
Exploiting Memory-level Parallelism in Reconfigurable

Accelerators

Shaoyi Cheng

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-40

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-40.html

May 1, 2013

Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I would like to thank my graduate advisor, Prof. John Wawrzynek for his
support and guidance. Thanks to Prof. Krste Asanovic for his time and
feedback.

Special thanks goes to Haojun Liu and Simon Scott who were vital in
completing the implementation of the design described in the report.
Thanks to Prof. Mingjie Lin for his great insight and help in the process of
completing this project. Many thanks to my other colleagues, Greg
Gibeling, Alex Krasnov and James Martin, for interesting discussion and
feedback on this project.

Exploiting Memory-level Parallelism
in Reconfigurable Accelerators

by Shaoyi Cheng

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University of Cal-
ifornia at Berkeley, in partial satisfaction of the requirements for the degree of Master of Science,
Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor John Wawrzynek

Research Advisor

(Date)

* * * * * * *

Professor Krste Asanovic

Second Reader

(Date)

Exploiting Memory-level Parallelism
in Reconfigurable Accelerators

Copyright c© 2012

by

Shaoyi Cheng

Abstract

Exploiting Memory-level Parallelism
in Reconfigurable Accelerators

by

Shaoyi Cheng

Master of Science in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor John Wawrzynek, Advisor

As memory accesses increasingly limit the overall performance of reconfigurable accelerators, it is
important for high-level synthesis (HLS) flows to adopt a systematic way to discover and exploit
memory-level parallelism. This work develops 1) a framework where parallelism between memory
accesses can be revealed from runtime profiles of applications and provided to a high level synthesis
flow, and 2) a novel multiaccelerator/multi-cache architecture to support parallel memory accesses,
taking advantage of the high aggregated memory bandwidth found in modern FPGA devices. Our
experimental results have shown that for 10 accelerators generated from 9 benchmark applications,
circuits using our proposed memory structure achieve on average 51% improved performance over
accelerators using a traditional memory interface. We believe that our study represents a solid ad-
vance towards achieving memory-parallel embedded computing on hybrid CPU+FPGA platforms.

Professor John Wawrzynek
Project Advisor

1

Contents

Contents i

List of Figures iii

List of Tables iv

Acknowledgements v

1 Introduction 1

1.1 Project Overview . 2

1.2 Related Work . 2

2 Motivations 3

2.1 Accelerators and Memory on FPGAs . 3

2.2 Motivating Example . 4

3 Analysis Framework 7

3.1 Profiling infrastructure and Code Selection for Acceleration 7

3.2 Generation of Memory Access Partitions . 7

3.2.1 Spatial Granularity for Address Comparison 8

3.2.2 Temporal Granularity for Address Comparison 9

4 Multi-Cache Architecture 11

4.1 Application-specific Memory Access Network . 11

4.2 Handling Inter-Partition Memory Dependence . 12

4.2.1 Vulnerability Window . 13

4.2.2 Cache Coherence Scheme . 16

4.2.3 Exception Scheme for Violation Inside Vulnerability Window 16

i

5 Optimizations 19

5.1 Partition Tuning . 19

5.2 Cost-Performance Trade-offs . 20

6 Accelerator Generation 21

7 Experiment Result and Analysis 23

7.1 Accelerator Performance . 23

7.2 Resource Consumption . 25

8 Conclusion 26

Bibliography 27

References . 27

ii

List of Figures

2.1 CPU+Accelerators System with Shared Memory Interface 4

2.2 Binary Segment from JPEG Encoder. 5

2.3 Performance Implication from Independence between Memory Accesses 6

3.1 The Partitioning Process . 8

3.2 Incorrect Scheduling of Instructions Caused by Small Observation Window 10

4.1 CPU+Accelerators System with Multi-cache Architecture 12

4.2 Structure of Application-specific Memory Access Network 13

4.3 Two Scenarios for Inter-partition Dependence . 14

4.4 Vulnerability Window for Memory Operations 15

4.5 Access History Buffer . 17

6.1 Accelerator Synthesis Flow . 21

7.1 Performance Comparison between Different Implementations 24

iii

List of Tables

4.1 Actions of Caches Possessing the Requested Data 16

7.1 Performance Improvement Breakdown . 24

7.2 Resource Consumption of Accelerators. 25

iv

Acknowledgements

I would like to thank my graduate advisor, Prof. John Wawrzynek for his support and guidance.
Thanks to Prof. Krste Asanovic for his time and feedback.

Special thanks goes to Haojun Liu and Simon Scott who were vital in completing the imple-
mentation of the design described in the report. Thanks to Prof. Mingjie Lin for his great insight and
help in the process of completing this project. Many thanks to my other colleagues, Greg Gibeling,
Alex Krasnov and James Martin, for interesting discussion and feedback on this project.

v

vi

Chapter 1

Introduction

Reconfigurable devices such as FPGAs contain computing elements of extremely flexible gran-
ularities, ranging from elementary logic gates to complete arithmetic-logic units such as DSP blocks.
This characteristic of reconfigurable devices gives them huge potential in utilizing application-
specific parallelism — computation can be spatially mapped to the device, enabling much higher
operation throughput than processor-centric platforms.

Unfortunately, to fully realize the FPGA’s performance and efficiency potential, cumbersome
HDL programming and laborious manual optimizations are often required. Specifically, program-
ming FPGAs demands skills and techniques well outside the application-oriented expertise of many
developers, forcing them to step beyond their traditional programming abstractions and embrace
hardware design concepts, such as clock management, state machines, pipelining, and device-
specific memory management. The emergence of high level synthesis flows can potentially alleviate
this difficulty and make the performance benefits of FPGA computing much more attainable. In par-
ticular, the CPU+FPGA hybrid platform, when used in conjunction with the HLS tools, allows the
developers to readily offload the most compute-intensive portions of the applications to hardware,
while using the CPU for control and management purposes. As a result, the system designers can
better leverage programmable logic to optimize and differentiate their solutions.

In this context, the methodology the HLS tools use for hardware generation would have a huge
impact on final system performance. Traditionally, HLS tools have focused on the extraction of
instruction level parallelism and loop level parallelism while little effort has been invested in the
optimization of the associated memory structures. Consequently, the datapath optimization is often
restricted by the serialization of memory accesses, imposed by the conventional memory model.
Meanwhile, a single monolithic memory usage model often fails to take advantage of the large
number of block RAMs and the high memory bandwidth on the FPGA devices. In order to better
realize the potential of the FPGA platforms and push the performance of the generated accelerators
even further, the memory model used in the CPU+accelerator solutions should be reexamined.

1

1.1 Project Overview

The objective of this project is to devise a systematic approach to discover the parallelism be-
tween memory accesses, and then exploit this parallelism for performance enhancement in recon-
figurable accelerators. More specifically, our work includes:

• the infrastructure used to capture and examine the runtime traces of applications, from which
the candidates for acceleration are identified and independence between memory accesses is
established.

• a multi-cache architecture that accomodates parallel accesses to different part of the address
space, with automatic mechanisms to ensure the coherence of the system.

• a tool for generating HDL representation of accelerators for kernel discovered in the bench-
mark applications.

• the validation of our approach by comparing the performance of the accelerators with a single
memory interface versus those with the new multi-cache interface.

1.2 Related Work

It is widely understood that mapping software applications to hardware can greatly improve the
overall system performance and energy consumption. The research community has tried to facilitate
this process by creating high-level synthesis (HLS) flows, where dataflow graphs can be systemati-
cally translated to hardware structures [1], [2]. Recently, in CPU+FPGA systems, HLS has attracted
significant interest on both academic and commercial fronts [3], [4]. Many of these tools use pro-
filing information to discover kernels, whose source code is then transformed to FPGA circuits.
The Warp processor [5], on the other hand, performs translation from the binary running on the
processor, directly utilizing the dynamic profile of the applications. Our work fits into the overall
system architecture of these works, where the CPU performs control tasks while the computation
is offloaded to accelerators. However, instead of focusing on converting software to hardware, we
investigated the effect of memory-level parallelism in accelerator performance and how the benefit
can be obtained. A previous project did attempt to address memory access parallelism for reconfig-
urable accelerators [6]. Their approach was to have the user specify independent memory accesses,
such that neither complex alias analysis nor hardware support for cache coherence is needed. But
ultimately this approach restricts the range of suitable applications to ones that have easily deter-
mined and static memory access patterns—such as those found in scientific computing. We take a
much more general approach and rely solely on runtime profiling to determine the memory access
behavior and therefore potentially address a wider range of applications.

