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Abstract

Closed-loop brain-machine interface (BMI) systems are dynamical systems whose
plant properties ultimately influence controllability. For instance, a 2D cursor in which
velocity is controlled using a Kalman filter (KF) will, by default, model a correlation
between horizontal and vertical velocity. In closed-loop, this translates to a “curling”
dynamical effect, and such an effect is unlikely to be beneficial for BMI performance.
However, there have been few empirical studies exploring how various dynamical ef-
fects of closed-loop BMIs ultimately influence performance. In this work, we utilize
experimental data from a monkey subject performing closed-loop control of a 2D cur-
sor BMI and show that the presence of certain dynamical properties correlate with
performance loss. We also show that other dynamical properties represent tradeoffs
between naturally competing objectives, such as speed versus accuracy. These empiri-
cal findings demonstrate the need to eliminate detrimental dynamics by accounting for
the feedback control strategy employed by the user, as well as the need to fine-tune
plant dynamics to optimize task-specific performance tradeoffs. To this end, we de-
velop general-purpose tools for designing BMI plant dynamics. Using these tools, we
show two different ways to improve accuracy and hold performance at the expense of
speed. In a closed-loop BMI simulator, the two accuracy-optimized decoders, the sym-
metrically dampened (SD) velocity KF (SDVKF) and velocity linear system (SDVLS),
had significantly better reaching accuracy than standard KF variants. In a closed-loop
experiment, a monkey subject demonstrated significantly better holding performance
and more accurate reaches at the cost of slightly slower reaches when operating the
SDVKF than when operating the standard position/velocity KF. Thus, BMI design
can be improved by using parameter estimation techniques that craft the BMI plant to
both user and task.
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1 Introduction
Brain-machine interfaces (BMIs) have tremendous potential to restore motor function im-
paired by spinal cord injuries and other neurological disorders. BMIs drive artificial actuators
using volitional neural activity to bypass damaged neural circuitry. Numerous experimental
demonstrations in rodents [1, 2, 3], monkeys [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and humans
[14, 15, 16] have together provided a compelling proof of concept. However, before BMIs are
viable as a clinical treatment option for humans, significant performance improvements are
required.

Recent work suggests that BMI performance improvements may require a deeper un-
derstanding of BMIs as closed-loop systems, in which brain and machine interact with one
another [17, 18]. In closed-loop control, subjects attempt to control the state of the BMI
prosthesis using real-time feedback. Both the user’s feedback control strategy and the BMI
decoder contribute to performance because the user can compensate for decoder errors by
volitionally altering neural activity. Abstractly, the most controllable BMI system will be
one in which feedback corrections are easiest.

Previous BMI studies have made significant progress in understanding and designing
closed-loop BMI systems. Closed-loop experiments have shown that BMI controllability
depends in part on which kinematic variables are controlled by the user and decoded by
the BMI [6, 15, 17]. Furthermore, BMI subjects can adapt to rotation effects intentionally
introduced into the decoder by the experimenter [19, 20, 21]. These experiments highlight
the importance of the user’s feedback control strategy as these decoders are controllable
with closed-loop feedback but have poor offline reconstruction accuracy. Similarly, BMI
subjects can control arbitrary linear decoders through learning because the tuning patterns of
neurons can change over several days and adapt to a fixed mapping [11]. Additionally, many
BMIs have utilized closed-loop decoder adaptation (CLDA), in which decoder parameters are
altered while the subject continues to operate the BMI [2, 5, 17, 18, 22, 23, 24], as a practical
method to maximize closed-loop performance. CLDA can rapidly create high-performance
decoders even when little is known a priori about the tuning properties of the BMI neural
ensemble [18].

This work centers on the relationship between BMI plant dynamics, which are the prop-
erties of closed-loop BMI systems, and task performance. BMI plant dynamics define the
transformation of neural activity into movement and thus have an important impact on per-
formance. Just as changes in arm biomechanics (changes in external load, dynamic pertur-
bations, etc.) affect arm movements, changes in BMI plant dynamics affect BMI movements.
Thus, it is worthwhile to understand precisely how changes in plant dynamics affect closed-
loop performance. To this end, we apply control theory to determine which plant properties
are detrimental to controllability, use experimental data to verify an empirical correlation be-
tween plant dynamics and performance, and utilize closed-loop simulations and experiments
to demonstrate that alterations to the BMI plant cause predictable changes to performance.

We explored the impact of plant dynamics in the context of recursive linear BMI decoding
algorithms, specifically the Kalman filter (KF) algorithm. A BMI decoding algorithm is
recursive if it decodes the BMI state using previously decoded outputs and the most recent
neural input. The KF is a linear prediction algorithm commonly used in BMIs, and previous
demonstrations of closed-loop BMIs have used the KF to control a cursor’s velocity (VKF)
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[15, 17], position/velocity (PVKF) [25, 18], and position/velocity/acceleration [22]. Non-
recursive decoding algorithms are a subclass of recursive algorithms that do not use past
decoder outputs. Perhaps for this reason, the recursive KF was shown to be more controllable
than the non-recursive linear Wiener filter [15]. Here, we focus our analysis entirely on the
plant dynamics of recursive linear BMI decoders.

We apply optimal control theory to explain why closed-loop plant dynamics unexpected
by the BMI user are detrimental to reaching accuracy and target hold performance. It is
worth clarifying how “unexpected” plant dynamics might arise. For instance, the default
modeling assumption of the KF is that all kinematic variables are correlated. A specific
example is provided by the PVKF and the VKF, which both model correlations between
horizontal and vertical velocity. This modeling assumption generates the property that a
non-zero vertical speed will increase horizontal speed and vice versa. Interactions between
horizontal and vertical velocity translate to closed-loop curling dynamics, which are similar
to curl force fields applied as external perturbations to arm movements. In the PVKF,
similar interactions between other kinematic variables can cause the cursor’s position to
drift without changes to the cursor’s velocity. These unpredictable dynamical effects are
intuitively detrimental to BMI controllability because they are unlikely to conform to the
BMI user’s control strategy. To warrant this intuitive argument, we use optimal control
theory to demonstrate why unexpected dynamics are problematic even for closed-loop control
of a noiseless system.

To understand the empirical relationship between plant properties and performance, we
analyzed a closed-loop BMI experiment in which one monkey subject operated a PVKF. The
PVKF contains a rich set of dynamical properties which changed across sessions and created
diverse kinematic variable interactions. The presence of several plant properties, including
the curling dynamics and position drift we described above, corresponded with a decline in
reach accuracy and hold performance. However, some plant properties improved reaching
speed at the expense of accuracy. These findings suggest that some plant dynamics should
be entirely eliminated whereas others should be fine-tuned by task and user, to balance
competing objectives like speed and accuracy. Consequently, we devise two novel methods
for precisely specifying BMI plant properties during the parameter estimation process. These
methods were used in simulations and closed-loop experiments to demonstrate that we can
affect performance in predictable ways by manipulating plant dynamics.
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2 Methods

2.1 Electrophysiology
Two adult male rhesus macaques (Macaca mulatta), subject S and subject J, were used
in this study. The subjects were chronically implanted with microwire electrode arrays
for neural recording. One array of 128 teflon-coated tungsten electrodes (35µm diameter,
500µm wire spacing, 8× 16 array configuration; Innovative Neurophysiology, Durham, NC)
was implanted in each brain hemisphere. Arrays were implanted targeting the arm areas
of primary motor cortex (M1) and dorsal premotor cortex (PMd). Single and multi-unit
activity was recorded using a 128-channel MAP system and sorted online using Sort Client
(Plexon, Inc., Dallas, TX). All procedures were conducted in compliance with the National
Institute of Health Guide for Care and Use of Laboratory Animals and were approved by
the University of California, Berkeley Institutional Animal Care and Use Committee.

2.2 Task
Subject S (J) was trained to perform a self-paced delayed 2D center-out reaching task to
8 circular targets of 1.7 (1.2) cm radius uniformly spaced about a 14 (13) cm-diameter
circle. After being trained to perform the task with arm movements, the subjects performed
closed-loop control of the cursor using a KF BMI without overt arm movements. Figure
1 shows an illustration of the task setup and trial timeline. The subjects initiated trials
by moving the cursor to the center and holding for 400 (250) ms. The subjects had an
unlimited amount of time to enter the center to initiate a trial. Upon entering the center,
the peripheral target appeared. After the center-hold period ended, the subjects were cued
(the center turned off and the peripheral target turned on) to initiate the reach. Then they
were required to move the cursor to the peripheral target within a given 3-7 second time-limit
and hold for 400 (250) ms to receive a liquid reward. Failure to hold at the center, hold
at the peripheral target, or reach the peripheral target within the time-limit restarted the
trial to the same target without reward. Center hold errors at the start of the trial occurred
frequently as they effectively resulted in no penalty to the subject. Failure to hold at the
target was far more common than failure to reach the target within the time limit. Targets
were block-randomized to evenly distribute trials to each target in pseudorandom order. We
analyzed experimental data from subject S to determine how BMI plant properties affected
performance and validated those conclusions using experimental data from subject J.

2.3 BMI using the Kalman filter
Variants of the KF have been used in several online BMI experiments [15, 17, 18, 22, 26]. In
the PVKF, the xt represents the cursor position and velocity:

xt =





horiz. pos.
vert. pos.
horiz. vel.
vert. vel.

offset




=





px(t)
py(t)
vx(t)
vy(t)

1




=




p(t)
v(t)
1



 .
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When it helps to clarify mathematical expressions, we will switch between the notation xt

and x(t). The KF provides a way to estimate the hidden state xt when the state follows the
Gaussian process

x(t + 1) = Ax(t) + w(t); w(t) ∼ N (0, W ),

and when observations yt related to the state are available. The observations yt represent
the observed spikes from a neural ensemble in the past 100 ms. The KF models xt and yt as
jointly Gaussian with the relationship

y(t) = Cx(t) + q(t); q(t) ∼ N (0, Q).

A and W define the “state space” model while C and Q constitute the neural firing model.
This model of neural firing assumes that spikes are linearly related to cursor kinematics.
qt represents “neural noise”, i.e. neural firing covariance not captured by the linear model.
x̂(t) is the minimum mean squared error estimate of x(t), which is both linear and recursive
under the KF model:

x̂(t) = (I −KtC)Ax̂(t− 1) + Kty(t). (1)
The KF algorithm provides a recursive way to estimate x(t), using the previous estimate
x̂(t−1) and the most recent observation yt. The Kalman gain Kt is an optimal linear mapping
which combines the observation vector with the previous state estimate. The decoder is
updated as frequently as new observations of neural activity can be made (every 100 ms
in our case). We present the Kalman gain derivation in A.1 and the maximum-likelihood
estimators (MLEs) for the parameters A, W , C and Q in A.2.

