined as xmid = A/2. Acceleration as a function of time for

bang-bang control is shown in Figure 2.3(a), where the switching time is s = T/2.

As shown in Figure 2.3, Acceleration has only two values: full forward or full

reverse, hence the term “bang-bang”. Velocity is initially zero and then ramps up

linearly during the first phase and ramps down during the second. Velocity is thus

ẋ(t) = ẍt during the acceleration phase (t ≤ s) and ẋ(t) = ẍs − ẍ(t − s) during the

deceleration phase (t > s), where ẍ is the constant magnitude of acceleration.

2This derivation is originally by Goldberg and Alterovitz. A journal publication on this derivation
along with some of the results that are presented in this thesis is in preparation by Goldberg,
Alterovitz and Faridani.
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We can integrate this linear velocity with respect to time to get a quadratic

function for position x(t). At the switching time s, the position by integration will be

x(s) = 1
2
ẍs2. By symmetry, position after time T = 2s will be x(T ) = ẍs2 = 1

4
ẍT 2.

For cursor motion, we set the total distance traveled during movement time T as the

amplitude x(T ) = A. Hence, A = 1
4
ẍT 2 which implies

T = 2

√
A

ẍ
. (2.6)

Now, from the second assumption, acceleration magnitude is proportional to the

width of the target: ẍ = kW where k is a constant scalar and W is the target width.

Substituting into equation 2.6, we get

T = 2

√
A

kW
.

We now add an initial reaction time a and let b = 2/
√
k. The total movement

time is then:

T = a+ b

√
A

W
. (2.7)

This derivation is intuitive, exact, makes fewer assumptions, and requires far fewer

steps than the two-submovement derivation presented in Meyer et al. [MAK+88].

2.2.1 Asymmetric Acceleration Model

The above derivation does not require a symmetric motion profile. In 1987, C. L.

MacKenzie showed empirically that velocity profiles for reaching movements during

Fitts’ task are often asymmetric [MMD+87a]. We now present a modified deriva-

tion based on an asymmetric velocity profile. Let s be the switching time between

the acceleration phase and deceleration phase. The peak velocity will occur at the
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switching time. To complete the reaching movement of amplitude A with ẋ(T ) = 0,

the magnitude of constant acceleration ẍa before time s may be different from the

constant deceleration ẍd after s.

MacKenzie showed that normalized time to peak velocity s/T increases roughly

linearly as target width W increases and does not depend on amplitude A

[MMD+87a]. We approximate the normalized time to peak velocity as linearly pro-

portional to W :

s

T
= kW

where k is a scalar constant. We also assume that initial acceleration ẍa for an

individual is a fixed maximum acceleration regardless of the task and the deceleration

ẍd is set so velocity is 0 at time T . The maximum initial acceleration condition

implies |ẍa| ≥ |ẍd|, which is true according to empirical observations in MacKenzie’s

results [MMD+87a].

To obtain a relationship between T , A, and W , we first solve for the peak velocity

ẋmax = ẍas. The switching time constraint s/T = kW implies ẋmax = ẍakWT .

Integrating the asymmetric velocity profile in Figure 3.2(a) with respect to time, we

get position x(t), shown in Figure 3.2(b).

At time T , position as a function of ẋmax is

x(T ) =
1

2
ẋmaxs+

1

2
ẋmax(T − s) =

1

2
ẋmaxT. (2.8)

Setting x(T ) = A and substituting ẋmax into equation 3.4 yields:

A =
1

2
ẍakWT 2.

Hence,

T =

√
2

ẍak

A

W
.

Letting b =
√

2
ẍak

and adding a fixed initial reaction time a common to all trials for
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a given participant, we get

T = a+ b

√
A

W
. (2.9)

Equation 3.5 is identical to equation 2.7 except for the definition of the constant term

b. Both binary acceleration models were derived based on kinematic assumptions.

The former model assumes switching time is fixed relative to T and acceleration is

proportional to W while the latter model assumes switching time is proportional to

W and initial acceleration is a fixed constant.

2.3 Experiments

To compare the Square-Root and Logarithmic models we performed two extensive

experiments with homogeneous and heterogeneous targets that appear in sequence on

a plane. We created a Java applet with graphical display of targets and recording

of completion times. The first experiment is a controlled laboratory study based on

timing data for 46 participants performing 49 motions each. The second experiment

is an uncontrolled study based on timing data for 60,000 motions measured on our

Internet site (from an unspecified variety of participants, mouse types, and settings).

We compute unique model parameters for each participant from trajectory data col-

lected by the applet. And the goodness of fit is then measured by calculating the

RMS error between the actual timing data and the expected timing data from the

trained model. For both experiments we compute RMS error for each model and per-

form two-sided paired t-tests on the within subject signed differences in RMS errors

for each condition.