2

Chapter 2

Motivations

To better understand how our solution fits into its context, it is necessary to first examine how
the accelerators and the memory subsystem interact on reconfigurable platforms. At the same time,
by observing the behavior of application code, we can identify the potential benefit of our approach.

2.1 Accelerators and Memory on FPGAs

Pushing for broader acceptance of FPGA-based SoC designs, the FPGA vendors have provided
system design tools [7], [8] which make possible the integration of application-specific accelerators
with their microprocessor cores. As both the accelerators and the processor need to have access to
common storage, they often share the memory interface as well. The system shown in Figure 2.1
represents the architecture paradigm used in many previous works [3]–[5].

The cache interface in this system can satisfy one memory access every cycle, be it from the
accelerator or the processor. Designed to complement the execution of program on the processor,
this structure does not work well with accelerators and can potentially limit the performance achiev-
able. As accelerators parallelize compute operations aggressively, they need to be fed with data at a
much faster rate, which may exceed the capability of the shown interface. At the same time, a single
cache interface fails to take advantage of the fact that multiple accesses can be independently fired
off to the memory subsystem if they target different parts of the address space. This is a fact which
the HLS tools can make good use of to generate high-performance accelerators. However, as we
deviate from the conventional model of a centralized monolithic memory, extra effort is required to
establish the independence between accesses. This may require the users to partition the memory in
the source code, as in the case of [6], [9], or the application of complicated alias analysis, which is
conservative and may not reveal all opportunities for access parallelization.

To address these challenges, this work has proposed a multi-cache architecture, and a comple-
mentary profile-based memory analysis flow to discover access parallelization. Our tool flow would
take advantage of the new system template, which puts the underutilized memory bandwidth on
FPGA devices to good use.

3

FPGA Device

FPGA Device

FPGA Device

FPGA Device

FPGA Device

H
e

a
d

in
g

FPGA Device

A
cc

1
 $

A
cc

2
 $

A
cc

3
 $

Processor Core

Accelerator 1

Accelerator 2

Accelerator 3C
ach

e

Extern
al M

em
o

ry

Processor Core

C
ach

e

Extern
al M

em
o

ry

31b7: load

31bf: load

31db: store

Processor Core

Extern
al M

em
o

ry

RW $

W $

RW
Cache

R $

Extern
al M

em
o

ry

Processor Core

Accelerator 1

Accelerator 2

Accelerator 3

Extern
al M

em
o

ry

RW
Cache

W
Cache

RW
Cache

R
Cache

Accelerator 1

W $

RW $
R $

RW $

Accelerator 2

Accelerator 3

Processor Core

Extern
al M

em
o

ry

RW $

W $

RW
Cache

R $ Accelerator 1

W $

RW $
R $

RW $

Accelerator 2

Accelerator 3

Extern
al M

em
o

ry

Application-Specific
Memory Access network

Accelerator Datapath

P1

P2

P1

P2

P3

P2

P3

W
Cache

R/W
Cache

R
Cache

microprocessor
R/W

Cache

Arbiter

Arbiter

Internal Memory Response Bus

Internal Memory Request Bus

Cache
#1

Cache
#2

Cache
#3

...

AHB AHB AHB

Access History Buffer

Request
Address

Accelerator

addr addr addr

To System Interrupt
Controller VIVW

VIVWAddress from
memory request bus

address from
accelerator

data from
cache

old data address

*AHB for R-Cache does not contain old data
– nothing is overwritten for those caches

Figure 2.1. CPU+Accelerators System with Shared Memory Interface

2.2 Motivating Example

Before delving into details of the method for finding parallelizable memory accesses and our
new architecture, we first demonstrate their potential benefit using a program segment extracted
from jpeg encoder running on an x86 machine. Figure 2.2 shows a loop that is executed thousands
of times when the program runs. It is an ideal candidate for hardware acceleration—a so-called
computation kernel. In the code segment, out of the nine memory accessing instructions, six target
constant addresses on the stack (constant offset from the base pointer ebp). They can be optimized
away and turned into wires/registers during high-level synthesis. The remaining three references at
31b7, 31bf, and 31db would be kept as actual memory references when the hardware is generated.
If we assume a single memory interface is used and maintains the ordering of memory accesses
in the original program, the store at 31db for the current iteration has to happen before the load at
31b7 for the next iteration. When the HLS tool tries to pipeline the loop iterations, this constraint
would not allow the minimal initiation interval to drop below three. On the other hand, if we can
establish that the memory locations accessed by 31b7 and 31bf are disjoint from those by 31db, the
load at 31b7 of the next iteration can be started before the store at 31db for the previous iteration
completes. The minimal initiation interval for loop iterations would no longer be constrained by
the RAW dependencies between the store and load instructions, and can potentially be reduced to
one. Of course, along with showing the independence between the memory locations accessed by
each of the three instructions, the physical implementation would also need to satisfy three memory
request simultaneously in order to achieve the rate of one iteration completion per cycle. The effect
of this memory level parallelism is shown in figure 2.3.

4

31 b7 : mov (% e s i) ,% eax ; mem l o a d

31 b9 : mov −0x140(%ebp) ,% ecx

31 bf : movswl (%ecx ,%eax ,2) ,% eax ; mem l o a d

31 c3 : mov %eax ,% edx

31 c5 : s a r $0x1f ,% edx

31 c8 : xor %edx ,% eax

31 ca : sub %edx ,% eax

31 cc : movzbl −0x144(%ebp) ,% ecx

31 d3 : s a r %cl ,% eax

31 d5 : mov −0x164(%ebp) ,% edx

31 db : mov %eax ,(% edx) ; mem s t o r e

31 dd : cmp $0x1 ,% eax

31 e0 : j n e 0 x31e8

31 e2 : mov %ebx ,−0 x154(%ebp)

31 e8 : add $0x1 ,% ebx

313b : add $0x4 ,% e s i

31 ee : a d d l $0x4 ,−0 x164(%ebp)

31 f5 : cmp %ebx ,−0 x148(%ebp)

31 fb : j g e 0 x31b7

Figure 2.2. Binary Segment from JPEG Encoder.

5

31b7: mem load
…
...

31bf: mem load
...

31db: mem store
…
...

31b7: mem load
…
...

31bf: mem load
...

31db: mem store
…
...

31b7: mem load
…
...

31bf: mem load
...

31db: mem store
…
...

No Loop Pipelining

High Level
Synthesis

31b7: mem load
…
...

31bf: mem load
...

31db: mem store
…
...31b7: mem load

…
...

31bf: mem load
...

31db: mem store
…
...31b7: mem load

…
...

31bf: mem load
...

31db: mem store
…
...

Memory access
independence

31b7: mem load
…
...

31bf: mem load
...

31db: mem store
…
...

31b7: mem load
…
...

31bf: mem load
...

31db: mem store
…
...

31b7: mem load
…
...

31bf: mem load
...

31db: mem store
…
...

Pipelined Iterations w/ Single Memory
Pipelined Iterations w/ Multiple

Independent Memories

Execution time reduction with
independent memory partitions

RAW ordering

Iteration 1

Iteration 2

Iteration 3

Figure 2.3. Performance Implication from Independence between Memory Accesses

This runtime reduction shown is of course application-dependent. The nature of the dataflow
in the accelerated kernel, the memory access pattern and the actual physical implementation of
the memory subsystem would all affect the final performance of the system. We will evaluate our
approach with a set of applications in chapter 7, after describing our tool flow and architecture.

6

Chapter 3

Analysis Framework

The analysis framework in our project performs two important tasks prior to generation of any
hardware. It first selects candidates for acceleration and then within each accelerated region, it finds
independence between memory accesses.

3.1 Profiling infrastructure and Code Selection for Acceleration

As mentioned in chapter 1, our analysis framework is entirely profile-based. We leveraged the
QEMU emulator infrastructure [10] to capture the stream of instructions executed at runtime, along
with the memory addresses accessed by them. Using different inputs, multiple instances of the same
application are executed. The profiles of all the runs are recorded and considered for our study.

To identify which sequences of basic blocks are being repeatedly executed, we devised a mecha-
nisms similar to [11]. The most frequently executed loops are then selected for acceleration, approx-
imating an optimal partitioning in terms of the ratio of performance benefit over hardware resource
consumption. The main focus of our work though, is to identify parallelism in memory references
within each of these accelerated loops.