2.4 SmoothBatch Closed-loop Decoder Adaptation (SB-CLDA)
Closed-loop decoder adaptation (CLDA) is an emerging paradigm for rapidly improving
closed-loop BMI performance by re-estimating decoder parameters while the subject con-
tinues to operate the BMI. The goal of CLDA is to alter decoder parameters so that the
decoder’s output accurately reflect the subject’s intended movements. CLDA methods utilize
an error signal to determine how decoder parameters should be updated. This error estimate
can formed using binary evaluations of trial success [24], non-causal Bayesian inference [22],
or as we use here, knowledge of task goals [5, 17, 18]. CLDA methods have been utilized in
population vector decoders [5], auto-regressive moving average decoders [23], neural network
decoders [24], and KF decoders [17, 18, 22, 2].

To estimate the error signal using knowledge of the task, we assume that (1) the task
always specifies a target to acquire and (2) the subject is always trying to acquire that target.
These assumptions can be used to estimate the subject’s intended kinematics each time the
decoder makes a prediction. With this knowledge, we can estimate decoder error and apply
methods from adaptive filter theory to update the decoder parameters while the subject
continues to operate the BMI [27].

Previous work showed that CLDA methods are particularly useful when prior knowledge
about the relationship between neural firing and BMI kinematics is limited [18]. This might
make CLDA useful in a clinical setting in which overt contralateral arm movements are im-
possible. When initial decoder performance was poor, the best KF parameter update strategy
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was to recalculate a new parameter setting for C and Q every 1-2 minutes and smoothly
average with previous estimates [18]. This specific CLDA method, named SmoothBatch, was
the training method used for all the decoders analyzed in this work. Without contralateral
arm movements, C and Q were initially estimated using neural activity while the subject
(1) passively watched a cursor making artificially generated center-out movements (visual
feedback), (2) performed the task with ipsilateral arm movements, or (3) sat quietly in his
chair with no task. In addition, we (4) generated arbitrary initial decoders by shuffling C
and Q matrices estimated during previous sessions. The SmoothBatch CLDA (SB-CLDA)
algorithm was a robust method for quickly improving the performance of decoders seeded
from these adverse conditions.

Parameter settings were updated by the equations

C(i+1) = αC(i) + (1− α) Ĉ

Q(i+1) = αQ(i) + (1− α) Q̂,

where C(i+1) is the updated parameter setting, Ĉ is an estimate of C from the newest “batch”
of data, and C(i) is the previous parameter setting; Q quantities are defined similarly [18].
The parameter α ∈ [0, 1] determines the rate at which parameters change. MLEs are used
to calculate Ĉ and Q̂ by modeling a linear relationship between our estimate of the subject’s
intended kinematics and neural spiking (A.2). A and W represent a linear model of hand
endpoint kinematics over time, which can be estimated independently of C and Q. Thus,
they are independent of the specific neural ensemble available to the decoder and we did
not retrain them using SB-CLDA. SB-CLDA was usually stopped after the rate of successful
trials exceeded 10 trials per minute. The number of updates performed is defined by the
“training time” (typically 20-30 minutes) and the frequency of updates (every 1-2 minutes).

Figure 2 illustrates how SB-CLDA was applied in experimental sessions for both subjects.
Decoders were initialized using one of the four conditions discussed above. We adapted
decoder parameters with SB-CLDA until performance was adequate, after which the subjects
performed the BMI task with a fixed-parameter decoder. Usually the decoder parameters
were fixed to the C and Q last estimated by SB-CLDA (60 sessions). In 11 sessions, the
fixed-parameter decoders first modified A or the last parameter setting for C by (1) altering
the velocity-related terms in A, (2) rescaling velocity-relevant terms in C, or (3) removing
units from the decoder. Finally, in 11 sessions, SB-CLDA was resumed to further improve
closed-loop performance, but only in cases in which we did modify A or C. For subject J,
no perturbations to A or C were applied to the final SB-CLDA parameter settings.

2.5 Performance measures
We quantified BMI task performance as well as the accuracy with which the subjects per-
formed the task. Upon successfully initiating a trial (via center-hold), there were two possible
task-errors: failure to reach the peripheral target in time, and failure to hold at the periph-
eral target. We only analyzed performance of “target-in” trials, in which the subjects were
able to reach the peripheral target, including both successful trials and trials which ended
in peripheral hold errors. BMI task performance was assessed using 2 metrics:
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• Hold error rate: The frequency of peripheral-target hold errors per successful trial.
This quantity can exceed 1, e.g. 2 hold errors per successful trial corresponds to a
hold error rate of 2. Hold errors had a relatively strict penalty in that the subject was
required to return to the center before re-attempting the target hold.

• Reach time: The time elapsed between leaving the center and entering the peripheral
target.

In addition, we utilized 4 trial-by-trial measures of reach accuracy along the task axis, the
straight line between the center and peripheral target ptarget:

• Movement error (ME): The average of the perpendicular distance between the cursor
trajectory and the task axis at each time-point.

• Movement variability (MV): The standard deviation of the perpendicular distance
between cursor trajectory and the task axis.

• Effective control deviation (ECD): The angle between pt+1 − pt and ptarget − pt.

• Velocity control deviation (VCD): The angle between the velocity control input (defined
more rigorously below) and ptarget − pt (see Figure 3).

There were no explicit accuracy requirements to acquire the reward. For calculations of
accuracy performance, we discarded trials in which the cursor touched one of the other
targets. These trials corresponded to a small percentage of highly inaccurate trials. Lower
values correspond to better performance for all of these performance measures. ME and MV
have been used previously to characterize the accuracy of 2D BMIs [15, 18] as well as generic
pointing devices (e.g. computer mice) [28].

It is worth noting that low VCD is not strictly required to generate accurate movements.
Consider a decoder in which all the decoded movements are rotated 90 degrees. In this
scenario, the subject may use control inputs rotated 90 degrees away from the intended
movement direction (high VCD), but these inputs may generate accurate end effector move-
ments (low ECD).

We analyzed how the mean and standard deviation of these performance measures varied
with changes in decoder parameters across sessions. The number of initiated trials also
varied across sessions because the task was self-paced and the duration of experimental
blocks varied. For statistical comparisons of performance across sessions, we weighted each
target-in trial equally.

2.6 Generalizing from the KF to other linear BMI algorithms
Linear BMIs, including the KF, produce an estimate of the kinematic state x̂(t) using the
previous estimate x̂(t− 1) and the current spike observations yt:

x̂(t) = Ātx̂(t− 1) + B̄ty(t). (2)

Āt is the state transition matrix of the system, and B̄t is the control input matrix. In the
case of the KF, Āt and B̄t are based only on the model parameters, the time index t, and the
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uncertainty (covariance) of the initial state x0; they are independent of any observations. In
the case of the KF, Āt = (I −KtC)A and B̄t = Kt.

It is important to note that Āt is not the same as A. By default, the KF assumes that
all variables are jointly Gaussian and thus correlated. Due to the Kalman gain present in
the equation for Āt above, all of the parameters {A, W, C, Q} contribute to Āt. Thus, Āt

depends on A but changes to the neural firing model (C and Q) will cause it to change.
In stable KFs with a time-invariant model, Āt and B̄t converge to Ā and B̄, respectively.

This “steady-state” Kalman filter has been used in offline predictions in place of the standard
KF to reduce computational overhead [29]. Experimental decoders converged to within
machine precision in seconds. All the BMI experimental blocks we analyzed in this study
were substantially longer than the steady-state convergence time, so we analyzed KF decoders
as time-invariant systems.

Casting the PVKF decoder as the linear dynamical system (LDS) in Eq. 2 allows us to
analyze how plant dynamics may impact control. In the BMI decoding context, dynamics
are not forces or motion. Rather, dynamics can be any property of a dynamical system
such as Eq. 2. Formulating the KF as an LDS is slightly different from the traditional
presentation of the KF [26], and it enables us to analyze the decoder dynamics directly
relevant to closed-loop control.

For 2D linear position/velocity BMIs, we can further sub-divide Ā and B̄ into components
related to position and velocity:





px(t)
py(t)
vx(t)
vy(t)

1




=





txx txy sxx sxy p̄x

tyx tyy syx syy p̄y

mxx mxy nxx nxy v̄x

myx myy nyx nyy v̄y

0 0 0 0 1









px(t− 1)
py(t− 1)
vx(t− 1)
vy(t− 1)

1




+ B̄y(t) (3)




p(t)
v(t)
1



 =




T S p̄
M N v̄
0 0 1








p(t− 1)
v(t− 1)

1



 +




B̄[0:1,:]

B̄[2:3,:]

1



 y(t). (4)

When indexing matrices, we use the convention that z[0, 0] refers to the top-left element
of matrix z. We also will utilize the MATLAB sub-matrix indexing notation, in which
0:n = [0, 1, 2, · · · , n], so that z[0:1,:] refers to rows 0 and 1 of matrix z. Figure 3 shows a
system diagram of the PVKF. In Eq. 4, T and M determine position-dependent dynamics
while S and N determine velocity-dependent dynamics. We refer to B̄[0:1,:] as B̄pos because
it maps spike observations into a position control input; similarly B̄vel = B̄[2:3,:] maps spike
observations into a velocity control input.

The LDS representation of the BMI decoder shows that the plant has properties which
represent “sensitivity”. It will be useful in our analyses to roughly capture the “size” of
certain plant features using matrix norms, e.g. ‖·‖2 is the matrix "2 norm and ‖·‖F is the
Frobenius norm. The magnitude of B̄vel and B̄pos, i.e.

∥∥B̄pos

∥∥
2

and
∥∥B̄vel

∥∥
2
, define the size

of the kinematic control input that can be generated by a single set of spike observations yt.
Larger values for

∥∥B̄pos

∥∥
2

and
∥∥B̄vel

∥∥
2

make the velocity control and position control more
sensitive to each individual spike.
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The duration of time that a velocity control input B̄velyt influences the system state xt

depends on N . For example, N = 0 allows a control input to be active for exactly 1 system
iteration, ‖N‖2 ≥ 1 creates an unstable system in which control inputs affect the system
state forever, and ‖N‖2 < 1 produces a smoothing dynamic which causes the influence of a
control input to slowly decay over multiple time steps. In this last case, which represents all
SB-CLDA trained decoders, how long a control input remains relevant to the system state
depends on the magnitude of N . Consequently, in analyses of plant dynamics we will say
that the plant has a “control memory”, represented by N and quantified by ‖N‖2.

The relationship between p(t) and v(t−1) is defined by S, which is a scaling factor applied
to the cursor’s velocity before it is integrated to update the position. We demonstrate in
the Results that for the PVKF, applying S to the cursor’s velocity is not the same as
multiplying by dt. Larger values for S, i.e. larger ‖S‖2, mean that the same velocity can
cause larger changes in the cursor’s position. S therefore represents a third mechanism in
which sensitivity to velocity control can be specified.

Every linear BMI decoder can be written in the form of Eq. 2. If we let yt represent
spikes from the current observation as well as a fixed history length, then the Wiener filter
can be written simply as x(t) = B̄WFy(t) in which B̄WF is the Wiener filter matrix [6, 12, 30].