Uncontrolled (also known as “in the wild”) experiments on the web do not pro-

vide the consistency of controlled in-lab experiments but can collect data from large

numbers of diverse human participants and are gaining acceptance, especially when
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confirmed by controlled experiments [BJJ+10], [BRMA12]. In their survey, Andreasen

et al [ANSS07] systematically compare controlled and uncontrolled (web-based) us-

ability studies and find that synchronous studies (with a live remote human monitor)

are more reliable than asynchronous studies (akin to our uncontrolled experiments)

but that both “enable collection of use data from a large number of participantsand

it would be interesting to perform comparative studies of remote usability testing

methods”. Kittur et al [KCS08] consider how a system such as Mechanical Turk can

be used for user studies and find that the diversity and unknown nature of the user

base can be “both a benefit and a drawback.” Their results suggest that careful de-

sign of the tests to avoid gaming can yield results that are comparable with controlled

studies. Both papers acknowledge the inherent tradeoff between quantity and quality

of data.

2.3.1 Experiment Conditions

The Java applet asks each participant to finish two experiments, defined below,

which vary the shape and size of a target region drawn on the screen. Each experiment

consists of a sequence of trials. In each trial, the user is required to move the cursor

to a target region (a green rectangle or circle that appears in the applet window)

and click. If the user clicks outside the target, the click is ignored and the trial

continues. For each trial, the applet records a single measurement: the time from the

appearance of the trial on the screen until the click inside the target region measured

in milliseconds (ms).

The two experiments performed were:

1. Homogeneous Cursor Motion (Fixed Rectangles): The user repeatedly clicks

back and forth between two vertical rectangles of fixed width and amplitude,

as shown in Figure 2.2(a). After 11 repetitions, the width and amplitude are
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changed. A trial is defined by the task of moving the mouse to the rectangu-

lar target and clicking on it. Movement time is the time between successful

clicks. Since the purpose of this experiment was to measure movement times

for repetitive motions, we discarded the first 3 movement times out each set of

11 repetitions as “warm-up” movements. This experiment includes 24 recorded

trials.

2. Heterogeneous Cursor Motion (Variable Circles): The user clicks on target cir-

cles of varying diameter and location, as shown in Figure 2.2(b). A trial begins

when the user clicks on a small “home” circle in the center of the window and

ends when the user successfully clicks inside the target circle. After each click

on a target circle, the user must return the mouse back to the “home” circle and

click on it before starting the next trial. Movement time is the time between

clicking on the “home” circle and successfully clicking on the target circle. The

target width (circle diameter) and amplitude (distance from target center to

home circle center) are varied for every trial. The experiment includes 25 trials.

The distance/amplitude and size/width of the targets for each experiment are

shown in Table 2.1. Lengths are measured in units of pixels, so the distance and

size of a particular target may appear different on computer systems with different

display sizes and resolutions. The order of the trials for each experiment was randomly

selected, although the same order was used for each participant.

For compatibility we implemented our applet using Java. It is available online at

http://www.tele-actor.net/fitts/. To allow precise measurement of movement times

without lag from Internet communications, movement times are measured locally on

the participant’s computer and sent to our central server after completion of the trials.
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2.3.2 Controlled and Uncontrolled User Studies

46 participants responded to ads posted on campus and on Facebook and par-

ticipated in the controlled study. Upon successfully completing the experiment each

participant was given a gift certificate from Amazon.com. All the user experiments

were conducted after the human subject certificate was granted (Removed for blind

review) We had 17 female (37%) and 29 male (63%) participants in the study. Out

of the 46 participants, 4 were left-handed, but still used their right hand to oper-

ate the pointing device. Although all of the left-handed participants were given the

chance to customize their environment, none of them changed their mouse settings

to left-handed; prior studies have shown that this does not disadvantage left-handed

users [HCY97]. The average age for our participants was 24.7 (variance = 23.8). The

distribution of the ages for participants is shown in Figure 2.5. Our participants play

video games for an average of 1.5 hours per week (the population has a high vari-

ance of 10.01 hours, suggesting that the majority do not play video games during the

week).

Each participant required approximately 15 minutes to complete the Fixed Rect-

angles experiments. Each participant started with the rectangular object condition

and after finishing the first condition is allowed to take a break. Then the participant

is presented with the applet for the Variable Circles condition. Applets automatically

load 10 trials of each condition, so we collect 250 individual mouse trajectories (25 tri-

als with 10 repetitions) for the Variable Circles condition and 240 mouse trajectories

for the Fixed Rectangles conditions. To prevent fatigue, participants were allowed

to rest between repetitions. The controlled experiments were performed in front of

lab assistants. Lab assistants were instructed to observe participants and redo the

experiment if an error happened or the user was not focused.

In addition to the controlled lab experiment we conducted a web-based experiment
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and collected experimental data online. For Human Subjects’ purposes, participants

were required to complete an online consent form before starting the first applet. A

user entry was created in the server database each time a participant completed the

consent form. If one participant runs the applet multiple times, each trial appears as

a distinct user.

Web-based studies enable comparisons of large samples in naturalistic settings

with greater differing ecological validity conditions than found in a laboratory. How-

ever, there are substantial methodological disadvantages with uncontrolled (web-

based) studies. We cannot obtain detailed data about the users, some users may

perform the experiment multiple times, and we have no control over the user environ-

ment nor the input and display devices. But for comparing models of reaching tasks

that are intended to generalize over a large number of conditions and devices, the

latter may be acceptable uncontrolled web-based experiments hold promise. Further-

more, a major advantage of web-based experiments is in the number of human par-

ticipants that can be compared and permit a large number of participants. Through

the web-based applet were able to collect data from well over a thousand human

participants.