3.2 Generation of Memory Access Partitions

As the instructions captured are accompanied by their referenced memory locations, we can
create partitions of memory instructions according to their accessed memory addresses. The purpose
of this process is to generate groups of memory accesses which can be performed in parallel or out-
of-order with each other. To satisfy this requirement, any two of the generated partitions cannot
access the same addresses, or they have to be performing only read operations, making an ordering
between them unnecessary. Within each partition, however, the RAW, WAR and WAW ordering
must be preserved. This information is used during the subsequent hardware synthesis to reschedule

7

memory accesses to achieve the best performance. In the final implementation, each partition would
be physically associated with a customized cache, described in chapter 4.

The actual process of partitioning memory accesses involves cross-checking the addresses ac-
cessed by each instruction. If two instructions do not access common elements in the memory
space, they can be separated into two partitions. As illustrated in figure 3.1, each memory accessing
instruction is initially placed in its own partition. During the program execution, if two instructions
access the same memory location, their partitions are merged. The comparison of accessed mem-
ory addresses are performed within an observation window, the sizing of which will be discussed
in 3.2.2. As more and more instructions are clustered, we would eventually converge to a stable
partitioning for all the instructions under consideration.

0x10 load 0x1000
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x1008
0x14 store 0x2000
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x2004
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008

0x10 load 0x1000
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x1008
0x14 store 0x2000
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x2004
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008

pc inst.
address

accessed pc inst.
address

accessed

0x10 load 0x1000
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x1008
0x14 store 0x2000
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x2004
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008

pc inst.
address

accessed
Sliding

observation

window

 . . .

Iteration 1

Iteration 2

Iteration 3

Partition # 1 2 3 4 5

PC 0x10 0x14 0x18 0x1c 0x1d

1 2 3 4 5

0x10
0x18
0x14

0x1c 0x1d

1 2 3 4 5

0x10
0x1c

0x18
0x14

0x1d

Initial partitioning 0x18, 0x14 both access 0x2000 0x1c, 0x10 both access 0x2004

… profile
contains
1000s of
iterations

Figure 3.1. The Partitioning Process

3.2.1 Spatial Granularity for Address Comparison

One important parameter for the paritioning process is the spatial granularity with which we
check for address clashes, called the comparison frame. It can be as large as the entire address
space, or as small as the minimal addressable unit, in our case, a byte. Too large a comparison
frame would result in lots of observed clashes and too many memory instructions would be clustered
together, removing opportunities for parallelization. In the extreme case, where we use the entire
address space as one comparison frame, there would only be one partition left at the end, making
the entire process meaningless. Looking at the other end of the spectrum, we can imagine having
two instructions writing to different bytes of the same word. They can potentially be placed into
two partitions and be subsequently free to be reordered/parallelized. However, considering the

8

associated physical implementation, partitioning at the byte level would result in extremely small
cache lines, wasted bandwidth and extra communication cost. Maximal parallelism is produced if
the comparison frame is made as small as the behavior of the individual instructions allows, but it
might not translate to best-performing accelerator implementation. Thus to get a good trade-off, we
begin by checking address clashes at the word level, and in a later stage, tune the partition sizes, as
will be described in 5.1.

3.2.2 Temporal Granularity for Address Comparison

The other factor we have to consider for the partitioning process is the size of the temporal
observation window. Accesses by two instructions to the same data, if separated by this window,
would not require them to be placed in the same partition. The largest window possible is the entire
execution of the program, or in our case, the entire profile we have recorded. However, it would
result in a partitioning that is overly conservative. Again, we would have the over-clustering issue as
when too large a comparison frame is used. On the other hand, too small a window would produce
a partitioning that can possibly result in incorrect execution. This is because the partitioning passed
to the high level synthesis tool is assumed to be valid even under rescheduling of instructions. If
the observation window is smaller than the potential relative movement of memory instructions, the
inter-partition independence (albeit a statistical one) established here would not be compatible with
the reordering during HLS. In the most extreme case, if the observation window is only one instruc-
tion, every instruction would have its own partition. Using this partitioning, the HLS tool would
reorder the memory instructions as if their referenced addresses never overlap, which apparently
would leads to WAW, RAW or WAR violations. This scenario is illustrated in figure 3.2.

The objective here is to make the window as small as possible yet ensuring the resulted par-
titioning does not cause reordering that violates the original program behavior. Since the main
optimization techniques in our high level synthesis tool are loop pipelining and intra-iteration in-
struction parallelization, it is possible to compute a worst-case relative movement of instructions
(Mwc). As long as our observation window is larger than Mwc, the HLS tool is free to use the
partitioning as the basis for reordering memory operations.

Mwc for Inner Loops: Assuming the most aggressive loop pipelining can be achieved during
accelerator generation, we would initiate one iteration per cycle. If we also observe the longest
latency of one loop iteration to be L, the maximal number of iterations in flight simultaneously,
N , would be L/1. Coupled with the most aggressive intra-iteration instruction reordering, the
worst case relative instruction movement would be approximately N ∗ I , where I is the number of
instructions per iteration.

Mwc for Outer Loops: For outer loops, pipelining of iterations is not applied during hardware
synthesis, so the window just needs to be larger than the number of instructions within one iteration,
not counting the inner loops.

With the Mwc computed for all inner and outer loops within the region for acceleration, the
largest one would be used as the size of our observation window. Currently, at this stage, we do
not perform hardware synthesis to determine the exact minimal initiation interval and the exact
maximal relative intra-iteration movement of instructions. In fact, these two numbers depends
on the result of our partitioning and indirectly on the size of our observation window. Therefore,

9

0x10 load 0x1000
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x1008
0x14 store 0x2000
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x2004
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008

0x10 load 0x1000
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x1008
0x14 store 0x2000
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x2004
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008

pc inst.
address

accessed pc inst.
address

accessed

0x10 load 0x1000
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x1008
0x14 store 0x2000
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x2004
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008

pc inst.
address

accessed
Sliding

observation

window

 . . .

Iteration 1

Iteration 2

Iteration 3

Partition # 1 2 3 4 5

PC 0x10 0x14 0x18 0x1c 0x1d

1 2 3 4 5

0x10
0x18
0x14

0x1c 0x1d

1 2 3 4 5

0x10
0x1c

0x18
0x14

0x1d

Initial partitioning 0x18, 0x14 both access 0x2000 0x1c, 0x10 both access 0x2004

… profile
contains
1000s of
iterations

0x10 load 0x1000
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x1008
0x14 store 0x2000
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x2004
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008

pc inst.
address

accessed

observation

window of

size 1

Iteration 1

Iteration 2

Iteration 3

Partition # 1 2 3 4 5

PC 0x10 0x14 0x18 0x1c 0x1d

Partitioning generated

Original Program Order

RAW ordering

After Rescheduling by HLS (Loop Pipelining)

0x10 load 0x1000
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008

0x10 load 0x1008
0x14 store 0x2000
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008

0x10 load 0x2004
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008

Iteration 1 Iteration 2 Iteration 3

Tim
e

RAW
violation

From the partitioning, the HLS tool assumes each
instruction accesses a separate part of the address
space, accelerator starts a new iteration every cycle

Figure 3.2. Incorrect Scheduling of Instructions Caused by Small Observation Window

the conservative assumption we have made so far, described above, provides the most efficient
observation strategy.

Since this partitioning process is profile-based, despite the effort we have put in to ensure its
validity, it is still possible that the behavior of the program is different when a different set of input is
supplied. To ensure correct program execution, protection mechanisms are needed in case the inde-
pendence between memory partitions is violated. The implementation details of these mechanisms
are described in section 4.2

10

Chapter 4

Multi-Cache Architecture

Our multi-cache architecture is specifically designed to improve the performance of
CPU+accelerator systems implemented on FPGA platforms. In figure 4.1, each accelerator is
a hardware version of a computationally intensive segment in the original program. The main
difference between this architecture and the conventional one (figure 2.1) lies in the application-
specific memory access network. The use of multiple caches is the key technique for exploiting
the memory-level parallelism in each application. It is also apparent that the network encompasses
multiple accelerators as well as the processor. A built-in coherence mechanism, described in
section 4.2, allows the exchange of data between all the caches.