The relationship between the VKF and the PVKF is easily observed from the dynamical
systems perspective. In the VKF, the state xt = [vx(t), vy(t), 1]T contains only the velocity
components. Position estimates are generated by “integrating” the decoded velocity: p̂t =
dt · v̂t + p̂t−1, where dt is the rate at which new decoder outputs are generated. For the VKF,
we can write




p(t)
v(t)
1



 =




I2 dt · I2 0
0 N v̄
0 0 1








p(t− 1)
v(t− 1)

1



 +




0

B̄vel

1



 y(t). (5)

The steady-state VKF is simply a special case of the steady-state PVKF. Position dynamics
and position control are degenerate in the case of the VKF because the control and dynamics
of the system are purely controlled by the velocity terms. To quantify the extent to which
position dynamics are not degenerate, we will measure the quantity ‖T − I2‖2.

M defines position-dependent velocity offsets, which are potentially not uniform over
the workspace. Noting that vt+1 = Nvt + Mpt + v̄, the velocity offset at the position
pt is given by Mpt + v̄. Along each of the 8 task axes, this offset can be calculated as
Mpt + v̄ = (1− λ)Mpcenter + λMptarget + v̄, where λ is the fraction of the distance between
the center and the target already covered by the cursor (λ ∈ [0, 1] can represent any point
on the task axis). As the cursor moves from the center to the target, the velocity offset
changes linearly between the velocity offset due to pcenter and that due to ptarget. Mptarget

may be different for each target, which creates target-specific velocity offsets. Every task
axis has the same origin, so for each target we measure voffset(target), the vector projection
of Mptarget + v̄ onto the task axis ptarget−pcenter. The scalar quantity voffset(target) represents
the magnitude of the velocity offset at to each target, a quantity that was useful assessing
the impact of M on task performance.

In general, the properties of S and N need not be symmetric with respect to hori-
zontal and vertical velocity terms. We quantified both the asymmetry and cross-coupling
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of velocity dynamics by calculating the distance between N and the set of scalar matri-
ces. Scalar matrices are matrices of the form λI, where λ ∈ R . As a matrix pro-
jection, minn ‖N − nI2‖F is the size of the smallest change to N necessary to make it
a scalar matrix. We note that n∗ = arg minn ‖N − nI2‖F = 1

2 (nxx + nyy), which we
use to define dist(N, nI2) =

∥∥N − 1
2 (nxx + nyy) I2

∥∥
F

[31]. Alternatively, we can measure
∆n = |nxx − nyy| = 2 |nxx − n∗|, which measures the difference between the diagonal ele-
ments of N . Both ∆n and dist(N, nI2) quantify the distance between N and the scalar
matrix set, but dist(N, nI2) depends on nxy and nyx whereas ∆n does not. Both distance
measures were useful in assessing the impact of asymmetric plant properties on task perfor-
mance.

2.7 Simulating BMI optimal control
Simulations of optimal control provide useful intuition about BMI plant dynamics. We
simulated center-out reaches by generating control inputs to the BMI plant using an optimal
linear feedback controller. Suppose that our BMI linear dynamical system is given by

xt =




I2 dt · I2 0
0 nI2 0
0 0 1





︸ ︷︷ ︸
Ā

xt−1 +




0
I2

0





︸ ︷︷ ︸
B̄

yt,

where yt in this context represents a two-dimensional velocity control signal. The control
signal yt was designed to drive the cursor from the initial state x0 = [0, 0, 0, 0, 1]T (zero
velocity at the center of the workspace) to the target state xtarg =

[
p∗x, p

∗
y, 0, 0, 1

]T (zero
velocity at the peripheral target). The control inputs were designed to minimize the cost
function:

cost =
T∑

t=1

(xt − xtarg)
T Z(xt − xtarg) + yT

t Ryt. (6)

The theory of linear-quadratic-Gaussian (LQG) control allows us to find the optimal feedback
controller L if know Ā and B̄ [32]. Thus, Ā is analogous to the BMI subject’s “internal model”
of cursor dynamics.

After L was found, control sequences were executed in both open-loop and closed-loop.
The feedback controller generates the control input sequence yt = Lxt. The source of xt used
to generate the input yt is what differentiates open- versus closed-loop execution. Open-loop
execution uses xOL

t pre-computed using the model parameters:

xOL
t = Ātx0 +

t∑

k=1

Āt−k
internal model · B̄yk,

where Āinternal model is the approximation of Ā used to compute L. Thus, yOL
t = LxOL

t . In
general, xt '= xOL

t due to control noise and/or mismatch between Ā and Āinternal model. In
contrast, closed-loop operation uses the true xt generated by the system, i.e. yCL

t = Lxt.
Thus, closed-loop control is generally more robust to noise and modeling errors.
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2.8 Simulating SB-CLDA
To evaluate new decoding algorithms, we simulated closed-loop BMI and compared simula-
tion performance. Comparisons of simulated performance are preferable to comparisons of
offline reconstruction accuracy because experimental evidence suggests that the offline ac-
curacy of linear decoders often does not translate to good closed-loop control [20, 33]. This
is perhaps due to the inherent feedback differences between BMI control during which the
subject only has visual feedback, unlike arm control during which proprioceptive feedback
is also available. Furthermore, BMIs require the brain to solve a control problem that is
different from the problem of controlling the natural arm because (1) the dynamics of the
BMI plant are different from arm dynamics and (2) the BMI is controlled using a differ-
ent neural pathway, with fewer neurons directly connected to the plant, than the natural
arm control mechanism. Thus, we use simulations to compare the performance of different
decoding algorithms.

We simulated a BMI feedback control policy (Figure 3A) using simulated neurons tuned
to the “intended” direction of movement, which was always toward the target. The simulated
subject observed the current position of the cursor and calculated a velocity that would direct
it toward the target. The intended velocity direction was corrupted by zero-mean additive
white Gaussian noise bounded in the range (−π, π]. The noise variance was set to 0.13 rad2

based on the angular error variance of subject S’s natural arm movements while performing
the center-out task. The intended velocity vint

t was used to generate spike counts from
simulated neurons, in which the spike rate λi(t) of neuron i was given by

λi(t) = max
(
0, 〈PDi, v

int
t 〉+ bi

)

yt[i] ∼ Poisson (λi(t) · dt) .

Neuron i had a baseline rate of bi and preferred direction PDi [34]. The baseline firing
rate was fixed at 10 Hz for all neurons. 〈PDi, vint

t 〉 is the dot product between the neuron’s
preferred direction PDi and the intended velocity vint

t . Spike counts were sampled from a
Poisson distribution with minimum spike rate of 0. PDi was randomly sampled from the
distribution

∠PDi ∼ uniform[0, 2π), ‖PDi‖ =
14 spikes/sec
20 cm/sec

,

independently for each neuron. This method of simulating neural spiking activity was used
previously in a BMI simulation in which human subjects generated the intended velocity with
natural arm movements [35]. The simulation parameters for modulation depth (‖PDi‖) and
baseline firing rate have also been used previously [36]. Using this procedure, the firing
properties of 15 neurons were sampled once and kept fixed for all simulations. Simulations
used dt = 100 ms to match experimental conditions.

We simulated the same center-out task performed by the experimental subjects. The
exact same pseudorandom target sequence was used in every simulation. Decoder parameters
were initialized with no knowledge of neural firing properties. For simulations of KF BMI
decoders, elements of C were initialized by sampling from a standard normal distribution
and Q was initialized as Q = 0.001 · I15, in which IJ is the J × J identity matrix. SB-CLDA
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was used to retrain KF decoder parameters while the simulated subject operated the BMI
in closed-loop. Each decoding algorithm was simulated 1000 times. For each simulation,
the first 8 targets in the task target sequence were all different (spanning all the targets)
and were the only trials used for SB-CLDA training. SB-CLDA was terminated when 1
successful trial to each of the 8 targets was completed.
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3 Results

3.1 Optimal control requires that the BMI plant contain no unex-
pected dynamical effects

The BMI plant (Eq. 4) contains 4 different dynamical subsystems: T defines the dynamics
of p(t) and p(t + 1), S defines the dynamics of v(t) and p(t + 1), M defines the dynamics of
p(t) and v(t + 1), and N defines the dynamics of v(t) and v(t + 1). We might expect that
a physically realistic plant would (1) integrate cursor velocity to set the cursor position and
(2) allow independent control of horizontal and vertical velocity. In equation form, if s and
n are scalars in the range (0, 1), then the first condition corresponds to T = I2, M = 0, and
S = sI2 and the second condition corresponds to N = nI2.

However, this plant structure is not generated when PVKF decoder parameters are esti-
mated using standard MLEs, even when the training data come from natural arm movements.
In this study, we initialized the KF parameters A and W from hand movements which were
not perfectly straight. The MLE for A and W models path curvature as a correlation between
horizontal and vertical velocity. Thus, Ā may represent physically inaccurate dynamics even
when KF parameters are trained using data from natural arm movements. Our hypothesis is
that in closed-loop control, these modeling idiosyncrasies translate to plant dynamics which
are more difficult to control.

To understand how unexpected dynamics impact optimal feedback control, we simulated
optimal control of a cursor plant in which one dynamical property of the plant was unknown
to the controller. In other words, we simulated a situation in which the subject incorrectly
assumed that plant dynamics were physically realistic. The LQG solution determines the
optimal feedback controller using an “internal model” of plant dynamics. For our simulations,
the internal model was

Āinternal model =




I2 sI2 0
0 nI2 0
0 0 1



 . (7)

In the internal model, T = I2, M = 0, S = sI2, and N = nI2. We selected the values
s = 0.055 and n = 0.6 from typical values of experimental decoders. Based on this internal
model, optimal feedback control was used to execute a center-out reach. Figure 4A shows
the planned reach, which was identical for open-loop and closed-loop control simulations. In
the simulations below, the true Ā differed from Āinternal model by exactly one element. We
simulated open- and closed-loop control in this manner four times, where each simulation
perturbed a different parameter. Specifically, T[0,0] was replaced with its typical experimental
value of 0.98 to form

Ā∆T[0,0]
=





0.98 0 0.055 0 0
0 1 0 0.055 0
0 0 0.6 0 0
0 0 0 0.6 0
0 0 0 0 1




,
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M[0,0] was replaced with its typical experimental value of 0.03 to form

Ā∆M[0,0]
=





1 0 0.055 0 0
0 1 0 0.055 0

0.03 0 0.6 0 0
0 0 0 0.6 0
0 0 0 0 1




,

N[0,1] was replaced with its typical experimental value of -0.1 to form

Ā∆N[0,1]
=





1 0 0.055 0 0
0 1 0 0.055 0
0 0 0.6 −0.1 0
0 0 0 0.6 0
0 0 0 0 1




,

and ∆n = |nxx − nyy| was replaced with its typical experimental value of 0.1 to form

Ā∆(∆n) =





1 0 0.055 0 0
0 1 0 0.055 0
0 0 0.6 0 0
0 0 0 0.5 0
0 0 0 0 1




.

