
Fundamental limits and insights: from wireless

communication to DNA sequencing

Guy Bresler

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-43

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-43.html

May 1, 2013



Copyright © 2013, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
Advisor: David Tse



Fundamental limits and insights: from wireless communication to DNA
sequencing

by

Guy Bresler

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Engineering — Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor David Tse, Chair
Professor Kannan Ramchandran

Professor David Aldous

Fall 2012



Fundamental limits and insights: from wireless communication to DNA
sequencing

Copyright 2012
by

Guy Bresler



1

Abstract

Fundamental limits and insights: from wireless communication to DNA sequencing

by

Guy Bresler

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor David Tse, Chair

Interference is a central phenomenon in wireless networks of all types, occurring whenever
multiple users attempt to communicate over a shared medium. Current state-of-the-art
systems rely on two basic approaches: orthogonalizing communication links, or treating in-
terference as noise. These approaches both suffer from a swift degradation in performance as
the number of users in the system grows large. Recently, interference alignment has emerged
as a promising new perspective towards mitigating interference. The extent of the potential
benefit of interference alignment was observed by Cadambe and Jafar [1], who showed that
for time-varying or frequency selective channels, K

2 total degrees of freedom are achievable
in a K-user interference channel. In the context of the result, this means that interference
causes essentially no degradation at all in performance as the number of users grows. How-
ever, a caveat is that the number of independent channel realizations needed over time or
frequency, i.e. the channel diversity, is unbounded. Actual communication systems have only
finite channel diversity, and thus the practical implications of interference alignment are
uncertain: Just how much channel diversity is required in order to get substantial benefit
from interference alignment? The first part of this thesis focuses on this question. Our
first result characterizes the degrees of freedom for the three-user interference channel as a
function of time or frequency diversity. We next focus on spatial diversity, in the form of
multiple antennas at transmitters and receivers. We characterize the degrees of freedom for
the symmetric three-user multiple-input multiple-output interference channel. This result is
partially generalized to an arbitrary number of users, under a further symmetry assumption.

The second part of this thesis studies DNA sequencing from an information theory point-
of-view. DNA sequencing is the basic workhorse of modern day biology and medicine. Shot-
gun sequencing is the dominant technique used: many randomly located short fragments
called reads are extracted from the DNA sequence, and these reads are assembled to re-
construct the original sequence. During the last two decades, many assembly algorithms
have been proposed, but comparing and evaluating them is difficult. To clarify this, we
ask: Given N reads of length L sampled from an arbitrary DNA sequence, is it possible to
achieve some target probability 1− ε of successful reconstruction? We show that the answer
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depends on the repeat statistics of the DNA sequence to be assembled, and we compute
these statistics for a number of reference genomes. We construct lower bounds showing that
reconstruction is impossible for certain choices of N and L, and complement this by ana-
lytically deriving the performance of several algorithms, both in terms of repeat statistics.
In seeking an algorithm that matches the lower bounds on real DNA data, we are able to
methodically progress towards an optimal assembly algorithm. The goal of this work is to
advocate a new systematic approach to the design of assembly algorithms with an optimality
or near-optimality guarantee.
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Chapter 1

Overview

Wireless communication systems have become an almost indispensable part of our daily
lives. This has required extensive technological innovation, which is in turn made possible
by theoretical development. Information theory, in particular, has provided a unified and
powerful way to think about the design of high-performance wireless systems in terms of
capacity, the highest data rate that can be supported. The basic information theory approach
to understanding a communication problem has three steps: first, come up with a physical
model for the scenario; second, derive fundamental bounds on the capacity; and third, devise
a communication scheme that is either optimal or at least close to capacity. Within the
last 15 years this approach has resulted in a number of new ideas that have been adopted
in industry standards, two examples of which include use of multiple antennas (MIMO)
and opportunistic communication. Such progress has improved the performance of wireless
systems, and cemented the role of information theory in their design.

Moving forward, much of the research on wireless communication is focused on deal-
ing with interference. A prototypical scenario has some number of transmit-receiver pairs
(called links), each transmitter (a cellular base-station, for example) wishing to communi-
cate a message to a receiver (e.g. mobile phone). Each receiver attempts to decode the
message from the corresponding transmitter, but receives a superposition of the signals from
all of the transmitters; the challenge is to determine the desired message amongst the in-
terference. Current state-of-the-art communication systems deal with interference by either
orthogonalizing the links over time or frequency (in other words links take turns), or treat-
ing interference as noise. Both of these strategies result in performance degradation as the
number of users K grows.

A basic information theory model, the so-called interference channel, distills the problem
to its essence (Fig. 1.1). Finding the capacity of this channel, and near-optimal commu-
nication schemes, would presumably give insight into the design of good wireless systems.
Unfortunately, the capacity of even the two user interference channel has been an open
problem for nearly 40 years. About 6 years ago, Etkin et al. [2] made significant progress by
finding the capacity of the Gaussian interference channel with two users to within a single
bit per user. Such an approximation gives a lot of insight into the problem; however, for
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Figure 1.1: Interference channel model with K users. Receiver i, on the right, wishes to
decode a message from transmitter i, on the left. All other signals are interference.

more than two users getting such a tight bound seems difficult.
Instead of seeking to bound the capacity within a constant gap, recent work has focused

on the leading term in the capacity, captured by the degrees of freedom. The number of
degrees of freedom in a system is given by the total capacity normalized by the capacity of
a single point-to-point link, in the limit of high transmit power:

DoF = lim
P→∞

CΣ(P )
logP .

A single transmit-receive link has one degree of freedom, and so the degrees of freedom
achievable in a multi-user channel measures how efficiently the channel is being used relative
to the baseline scheme of orthogonalizing the links. Exceeding the baseline indicates an
interesting potential for an improved communication scheme. In the context of a different
communication channel, the MIMO X-channel, Maddah-Ali et al. [3] and subsequently Jafar
and Shamai [4] introduced the idea of interference alignment, and showed that up to 4/3
degrees of freedom were attainable. The basic idea is to align multiple interfering signals
at each receiver in order to reduce the effective interference, while still allowing the desired
signal to be discerned.

The extent of the potential benefit of interference alignment was discovered by Cadambe
and Jafar [1] in application to the K-user interference channel, when they showed that for
time-varying or frequency selective channels, K

2 total degrees of freedom are achievable using
a basic linear precoding scheme. In other words, somewhat amazingly, each user gets half
the degrees of freedom they would get if they were the only user in the system, independent
of the total number of users K.

The K
2 degrees of freedom result has the major caveat that the number of independent

channel realizations needed (in the form of parallel channels), i.e. the channel diversity, is
unbounded and in fact grows as O(K2K2). Actual communication systems have only finite
channel diversity, and the O(K2K2) requirement is prohibitive even for moderately many
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users. This issue stands as a major obstacle to determining whether interference alignment
will deliver on its initial promise in practical communication systems with many users.

How much channel diversity, precisely, is required in order to align interference? This
question motivates Chapters 2 of this thesis, which focuses on the K = 3 user case. We
focus on time or frequency diversity and characterize the degrees of freedom as a function
of channel diversity. Aside from time or frequency diversity, many systems have spatial
diversity, in the form of multiple antennas at transmitters and receivers. Chapter 3 studies
the degrees of freedom of interference channels as a function of the spatial diversity, obtaining
results for K = 3 users as well as a partial generalization to an arbitrary number of users.

In the last 65 years, information theory has achieved astounding success in guiding the
development of communication systems. Can the success of this way of thinking be applied
to other problems as well? The second part of this thesis aims to do just that, and studies
the problem of DNA sequencing from an information theory point of view.

DNA sequencing is the foundational procedure for modern genomics, with important
applications in all of biology and medicine. Since the sequencing of the Human Refer-
ence Genome ten years ago, there has been an explosive advance in sequencing technology,
resulting in several orders of magnitude increase in throughput and decrease in cost. Multi-
ple “next-generation” sequencing platforms have emerged, all based on shotgun sequencing.
First, many short subsequences (called reads) are extracted from a DNA sequence, and then
the reads are assembled to reconstruct the original sequence (Fig. 1.2). This is analogous to
putting together a gigantic jigsaw puzzle: the difficulty is in deciding which pieces belong
next to one another.

 genome length G ⇡ 109

read length L ⇡ 100

N reads

N ⇡ 108

ACGTCCTATGCGTATGCGTAATGCCACATATTGCTATGGTAATCGCTGCATATC

Figure 1.2: Shotgun sequencing: many short subsequences called reads are extracted from
the DNA sequence and then assembled to reconstruct the original sequence.

Assembling the reads is a major algorithmic challenge, and in the last two decades dozens
of assembly algorithms have been proposed to solve the problem [5]. Still, the assembly
problem is far from solved and current DNA sequencing leaves a lot of room for improvement.
According to Alkan et al. [6] each genome reconstruction only contains about 85% of the
true sequence—far from ideal. This state of affairs hinders scientific progress and limits
applications. For example, Baker [7] notes that a recent assembly of the chicken genome
found 36 genes to be missing that are all present in such disparate organisms as yeast,
plants, and other animals. But further careful analysis showed, as one might expect, that
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the genes were missing only from the assembly and not from the chicken itself. Other
sequenced organisms are similarly incomplete. Can the reads be assembled more cleverly,
resulting in improved genome assemblies? Or is the read data fundamentally insufficient,
making better assembly impossible?

The latter question amounts to feasibility: given a set of reads, is it possible to reconstruct
the original sequence? The feasibility question is a measure of the intrinsic information
each read provides about the DNA sequence, and for given sequence statistics depends on
characteristics of the sequencing technology such as read length and noise statistics. As such,
it can provide an algorithm-independent basis for evaluating the efficiency of a sequencing
technology.

Equally important, when assembly is possible, we would like to find algorithms that can
successfully reconstruct. We can compare algorithms based on their feasible regions, and
seek an algorithm whose performance approaches the theoretical limit.

Contributions
In general, both of the problems we study highlight the engineering significance of under-
standing information requirements. Finding fundamental limits brings out the salient fea-
tures, which in turn give engineering insight. For interference channels, our main message is
that diversity is a critical resource. We elucidate the role of channel diversity in interference
alignment, where diversity plays a new and different role than in previous works. Likewise
for DNA sequencing, we are able to extract a few simple statistics of DNA sequences that act
as sufficient statistics. These statistics, counting various types of repeats in the sequence,
determine the performance of various algorithms. The many complicated features of real
DNA are captured succinctly in a simple way.

Interference channel

We seek to understand the relationship between channel diversity and the ability to align
interference, and obtain several results in this direction.

• 3-user IC with time/frequency diversity: We derive the degrees of freedom for
the three-user interference channel as a function of time or frequency diversity. We
derive new converse arguments in this setting.

• Alignment depth: As part of this, we introduce the notion of alignment depth, a
measure of how much alignment is possible. We quantify the connection between finite
diversity and alignment depth.

• 3-user IC with spatial diversity: We next focus on spatial diversity. For the sym-
metric three-user MIMO interference channel with M transmit and N receive antennas,
we determine the possible alignment depth as a function of parameters M,N , thereby
characterizing the degrees of freedom.
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• K-user MIMO IC: For the many-user MIMO interference channel, we prove a general
necessary condition on the parameters to allow alignment. A consequence is that at
most two degrees of freedom are attainable using spatial diversity, in contrast with
the K/2 result of [1] for time/frequency diversity. Spatial diversity is thus only mildly
useful for interference alignment.

• K-user MIMO IC: In the fully symmetric case of N antennas at both the transmit-
ters and receivers, we show that the general necessary conditions are also sufficient,
providing a characterization of the degrees of freedom.

DNA sequencing

We next turn to the problem of DNA sequence assembly. We focus on the most basic shotgun
sequencing model where N noiseless reads of a fixed length L base pairs are uniformly and
independently drawn from a DNA sequence. Our results include the following items.

• Data-centric view: A difficulty is that there are no particularly good probabilistic
models for DNA sequences. Instead, we propose a data-centric view. How do assembly
algorithms perform on typical DNA data? What are the features of DNA that actually
affect performance? We show that the performance of several algorithms, as well as
lower bounds, can be expressed in terms of repeat statistics. These serve as sufficient
statistics for algorithm performance on DNA sequences.

• Pipeline to determine feasibility of assembly: We formulate feasibility as a basic
information theoretic question. Our approach results in a pipeline, which takes as
input a genome sequence and desired success probability 1− ε, computes a few simple
repeat statistics, and from these statistics produces a feasibility plot that indicates for
which read length L and number of reads N reconstruction is possible.

• Systematic design and near-optimal algorithm: Our approach elucidates how
various design choices of existing algorithms affect performance. By integrating ideas
from existing algorithms, we produce a modification that performs close to optimality
on a wide range of genome statistics. In the cases where the algorithm is not optimal,
we can bound the gap from optimality.

We contrast two ways to support analytical predictions, each with its own advantages.
One approach is to produce rigorous proofs, and the second is to produce experimental re-
sults matching analytical predictions. The work on wireless communications, in the tradition
of information theory, is supported by rigorous proofs of the various statements. The DNA
sequencing work is only partially rigorous. In particular, we prove correctness of the sufficient
conditions for the various algorithms, but do not prove rigorous probabilistic bounds. In-
stead, we produce simulations showing that the predictions given by the analysis are correct.
Thus, in the style of physics results, the theoretical predictions are supported by matching
experiments.

5
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Chapter 2

Three-user interference channel:
degrees of freedom as a function of
channel diversity

2.1 Introduction
Interference is a central phenomenon in wireless networks of all types, occurring whenever
multiple users attempt to communicate over a shared medium. Cellular networks in densely
populated areas, for example, are severely limited by interference. To address this problem,
the research community as well as the wireless communications industry have invested a great
deal of effort in trying to develop efficient communication schemes to deal with interference.
Still, the current state-of-the-art systems rely on two basic approaches: orthogonalizing
communication links, or treating interference as noise. These approaches both suffer from
a swift degradation in performance as the number of users in the system grows large. This
behavior is captured in the seminal work of Gupta and Kumar [8], in which they introduced
a scaling law formulation for wireless ad hoc network capacity. They analyzed a multi-hop
communication model based on the classical interference-avoidance approaches, with the
somewhat pessimistic result that a dense system with K users in a small area can achieve a
total throughput of only O(

√
K), i.e. a vanishing throughput per user.

Moving beyond the simple multi-hop communication schemes allowed by [8], a natural
question is whether this limitation is fundamental, or if better performance is possible by con-
sidering more general communication schemes. Indeed, much better performance was shown
to be possible when Ozgur et al. [9] invented a hierarchical MIMO scheme that achieves
linear scaling of total throughput in dense ad hoc wireless networks. This means that such
networks are not inherently interference-limited as previous believed. Drawbacks of the hi-
erarchical MIMO scheme include the fact that a lot of cooperation between users is required
in order to communicate, the proof of optimality rests on the assumption the users are ran-
domly and uniformly located which may not be true in practice, and finally it is not entirely



clear when the (asymptotic) results apply to a finite system. Aside from hierarchical MIMO,
interference alignment has emerged as a new perspective towards mitigating interference.

Interference alignment offers the potential for considerable increase of performance for
interference-limited communication, with little coordination required between users (aside
from channel state), and can be applied to any number of users in the system with arbitrary
locations (see e.g. [10]). The basic idea is to align multiple interfering signals at each receiver
in order to reduce the effective interference, while still allowing the desired signal to be
discerned. Interference alignment was introduced by Maddah-Ali et al. [3] and subsequently
clarified by Jafar and Shamai [4], both in the context of the MIMO X-channel. But the extent
of the potential benefit of interference alignment was observed by Cadambe and Jafar [1] in
application to the K-user interference channel, when they showed that for time-varying or
frequency selective channels, K

2 total degrees of freedom are achievable using a basic linear
precoding scheme. The number of degrees of freedom in a system, defined later, is given
by the total capacity normalized by the capacity of a single point-to-point link, in the limit
of high signal-to-noise ratios (SNR). In other words, somewhat amazingly, each user gets
the same degrees of freedom as with only two users in the system, independent of the total
number of users K.

The K
2 degrees of freedom result, achieving linear scaling with number of users, has two

caveats. First, it is not clear if such linear scaling is possible at any finite SNR. Second, the
number of independent channel realizations needed (in the form of parallel channels), i.e.
the channel diversity, is unbounded and in fact grows as O(K2K2). Actual communication
systems have only finite channel diversity, and the O(K2K2) requirement is prohibitive even
for moderately many users. These two issues stand as major obstacles to determining whether
interference alignment will deliver on its initial promise in practical communication systems
with many users.

Several works address the first concern, studying interference alignment at finite SNR
rather than the asymptotic degrees of freedom setting. Ozgur and Tse [11] showed that the
scheme of [1] does in fact achieves linear scaling of total rate as the number of users grows, for
a certain random phase channel model. The basic scheme, being the same as [1], still requires
exponential channel diversity, namely O(2K2). Nazer et al. [12] introduced a new scheme
named ergodic interference alignment, whereby each user can obtain 1

2 of the rate possible
with no interference, i.e. linear scaling at the best possible rate. Ergodic alignment needs
a mild symmetry assumption on the channel fading process, but more significantly requires
diversity O(K2K2). These finite SNR results show that the degrees of freedom formulation
on its own is not necessarily misleading, and establish as the main question: just how much
channel diversity is required in order to get substantial benefit from interference alignment?

Grokop et al. [13] examine the basic assumptions of [1] through the lens of a different
channel model and arrive again at the conclusion that alignment is viable at finite SNR;
however, they are additionally able to make headway on the finite channel diversity question.
First they showed that for a line-of-sight channel model, spectral efficiency can increase
linearly with number of users K, even for any fixed transmit power, as long as the bandwidth
scales at a rateO(K2K2). In their model, bandwidth roughly corresponds to channel diversity.
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They next provided a partial converse, showing that if the bandwidth scales sufficiently
slowly (approximately at rate O(K/ logK)), then linear scaling is impossible. This is, to
our knowledge, the only result showing a limitation on alignment in terms of diversity, in a
situation where linear scaling of throughput in number of users is possible.

Despite major effort by researchers over the last six or so years, little is known about
how diversity affects the ability to align interference. Because [1] uses linear (vector space)
precoding, we can attempt to simplify matters by restricting to the class of such vector
space schemes (defined carefully in Sec. 2.2). Specifically, we let DoF(L,K) denote the total
degrees of freedom achievable using vector space schemes in the K-user interference channel
with diversity L (given by L real parallel channels).

DoF(L,K)

L =1

L = 1

K = 3

L = 2

L = 3

1

K = 4 general K

11

6/5

K/2
[CJ08]

[CJW10]

3/2 2

L = 4

Figure 2.1: Previously known values of DoF(L,K). We fill in the K = 3 column.

DoF(L,K) is known for a few parameter values. One case is easy: for L = 1, all channels
are proportional to the identity, so all receivers observe essentially the same output. It
follows that each receiver can decode all the transmitted signals, so the degrees of freedom
is limited to that of a multiple-access channel, i.e. at most one. Conversely, one degree of
freedom is trivially achievable, hence for any K we get

DoF(1, K) = 1 .

Next, Cadambe et al. [14] showed for the complex scalar interference channel with K = 3
users that there are 6/5 degrees of freedom. The complex scalar channel translates to L = 2
real parallel channels, and thus

DoF(2, 3) = 6/5 .

Beyond this nothing is known besides the original result of [1], which amounts to

DoF(∞, K) = K/2 .
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The known results are summarized in Fig. 2.1. In this chapter we make some progress, filling
in the entire K = 3 column (for all values of channel diversity L). To simplify notation in
the remainder of the chapter, since K = 3 always, we write DoF in place of DoF(L, 3).

Main result
The main result of this chapter characterizes the degrees-of-freedom for three users as a
function of channel diversity.

Theorem 1. The three-user parallel real-valued interference channel has the following degrees-
of-freedom as a function of the channel diversity L when restricted to vector space strategies:

DoF = 3D
2D + 1 ,

where D := 2L− bL/2c − 1. This holds for generic channel gains.

The key innovation is the concept of alignment depth, which describes how intertwined
the transmit signal spaces are due to alignment (see Fig. 2.2). If transmitter 1 transmits
along a vector v1, then transmitter 2 can choose a vector v2 that is aligned with v1 at receiver
3. This constitutes an alignment path of depth 2 and results in a saving, because receiver 3
observes only one interference dimension rather than the two it would normally have if v1
and v2 were arbitrary. Transmitter 3 now chooses a vector v3, and it can choose v3 to be
aligned with v2 at receiver 1, creating an alignment path of depth 3, and this process can
continue arbitrarily. Fig. 2.2 depicts an alignment path of depth 4 starting at transmitter 1.

Tx2 

Tx3 

Rx1 Tx1 

Rx2 

Rx3 

Figure 2.2: Alignment path of depth 4.

The resources saved due to an alignment path of depth D can be heuristically computed
as follows. The first vector in the alignment path, say v1, is not aligned with any other
vectors, and occupies 3 total dimensions, one at each receiver. The second vector in the
alignment path, v2 in the previous paragraph, occupies only 2 additional dimensions at the
receivers. The same is true for each successive transmit vector in the alignment path. The
total number of dimensions occupied at all three receivers is thus 2 · (D−1) + 3 = 2D+ 1, as
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compared to the 3D dimensions that would ordinarily be occupied if no vectors were aligned.
The ratio is the quantity DoF = 3D/(2D+ 1) in Theorem 1. If we could take D →∞ there
would be 3/2 degrees of freedom, in agreement with the K/2 result of [1], but for finite
channel diversity the alignment depth must be finite as well.

It turns out that for each value L of channel diversity there is a corresponding maximum
allowed alignment depth D = 2L−bL/2c−1. We show that alignment at depth greater than
D forces the desired signal into the interference space at some receiver, thereby preventing
decoding. The intuition is that it is actually not difficult to align the signals—for example
all users can transmit in the same frequency band—but at some point one loses the ability
to distinguish the desired signal from the interference. This occurs because all the transmit
vectors on an alignment path are related to one another in a rigid manner through the channel
matrices. Once the alignment path is longer than D, the interfering signals (by virtue of the
channel matrices all lying in an L-dimensional vector space) are able to emulate the direct
channel. This highlights the role of channel diversity: the channel between transmitter and
intended receiver needs enough diversity, or richness, to transform the desired signal to a
part of the received space free of interference.

The achievable strategy for odd values of L is due to Cadambe and Jafar [1], with a
slight modification required for even values of L. It essentially consists of creating alignment
paths of maximum depth. Our contribution is thus mainly in showing the optimality of this
approach, together with a precise understanding of the relationship between diversity and
alignment depth.