As with all experiments with human participants, care must be taken to ensure

the integrity of the data. We only consider users who completed all trials for a

given experiment. We also verify for each user that no movement time of any trial is

unrealistically small (below minimum simple reaction time). However, the movement

times of several trials were very large, possibly because the user did not understand

the instructions or was distracted from the applet. We consider a movement time

an outlier if it is greater than 3 standard deviations from the mean of all users for

the given trial. After removing users with outlier movement times, the number of

users was 1,640 for the Homogenous cursor motion (Fixed Rectangles) experiment,
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and 1,561 for the Variable Circles experiment. Our final data set consisted of over

30,000 trajectory measurements for each experiment.

2.3.3 Experimental Results

Controlled User Study Results

As summarized in Table 2.2, we compare the models by computing the Root-

Mean-Square (RMS) error between each user’s movement times and the predicted

movement times using Logarithmic Fitts Model (LOG) and the Square-Root model

(SQR) with user-specific parameters. As mentioned in Sec. 2.3 model parameters

like a and b are fitted and calculated for each individual participant especially since

each participant may use a different pointing device. The RMS error is used to

compare models as a measure of the goodness of fit. For further analysis and results

of the comparisons between the SQR model, Plamondon’s Power Model (2.4) and

MacKenzie’s Model (2.3) please see the appendix section. When Logarithmic and

Square-Root models are compared, for 64.5% of the users the Square-Root model had

a lower RMS error while the RMS error for the Logarithmic model was only the lowest

for 35.5% of the users. A two-sided paired t-tests is performed on the difference in

means of signed differences of RMS errors between the two models. We found that the

difference between Logarithmic and Square-Root models was statistically significant

for the Variable Circles (p = 2.15 × 10−13). In all of the experiments because of the

large number of experimental data a conservative significance threshold of p = 0.005

is used for the experimental results. Results of these comparisons are presented in

Table 2.2.
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Uncontrolled (Web-Based) Study

We compared the RMS errors for Logarithmic model with the RMS errors for

the Square-Root model using a two-sided paired t-test with a significance level of

p = 0.005. The difference between the two models was not statistically significant

for Fixed Rectangles (p = 0.11) but was statistically significant for the Variable

Circles condition (p = 4.74× 10−46). This agrees with the results from the controlled

experiment.

2.3.4 Discussion

In the appendices B and for the heterogeneous Variable Circles condition we first

compare Plamondon’s Power model (PWR) with the Logarithmic model, in this case

the Power model better fits the data for 64.85 percent of the users and the Logarithmic

model performed better in 35.15% of the cases. We then compared all three models

together. When Power, Square-Root and Logarithmic models are compared together,

in only 5.76 percent of the cases the Power model outperforms the other two, and the

Square-Root model is more accurate in 61.82 percent of the cases. On the other hand,

the Logarithmic model only drops from 35.15% of the cases in the first comparison

(comparison between Power model and Logarithmic model) to only 32.42% of the

cases when all three models are compared. And when the Square-Root model is

compared only with the Logarithmic model, Logarithmic model better fit the data

in 35.45% of the cases and the Square-Root model fit 64.55% of the cases. This

demonstrates that while the Square-Root model outperforms both models, there are

movement cases for which the Logarithmic model constantly outperforms the other

two. In other words, the Square-Root model fits better for the movements that the

Power model has outperformed the Logarithmic model than in the cases that the

Logarithmic model has outperformed the Power model.
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In the heterogeneous Variable Circles experiments, the user must perceive and

locate each target and plan a new motion. Unlike the Logarithmic model which

models the information capacity of the reaching movement, the Square-Root model

separates simple reaction and motion planning time (the a parameter) from the time

of the actual reaching movement (b
√
A/W ) as described in its derivation above.

We believe this separation gives the Square-Root model an accurate advantage in

modeling reaching movements that require both cognitive and physical movement

components.

The empirically fitted values for parameter a in the Square-Root model are con-

sistent with its meaning in the kinematics derivation. Mean simple reaction time for

humans, which is shorter than mean recognition and choice reaction times, is gener-

ally 150-220ms for a visual stimulus, depending on the strength of stimulus, age of

the participant, state of attention, and other physical and mental factors [Wel80]. An

additional unknown time must be added to the simple reaction time for motion plan-

ning. Expectation may cause the planning required by the brain to be different for

differ between repetitive and novel reaching movements; pre-motor cortex potentials

begin up to 800ms prior to movement [DSK69]. The mean total reaction times a for

the Square-Root model for the uncontrolled study, where a varies from 247.5ms to

461.2ms, exceed simple reaction time and provide support for the physical kinemat-

ics derivation of the Square-Root formulation. It is not surprising that, on average,

movement time should be higher for heterogeneous Variable Circles cursor motions

because of the increased perception and planning requirements of a changing target.