4.1 Application-specific Memory Access Network

The application-specific memory access network is synthesized based on the partitioning of
memory accesses, as detailed in section 3. Shown in figure 4.2 is an example network with one
accelerator and the processor. Multiple cache ports are exposed to the accelerator, providing large
memory bandwidth during execution. The accelerator can reach data in multiple disjoint parts of
the address space simultaneously, alleviating the restriction imposed by the conventional memory
interface. On the other side, the caches are connected to two shared buses, one for memory requests,
the other for memory responses. The internal memory request bus provides a single point where
requests from potentially many caches are serialized. It also forwards the requests to a higher-level
cache or off-chip RAM in the case that the desired data is not found in this multi-cache network.
The internal memory response bus is used to feed the response from the external memory or sibling
caches to the requesting cache. If one or more cache misses occur in a single cycle during the
execution, the accelerator is stalled. Only when all the caches have obtained the required data,
whether from a sibling cache or external memory, the accelerator execution resumes.

Corresponding to the multiple memory partitions associated with each accelerated code seg-
ment, there are multiple caches for each accelerator connected to the network. Each of these caches
has its own associativity, line size and the index bits, all based on the observed memory access pat-
tern of the instructions in the corresponding partition. As compared to a conventional architecture

11

FPGA Device

FPGA Device

FPGA Device

FPGA Device

FPGA Device

H
e

a
d

in
g

FPGA Device

A
cc

1
 $

A
cc

2
 $

A
cc

3
 $

Processor Core

Accelerator 1

Accelerator 2

Accelerator 3C
ach

e

Extern
al M

em
o

ry

Processor Core

C
ach

e

Extern
al M

em
o

ry

31b7: load

31bf: load

31db: store

Processor Core

Extern
al M

em
o

ry

RW $

W $

RW
Cache

R $

Extern
al M

em
o

ry

Processor Core

Accelerator 1

Accelerator 2

Accelerator 3

Extern
al M

em
o

ry

RW
Cache

W
Cache

RW
Cache

R
Cache

Accelerator 1

W $

RW $
R $

RW $

Accelerator 2

Accelerator 3

Processor Core

Extern
al M

em
o

ry

RW $

W $

RW
Cache

R $ Accelerator 1

W $

RW $
R $

RW $

Accelerator 2

Accelerator 3

Extern
al M

em
o

ry

Application-Specific
Memory Access network

Accelerator Datapath

P1

P2

P1

P2

P3

P2

P3

W
Cache

R/W
Cache

R
Cache

microprocessor
R/W

Cache

Arbiter

Arbiter

Internal Memory Response Bus

Internal Memory Request Bus

Cache
#1

Cache
#2

Cache
#3

...

AHB AHB AHB

Access History Buffer

Request
Address

Accelerator

addr addr addr

To System Interrupt
Controller VIVW

VIVWAddress from
memory request bus

address from
accelerator

data from
cache

old data address

*AHB for R-Cache does not contain old data
– nothing is overwritten for those caches

Figure 4.1. CPU+Accelerators System with Multi-cache Architecture

where all the memory accesses go to the same cache, the customization in our system is easier and
more effective. The amount of interference between streams of addresses generated by memory
instructions is greatly reduced by the partitioning. Thus some very obvious access patterns can be
isolated and optimized for in-cache implementation.

Also illustrated in figure 4.2, each accelerator would have a mix of R, W and RW caches. These
three cache types reflect the nature of the instructions in each partition. More specifically, for a
partition containing either load or store instructions, its associated cache only needs to have either
a read or write port. On the other hand, a partiion containing both load and store operations, would
require a normal read/write cache. For the write-only and read-write caches, the write policy is
write-back, also for write misses, write allocate is used.

4.2 Handling Inter-Partition Memory Dependence

Using the recorded memory addresses to create memory access partitions, our approach builds
on the assumption that the captured profile of a program provides an accurate prediction for its fu-
ture behavior. When the observation data are obtained by running the program for a long time with
multiple different input datasets, we can be rather confident how the program would act when a new
set of input is given. However, unexpected events, no matter how unlikely, still need to be provi-
sioned for. The implementation of the multi-cache architecture must ensure that their occurrence
would only result in a performance degradation rather than an incorrect program outcome.

12

FPGA Device

FPGA Device

FPGA Device

FPGA Device

FPGA Device

H
e

a
d

in
g

FPGA Device

A
cc

1
 $

A
cc

2
 $

A
cc

3
 $

Processor Core

Accelerator 1

Accelerator 2

Accelerator 3C
ach

e

Extern
al M

em
o

ry

Processor Core

C
ach

e

Extern
al M

em
o

ry

31b7: load

31bf: load

31db: store

Processor Core

Extern
al M

em
o

ry

RW $

W $

RW
Cache

R $

Extern
al M

em
o

ry

Processor Core

Accelerator 1

Accelerator 2

Accelerator 3

Extern
al M

em
o

ry

RW
Cache

W
Cache

RW
Cache

R
Cache

Accelerator 1

W $

RW $
R $

RW $

Accelerator 2

Accelerator 3

Processor Core

Extern
al M

em
o

ry

RW $

W $

RW
Cache

R $ Accelerator 1

W $

RW $
R $

RW $

Accelerator 2

Accelerator 3

Extern
al M

em
o

ry

Application-Specific
Memory Access network

Accelerator Datapath

P1

P2

P1

P2

P3

P2

P3

W
Cache

R/W
Cache

R
Cache

microprocessor
R/W

Cache

Arbiter

Arbiter

Internal Memory Response Bus

Internal Memory Request Bus

Cache
#1

Cache
#2

Cache
#3

...

AHB AHB AHB

Access History Buffer

Request
Address

Accelerator

addr addr addr

To System Interrupt
Controller VIVW

VIVWAddress from
memory request bus

address from
accelerator

data from
cache

old data address

*AHB for R-Cache does not contain old data
– nothing is overwritten for those caches

Figure 4.2. Structure of Application-specific Memory Access Network

Before describing what kind of infrastructure is in place to guarantee correct program execution,
we look at two different scenarios where the memory partitions created are not actually independent
from each other. In the first, it is possible that the accesses by two different memory operators from
two partitions to a common piece of data are close temporally, such that the reordering of memory
operations in our generated accelerator would have already caused a RAW, WAR or WAW violation.
This is shown as scenario I in figure 4.3. As the store at 0x1c is rescheduled to before the load at
0x18 from the same iteration, a WAR violation occurs when they access the same memory address.
In the other scenario, the second memory operation from a different partition hit the common data
long after the first did. This conflict does not invalidate the reordering we have performed in the
accelerator generation, and in fact is not unexpected given how we limited the size of our observation
window during the partitioning process. This is scenario II in figure 4.3. The store at 0x14 accesses
the same address as the store at 0x1c from the previous iteration. However, the access happens after
the completion of the first iteration and thus no WAW violation is resulted. These two scenarios are
handled by different schemes, which will be described in section 4.2.2 and 4.2.3.

4.2.1 Vulnerability Window

To distinguish the two scenarios described, we introduce a concept called vulnerability window
for the reordering of memory partitions. It captures how far a memory access is rescheduled with
respect to its predecessors in the original program order. The size of this window, as opposed to the
observation window we discussed in section 3.2.2, is determined by the actual hardware synthesized,

13

0x10 load 0x1000
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x1008
0x14 store 0x2000
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x2004
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008

0x10 load 0x1000
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x1008
0x14 store 0x2000
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x2004
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008

pc inst.
address

accessed pc inst.
address

accessed

0x10 load 0x1000
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x1008
0x14 store 0x2000
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x2004
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008

pc inst.
address

accessed
Sliding

observation

window

 . . .

Iteration 1

Iteration 2

Iteration 3

Partition # 1 2 3 4 5

PC 0x10 0x14 0x18 0x1c 0x1d

1 2 3 4 5

0x10
0x18
0x14

0x1c 0x1d

1 2 3 4 5

0x10
0x1c

0x18
0x14

0x1d

Initial partitioning 0x18, 0x14 both access 0x2000 0x1c, 0x10 both access 0x2004

… profile
contains
1000s of
iterations

0x10 load 0x1000
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x1008
0x14 store 0x2000
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x2004
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008

pc inst.
address

accessed

observation

window of

size 1

Iteration 1

Iteration 2

Iteration 3

Partition # 1 2 3 4 5

PC 0x10 0x14 0x18 0x1c 0x1d

Partitioning generated

Original Program Order

RAW ordering

After Rescheduling by HLS (Loop Pipelining)

0x10 load 0x1000
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008

0x10 load 0x1008
0x14 store 0x2000
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008

0x10 load 0x2004
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008

Iteration 1 Iteration 2 Iteration 3

Tim
e

RAW
violation

From the partitioning, the HLS tool assumes each
instruction accesses a separate part of the address
space, accelerator starts a new iteration every cycle

0x10 load
0x14 store
0x18 load
0x1c store
0x1d store
0x10 load
0x14 store
0x18 load
0x1c store
0x1d store
0x10 load
0x14 store
0x18 load
0x1c store
0x1d store

pc inst.