For clarity, we will refer to Ā as the plant for these simulations only, as B̄ is the same in each
simulation. Dynamical disturbances were created because the LQG feedback controller was
not updated after the plant was altered; the internal model used for planning and control
did not match the true plant dynamics.

Mathematical analysis shows that each perturbation has a predictable effect. Ā∆T[0,0]
has

a dynamic which drives |px|, the absolute value of the cursor’s horizontal position, to 0; the
dynamical effect grows stronger as the cursor moves farther from the origin. Ā∆M[0,0]

has a
dynamic which causes vertical velocity to increase as the position of the cursor moves towards
the top of the workspace, creating non-uniform velocity offsets in the vertical dimension
of the workspace. Ā∆N[0,1]

has a dynamic which causes horizontal velocity to decrease as
vertical velocity increases, resulting in counterclockwise curl dynamics. Finally, Ā∆(∆n) has
a dynamic which makes velocity “control memory” asymmetric, causing the cursor to respond
differently to velocity control inputs in the horizontal and vertical dimensions.

The simulated subject planned an open-loop control sequence using its internal model
of plant dynamics, Āinternal model. This control sequence was executed with each of the four
perturbed Ā matrices in turn. Figures 4B-E show this open-loop control executed after
modifying T[0,0], M[0,0], N[0,1] and ∆n, respectively. Figure 4B shows open-loop control of
Ā∆T[0,0]

, where at the end of the reach, the cursor drifts left toward the vertical axis where
|px| = 0. Figure 4C illustrates open-loop control of Ā∆M[0,0]

, where the cursor overshoots
the planned vertical endpoint due to the non-zero vertical velocity at the endpoint. Figure
4D depicts open-loop control of Ā∆N[0,1]

, where the cursor trajectory curls off to the left.
Intuitively, Ā∆N[0,1]

does not allow the cursor to move along the horizontal axis by controlling
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only the horizontal velocity. Lastly, Figure 4E demonstrates open-loop control of Ā∆(∆n),
where the trajectory was still a straight line reach but short of the target in the vertical
dimension. Simply put, open-loop control was unable to compensate for any of these effects
because they were unknown at the time of trajectory planning.

Open-loop control problems cannot be fixed simply by switching to closed-loop control,
as closed-loop control generated better but still suboptimal trajectories. Figures 4F-J show
closed-loop control executed after modifying T[0,0], M[0,0], N[0,1] and ∆n, respectively. For
modifications to T[0,0], M[0,0] and N[0,1], closed-loop control reduced the impact of dynamical
effects which were problematic for open-loop control, but did not eliminate them entirely.
Interestingly, Figure 4J shows that when controlling Ā∆(∆n), a curl effect was present in
closed- but not open-loop control. In this case, the control policy recognized that the cursor
was vertically short of the target, but because it was designed for a plant with symmet-
ric velocity dynamics, it made the horizontal velocity larger even though it was originally
correct. Therefore, unexpected decoder dynamics can have a deleterious effect on cursor
controllability, even when control inputs are generated in closed-loop without control noise.
These theoretical results imply that if subjects have a consistent control strategy, then BMI
performance will be optimized by a particular structure of Ā.

3.2 Closed-loop BMI performance correlates significantly with plant
properties

Plant properties were correlated with closed-loop BMI performance. We measured the closed-
loop BMI performance of subject S controlling the PVKF. These experimental blocks are
represented by the dashed box in Figure 2, in which the parameters of the PVKF were kept
fixed after SB-CLDA retraining. We analyzed 68 different PVKF parameter sets, which had
a diverse range of dynamical effects. The plant properties of each PVKF parameter set,
which were different in every session, were quantified using the measures ‖T − I2‖2,

∥∥B̄pos

∥∥
2
,

dist(N, nI2), ∆n,
∥∥B̄vel

∥∥
2
, ||N ||2, ||S||2 and voffset(target), as defined in Section 2.6. When

correlating performance against plant properties across sessions, we weighted each session by
the number of target-in trials, which varied greatly (min: 42, max: 438, mean: 231). This
weighting ensured that each trial, rather than each session, had equal statistical weight.
Table 1 summarizes the numerous significant correlations between decoder feature metrics
and performance.

Linear position dynamics (quantified by ||T − I2||2) and position control (quantified by
||B̄pos||2) were detrimental to target hold performance and reach accuracy. Table 1 shows
that correlations between numerous performance measures and ||T −I2||2 or ||B̄pos||2 suggest
that non-degenerate position dynamics and position control were detrimental to cursor con-
trollability. Interestingly, ||T − I2||2 had a small range of experimental values, as T closely
approximated I2: txx = 0.97±0.0144 (mean ± std), txy = 0.002±0.005, tyx = 0.002±0.005,
and tyy = 0.972 ± 0.009. This seemingly small difference between between T and I2 still
correlated significantly with performance variability.

Our results regarding the utility of linear position dynamics and position control are con-
sistent with two previous closed-loop cursor BMI experiments. These experiments showed
that linear decoders which only estimate velocity and integrate it to obtain position outper-
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form those which estimate position directly [15, 17]. Extending previous results, our data
show that PVKF performance improved continuously, without sharp changes, as position-
dependent dynamics became more degenerate. Velocity decoders, such as the VKF, may
be more controllable than position/velocity decoders, such as the PVKF, because velocity
decoders guarantee that both position dynamics and position control are degenerate. Con-
sistent with previous closed-loop BMI studies, PVKF performance improved when position
dynamics/control became more degenerate.

Asymmetries and cross-coupling in velocity dynamics were also correlated with perfor-
mance loss. The hold error rate increased as dist(N, nI2) increased while MV and ECD
increased as ∆n increased. Unsurprisingly, the two different measures of velocity dynamical
asymmetry correlated with different performance measures. Recall that dist(N, nI2) depends
on nxy and nyx whereas ∆n does not. These differences suggest that nonzero nxy and nyx

were more problematic for holding than they were for reaching, in which their impact was
mitigated by the much larger values of nxx and nyy. Performance improved when velocity
dynamics were symmetric and orthogonal.

Cursor sensitivity and control memory had perhaps the most predictable relationship
with performance. Higher sensitivity to neural control inputs, measured by ||B̄vel||2, cor-
responded to higher variability in reaching accuracy and reaching speed. Longer control
memory, measured by ||N ||2, corresponded to more frequent hold errors and less accurate
reaches, but also faster reach times. As ||N ||2 increased, past control inputs were “remem-
bered” longer, resulting in a faster cursor. Figure 5 shows sxx, syy, nxx, and nyy versus both
the hold error rate and the mean reach time. The hold error rate and mean reach time
had inverse relationships with nxx and inverse relationships with nyy. In other words, there
were no control memory settings that simultaneously optimized both hold performance and
reach speed. Performance improved when velocity sensitivity was not too high, whereas the
control memory represented a continuous tradeoff between hold performance and reaching
speed.

Non-uniform velocity offsets had target-specific correlations with hold performance, reach
times, and the accuracy of velocity control. Target-specific significance was expected because
M was not systematically varied during SB-CLDA. This resulted in different ranges of ve-
locity offsets for each target. The average M for this set of 68 PVKF parameter settings and
for subject S’s workspace is shown in Figure 6B. For targets 3, 4, 6 and 7, as numbered in
Figure 1, voffset(target) was correlated with increases in the mean reach time (r = 0.26, 0.3,
0.28, 0.31 respectively, with p < 0.05). In words, reach times increased when the velocity
offset vector pointed away from the center. For targets 2, 3, 4, 5 and 6, |voffset(target)| was
correlated with increases in hold error rate (r = 0.3, 0.26, 0.53, 0.45, 0.27 respectively, with
p < 0.05), regardless of whether the offset pointed toward or away from the center. Thus,
non-uniform velocity offsets represent a counter-intuitive tradeoff between hold performance
and speed. For all targets, VCD mean and standard deviation increased as voffset(target) in-
creased (r > 0.65 and r > 0.41 respectively, p < 0.001). Despite inaccuracies in the direction
of velocity control from B̄velyt indicated by increases in VCD, the overall angular accuracy
of the cursor measured by ECD did not vary significantly with voffset(target). This in turn
implies that either (1) subject S adapted to compensate for M or (2) dynamical effects due
to M were partly canceled by interactions with any one of the other dynamical effects.

It is important to understand why non-uniform velocity offsets might be beneficial to
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center-out task performance. The presence of non-zero M is best explained by examining
its MLE from manual control center-out data in which (1) the center of the workspace is the
origin, and (2) A is unconstrained. The center-out task inherently correlates hand position
and hand velocity. When the hand is at the periphery of the workspace, the task always
directs the hand back to the center. In other words, when the position of the hand is near
the periphery, the velocity is most likely to point to the center. Under these conditions,
the MLE for the KF learns the inherent correlation between vt and pt, where M ≈ −0.5I2

provides a simple linear method to capture the structure of the center-out task. Figure 6A
illustrates M = −0.5I2 when the center of the workspace is at coordinates (0,0). As the
cursor gets farther from the center, the offset driving the cursor back to the center becomes
proportionally larger. In this scenario, M creates a velocity offset pointing to the center of
the workspace along every task axis. However, in our experimental setup, the origin was not
at the center target, which made it impossible for non-uniform velocity offsets to be properly
aligned to every task axis. Figure 6B depicts velocity offsets in subject S’s BMI workspace
in which the M generating the non-uniform velocity offsets was obtained by averaging all 68
sessions in the preceding correlation analysis. For the average experimental M for subject S,
the velocity offsets are clearly not uniform over the workspace or symmetric over all targets.
Thus, we only observed the effects of M when the non-uniform velocity offsets were properly
aligned to the task axes.

Performance variability cannot be entirely attributed to cross-day learning or decoder
neural ensemble size. Hold error rate and mean reach time did not improve significantly over
the course of the experiment (p > 0.89 and p > 0.23, respectively), indicating that cross-
session learning did not play a significant role in day-to-day performance variability. The
number of units used in each decoder was uncorrelated with the hold error rate (p > 0.65) but
it was significantly correlated with improvements in mean reach time and reaching accuracy
(Table 1). However, the decoder features we analyzed were independent of neural ensemble
size, and for several performance measures these decoder properties were more significantly
correlated with performance than the number of units. Therefore, our results cannot be
explained as the inherent variability of BMI performance across sessions.

3.3 Optimizing linear BMI plant dynamics for reach accuracy and
hold performance

The preceding experimental results suggest two simple design rules for optimizing closed-loop
accuracy and hold performance.

First, eliminate position-dependent dynamics and position control. We found that the
hold error rate and several measures of reach accuracy improved when T → I2 and B̄pos → 0.
M represented a target-specific tradeoff between hold performance and reach speed. When
||M || decreased, we observed target-specific relationships in which the hold error rate would
decrease but mean reach time would increase. By proposing that M = 0, we explicitly
prioritize hold performance over speed.