Under the single channel theory of stimulus response, a shorter perceptual processing

step or response processing step will lead to a faster total reaction time [WH00]. Such

a difference was evident in the experimental results: the average empirically fitted

value for a in the Square-Root model was lower for the Fixed Rectangles condition

(247.5ms) than the Variable Circles condition (360.0ms).
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We compare the models by computing the root-mean-square (RMS) error be-

tween each user’s movement times and the predicted movement times using Fitts’

Logarithmic Model, the Power Model, and the Square-Root Model with user-specific

parameters for each experiment. Experiment results comparing Fitts’ Logarithmic

Model and the Square-Root Model are shown in Figure 2.6.

We found that the Square-Root Model performs significantly better than the

Power Model for homogeneous cursor motions (p < 10−60) and heterogeneous cursor

motions (p < 10−50) in both experiments.

We also explored the relationship between a user’s average speed and the model

that best fits the user’s data for heterogeneous motions. We evaluated a user’s speed in

an experiment as the the average movement time across all trials in that experiment.

For the slowest 10% of users in the variable circle experiment, 46% were best fit by the

Square-Root model, 46% were best fit by Fitts’ Logarithmic model, and 8% were best

fit by the Power model. For the fastest 10% of users in the variable circle experiment,

60% were best fit by the Square-Root model, 34% were best fit by Fitts’ Logarithmic

model, and 6% were best fit by the Power model.

2.4 Conclusion

We considered a Square-Root alternative to Fitts’ classic model for human reach-

ing movements. We provide a succinct new derivation and perform two user studies to

compare the models. In a controlled study with 46 participants using identical mouse

hardware, we found that the Square-Root model was statistically equivalent to Fitts’

model for motions between fixed-width rectangles. We found that the Square-Root

model is significantly better (p = 2.15 × 10−13) for movements between circles of

varying size and position (more relevant for screen interfaces). In an uncontrolled
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web-based remote user study with 1,561 anonymous (and possibly duplicate) partic-

ipants using a variety of mouse types and settings, results were consistent and much

more statistically significant (p = 4.74×10−46 for movements between circles of vary-

ing size and position). In the uncontrolled experiment we found that Logarithmic and

the Square-Root models perform roughly equally well for the slowest 10% of users

performing Variable Circles condition, but the latter significantly outperformed the

former for the fastest 10% of users. This suggests that the Square-Root model is

better for more skilled users. To our knowledge, our uncontrolled web-based study

considers more trials than any previous reaching movement study. Web-based ex-

periments have many drawbacks: we cannot record the input device, control-display

gains, and mouse acceleration settings for each participant. Also, the participant pop-

ulation is self-selected. However, the web-based study enabled us to obtain movement

time measurements in a variety of ecological conditions. Together, the two studies

provide strong evidence in favor of the Square-Root model.
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Figure 2.3. Acceleration vs. Time (a), Velocity vs. Time (b), and Position vs.
Time (c) under symmetric optimal control. The “bang-bang” controller maintains
the maximal positive acceleration in the first half of the motion and then switches
to the maximal negative acceleration until the target is reached (a). The maximal
velocity is reached in the middle of the path (b).
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Figure 2.4. Velocity vs. Time (a) and Position vs. Time (b) for the asymmetric
acceleration model. Similar to MacKenzie we assume that the velocity profile is
asymmetric and the peak velocity occurs at a switching time s that is not necessarily
equal to T/2 (a) [MMD+87a].

Figure 2.5. Age distribution for participants for the controlled study
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Trial
Fixed

Rectangles
Variable
Circles

A W A W

1 370 50 67 20
2 370 50 184 38
3 370 50 280 14
4 370 50 230 29
5 370 50 144 55
6 370 50 249 29
7 370 50 255 14
8 370 50 96 50
9 240 10 225 19
10 240 10 263 12
11 240 10 259 25
12 240 10 229 20
13 240 10 215 31
14 240 10 198 83
15 240 10 301 16
16 240 10 194 66
17 180 70 260 12
18 180 70 296 14
19 180 70 180 44
20 180 70 278 11
21 180 70 283 37
22 180 70 40 32
23 180 70 233 10
24 180 70 191 50
25 - - 179 18

Table 2.1. Target distance/amplitude (A) and size/width (W ), in display pixels, for
the 24 recorded Fixed Rectangles (Fixed Rectangles) trials and 25 Variable Circles
trials.

Controlled Experiment Uncontrolled Experiment
Condition SQR vs. LOG SQR vs. PWR SQR vs. LOG SQR vs. PWR
Fixed Rectangles 8.93× 10−3 1.90× 10−3 1.13× 10−1 3.03× 10−58

Variable Circles 2.15× 10−13 1.23× 10−13 4.74× 10−46 2.10× 10−64

Table 2.2. Statistical hypothesis testing results for Fixed Rectangles and Variable
Circles conditions in controlled and uncontrolled experiments.
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Figure 2.6. Comparison of the Fitts’ Logarithmic and Square-Root models for the
uncontrolled experiments. For each experiment, the bar for each model indicates
the percent of users for whom that model best fit the data. For each user in each
experiment, we determined the model that best fit the measured movement times
by selecting the model that minimized RMS error. A follow up two-sided t-test is
performed on the RMS error values for each pair of models. We found that for
the Variable Circles case the difference in the value of RMS errors was statistically
significant (p = 4.74 × 10−46) while this difference was not statistically significant
when we compared Square-Root and Logarithmic models in the he Fixed Rectangles
condition (p = 0.11). Because of relatively large number of participants a conservative
significance level of p = 0.005 is used in these comparisons.
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Chapter 3