Overview
The rest of the chapter is organized as follows. In Section 2.2 we present the parallel in-
terference channel model as well as discuss vector space strategies and degrees of freedom.
Section 2.3 describes the strategy achieving optimality in Theorem 1. In Section 2.4 we prove
the converse to Theorem 1. Finally, Section 2.5 contains a lemma on linear independence
used in the proof of both the achievability and converse parts of the main result.

2.2 Formulation

Interference channel model
For i = 1, 2, 3, receiver i wishes to obtain a message from the corresponding transmitter i.
The remaining signals from transmitters j 6= i are undesired interference. The three-user
real Gaussian interference channel is represented by the input-output relationship at each
time-step

yi =
3∑
j=1

H̄jixj + zi . (2.1)
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Here for each user i we have xi,yi, zi ∈ RL, where xi is the transmitted signal, yi is the
received signal, and zi ∼ N (0, IL) is additive isotropic white Gaussian noise. Channel
diversity, in the form of L independent channel realizations (for example in a time-varying
or frequency-selective fading channel), is modeled via matrices H̄ij ∈ RL×L, assumed to be
diagonal with generic entries:

H̄ij =


hij(1)

hij(2)
. . .

hij(L)

 .

In particular, entries drawn from a non-degenerate continuous distribution will be generic.
Each input must satisfy an average power constraint over a length-T block, 1

T
E(||xTi ||2) ≤ P .

Since our goal is to understand the effect of finite channel diversity, we will allow T uses
of the channel, but the diversity is to remain fixed at L. To illustrate this, a simple scenario
is L independently faded frequency bands, but with constant channels for the duration of
communication. Using T time-slots amounts to scaling the ambient dimension to N = T ·L,
with a resulting change in vectors xi,yi, zi ∈ RN and channel matrix

Hij := IT ⊗ H̄ij ∈ RN×N . (2.2)

The Kronecker product IT ⊗ H̄ij places T identical blocks of H̄ij along the diagonal. We
emphasize that throughout this chapter, the nonzero entries hij(1), hij(2), . . . , hij(L) of the
H̄ij matrices are assumed to be generic; we will refer to generic channel matrices of diversity
L, meaning Hij are of the form IT ⊗ H̄ij. Obviously, the entries of Hij are repeated if T > 1
and are not generic.

We note that the matrices Hij are generically invertible. The main consequence of finite
channel diversity for the parallel channel model is that the set of products of matrices and
inverses

H :=
{∏

Hαij
ij : αij ∈ Z

}

spans an L-dimensional real vector space, span(H) ∼= RL. When we talk about linear
independence of channels it is in this ambient space.

Vector space schemes and degrees of freedom
We restrict the class of communication schemes to so-called vector space schemes. In this
context degrees-of-freedom has a simple interpretation in terms of the dimensions of the
transmit subspaces, described in the next paragraph. However, note that one can more
generally define the degrees-of-freedom region in terms of an appropriate high transmit-
power limit P →∞ of the Shannon capacity region C(P ) normalized by logP ( [1], [3]). In
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that general framework, it is well-known and easy to show that vector space schemes give a
concrete non-optimal achievable strategy with rates

Ri(P ) = di log(P ) +O(1), 1 ≤ i ≤ K .

Here di is the dimension of transmitter i’s subspace and P is the transmit power.
We now describe what is meant by vector space scheme. Suppose transmitter j wishes

to transmit a vector x̂j ∈ Rdj of dj data symbols. These data symbols are modulated on
the subspace Vj ⊆ RN of dimension dj, producing the input signal xj = Vjx̂j, where Vj is
a N × dj matrix whose column span is Vj. The signal xj propagates to receiver i through
the channel as HjiVjx̂j The dimension of the transmit space, dj, determines the number
of data streams, or degrees-of-freedom, available to transmitter j. With this restriction to
vector space schemes, the output is given by

yi = HiiVix̂i +
∑

1≤j≤K
j 6=i

HjiVjx̂j + zi , 1 ≤ i ≤ K . (2.3)

The desired signal space at receiver i is HiiVi, while the interference space consists of∑
j 6=i HjiVj, i.e. the span of the undesired subspaces as observed by receiver i.

In the regime of asymptotically high transmit powers, in order that decoding can be
accomplished we impose the constraint at each receiver i that the desired signal space HiiVi
is complementary to the interference space∑j 6=i HjiVj. Equivalently, each vector yi ∈ HiiVi+∑
j 6=i HjiVj in the receive subspace has a unique decomposition yi = u + v with u ∈ HiiVi

and v ∈ ∑j 6=i HjiVj, so the desired signal can be ascertained. For later reference we record
an equivalent condition.

Decoding condition: HiiVi
⋂(∑

j 6=i
HjiVj

)
= {0} , 1 ≤ i ≤ 3 . (2.4)

The total degrees of freedom achieved by a given vector space strategy is the sum of
the transmit dimensions normalized by the number of dimensions achievable by one user in
isolation (which is just the total ambient dimension N). Thus the maximum total degrees
of freedom achievable is

DoF = max
V1,V2,V3

satisfying (2.4)

d1 + d2 + d3

N
.

The goal of this chapter is to determine DoF as a function of L.

2.3 Achievable strategy

Achievable strategy description
The achievable strategy has a straightforward objective: it creates maximal possible align-
ment between vectors from interfering users. Alignment is done by pairwise alignment of in-
dividual vectors (Fig. 2.3). To see how this works, suppose user 1 transmits a vector v1. Then
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Figure 2.3: The vector at transmitter i+ 1 is aligned with the vector at transmitter i.

user 2 selects the vector v2 = H−1
23 H13v1, which is chosen in order that H23v2 = H13v1. These

vectors are aligned at receiver 3, and create only one dimension of interference. This process
is continued by user 2 transmitting a vector v3 = (H−1

31 H21)v2 = (H−1
31 H21)(H−1

23 H13)v1,
which aligns v2 and v3 at receiver 1: H21v2 = H31v3. This process continues iteratively to
form alignment paths.

To more succinctly describe the vectors obtained by iterating the pairwise alignment
construction (c.f. Fig. 2.3) we define the alignment matrices

S1 = H−1
23 H13 , S2 = H−1

31 H21 , S3 = H−1
12 H32 . (2.5)

Matrix Si takes a vector vi ∈ Vi at transmitter i and produces a vector vi+1 = Siv ∈ Vi+1
such that vi and vi+1 are aligned at the interfered receiver i + 1 (recall that all indices are
interpreted modulo 3).

The optimal strategy successively aligns the signals from interfering users up to a total
of

D = 2L− bL/2c − 1 (2.6)

vectors (Fig. 2.2 depicts the case D = 4). We call D the depth of the alignment. Before
giving more detail, we describe the achievable strategies for L = 3 and L = 4.

Example: L = 3
The scheme for odd values of L (and L = 3 in particular) was discovered by [1]. It turns out
that time extension T = 1 suffices, with a resulting ambient dimension N = T · L = 3. For
L = 3, the alignment depth as determined by (2.6) is D = 2 · 3−b3/2c− 1 = 4. This means
we form a sequence of vectors of length 4, starting at (say) user 1:

v1 = x ∈ V1 v2 = S1x ∈ V2 v3 = S2S1x ∈ V3

v′1 = S3S2S1x ∈ V1

By construction, the interference H21v2 = H31v3 is aligned at receiver 1, which leaves two
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Figure 2.4: Alignment path of depth 4.

free dimensions for the signal vectors H11v1 and H11v′1. Similarly there is one interference-
free dimension at each of receivers 2 and 3, which is occupied by the desired signals H22v2
and H33v3, respectively. Thus there are enough interference-free dimensions at each receiver
to allow the signal to fit. It must be checked that the signal is in fact complementary to the
interference, and this is done for the more general case below.

Example: L = 4
In the case L = 4, the alignment depth is D = 2 · 4 − 4/2 − 1 = 5. This means we form a
sequence of vectors of length 5, starting (say) at user 1:

v1 = x ∈ V1 v2 = S1x ∈ V2 v3 = S2S1x ∈ V3

v′1 = S3S2S1x ∈ V1 v′2 = S1S3S2S1x ∈ V2

We start by quickly checking the number of interference dimensions at each receiver, as for the
L = 3 case above. This is made easier by the L = 3 computation, since the only additional
vector is v′2, which is aligned to v′1 at receiver 3, and creates an additional interference
dimension at receiver 1. Thus receiver 1 has two signal dimensions and two interference
dimensions, receiver 2 likewise has two signal dimensions and two interference dimensions,
and receiver 3 has one signal dimension and only two interference dimensions. Receivers 1
and 2 fully utilize their receive spaces, but receiver 3 has a dimension left over. Not all
dimensions are utilized, so the scheme is inefficient. How can we make use of the extra
dimension at receiver 3?

The converse argument in Section 2.4 shows that alignment at a depth greater than D = 5
causes the decoding constraint to be violated. Hence we cannot fill the extra dimension by
creating a longer alignment path. Instead, we would like to create more vectors, but still
aligned at the maximum depth D = 5. This is done by introducing a time-extension T > 1,
which increases the ambient dimension N = T · L. More alignment paths of length 5,
completely unrelated to one another, can now be introduced.

If each user initiates an alignment path, we require 4 + 4 + 3 = 11 ambient dimensions at
each receiver. But we cannot choose N = 11, being indivisible by L = 4, so we use a time
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extension T = 11 and N = 11 · 4 = 44. Correspondingly, instead of a single alignment path
initiated at each transmitter, 4 alignment paths are initiated.

Use of the time extension parameter T allows left-over dimensions to be occupied by virtue
of symmetrizing the alignment path construction, and amounts to a technicality required in
order to make the number of incoming vectors to each receiver be equal to N .

We summarize the performance obtained in the L = 4 example: di = L(3L/2− 1) = 20,
T = 11, and N = 44, giving DoF = 3 · 20/44 = 15/11.

General achievability argument
The construction is a straightforward generalization of the special cases L = 3 and L = 4
above. The notation introduced here will be used again in the converse argument.

We generalize the alignment matrices S1,S2,S3 defined in (2.5), where Si takes a vector
vi ∈ Vi and produces a vector Sivi ∈ Vi+1 aligned with vi at receiver i− 1. Let

Si↑n :=
n∏
j=1

Si+j−1 (2.7)

be the matrix taking a vector vi ∈ Vi at transmitter i to the vector Si↑nvi ∈ Vi+n obtained
by iterating the pairwise alignment construction n − 1 times. The vector Si↑nvi ∈ Vi+n is
the (n+ 1)th vector (n steps away from the start) in the alignment path starting at vi. For
each n ≥ 1 the vectors Si↑n−1vi ∈ Vi+n−1 and Si↑nvi ∈ Vi+n are aligned at receiver i+ n− 2.

Since every third vector in the alignment path belongs to a given transmitter, an align-
ment path of length D starting at user 1 (say) with x ∈ V1 results in the vectors

A1 := {S1↑3`x , 0 ≤ ` ≤ n1} ⊆ V1 ,

A2 := {S1↑3`+1x , 0 ≤ ` ≤ n2} ⊆ V2 ,

A3 := {S1↑3`+2x , 0 ≤ ` ≤ n3} ⊆ V3 ,

where
ni := b(D − i)/3c .

For odd values of L, the scheme consists of making a single alignment path of length D (as
discussed in [1]). The initial vector can be arbitrary, but with all entries nonzero. Note that
users may have different numbers of vectors. We do not further discuss the case that L is
odd, and focus instead on even values of L.

For even values of L, we symmetrize the construction by letting T = 3L− 1 and having
each transmitter initiate L alignment paths, for a total of 3L alignment paths of depth D
(3LD total vectors). Writing v1:L

i = {v(1)
i ,v(2)

i , . . . ,v(L)
i } for the L initial vectors at user i,

we have that user i transmits along the LD vectors

Ai1 := {S1↑3`v1:L
i , 0 ≤ ` ≤ n1} ,

Ai2 := {S1↑3`+1v1:L
i−1 , 0 ≤ ` ≤ n2} ,

Ai3 := {S1↑3`+2v1:L
i−2 , 0 ≤ ` ≤ n3} .
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To check that the decoding constraints are satisfied, we examine the incoming vectors to
receiver 1; the other receivers are symmetric. At receiver 1, all vectors from transmitter 3
are aligned to those of transmitter 2, except the L vectors v1:L

3 initiating alignment paths.
It follows that there are 2LD+L vectors incoming to receiver 1: H11(A11 ∪A12 ∪A13) from
transmitter 1, H21(A21 ∪ A22 ∪ A23) from transmitter 2, and H31(v1:L

3 ). Now, the number
of vectors is 2LD + L = (2D + 1)L = (3L− 1) · L = N equal to the ambient dimension, so
the interference space is complementary to the signal space if these N vectors are linearly
independent. This can be verified by applying Lemma 9.

2.4 Converse
In this section we show that the degrees of freedom of the three-user interference channel is
at most 3D/(2D + 1), where D = 2L− bL/2c − 1. The argument rests largely on Lemma 3
below, which bounds the alignment depth possible without violating the decoding condition
at each receiver. Using Lemma 3, the proof essentially shows by the construction in (2.8)
that if the sum of transmit dimensions ∑ di is too large, then there must exist an alignment
path of length D + 1.

Theorem 2 (Converse). For generic channel matrices Hij of diversity L, the DoF of the
three-user interference channel is bounded as

DoF ≤ 3D
2D + 1 ,

where D := 2L− bL/2c − 1.

In order to describe alignment between users we introduce some notation. First, recall
the definitions Si = (Hi+1,i−1)−1Hi,i−1 and Si↑n = ∏n

j=1 Si+j−1. We let

Vi↑n = ∩nj=0S−1
i↑jVi+j (2.8)

be the part of the transmit space Vi of user i that is aligned to depth at least n+1. Informally,
starting at user i, Si↑j goes j steps forward along an alignment path, with increasing user
index, and thus S−1

i↑jVi+j brings Vi+j backward j steps to the beginning of the alignment path
at user i. By separating the first term Vi from the intersection in (2.8) we obtain the simple
identity

Vi↑n = Vi ∩ (S−1
i Vi+1↑n−1) . (2.9)

This means that the part of transmit space Vi that is aligned at depth n + 1 can obtained
by taking the intersection of the transmit space Vi with the portion of transmit space Vi+1
aligned at depth n and then pulled back to transmitter i.

We use the shorthand di↑n = dim(Vi↑n) for the dimension of the depth-(n + 1)-aligned
part of Vi. An alignment depth of 1 means no alignment at all, and every transmit vector is
trivially aligned to a depth at least 1; as a sanity check we observe that Vi↑0 = Vi and hence
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di↑0 = di. This can be seen from (2.8) if we interpret the empty product as the identity,
giving Si↑0 = ∏0

j=1 Si+j−1 = I.
The main ingredient in the proof of Theorem 2 is a bound on the alignment depth.

Lemma 3 (Bound on alignment depth). The alignment depth is at most D = 2L−bL/2c−1.
More precisely, Vi↑D = {0}, and hence di↑D = 0, for each i.

Lemmas 4 and 5 record inequalities needed for the proof of Theorem 2.

Lemma 4. For any nonnegative integers a, b, n, we have the inequality di↑n ≥ di↑n+a +
di−b↑n+b − di−b↑n+a+b. A useful special case is di↑n ≥ di+1↑n−1 + di↑n−1 − di+1↑n−2.

Proof. The proof follows directly from the subadditivity of dimension, i.e. the fact that for
two finite-dimensional subspaces W1,W2 of some larger vector space, the dimensions satisfy
dim(W1 +W2) = dim(W1) + dim(W2)− dim(W1 ∩W2).

Lemma 5. We have the inequality (D−1)
D

∑
di ≥

∑
di↑1 .

Proof. Let cn = ∑3
i=1 di↑n. Applying Lemma 4,

cn =
∑

di↑n ≥
∑

(di+1↑n−1 + di↑n−1 − di+1↑n−2) = 2
∑

di↑n−1 −
∑

di↑n−2 = 2cn−1 − cn−2 .

Using this as a base case, a simple induction argument shows that cn ≥ icn−i+1− (i− 1)cn−i
for 1 ≤ i ≤ n. Plugging in i = n = D − 1 and rearranging, we get

(D − 2)c0 ≥ (D − 1)c1 − cD−1 . (2.10)

Now, Lemma 4 with parameters n = 0, a = D − 1, b = 1 gives

di ≥ di↑D−1 + di−1↑1 − di−1↑D = di−1↑1 + di↑D−1 , (2.11)

where we used the fact that di−1↑D = 0 due to Lemma 3. Summing the inequality (2.11)
over the index i gives

c0 =
∑

di ≥
∑

(di−1↑1 + di↑D−1) = c1 + cD−1 , (2.12)

and adding (2.10) to (2.12) yields (D − 1)∑ di ≥ D
∑
di↑1, completing the proof.

We now prove Theorem 2 using Lemma 5.

Proof of Theorem 2. Suppose a block-length T is used for a total ambient dimension given
by N = TL, and each user i, 1 ≤ i ≤ 3, uses a transmit subspace Vi ∈ RN with di = dim(Vi).
We seek to bound the total degrees of freedom,

d1 + d2 + d3

N
.
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We examine the signals at receiver 1. The decoding constraint (2.4), requiring that the span
of interfering signals H21V2 + H31V3 be complementary to the desired signal space H11V1,
implies that

dim(H11V1 + H21V2 + H31V3) = dim(H11V1) + dim(H21V2 + H31V3) = d1 + d2 + d3 − d2↑1 .

This number is bounded by N , the dimension of the ambient space. Permuting the indices
in the argument produces the three inequalities

N ≥
∑

di − di↑1 , 1 ≤ i ≤ 3 .

Summing over i gives 3N ≥ 3∑ di −
∑
di↑1, and applying Lemma 5 results in

3N ≥ 3
∑

di −
(D − 1)
D

∑
di = 2D + 1

D

∑
di .

Rearranging the inequality completes the proof.

The rest of the section is devoted to the proof of Lemma 3. We begin by identifying a
scenario that prevents decoding, and will later show that it occurs if the alignment depth is
too large. To this end, a basic observation is that all the channel matrices Hij have the same
eigenspaces, which implies that two transmit spaces Vi, Vi+1 cannot both contain the same
eigenvector v, as otherwise the desired signal Hiiv = v at receiver i overlaps the interference
Hi+1,iv = v from transmitter i+ 1 (i.e. the decoding condition (2.4) is violated). The next
two lemmas find conditions implying the occurrence of this scenario.

Let H0 be the set of nondegenerate products of channel matrices and inverses,

H0 =
{∏

Hαij
ij : αij ∈ Z

}
\ I .

Let A ∈ H0 be such a matrix. The first lemma shows that if Vi contains an A-invariant
subspace, then it contains an eigenvector v, and the second lemma gives a simple condition
for this eigenvector to be contained in two transmit spaces.

Lemma 6. Let A ∈ H0. If W ⊆ Vi is an A-invariant subspace, i.e. W = AW , then W
contains an eigenvector of A.

Proof. The proof is slightly encumbered due to R not being algebraically closed (otherwise
it would be immediate). Let us denote by A : RN → RN the operator represented by A
in the standard basis and A|W the restriction of A to W . By definition the characteristic
polynomial c(x) vanishes on A, and hence also c(A|W ) = 0. But due to A being diagonal,
c(x) = ∏(λi − x)mi is a product of linear factors with real λi, implying that (λi − A|W ) is
rank-deficient for some λi. It follows that A|W , and thus A, has an eigenvector in W .

Lemma 7. Let A,B ∈ H0. If W ⊆ Vi is an A-invariant subspace and BW ⊆ Vj for some
j 6= i, then the decoding condition (2.4) is not satisfied at receiver i.
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Proof. By Lemma 6, W contains an eigenvector v of A. Generically all matrices in H0 have
the same eigenspaces, so Bv = v and thus Vj also contains v. As noted immediately before
Lemma 6, this implies that the decoding condition (2.4) is not satisfied.

We now prove Lemma 3, bounding the alignment depth D.

Proof of Lemma 3. The goal is to show that Vi↑D = {0}, which we do for i = 3 using an
argument that applies also to i = 1 and 2 by permuting the indices. We will suppose that
dim V3↑D ≥ 1 and make use of Lemma 7 to show that the decoding constraint (2.4) is violated
at some receiver.

Separating out the first term V3 from V3↑n as in (2.9), we have that

V3↑D = V3 ∩ S−1
3 V1↑D−1 ,

and since we assumed dim V3↑D ≥ 1, there exists a nonzero vector

x ∈ S3V3 ∩ V1↑D−1 ⊆ V1 .

The vector v3 := S−1
3 x ∈ V3 initiates an alignment path of length D + 1,

S−1
3 x, x, S1x, S2S1x, S3S2S1x, . . .

The point is that now all these vectors are just transformed versions of a single vector x,
and the finite dimensionality L of the channel space comes into play.

By the definition of V1↑D−1 = ∩D−1
j=0 S−1

1↑jV1+j, for each 0 ≤ j ≤ D − 1 the vector S1↑jx is
contained in V1+j, and grouping these D vectors according to transmitter gives the lists

A1 := {S1↑3`x , 0 ≤ ` ≤ n1} ⊆ V1 ,

A2 := {S1↑3`+1x , 0 ≤ ` ≤ n2} ⊆ V2 ,

A3 := {S1↑3`+2x , 0 ≤ ` ≤ n3} ⊆ V3 ,

where
ni := b(D − i)/3c .

Aside from the vector v3 = S−1
3 x ∈ V3 at transmitter 3, all the other vectors in A3 are (by

definition of the Si↑j operators) aligned at receiver 1 with the vectors A2 from transmitter 2,
i.e.

H31 span{A3} ⊆ H21 span{A2} .
The result of the alignment at receiver 1 is that we need only concern ourselves with the
vectors in A1,A2, and v3 ∈ V3: the vectors in A3 are redundant. Since we are interested in
the view from receiver 1, we define H1 and H2 to be the operators in A1,A2 premultiplied
by H11,H21, respectively,

H1 := {H11S1↑3` , 0 ≤ ` ≤ n1}
H2 := {H21S1↑3`+1 , 0 ≤ ` ≤ n2} .

The argument rests on the following claim, which shows that the space of channels is spanned
by the operators in H1 and H2, thereby implying linear dependence with H31S−1

3 .
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Claim 8. The operators H1 and H2 together generically span the L-dimensional space of
channels.