Second, allow independent control of horizontal and vertical velocity. As we noted in
Section 3.1, horizontal and vertical velocity cannot be controlled independently if N '= nI2

or S '= sI2. For the KF, the requirement of independent horizontal and vertical velocity
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is satisfied by imposing condition that N = nI2, because properties of the Kalman gain
dictate that if N = nI2, then S = sI2 (A.3). We found that the hold error rate, movement
variability, and movement angular accuracy all improved as N → nI2. Furthermore, for both
nxx and nyy, values around 0.3 correspond to peak hold performance and values around 0.6
correspond to peak reach speed. These data suggest that nxx = nyy and nxy = nyx = 0 are
the optimal structure for velocity dynamics.

Together, these two conditions restrict the decoder to the form



p(t)
v(t)
1



 =




I2 sI2 p̄
0 nI2 v̄
0 0 1








p(t− 1)
v(t− 1)

1



 +




0

B̄vel

1



 y(t). (8)

Alternative justifications for the first restriction on on position-dependent plant dynamics
were given by Shenoy and colleagues, who pointed out that spike observations are actions
taken by the subject based on visual feedback of the decoded cursor position [17]. Since the
cursor position displayed to the subject causes changes to the observed neural activity, they
argue based on causal calculus that visual feedback should eliminate uncertainty about the
cursor’s position. Thus, the ReFIT-KF decoding algorithm described in [17] intervenes in
the Kalman gain computation in order to ensure that the estimator covariance of position
terms (Pt|t−1 as defined in A.1) should be 0. However, these causal interventions assume that
the subject always reacts immediately to visual feedback. Our simulations and experimental
data motivate similar modifications without explicit assumptions about reaction time. Thus,
the closed-loop perspective provides multiple ways to arrive at similar ways to improve BMI
performance.

3.4 Cross-session consistency of BMI plant dynamics
PVKF plant properties defined by Ā and B̄ changed during the course of SB-CLDA training
as parameter settings for C and Q changed. We are interested in how Ā and B̄ evolve
during SB-CLDA to determine if plant properties become more (or less) like the structure
described in Section 3.3 as the length of training time increases. As shown in our previous
work, C and Q converged in norm during the SB-CLDA parameter re-estimation process [18].
Here, we are interested in whether plant properties defined by Ā and B̄ (1) were consistent
across sessions and (2) converged to values that were favorable to accuracy and/or hold
performance.

Recall that SB-CLDA generates a sequence of parameter settings for C and Q, which
in turn define a sequence of settings for Ā and B̄. We compared each intermediate Ā and
B̄ generated during the SB-CLDA process. This is effectively a cross-session comparison of
properties due to C and Q because A and W were identical for the sessions included in this
analysis. Figure 7 shows median trajectories for Ā features during SB-CLDA training for
58 sessions with subject S, which corresponded to the dotted boxes in Figure 2. Decoder
properties were linearly interpolated between the time points when parameters were updated
(every 1-2 minutes) before the median trajectory was calculated. We utilized Kruskal-Wallis
analysis of variance (KW-ANOVA) with a significance level of p = 0.05 to determine if the
median final parameters varied significantly with the SB-CLDA training time (as defined in
Section 2.4). .
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Parameter trajectories for sxx, syy, nxx, and nyy converged to values corresponding to
peak hold performance. Figure 7 shows median trajectories for these parameters during
SB-CLDA retraining. Experimental values of sxx and syy started near 0.1 before SB-CLDA.
After SB-CLDA training, their final values were in the much lower range sxx = 0.067±0.004
(mean ± std) and syy = 0.066 ± 0.005. This created a “dampening” effect on the cursor
velocity, scaling down the velocity before it was integrated to update the position. Similarly,
nxx and nyy were approximately 0.8 before SB-CLDA, and decreased to nxx = 0.396 ± 0.06
and nyy = 0.413 ± 0.05. In other words, SB-CLDA consistently determined that a smaller
control memory, much smaller than the control memory prescribed by A and W trained
from manual control data, was beneficial. Across training times, final values for syy and nyy

did not change significantly (p > 0.05) whereas sxx and nxx had statistically significant but
small differences. Thus, SB-CLDA consistently drove the median values of sxx, syy, nxx, and
nyy toward values that corresponded to peak hold performance.

Conversely, SB-CLDA did not consistently eliminate dynamics that were correlated with
performance loss, even when training time was increased. Figure 7 also shows median
trajectories for ∆n, ||M ||2, ||B̄pos||2, and ||T − I2||2. Experimental data and simulations
suggested that these quantities should all be 0 for peak accuracy and hold performance,
but these values were not achieved during experimental SB-CLDA sessions. Trajectories for
∆n appear more like random walks than convergent trajectories, and these trajectories had
higher final values than initial values. Similarly, ||M ||2 typically had higher final values than
initial values. ||T−I2||2 decreased initially, but additional training time did not help to drive
||T − I2||2 to 0. Likewise, median trajectories for

∥∥B̄pos

∥∥
2

decreased initially but plateaued
at a non-zero value. KW-ANOVA indicated that for ∆n, ||M ||2, and ||T −I2||2, median final
values were not significantly different as training time increased; final values of

∥∥B̄pos

∥∥
2

had
statistically significant but extremely small differences as training time increased.

This analysis reveals the inherent limitations of using an unconstrained MLE to calcu-
late parameter settings for C and Q. Increasing training time insufficient to eliminate un-
wanted dynamical properties. Specifically, ∆n does not display convergent behavior whereas∥∥B̄pos

∥∥
2
, ||M ||2, and ||T − I2||2 consistently converge to sub-optimal values. Thus, modifica-

tions to the MLE used by SB-CLDA are required to generate consistent plant dynamics.

3.5 Simulation results: Modifications to plant dynamics improved
reach accuracy

Conceptually, the constraints we propose on Ā constitute a prior distribution on the feedback
control strategies we believe the subject will employ. The Ā we proposed to optimized
reach accuracy and hold performance is similar to the plant structure of the VKF, with
two important differences: N must be diagonal to ensure symmetric velocity dynamics and
s < dt to create a dampening effect on the velocity dynamics. Two options are available to
estimate dynamical systems parameters that are compatible with our prior beliefs about the
subject’s feedback control strategy.

As a first option, we can use constrained MLEs to estimate parameters A, W , C, and Q
that conform to Eq. 8. In this case, Eq. 8 is a symmetrically dampened VKF (SDVKF).
The decoder state still includes position terms, but position dynamics and position control
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are degenerate. The parameter estimation procedure constrains A, W , and CT Q−1C to have
diagonal velocity terms and degenerate position terms. It was insufficient to only constrain
the KF state-space model (A and W ) because the neural firing model (C and Q) also affects
plant dynamics through the Kalman gain (Eq. 13). For example, in our experiments with
subject S, A[0:1,0:1] = I2 and W[0:1,0:1] = 0 by design, but still we found that T '= I2 due
to interactions with the neural firing model parameters. In addition to constraining the
structure of Ā, we can also pre-specify exact values for n and s, which allows us to keep Ā
fixed across sessions even when C and Q must change due to changes in the neural decoding
population. Pre-specifying n and s may reduces the parameter space that SB-CLDA must
search over, which may be useful because SB-CLDA across many sessions for subject S
produced extremely similar final values for sxx, syy, nxx and nyy. Details of the parameter
estimation procedure are presented in A.3.

As a second option, Ā and B̄ can be estimated directly using stochastic gradient descent,
without explicitly estimating a set of KF model parameters:

B̄(t+1) = B̄(t) − µ∇B̄(t)E
[
||e(t)||2

]

= B̄(t) − µE
[
e(t)∇B̄(t)

(
x∗t − Āxt−1 − B̄(t)yt−1

)]

= B̄(t) + µE [e(t)yt−1]

= B̄(t) +
β

E [||yt−1||2]
E [e(t)yt−1] ,

where e(t) is the decoding error at time t, estimated as described in Section 2.4. This
recursion constitutes one step of a decoder retraining procedure which aims to minimize
E [||e(t)||2], the mean squared decoder error. In the final equality above, the step size has
been normalized by the “size” of the spikes used for control input, analogous to the normalized
least mean squares algorithm [27]. Ā can be similarly updated or it can be kept fixed to
designer specified values. Under this estimation procedure, the plant represented by Eq. 8 is
a symmetrically dampened velocity linear system (SDVLS) because it no longer utilizes the
KF generative spiking model. Closed-loop operation of this algorithm is described entirely
by Eq. 8.

We simulated closed-loop neural control of the PVKF, VKF, SDVKF, and SDVLS. Sim-
ulations occasionally failed to complete the training set due to poor random initialization of
decoder parameters. In these instances, the simulation was simply restarted. This problem
was unique to simulations and not present during closed-loop experiments in which initial
parameter estimates were better than purely random values. The SDVLS was initialized
with Ā as in Eq. 7 and with B̄ = 0. Each decoding algorithm was simulated 1000 times
and for each simulation we calculated the average ME and MV across all trials. Figure 8
shows that both the SDVKF and the SDVLS significantly outperformed the PVKF and the
VKF in mean ME and mean MV (KW-ANOVA, p < 10−4). The differences in mean ME
and mean MV between the SDVKF and the SDVLS were significant (p < 10−4), suggesting
that the SDVLS may generate more accurate trajectories than any of the other decoding
methods.

The SDVLS has three important advantages over the SDVKF: (1) it is computationally
simpler both for re-estimating parameters and calculating decoder outputs, (2) it reduces the
number of parameters that need to be re-estimated while retaining and (3) each parameter in
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the BMI system is easily interpretable. Both the SDVKF and the SDVLS encapsulate a “ran-
dom walk” model of hand movements in which the kinematic state of the hand is statistically
independent of hand kinematics two time steps in the past (or farther) if the kinematic state
one time step in the past is known. Several decoding algorithms with more realistic motion
models have been developed (e.g. [36, 37, 38]), which, like the KF, are inference algorithms
for different types of hidden Markov models (HMMs). The HMM structure conveniently
allows the kinematic model of cursor movements to be specified independently of the neural
firing model, which means that the kinematic model can change without drastically changing
the inference algorithm. The SDVLS is no longer an HMM inference algorithm, and loses
this potentially useful mathematical advantage. To our knowledge, there have been no stud-
ies assessing the closed-loop performance benefits of more complicated motion models over
the standard random walk model used by the KF. Thus, it is unclear whether the SDVKF
or the SDVLS is the better solution.

3.6 Closed-loop experimental results: Modifications to plant dy-
namics improved reach accuracy and endpoint hold performance

Subject J operated both PVKF (n = 7) and SDVKF (n = 4) decoders to perform the closed-
loop BMI center-out task. Parameters for both decoding algorithms were initialized using
visual feedback and re-trained using SB-CLDA.

Figure 9 shows two significant changes in task performance across sessions: (1) the median
hold error rate was significantly lower for SDVKF sessions than for PVKF sessions (KW-
ANOVA, p < 0.05) and (2) the median reach time was longer for SDVKF sessions than
PVKF sessions (p < 0.05). Furthermore, SDVKF reaches were also more accurate than
PVKF reaches. We compared the reach accuracy of SDVKF trials versus PVKF trials.
When comparing reach accuracy, each target-in trial received equal statistical weight as in
earlier analyses. The improvements in median reach accuracy were small but significant (by
KW-ANOVA): 7.8% reduction in median ME (p < 0.002), 8.4% reduction in median MV
(p < 0.001), 8.1% reduction in ECD (p < 0.001), and 5.1% reduction in VCD (p < 0.001).