Unimodality of Human Motor

Performance in Heterogeneous

Cursor Movements Between

Circular Objects

In this chapter we report our recent findings on properties of human motor perfor-

mance. We study the unimodal behavior of the performance of human motor in the

case of heterogeneous cursor movements between circular objects. In the heteroge-

nous cursor motions targets vary in distance and width for each trial. We derive a

square-root Fitts’ law model by using the kinematics and control theories. A third

parameter is introduced into the model and the unimodal behavior of performance

for the third parameter is shown. This unimodal property enables us to find the

optimal performance by calibrating the square-root Fitts’ law equation for this new

parameter. We compared the performance of the calibrated square-root model with

the original logarithmic model and the Plamondon’s power law model on human sub-
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jects who participated in our study. The root-mean-square (RMS) error between each

user’s movement times and the predicted movement times are determined for these

three cases. The calibrated square-root model outperforms the logarithmic law in

69% of the cases. We also observe that the human motor model transforms from the

logarithmic Fitts’ law for slower participants to a square-root Fitts’ for faster partic-

ipants. Finally we suggest that this behavior allows us to design adaptive games in

which games changes their predicting Fitt’s model as the gamer gains skills (Fig 3.1).

Figure 3.1. New developments in multi-touch mobile devices lead to more research
on the performance of human motor on circular objects

3.1 Introduction

The starting point of our exposition in this report is the Square-root Fitts’ law

shown in equation (3.2) first introduced by Meyer et al. [MAK+88] in 1988. They

start with the observation reported by Kv̊alseth [Kv̊a80] that a power function with

an exponent of about 1/2 better predicts the mean movement time between objects

than the logarithmic Fitts’ law. Meyer et al. [MAK+88] devise equation (3.2) using an

optimal dual-submovement model. They also report that the Square-root model (3.2)

works better than the logarithmic model (3.1) on Fitts’ own data provided in [PM54].
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In their model, Meyer et al [MAK+88], split each movement into two submovements:

an initial ballistic submovement and an optimal corrective submovement.

T = a+ b log2

(
2A

W

)
(3.1)

T = a+ b

√
A

W
(3.2)

In the previous chapter we derived equation (3.2) by considering that the optimal

time to reach a target is attained when the human motor behaves similar to a “bang-

bang” controller. In a bang-bang controller the maximal positive acceleration is

maintained constant through the first half of the movement and then it switches to

maximal negative acceleration [JF03b].

3.2 The Square-Root Model

The three-parameter model presented in this chapter is based on the two-

parameter work presented in the previous chapter. Here we assume that the optimal

controller hypothesis presented in last chapter holds but the acceleration in human

motor is piecewise constant and proportional to both target width W and a power

function of the distance distance Aβ where the exponent β is not 1 (otherwise the

term, A, will be canceled out from the square-root model). Therefore the acceleration

ẍ:

ẍ = kWAβ

In other words wider targets are perceived to be easier to reach thus correspond

to higher accelerations. Additionally farther objects can be reached by higher ac-
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celeration while we assume that higher accelerations for closer objects will result in

less accuracy in reaching the final target. We later show that the performance of

this model as a function of β is unimodal and quasi concave. The concavity of this

function let’s us calibrate the model for the third parameter by using a 2D optimiza-

tion method and finding the β for the maximum performance. In this model other

parameters, a and b have a physical meaning: a is the initial duration for reaction

and planning, and b is related to the maximum attainable acceleration.

3.2.1 Symmetric Acceleration Model

If we consider that ẍ = kWAβ, and assume that the controller switches from ẍmax

to −ẍmax at T = 1/2 then by following the same procedure as the one presented in

the previouse chapter and substituting the equation for acceleration into

T = 2

√
A

ẍ

We will get

T = 2

√
A1−β

kW

We substitute γ = 1− β and b = 2/
√
k and we will have:

T = a+ b

√
Aγ

W
(3.3)

3.2.2 Optimal Controller and Asymmetric Velocity Profile

In 1987, C. L. MacKenzie empirically showed that the velocity profiles of each

movement from the initial starting point to the target is asymmetric [MMD+87b].

This results in a modification to our optimal controller hypothesis. Here we assume

that switching from the highest positive acceleration to the most negative acceleration

occurs at time s, not necessarily equal to T/2. In other words the velocity profile of
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Figure 3.2. Velocity vs. Time for the asymmetric acceleration model.

the movement will be similar to the graph shown in Figure 3.2. The tail in which

T > s is where the corrections occur. In this model the maximum attainable positive

acceleration before switching time, s, is not necessarily equal to the most negative

acceleration right after T ≥ s.

We also assume that the user stops at the starting point and at the target, therefore

ẋ(0) = 0 and ẋ(T ) = 0. Furthermore, ẍa = ẍmax and ẍd = ẍmin (a and d stand

for acceleration and deceleration phases of the movement, according to empirical

observations of MacKenzie [MMD+87b] we have |ẍa| ≥ |ẍd|). Similar to the derivation

in the first chapter we now assume that the normalized time for the maximum velocity

is linearly proportional to

s

T
= kWAβ

We can now integrate the velocity function presented in Figure 3.2 in order to

find the position x. We assume that ẍd is such that the velocity at time T is zero.