Proof. The claim is trivially true for L = 1 since H1 is nonempty, so we assume that L ≥ 2
and hence D = 2L−bL/2c−1 ≥ 2 and n1, n2 ≥ 0. A slightly tedious calculation shows that
2+n1 +n2 = L, so the set H1∪H2 consists of L operators. We show that these operators are
linearly independent by restricting attention to the upper left L × L corner of each matrix
and applying the linear independence lemma of Section 2.5. Clearly, linear independence
of these submatrices implies the claim. Let [ · ]L×L denote the upper left L × L corner of a
square matrix of size at least L× L.

For each 0 ≤ ` ≤ n1, let B` = [S1↑3` = S`]L×L, and similarly for 0 ≤ ` ≤ n2 let
A` = [H21S1↑3`+1]L×L = [H21S1S`]L×L.

Now, define the partitions P1 = {n1 + 2, . . . , L} and P2 = {1, . . . , n1 + 1}. The vectors
B`|P2 (here restricted to the first |P2| = n1 + 1 entries) are linearly independent because
they form the columns of a Vandermonde matrix. Similarly, the A`|P1 (restricted to the
last |P1| = n2 + 1 entries) arise from an invertible transformation applied to a Vandermonde
matrix and are therefore also linearly independent.

The claim follows by applying Lemma 9, with v1 = (1, 1, . . . , 1)t and v2 = ([H11]L×L)v1,
first |P1| operators given by A` and next |P2| operators given by B`.

Claim 8 shows that the operators in H1 ∪H2 span the channel space, so there exist real
numbers λj, µj, not all zero, such that

H31S−1
3 =

n1∑
j=0

λjH11S1↑3j +
n2∑
j=0

µjH21S1↑3j+1 . (2.13)

The linear dependence between operators will be used to show linear dependence between
interfering and desired signal vectors.

We first rule out the case that all the λj coefficients are zero. If this were the case, then
inserting x into equation (2.13) on the right reads

H31S−1
3 x = H31v3 =

n2∑
j=0

µjH12S1↑3j+1x ,

and multiplying through by H−1
31 yields

v3 =
n2∑
j=0

µjS2S1↑3j+1x =
n2∑
j=0

µjS1↑3j+2x =
n2+1∑
j=1

µjSj(S−1
3 x) =

n2+1∑
j=1

µjSjv3 , (2.14)

where
S := S3S2S1 = H−1

12 H32H−1
31 H21H−1

23 H13 .

Now, consider the subspace

W3 = span{v3,Sv3, . . . ,Sn2+1v3} ⊆ V3 .
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By (2.14), W3 ⊆ V3 is S-invariant, and S−1
2 W3 ⊆ V2 so we are in the setting of Lemma 7

with A = S and B = S−1
2 , which shows that the decoding constraint at receiver 3 is violated.

Hence we may assume in (2.13) that λj 6= 0 for some j.
Letting v2 := −∑n1

j=0 µjS1↑3j+1x ∈ V2 and v1 :=
(∑n1

j=0 λjS1↑3j
)

x ∈ V1, we can rearrange
(2.13) to give

H11v1 = H12v2 + H13v3 . (2.15)

If v1 were zero, this would as before imply the existence of an S-invariant subspace

W1 = span{x,Sx, . . . ,Sn1x} ⊆ V1

with S−1
3 W1 ⊆ V3, a situation ruled out by Lemma 7. But (2.15) precisely means that the

decoding constraint is violated at receiver 1, which was what we set out to prove.

2.5 Linear independence lemma
In this section we prove a lemma that allows to translate linear independence among operators
to linear independence among a collection of operators applied to a collection of vectors.
Since all matrices in this chapter are diagonal, the lemma also applies when the “vectors”
are actually matrices. The proof itself is not particularly insightful and entails manipulating
a determinant expression.

Lemma 9 (Linear independence). Let N be a positive integer and T (i) : RN → RN , 1 ≤
i ≤ N be linear operators each given by a diagonal matrix T(i) = diag(t(i)1 , t

(i)
2 , . . . , t

(i)
N ). Let

`1, . . . , `q denote an integer partition of N into q parts (some may be empty), i.e. the {`i}
are nonnegative and ∑ `i = N .

The vectors

T(1)v1 , . . . ,T(`1)v1 ,T(`1+1)v2, . . . ,T(`1+`2)v2,T(`1+`2+1)v3, . . . ,T(N)vq (2.16)

are linearly independent for v1 = (1, 1, . . . , 1)t and generic (v2,v3, . . . ,vq) ∈ RN×(q−1) if and
only if there exists a set partition P = {P1, P2, . . . , Pq} of {1, . . . , N} with |Pj| = `j such
that for each j, 1 ≤ j ≤ q, the set of vectors

{T(i)|Pj : `1 + · · ·+ `j−1 + 1 ≤ i ≤ `1 + · · ·+ `j}

is linearly independent. Here T(i)|Pj denotes the length-|Pj| vector with entries {t(i)r , r ∈ Pj}.

Proof. We will perform manipulations on an expression for the determinant of the N × N
matrix M with columns given by the vectors in (2.16). The determinant can be written as

det(M) =
∑
π

sign(π)
N∏
i=1

Mπ(i),i , (2.17)
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where the sum is over the permutations on {1, . . . , N}. It will be convenient to let Q =
{Q1, . . . , Qq} be the partition of {1, . . . , N} with

Qj = {`1 + · · ·+ `j−1 + 1, . . . , `1 + · · ·+ `j} , 1 ≤ j ≤ q .

Now we may break up each product in (2.17) according to the index of vi to get
det(M) =

∑
π

sign(π)
∏
i∈Q1

Mπ(i),i
∏
i∈Q2

Mπ(i),i · · ·
∏
i∈Qq

Mπ(i),i

=
∑
π

sign(π)
∏
i∈Q1

t
(i)
π(i)v1,π(i)

∏
i∈Q2

t
(i)
π(i)v2,π(i) · · ·

∏
i∈Qq

t
(i)
π(i)vq,π(i) .

Denote by Pπ = {P1, P2, . . . , Pq} the partition induced by π on Q, i.e. the blocks are
given by Pi = π(Qi). Each permutation π that induces the same partition P contributes to
the coefficient of the monomial

vP :=
q∏
j=1

∏
i∈Qj

vj,π(i) =
q∏
j=1

∏
i∈Pj

vj,i ,

and different partitions P give unique monomials. Summing according to partitions P ,
det(M) =

∑
P∈P

vP
∑

π:π(Q)=P
sign(π)

∏
i∈Q1

t
(i)
π(i)

∏
i∈Q2

t
(i)
π(i) · · ·

∏
i∈Qq

t
(i)
π(i)

=
∑
P∈P

vP
∑

π:π(Q)=P
sign(π)

q∏
j=1

∏
i∈Qj

t
(i)
π(i) .

Fix a partition P and permutation π̄ with π̄(Q) = P . Then each permutation π with
π(Q) = P can be written uniquely as π = π1 ◦ π2 ◦ · · · ◦ πq ◦ π̄, where πj|Pj : Pj → Pj
is a permutation on Pj and πj is identity on elements not in Pj. Note that for i ∈ Qj,
π(i) = (πj ◦ π̄)(i), and so for fixed π̄ the map π 7→ (π1, π2, . . . , πq) is a bijection. We fix a
choice π̄P for each partition P , and thus

det(M) =
∑
P∈P

vP · sign(π̄P )
q∏
j=1

 ∑
πj perm.

on Pj

sign(πj)
∏
i∈Qj

t
(i)
(πj◦π̄)(i)


=
∑
P∈P

vP · sign(π̄P )
q∏
j=1

det(Wj(Pj)) , (2.18)

where
Wj(Pj) = [T(i)|Pj ]i∈Qj

is a matrix with column i given by the vector T(i)|Pj (and T(i)|Pj is defined in the statement
of the lemma).

The polynomial (2.18) in variables vi,j is not identically zero if and only if at least one
monomial is nonzero, which is true if there exists a partition P such that det(W(Pj)) 6= 0
for 1 ≤ j ≤ q. This precisely matches the lemma statement.
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Chapter 3

Feasibility of interference alignment
for the multiple-user MIMO
interference channel

3.1 Introduction
In this chapter we continue our study of interference alignment and the role of channel
diversity. As discussed in Chapter 2, interference alignment is a promising approach to
mitigating interference in wireless networks, but the ability to align depends on channel
diversity. Cadambe and Jafar [1], in their surprising result, showed that K

2 degrees of freedom
are achievable for the K-user Gaussian interference channel (IC), assuming the channels had
unbounded diversity in the form of time or frequency variation. A vital question is therefore:
how much diversity is required in order to align interference?

The main result of Chapter 2 shows that for the three-user IC, channel diversity is
indeed a precious resource that determines the ability to align interference. Alignment is
impossible with no channel diversity, and performance gradually increases as a function of
the diversity. Chapter 2 focuses on time and frequency diversity, but most practical systems
are also equipped with multiple antennas and thus have spatial diversity. Multiple antennas
are known to greatly increase the degrees of freedom of point-to-point systems.

In this chapter we focus on how spatial diversity helps to deal with interference by
studying the MIMO IC, where each of K transmitters and K receivers has multiple antennas,
and each transmitter wishes to communicate with the corresponding receiver. We let Mi

and Ni denote the number of antennas of the ith transmitter and the ith receiver respectively.
In order to focus on the effect of spatial diversity, we assume there is no time or frequency
diversity, i.e. the channel is constant over time and frequency. Similar in flavor to the
situation with finite time or frequency diversity in Chapter 2, here we have a fixed amount
of spatial diversity and the goal is to design the best communication scheme—achieving the
most degrees of freedom—for the system at hand.



To simplify matters, we again restrict attention to vector space schemes. With this
restriction, as shown in Section 3.2, the alignment problem reduces to finding vector spaces
Ui ⊂ CMi and Vi ⊂ CNi where dimUi = dimVi is denoted by di, and such that

HijUi ⊥ Vj , 1 ≤ i, j ≤ K, i 6= j , (3.1)

where the matrix Hij ∈ CNi×Mj signifies the channel between transmitter j and receiver i.
Each entry of Hij is the gain between one of transmitter i’s antennas and one of receiver j’s
antennas and is in general nonzero. For the rest of the paper we assume that the Hij are
generic, meaning that their entries lie outside of some algebraic hypersurface. If the entries
are randomly chosen from some non-singular probability distribution, this will be true with
probability 1.

The existence of a receive space Vj satisfying the orthogonality condition (3.1) amounts
to a requirement that the interference spaces H

ijUj are sufficiently aligned that there is room
left over for the desired signal space H

jjUj.
Our goal is to maximize the signal dimensions di subject to the constraint that there exist

vector spaces satisfying (3.1). This is, of course, equivalent to fixing a choice of dimensions
di and answer the feasibility question of whether there exist subspaces satisfying (3.1). This
problem was posed by [15], who then proposed a heuristic iterative algorithm but left the
question open.

We obtain results for the three user (K = 3) MIMO IC, and then partially generalize
to an arbitrary number of users. For the symmetric three-user channel, we focus on the
symmetric case where di = d, Mi = M , and Ni = N for all i. Theorem 10 below determines
the region of M and N for which there exists a valid linear encoding and decoding strategy
(as defined in Subsection 3.2); the region is depicted in Fig. 3.1.

Theorem 10 (3-user MIMO IC). Fix the number of desired transmit dimensions di = d,
transmit antennas Mi = M , and receive antennas Ni = N . Assume without loss of generality
that N ≥M . Then alignment is feasible if and only if

(2r + 1)d ≤ max(rN, (r + 1)M), for all integers r ≥ 0 . (3.2)

Just as in the three-user parallel IC of Chapter 2, the concept of alignment depth plays
a central role. The maximum alignment depth corresponds to r + 1 in Theorem 10 and
depends on the ratio of M and N .

Interestingly, the reason for the limitation on alignment depth in the MIMO IC is com-
pletely different from in the parallel channel. In the parallel channel, recall that aligning the
signals is easy; the challenge is ensuring that the desired signal is distinguishable at each
receiver. Accordingly, if the diversity is too low, the direct channel is not sufficiently rich to
send the desired signal to a part of the space without interference, even if there are plenty
of free dimensions.

In the MIMO case, it is the alignment that is difficult. Once the interference space
is small enough, the direct channels (as given by full generic matrices) are such that the
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N

Figure 3.1: For a fixed value of d, the feasible region in the M,N plane is white while the
infeasible region is shaded. The labels 1, 2, 3, 4, ... indicate the maximum alignment depth
for M,N in the corresponding region.

receivers can always distinguish the desired signal. This is why the decoding constraint
which appeared so frequently in Chapter 2, requiring that at each receiver the interference
space is complementary to the desired signal space, does not appear in (3.1). It is only
necessary to ensure that the interference space is not too large.

A simple example illustrates what restricts alignment in the MIMO situation. Suppose
2M < N , e.g. M = 3, N = 8. Then the images Im(H13), Im(H23) of the channels from
the pair of transmitters 1 and 2 to receiver 3, have trivial intersection. This means that no
alignment whatsoever is possible: vectors cannot be selected at the transmitters in order to
overlap at the interfered receiver. Since all three dimension d signal spaces are complementary
at each receiver, this leads to the constraint 3d ≤ N . In terms of alignment depth, we see
that a maximum depth of 1 is possible. This style of reasoning can be extended to produce
all the constraints in Theorem 10, and is discussed at a heuristic level in Section 3.3 (with
proofs in later sections).

Next, we generalize to K-users, continuing our investigation of feasibility. The work of
Yetis et al. [16] proposed comparing the number of variables and equations in the system of
bilinear equations (3.1) in order to determine when it has solutions. We make this precise
by showing that the feasible solutions are an algebraic variety of the “expected” dimension,
when the channel matrices are generic. Thus, we have the following necessary condition for
interference alignment:
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Theorem 11 (General necessary condition). Fix an integer K and integers di, Mi, and Ni

for 1 ≤ i ≤ K and suppose the channel matrices Hij are generic. If, for any subset A ⊂
{1, . . . , K}, the quantity

tA =
∑
i∈A

(
di(Ni − di) + di(Mi − di)

)
−

∑
i,j∈A,i 6=j

didj.

is negative, then the alignment equations (3.1) are infeasible. Moreover, if there are feasible
solutions, then t{1,...,K} is the dimension of the variety of solutions.

The constraint on tA was obtained independently and simultaneously by Razaviyayn et
al. [17, 18]. We note that the dimension of the variety of solutions is important, because
when multiple strategies are feasible, we might wish to optimize over the feasible strategies
according to some other criterion, such as the robustness of the system.

The necessary condition from Theorem 11 is not sufficient. For example, one additional
requirement for there to even exist vector spaces Ui ⊆ CMi and Vi ⊆ CNi is that di ≤ Mi

and di ≤ Ni for each i. However, in the fully symmetric (square) case that M = N , the
necessary condition of Theorem 11 is also a sufficient condition.

Theorem 12 (Sufficiency for fully symmetric case). Suppose that K ≥ 3 and furthermore
that di = d and Mi = Ni = N for all users i. Then, for generic channel matrices Hij,
the space of feasible schemes is non-empty and has dimension Kd(2N − (K + 1)d), if this
quantity is non-negative, and is empty if it is negative. Thus, alignment is feasible if and
only if

N ≥ d(K + 1)
2 .

We emphasize that all our results apply only to generic matrices. This means that there
exists an open dense subset of the space of matrices (in fact the complement of an algebraic
hypersurface) on which these statements hold. In particular, matrices chosen from a non-
singular probability distribution will be sufficiently generic with probability one. On the
other hand, specific matrices, such as Hij = 0 for i 6= j, may lead to a different answer.

Rearranging the inequality of Theorem 12, we have that the number of transmit dimen-
sions satisfies d ≤ 2N

K+1 , so the total normalized dof is Kd
N

= K
N

⌊
2N
K+1

⌋
≤ 2 K

K+1 .

Corollary 13 (Fully symmetric achievable DoF). The maximum normalized dof is given by

DoF = K

N

⌊ 2N
K + 1

⌋
≤ 2 K

K + 1 .

In sharp contrast to the K
2 total normalized degrees of freedom achievable for infinitely

many parallel channels in [1], for the MIMO case we see that at most 2 degrees of freedom
(normalized by the single-user performance of N transmit dimensions) are achievable for any
number of users K and antennas N .
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Theorem 12 suggests an engineering interpretation for the performance gain from in-
creasing the number of antennas. Depending on whether N < d(K + 1)/2 or not, there are
two types of performance benefit from increasing N : (1) alignment gain or (2) MIMO gain.
To illustrate these concepts, suppose that there are K = 5 users. If N = 1, i.e. there is
only a single antenna at each node, then no alignment can be done and only one user can
communicate on a single dimension, giving 1 total degree of freedom (dof). Increasing to
N = 2 antennas allows three users to communicate with one dimension each, giving a total
normalized dof Kd/N = 3/2. Similarly, increasing to N = 3 antennas allows each of the
five users to use d = 1 dimension, giving a normalized dof = 5/3. Thus, each increase in
N until N = (K + 1)/2 = 3 leads to additional users able to transmit, and a gain of two
dimensions per additional antenna; this is alignment gain. From here, however, increasing
N has a different effect. If we double N to N = 6, there are still only 5 users, and each
can now transmit along d = 2 dimensions instead of one, but the normalized dof remains
at 5 · 2/6 = 5/3. The total dof increases at a slower rate: the increase is not due to more
alignment being possible, but simply because more total dimensions are available. This is
MIMO gain.

We note that unlike Theorem 10, Theorem 12 does not provide a way of computing the
solutions. Instead of the linear algebra used to prove Theorem 10, Theorem 12 proves only
the existence of solutions, using algebraic geometry. Nonetheless, solutions may be found
numerically using homotopy continuation software. In addition to algebraic methods of root
finding, others have proposed heuristic algorithms, mainly iterative in nature (see [19], [20],
[21], [22], and [23]). Some have proofs of convergence, but no performance guarantees are
known. Schmidt et al. [23], [24] study a refined version of the single-transmit dimension
problem, where for the single-transmit dimension case (d = 1) they attempt to choose a
good solution among the many possible solutions.

We briefly review the related work before giving an outline of the chapter.

Related work
The problem we consider, of maximizing degrees-of-freedom using linear strategies for the
K-user MIMO IC, has received significant attention in the last several years. Jafar and
Fakhereddin [25] determined the degrees of freedom of the two-user MIMO IC with an
arbitrary number of antennas at each of the four terminals. Cadambe and Jafar [1] considered
the problem for K = 3 users and N = 2 antennas, and showed that 3/2 dof was achievable.
For more than 3 users or N > 2 they assumed infinite time or frequency diversity and
applied their main K/2 result. As noted earlier, Gomadam et al. [15,19], posed the problem
of determining feasibility of linear alignment in the constant channel setting and developed
a heuristic iterative numerical algorithm, but left the problem unanswered.

Razaviyayn et al. [17], [18], have independently and simultaneously found results related
to ours. They prove a necessary condition which corresponds to our necessary condition in
Theorem 11, and they also have a matching sufficient condition for the special case where
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di = d, and d divides Mi and Ni for each i. The symmetric square case Mi = Ni = N, di = d
we consider in the present chapter is not covered by their result.

In a different direction of inquiry, Razaviyayn et al. [21] show that checking the feasi-
bility of alignment for general system parameters is NP-hard. Note that their result is not
in contradiction to ours, since our simple closed-form expression applies only to the fully
symmetric case.

For the symmetric three-user channel with M transmit and N receive antennas, Amir et
al. [26] have independently proposed a similar achievable strategy for critical M,N satisfying
both (3.2) and M+N = 4d. [26] is limited to critical values of M,N and contains no converse
arguments beyond the equation counting bound of [27] and [17]. Also independently, Wang
et al. [28] very recently posted a paper to the Arxiv containing many similar results. Their
converse is information theoretic and, unlike ours, is not limited to linear strategies.

We emphasize that in this chapter we restrict attention to vector space schemes, where
the effect of finite channel diversity can be observed. Interfering signals can also be aligned
on the signal scale using lattice codes (first proposed in [29], see also [30], [31], [32], [33]),
however the understanding of this type of alignment is currently at the stage corresponding
to infinite parallel channels in the vector space setting. In other words, essentially “perfect”
alignment is possible due to the infinite channel precision available at infinite signal-to-noise
ratios. Recent progress on signal scale alignment at finite SNR includes [34], [35], [36],
and [37].

Ghasemi et al. [33] apply alignment on the signal scale to the K-user symmetric M ×N
MIMO IC. The converse arguments in that paper are obtained by forming a two-user inter-
ference channel with two users transmitting and decoding jointly; they obtain the inequality
3d ≤ max(N, 2M) corresponding to r = 1 in (3.2) of the present chapter.

Outline
The rest of the chapter is organized as follows. Section 3.2 describes the channel model
and vector space communication schemes. Section 3.3 is devoted to the three-user channel,
and contains a heuristic description and proof of Theorem 10. We generalize to K-users in
Section 3.4, proving Theorems 11 and 12.

3.2 Formulation
In this section we describe the MIMO interference channel model, vector space communica-
tion schemes, and degrees of freedom. The formulation of the alignment feasibility problem
is at the end of the section.
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Interference channel model
TheK-user MIMO interference channel hasK transmitters andK receivers, with transmitter
i having Mi antennas and receiver i having Ni antennas. For i = 1, . . . , K, receiver i wishes
to obtain a message from the corresponding transmitter i. The remaining signals from
transmitters j 6= i are undesired interference. The channel is assumed to be constant over
time, and at each time-step the input-output relationship is given by

yi = Hiixi +
∑

1≤j≤K
j 6=i

Hjixj + zi , 1 ≤ i ≤ K . (3.3)

Here for each user i we have xi ∈ CMi and yi, zi ∈ CNi , with xi the transmitted signal,
yi the received signal, and zi ∼ CN (0, INi) is additive isotropic white Gaussian noise. The
channel matrices are given by Hji ∈ CNi×Mj for 1 ≤ i, j ≤ K, with each entry assumed to
be independent and with a continuous distribution. We note that this last assumption on
independence can be weakened significantly to a basic non-degeneracy condition but we will
not pursue this here. For our purposes this means the channel matrices are generic. Each
user has an average power constraint, E(||xi||2) ≤ P .

Vector space strategies and degrees-of-freedom
We restrict the class of coding strategies to vector space schemes. Suppose transmitter j
wishes to transmit a vector x̂j ∈ Cdj of dj data symbols. These data symbols are modulated
on the subspace Uj ⊆ CMj of dimension dj, giving the input signal xj = Ujx̂j, where Uj is
a Mj × dj matrix whose column span is Uj. The signal xj is received by receiver i through
the channel as HjiUjx̂j The dimension of the transmit space, dj, determines the number
of data streams, or degrees-of-freedom, available to transmitter j. With this restriction to
vector space strategies, the output is given by

yi = HiiUix̂i +
∑

1≤j≤K
j 6=i

HjiUjx̂j + zi , 1 ≤ i ≤ K . (3.4)

The desired signal space at receiver i is thus HiiUi, while the interference space is given by∑
j 6=i HjiUj, i.e. the span of the undesired subspaces as observed by receiver i.