Alterations to BMI plant dynamics had the expected effect on performance. Significant
improvements in the hold error rate and reaching accuracy indicate that applying our BMI
design rules to the plant sub-systems defined by T , B̄pos, N and S benefits cursor control-
lability. However, SDVKF reaches were also slower than PVKF reaches, as expected based
on our constraints to M . Forcing M = 0 prevented the SB-CLDA from learning the correla-
tion between cursor position and velocity inherent to the center-out task, making the slower
cursor. In place of faster reaches, we gained greater accuracy in reaching and significantly
better hold performance.
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4 Discussion
BMI plant dynamics must be carefully crafted so as to maximize closed-loop performance.
When PVKF parameters were estimated using MLEs, a diverse set of dynamical effects were
created. In closed-loop BMI experiments, several PVKF dynamical properties were either
detrimental to control or related to tradeoffs between speed versus reaching accuracy or speed
versus holding performance. Position drift and curl dynamics were detrimental to control
while the utility of non-uniform velocity offsets or longer control memory depended on the
performance measure. These results suggest that BMI performance can be improved by
systematically altering BMI plant dynamics to incorporate prior knowledge of the subject’s
feedback control strategy. The SDVKF and SDVLS decoders were instances of a general
framework we developed to precisely shape BMI plant dynamics. In simulation, BMI ac-
curacy improved when the SDVKF and the SDVLS were used to eliminate position drift,
non-uniform velocity offsets, and curl dynamics. Using data from closed-loop experiment
sessions, we compared the performance of SDVKF and PVKF trials. As expected, SDVKF
reaches were slightly slower but more accurate and had far fewer target hold errors.

Our principal finding is that task-specific performance can be optimized by crafting BMI
plant dynamics. Our general framework enabled us to shape BMI plant dynamics in order
to trade speed for improved accuracy and target hold performance. Ultimately, the optimal
tradeoff between speed and accuracy must depend on the BMI’s intended purpose. For
instance, a communication prosthesis might favor speed over accuracy if the communication
mechanism involved reaching to large targets; this tradeoff is also implementable with our
methods. Additionally, BMI plant dynamics can be adapted to a particular target layout. For
example, the center-out task has a highly structured relationship between cursor position and
velocity, and an automatic “return to center” dynamical feature can be built into the plant
itself by modeling this correlation. In fact, we showed why this occurs when KF parameters
are estimated using standard MLEs. This property may boost center-out performance at the
potential cost of generalization to other tasks. Independently, the memory of the plant can be
adjusted to compromise between speed and accuracy. More memory made the cursor faster
but also made reaches less accurate and made hold errors more frequent. Thus, the memory
time constant can be adjusted depending on the target size and hold time requirement,
which together determine the minimum accuracy required to accomplish the task. Such
adjustments are analogous to Fitts’ law, which describes the empirical relationship between
reach speed and target size in human hand movements [39]. Our approach provides the BMI
designer with the ability to either customize the BMI to a particular task or ensure that it
remains general-purpose.

Previous closed-loop BMI studies have used MLEs to model neural spiking [15, 17, 18,
25], but standard MLEs do not provide sufficient precision to craft plant dynamics. In
our experiment, standard PVKF MLEs consistently generated detrimental dynamics and
inconsistently favored hold performance over speed. To address these problems, the SDVKF
models the “neural noise” covariance Q as (1) unrelated to the cursor’s position and (2)
independent with respect to the cursor’s horizontal/vertical velocity. Furthermore, standard
MLEs for the KF are likely to create a different Ā if the neural ensemble used for BMI
decoding changes, for instance due to a loss of recorded cells from cell death or electrode
array shifts [40]. Unlike any previous estimation methods for the KF, the SDVKF can keep
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Ā identical across sessions, independent of parameter initialization. The ability to keep Ā
the same, independent of the neural ensemble, may prove beneficial for long-term subject
learning in BMI.

Previous demonstrations of high performance closed-loop BMIs have used a wide array
of algorithms, which have primarily been linear. Our mathematical analyses suggest that
these algorithms are more alike than they are different. As noted previously, the linear
dynamical system can be used to represent the calculations executed by any linear BMI
decoding algorithm. In fact, to optimize accuracy and hold performance, we proposed a
plant structure which is very similar to the population vector algorithm [5] with a first-
order low-pass filter applied to the decoded velocity. A study comparing the performance
of different decoding algorithms found that the most important design choices were related
to (1) modeling assumptions about the distribution of neural preferred directions and (2)
methods used to smooth cursor kinematics [20]. For linear methods, both of these design
choices are reflected in the dynamical system parameters Āt and B̄t. MLEs are arguably
the most principled approach to estimating parameters, but ultimately closed-loop BMI
performance may depend more on plant dynamics and subject learning than on parameter
estimation methods.

Ultimately, our results suggest that plant dynamics must synergize with the subject’s
control policy for optimal results. In several studies, monkey subjects have controlled BMI
decoders with rotation bias [19, 20, 21], as well as non-biomimetic linear mappings [11], using
the brain’s remarkable capacity to learn feedback control strategies. Consistent with our
framework, proficient control of these sub-optimal plants required changes to the subject’s
control policy. Recall that even without control noise, closed-loop optimal control simulations
did not produce perfectly straight trajectories when there was a mismatch between the
controller’s “internal model” and the true plant dynamics. Indeed, the “optimality” of optimal
control relies on knowledge of plant dynamics when control policies are designed. Therefore,
optimal BMI performance requires that either the subject’s control policy conforms to the
decoder or that the decoder conforms to the subject’s control policy. Our methods provide
a way to accomplish the latter.

In summary, we approximated the behavior of a BMI user as a simple feedback con-
troller designed using an internal model of the BMI plant. We used simulations, analysis
of experimental data, and in vivo closed-loop experiments to gain a better understanding
of BMI plant properties and their influence on performance. We developed a framework for
2D BMIs to predict the effects of altered plant dynamics on closed-loop performance. This
framework could be used to tailor BMIs to subject or task requirements. Furthermore, our
decoder parameter estimation methods generate BMI plant dynamics with less variability
than previous methods. This may be important for improving the clinical robustness of BMI
decoders by ensuring that plant dynamics remain consistent if and when neural decoder
parameters are retrained.
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Figures and Figure Captions

Figure 1: BMI task. While controlling a 2D BMI cursor, the subjects sat in a primate
chairs with their arms outside of the cursor workspace. Subjects were required to operate
the BMI in a center-out-and-back task. Visual feedback of the cursor’s decoded position
was presented to the subjects to enable closed-loop BMI operation. Recursive decoders, like
the KF, use internal decoder feedback which allows decoded cursor outputs to be generated
based on previous decoder outputs.

Figure 2: Diagram of SB-CLDA experimental paradigm for subject S. Decoder parameters
were initialized without overt contralateral arm movements, e.g. using neural activity cap-
tured while the subject passively watched a cursor moving under purely software control.
SB-CLDA was applied to improve closed-loop control performance (dotted box). After SB-
CLDA was complete, the decoder was used for center-out BMI (lower dashed box). In 11
sessions, we modified the KF matrices A or C to generate a “perturbed” decoder, without
using SB-CLDA to improve performance after the perturbation. In a different set of 11
sessions, after the subject had performed center-out BMI, SB-CLDA was utilized again to
further improve performance.
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Figure 3: System diagram of a closed-loop BMI plant. (A) The closed-loop BMI block di-
agram: The BMI is linear if (1) the mapping from spike counts to kinematic control input
can be written as a matrix multiplication, and (2) there is only a linear dependence on the
cursor’s previous kinematic state. (B) Graphical representation of Eq. 4: Mathematical
operations describing how the position and velocity of the cursor are updated with a linear
position/velocity BMI. Despite the simplicity of the KF state space model, the true underly-
ing dynamics are complicated by the Kalman gain, which involves all KF parameters (A.1).
The angular error measures ECD and VCD are defined as well.
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Figure 4: Simulations of open-loop and closed-loop optimal control using a fixed internal
model. (A) Open-loop planned reach from the center to the peripheral target, where the
trajectory begins as green and transitions to red at the end of the reach. The open-loop
control sequence was executed on a plant that was slightly different from the internal model
used for planning. Depending on the difference between the internal model and the true
plant, the open-loop trajectory was affected by (B) position drift, (C) non-uniform velocity
offsets, (D) counterclockwise curl and (E) undershooting. (F) Same reach planned as in A,
but control inputs were generated using closed-loop feedback control instead of open-loop
feedforward control. The closed-loop trajectory was distorted by (G) position drift, (H) non-
uniform velocity offsets, (I) counterclockwise curl and (J) clockwise curl due to closed-loop
control of an asymmetric system.
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Figure 5: The tradeoff between speed and holding accuracy is reflected in decoder parameters.
The figure plots the decoder parameters nxx, nyy, sxx, and syy versus the hold error rate and
mean reach time for 68 closed-loop BMI sessions with subject S. Each scatter point represents
one session and the darkness of each point depicts the number of trials initiated in that
session. The data shows significant correlations between nxx and the hold error rate/mean
reach time, but with opposite signs. A similar trend is shown for and nyy, indicating a
natural tradeoff between reaching speed and the ability to accurately stop the cursor. The
corresponding trend for sxx and syy was not significant.
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Figure 6: Visualization of non-uniform velocity offsets generated by the PVKF, superimposed
onto the workspace targets. (A) Non-uniform velocity offsets learned when training KF
parameters using manual control center-out data, as described in Section 3.2. The velocity
offsets all point to the workspace center, with increasing strength as the cursor gets farther
from the center. (B) Non-uniform velocity offsets as generated by the average experimental
decoder for subject S. The symmetry of the left figure is lost in experimental decoders
for reasons described in Section 3.2, meaning that each part of the workspace may have
significantly different velocity offsets.
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Figure 7: SB-CLDA parameter trajectories. Median parameter trajectories for the 5 most
common durations for which SB-CLDA parameter estimation was executed [20 min (n = 13),
25 min (n = 19), 30 min (n = 16), 35 min (n = 5), and 40 min (n = 5)] are shown for 8
decoder features. The evolution of each decoder feature for each of the 5 training times is
shown on a normalized time axis. Briefly, nxx, nyy, sxx, and syy consistently converge to
settings for peak hold performance, whereas ∆n does not appear to converge,

∥∥B̄pos

∥∥
2

and
‖T − I2‖2 converge to sub-optimal values, and ‖M‖2 converges to values correlated with a
loss in hold performance. These results indicate the need for modifications to the parameter
estimation procedure.
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Figure 8: Results of closed-loop BMI simulations. For 1000 independent simulation runs,
we trained the VKF, PVKF, SDVKF, and SDVLS using SB-CLDA. The bar plot shows
mean performance for each algorithm, with vertical bars indicating the standard deviation
of performance across simulation runs. The SDVKF and SDVLS outperformed the VKF
and the PVKF with statistically significant reductions in mean ME and mean MV (Kruskal-
Wallis ANOVA, p < 10−4).