Iteration 1

Iteration 2

Iteration 3

Pm: Partitioning generated

S1: Original Program Order
S2: Instruction Rescheduled and

Loop Pipelined

Iteration 1

Iteration 2

Iteration 3

Tim
e

1 2 3 4 5

0x10
0x1c

0x18
0x14

0x1d

0x10 load
0x1c store
0x1d store
0x14 store
0x18 load

0x10 load
0x1c store
0x1d store
0x14 store
0x18 load

0x10 load
0x1c store
0x1d store
0x14 store
0x18 load

HLS

A
B

C

Partition #
Vulnerability
Window Size

1

3

5

4 (A to C)

None Needed

3 (B to C)

The vulnerability window of partition 1
(containing 0x1c) covers instruction 0x14
and 0x18, which were rescheduled from
before to after 0x1c

Iteration 1

Iteration 2
0x10 load 0x2004
0x1c store 0x1000
0x1d store 0x2008
0x14 store 0x1004
0x18 load 0x2008

0x10 load 0x1008
0x1c store 0x2004
0x1d store 0x2008
0x14 store 0x1000
0x18 load 0x2000

S2: Instruction Rescheduled and

Loop Pipelined

1 2 3 4 5

0x10
0x1c

0x18
0x14

0x1d

Tim
e

0x10 load
0x14 store
0x18 load
0x1c store
0x1d store
0x10 load
0x14 store
0x18 load
0x1c store
0x1d store

pc inst.

Iteration 1

Iteration 2

Pm: Partitioning generated

S1: Original Program Order

HLS

Partition 3 and 5 accessed
the same address—

instruction reordering
resulted in WAR violation

Partition 1 and 3 accessed
the same address, but WAW

ordering still preserved

Scenario I

Scenario II

Figure 4.3. Two Scenarios for Inter-partition Dependence

which encodes the scheduling of memory operations. Therefore, the information about the worst
case instruction movement the synthesis has introduced is available. Given the original program
order S1 and the rescheduled instruction order S2, we can determine the vulnerability window for
each partition as follows.

1. in each partition Pm, we find the set of instructions Am, each of which has been rescheduled
in S2 to before its preceding memory instructions in S1.

2. for each instruction Ii in Am:

• find the set of instructions preceding it in S1. Among these instructions, pick the one
instruction Il which comes the latest in S2.

• find the minimal size of the window covering Ii and Il in S2, move to the next instruction
in Am.

3. the largest window obtained in the previous step is used as the vulnerability window for Pm

As exemplified in figure 4.4, in the final schedule S2, the instruction at pc 0x1c has been sched-
uled to precede instruction at pc 0x18 in the generated datapath, thus its vulnerability window would
be from A to C. The other instruction in partition 1, 0x10 is rescheduled to before 0x18 of the pre-
vious iteration, and it should therefore have the window covering B to C. The larger window of the
two (A to C) is chosen for the partition. In a similar fashion, the vulnerability window for partition
5 is from B to C. As execution progresses, these windows slide forward, with the statically deter-
mined size remaining constant. On the other hand, instructions in partition 3 do not have any of their
predecessors in S1 rescheduled to after them in S2, thus this partition does not have a vulnerability
window.

14

0x10 load 0x1000
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x1008
0x14 store 0x2000
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x2004
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008

0x10 load 0x1000
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x1008
0x14 store 0x2000
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x2004
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008

pc inst.
address

accessed pc inst.
address

accessed

0x10 load 0x1000
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x1008
0x14 store 0x2000
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x2004
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008

pc inst.
address

accessed
Sliding

observation

window

 . . .

Iteration 1

Iteration 2

Iteration 3

Partition # 1 2 3 4 5

PC 0x10 0x14 0x18 0x1c 0x1d

1 2 3 4 5

0x10
0x18
0x14

0x1c 0x1d

1 2 3 4 5

0x10
0x1c

0x18
0x14

0x1d

Initial partitioning 0x18, 0x14 both access 0x2000 0x1c, 0x10 both access 0x2004

… profile
contains
1000s of
iterations

0x10 load 0x1000
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x1008
0x14 store 0x2000
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008
0x10 load 0x2004
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008

pc inst.
address

accessed

observation

window of

size 1

Iteration 1

Iteration 2

Iteration 3

Partition # 1 2 3 4 5

PC 0x10 0x14 0x18 0x1c 0x1d

Partitioning generated

Original Program Order

RAW ordering

After Rescheduling by HLS (Loop Pipelining)

0x10 load 0x1000
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008

0x10 load 0x1008
0x14 store 0x2000
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008

0x10 load 0x2004
0x14 store 0x1004
0x18 load 0x2000
0x1c store 0x2004
0x1d store 0x2008

Iteration 1 Iteration 2 Iteration 3

Tim
e

RAW
violation

From the partitioning, the HLS tool assumes each
instruction accesses a separate part of the address
space, accelerator starts a new iteration every cycle

0x10 load
0x14 store
0x18 load
0x1c store
0x1d store
0x10 load
0x14 store
0x18 load
0x1c store
0x1d store
0x10 load
0x14 store
0x18 load
0x1c store
0x1d store

pc inst.

Iteration 1

Iteration 2

Iteration 3

Pm: Partitioning generated

S1: Original Program Order
S2: Instruction Rescheduled and

Loop Pipelined

Iteration 1

Iteration 2

Iteration 3

Tim
e

1 2 3 4 5

0x10
0x1c

0x18
0x14

0x1d

0x10 load
0x1c store
0x1d store
0x14 store
0x18 load

0x10 load
0x1c store
0x1d store
0x14 store
0x18 load

0x10 load
0x1c store
0x1d store
0x14 store
0x18 load

HLS

A
B

C

Partition #
Vulnerability
Window Size

1

3

5

4 (A to C)

None Needed

3 (B to C)

The vulnerability window of partition 1
(containing 0x1c) covers instruction 0x14
and 0x18, which were rescheduled from
before to after 0x1c

Figure 4.4. Vulnerability Window for Memory Operations

If a different partition’s access to the same data falls outside of this window, the reordering of
memory operations in the accelerator has not caused any errors. This scenario is called the violation
outside the vulnerability window (VOVW). It requires a cache coherence scheme to move the data
item such that the newest access would find it in its partition’s corresponding cache. On the other
hand, if the second memory access falls within the vulnerability window, the reordered memory
operations would have already resulted in a wrong execution. In the example shown in figure 4.4,
if within the same iteration, the load operation at pc 0x14 is targeting the same address as the store
at pc 0x1c, the final schedule S2 would produce a different result than the original program S1.
To correct the error resulted, we handle this violation in the vulnerability window (VIVW) with an
exception scheme. The processor would take over the execution after the violation is detected. This
is a high cost error, but should be very rare. Two instructions using memory for communication
in a short temporal distance should have already been observed, given that the generated hardware
only captures the same sequence of basic blocks executed in the original profile. The partitioning
process, which always has an observation window larger than the vulnerability window, would have
assigned the communicating instructions to the same partition. Nevertheless, we want to ensure that
should this type of error occur, we are still safe from wrong program outcome. Mechanisms for
periodic commits and restoration are built into the accelerators and the memory network, such that
the processor can start execution from checkpoints.

15

4.2.2 Cache Coherence Scheme

The cache coherence scheme required by VOVW, described in section 4.2.1, is built on top of
the two internal memory buses. This bus snooping protocol ensures only one valid copy of data is
in the cache network unless all the owner partitions contain only load instructions. Different caches
would behave differently when a miss is placed onto the internal memory request bus by a sibling
cache, as detailed in table 4.1.

Local Request Source Local Cache Action
Cache Type Cache Type
Read-only Read-only respond with data1,

keep the local copy valid
Read-only Write-only respond with data,

Read-Write invalidate local copy
Write-only Read-only respond with data,
Read-Write invalidate local copy
Write-only Write-only respond with data,
Read-Write Read-Write invalidate local copy

Table 4.1. Actions of Caches Possessing the Requested Data

[1] when multiple caches respond, the arbiter would choose one

With these rules, it is guaranteed that no caches can share a valid copy of data with a write-
only or read-write cache. It is possible, however, that when a cache miss is placed onto the internal
memory request bus, multiple read-only caches have the requested data and respond simultaneously.
An arbiter is implemented to control the muxing of all the responses to the internal memory response
bus, which fans out to all caches.