In the regime of asymptotically high transmit powers, in order that decoding can be
accomplished we impose the constraint at each receiver i that the desired signal space HiiUi
is complementary to the interference space ∑j 6=i HjiUj. Equivalently, there must exist sub-
spaces Vi with dim Vi = dimUi such that

HjiUj ⊥ Vi , 1 ≤ i, j ≤ K, i 6= j , (3.5)

and
dim(ProjViHiiUi) = dimUi . (3.6)
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Here HjiUj ⊥ Vi is interpreted to mean that Vi belongs to the dual space (CNi)∗ and Vi
annihilates HjiUj. Alternatively, (Vi)†HjiUj = 0, where V† denotes the Hermitian transpose
of V and Vi is a matrix with column span equal to Vi. Note that implicitly the transmit
dimensions are assumed to satisfy the obvious inequality di ≤ min(Mi, Ni). If each direct
channel matrix Hii has generic entries, then the second condition (3.6) is satisfied assuming
dim Vi = di for each i (this can be easily justified—see [15] for some brief remarks). Hence
we focus on condition (3.5).

The goal is to maximize degrees of freedom, i.e. choose subspaces U1, . . . , UK , V1, . . . , VK
with di ≤ min(Mi, Ni) in order to

maximize d1 + d2 + · · ·+ dK

subject to HjiUj ⊥ Vi , 1 ≤ i, j ≤ K, i 6= j ,

To this end, it is sufficient to answer the following feasibility question: given number of users
K, number of antennas M1, . . . ,MK , N1, . . . , NK , and desired transmit subspace dimensions
d1, . . . , dK , does there exist a choice of subspaces U1, . . . , UK and V1, . . . , VK with dimUi =
dim Vi = di, 1 ≤ i ≤ K, satisfying (3.5)?

3.3 Three-user channel
We begin with an informal overview of the arguments, followed by a proof of the converse
and then achievability.

Heuristic description
We attempt to give an intuitive argument for the constraints in Theorem 10 in terms of the
depth (or length) of alignment paths.

A given vector ui in the signal space of transmitter i is said to initiate an alignment path
of depth r + 1 if there exists a sequence of vectors ui+1, ui+2, . . . , ui+r ∈ CM , such that

Hi,i−1ui = Hi+1,i−1ui+1, . . . ,Hi+r−1,i+r−2ui+r−1 = Hi+r,i+r−2ui+r .

Here channel indices are interpreted modulo 3. For example, a vector u2 at transmitter 2
initiating an alignment path of depth 3 means that there exist vectors u3 and u1 such that
H21u2 = H31u3 and H32u3 = H12u1.

The feasible region of Figure 3.1 is divided up into sub-regions labeled with the maximum
depth of an alignment path; this number depends on M and N through the incidence geom-
etry of the images of the channel matrices Im(Hij). We begin by examining sub-region 1,
and then look at how things generalize to the other sub-regions.

The point of departure is the obvious constraint d ≤M in order to have a d-dimensional
subspace of an M dimensional vector space. Continuing, assuming M ≥ d, suppose 2M ≤ N ,
so (M,N) lies in sub-region 1 of Figure 3.1. At receiver one, the images Im(H21) and Im(H31)
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CN

Tx2 

Tx3 

Rx1 

CM

CM

U2

U3

V1Im(H[12])

Im(H[13])

Figure 3.2: Sub-region 1: The figure indicates that no alignment is possible when 2M ≤ N ,
since Im(H12) and Im(H13) are complementary. Since the three subspaces V1,H12U2,H13U3
are each of dimension d, complementary, and lie in CN at receiver 1, we obtain the constraint
3d ≤ N .

of the channels from transmitters two and three are in general position and therefore their
intersection has dimension [2M − N ]+ = 0; in other words, alignment is impossible in sub-
region 1. Figure 3.2 shows pictorially that because alignment is not possible here, we have
the constraint 3d ≤ N . Mathematically, we see that alignment is not possible because the
map from C2M to CN given by the matrix

(
H21 H31

)
is injective.

Tx2 

Tx3 

Rx1 Tx1 

Rx2 

Rx3 

Figure 3.3: Sub-region 2: Alignment is possible here. The figure denotes an alignment path
of depth 2.

Moving onward to sub-region 2, we have 2M > N and thus alignment is possible. This
means that alignment paths of depth 2 are possible (Fig 3.3), with up to 2M−N interference
dimensions overlapping at each receiver. Thus, the interference space H21U2 + H31U3 at
receiver one occupies at least 2d−(2M−N) dimensions, and we have the constraint 3d ≤ 2M .
However, because 3M ≤ 2N , no vector at (say) transmitter three can be simultaneously
aligned at both receivers one and two, as indicated in Figure 3.4. One can also see that no
simultaneous alignment is possible by changing change perspective to that of a combined
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CM

CM
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Im(H[12])

Im(H[13])

Im(H[21])

Im(H[23])

CN
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Figure 3.4: Sub-region 2: The striped regions at receivers one and two each denote the
dimension 2M − N portion of the space in which alignment can occur. From transmitter
three’s perspective, one sees that simultaneous alignment is not possible for 2(2M−N) ≤M ,
or equivalently, 3M ≤ 2N .

receiver one and two. One may check directly that (as a special case of Lemma 14), the map(
H21 H31

H32 H12

)
(3.7)

from the three transmitters to C2N is injective; analogously to the case in sub-region 1, this
is interpreted to mean that no alignment is possible in the combined receive space C2N (see
Fig. 3.5). Thus, five complementary d-dimensional subspaces lie in C2N and we obtain the
constraint 5d ≤ 2N .

As far as achievability goes, the basic rule-of-thumb is to create alignment paths of
maximum depth. Thus, in sub-region 2, where alignment is possible, the achievable strategy
aligns as many vectors as possible and the remaining ones (if d > 2(2M−N)) are not aligned.

Both the necessary conditions and achievability arguments extend in a natural way. On
the achievability end, alignment paths of maximum depth are used. For example, in sub-
region 4, alignment paths of depth four are used (Fig 3.6). For the converse, a generalization
of the matrix in (3.7) is shown to be full-rank in Lemma 14, giving the constraints in (3.2).

Proof of converse
We now proceed with the proof of the converse of Theorem 10. We begin with a key
lemma, which we will also use for the achievability direction. We introduce two notational
conveniences to be used throughout this section. As noted before, we interpret the indices
modulo three, so that H12 = H42 and so on. Since the indices can always be chosen to differ
by exactly one, we will adopt the shorthand Hi,+ and Hi,− for Hi,i+1 and Hi,i−1 respectively.
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Figure 3.5: Sub-region 2: Considering the dimension 2N receive space formed by receivers
one and two together, along with the map defined (3.7) from the three transmitters, shows
that no alignment is possible in this combined space. Since there are five complementary
subspaces of dimension d we obtain the constraint 5d ≤ 2N .

Tx2 

Tx3 

Rx1 Tx1 

Rx2 

Rx3 

Figure 3.6: Sub-region 4: Alignment paths of depth four are denoted here, initiated by
vectors at transmitter 1.

Lemma 14. Suppose N ≥M . For any r ≥ 1 define the rN × (r + 1)M block matrix

Ar =



H21 H31
H32 H12

H13 H23
. . .

Hr+1,− Hr+2,+

 , (3.8)

where the indices are interpreted as described above. For generic channel matrices Hij, the
matrix Ar has full rank, min(rN, (r + 1)M).

Proof. In order to prove that Ar has full rank for generic channel matrices, it is sufficient
to prove that it does for one particular set of matrices (see e.g. [38]). We specialize to the
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matrices
B := H1,− = H2,− = H3,− =

(
IM
0

)
and

C := H1,+ = H2,+ = H3,+ =
(

0
IM

)
,

where IM denotes the M × M identity matrix and the 0 denotes a block of 0s of size
(N −M)×M .

We will prove that, with these specializations, An has full rank by simultaneous induction
on r, N , and M . If r = 0, then Ar is a 0×M matrix, which trivially has full rank. If N ≥ 2M ,
then every row vector is a unit vector and all such unit vectors appear in some row, so the
matrix has full rank.

Now we suppose that N < 2M . We permute the rows and columns of An as follows. We
extract the first block of N rows, followed by the last N −M rows of each of the subsequent
r − 1 blocks. We put these rows last, after the remaining rows, each in their induced order.
Similarly, we take the first block of M columns, followed by the last N −M columns of each
of the other r column blocks, and place these to the right of all the other columns. This
creates a square matrix of size M + r(N −M) in the lower right, and we will prove that this
submatrix is the identity.

If we divide B and C into blocks by separating off the last N −M rows and columns of
each, then using our assumption that N −M < M , we get

B =
(

B̃ B′
0 0

)
C =

(
C̃ 0
0 IN−M

)
,

where
B′ =

(
0

IN−M

)
B̃ =

(
I2M−N

0

)
C̃ =

(
0

I2M−N

)
.

Therefore, the rearranged matrix has the form

B̃ C̃ B′
. . . . . . . . .

B̃ C̃ B′
C̃ IM

0 IN−M
0 IN−M

. . . . . .
0 IN−M


.

We can use the central IM , together with elementary column operations to clear the C̃ on the
left. Similarly, elementary row operations can use the diagonal IN−M to clear the B′s in the
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upper right. The only remaining non-zero entries are in the (M+r(N−M))×(M+r(N−M))
identity matrix in the lower right and the upper left block, with the copies of B̃ and C̃. The
latter matrix is just our specialized version of Ar−1 with parameters M and N each decreased
by N −M , and this matrix has full rank by the inductive hypothesis.

The following proposition uses the preceding lemma to prove a new set of constraints.

Proposition 15 (Converse). Let K = 3 and suppose N ≥M . Fix the dimensions per user
di = d and number of antennas Mi = M,Ni = N . Alignment is feasible only if

(2r + 1)d ≤ max(rN, (r + 1)M), for all r ≥ 0 .

Remark 16. Proposition 15 remains valid when allowing constant channel time extension,
with M,N, and d appropriately normalized by the time extension value.

Proof. We fix the value of r ≥ 0, and omit dependence on r whenever convenient. Define
the product of transmit spaces U = U2 × U3 × · · · × Ur+2 ⊂ (CM)r+1, where as usual indices
are interpreted modulo 3, and similarly let V = V1 × . . . Vr ⊂ (CN)r. Note that each Ui and
Vi has dimension d, so U and V have dimensions (r + 1)d and rd respectively.

First, suppose that rN ≥ (r + 1)M . Then Lemma 14 implies that the linear map
Ar : (CM)r+1 → (CN)r is injective. By the orthogonality condition (3.5), we obtain V ⊥ ArU ,
and thus rd+ (r + 1)d = dimV + dim(ArU) ≤ dim(CN)r = rN .

On the other hand, if (r + 1)M ≥ rN , the Hermitian transpose Ar
∗ is an injective

linear map Ar
∗ : (CN)r → (CM)r+1. Again, the orthogonality conditions (3.5) imply that

Ar
∗V ⊥ U so (2r + 1)d ≤ (r + 1)M . This proves the lemma.

Note that when r = 0 Proposition 15 reduces to the obvious constraint d ≤ M in order
to have a d-dimensional subspace of an M -dimensional vector space. In fact, the proposition
and its proof can be considered generalizations of this observation, with the inequality arising
from the fact that the vector spaces V + ArU or Ar

∗V + U must be contained in (CN)r and
(CM)r respectively.

Proof of Achievability
It remains to prove achievability in Theorem 10.

Theorem 17 (Achievability). Fix any M,N, and d satisfying (3.2). Then alignment is
feasible, i.e. there exists a choice of subspaces U1, U2, U3, V1, V2, V3 with dimUi = dim Vi = d,
for 1 ≤ i ≤ 3, and Vi ⊥ HijUj for 1 ≤ i 6= j ≤ 3.

Proof. The proof for the critical points satisfying N + M = 4d is given as part of Propo-
sition 19 below. The more general argument is similar, but tedious, and deferred to the
appendix.
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Remark 18. The achievable strategy specifies an explicit construction for the solutions in
terms of the kernel of an appropriate matrix (or in terms of eigenvectors in the case M = N).
This contrasts with the existence proofs for K > 3 from [27] (appearing in the latter part of
this chapter) and [17], which do not provide a way to find solutions.

Proposition 19. Fix integers d and N ≥ M satisfying N + M = 4d. Then alignment is
feasible if and only if either N = M = 2d or the integer d is evenly divisible by 2d −M =
N − 2d.

Proof. The necessity follows by some manipulations of Proposition 15. If N 6= M and
d/(2d−M) is not an integer, then we set r to be the nearest integer to M/(N −M), which
is well-defined because of the equality:

M

N −M
= d

2d−M −
1
2 .

Thus,
r = M

N −M
+ e

where e has absolute value strictly less than one half. Now, we get

(2r + 1)d = (N +M)2

4(N −M) + e(N +M)
2

rN = NM

N −M
+ eN

(r + 1)M = NM

N −M
+ eM.

Which of the latter two is larger will depend on the sign of e. Assuming that e is positive,
we can substitute and clear denominators to get that

(2r + 1)d ≤ max{rN, (r + 1)M}
is equivalent to

0 ≥ (N +M)2 + 2e(N +M)(N −M)− 4NM − 4eN(N −M)
= (N −M)2 − 2e(N −M)2,

which will be false because e is less than one half. The case when e is negative works similarly.
We now turn to the sufficiency part of the proof. Suppose that 2d −M is positive and

evenly divides d. We set r = d/(2d−M)−1, from which it follows that M = d(2r+1)/(r+1)
and N = d(2r + 3)/(r + 1). For any integer i, we define shifted versions of the block matrix
from (3.8):

Ai
r =


Hi,− Hi,+

Hi+1,− Hi+1,+
. . .

Hi+r−1,− Hi+r−1,+
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By Lemma 14, for generic channel matrices, Ai
r has full rank. Therefore, its kernel is a

vector space of dimension (r + 1)M − rN = d/(r + 1), and we denote this vector space by
Wi. For i+ 1 ≤ j ≤ i+ r+ 1, define Wi,j to be the projection of Wi onto the (j − i)th block
of coordinates. We claim that

Uj =
j−r−1∑
i=j−1

Wi,j ,

Vj =
Hj,−Wj,j+1 +

j−r∑
i=j

Hj,+Wi,j+1

⊥ ,
(3.9)

constitutes a feasible strategy for interference alignment. Before rigorously justifying this,
we first do a naive dimension count to verify that

dimUj = (r + 1) dimWi,j = d

and
dim Vj = N − (r + 2) dimWi,j = 2r + 3

r + 1 d−
r + 2
r + 1d = d.

Any element of Wi consists of r + 1 vectors xi,j ∈ CM for i + 1 ≤ j ≤ i + r + 1, and
these vectors satisfy Hj,+xi,j+1 = −Hj,−xi,j+2 for i+ 1 ≤ j ≤ i+ r. First, since the channel
matrices are injective, the only way for a subvector xi,j to be zero is for the whole vector to be
zero, and thus each projection Wi,j has the full dimension d/(r+1). Second, these equations
explain the apparent asymmetry in the definition of Vj, which can equivalently be defined
as the complement of the sum over all applications of Hj,− and Hj,+ to appropriate vector
spaces W∗, but such vector spaces coincide. Indeed, this is the essence of the construction.
From this observation, it follows that that Hj,+Uj+1 and Hj,−Uj−1 are orthogonal to Vj,
which is what is required to be feasible.

The only thing remaining to be checked is that Uj and Vj actually have the expected
dimensions. This is verified in Lemma 20 below.

Finally, we suppose that M = N = 2d. The channel matrices are square, and thus,
generically, they are invertible, so we can define

S = H12(H32)−1H31(H21)−1H23(H13)−1.

Again, generically, this matrix will have 2d distinct eigenvectors, and we choose V1 to be the
span of any d of them. Then we set

U⊥3 = (H1,3)−1V1

V2 = H2,3U
⊥
3

U⊥1 = (H2,1)−1V2

V3 = H3,1U
⊥
1

U⊥2 = (H3,2)−1V3.

These form a feasible strategy.
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Note that our constructions imply that the alignment solution is unique when 2d −M
divides d, but there exist

(
2d
d

)
solutions when N = M = 2d.

Lemma 20 below completes the proof of Proposition 19 by showing that subspaces Uj
and Vj in the given construction have the expected dimension.

Lemma 20. The subspaces Uj and Vj defined in (3.9) have dimension d.

Proof. We first show that U1 has dimension d; by symmetry of the construction, the dimen-
sions of U2 and U3 will also be d.

The subspace U1 = ∑0
i=−rWi,1 is the sum of r + 1 subspaces Wi,j, which we claim

are independent; suppose to the contrary, that there is some set of linearly dependent
vectors wi1 , wi2 , . . . , wis , with 0 ≤ i1 ≤ i2 ≤ · · · ≤ is ≤ r, and wi ∈ W−i,1, satisfy-
ing wis −

∑s−1
`=1 λ`wi` = 0. Let s be the minimum such value, with all sets of subspaces

Wi1,j,Wi2,j, . . . ,Wis−1,j for j = 1, 2, 3 being complementary.
Now, by the definition of the subspaces Wi,j, for each vector wi` ∈ W−i`,1 there is a

sequence u2
i`
, . . . , uq+1

i`
of length q := r+ 1− is−1 satisfying H13wi` = H23u

2
i`
, . . . ,Hqq+2,u

q
i`

=
Hq+1q+2,u

q+1
i`

. The linear combination ∑s−1
`=1 λ`wi` thus gives rise to a sequence u1, . . . , uq+1

defined by ua = ∑s−1
`=1 λ`u

a
i`

satisfying

H13wis = H13

(
s−1∑
`=1

λ`wi`

)
= H23u

2,

H21u
2 = H31u

3

...
Hq,q+2u

q = Hq+1,q+2u
q+1 .

(3.10)

Note that by the minimality assumption of s, none of the uj vectors are zero.
By the definition of W−is,1, there is a length-(is − 1) sequence of vectors preceding wis

satisfying alignment conditions similar to those in (3.10); together with wis and the vectors
in (3.10), this sequence can be extended to a sequence of vectors of total length q + is =
r + 1 + (is − is−1) > r + 1, none of which are zero. Stacking the first r + 2 of these vectors
produces a nonzero element in the kernel of Ais

r+1. However, Ais
r+1 is full-rank by Lemma 14;

the dimension of the kernel is
[
(r+2)M−(r+1)N

]+
= M+d

(
2r+1−2r−3

)
= M−2d < 0,

i.e. the kernel is trivial. This is the desired contradiction.
We now check that V1 has dimension d, and again by symmetry, the dimensions of V2

and V3 will also be d. Note that if V1 had dimension greater than d, we could choose a
d-dimensional subspace and this would still satisfy the alignment equations (3.5). But V1 is
the orthogonal complement of the sum of r + 2 subspaces Wi,j of dimension d/(r + 1), so
by subadditivity of dimension, we have the lower bound on dimension dim V1 ≥ N − (r +
2) dimWi,j = d.
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3.4 K-user fully symmetric channel
In this section we study the K-user fully symmetric MIMO IC. We first prove Theorem 11
giving a set of general necessary conditions. Next we prove Theorem 12, which shows that
for the fully symmetric case in which di = d and Mi = Ni = N for all i, the necessary
conditions are also sufficient.

The most natural view of the problem is to think of nature as fixing the channels with the
engineer subsequently wishing to find the set of feasible communication strategies. However,
reversing the picture turns out to be mathematically fruitful: we fix the communication
strategy and study the set of channels for which the communication strategy is feasible.
This approach, common in algebraic geometry, is the key to proving the results of the paper.

Some concepts from algebraic geometry will be necessary. For background see the texts
by Hartshorne [38] or Shafarevich [39].

In algebraic geometry, the basic object of study is the solution set to a system of polyno-
mial equations, called an algebraic variety or simply variety. The Zariski topology is defined
by taking the closed sets to be the set of solutions to a system of polynomial equations. Any
future reference to closed or open sets is with respect to the Zariski topology. A variety X
is reducible if it can be written as a union of non-trivial subvarieties X = X1 ∪ X2, where
X1, X2 6= X and X1, X2 6= ∅. A closed set X which is not reducible is irreducible. The
constituent subsets X1, . . . , Xn in an irreducible decomposition X = X1 ∪X2 ∪ · · · ∪Xn are
called the components of X. The dimension of an irreducible variety X is defined to be the
maximum n such that there is a chain of irreducible varieties Y0, Y1, . . . , Yn−1 satisfying the
strict inclusions ∅ ( Y0 ( Y1 ( · · ·Yn−1 ( X. The codimension of a subvariety Y ⊆ X is
dimX − dim Y .

To represent the strategy space, we will be interested in the Grassmannian G(d,N) of
d-dimensional subspaces of N -dimensional affine space CN . The dimension of the Grass-
mannian G(d,N) is d(N −d). See [39] for more on Grassmannians. In particular, for each i,
the transmit subspace Ui corresponds to a point in the Grassmannian, Ui ∈ G(di,Mi), and
similarly Vi ∈ G(di, Ni). The strategy space is thus the product of the Grassmannians,
S = ∏K

i=1G(di,Mi) ×
∏K
i=1G(di, Ni). Let H = ∏

i 6=j CNi×Mi denote the space of all cross
channels Hij for i 6= j. Concretely, h ∈ H is a length-K(K − 1) tuple of channel matrices
h = (H12,H13, . . . ,HK,K−1).

In the product S × H, define the incidence variety I ⊆ S × H to be the set of ordered
pairs (s, h) such that s is a feasible strategy for h. Each of S, H, and I is an algebraic
variety. The dimensions of S and H are

dimS =
K∑
i=1

(
di(Mi − di) + di(Ni − di)

)
, (3.11)

and
dimH =

∑
1≤i,j≤K
i 6=j

MiNj , (3.12)
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and the dimension of I is computed in Lemma 22 below.
The following theorem can be thought of as the algebraic geometry analogue of the

rank-nullity theorem from linear algebra (see e.g. Theorem 7 on page 76 of [39]). Given
a map f : X → Y , the fiber of a point y in Y is the inverse image of y under the map f ,
f−1(y) = {x ∈ X : f(x) = y)}. A polynomial map is simply a map whose coordinates are
given by polynomials.