Also ẋmax = ẍas. By substituting s
T

= kWAβ in the previous equation we will have

ẋmax = ẍakWAβT . The position as a function of ẋmax is found by integrating the

velocity function in Figure 3.2 over time T .

x(T ) =
1

2
ẋmaxs+

1

2
ẋmax(T − s) =

1

2
ẋmaxT. (3.4)
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From the assumptions x(T ) = A and by substituting ẋmax into equation 3.4

D =
1

2
ẍakWAβT 2.

Which yields to

T =

√
2

ẍak

A1−β

W
.

Denote b =
√

2
ẍak

, γ = 1− β and by adding a reaction and planing time a we have:

T = a+ b

√
Aγ

W
(3.5)

Equation 3.5 is identical to equation 3.3 that was derived by using the assumption

that s = 1/2T .

3.3 Experiment and The Dataset

We developed two graphical Java applets. These two applets are available at

http://tele-actor.net/fitts/. Figure 3.3 shows the experiment for the “Variable circle

heterogenous cursor motion” where the participant first sees the blue “home” circle

in the center; and no green circle. When the participant clicks on the home circle

a new green “target” circle with a different diameter and distance appears on the

screen. The user must click on the target circle to make it disappear again and then

click on the home circle before starting the next trial. The experiment includes 25

trials each of which with a green target with a different distance and size. We use

outlier detection techniques in order to make sure that the collected data is reliable

for data analysis [RL03].

Experimental data was collected from online users from 2004 to April 2005. Total

of 1897 participants provided timing information.
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Figure 3.3. The graphical applet for heterogeneous cursor motion for circular objects.
Green targets appear and disappear one after another. In this figure 20 consecutive
experiments are superimposed on the same diagram.

3.4 Unimodality of Performance

We compared three different Fitts’ models. The original Fitts’ law [PM54], Plam-

ondon’s power law [Pla92b], and our calibrated square-root law. For all of the models

a linear regression is used to find parameters a and b. The performance of models were

compared by computing the root-mean-square (RMS) error between predicted and

actual movement times. Figure 3.4 shows that the maximum performance is reached

when we have γ = 2/3 and the original square root model becomes (T = a+b
√

A2/3

W
).

The horizontal axis is the value of γ in the square-root formulation and the vertical

axis shows the number of cases that our model performed better that the other two

in terms of estimating the mean total time. By calibrating and modifying the value of

γ from 1 to .64 we can increase the number of successful online experiments to 69%

in the heterogeneous cursor movement case. As shown in Figure 3.4, performance as

a function of the value of γ is quasi concave thus we are able to implement a line

search in order to find the value of γ that maximizes the performance of the model
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compared to the other models. This result shows that unlike former studies (reported

in [MMD+87b]), we observe a loose nonlinear correlation between the normalize peak

velocity time (s/T ) and the distance (A) and in our case (heterogeneous repetitive

movements between circular targets) the following correlation holds, s
T

= kWA1/3,

which means that the normalize peak velocity time (s/T ) is correlated with A but

with a small exponent of 1/3.

Figure 3.4. Unimodality of the performance as a function of γ helps us find the
maximum value for γ with any simple nonlinear optimization method (e.q: steepest
decent)

3.5 Discussion

The average speed of the people in this experiment was 861 with the Standard

Deviation of 135.5. Figure 3.5 shows a histogram of the average speed for the users.
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In order to find out in which cases the Square-root model provides a better solution,

we analyzed the results based on the average speed and the device used (mouse, track

pad, trackball, track point). In our experiment 10 percent of the slowest people (156

users with average speed of 1050 to 1414 milliseconds) have been analyzed. In this

case in 72 cases Logarithmic Fitts’ Law provided the best approximation, similarly

in 72 other cases our Square-root model outperformed the other two and the Power

Law was successful in outperforming the other two in only 12 cases). When fastest

10 percent of the users were considered (157 users with an average speed between 507

to 707), our Square-root model was successful in 60 percent of the cases (94 cases),

and the Logarithmic model was successful in 54 cases, and in 9 cases the Power Law

outperformed the other two. Additionally, we analyzed 64 cases that have a large

RMS value in deferent models (RMS>300) in these cases in 46 cases the Square-root

model provided a better approximation, Logarithmic Law was successful in only 15

cases and the Power Law did not outperform those two in any cases. In addition to

the worst approximation we analyzed the best approximations as well (RMS<90), in

these cases (77 users), our Square-root model provided the best fitting in 46 cases

(60 percent of the cases), the original Logarithmic law was successful in 17 cases (22

percent) and the Power Law provided a better approximation in 14 percent of the

cases). From the above discussion we can conclude that faster user better follow the

optimal controller hypothesis; in other words as people’s reaction skills improve (using

video games, etc) their motor performance gets closer to the optimal bang-bang model

and moves away from the information theoretical model.
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Figure 3.5. The online applet empowered us to collect data from participants with
a wide range of average speed that covers the spectrum of different speeds from 507
milliseconds to 1.4 seconds
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Chapter 4

Conclusion and Future Work

We provided the experimental results that support the new Square-Root model

when models are compared regardless of the value of A/W . To the best of our

knowledge this is the largest experiment for evaluating a Fitts’ alternative. The three

parameter model is presented as a more accurate model to extend the fundamental

assumptions of the two-parameter model that ẍ = kW . The resulting three parameter

was then calibrated by using the empirical data and we obtained T = a+b
√

A2/3

W
. We

compared this model with the logarithmic and power variations of the Fitts’ law and

showed that this model has an smaller RMS error in about 60% of the trajectories.