Figure 9: Comparison of PVKF and SDVKF performance in closed-loop BMI experimen-
tal sessions. Subject J used both PVKF and SDVKF decoders in separate sessions. For
all sessions, decoder parameters were initialized from neural activity while the subject pas-
sively observed artificial cursor movements (visual feedback), and retrained using SB-CLDA.
SDVKF sessions had significantly higher mean reach times than the PVKF (KW-ANOVA,
p < 0.05), but also had significantly lower hold error rates, with no net change in the overall
success rate.
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Tables

HER Reach Time ME MV ECD VCD
Decoder features mean std mean std mean std mean std mean std

# units -0.05 -0.29
*

-0.46
***

-0.29
*

-0.33
**

-0.42
***

-0.46
***

-0.45
***

-0.45
***

-0.08 -0.04

||B̄pos||2 0.397
***

0.002 0.243
*

0.299
*

0.208 0.313
**

0.150 0.290
*

0.249
*

0.308
*

0.329
**

||T − I2||2 0.597
***

-0.24 -0.07 0.145 0.014 0.285
*

0.087 0.181 0.170 0.204 0.181

minn||N − nI2||2 0.257
*

0.151 0.106 0.100 0.060 0.232 0.167 0.166 0.205 0.065 0.134

|∆n| 0.181 0.005 0.178 0.097 0.108 0.192 0.249
*

0.253
*

0.301
*

0.015 0.060

||B̄vel||2 -0.06 0.252
*

0.402
***

0.218 0.118 0.262
*

0.074 0.274
*

0.155 0.201 0.135

||S||2 -0.52
***

0.236 -0.16 -0.42
***

-0.32
**

-0.41
***

-0.31
*

-0.35
**

-0.30
*

-0.26
*

-0.20

||N ||2 0.682
***

-0.30
*

0.135 0.567
***

0.428
***

0.570
***

0.425
***

0.440
***

0.384
**

0.242
*

0.238

Table 1: Significant correlations between decoder properties and performance measures.
Hold error rate is abbreviated as HER. Correlations were weighted by the number of target-
in trials per session. Asterisks denote p-values: p < 0.001 (***), p < 0.01 (**), and p < 0.05
(*).
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A BMI decoding algorithms

A.1 The Kalman Gain
Alternative derivations of the Kalman gain can be found in [27, 26]. We provide a condensed
derivation for completeness. Let us define

yt1
t0 = {yt0, · · · , yt1} .

As special cases, let yt = yt
0 and yN be the set of all observations.

In inference algorithms, we are concerned with finding the conditional distribution p (xt| ys).
For any s, the distribution p (xt| ys) is Gaussian. The Kalman filter is an efficient algorithm
for estimating p (xt| yt), whereas the Kalman smoother provides an estimate of p

(
xt| yN

)
.

The Kalman smoother is unsuitable for real-time estimation, as future observations are un-
available to a real-time estimator, and we do not derive it here. We denote estimates of xt

by the mean and variance of the estimator:

xt| ys ∼ N
(
x̂t|s, Pt|s

)
.

The Kalman gain can be found using basic properties of jointly Gaussian distributions. We
begin by partitioning the set yt:

p
(
xt| yt

)
= p

(
xt| yt, y

t−1
)
.

The latter expression has a simple form because the variables are jointly Gaussian. To derive
the distribution p (xt| yt), we first write the joint distribution p (xt, yt| yt−1):

[
xt

yt

]∣∣∣∣ yt−1 ∼ N
([

x̂t|t−1

Cx̂t|t−1

]
,

[
cov (xt| yt−1) cov (xt, yt| yt−1)

cov (yt, xt| yt−1) cov (yt| yt−1)

])
.

We fill in blocks of the joint covariance matrix with the covariance calculations:

cov
(
xt| yt−1

)
" Pt|t−1

cov
(
xt, yt| yt−1

)
= E

[
xty

T
t

∣∣ yt−1
]

= E
[
xt (Cxt)

T + xtq
T
t

∣∣∣ yt−1
]

= E
[
xtx

T
t

∣∣ yt−1
]
CT = Pt|t−1C

T

cov
(
yt, xt| yt−1

)
= cov

(
xt, yt| yt−1

)T
= CP T

t|t−1 = CPt|t−1

cov
(
yt| yt−1

)
= cov

(
Cxt| yt−1

)
+ cov

(
qt| yt−1

)

= C · cov
(
xt| yt−1

)
CT + cov (qt) = CPt|t−1C

T + Q.

The distribution becomes
[

xt

yt

]∣∣∣∣ yt−1 ∼ N
([

x̂t|t−1

Cx̂t|t−1

]
,

[
Pt|t−1 Pt|t−1CT

CPt|t−1 CPt|t−1CT + Q

])
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Multivariate Gaussian theory provides a simple way to write the conditional distribution
p (xt| yt) from the joint distribution p(xt, yt):

xt| yt ∼ N
(
x̂t|t, Pt|t

)

x̂t|t = x̂t|t−1 + cov
(
xt, yt| yt−1

)
cov

(
yt| yt−1

)−1 (
yt − Cx̂t|t−1

)

= (I −KtC) x̂t|t−1 + Ktyt; Kt = Pt|t−1C
T

(
CPt|t−1C

T + Q
)−1

Pt|t = cov
(
xt, yt| yt−1

)
cov

(
yt| yt−1

)−1
cov

(
yt, xt| yt−1

)

= Pt|t−1C
T

(
CPt|t−1C

T + Q
)−1

CPt|t−1,

where Kt as defined above is the Kalman gain. Finally, to complete the recursion, we
determine the distribution p (xt|yt−1):

xt| yt−1 ∼ N
(
x̂t|t−1, Pt|t−1

)

x̂t|t−1 = E
[
xt| yt−1

]
= E

[
Axt−1 + wt| yt−1

]

= AE
[
xt| yt−1

]

= Ax̂t|t−1

Pt|t−1 = cov
(
xt| yt−1

)
= cov

(
Axt−1 + wt| yt−1

)

= cov
(
Axt−1| yt−1

)
+ cov

(
wt| yt−1

)

= A · cov
(
xt−1| yt−1

)
AT + W

= APt−1|t−1A
T + W.

The quantities Pt|t−1 and Kt are closely related to each other and will be important when
modifying the KF parameter estimation procedure.

A.2 Maximum-likelihood estimation (MLE) for KF parameters
Maximum-likelihood for KF parameter estimation involves estimating the mean and variance
of Gaussians. Given samples {zt}N

t=1 where zt ∼ N (µ, Σ), the maximum-likelihood estimator
for the mean vector and covariance matrix are

max
µ,Σ

− log det Σ− tr

(
1

N

N∑

t=1

(zt − µ) (zt − µ)T

)
.

A proof that this is the maximum-likelihood problem to solve can be found in [31], which
also provides an analytical solution to the problem in the unconstrained case. The KF allows
the state space model and the observation model to be fit independently. To find A and W ,
we solve the optimization problem:

max
A,W

− log det W − tr

(

W−1 1

T − 1

T−1∑

t=1

(xt+1 − Axt) (xt+1 −Axt)
T

)

(9)
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subj. to A =





1 0 ∆ 0 0
0 1 0 ∆ 0
0 0 axx

v axy
v 0

0 0 ayx
v ayy

v 0
0 0 0 0 1




(10)

W =





0 0 0 0 0
0 0 0 0 0
0 0 wxx

v wxy
v 0

0 0 wyx
v wyy

v 0
0 0 0 0 0




. (11)

We will use the symbol ∆ in place of the dt used in the main text as it makes equations
below clearer. The entries of A are restricted so that the state space dynamics reflect physics:
cursor velocity is “integrated” to get cursor position. W is fit to model the residual error
not captured by the estimated A. W is similarly restricted to have uncertainty only in the
velocity terms, leaving position “predictions” to be made deterministically from the estimated
velocity.

A similar optimization problem is solved to estimate C and Q:

max
C,Q

− log det Q− tr

(

Q−1 1

T

T∑

t=1

(ut − Cxt) (ut − Cxt)
T

)

. (12)

Formulating the parameter estimation procedure as an optimization problem allows easy
application of convex parameter constraints.

A.3 Symmetrically damped velocity KF (SDVKF)
A.3.1 Parameter constraints.

In the following math, we will assume that the KF state is represented by

xt =
[

px(t) py(t) vx(t) vy(t)
]

Suppose that

A =

[
I2 dt · I2

0 aI2

]
, W =

[
0 0
0 wI2

]
, CTQ−1C =

[
0 0
0 dI2

]
(13)

and that we start the KF with exact knowledge of the initial state, i.e. P0|0 = 0. We define
a set of matrices where elements are formed by the Kronecker product of a 2×2 matrix with
I2:

F =

{
M

∣∣∣∣M =

[
a b
c f

]
⊗ I2, a, b, c, f ∈ R

}
.

An equivalent set definition is

F =

{
M

∣∣∣∣M =

[
aI2 bI2

cI2 fI2

]
, a, b, c, f ∈ R

}
.
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When we multiply or add matrices in F , the resulting product/sum remains in F . First
we will show that Pt|t−1 ∈ F under the KF model constraints above implies that Pt+1|t ∈ F ,
and then we will use this fact to show that it implies At satisfies Eq. 8 for all t. Calculations
that are merely matrix algebra we leave to MATLAB’s symbolic math engine (Algorithm 1)
and include only the final results here.

Pt+1|t and Pt|t−1 are related by the Riccati recursion:

Pt|t = Pt|t−1 − Pt|t−1C
T (CPt|t−1C

T + Q)−1CPt|t−1

Pt+1|t = APt|tA
T + W

= A
(
Pt|t−1 − Pt|t−1C

T (CPt|t−1C
T + Q)−1CPt|t−1

)
AT + W

= APt|t−1A
T − APt|t−1C

T (CPt|t−1C
T + Q)−1CPt|t−1A

T + W. (14)

Base case. P1|0 = W , which is not invertible given our constraints. To complete the base
case, we must have P2|1 ∈ F and P2|1 invertible:

P2|1 = AP1|0A
T − AP1|0C

T (CP1|0C
T + Q)−1CP1|0A

T + W

= AWAT − AWCT (CWCT + Q)−1CWAT + W.

The base case is complete if CT (CWCT + Q)−1C ∈ F and P2|1 is invertible:

CT (CWCT + Q)−1C = CT (Q + CW · I4 · CT )−1C

= CT
[
Q−1 −Q−1CW

(
I−1
4 + CT Q−1CW

)
CT Q−1

]
C,

where the last equality follows from the matrix inversion lemma. Substituting in the quan-
tities W and CT Q−1C as defined above shows that CT (CWCT + Q)−1C ∈ F . Thus, we can
evaluate P2|1:

P2|1 =
1

1 + dw

([
∆2w ∆aw
∆aw a2w + w + dw2

]
⊗ I2

)
.