Theorem 21 (Dimension of fibers). Let f : X → Y be a polynomial map between irreducible
varieties. Suppose that f is dominant, i.e. the image of f is dense in Y . Let n and m denote
the dimensions of X and Y respectively. Then m ≤ n and

1. dimZ ≥ n−m for any y ∈ f(X) ⊂ Y and for any component Z of the fiber f−1(y);

2. there exists a nonempty open subset U ⊂ Y such that dim f−1(y) = n−m for y ∈ U .

We will apply this theorem to the projections of I to each of the factors S and H.
Projecting onto the first factor allows to find the dimension of I.

Lemma 22. I is an irreducible variety of dimension
K∑
i=1

(
di(Mi − di) + di(Ni − di)

)
+

∑
1≤i,j≤K
i6=j

(MiNj − didj)

Proof. We consider the projection onto the first factor of our incidence variety, p : I → S.
For any point s = (U1, . . . , UK , V1, . . . , VK) ∈ S, we claim that the fiber p−1(s) is a linear
space of dimension

dim p−1(s) =
∑

1≤i,j≤K
i 6=j

MiNj − didj.

To see this claim, we give local coordinates to each of the subspaces comprising the
solution s ∈ S. We write u(i)

a for the ath basis element of subspace Ui, where u(i)
a has zeros in

the first di entries except for a 1 in the ath entry, and similarly for v(j)
b (this is without loss

of generality). The orthogonality condition Vj ⊥ HjiUi can now be written as the condition
v

(j)
b ⊥ Hjiu

(i)
a for each 1 ≤ a ≤ di and 1 ≤ b ≤ dj. Writing this out explicitly, we obtain

0 = v
(j)
b ⊥ Hjiu

(i)
a =

∑
1≤k≤Mi
1≤l≤Nj

v
(j)
b (k)Hji(k, l)u(i)

a (l)

=
∑

1≤k≤di
1≤l≤dj

v
(j)
b (k)Hji(k, l)u(i)

a (l) +
∑

k>di or l>dj
v

(j)
b (k)Hji(k, l)u(i)

a (l)

= Hij(a, b) +
∑

k>di or l>dj
v

(j)
b (k)Hji(k, l)u(i)

a (l) .

Note that this equation is linear in the entries of Hji. There are didj such linear equations,
and each one has a unique variable Hji(a, b), so the equations are linearly independent and
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each equation reduces the dimension by 1. The claim follows from the fact that in total
there are ∑i 6=j didj equations and we began with dimH = ∑

1≤i,j≤K
i 6=j

MiNj dimensions (3.12).
We have shown that I → S is a vector bundle over the irreducible variety S, and thus it

is irreducible. Since dim p−1(s) is the same for all s ∈ S, Theorem 21 gives the relation

dim I = dimS + dim p−1(s) .

Since the dimension of S is exactly the first summation in the lemma statement, this proves
the lemma.

Proof of Theorem 11. We now consider the projection onto the second factor q : I → H. If
this map is dominant (i.e., generically the alignment problem is feasible), then by Theorem 21
the fiber q−1(h) for a generic h ∈ H has dimension

dim q−1(h) = dim I − dimH . (3.13)

Since H has dimension equal to ∑ 1≤i,j≤K
i 6=j

MiNj, then Lemma 22 gives us the dimension in
the statement of the theorem. Moreover, if the quantity in (3.13) is negative, then the fiber
q−1(h) at a generic point must be empty. But the set of solutions to the tuple of channel
matrices h is given by p(q−1(h)), so for generic channel matrices this means there is no
feasible strategy.

Now we turn to the other necessary conditions for the existence of a solution. The first
necessary condition di ≤ min(Mi, Ni) is obvious. Next, suppose that di + dj > Ni ≥ Mj for
some i and j. Since Hij is a generic Ni ×Mj matrix, its nullspace will be trivial. Thus,
HijUj will be a dj-dimensional vector space. Since di+dj > Ni, the vector spaces HijUj and
Vi cannot be orthogonal. If di + dj > Mj ≥ Ni, then the argument is similar, but with the
roles of Uj and Vi reversed.

Finally, any feasible strategy for the full set of K transmitters and receivers, will, in
particular be feasible for any subset. Therefore, a necessary condition for a general set of
channel matrices to have a feasible strategy is that the same is true for any subset of the
pairs. Since the number tA is the dimension of the variety of solutions when restricted just
to the transmitters and receivers indexed by i ∈ A, then tA must be non-negative in order
to have a feasible strategy.

Now, we make the assumption that Ni = Mi = N and di = d for all 1 ≤ i ≤ K, and
also that K ≥ 3, and we wish to prove a sufficient condition for the existence of a feasible
strategy in Theorem 12. The following lemma reduces the problem of showing that almost
all channel tuples h ∈ H have a solution to finding the dimension of the solution set for a
single channel tuple h ∈ H. Recall that q is the projection of the incidence variety I onto
the second factor, and that q being dominant means that its image is dense in H, i.e. generic
channel matrices have a solution.

Lemma 23. Suppose that there exists h ∈ H such that the dimension of q−1(h) is at most
Kd(2N − (K + 1)d). Then q is dominant.
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Proof. Let h ∈ H be a point such that q−1(h) has at most the stated dimension. Let
Z0 = q(I) be the projection of I onto the second factor, and let Z denote the closure of Z.
By these definitions, the projection q : I → Z is dominant. Now, part 1 of Theorem 21
(dimension of fibers) gives

dim q−1(h) ≥ dim I − dimZ ,
from which it follows that

dimZ ≥ dim I − dim q−1(h) = dimH .

But Z ⊆ H, so equality of dimensions and irreducibility of H implies Z = H (see e.g. [39,
Thm. 1, pg. 68]), or, in other words, that q : I → H is dominant.

Using Lemma 23, proving Theorem 12 requires only that we find a tuple of channels
h ∈ H so that the set of solutions has the correct dimension. This is provided by the
following lemma.

Lemma 24. Suppose that K ≥ 3 and furthermore that di = d and Mi = Ni = N for all
users i. If Kd(2N − (K + 1)d) ≥ 0, then there exists h ∈ H such that the dimension of
dim q−1(h) is at most Kd(2N − (K + 1)d).

Proof. We consider the point s0 ∈ S where each Ui and Vi is spanned by the first d standard
basis vectors. Therefore, the set of channel matrices for which s0 is a valid strategy are those
Hij such that (

Id
0

)T
Hij

(
Id
0

)
= 0,

for i and j distinct integers between 1 and K. Here Idn denotes the n × n identity matrix.
It is clear that this implies that the upper left corner of Hij must be zero, and thus we can
write it in the form

Hij =
(

0 F[ij]

G[ij] H̃[ij]

)
,

where F[ij], G[ij], and H̃[ij] can be any matrices of size d × (N − d), (N − d) × d, and
(N − d)× (N − d) respectively. In a moment we will specify F[ij] and G[ij], but for now we
assume they are fixed, but arbitrary.

We now investigate the set of solution strategies for these fixed channel matrices Hij.
In local coordinates around the strategy s0, the vector spaces Ui and Vi can be written as
column spans as follows:

Ui = colspan
(

Id
Ui

)
, Vi = colspan

(
Id
Vi

)
,

where Ui and Vi are (N − d)× d matrices of variables. In order to satisfy the orthogonality
condition, we need that(

Id
Vi

)T
Hij

(
Id
Uj

)
= VT

i G[ij] + F[ij]Uj + VT
i H̃[ij]Uj = 0.
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We linearize this problem by dropping the final, quadratic term:

VT
i G[ij] + F[ij]Uj = 0 , 1 ≤ i, j ≤ K . (3.14)

In algebraic geometry, the vector space defined by the linear equations (3.14) is known as
the Zariski cotangent space, and its dimension gives an upper bound on the dimension of the
variety at the given point [40, Thm. 9.6.8(ii)]. Hence we focus on the problem of computing
the dimension of the set of solutions (Uj,Vi) to (3.14).

We now give our construction of the matrices F[ij] and G[ij] and find the dimension of
the Zariski cotangent space. We separate the construction into two cases: (1) K is odd, (2)
K is even.

Case 1: K is odd. This case is relatively straightforward. Recall that F[ij] is of size
d× (N − d) and G[ij] is of size (N − d)× d. We write

F[ij] =
(
A[ij](K−1

2 + 1) A[ij](K−1
2 + 2) · · · A[ij](K − 1) 0

)
, G[ij] =



A[ij](1)
A[ij](2)

...
A[ij](K−1

2 )
0

 ,

(3.15)
where each A[ij](k) is a block of size d × d to be defined shortly, and the rightmost zero
in F[ij] is of size d × (N − dK+1

2 ) while the bottom zero in G[ij] is a block of zeros of size
(N − dK+1

2 ) × d. Note that the assumption 2Kd(N − d) ≥ K(K − 1)d2 is equivalent to
N ≥ dK+1

2 , so the specification of F[ij] and G[ij] above makes sense.
Let

A[ij](k) =

Id if k = i− j
0 otherwise

, (3.16)

where addition of indices is modulo K. Now write

Ui =



Xi(1)
Xi(2)

...
Xi(K−1

2 )
Xi

 , and V̄i =



Yi(1)
Yi(2)

...
Yi(K−1

2 )
Yi

 , (3.17)

where Xi(t),Yi(t), 1 ≤ t ≤ K−1
2 are d× d blocks of variables from Ui,Vi, respectively, and

Xi, Yi are blocks of size [N − dK+1
2 ]× d containing the remaining variables.

With this notation and choice of matrices, the equations (3.14) defining the Zariski
cotangent space read

Xi(t) = 0, 1 ≤ t ≤ K − 1
2 , and Yi(t) = 0, 1 ≤ t ≤ K − 1

2 . (3.18)
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Considering these equations for all i, 1 ≤ i ≤ K, we see that the codimension is d22K
(
K−1

2

)
=

K(K−1)d2. Thus the set of solutions to the equations (3.14) have dimension 2Kd(N −d)−
K(K − 1)d2.

Case 2: K is even. The idea behind the argument is the same as in case 1, but the details
are more involved. Put

F[ij] =
(
A[ij](K+2

2 + 1) A[ij](K+2
2 + 2) · · · A[ij](K − 1) F̂[ij] 0

)
, G[ij] =



A[ij](4)
A[ij](5)

...
A[ij](K+2

2 )
Ĝ[ij]

0


,

(3.19)
where the matrices A[ij](k) are defined above (3.16), F̂[ij] is a block of size d×

⌈
3d
2

⌉
when j

is odd and size d ×
⌊

3d
2

⌋
when j is even, Ĝ[ij] is a block of size

⌈
3d
2

⌉
× d when i is odd and

size
⌊

3d
2

⌋
× d when i is even, and any remaining entries are zero. Note that the assumption

2Kd(N − d) ≥ K(K − 1)d2 is equivalent to N − d − dK−4
2 ≥

⌈
3d
2

⌉
, so the specification of

F[ij] and G[ij] makes sense.
We write

Ui =

U0
i

Xi

X̄i

 , and Vi =

V0
i

Yi

Ȳi

 , (3.20)

where U0
i ,V0

i are of size dK−4
2 × d, Xi,Yi are of size

⌈
3d
2

⌉
× d for odd values of i and of

size
⌊

3d
2

⌋
× d for even values of i , and X̄i, Ȳi contain the remaining variables (if any). Now,

exactly as in case 1 above, the choice of F[ij],G[ij] forces U0
i = V0

i = 0.
It remains to specify the matrices F̂[ij], Ĝ[ij]. Let

F̂[ij] =
(
A[ij](3) B[ij]

)
, and Ĝ[ij] =

(
A[ij](1)
(B[ij])T

)
, (3.21)

where again A[ij](k) is defined in (3.16). The matrices B[ij] are either d ×
⌈
d
2

⌉
ord ×

⌊
d
2

⌋
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depending on the indices; B[ij] is given by

B[ij](k) =



Id d2e
0

 if i is even and j = i+ 1 or i is odd and j = i+ 3Ib d2c
0

 if i is odd and j = i+ 1 0
Id d2e

 if i is odd and j = i+ 2 0
Ib d2c

 if i is even and j = i+ 3 or i is even and j = i+ 2

0 otherwise

, (3.22)

where the 0 in (3.22) denotes a block of zeros of appropriate size to ensure that B[ij] is
rectangular with d rows. Here, again, addition of indices is modulo K.

Let
Xi =

(
X1
i X2

i

X3
i

)
, and YT

i =
(

Y1
i

Y2
i

Y3
i

)
, (3.23)

where for even values of i the blocks X3
i+1,Y1

i ,Y2
i+1 are

⌈
d
2

⌉
× d, X3

i ,Y2
i ,Y1

i+1 are
⌊
d
2

⌋
× d,

X1
i ,X2

i+1,Y3
i+1 are d ×

⌈
d
2

⌉
, and X2

i ,X1
i+1,Y3

i is d ×
⌊
d
2

⌋
. Then our linear equation (3.14)

implies

0 = YT
i Ĝ[ij] + F̂[ij]Xj =

(
Y1
i

Y2
i

)
A[ij](1) + Y3

i (B[ij])T + A[ij](3)
(
X1
j X2

j

)
+ B[ij]X3

j .

For each even value of i we end up with the equations

0 =
(

Y1
i+3 + X3

i

Y2
i+3

)
, 0 =

(
Y1
i+4 + X3

i+1
Y2
i+4

)
, 0 =

(
Y1
i+3

Y2
i+3 + X3

i+1

)
,

0 =
(
X1
i + Y3

i+1 X2
i

)
, 0 =

(
X1
i X2

i + Y3
i+2

)
, 0 =

(
X1
i+1 X2

i+1 + Y3
i+2

)
,

which implies that all variables appearing here are zero, i.e. Xi,Yi = 0 for each i.
This proves that precisely K(K − 1)d2 entries of Ui,Vi must be zero for this choice of

matrices F[ij],G[ij], finishing case 2 and completing the proof of the lemma.

Appendix

Proof of Theorem 17 (3-user achievability)
Here we prove Theorem 17 showing achievability for M,N, d satisfying (3.2). Let r be the
(unique) integer such that

rN < (r + 1)M and (r + 1)N ≥ (r + 2)M . (3.24)
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Note that this implies, from equation 3.2, that

(2r + 3)d ≤ (r + 1)N (3.25)

and
(2r + 1)d ≤ (r + 1)M . (3.26)

We prove achievability by examining two cases: 1) d ≤ (r + 1)[(r + 1)M − rN ] and 2)
d > (r + 1)[(r + 1)M − rN ]. Case 1 means that all of the signal space Ui can be obtained
from alignment paths of length r + 1 (up to integer rounding), whereas in case 2 we must
use alignment paths of length r as well in order to attain the required d dimensions.

We first assume case 1 holds. Consider Ai
r as in the proof of Proposition 19, and let

Wi be a dimension b d
r+1c subspace in the kernel of Ai

r. Let d′ := d − (r + 1)b d
r+1c, and if

d′ > 0 let wi be a 1-dimensional subspace in ker Ai
r \Wi. The projections Wi,j are defined

in Proposition 19 and the subspaces wi,j are defined analogously. The spaces w1, w2, w3 are
required in order to accommodate the remainder left when dividing d by r + 1, and will
together contribute d′ dimensions to each signal space Uj. We put

Uj =
j−r−1∑
i=j−1

Wi,j +
j−d′∑
i=j−1

wi,j (3.27)

and

Vj =
Hj,+Wj,j+1 + Hj,+wj,j+1 +

j−r∑
i=j

Hj−Wi,j+1 +
j−d′+1∑
i=j

wi,j

⊥. (3.28)

If all of Uj’s constituent subspaces are complementary, then Uj has dimension (r +
1)
⌊

d
r+1

⌋
+d′ = d; the justification for this statement is similar to the proof of Lemma 20 and

omitted here. To see that Vj has dimension (at least) d, we observe that by subadditivity of
dimension,

dim Vj ≥ N − (r + 2)
⌊

d

r + 1

⌋
− d′ − e , (3.29)

where e = 0 if (r + 1)|d and e = 1 otherwise. Plugging in the inequality (3.25) we obtain

dim Vj ≥
2r + 3
r + 1 d− d− e−

⌊
d

r + 1

⌋
= d+ d

r + 1 −
⌊

d

r + 1

⌋
− e ≥ d .

Suppose now that case 2 holds, i.e. d > (r+ 1)[(r+ 1)M − rN ]. This means that not all
of the signal space Ui can be included in alignment paths of length r + 1, so the remainder
will be included in alignment paths of lenth r. Let d′ := d − (r + 1)[(r + 1)M − rN ] and
d′′ = d′ − r

⌊
d′

r

⌋
. As before, denote by Wi the kernel of the matrix Ai

r, having dimension
(r+1)M−rN . Denote by π the projection from C(r+1)M → CrM to the first rM coordinates.
The space π(ker Ai

r) is contained in Ai
r−1. Let Xi for i = 1, 2, 3 each be a

⌊
d′

r

⌋
dimensional
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subspace in ker Ai
r−1\π(Wi), and let wi be a 1-dimensional subspace in ker Ai

r−1\(π(Wi)+Xi).
Put

Uj =
j−r−1∑
i=j−1

Wi,j +
j−r∑
i=j−1

Xi,j +
j−d′′∑
i=j−1

wi,j (3.30)

and

Vj =
Hj−(Wj,j+1+Xj,j+1+wj,j+1)+

j−r∑
i=j

Hj+Wi,j+1+
j−r+1∑
i=j

Hj+Xi,j+1+
j−d′+1∑
i=j

wi,j

⊥. (3.31)

As before, a naive count suggests that Uj should have dimension d, and this can be
justified similarly to Lemma 20.

To see that Vj has dimension at least d we again use subadditivity of dimension to get

dim Vj ≥ N − (r + 2)[(r + 1)M − rN ]− (r + 1)
⌊
d′

r

⌋
− d′′ − e1

= N − (r + 2)[(r + 1)M − rN ]−
⌊
d′

r

⌋
− d′ − e1,

where e1 is zero if r|d′ and e1 is one otherwise. Letting e2 := d′

r
−
⌊
d′

r

⌋
, we have

dim Vj ≥ N − (r + 2)[(r + 1)M − rN ]− d′

r
− d′ + e2 − e1

= N − (r + 1)d
r

+ 1
r

[(r + 1)M − rN ] + e2 − e1

= d+ (r + 1)
r

M − 2r + 1
r

d+ e2 − e1 .

Substituting r+1
2r+1M for d, the inequality (3.26) implies that

dim Vj ≥ d+ e2 − e1 .

If e1 = 1 then e2 is strictly positive, so the fact that dim Vj is an integer implies dim Vj ≥ d.
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Chapter 4

Towards optimal assembly for
high-throughput shotgun sequencing

4.1 Introduction
DNA sequencing is the basic workhorse of modern day biology and medicine. Since the
sequencing of the Human Reference Genome ten years ago, there has been an explosive ad-
vance in sequencing technology, resulting in several orders of magnitude increase in through-
put and decrease in cost. Multiple “next-generation” sequencing platforms have emerged.
All of them are based on the whole-genome shotgun sequencing method, which entails two
steps. First, many short reads are extracted from random locations on the DNA sequence,
with the length, number, and error rates of the reads depending on the particular sequencing
platform. Second, the reads are assembled to reconstruct the original DNA sequence.

Assembly of the reads is a major algorithmic challenge, and over the years dozens of as-
sembly algorithms have been proposed to solve this problem [5]. Nevertheless, the assembly
problem is far from solved, and it is not clear how to compare algorithms nor where improve-
ment might be possible. The difficulty of comparing algorithms is evidenced by the recent
assembly evaluations Assemblathon 1 [41] and GAGE [42], where which assembler is “best”
depends on the particular dataset as well as the performance metric used. In part this is a
consequence of metrics for partial assemblies: there is an inherent tradeoff between larger
continuous fragments (contigs) and fewer mistakes in merging contigs (misjoins). But more
fundamentally, independent of the metric, performance depends critically on the dataset, i.e.
length, number, and quality of the reads, as well as the complexity of the genome sequence.
With an eye towards the near future, we seek to understand the interplay between these
factors by using the intuitive and unambiguous metric of perfect reconstruction1.

We note that the objective of reconstructing the original DNA sequence from the reads
1The notion of perfect reconstruction is only slightly more stringent than “finishing” a sequencing project

as defined by the National Human Genome Research Institute [43], where finishing a chromosome requires
at least 95% of the chromosome to be represented by contiguous sequence.



contrasts with the many optimization-based formulations of assembly, such as shortest com-
mon superstring (SCS) [44], maximum-likelihood [45], [46], and various graph-based formu-
lations [47], [48]. When solving one of these alternative formulations, there is no guarantee
that the optimal solution is indeed the original sequence.

Because the goal of DNA sequencing is to reconstruct the original sequence, the most
basic question is feasibility: given a set of reads, is it possible to reconstruct the original
sequence? And second, if assembly is possible, which algorithms can successfully recon-
struct? The feasibility question is a measure of the intrinsic information each read provides
about the DNA sequence, and for given sequence statistics depends on characteristics of
the sequencing technology such as read length and noise statistics. As such, it can pro-
vide an algorithm-independent basis for evaluating the efficiency of a sequencing technology.
Equally important, algorithms can be evaluated based on their relative data requirements,
and compared against the fundamental limit.

In studying these questions, we consider the most basic shotgun sequencing model where
N noiseless reads of a fixed length L base pairs are uniformly and independently drawn from
a DNA sequence of length G. By assumption the exact sequence to be assembled is unknown
a priori, and in the Bayesian tradition we capture the uncertainty in the sequence through
a probability distribution over possible sequences. We make the mild symmetry assumption
that sequences related by certain simple transformations have similar prior probabilities.
The optimal reconstruction is therefore given by the maximum a posteriori rule; maximum-
likelihood is a special case resulting from a particular choice of prior distribution. Feasibility
is thus rephrased as the question of whether, for given sequence statistics, the correct se-
quence can be reconstructed with probability 1 − ε when N reads of length L are sampled
from the genome. We note that answering the feasibility question of whether each N,L pair
is sufficient to reconstruct is equivalent to finding the minimum required N (or the so-called
coverage depth c = NL/G) as a function of L.

A lower bound on the minimum coverage depth needed was obtained by Lander and
Waterman [49]. Their lower bound cLW = cLW(L, ε) is the minimum number of randomly
located reads needed to cover the entire DNA sequence with a given target success probability
1 − ε. While this is clearly a necessary condition, it is in general not tight: only requiring
the reads to cover the entire genome sequence does not guarantee that consecutive reads can
actually be stitched back together to recover the original sequence. Characterizing when the
reads can be reliably stitched together, i.e. determining feasibility, is an open problem.