Although the coherence scheme takes care of VOVW, it is apparent that if the violation occurs
too often, the performance would be negatively impacted. It thus becomes necessary to employ
another process, partition tuning, described in section 5.1, to adjust the partitioning under these
circumstances.

4.2.3 Exception Scheme for Violation Inside Vulnerability Window

Detection of VIVW

The exclusive ownership of data by the caches, as imposed by the cache coherence scheme,
guarantees that any cache hit would not result in any data inconsistencies in the system. Conse-
quently, the detection of VIVW would just involve comparing the cache misses on the request bus
with each caches most recent memory accesses. Since all the cache misses are serialized on the
internal memory request bus, and their addresses are broadcasted to all the other caches, the only
addition for the detection mechanism is a local store of a few past memory locations. Physically, this
access history buffer is implemented by adding a shift register to every cache. It records the address
of each access, as well as the original value that is overwritten by each write access. Accompanying
each entry in this buffer, a comparator monitors the request bus and signals a VIVW when there is

16

a match of addresses. The structure is shown in figure 4.5. To avoid visual clutter, the enable and
valid signals are omitted in the diagram.

FPGA Device

FPGA Device

FPGA Device

FPGA Device

FPGA Device

H
e

a
d

in
g

FPGA Device

A
cc

1
 $

A
cc

2
 $

A
cc

3
 $

Processor Core

Accelerator 1

Accelerator 2

Accelerator 3

C
ach

e

Extern
al M

em
o

ry

Processor Core

C
ach

e

Extern
al M

em
o

ry

31b7: load

31bf: load

31db: store

Processor Core

Extern
al M

em
o

ry

RW $

W $

RW
Cache

R $

Extern
al M

em
o

ry

Processor Core

Accelerator 1

Accelerator 2

Accelerator 3

Extern
al M

em
o

ry

RW
Cache

W
Cache

RW
Cache

R
Cache

Accelerator 1

W $

RW $
R $

RW $

Accelerator 2

Accelerator 3

Processor Core

Extern
al M

em
o

ry
RW $

W $

RW
Cache

R $ Accelerator 1

W $

RW $
R $

RW $

Accelerator 2

Accelerator 3

Extern
al M

em
o

ry

Applicatio-Specific Memory
Access network

Accelerator Datapath

P1

P2

P1

P2

P3

P2

P3

W
Cache

R/W
Cache

R
Cache

microprocessor
R/W

Cache

Arbitor

Arbitor

Internal Memory Response Bus

Internal Memory Request Bus

Cache
#1

Cache
#2

Cache
#3

...

AHB AHB AHB

Access History Buffer

Request
Address

Accelerator

addr addr addr

To System Interrupt
Controller VIVW

VIVWAddress from
memory request bus

address from
accelerator

data from
cache

old data address

*AHB for R-Cache does not contain old data
– nothing is overwritten for those caches

Figure 4.5. Access History Buffer

Each of the buffers, updated by every cache access, has a number of entries equal to the size of
the particular partition′s vulnerability window. In reality, the generated schedule in the accelerator
is usually wide and short as the instructions are heavily parallelized. As a result, the size of the
vulnerability window for each partition is rather small. The access history buffer can therefore be
implemented with a reasonable hardware cost.

Checkpointing and Restoration

After detecting VIVW, it is necessary for the processor to take over execution from a point with
a known good machine state. More specifically, the memory and registers should be the same as in
the case when the entire program was executed in the processor. To achieve this, we have devised a
checkpointing mechanism such that memory writes and register value changes are committed only
when they are known to be valid. For the innermost loop, one commit is made after each iteration
finishes. For the outer loops, a commit is made when the execution of an inner loop starts, or when
the current loop exits.

For the register values to be committed, in the generated accelerators, explicit store operations
are inserted. Whenever a loop is entered/exited, or a new iteration of the innermost loop is started,
the values corresponding to the original processor registers are written into a set of special caches,
addressable by the processor. This addition has very little effect on the overall throughput of the
synthesized accelerator, which is predominantly determined by the minimum initiation interval of
the pipelined loops. Since nothing depends on these new store operations, the iterations of the loops
can still fire at the same rate. Also, these special caches are small and not directly connected to the

17

application-specific memory access network. Thus they have little effect on the operating frequency
of our system.

Meanwhile, to ensure correctness of the memory state, two issues must be resolved. First, the
memory writes since the last checkpoint should be undone when the exception occurs, and second,
the evicted cache lines should not be dumped to the main memory until the next commit occurs. To
satisfy the first requirement, we make use of the stored data in the access history buffer. When a
VIVW is detected, these old values can be used to undo memory writes. A commit would involve
discarding the oldest entries in the access history buffers, which is automatically done as the shift
registers take in newer entries. To satisfy the second requirement, the evicted cache lines would
need to go into a victim buffer instead of the main memory. The victim buffer delays the commit of
these cache lines so they do not pollute the memory.

Given the described infrastructure, when a VIVW exception occurs, the following steps would
be performed for the processor to continue execution from a good machine state.

1. for every cache, a small hardware engine fetches the entries in the victim buffer and writes
them back to the cache.

2. for each access history buffer, traverse the entries, from the newest to the oldest, write the
stored data value to the internal memory request bus, invalidating any cachelines

3. committed register values are copied into the processor

4. processor continues execution

In essence, we have devised a distributed version of the buffers present in out-of-order proces-
sors to recover from mis-speculation about memory independence. The size of these buffers are
typically small (∼5 entries) since the aggressive parallelization has shorten the latency of each loop
iteration drastically.

18

Chapter 5

Optimizations

5.1 Partition Tuning

As described in section 4.2, we have implemented mechanisms to handle interpartition mem-
ory dependencies. Although the correctness of execution is guaranteed, these mechanisms, when
exercized, would introduce performance degradation. Therefore it is sometimes beneficial to merge
two memory partitions at the cost of reducing utilizable memory-level parallelism. Besides, as the
size of a typical cache line is greater than a word, the small spatial granularity we have used in
the partitioning process might have also caused an overall performance degradation. To ensure we
have a better trade-off in taking advantage of memory-level parallelism and reducing cache misses,
a partition tuning step is devised. The exact steps are as follows:

1. execute the program using the partition generated, monitoring each cache’s coherence miss
rate and the number of misses served by each of its sibling caches.

2. when a cache Cm’s coherence miss rate goes above 0.1, list the top five sibling caches who
served most of the coherence misses.

3. traverse the list generated in the previous step, pick one sibling cache at a time, merge its
partition with that of Cm, and regenerate the accelerator. The new schedule in the accelerator
can be used to calculate the loss in performance of the datapath. If this loss is less than the
cost of the eliminated coherence misses, the merge is committed.

4. go back to step 1) unless we have converged to a stable partitioning.

This tuning process is based on the existing profile and thus its effectiveness is limited to the
accuracy of the profile. In our benchmarking experiment, we did discover candidate partitions for
merging using this process. The final result is reported in chapter 7.

19

5.2 Cost-Performance Trade-offs

In our study, the partitioning process has been rather aggressive. All partitionable memory ac-
cesses are partitioned, without giving much consideration to the actual hardware cost. As the cache
coherence is bus-based, a large number of partitions would inevitably stress the device resources
and subsequently affect the operating frequency of the system. Therefore, if we consider the hard-
ware cost, and the secondary effect on the clock frequencies, the partitioning we have produced,
even after the tuning process, may not be the optimal. Thus to achieve the best trade-off, for every
pairwise separation of memory accesses, the following factors would need to be considered.

1. the effect on the datapath throughput.

• how does the initiation interval of the pipelined inner loop change?

• how does the latency of the outer loops change?

2. the effect on the miss rate of the customized cache network

• how much interference can be removed to facilitate per-cache customization

• the extra coherence traffic introduced

3. hardware cost

• number of slots in the buffers for each cache

• number of memory ports occupied (important for FPGAs since each BRAM can only
support dual port)

• the cost of the internal memory request/response buses

4. the secondary effect on the clock frequencies of the system

It should be apparent this is a large exploration space. The infrastructure for tackling this optimiza-
tion task is not in the scope of this work, and may be left for future research.