Therefore, P2|1 ∈ F and P2|1 is invertible.

Inductive case. Using the matrix inversion lemma we can expand the matrix inverse
product in Eq. 14:

CT (CPt|t−1C
T + Q)−1C = CT Q−1C

[
I −

(
P−1

t|t−1 + CT Q−1C
)−1

CT Q−1C

]
.

which we can substitute in to get

Pt+1|t = APt|t−1A
T + W (15)

−APt|t−1C
T Q−1C

[
I −

(
P−1

t|t−1 + CT Q−1C
)−1

CT Q−1C

]
Pt|t−1A

T .

To show the general inductive case, let

Pt|t−1 =

[
eI2 fI2

fI2 gI2

]
∈ F,
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Algorithm 1 MATLAB symbolic algebra code to compute P2|1 and Pt+1|t under SDVKF
constraints.

d = sym ( ’d ’ , ’ r ea l ’ ) ;
A = [ eye ( 2 ) , dt∗ eye ( 2 ) ; z e ro s ( 2 ) , a∗ eye ( 2 ) ] ;
W = [ ze ro s ( 2 ) , z e ro s ( 2 ) ; z e ro s ( 2 ) , w∗ eye ( 2 ) ] ;
C_xpose_Q_inv_C = [ ze ro s ( 2 ) , z e ro s ( 2 ) ; z e ro s ( 2 ) , d∗ eye ( 2 ) ] ;

% base case
M = C_xpose_Q_inv_C − C_xpose_Q_inv_C∗W∗ inv ( eye (4 ) + . . .
C_xpose_Q_inv_C∗W)∗C_xpose_Q_inv_C ;
P_2given1 = A∗W∗A’ − A∗W∗M∗W∗A’ + W;

% induct ive case
f = sym ( ’ f ’ , ’ r ea l ’ ) ;
e = sym ( ’ e ’ , ’ r ea l ’ ) ;
g = sym ( ’ g ’ , ’ r ea l ’ ) ;
P = kron ( [ e , f ; f , g ] , eye ( 2 ) ) ;
P_tplus1_given_t = A∗P∗A’ + W . . .

− A∗P∗(C_xpose_Q_inv_C − C_xpose_Q_inv_C ∗ . . .
inv ( inv (P) + C_xpose_Q_inv_C )∗C_xpose_Q_inv_C)∗P∗A’ ;

KC = P∗(C_xpose_Q_inv_C − C_xpose_Q_inv_C∗(P^−1 + . . .
C_xpose_Q_inv_C)^(−1)∗C_xpose_Q_inv_C ) ;

A_bar = ( eye (4 ) − KC)∗A;

and let e and g be nonzero, which ensures that Pt|t−1 is invertible. Pt+1|t ∈ F can be verified
by computing Eq. 15:

Pt+1|t =
1

gd + 1

[
deg + e + 2∆f + ∆2g − df 2 (f + ∆g)a

(f + ∆g)a a2g + wgd + w

]
⊗ I2.

By induction, Pt+1|t ∈ F for all t. Therefore, the 3 conditions on A, W , and CT Q−1C
together imply that, for all t, Āt is in the form of Eq. 8:

Āt = (I −KtC) A

=
(
I − Pt|t−1C

T
(
CPt|t−1C

T + Q
)−1

C
)

A

=

[
I2

∆gd+∆−fda
gd+1 I2

0 a
gd+1I2

]
. (16)

Alternatively, we can also use Āt to calculate Pt+1|t:

Pt|t = Pt|t−1 − Pt|t−1C
T (CPt|t−1C

T + Q)−1CPt|t−1

= (I −KtC)Pt|t−1 = ĀtA
−1Pt|t−1

Pt+1|t = APt|tA
T + W = AĀtA

−1Pt|t−1A
T + W.
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The last equality above also implies that Pt+1|t ∈ F , providing an alternate proof for the
inductive case.

A.3.2 Constraining plant sensitivity parameters n and s.

One problem of interest may be to define numerical constraints on d, to narrow the range of
search values for n during experimental SB-CLDA.

For the PVKF, we observed that limt→∞ Pt+1|t = P . In the case of the SDVKF, the
limit P does not exist because the position elements of the system are no longer stable.
Consider, for example, a constant bounded velocity input to the system. The resulting
position is potentially unbounded, meaning that the uncertainty about the cursor’s position,
P (t + 1|t)[0:1,0:1] cannot converge.

Though P (t + 1|t)[0:1,0:1] is not convergent, P (t + 1|t)[2:3,0:1] = P (t + 1|t)[0:1,2:3] and
P (t + 1|t)[2:3,2:3], which represent uncertainty due to velocity elements, are convergent. In
fact, steady-state values of Ā and B̄ are independent of P (t + 1|t)[0:1,0:1]. We solve for the
convergent values using the knowledge that

lim
t→∞

Pt|t−1 = lim
t→∞

Pt+1|t.

This leaves us with the following equations:

g =
a2g + wgd + w

1 + gd
=

a2g

1 + gd
+ w (17)

f =
(f + ∆g)a

gd + 1
.

Solving for g and then f yields:

g = max





− (1− a2 − wd)±

√
(1− a2 − wd)2 − 4d(−w)

2d






β =
∆ga

gd + 1− a
.

We observe that f and g are fully determined given a, w, and d. Consequently, we can
calculate limt→∞At from Eq. 16. This implies that Āt and B̄t are convergent though
P (t + 1|t)[0:1,0:1] is not, a property which is due to the constraint on CT Q−1C. Let

Kt = Pt|t−1C
T

(
CPt|t−1C

T + Q
)−1

= Pt|t−1C
T

[
Q−1 −Q−1C

(
Pt|t−1 + CT Q−1C

)−1
CT Q−1

]

= Pt|t−1

[
CT Q−1 − CT Q−1C

(
Pt|t−1 + CT Q−1C

)−1
CT Q−1

]

= Pt|t−1

[
I − CT Q−1C

(
Pt|t−1 + CT Q−1C

)−1
]
CT Q−1.
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Let Cpos = C[:,0:1]. Our constraint on CT Q−1C requires that CT
posQ

−1Cpos = 0, which in turn
means that Cpos is in the null space of Q−1, i.e. CT

posQ
−1 = 0. Let Σ =

(
Pt|t−1 + CT Q−1C

)−1

which means that Σ ∈ F . Then
[
I − CT Q−1C

(
Pt|t−1 + CT Q−1C

)−1
]
CT Q−1

=

([
1 0

−dΣ[2:3,2:3] 1− dΣ[2:3,2:3]

]
⊗ I2

)
· CT Q−1

=

[
CT

pos

−dΣ[2:3,2:3]CT
pos +

(
1− dΣ[2:3,2:3]

)
CT

vel

]
Q−1

=

[
0(

1− dΣ[2:3,2:3]

)
CT

velQ
−1

]
.

Therefore,

Kt = Pt|t−1

[
0(

1− dΣ[2:3,2:3]

)
CT

velQ
−1

]
=

[
f

(
1− dΣ[2:3,2:3]

)
CT

velQ
−1

g
(
1− dΣ[2:3,2:3]

)
CT

velQ
−1

]
.

Thus, P (t+1|t)[0:1,0:1] has no impact on the Kalman gain. Note that that this expression
for the Kalman gain means that B̄pos '= 0, as implied by Eq. 8, but rather that B̄pos ∝ B̄vel.
Enforcing the requirement B̄pos = 0 requires a causal intervention to set f = 0 every iteration
of the KF loop [17].

To find corresponding constraints on n, we utilize Eq. 16:

n =
a

1 + dg
⇒ 1

1 + dg
=

n

a
.

We substitute this into Eq. 17:

g =
n

a
· a2g + w ⇒ g =

w

1− an
.

Therefore,

d =
1

g

a− n

n
=

(1− an) (a− n)

wn
.

A.3.3 Implementation details.

To apply the constraints in 13 to the KF model parameters, it is straightforward to apply the
constraints for A and W . We need only modify Eq. 10 so that av

xy = av
yx = 0 and av

xx = av
yy,

and modify Eq. 11 so that wv
xy = wv

yx = 0 and wv
xx = wv

yy.
We can find an appropriate C and Q by solving the following convex optimization prob-

lem:

max
C,Q

log det Q−1 − tr

(
Q−1 1

T

T∑

t=1

(yt − Cxt) (yt − Cxt)
T

)
(18)

subj. to CT Q−1C =

[
0 0
0 dI2

]

dmin ≤ d ≤ dmax.
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dmin and dmax are free parameters which can incorporate prior knowledge of the exact values
of the plant, as described in the previous section where we solved for n as a function of a, w,
and d. The constraint in the optimization problem above is always satisfiable: C = 0 and
Q = E

[
ytyT

t

]
satisfy the constraints trivially. One approximate solution is to estimate C[:,2:3]

the standard MLE and then find an appropriate Q. Using the CVX package for MATLAB
(CVX Research Inc, [41]), this problem can be solved in seconds. We can set constraints on
dmin and dmax based on the range of n values we wish to have in limt→∞ Āt. To re-estimate
parameters using SB-CLDA, we must run the re-estimation procedure for Q in a separate
thread; although the computation time is short, it is much longer than the BMI loop time
of 100 ms.

A faster alternative involves re-parameterizing the KF inference algorithm. We note from
Eq. 15 that to run the KF, we must know CT Q−1C and CT Q−1; it is not necessary to know
C and Q if these two products are known. This re-parameterization of the KF is a common
way to reduce computation cost when the number of observations is greater than the number
of state variables. Recall that the conditional model of neural firing is

yt|xt ∼ N (Cxt, Q) .

Using Gaussian distribution properties,

CT Q−1yt|xt ∼ N
(
CT Q−1Cxt, C

T Q−1QQ−1C
)

= N
(
CT Q−1Cxt, C

TQ−1C
)
.

If CT Q−1C is known, then CT Q−1 can be calculated using pseudo-inverse methods. Let
D = CT Q−1C. D is a symmetric positive semidefinite matrix, representing the covariance
of the random process

{
CTq−1

t

}+∞
t=1

where q−1
t ∼ N (0, Q−1). We can estimate D using the

constrained maximum likelihood problem below:

max
d

log det D−1
[2:3,2:3] − trace

(
D−1

[2:3,2:3]D̂[2:3,2:3]

)

subj. to D =

[
0 0
0 dI2

]
.

We estimate only D[2:3,2:3] because the constraints are such that D−1 does not exist, so the
standard maximum-likelihood program is not well-formed. D̂ is an estimate based upon the
training data, formed by calculating the maximum likelihood estimators Ĉ and Q̂ and then
calculating D̂ = ĈT Q̂−1Ĉ. This problem can be solved analytically:

D∗
[2:3,2:3] =

1

2

[
D̂[2,2] + D̂[3,3] 0

0 D̂[2,2] + D̂[3,3]

]
.

With this estimate of CT Q−1C, CT Q−1 can be estimated by regression.
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