As we will see, the ability to reconstruct depends crucially on the repeat statistics of the
DNA sequence. We are interested in determining feasibility for statistics arising from a wide
range of genomic sequences. Evaluating algorithms on statistics from existing genomes gives
confidence in predicting whether the algorithms will be useful for an unseen genome with
these statistics.

Our approach results in a pipeline, which takes as input a genome sequence and desired
success probability 1 − ε, computes a few simple repeat statistics, and from these statistics
produces a feasibility plot that indicates for which L,N reconstruction is possible. Fig. 4.1a
displays the simplest of the statistics, the number of repeats as a function of the repeat
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Figure 4.1: Our pipeline takes as input a genome sequence (here human ch19) and desired
success probability 1 − ε (here 99%), computes a few simple repeat statistics including the
one in Fig. (a), and from these statistics produces a feasibility plot as shown in Fig. (b).

length `. Fig. 4.1b shows the resulting feasibility plot produced for human chromosome 19
(henceforth human ch19) with success probability 99%. The horizontal axis signifies read
length L and the vertical axis signifies the coverage depth c normalized by cLW, the coverage
depth required as per Lander-Waterman [49] in order to cover the sequence. The normalized
coverage depth c̄ = c/cLW = N/NLW is also equal to the number of reads N normalized by
the number of reads NLW required to cover the sequence.

Since the coverage depth must satisfy c ≥ cLW, the normalized coverage depth satisfies
c̄ ≥ 1, and we plot the horizontal line c̄ = 1. Each colorful curve in the feasibility plot is the
lower boundary of the set of feasible N,L pairs for an algorithm, and the thicker black curves
depict lower bounds for any algorithm. As we discuss later, the green curve is achievable by a
simple algorithm, and it nearly coincides with the lower bound. Thus Fig. 4.1b answers, up to
a very small gap, the feasibility of assembly for human ch19, where successful reconstruction
is desired with probability 99%. We produce similar plots for a dozen or so datasets, including
those used in the recent GAGE assembly algorithm evaluation [42]. The curves in the
feasibility plots are corroborated by simulations of the algorithms.

An important consideration is that of computational complexity. Although most of the
optimization-based formulations of assembly have been shown to be NP-hard, including
SCS [50], [44], De Bruijn Superwalk [47], [51], and Minimum s-Walk on the string graph
[48], [51], as pointed out by Nagarajan and Pop [52], typical instances of the problem may
well be easier than the worst-case. Indeed, the performance of the algorithms described in
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this paper have runtimes that depends explicitly on the repeat statistics, and are efficient
for typical statistics, as discussed in Section 4.6, despite achieving performance close to the
information theoretic limits.

Much of this paper focuses on algorithmic development, but our aim is not to propose
new practical assembly algorithms that can operate on real-world read data. In particular,
three important aspects of real data are missing in the basic model: 1) there is noise in the
reads; 2) reads can come in mate-pairs; 3) the read arrival process is not uniform (nonuniform
coverage depth). Designers of practical assembly algorithms spend much of their energy on
dealing with these aspects. Rather, the goal of this work is to advocate a new systematic
approach to the design of assembly algorithms with optimality or near-optimality guarantee.
Current ongoing work builds on the foundation established in this paper to incorporate noise
and mate pairs in the read data.

The read lengths required for perfect reconstruction are typically on the order of 500 −
3000 base pairs (bp). This is substantially longer than the reads produced by Illumina,
the current dominant sequencing technology, which produces reads of lengths 100-200bp;
however, other technologies produce longer reads. PacBio reads can be as long as several
thousand base pairs, and as demonstrated by [53], the noise can be cleaned by Illumina reads
to enable near-perfect reconstruction. Thus our framework is already relevant to the current
cutting edge technology.

Paper organization. The rest of the paper is outlined as follows. In the next section we
highlight a few of the results. In Section 4.3 we discuss lower bounds, followed by Section 4.4
which analyzes algorithms in a progression towards optimality. Section 4.5 contains simu-
lations. Section 4.6 discusses computational complexity, and derives analytical formulas for
the critical window width and gap from optimality. Appendix 4.7 proves Lemma 37. Ap-
pendix 4.8 includes feasibility plots for a dozen or so datasets, including those used in the
recent GAGE evaluation.

4.2 Results
In this section we present the results of our framework as applied to the simple read model
considered in this paper. For this model we are able to provide an approximate answer to
the feasibility problem as well as describe a near-optimal algorithm. Work in progress seeks
to carry out a similar program for more elaborate read models.

Lower bounds. We begin by mentioning the lower bounds. Aside from the requirement
c̄ ≥ 1 for covering the sequence, there is another condition in terms of repeats. We define
Lcrit = 1 + max{`interleaved, `triple}, where `interleaved is the length of the longest interleaved
repeats in the DNA sequence (see Section 4.3 for a precise definition) and `triple is the length
of the longest triple repeat. Reconstruction is impossible whenever the read length is below
this threshold. This follows from a result of Ukkonen [54] in the context of Sequencing
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by Hybridization, and we generalize Ukkonen’s result to the shotgun sequencing setting by
taking into account the randomness in the read process. This gives rise to the thick black
nearly vertical line in Fig. 4.1b.

Towards optimal assembly. Informed by the lower bounds, we seek assembly algorithms
that are close to optimal. It turns out that the required coverage depth for each algorithm
depends only on simple repeat statistics extracted from DNA data, which may be thought
of as a sufficient statistic. We briefly overview the algorithm progression.

Several of the first assemblers implemented a simple greedy algorithm, including TIGR
[55], CAP3 [56], and more recently SSAKE [57]. The greedy algorithm, denoted here by
Greedy, repeatedly merges reads with the highest overlap. Greedy cannot resolve simple
repeats longer than the read length, due to the greedy nature of the algorithm. Thus, as
seen in Fig. 4.1b, Greedy is limited by the condition L > `repeat.

K-mer (de Bruijn) graph based algorithms (e.g. [58] and [47]) take a more global view
via the construction of a K-mer graph, and can resolve simple repeats longer than the
read length as long as they are not interleaved. However, the coverage depth needed for
these algorithms is in general larger than the Lander-Waterman depth, because reads not
only need to cover the DNA sequence but successive reads have to overlap by at least K
to have a connected K-mer graph. A naive K-mer graph algorithm, which we denote by
DeBruijn, simply constructs a K-mer graph and finds an Eulerian cycle. The performance
of DeBruijn is plotted in Fig. 4.1b. DeBruijn requires K to be large, K > Lcrit, and in
turn requires a high coverage depth to ensure connectivity in the graph.

Existing algorithms use read information in a variety of distinct ways to resolve repeats.
For instance, Pevzner et al. [47] observe that for graphs where each edge has multiplicity
one, if one copy of a repeat is bridged, the repeat can be resolved through what they call a
“detachment”. The algorithm SimpleBridging described here is very similar, and resolves
repeats with two copies if at least one copy is bridged. (A repeat is bridged if at least one
copy is contained in a read extending to both sides beyond the repeat.)

Meanwhile, other algorithms are able to deal with higher edge multiplicities due to higher
order repeats; IDBA (Iterative DeBruijn Assembler) [59] can successfully reconstruct if all
copies of every repeat are bridged. But it is suboptimal to require that all copies of every
repeat be bridged. We introduce MultiBridging, which combines these ideas to simulta-
neously allow for single-bridged double repeats, triple repeats in which all copies are bridged,
and unbridged non-interleaved repeats.

The performance of MultiBridging, as shown in Fig. 4.1b, is nearly optimal for human
ch19. For the observed DNA statistics there are two different situations, depending on the
relative size of `interleaved and `triple. The statistics of human ch19 fall within the first case,
`interleaved � `triple.

Dominant interleaved repeat: (`interleaved � `triple). MultiBridging matches the
lower bound with respect to interleaved repeats: if there are unbridged interleaved repeats,
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reconstruction is impossible. The algorithm is therefore optimal as long as the all-bridging
triple repeat constraint is not active, i.e. `interleaved � `triple. The statistics of human ch19
fit within this case, and MultiBridging nearly matches the lower bound. The interleaved
repeat constraint being dominant, and near-optimality of MultiBridging also holds for a
majority of the other datasets we examine.

An interesting feature of the feasibility plots is that for typical repeat statistics exhibited
by DNA data, the minimum coverage depth is characterized by a critical phenomenon: If
the read length L is below Lcrit = `interleaved, reliable reconstruction of the DNA sequence is
impossible no matter what the coverage depth is, but if the read length L is slightly above
Lcrit, then covering the sequence suffices, i.e. c̄ = c/cLW = 1.

The sharpness of the critical phenomenon is described by the size of the critical window,
which refers to the range of L over which the transition from one regime to the other occurs.
Let L∗ denote the minimum L for which coverage of the sequence suffices, i.e. the knee in
the feasibility plot. The critical window size is thus L∗ − Lcrit. We can compute the size of
the critical window under the assumption that the longest interleaved repeat dominates (c.f.
Section 4.6). Letting

r :=
log G

Lcrit

log ε−1 , (4.1)

it turns out that we have to a very good approximation

L∗

Lcrit
≈ 2(r + 1)

2(r + 1)− 1 . (4.2)

Let us evaluate (4.2) for human ch19 in Fig. 4.1b. The relevant parameters are G =
55,808,983, Lcrit = `interleaved = 2248, `triple = 1766, and ε = 1%. Plugging into (4.2)
gives L∗/Lcrit ≈ 1.19.

Dominant triple repeat: (`triple � `interleaved). If the largest triple repeat dominates,
i.e. `triple � `interleaved, then MultiBridging has a gap to the lower bound (see Fig. 4.2).
The gap means that the feasibility problem is not completely answered, but we are able to
nevertheless bound the size of the gap. Subject to the largest triple repeat dominating, we
derive an estimate on the worst-case gap in normalized coverage depth required by MultiB-
ridging as compared to the lower bound. We find, moreover, that the critical phenomenon
continues to hold and we derive an estimate of the size of the critical window.

The gap, given by a ratio between upper and lower bound may be estimated as:

NMultiBridging

N lower = 3 · log 3ε−1

log ε−1 ≈ 3.72 for ε = 10−2 . (4.3)

This means that if the longest triple repeat is dominant, then for L slightly larger than `triple,
MultiBridging needs a coverage depth approximately 3.72 times higher than required by
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Figure 4.2: Performance of MultiBridging on P Marinus. The effect of the longest triple
repeat is dominant here, so for L slightly larger than `triple, MultiBridging needs a coverage
depth higher than the coverage depth required by our lower bound, as predicted by equation
(4.3).

our lower bound. This is along the lines of a worst-case approximation ratio for Multi-
Bridging. It is possible to show that this is a worst-case ratio over all possible repeat
statistics, but this is not pursued here.

The size of the critical window is different for the lower and upper bounds. For the lower
bound we obtain

L∗

Lcrit
= 3(r + 1)

3(r + 1)− 1 ≈ 1.06

for the example with G ∼ 108, Lcrit ∼ 1000, and ε = 5%. Changing ε to 10−5 makes
L∗

Lcrit
≈ 1.17, and as ε (and hence also r) tends to zero, L∗

Lcrit
→ 3

2 .
The analogous computation for L∗/Lcrit for the upper bound due to MultiBridging

yields
L∗

Lcrit
= r + 1
r + log 3

log ε−1

≈ 1.12 , (4.4)

for the example with G ∼ 108, Lcrit ∼ 1000, and ε = 5%. The critical window size of the
upper bound is about twice as large as that of the lower bound for typical values of G and
Lcrit, with ε moderate. But as ε → 0, we see from (4.4) that L∗/Lcrit → ∞, markedly
different to the L∗/Lcrit → 3

2 observed for the lower bound.

Remark 25. An earlier work [60] has established the critical phenomenon for DNA with
i.i.d. statistics, and showed that in this case Greedy is optimal. However, real genomes,
particularly those of eukaryotes, have many long repeats which are not well described by the
i.i.d. model. Our results show that even for more complex DNA sequences, the critical be-
havior persists. However, in general the greedy algorithm is far from optimal and a more
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sophisticated K-mer-based assembly algorithm, MultiBridging, is needed to approach op-
timality.

4.3 Lower bounds
In this section we discuss lower bounds, due to coverage analysis and certain repeat patterns,
on the required coverage depth and read length. The style of analysis here is continued in
Section 4.4, in which we embark on our search for assembly algorithms that perform close
to the lower bounds.

Coverage analysis
We start by presenting a lower bound on the coverage depth needed by any algorithm. Lander
and Waterman’s coverage analysis [49] gives the well known condition for the number of reads
NLW required to cover the entire DNA sequence with probability at least 1 − ε. We may
assume that the starting locations of the N reads are given according to a Poisson process
with rate λ = N/G, and thus each spacing has an exponential(λ) distribution. A gap between
two successive reads is equivalent to a spacing larger than L, an event with probability e−λL.
The probability of coverage is equal to the probability of no gap between all N − 1 pairs of
successive reads, i.e.

(1− e−λL)N−1 .

Solving for the smallest N such that this quantity is greater than 1− ε yields NLW, which is
to a very good approximation given by the solution to the equation

NLW = G

L
log NLW

ε
. (4.5)

The corresponding coverage depth is ccov = NLWL/G. This is our baseline coverage depth
against which to compare the coverage depth of various algorithms. For each algorithm, we
will plot

c̄ := c

ccov
= N

NLW
,

the coverage depth required by that algorithm normalized by ccov. Note that c̄ is also the
ratio of the number of reads N required by an algorithm to NLW. The requirement c̄ ≥ 1
corresponds to the lower bound on the number of reads obtained by Lander-Waterman
coverage condition.

Ukkonen’s condition
Not only must there be enough reads, but the reads must have sufficient length. A lower
bound on the read length L follows from Ukkonen’s condition [54]: if there are interleaved
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repeats or triple repeats in the sequence of length at least L−1, then more than one sequence
agrees with the reads and hence correct reconstruction is not possible (Fig. 4.3). (In order to
rule out guessing between two options, we make the assumption that the desired probability
of successful reconstruction 1− ε is greater than half.)

We take a moment to carefully define the various types of repeats. Let s`t denote the
length-` subsequence starting at position t. A repeat is a subsequence appearing twice,
at some positions t1, t2 (so st1+`

t1 = st2+`
t2 ) that is maximal (i.e. s(t1 − 1) 6= s(t2 − 1) and

s(t1 + `) 6= s(t2 + `)). Similarly, a triple repeat is a subsequence appearing three times,
at positions t1, t2, t3, such that st1+`

t1 = st2+`
t2 = st3+`

t3 , and such that neither of s(t1 − 1) =
s(t2 − 1) = s(t3 − 1) nor s(t1 + `) = s(t2 + `) = s(t3 + `) holds. A copy is a single one of
the instances of the subsequence’s appearances. A pair of repeats refers to two repeats, each
having two copies. A pair of repeats, one at positions t1, t3 with t1 < t3 and the second at
positions t2, t4 with t2 < t4, is interleaved if t1 < t2 < t3 < t4 or t2 < t1 < t4 < t3. Ukkonen’s
condition implies a lower bound on the read length,

L > 1 + max{`interleaved, `triple} .

Here `interleaved is the maximum length of the shorter of a pair of interleaved repeats and
`triple is the length of the longest triple repeat.

L!1# L!1#

L!1# L!1#

Figure 4.3: If there are interleaved repeats of length at least L−1, then two possible sequences
(the green and magenta segments swapped) are consistent with the same set of reads and
thus reconstruction is impossible.

Ukkonen’s condition provides a lower bound on the read length, but it can be generalized
to provide a lower bound on the coverage depth as follows. We say that a subsequence
s`t of length ` starting at position t is bridged if there is a read strictly containing the
subsequence, i.e. extending by at least one base pair to either side, and unbridged otherwise
(see Figure 4.4). One observes that in Ukkonen’s interleaved or triple repeats, the actual
length of the repeated subsequences is irrelevant; rather, to cause confusion it is enough that
all the pertinent repeats are unbridged. The generalized Ukkonen’s condition, then, is the
absence of any unbridged interleaved repeats or unbridged triple repeats. This condition is
necessary for reconstruction.
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read

Figure 4.4: A subsequence s`t is bridged if and only if a read arrives in the preceding length
L − ` − 1 interval. The probability the subsequence is unbridged is thus approximately
e−(N/G)(L−`−1).

Theorem 26. Given a DNA sequence s and a set of reads, if there is an unbridged pair
of interleaved repeats or an unbridged triple repeat, then there is another sequence s′ of the
same length which is consistent with the set of reads.

Given the repeat statistics of the DNA sequence to be reconstructed, Theorem 26 allows
us to derive a necessary condition on N and L to meet a target probability of successful
reconstruction 1− ε. We focus here on the condition that there are no unbridged interleaved
repeats, with the analogous derivation for triple repeats relegated to subsection 4.7 in the
appendix. Recall that a pair of repeats, one at positions t1, t3 with t1 < t3 and the second
at positions t2, t4 with t2 < t4, is interleaved if t1 < t2 < t3 < t4 or t2 < t1 < t4 < t3. From
the DNA we may extract a (symmetric) matrix of interleaved repeat statistics,

bmn = # pairs of interleaved repeats of lengths m and n .

We proceed by fixing both N and L and checking whether or not unbridged interleaved
repeats occur with probability higher than ε. We will break up repeats into 2 categories:
repeats of length at least L− 1 (these are always unbridged), and repeats of length less than
L− 1 (these are sometimes unbridged). We assume that L > `interleaved + 1, or equivalently
bij = 0 for all i, j ≥ L − 1, since otherwise there are (with certainty) unbridged interleaved
repeats and Ukkonen’s condition is violated.

First, we estimate probability of error due to interleaved repeats of lengths i < L − 1
and j ≥ L− 1. As noted before, the repeat of length j is too long to be bridged, so an error
occurs if repeat i is unbridged. The probability that a subsequence of length ` is unbridged
is approximately e−λ(L−`−1), equal to the probability of no Poisson arrivals in the interval of
size L−`−1 before the subsequence (c.f. Figure 4.4). For a repeat, as long as the two copies’
locations are not too nearby2, each copy is bridged independently and hence the probability
that both copes are unbridged is e−2λ(L−`−1). (Recall that a repeat is unbridged if both copies
are unbridged.)

2More precisely, for the two copies of a a repeat of length ` to be bridged independently requires that no
single read can bridge them both. This means their locations t and t+d must have separation d ≥ L− `−2.
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A union bound estimate3 gives a probability of error

Perror ≈
∑

m<L−1
n≥L−1

bmne
−2λ(L−m−1) . (4.6)

Requiring the error probability to be less than ε and solving for L gives the necessary
condition

L ≥ 1
2λ log γ1

ε
= G

2N log γ1

ε
, (4.7)

where γ1 := ∑
m<L−1
n≥L−1

bmne
2(N/G)(m+1) is a simple function of the interleaved repeat statistic

bmn.
We now estimate the probability of error due to interleaved repeat pairs in which both

repeats are shorter than L− 1. In this case only one repeat of each interleaved repeat pair
must be bridged. Again a union bound estimate gives

Perror ≈
∑

m,n<L−1
bmne

−2λ(L−m−1)e−2λ(L−n−1) .

Requiring the error probability to be less than ε gives the necessary condition

L ≥ 1
4λ log γ2

ε
= G

4N log γ2

ε
, (4.8)

where γ2 := ∑
m,n<L−1 bmne

2(N/G)(m+n+2) and similarly to γ1 is computed from bmn.
As discussed in this section, if the DNA sequence is not covered by the reads or there

are unbridged interleaved or triple repeats, then reconstruction is not possible. But there
is another situation which must be ruled out. Without knowing its length a priori, it is
impossible to know how many copies of the DNA sequence are actually present: if the
sequence s to be assembled consists of multiple concatenated copies of a shorter sequence,
rather than just one copy, the probability of observing any set of reads will be the same.
Since it is unlikely that a true DNA sequence will consist of the same sequence repeated
multiple times, we assume this is not the case throughout the paper without further mention.
Equivalently, if s does consist of multiple concatenated copies of a shorter sequence, we are
content to reconstruct a single copy. If available, knowledge of the approximate length of s
would then allow to reconstruct.

The necessary conditions (4.5), (4.7), and (4.8) can be applied to lower bound the coverage
depth NL/G for any DNA sequence. We next turn to evaluating the performance of assembly
algorithms, starting with the greedy algorithm.

3The union bound on probabilities gives an upper bound, so its use here is only an approximation. To get a
rigorous lower bound we can use the inclusion-exclusion principle, but the difference in the two computations
is negligible for the data we observed. For ease of exposition we opt to present the simpler union bound
estimate.
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Figure 4.5: Lower bounds for human ch22: requiring coverage of the sequence implies c̄ ≥ 1,
and the generalized Ukkonen’s condition imposes L be to the right of thick vertical line.

4.4 Towards an optimal assembly algorithm
We now begin our search for algorithms performing close to the lower bounds derived in
the previous section. Algorithm assessment begins with obtaining deterministic sufficient
conditions for success in terms of the positions of reads relative to repeats in the sequence.
We then find the necessary N and L in order to satisfy these sufficient conditions with a
target probability. The required coverage depth for each algorithm depends only on certain
repeat statistics extracted from DNA data, which may be thought of as a sufficient statistic.

Greedy algorithm
The greedy algorithm was used by several of the most widely used genome assemblers for
Sanger data, such as phrap, TIGR Assembler [55], and CAP3 [56]. SSAKE [57] is a more
recent assembler that uses the greedy algorithm on high-throughput shotgun sequencing
with short read data. The greedy algorithm’s underlying data structure is the overlap graph,
where each node represents a read and each (directed) edge (y,x) is labeled with the overlap
ov(y,x) between the incident nodes’ reads. The overlap of two reads ov(y,x) is defined to
be the length of the longest prefix of x equal to a suffix of y. For a node v, the in-degree
din(v) = |{u : (u,v) is an edge}| is the number of edges in the graph directed towards v and
the out-degree din(v) = |{u : (v,u) is an edge}| is the number of edges directed away from
v. The algorithm is described as follows.
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Algorithm 1 Greedy. Input: reads R. Output: sequence ŝ.
1. For each read with sequence x, form a node with label x.
Greedy steps 2-3:
2. Consider all pairs of nodes x1,x2 in G satisfying dout(x1) = din(x2) = 0, and add an edge
(x1,x2) with largest value ov(x1,x2).
3. Repeat Step 2 until no candidate pair of nodes remains.
Finishing step:
4. Output the sequence corresponding to the unique cycle in G.