20

Chapter 6

Accelerator Generation

To evaluate the benefit of our methodology and architecture template, we have developed a tool
flow to convert captured instruction traces to hardware implementation. We have employed several
common techniques used in high level synthesis, such as loop pipelining, branch predication etc. in
our tool flow. Figure 6.1 outlines the steps performed in our hardware synthesis program.

Captured Instruction Trace

Kernel Written in C

SSA Intermediate
Representation

Data Flow Graph

Datapath & Cache
Interface Generation

Fold back loops

Annotate instructions
with partitions

Naïve conversion to
C-syntax

llvm-gcc

Branch Predication

Instruction
Mapping

Datapath
Pipelining

Scheduling & Control
Generation

Loop
Scheduling

Controller
Generation

Verilog Code for Accelerator

Figure 6.1. Accelerator Synthesis Flow

The instruction trace is essentially a subset of the original assembly code unfolded in time.
Many iterations of the loops are captured, with possibly different execution paths in each. The first
step in our flow is to fold the loop iterations back into its original form, which is necessary for
a resource-efficient accelerator. During this process, we also identify the most frequently executed
paths in the program, which would be selected to undergo the transformations into hardware acceler-
ator. This naturally results in exclusion of certain rarely executed paths from hardware acceleration,
a technique that was adapted from VLIW compilers [12] and has been used in reconfigurable com-

21

puting [13]. Then, with the memory access partitions, generated and optimized as described in the
previous chapters, we can annotate each of the memory instructions in the assembly code obtained
from the trace. The next step is a naive conversion of the code to C syntax. This is performed be-
cause we can then leverage the front end compiler (llvm-gcc) of the LLVM project [14] to create
a single static assignment (SSA) [15] intermediate representation (IR).

The LLVM IR encodes a data control flow graph, where llvm instructions are grouped into basic
blocks. We then perform branch predication on this graph in a way similar to partial predicated
execution described in [16]. All control transfers and memory operations are also conditioned with
the result of the previous branch instruction. Consequently, we have a data flow graph where all
the dependencies are between individual instructions and the boundaries between basic blocks are
eliminated. Meanwhile, to enforce WAW, WAR and RAW ordering in the same partition, memory
dependency edges are added between instructions.

With all the dependencies created, scheduling of instructions can be carried out on the data flow
graph, where each node corresponds to a single instruction in the IR. The approach we have taken is
similar to that described in [17]. Every instruction in the IR has a delay assigned to it, and the longest
cycle in this graph can be calculated accordingly. This cycle, together with the requirement on the
sharing of the cache interfaces, determines the initiation interval with which we can pipeline the
loop iterations. Meanwhile, to create the datapath, our tool performs a mapping of the instructions
to a pre-built library of hardware primitives. Finally, pipeline registers are inserted, and a controller
is synthesized. This controller coordinates the hardware execution by activating levels of pipeline
registers according to the schedule.

There are some other optimization techniques, e.g. loop unrolling, which can be incoorporated
into our hardware synthesis tool. Our implementation here is used to evaluate our methodology in
parallelizing memory accesses. As our experimental results show, the memory accesses do become
a performance bottleneck given the set of techniques we employed in accelerator generation. With
more aggressive approaches, the constraint set by the traditional memory model would only become
more severe, making the exploitation of memory-level parallelism more important.

22

Chapter 7

Experiment Result and Analysis

We implemented our prototype system with a Virtex-5 FPGA (XCV5LX155T-2) on a BEE3
(Berkeley Emulation Engine) platform. Nine applications from Spec2006 and MiBench were run
through our flow. Ten hot regions are identified and synthesized into accelerators. As a baseline
system, a conventional processor platform was implemented with Xilinx’s Microblaze technology.
The accelerators using a multi-cache memory access network were compared against their coun-
terpart with a single cache (single memory partition), both of which are implemented on the same
device.

7.1 Accelerator Performance

Shown in table 7.1 are the performance numbers of the accelerators measured using our system
prototype. Td refers to the time when the generated accelerators are actually running, Tc refers to
the time when the accelerators are stalled for cache misses. The baseline represents the amount of
time spent by the processor-only platform in executing all the instructions in the selected region.

From the table, it can be observed that when the multi-cache network is used to service acceler-
ators’ memory requests, the time in datapath (Td) is reduced, demonstrating the benefit of exploiting
memory-level parallelism. However, the total time for cache misses (Tc) went up, with two main
contributing factors. First, as the same amount of storage is divided up to multiple smaller caches,
capacity misses occur more frequently. Customizations such as those mentioned in section 4.1 can
help alleviate the negative impact by reducing conflict misses, but there is still an overall increase
in the miss rate. Meanwhile, the communication between caches also caused some performance
degradation. However, all these costs are outweighed by the benefit of better accelerator through-
put, resulting in an overall gain in performance.

Another observable effect is the decrease in the minimal clock period when single cache is re-
placed with the multi-cache network. This is due to the accelerator internalizing muxing of memory
requests when only a single cache interface is available. In the multi-cache network case, the extent
of this internal muxing is greatly reduced. Meanwhile, the muxing of multiple cache misses onto the

23

Benchmark Accelerator w/ Single Cache Accelerator w/ Multi-cache Network
% of clock Td Tc % time Speedup clock Td Tc % time Speedup Overall
trace. period×106 ×106 compute vs. period×106 ×106 comput vs. Speedup

(ns) (ns) (ns) Baseline (ns) (ns) (ns) Single $
libquantum 99.98 5.1 0.67 0.84 44.45 2.29 5.1 0.33 1.17 22.22 1 2.29

hmmer 92.81 7.608 2.95 0.70 80.90 2.08 7.6 0.49 0.96 33.61 2.52 5.24
h264 92.39 9.444 4.68 0.26 94.83 3.27 7.612 2.44 0.52 82.42 1.67 5.46
susan 98.50 5.691 5.54 0.072 99.87 4.18 5.283 2.60 0.0076 99.71 2.13 8.90

dijkstra1 72.64 7.284 0.76 0.029 96.36 10.85 7.284 0.76 0.029 96.36 1 10.85
dijkstra2 17.14 4.773 0.49 0.14 77.86 3.37 4.773 0.49 0.14 77.86 1 3.37

qsort 87.05 5.647 3.70 1.55 70.49 4.20 5.16 2.67 1.53 63.61 1.25 5.25
jpeg 80.71 4.142 1.45 0.44 76.67 8.72 5.248 0.52 0.52 50.01 1.83 15.92

adpcm 98.77 7.55 3.22 0.091 99.72 5.25 7.545 2.30 0.0091 99.61 1.40 7.34
crc 99.40 6.005 1.93 0.09 99.54 7.70 5.211 0.84 0.0079 99.06 2.29 17.65

Table 7.1. Performance Improvement Breakdown

internal memory request bus happens on the other side of the cache. Therefore it can be decoupled
from the clock used inside the accelerator, giving better performance as cache hits occur most of the
time.

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

libquatum	 hmmer	 h264	 susan	 dijkstra1	 dijkstra2	 qsort	 jpeg	 adpcm	 crc	

Baseline	 Processor	

Accelerators	 w/	 Single	 Cache	

Accelerators	 w/	 MulD-‐cache	 Network	

Benchmarks	

Sp
ee
du

p	
vs
	 B
as
el
in
e	

Figure 7.1. Performance Comparison between Different Implementations

Some of the benchmarks did not demonstrate any performance benefit when our approach was
applied. Libquantum showed significant improvement in Td when memory partitions were applied.
However, that was accompanied by a big increase in Tc, which cancelled out the benefit. The
accelerated code has two accesses in the inner loop which were placed into different partitions.
This parallelism resulted in the reduction in Td. However, in each iteration, the addresses the two
instructions accessed were always one word away from each other. Also, there were no repeated
accesses to the same element. Consequently, we cannot use a big cache line and every access
produced a cache miss. The net effect is a draw in performance between the two implementations.
For dijkstra, the first accelerator had multiple partitions that were eventually combined to one during

24

partition tuning, and the second accelerator has only one memory access. As a result, in both
cases, the final implementations and performance were the same, with or without applying our new
approach.

On average, we observed performance improvement of 4.5x over the baseline implementation
when single cache accelerators are used. When memory level parallelism is identified and exploited
for each of the accelerators, the overall performance improves another 51%, to 6.9x of the baseline
implementation. Figure 7.1 shows the graphical comparison of each implementation over the entire
benchmark set.