In this thesis we compared models regardless of the magnitude of the index of

difficulty (A/W ). In the future we would like to compare the Logarithmic and the

Square-Root form of the Fitts’ law for different values of A/W and understand in what

cases the Square-Root generates the smallest RMS error value and in what cases it

produces the largest RMS errors. We are hoping that this analysis will shed lights

on the fundamental differences between the Logarithmic and Square-Root variants of

the Fitts’ Law.

42



Appendix A

Derivation of Meyer’s Model:

In this section we discuss the derivation presented by Meyer et. al. [MAK+88].

Details of derivation are missing from their paper and that is why a detailed derivation

is reproduced here. The terminology used in this section is similar to the one user in

Meyer’s work and we avoid redefining the terms again. We refer interested readers to

that paper for detailed definition for each term.

Meyer et al., [MAK+88] consider two submovements, a primary submovement

that takes T1 and a secondary submovement that takes T2. As a result the movement

will take T .

T = T1 + T2

They assume D1 to be the mean traveling distance for the primary submovement

then:

⇒ T1 =
D1

V1

assumption−−−−−−→
S=KV1

T1 =
KD1

S1

We replace the above equation in T = T1 + T2. Additionally Meyer et al., assume

that the primary submovement will arrive the pointer to the target therefore if we
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assume that D is the distance from the home position to the center of the target

region, we will have:

T =
KD

S1

+ T2

Now consider ∆ the expected length of the secondary corrective submovement.

If |∆| ≤ W
2

then we are already in the target region T2 = 0. If on the other hand

|∆| > W
2

then T2∆ = K∆
S2

.

Denote C2 the ration of points that fall in the target region and recall that the

z-score is defined as z = x−µ
σ

then:

ZC2 =
W/2

S2

⇒ S2 =
W

2ZC2

Which means:

P (−ZC2 ≤ Z ≤ ZC2) = C2

Also recall that the expected value of a random variable is E(x) =
∫ + inf

− inf
xp(x)dx

T2∆ =
K∆

S2

, T2 = E(T2∆

⇒ T2 =

∫ +∞

−∞

K∆

S2

p(∆)d∆

In which p(∆) is a Gaussian distribution.

⇒ T2 =

∫ +∞

−∞

K∆

S2

n(∆|0, S1)d∆

Where n is the probability-density function of a normal random variable. Mean-

ing:
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⇒ n(∆|0, S2) =
1

S1

√
2π
e
−( ∆2

2S2
1

)

T2 =

∫ −W/2
−∞

K∆

S2

n(∆|0, S1)d∆ +

∫ ∞
W/2

K∆

S2

n(∆|0, S1)d∆

We can now replace S2 with W/(2ZC2) and arrive at the following equation for T2

T2 =

∫ −W/2
−∞

2KZC2

W
n(∆|0, S1)d∆ +

∫ ∞
W/2

KZC2

S2

n(∆|0, S1)d∆

T2 =
4KZC2

W

∫ W/2

−∞
∆n(∆|0, S1)d∆

Using integration by part:

T2 =
4KZC2

W

∫ W/2

−∞
∆

1

S1

√
2π
e
−( ∆2

2S2
1

)
d∆

⇒ T2 =
4KZC2

W

[
−S1e

−∆2/(2S2
1)

√
2π

]∞
W/2

⇒ T2 =
−4KZC2

W
√

2π

[
S1e

−∆2/(2S2
1)
]∞
W/2

⇒ T2 =
−4KZC2

W
√

2π

[
0− S1e

−W
2/4

(2S2
1)

]

⇒ T2 =
−4KZC2

W
√

2π
S1e

−W
2/4

(2S2
1)

We now replace S1 with W/(2ZC1). Note that the equation is similar to the one for

ZC2
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⇒ T2 =
−4KZC2

W
√

2π
S1e

−W
24Z2

C1
(8W2)

⇒ T2 =
−4KZC2

W
√

2π
S1e

−Z
2
C1
2

⇒ T2 =
−4KZC2S1

W
√

2π
e−

Z2
C1
2

Recall T = T1 + T2 = KD
S1

+ T2

(
S1 = W

2ZC1

)

⇒ T =
2KDZC1

W
+

2KZC2

ZC1

√
2π
.e−

Z2
C1
2

We are minimizing T with respect to ZC1 by taking the derivative and equal it to

zero

∂T

∂ZC1

= 0

⇒ ZC1 =
1√

θD/W − 1

Where θ =
[√

2πeZ
2
C1/2
]
/ZC2

as D/W grows large θ →
√

2π
ZC2

Meyer et al., assume that D/W is large

⇒ T = 2K
2θ
√
D/W −

√
W/D[

θ
√
θ −W/D

]
We finally get
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T = 2K
√
D/W

[
1/
√
θ + θ/θ

]

T =

[
2K

2√
2ZC12π

]√
D/W

In which
[
2K 2√

2ZC12π

]
is B. And by adding a constant reaction time A we arrive at

the square-root model (This step is not discussed in Meyer’s paper.