Theorem 27. Given a sequence s and a set of reads, Greedy returns s if every repeat is
bridged.

Proof. We prove the contrapositive. Suppose Greedy makes its first error in merging reads
ri and rj with overlap ov(ri, rj) = `. Now, if rj is the successor to ri, then the error is due to
incorrectly aligning the reads; the other case is that rj is not the successor of ri. In the first
case, the subsequence s`tj is repeated at location s`ti+L−`, and no read bridges either repeat
copy.

In the second case, there is a repeat s`tj = s`ti+L−`. If s`ti+L−` is bridged by some read
rk, then ri has overlap at least ` + 1 with rk, implying that read ri has already found its
successor before step ` (either rk or some other read with even higher overlap). A similar
argument shows that s`tj cannot be bridged, hence there is an unbridged repeat.

Theorem 27 allows us to determine the coverage depth required by Greedy: we must
ensure that all repeats are bridged. A calculation similar to the one for bridging interleaved
repeats (4.6) gives

Perror ≈
∑
m

ame
−2λ(L−m−1) , (4.9)

where am is the number of repeats of length m. Requiring Perror ≤ ε and solving for L gives

L ≥ 1
2λ log γ

ε
= G

2N log γ
ε
, (4.10)

where γ := ∑
m ame

2(N/G)(m+1).
The performance obtained by the greedy algorithm is plotted in Fig. 4.6, and nearly

matches the lower bound. Chromosome 22 is special, however, in that `repeat (which deter-
mines the performance of Greedy) is not much larger than `interleaved which forms the lower
bound.

Chromosome 19 has a large difference between `interleaved = 2248 and `repeat = 4092, and
in Fig 4.7 we see a correspondingly large gap. Greedy is evidently sub-optimal in handling
interleaved repeats. Nevertheless, once the read length is slightly longer than `repeat, for
Chromosome 19 Greedy requires only c̄ ≥ 1, i.e. as soon as the reads are longer than
`repeat, coverage of the sequence is sufficient for Greedy’s successful reconstruction.
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Figure 4.6: Greedy performance (in red) for Human chromosome 22.
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Figure 4.7: Greedy performance (in red) for Human chromosome 19.

K-mer algorithms
The greedy algorithm requires a read length much longer than called for by Ukkonen’s
condition: it fails when there are unbridged repeats, even if there are no unbridged interleaved
repeats. As mentioned in the introduction, Ukkonen’s condition was originally introduced
in the context of SBH, where one observes all length L subsequences. (The set of all length
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L subsequences is known as the L-spectrum and denoted by SL.) Since our lower bound
generalizes Ukkonen’s condition to shotgun sequencing, it makes sense to likewise turn to
SBH for an assembly algorithm.

Sequencing by Hybridization

For the SBH model, where the set of reads is the L-spectrum SL, an optimal reconstruction
algorithm was discovered by Pevzner [61] . Here optimality means it matches Ukkonen’s
necessary condition: if there are no interleaved or triple repeats of length at least L − 1,
then reconstruction is possible. Pevzner’s algorithm is based on finding an appropriate cycle
in a K-mer graph (also known as a de Bruijn graph) with K = L − 1 (see e.g. [62] for an
overview). A K-mer graph is formed from a sequence s by first adding a node to the graph
for each unique K-mer (length K subsequence) found in the set of reads, and then adding
an edge between any two nodes representing adjacent K-mers (two K-mers in a read are
said to be adjacent if they overlap by K − 1 nucleotides). Each edge is included only once,
independent of how many reads designate its inclusion. Edges thus correspond to (K + 1)-
mers in s and paths correspond to longer subsequences obtained by merging the labels of
the constituent nodes with offset one at each step. There exists a cycle corresponding to the
original sequence s, as shown in the following lemma, and reconstruction entails finding this
cycle.

Lemma 28. Fix an arbitrary K and form the K-mer graph from the (K+1)-spectrum SK+1.
The sequence s corresponds to a unique cycle C(s) traversing each edge at least once.

To prove the lemma, note that all (K + 1)-mers in s correspond to edges and adjacent
(K + 1)-mers in s are represented by adjacent edges. An induction argument shows that s
corresponds to a cycle. The cycle traverses all the edges, since each edge represents a unique
(K + 1)-mer in s.

In both SBH and shotgun sequencing the number of times each edge e is traversed by
C(s) (henceforth called the multiplicity of e) is unknown a priori, and finding this number
is part of the reconstruction task. Repeated (K + 1)-mers in s correspond to edges in the
K-mer graph traversed more than once by C(s), i.e. having multiplicity greater than one.
In order to estimate the multiplicity, previous works seek a solution to the so-called Chinese
Postman Problem (CPP), in which the goal is to find a cycle of the shortest total length
traversing every edge in the graph (see e.g. [63], [58], [47], [46]). It is not obvious under
what conditions the CPP solution correctly assigns multiplicities in agreement with C(s).
For our purposes, as we will see in Theorem 33, the multiplicity estimation problem can be
sidestepped (thereby avoiding the CPP formulation) through a certain modification to the
K-mer graph.

Ignoring the issue of edge multiplicities for a moment, Pevzner [61] showed for the SBH
model that if the edge multiplicities are known with multiple copies of each edge included
according to the multiplicities, and moreover Ukkonen’s condition is satisfied, then there
is a unique Eulerian cycle in the K-mer graph and the Eulerian cycle corresponds to the
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original sequence. (An Eulerian cycle is a cycle traversing each edge exactly once.) Pevzner’s
algorithm is thus to find an Eulerian cycle and read off the corresponding sequence. Both
steps can be done efficiently.

Lemma 29 (Pevzner [61]). In the SBH setting, if the edge multiplicities are known, then
there is a unique Eulerian cycle in the K-mer graph with K = L− 1 if and only if there are
no unbridged interleaved repeats or unbridged triple repeats.

Most practical algorithms (e.g. [58], [64], [65]) condense unambiguous paths (called unitigs
by Myers [66] in a slightly different setting) for computational efficiency. The more significant
benefit for us, as shown in Theorem 33, is that if Ukkonen’s condition is satisfied then
condensing the graph obviates the need to estimate multiplicities. Condensing a K-mer
graph results in a graph of the following type.

Definition 30 (Sequence graph). A sequence graph is a graph in which each node is labeled
with a subsequence, and edges (u,v) are labeled with an overlap auv such the subsequences
u and v overlap by auv (the overlap is not necessarily maximal). In other words, an edge
label auv between nodes u and v indicates that the auv-length suffix of u is identical to the
auv-length prefix of v.

The sequence graph generalizes both the overlap graph used by Greedy in Section 4.4
(nodes correspond to reads, and edge overlaps are maximal overlaps) as well as the K-mer
algorithms discussed in this section (nodes correspond to K-mers, and edge overlaps are
K − 1).

We will perform two basic operations on the sequence graph. For an edge e = (u,v) with
overlap auv, merging u and v along e produces the concatenation uend

1 vend
auv+1. Contracting an

edge e = (u,v) entails two steps (c.f. Fig. 4.8): first, merging u and v along e to form a new
node w = uend

1 vend
auv+1, and, second, edges to u are replaced with edges to w, and edges from v

are replaced by edges from w. We will only contract edges (u,v) with dout(u) = din(v) = 1.
p1
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Figure 4.8: Contracting an edge by merging the incident nodes as described immediately
before Defn. 31. Repeating this operation results in the condensed graph.

We now define what it means to condense a graph.

Definition 31 (Condensed sequence graph). The condensed sequence graph replaces un-
ambiguous paths by single nodes. Concretely, any edge e = (u, v) with dout(u) = din(v) = 1
is contracted, and this is repeated until no candidate edges remain, yielding the condensed
sequence graph.
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For a path P = v1,v2, . . . ,vq in the original graph, the corresponding path in the con-
densed graph is obtained by contracting an edge (vi,vi+1) whenever it is contracted in the
graph, replacing the node v1 by w whenever an edge (u,v1) is contracted to form w, and
similarly for the final node vq. It is impossible for an intermediate node vi, 2 ≤ i < q, to be
merged with a node outside of P , as this would violate the condition dout(u) = din(v) = 1
for edge contraction in Defn. 31.

In the condensed sequence graph G obtained from a sequence s, nodes correspond to
subsequences via their labels, and paths in G correspond to subsequences in s via merging
the constituent nodes along the path. If the subsequence corresponding to a node v appears
twice or more in s, we say that v corresponds to a repeat. Conversely, subsequences of length
` ≥ K in s correspond to paths P of length `−K + 1 in the K-mer graph, and thus by the
previous paragraph also to paths in the condensed graph G.

We record a few simple facts about the condensed sequence graph obtained from a K-mer
graph.

Lemma 32. Let G0 be the K-mer graph constructed from the (K + 1)-spectrum of s and
let C0 = C0(s) be the cycle corresponding to s. In the condensed graph G, let C be the cycle
obtained from C0 by contracting the same edges as those contracted in G0.

1. Edges in G0 can be contracted in any order, resulting in the same graph G, so the
condensed graph is well-defined. Similarly C is well-defined.

2. The cycle C in G corresponds to s and is the unique such cycle.

3. The cycle C in G traverses each edge at least once.

The condensed graph has the useful property that if the original sequence was recon-
structible, then there is an Eulerian cycle corresponding to the sequence:

Theorem 33. Let SK+1 be the (K+1)-spectrum of s and G0 be the K-mer graph constructed
from SK+1, and let G be the condensed sequence graph obtained from G0. If Ukkonen’s
condition is satisfied, i.e. there are no triple repeats or interleaved repeats of length at least
K, then there is a unique Eulerian cycle C in G and C corresponds to s.

Proof. We will show that if Ukkonen’s condition is satisfied, the cycle C = C(s) in G corre-
sponding to s (constructed in Lemma 32) traverses each edge exactly once in the condensed
K-mer graph, i.e. C is Eulerian. Pevzner’s [61] arguments show that if there are multiple
Eulerian cycles then Ukkonen’s condition is violated, so it is sufficient to prove that C is
Eulerian. As noted in Lemma 32, C traverses each edge at least once, and thus it remains
only to show that C traverses each edge at most once.

To begin, let C0 be the cycle corresponding to s in the original K-mer graph G0. We argue
that every edge (u,v) traversed twice by C0 in the K-mer graph G0 has been contracted in
the condensed graph G and hence in C. Note that the cycle C0 does not traverse any node
three times in G0, for this would imply the existence of a triple repeat of length K, violating
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the hypothesis of the Lemma. It follows that the node u cannot have two outgoing edges
in G0 as u would then be traversed three times; similarly, v cannot have two incoming
edges. Thus dout(u) = din(v) = 1 and, as prescribed in Defn. 31, the edge (u,v) has been
contracted.

Theorem 33 characterizes, deterministically, the values of K for which reconstruction
from the (K + 1)-spectrum is possible. We proceed with application of the K-mer graph
approach to shotgun sequencing data.

Basic K-mer algorithm

Starting with Idury and Waterman [58], and then Pevzner et al.’s [47] euler algorithm,
most current assembly algorithms for shotgun sequencing are based on the K-mer graph.
Idury and Waterman [58] made the key observation that SBH with subsequences of length
K + 1 can be emulated by shotgun sequencing if each read overlaps the subsequent read by
K: the set of all (K + 1)-mers within the reads is equal to the set of all (K + 1)-mers in the
sequence s, i.e. the (K + 1)-spectrum SK+1. Ignoring the reads gives rise to the algorithm
DeBruijn described next, and algorithms using the reads to a greater extent are discussed
in the next subsection.

Algorithm 2 DeBruijn. Input: reads R, parameter K. Output: sequence ŝ.
K-mer steps 1-3:
1. For each subsequence x of length K in a read, add a node to the graph G with label x.
2. For each read, add edges between nodes representing adjacent K-mers in the read.
3. Condense the graph as described in Definition 31.
4. Finishing step: Find an Eulerian cycle in G and return the corresponding sequence.

The parameter K determines the granularity of the K-mer graph: repeats of length K−1
do not appear in the graph. Conditions (a) and (b) of Lemma 34 below ensure that K is
large enough that neither interleaved nor triple repeats cause the graph to be tangled. At
the same time, increasing K requires more reads as they must overlap by K: otherwise the
K-mer graph is not connected. Condition (c) guarantees that the graph is connected.

As discussed below, the choice K = 1 + max{`triple, `interleaved} is optimal for DeBruijn,
so the parameter K could be removed from the statement of Lemma 34. We keep K explicit
for two reasons. First, algorithm DeBruijn does not actually require a priori knowledge
of the repeat lengths and thus in a hypothetical practical use of the algorithm K would
typically be larger than the optimum. Second, the sufficient conditions in Lemma 34 are
organized in order to facilitate comparison with the improved K-mer algorithms in the next
subsection.

Lemma 34. Fix a sequence s. Then DeBruijn with parameter choice K successfully re-
turns the sequence s if the reads satisfy the following assumptions:
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(a) interleaved repeats: no interleaved repeats of length at least K, i.e. K > `interleaved

(b) triple repeats: no triple repeats of length at least K, i.e. K > `triple

(c) coverage depth: every read overlaps its successor by at least K.

Proof. By assumption (c) all (K + 1)-mers in s are contained in reads, so the K-mer graph
constructed by DeBruijn is the same as from the (K + 1)-spectrum SK+1. Now conditions
(a) and (b) state that s has no triple or interleaved repeats of length ≥ K, so the hypotheses
of Theorem 33 are met and there is a unique Eulerian cycle found by DeBruijn.
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Figure 4.9: Performance of DeBruijn (in blue) on Chrom19.

Lander and Waterman’s coverage analysis [49] applies also to Condition (c) of Lemma 34.
The coverage depth required in order that each read overlap the subsequent read by K base
pairs is approximately given by solving for NK−cov in the equation

NK−cov = G

L−K
log NK−cov

ε
.

Comparing to our baseline NLW, we have
NK−cov

NLW
= 1

1− K
L

· logNK−cov − log ε
logNLW − log ε ≈

1
1− K

L

. (4.11)

Since decreasing K reduces the coverage depth required, Lemma 34 identifies the optimal
choice of K to be K = 1 + max{`triple, `interleaved}. Plugging this value into (4.11), we have

N

NLW
&

1
1− 1+max{`triple,`interleaved}

L

. (4.12)

66



The performance of DeBruijn is plotted in Fig. 4.9. DeBruijn significantly improves
on Greedy by obtaining the correct first order performance: given sufficiently many reads,
the read length L may be decreased to 1 + max{`triple, `interleaved}. Still, the number of reads
required to approach this critical length is large and remains far from the lower bound.
In order to reduce the number of reads required while staying within the K-mer graph
framework, K must be reduced. We pursue this in the following subsection.

Improved K-mer algorithms
Algorithm DeBruijn ignores a lot of information contained in the reads, and indeed all of
theK-mer based algorithms proposed by the sequencing community (including [58], [47], [67],
[68], [64], [65]) use the read information to a greater extent than the naive DeBruijn algo-
rithm. Better use of the read information, as described below in algorithms SimpleBridg-
ing and MultiBridging, will allow to relax the condition K > max{`interleaved, `triple} for
success of DeBruijn, which in turn reduces the high coverage depth required by Condition
(c).

Existing algorithms use read information in a variety of distinct ways to resolve repeats.
For instance, Pevzner et al. [47] observe that for graphs where each edge has multiplicity
one, if one copy of a repeat is bridged, the repeat can be resolved through what they call a
“detachment”. The algorithm SimpleBridging described here is very similar, and resolves
repeats with two copies if at least one copy is bridged. Meanwhile, other algorithms are better
suited to higher edge multiplicities due to higher order repeats; IDBA (Iterative DeBruijn
Assembler) [59] creates a series of K-mer graphs, each with larger K, and at each step uses
not just the reads to identify adjacent K-mers, but also all the unbridged paths in the K-
mer graph with smaller K. Although it is not stated explicitly in their paper, we make the
observation here that if all copies of every repeat are bridged, then this is sufficient to ensure
reconstruction.

It is suboptimal to require that all copies of every repeat up to the maximal K be
bridged. We introduce MultiBridging, which combines these ideas to simultaneously
allow for single-bridged double repeats, triple repeats in which all copies are bridged, and
unbridged non-interleaved repeats.

Resolving 2-repeats: SimpleBridging

SimpleBridging improves on DeBruijn by resolving bridged 2-repeats (i.e. a repeat
with exactly two copies in which at least one copy is bridged by a read). Condition (a)
K > `interleaved for success of DeBruijn (ensuring that no interleaved repeats appear in
the initial K-mer graph) is updated to require only no unbridged interleaved repeats, which
matches the lower bound. With this change, Condition (b) K > `triple forms the bottleneck
for typical DNA sequences. Thus SimpleBridging is optimal with respect to interleaved
repeats, but it is suboptimal with respect to triple repeats.
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SimpleBridging deals with repeats by performing surgery on certain nodes in the
sequence graph. In the sequence graph, a repeat corresponds to a node we call an X-node, a
node with in-degree and out-degree each at least two (Fig. 4.10). A self-loop (e.g. Fig. 4.14b)
contributes one each to the in-degree and out-degree. The cycle C(s) traverses each X-node
at least twice, so X-nodes correspond to repeats in s. The converse is false: not all repeats
correspond to X-nodes. We call an X-node which is traversed exactly twice a 2-X-node; these
nodes have in-degree and out-degree 2 and correspond to 2-repeats. An X-node is said to be
bridged if the corresponding repeat in s is bridged.
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Figure 4.10: An X-node in a condensed sequence graph is a junction centered at a node v
with dout(v) ≥ 2 and din(v) ≥ 2. A self-loop (e.g. Fig. 4.14b) contributes one each to the
in-degree and out-degree.

In the bridging step of SimpleBridging (illustrated in Fig. 4.11), bridged 2-X-nodes
are duplicated in the graph and incoming and outgoing edges are inferred using the bridging
read, reducing possible ambiguity. Since bridging reads extend one base to either end of a
repeat, it will be convenient to use the following notation for extending sequences: Given an
X-node v with an incoming edge (p,v) and an outgoing edge (v,q), let

v→q = vend
1 qavq+1

avq+1, and p→v = pend−apv
end−apvvend

1 . (4.13)

Here v→q denotes the subsequence v appended with the single next base in the merging of
v and q and p→v the subsequence v prepended with the single previous base in the merging
of p and v. For example, if v = ATTC, p = TCAT, apv = 2, q = TTCGCC, and avq = 3,
then v→q = ATTCG, p→v = CATTC, and p→v→q = CATTCG. The idea is that a bridging
read is consistent with only one pair p→v and v→q and thus allows to match up edge (p,v)
with (v,q).

Lemma 35. Suppose C corresponds to a sequence s in a condensed sequence graph G. If a
read r bridges an X-node v, then there are unique edges (p,v) and (v,q) such that p→v and
v→q are adjacent in r.
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Figure 4.11: When a read bridges a repeat with two copies, the 2-X-node corresponding to
the repeat is duplicated and potential ambiguity is reduced.

bridging read
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…AATTGCAAG… …GATTGCAAC…

ATTGCAA

ATTGCAA

ATTGCAA
AATT
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CAAG

CAAC

AATT

GATT

CAAG

CAAC

Figure 4.12: An example of the bridging step in SimpleBridging.

Algorithm 3 SimpleBridging. Input: reads R, parameter K. Output: sequence ŝ.
K-mer steps 1-3:
1. For each subsequence x of length K in a read, form a node with label x.
2. For each read, add edges between nodes representing adjacent K-mers in the read.
3. Condense the graph as described in Definition 31.
4. Bridging step: See Fig. 4.11. While there exists an X-node v with din(v) = dout(v) = 2
bridged by some read r: (i) Remove v and edges incident to it. Add duplicate nodes v1,v2.
(ii) Choose the unique pi and qj such that pi→v and v→qj are adjacent in r, and add edges
(pi,v1) and (v1,qj). Choose the unused pi and qj, and add edges (pi,v2) and (v2,qj). (iii)
Condense the graph.
5. Finishing step: Find an Eulerian cycle in the graph and return the corresponding sequence.

Lemma 36. Fix a sequence s. The algorithm SimpleBridging with parameter choice K
correctly reconstructs s if the reads satisfy the following assumptions:

(a) interleaved repeats: no unbridged interleaved repeats

(b) triple repeats: no triple repeats of length ≥ K, i.e. K > `triple

(c) coverage depth: every read overlaps its successor by at least K.

Proof. The proof is very similar to that of Lemma 37 below and is omitted.
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Figure 4.13: Performance of SimpleBridging (in magenta) on Chrom19.

Figure 4.13 plots the performance of SimpleBridging. We produce the plot by trans-
lating the conditions of Lemma 36 into statements relating G,N,L, and ε. Condition (a) that
there be no unbridged interleaved repeats was already derived as part of the lower bound in
Section 4.3, yielding (4.8). Condition (b) requires K > `triple, and therefore the best choice
for K is K = 1 + `triple. Plugging into Condition (c) as given by (4.11), computed in the
context of DeBruijn, we have

N

NLW
&

1
1− 1+`triple

L

. (4.14)

The plot is obtained by choosing the minimum N and L satisfying the two conditions (4.8)
and (4.14).

Resolving triple repeats: MultiBridging

We now turn to triple repeats. As previously observed, it can be challenging to resolve
repeats with more than one copy [47], because an edge into the repeat may be paired with
more than one outgoing edge. As discussed above at the top of the section, our approach
here shares elements with IDBA [59].

The algorithm MultiBridging has a more sophisticated bridging step II, which resolves
higher order repeats. As noted in the previous subsection, repeats correspond to nodes in the
sequence graph we call X-nodes (c.f. Fig. 4.10), nodes with in-degree and out-degree each
at least two. All X-nodes correspond to repeats, but not all repeats correspond to X-nodes.
A repeat is said to be all-bridged if all repeat copies are bridged, and an X-node is called
all-bridged if the corresponding repeat is all-bridged.
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The requirement that triple repeats be all-bridged allows them to be resolved locally.
The X-node resolution procedure given in Step 4 of MultiBridging can be interpreted in
the K-mer graph framework as increasing K locally so that repeats do not appear in the
graph. An outline of the X-node resolution step is as follows. First, new nodes are added
with labels one base longer than the repeat length, one for each incoming or outgoing edge
of the X-node. (An extra edge is added for self-loops.) Edges are then added for adjacent
subsequences using the bridging reads, as per Lemma 35. Repeating this process increases
the node lengths so that repeats are eventually contained safely in the interior of nodes,
where they cause no ambiguity.
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(a) The X-node with label ATTGCAA corre-
sponds to a nested repeat.