7.2 Resource Consumption

We have normalized the amount of memory used in the caches of the various implementations
to be equivalent to a 64KB direct mapped cache—a typical cache implementation used by Microb-
laze. The actual silicon area consumed for storing data is thus kept roughly constant across the
design points. However, as the multi-cache memory network provides many more memory ports
for the accelerator datapath, the BRAM usage is in general much greater than that of a single cache.
Besides, the cache coherence scheme and the exception mechanism for memory access collisions
also took up a significant area.

Accelerator Accelerator
Benchmark w/ Single Memory w/ Multi-cache

LUTs FFs BRAMs Partitions LUTs FFs BRAMs
libquantum 2623 2598 15 3 5016 3863 18

hmmer 8161 9873 15 16 19646 11281 40
h264 15534 45062 15 13 25261 37595 35
susan 7736 24486 15 6 12373 35222 32

dijkstra1 3308 6382 15 1 3308 6382 15
dijkstra2 1260 809 15 1 1260 809 15

qsort 4503 12933 15 6 9109 12136 32
jpeg 3111 4505 15 4 6177 5626 23

adpcm 4629 9169 15 5 8700 9055 27
crc 2807 1978 15 6 7480 4417 32

Table 7.2. Resource Consumption of Accelerators.

As shown in table 7.2, the ratio in number of BRAMs in the two implementations can be as
high as 2.7X. Meanwhile, the LUT count increase in the multi-cache network is most apparent in
the smaller benchmarks with large number of partitions. The FF count presented in the table, on
the other hand, showed some of the benchmarks having smaller number when using multi-cache
network. This is mainly due to the saving resulted in the accelerator datapath. A smaller initiation
interval and a reduction in levels of operators counteracted the effect of the multi-cache network,
resulting in a net decrease.

25

Chapter 8

Conclusion

For many memory-intensive embedded applications, sustaining high peak memory access band-
width is the key to maximizing their computing performance. In this work, a novel approach is de-
veloped to parallelize application memory accesses, using the abundant block RAMs and hardware
flexibility of FPGAs. We have shown that the new multi-cache architecture and its complementary
tool flow is effective in helping to overcome the performance bottleneck imposed by the traditional
accelerator memory model. An improvement of 51% is achieved in experiments using the proposed
hardware template and methodology .

This improvement, however, came at the cost of a larger area, partially due to the coarse gran-
ularity of the block RAMs on FPGAs. As the total number of memory bits used is normalized,
the increase in BRAM usage is caused by the large number of memory ports needed in the new
architecture. Our approach would definitely benefit from an FPGA fabric where the block RAMs’
bandwidth to capacity ratio is larger. Another issue with our approach is the large number of LUTs
involved in implementing the memory access network and the exception mechanism. To allevi-
ate this, a possible extension of our current project can explore the incorporation of static memory
alias analysis in the generation of multi-cache network. By eliminating some of the communication
infrastructure between subsets of caches, the area overhead in the new architecture can be reduced.

There are several other possible directions for further exploration. The cost and benefit of our
approach may change when a different network topology is used to connect the caches. Also, with
multiported memory or banked cache, we can have different microarchitectures which may have
advantages in certain aspects. Furthermore, it would be interesting to look at some benchmarks
with highly dynamic memory access patterns, e.g. frequent use of linked list, to have a better
understanding of the limitations in our approach.

26

References

[1] M. Budiu, G. Venkataramani, T. Chelcea, and S. C. Goldstein, “Spatial computation,” in Proceedings
of the 11th international conference on Architectural support for programming languages and operating
systems, ser. ASPLOS-XI. New York, NY, USA: ACM, 2004, pp. 14–26. [Online]. Available: http:
//doi.acm.org/10.1145/1024393.1024396

[2] P. Coussy and A. Morawiec, High-Level Synthesis: from Algorithm to Digital Circuit, 1st ed. Springer Publishing
Company, Incorporated, 2008.

[3] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson, S. Brown, and T. Czajkowski, “Legup:
high-level synthesis for fpga-based processor/accelerator systems,” in Proceedings of the 19th ACM/SIGDA
international symposium on Field programmable gate arrays, ser. FPGA ’11. New York, NY, USA: ACM, 2011,
pp. 33–36. [Online]. Available: http://doi.acm.org/10.1145/1950413.1950423

[4] Altera, “Nios II C2H Compiler User Guide,” 2009.
[5] F. Vahid, G. Stitt, and R. Lysecky, “Warp processing: Dynamic translation of binaries to fpga circuits,” Computer,

vol. 41, no. 7, pp. 40 –46, 2008.
[6] A. Putnam, S. Eggers, D. Bennett, E. Dellinger, J. Mason, H. Styles, P. Sundararajan, and R. Wittig, “Performance

and power of cache-based reconfigurable computing,” SIGARCH Comput. Archit. News, vol. 37, pp. 395–405, June
2009. [Online]. Available: http://doi.acm.org/10.1145/1555815.1555804

[7] Alter, “SOPC Builder User Guide.”
[8] Xilinx, “Embedded System Tools Reference Manual.”
[9] I. Lebedev, S. Cheng, A. Doupnik, J. Martin, C. Fletcher, D. Burke, M. Lin, and J. Wawrzynek, “Marc: A many-core

approach to reconfigurable computing,” in Reconfigurable Computing and FPGAs (ReConFig), 2010 International
Conference on, dec. 2010, pp. 7 –12.

[10] “QEMU: a generic and open source machine emulator and virtualizer,” http://wiki.qemu.org/Main Page.
[11] T. Ball and J. Larus, “Efficient path profiling,” in Microarchitecture, 1996. MICRO-29. Proceedings of the 29th

Annual IEEE/ACM International Symposium on, Dec. 1996, pp. 46 –57.
[12] J. R. Ellis, “Bulldog: a compiler for vliw architectures (parallel computing, reduced-instruction-set, trace schedul-

ing, scientific),” Ph.D. dissertation, New Haven, CT, USA, 1985, aAI8600982.
[13] T. J. Callahan and J. Wawrzynek, “Instruction-level parallelism for reconfigurable computing,” in In Proc. Interna-

tional Workshop on Field Programmable Logic. Springer-Verlag, 1998, pp. 248–257.
[14] C. Lattner, “LLVM: An Infrastructure for Multi-Stage Optimization,” Master’s thesis, Computer Science Dept.,

University of Illinois at Urbana-Champaign, Urbana, IL, Dec 2002, See http://llvm.cs.uiuc.edu.
[15] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Efficiently computing static single

assignment form and the control dependence graph,” ACM Trans. Program. Lang. Syst., vol. 13, pp. 451–490,
October 1991. [Online]. Available: http://doi.acm.org/10.1145/115372.115320

[16] S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I. August, and W. mei W. Hwu, “A comparison of full and partial
predicated execution support for ilp processors,” in IN PROCEEDINGS OF THE 22TH INTERNATIONAL SYM-
POSIUM ON COMPUTER ARCHITECTURE, 1995, pp. 138–150.

[17] T. J. Callahan and J. Wawrzynek, “Adapting software pipelining for reconfigurable computing,” in Proceedings of
the 2000 international conference on Compilers, architecture, and synthesis for embedded systems, ser. CASES ’00.
New York, NY, USA: ACM, 2000, pp. 57–64. [Online]. Available: http://doi.acm.org/10.1145/354880.354889

27

http://doi.acm.org/10.1145/1024393.1024396
http://doi.acm.org/10.1145/1024393.1024396
http://doi.acm.org/10.1145/1950413.1950423
http://doi.acm.org/10.1145/1555815.1555804
http://wiki.qemu.org/Main_Page
http://doi.acm.org/10.1145/115372.115320
http://doi.acm.org/10.1145/354880.354889

	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Project Overview
	Related Work

	Motivations
	Accelerators and Memory on FPGAs
	Motivating Example

	Analysis Framework
	Profiling infrastructure and Code Selection for Acceleration
	Generation of Memory Access Partitions
	Spatial Granularity for Address Comparison
	Temporal Granularity for Address Comparison

	Multi-Cache Architecture
	Application-specific Memory Access Network
	Handling Inter-Partition Memory Dependence
	Vulnerability Window
	Cache Coherence Scheme
	Exception Scheme for Violation Inside Vulnerability Window

	Optimizations
	Partition Tuning
	Cost-Performance Trade-offs

	Accelerator Generation
	Experiment Result and Analysis
	Accelerator Performance
	Resource Consumption

	Conclusion
	Bibliography
	References