⇒ T = A+B
√
D/W
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Appendix B

Comparison with Plamondon and

MacKenzie’s Models

In this section we briefly compare the experimental results from our model with

Plamondon’s Power Model (2.4) and MacKenzie’s Model (2.3).

In addition to the Logarithmic model (3.1), we compared the Square-Root model

with the Plamondon’s power model (2.4). In the controlled experiments when Square-

Root model and Power model are compared, Square-Root model had the lowest RMS

error in 63.94% of the users and the Power model performed better for only 36.06% of

the users. To determine the statistical significance (p < 0.005) of the tree models, we

performed a one way within subject ANOVA on RMS values in the three conditions

(Logarithmic, Square-Root, and Power models). When ANOVA was used on the

Fixed Rectangles condition the p-value was 7.63 × 10−7 and for Variable Circles the

p-value was 2.21× 10−16. These values suggest that the differences between the RMS

errors of these three models are statistically significant in both Fixed Rectangles

and Variable Circles conditions. As follow up tests, two-sided paired t-tests were
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performed on the difference in means of signed differences of RMS errors between the

two models. The results of follow up t-tests are summarized in Table 2.2.

We also used two-way ANOVA analysis to determine whether or not age or gender

have been the significant factors for differences between Logarithmic, Square-Root,

and Power models. A two-way ANOVA on the dataset with gender and RMS as

factors resulted in p-value of 0.45. Similarly another two-way ANOVA with RMS

and age groups as factors resulted in p-value of 0.42. These results suggest that

gender and age are not contributing to the differences between RMS errors for three

models. In the uncontrolled experiments we also found that the Square-Root model

performs significantly better than the Power model for Fixed Rectangles (p < 10−60)

and Variable Circles (p < 10−50). Figure B.2 compares the percentages of the cases

for which each one of the three models provided the lowest RMS error. Experiment

results comparing the Power Model and the Square-Root Model are provided in Figure

B.1.

We also explored the relationship between a user’s average speed and the model

that best fits the user’s data for Variable Circles. We evaluated a user’s speed in an

experiment as the average movement time across all trials in that experiment. For

the slowest 10% of users in the Variable Circles condition 46% were best fit by the

Square-Root model, 46% were best fit by Logarithmic model, and 8% were best fit

by the power model. For the fastest 10% of users in the Variable Circles, 60% were

best fit by the Square-Root, 34% were best fit by Logarithmic model, and 6% were

best fit by the power model.

To compare our Square-Root model (2.5) with MacKenzie’s Model (2.3) we used

log(A/W +1) for the index of difficulty (ID) instead of ID = log(2A/W ) that is used

in the Logarithmic Fitts’ law (3.1). In that for the Fixed Rectangles experiments,

the p-value of the two-sided paired t-tests on the signed differences in RMS error
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decreased from 8.93× 10−3 to 2.25× 10−6, and for the variable circles experiment the

p-value was increased from 2.15×10−13 to 1.34×10−5 both in favor of our Square-Root

model.
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37.07%

62.93%

0% 10% 20% 30% 40% 50% 60% 70%

Power

Square‐Root

(a) Fixed Rectangles

35.82%

64.18%

0% 10% 20% 30% 40% 50% 60% 70%

Power

Square‐Root

(b) Variable Circles

Figure B.1. Comparison of the Power and Square-Root models for the uncontrolled
experiments. The method used to determine the best fit model is similar to the one
used in Fig. 2.6. The follow up two-sided paired t-tests on the signed differences
in RMS error values revealed that the RMS errors for the Square-Root model was
significantly smaller than the ones for the Power model. The p-value for the Fixed
Rectangles experiment was smaller than 10−60 and was smaller than 10−50 for the
Variable Circles experiments.
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48.66%

48.84%
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Power

Logarithmic

Square‐Root

(a) Fixed Rectangles

8.46%

32.29%

59.26%

0% 10% 20% 30% 40% 50% 60% 70%

Power

Logarithmic

Square‐Root

(b) Variable Circles

Figure B.2. Comparison of the models using the data collected from uncontrolled
experiments. Similar to Fig B.1 and Fig 2.6 the models are compared based on
the percentage of cases that each model has the smallest RMS error values amongst
the other two. A one way within subject ANOVA on the RMS values confirmed
that the differences of RMS values among the three models is statistically significant.
The follow up t-test revealed that the difference of the RMS values is significant
when Logarithmic and Square-Root models are compared in the Variable Circles
experiment (p = 4.74× 10−46) and this difference is not statistically significant in the
Fixed Rectangles experiment p = 1.13 × 10−1. These results are consistent with the
results from our controlled experiments as shown in Table 2.2.
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