CATTGCATT

GATT

TATT

ATTC

bridging read

…GATTGCATTGCATTC… …TATTGCATTT...
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(b) X-node with a self-loop

Figure 4.14: X-node resolution for two different examples.
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Algorithm 4 MultiBridging. Input: reads R, parameter K. Output: sequence ŝ.
K-mer steps 1-3:
1. For each subsequence x of length K in a read, form a node with label x.
2. For each read, add edges between nodes representing adjacent K-mers in the read.
3. Condense the graph as described in Definition 31.
4. Bridging step II: While there exists a bridged X-node v (Fig. 4.10): (i) For each edge
(pi,v) create a new node ui = pi→v and edge (pi,ui) with weight api,v + 1 and for each
edge (v,qj) create a new node wj = v→qj and edge (v,qj) with weight av,qi + 1 (notation
defined in (4.13)). (ii) If v has a self-loop (v,v) with weight av,v, add an edge (v→v, v→v)
with weight av,v + 2 (c.f. Fig. 4.14b). (iii) Remove node v and all incident edges. (iv) For
each pair ui,wj adjacent in a read, add edge (ui,wj). If exactly one each of the ui and wj

nodes have no added edge, add the edge. (v) Condense the graph.
5. Finishing step: Find an Eulerian cycle in the graph and return the corresponding sequence.

Lemma 37. Fix a sequence s. The algorithm MultiBridging successfully reconstructs the
sequence s if the reads satisfy the following assumptions:

(a) interleaved repeats: no unbridged interleaved repeats

(b) triple repeats: all triple repeats are all-bridged

(c) the sequence is covered by the reads.

Proof. The proof is contained in the appendix.

Unlike the previous K-mer algorithms, DeBruijn and SimpleBridging, it is unnec-
essary to specify a parameter K for MultiBridging. Implicitly MultiBridging uses
K = 1, which makes the condition that reads overlap by K equivalent to coverage of the
genome. Depending on the repetitiveness of the genome, building the initial K-mer graph
with K around 20 or 40 seems to provide a good trade-off between computational efficiency
and required number of reads.

Figure 4.15 plots the performance of MultiBridging, obtained by solving for the rela-
tionship between G,N,L, and ε in order to satisfy the conditions of Lemma 37. Condition (a)
is already dealt with in (4.8), and Condition (c) is simply the requirement that N

NLW
≥ 1.

We turn to Condition (b) that all triple repeats are all-bridged. Let cm denote the number
of triple repeats of length m. A union bound estimate over triple repeats for the event that
one such triple repeat fails to be all-bridged gives

Perror ≈
∑
m

3 · cme−λ(L−m−1) , (4.15)

and requiring Perror ≤ ε and solving for L yields

L ≥ 1
λ

log γ3

ε
= G

N
log γ3

ε
, (4.16)
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Figure 4.15: Performance of MultiBridging (in green) on Chrom19.

where γ3 := ∑
m 3cme(N/G)·(m+1) is computed from the triple repeat statistics cm.

In order to understand the cost of all-bridging triple repeats, compared to simply bridging
one copy as required by our lower bound, it is instructive to study the effect of the single
longest triple repeat. Setting c`triple = 1 and cm = 0 for m 6= `triple makes γ3 = 3e(N/G)·(`triple+1)

in (4.16) and

L ≥ Lall
3 := `triple + 1 + 1

λ
log 3ε−1 = `triple + 1 + G

N
log 3ε−1 . (4.17)

Bridging the longest triple repeat, as shown in Section 4.7, requires

L ≥ L3 := `triple + 1 + 1
3λ log ε−1 = `triple + 1 + G

3N log ε−1 . (4.18)

Solving for N in equations (4.18) and (4.17) gives

N3 ≥
G

3 ·
log ε−1

L− `triple − 1 and Nall
3 ≥ G · log ε−1 + log 3

L− `triple − 1 . (4.19)

The ratio is
Nall

3
N3

= 3 · log 3ε−1

log ε−1 ≈ 3.72 for ε = 10−2 . (4.20)

This means that if the longest triple repeat is dominant, then for L slightly larger than `triple,
MultiBridging needs a coverage depth approximately 3.72 times higher than required by
our lower bound.
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`repeat`triple

Figure 4.16: Performance of MultiBridging on P Marinus. The effect of the longest
triple repeat is dominant here, so for L slightly larger than `triple, MultiBridging needs a
coverage depth higher than the coverage depth required by our lower bound, as predicted by
equation (4.20).

4.5 Algorithm simulations
In order to verify the performance predictions for the algorithms, we ran simulations of each
algorithm along the curve at which < 5% error was predicted (Fig. 4.17). Values of N
and L were sampled at regular intervals along the vertical c̄ = N/NLW axis and along the
horizontal L axis, and projected onto the curve. For each point (L,N), we simulated 100
datasets and ran the various algorithms, recording how many times successful reconstruction
was achieved.

This was done for two of the three data sets in the GAGE assembly evaluation for which
complete reference sequence are available, namely Staphylococcus aureus and Rhodobac-
ter sphaeroides. Runtimes on Human Chromosome 14 were too long to be able to obtain
informative simulation results. Simulation results support the predictions based on repeat
statistics: for each algorithm the numbers, e.g. 93, 98, 95, indicate the number of successful
reconstructions out of 100 trials, and agree with the expected 5% error rate (allowing for
random fluctuations).

We note that we ran MultiBridging with K = 40 in order to have reasonable runtimes;
the dependence on runtime is further discussed in Section 4.6. This results in less than a
95% success rate for R. sphaeroides in the coverage-limited regime (i.e. camping from the
line c̄ = 1).
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(b) Simulation results for S. Aureus with ε = 5%.

Figure 4.17: Simulation results for R. sphaeroides and S. Aureus on each of the four algo-
rithms, both with ε = 5%. For each algorithm the numbers, e.g. 93, 98, 95, indicate the
number of successful reconstructions out of 100 trials with randomly sampled reads for each
trial.

4.6 Discussion

Computational complexity
Computational complexity is an important consideration in the design of assembly algo-
rithms. We note that most of the optimization-based formulations of assembly have been
shown to be NP-hard, including SCS [3], [7], De Bruijn Superwalk [22], [12], and Mini-
mum s-Walk on the string graph [15], [12]. The computational hardness results have led to
heuristic-based algorithm development emphasizing computational efficiency. However, as
pointed out by Nagarajan and Pop [18], typical instances of a problem may well be easier
than the worst-case. Indeed, on typical repeat statistics, the algorithm MultiBridging
achieves performance close to the information theoretic limits while being efficient.

We now compute the run-time of MultiBridging. The algorithm MultiBridging has
two phases: the K-mer graph formation step, and the repeat resolution step. The K-mer
graph formation runtime can be easily bounded by

O((L−K)NK),

assuming O(K) look-up time for each of the (L−K)N K-mers observed in reads. This step
is common to all K-mer graph based algorithms, so previous works to decrease the practical
runtime or memory requirements are applicable.

75



The repeat resolution step depends on the repeat statistics and choice of K. It can be
loosely bounded as

O
( L∑
`=K

L
∑

max repeats x
of length `

dx

)
.

The second sum is over distinct maximal repeats x of length ` and dx is the number of (not
necessarily maximal) copies of repeat x. The bound comes from the fact that each maximal
repeat of length K < ` < L is resolved via exactly one bridged X-node, and each such
resolution requires examining at most the Ldx distinct reads that contain the repeat. We
note that

L∑
`=K

L
∑

max repeats x
of length `

dx <
L∑

`=K
La` ,

and the latter quantity is easily computable from our sufficient statistics. Creating the list
of reads containing each repeat can be done as part of the K-mer graph formation step, and
maintaining it does not add complexity to the resolutions. For our data sets, with appropriate
choice of K, the bridging step is much simpler than the K-mer graph formation step: for
RSPHAEROIDES we use K0 = 40 to get ∑L

`=K La` = 412; in contrast, N > 22421 on our
L-range is much larger. Similarly, for HumanChr14, using K = 100, ∑L

`=K La` = 81284 while
N > 733550 for the relevant range of L; for SAureus, ∑L

`=K La` = 558 while N > 8031.

Size of critical window
In Section 4.2 we discussed the critical behavior in read length L:

1. If the read length L is below Lcrit, reliable reconstruction of the DNA sequence is
impossible no matter what the coverage depth is.

2. If the read length L is slightly above Lcrit, then covering the sequence suffices, i.e.
c∗ = cLW .

The first part follows from Ukkonen’s condition, which requires that L > Lcrit = 1 +
max{`interleaved, `triple}. One can observe the second part from the plots in Section 4.8, but
in this subsection we seek to understand just how much larger than Lcrit must L be in order
that covering the sequence suffices for reconstruction, and furthermore how this depends on
the parameters ε and G.

Critical window size if `interleaved � `triple

Let us focus here on the bound due to interleaved repeats (rather than triple repeats), and
furthermore assume that the effect of the single largest interleaved repeat is dominant. In
this case `interleaved = Lcrit − 1 is the length of the shorter of the pair of interleaved repeats,
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and let `1 be the length of the longer of the two. For Lcrit < L ≤ `1 + 1, we are in the setting
of (4.7) but with a redefined γ1 = e2(N/G)(Lcrit−1). Thus,

L ≥ Lcrit + G

2N log ε−1 , (4.21)

and solving for N gives
Nrepeat = G

2
log ε−1

L− `2 − 1 (4.22)

Let L∗ be the value of L at which the curve described by constraint (4.22) intersects the
Lander-Waterman coverage value, i.e. Nrepeat(L∗) = NLW(L∗) := N∗. This is the minimum
read length for which coverage of the sequence suffices for reconstruction.

We now solve for L∗

Lcrit
. First, the Lander-Waterman equation (4.5) at N = N∗ is

N∗ = G

L∗
log N

∗

ε
, (4.23)

and setting equal the right-hand sides of (4.23) and (4.22) at L = L∗ gives

G

L∗
log N

∗

ε
= G

2
log ε−1

L∗ − `2 − 1 .

A bit of algebra yields
L∗

Lcrit
= 2

2− x , (4.24)

where
x := · log ε−1

logN∗ + log ε−1 . (4.25)

Since x ≤ 1
2 , equation (4.24) implies L∗ ≤ 2Lcrit, and combined with the obvious inequality

L∗ ≥ Lcrit, we have Lcrit ≤ L∗ ≤ 2Lcrit. Thus

NLW(2Lcrit) ≤ N∗ ≤ NLW(Lcrit) , (4.26)

and applying the Lander-Waterman fixed-point equation (4.5) yet again gives

G

2Lcrit
log NLW(2Lcrit)

ε
≤ N∗ ≤ G

Lcrit
log NLW(Lcrit)

ε
. (4.27)

log ε−1

log G
Lcrit

+ log log NLW(Lcrit)
ε

+ log ε−1
≤ x ≤ log ε−1

log G
Lcrit
− 1 + log log NLW(2Lcrit)

ε
+ log ε−1

.

(4.28)
and this can be relaxed to

log ε−1

log G
Lcrit

+ log ε−1 + log log G
εLcrit

≤ x ≤ log ε−1

log G
Lcrit
− 1 + log ε−1 . (4.29)
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Letting

r :=
log G

Lcrit

log ε−1 , (4.30)

we have to a very good approximation

L∗

Lcrit
≈ 2(r + 1)

2(r + 1)− 1 . (4.31)

For G ∼ 108, Lcrit ∼ 1000, and ε = 5%, we get log G
Lcrit
≈ 13.8 and log ε−1 ≈ 3.0, so

r ≈ 4.6 and
L∗

Lcrit
= 2(r + 1)

2(r + 1)− 1 ≈ 1.1 .

From (4.30) we see that the relative size of log ε−1 and log G
Lcrit

determines the size of the
critical window. If in the previous example ε = 10−5, say, then L∗

Lcrit
increases to 1.3. As ε

tends to zero, r approaches zero as well and L∗

Lcrit
→ 2.

Critical window size if `triple � `interleaved

We now suppose the single longest triple repeat dominates the lower bound and estimate
the width of the critical window. In this case `triple = Lcrit − 1 is the length of the longest
triple repeat. Since we don’t have matching lower and upper bounds for triple repeats, we
separately compute the critical window size for each.

We start with the lower bound. For L > Lcrit, the minimum value of N required in order
to bridge the longest triple repeat is given by (4.19) and repeated here:

Ntriples = G

3 ·
log ε−1

L− Lcrit
. (4.32)

As for the interleaved repeats case considered earlier, we let L∗ be the value of L at which
the curve described by constraint (4.32) intersects the Lander-Waterman coverage value, i.e.
Ntriple(L∗) = NLW(L∗) := N∗. This is the minimum read length for which coverage of the
sequence suffices for reconstruction.

A similar procedure as leading to (4.24) gives L∗/Lcrit = 3/(3 − x) with x defined in
(4.25). One can check that the estimates on x in (4.29) continue to hold, and we therefore
get

L∗

Lcrit
≈ 3(r + 1)

3(r + 1)− 1 . (4.33)

For the same example as before, G ∼ 108, Lcrit ∼ 1000, and ε = 5%, we get r ≈ 4.6 and

L∗

Lcrit
= 3(r + 1)

3(r + 1)− 1 ≈ 1.06 .

Changing ε to 10−5 makes L∗

Lcrit
≈ 1.17, and as ε (and hence also r) tends to zero, L∗

Lcrit
→ 3

2 .
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The analogous computation for L∗/Lcrit for the upper bound, as given by Nall
3 in (4.19),

yields
L∗

Lcrit
= r + 1
r + log 3

log ε−1

≈ 1.12 , (4.34)

for the example with G ∼ 108, Lcrit ∼ 1000, and ε = 5%. The critical window size of the
upper bound is about twice as large as that of the lower bound for typical values of G and
Lcrit, with ε moderate. But as ε → 0, we see from (4.34) that L∗/Lcrit → ∞, markedly
different to the L∗/Lcrit → 3

2 observed for the lower bound.

Improved lower bound for triple repeats
We show one case where a triple repeat only being single-bridged leads to confusion. Denote
by s1 and s2 the two sequences depicted in Fig. 4.18. If the true sequence is s1, and only the
copy of x between u and y is bridged, then P(R|s2) > P(R|s1), and maximum likelihood
assembly would make a mistake in calling s2. This demonstrates that the gap between
the lower bound and upper bound based on the performance of MultiBridging is not
exclusively a consequence of the algorithm being suboptimal– the lower bound is also loose.

xu w y zxu x y

x u yxux ywz q

q q

z

Figure 4.18: If only a single copy of the triple repeat is bridged as in the first instance,
then the second sequence has higher likelihood and the maximum likelihood assembly is
erroneous.

Dominant effect of longest repeats
The goal of this section is to find out which constraints are active for which parameter choices
N,L, and thereby derive a simple expression bounding the performance of Greedy.

The coverage constraint can be expressed as

L ≥ Lcov := λ−1 log G
ε

= λ−1 logG+ λ−1 log ε−1 .

The performance of Greedy can be derived in terms of the requirement that all repeats be
bridged. The probability that a particular repeat of length ` is unbridged is approximately
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e−2λ(L−`). The requirement that the longest repeat be bridged gives

L ≥ Lrepeat := `repeat + 1 + 1
2λ log ε−1 .

A similar expression is obtained from applying the union bound over all repeats, resulting
in the condition for Greedy

L ≥ LGreedy := 1
2λ log(ε−1∑ a`e

2λ`) .

Now, suppose that a` ≤ G2e−α` , and α ≥ 2λ+ε. Integrating gives∑ a`e
2λ` ≤ G2∑ e`(2λ−α) ≤

G2 1
α−2λ . We obtain

LGreedy ≤
1

2λ log G
2

ε2
≤ Lcov ,

which means that coverage of the sequence implies success for Greedy. Alternatively,
suppose that α ≥ logG2

`repeat
. Then

LGreedy = 1
2λ log ε−1 + 1

2λ log
∑

a`e
2λ` ≤ 1

2λ log ε−1 + 1
2λ log G2

2λ− αe
(2λ−α)`repeat ≤ Lrepeat ,

and bridging the longest repeat implies success of Greedy.
The difficulty occurs if a` is such that α < min{2λ + ε, logG2

`repeat
}. The solution is to

retain not only the longest repeat, but all repeats longer than some parameter x. Define
A := ∑

`≤x a`e
2λ` and B = ∑

`>x a`e
2λ`. We have LGreedy = 1

2λ log(A + B) + 1
2λ log ε−1. Let

us define
x := max{y : max

1≤`≤y
a` ≤ G2e−(2λ+ε)`} .

The implication is that if A ≥ B, then LGreedy ≤ Lcov + 1
2λ , and if B ≥ A, then LGreedy ≤

LB + 1
2λ , where LB := 1

2λ logB + 1
2λ log ε−1. Thus we replace the constraint due to bridging

the longest repeat by LB, bridging all the repeats longer than x.
Taking the sum in B only over repeats longer than x simplifies the numerical computa-

tions, allowing to factor out e2λx. This gives

1
2λ logB = log

(
e2λx∑

`>x

a`e
2λ(`−x)

)
= 2λx log

(∑
`>x

a`e
2λ(`−x)

)
.

For the genomes we examined, x is fairly close to `repeat.

4.7 Proof of correctness for MultiBridging
Proofs for K-mer algorithms
We will use mC(v) to denote the multiplicity (traversal count) a cycle C assigns a node v.
The multiplicity mC(v) is also equal to the number of times the subsequence v appears in
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the sequence corresponding to C. For an edge e, we can similarly let mC(e) be the number
of times C traverses the edge. The following key lemma relates node multiplicities with the
existence of X-nodes.

Lemma 38. Let C be a cycle in a condensed sequence graph G, where G itself is not a cycle,
traversing every edge at least once. If v is a node with maximum multiplicity at least 2, i.e.
mC(v) = maxu∈GmC(u) ≥ 2, then v is an X-node. As a consequence, if mC(v) ≥ 3 for some
v, i.e. C traverses some node at least three times, then mC(u) ≥ 3 for some X-node u.

Proof. Let v be a node with maximum multiplicity mC(v) = maxu∈GmC(u). We will show
that v is an X-node, i.e. dout(v) ≥ 2 and din(v) ≥ 2.

We prove that dout(v) ≥ 2 by supposing that dout(v) = 1 and deriving a contradiction.
Denote the outgoing edge from v by e = (v,u), where u is distinct from v since otherwise
G is a cycle. If din(u) ≥ 2, then u must be traversed more times than v, contradicting the
maximality of mC(v), and if din(u) = 1, then the existence of the edge e contradicts the
fact that G is condensed. The argument showing that din(v) ≥ 2 is symmetric to the case
din(v) ≥ 2.

Proof of Lemma 37. We assume that all triple repeats are all-bridged, that there are no
unbridged interleaved repeats, and that all reads overlap their successors by at least 1 base
pair. We wish to show that MultiBridging returns the original sequence.

Consider the condensed sequence graph G0 constructed in steps 1-3 of MultiBridging.
Suppose all X-nodes that are either all-bridged or correspond to bridged 2-repeats have been
resolved according to repeated application of the procedure in step 4 of MultiBridging,
resulting in a condensed sequence graph G. We claim that 1) s corresponds to a cycle C in
G traversing every edge at least once, 2) C is Eulerian, and 3) C is the unique Eulerian cycle
in G.

Proof of Claim 1. Let Gn be the graph after n resolution steps, and suppose that Cn is a
cycle in Gn corresponding to the sequence s and traversing all edges. We will show that there
exists a cycle Cn+1 in Gn+1 corresponding to s and traversing all edges, and that Gt = G for
a finite t, so by induction, there exists a cycle C in G corresponding to s and traversing all
edges. The base case n = 0 was shown in Lemma 28. Moving on to arbitrary n > 0, let v be
an X-node in Gn labeled as in Fig. 4.10. The X-node resolution step is constructed precisely
to preserve the existence of a cycle corresponding to s. Each traversal of v by the cycle Cn
assigns an incoming edge (piv) to an outgoing edge (v,qj), and the resolution step correctly
determines this pairing by the assumption on bridging reads.

Note that all X-nodes in the graph Gn+1 continue to correspond to repeats in s. The
process terminates: let L(Gi) = ∑

v∈GimCi(v)1mCi (v)>1 and observe that L(Gi) is strictly
decreasing in i. Thus s corresponds to a cycle C in G traversing each edge at least once.
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Proof of Claim 2. We next show that C is an Eulerian cycle. If G is itself a cycle, and
s is not formed by concatenating multiple copies of a shorter subsequence (assumed not to
be the case, see discussion at end of Section 4.3), then C traverses G exactly once and is an
Eulerian cycle. Otherwise, if G is not a cycle, then we may apply Lemma 38 to see that any
node with mC(v) ≥ 3 implies the existence of an X-node u with mC(u) ≥ 3. Node u must
be all-bridged, by hypothesis, which means that an additional X-node resolution step can be
applied to G, a contradiction. Thus each node v in G has multiplicity mC(v) ≤ 2.

We can now argue that no edge e = (u,v) is traversed twice by C in the condensed
sequence graph G, as it would have been contracted. Suppose mC(e) ≥ 2. The node u
cannot have two outgoing edges as this implies mC(u) ≥ 3; similarly, v cannot have two
incoming edges. Thus dout(u) = din(v) = 1, but by Defn. 31 the edge e = (u,v) would have
been contracted.

Proof of Claim 3. It remains to show that there is a unique Eulerian cycle in G. All X-
nodes in G must be unbridged 2-X-nodes (correspond to 2-repeats in s), as all other X-nodes
were assumed to be bridged and have thus been resolved in G.

We will map the sequence s to another sequence s′, allowing us to use the characterization
of Lemma 29 for SBH with known multiplicities. Denote by G′ the graph obtained by
relabeling each node in G by a single unique symbol (no matter the original node label
length), and setting all edge overlaps to 0. Through the relabeling, C corresponds to a cycle
C ′ in G′, and let s′ be the sequence corresponding to C ′. Writing S ′2 for the 2-spectrum of
s′, the graph G′ is by construction precisely the 1-mer graph created from S ′2, and there is
a one-to-one correspondence between X-nodes in G′ and unbridged repeats in s′. Through
the described mapping, every unbridged repeat in s′ maps to an unbridged repeat in s, with
the order of repeats preserved.

There are multiple Eulerian cycles in G only if there are multiple Eulerian cycles in G′
since the graphs have the same topology, and by Lemma 29 the latter occurs only if there are
unbridged interleaved repeats in s′, which by the correspondence in the previous paragraph
implies the existence of unbridged interleaved repeats in s .

Lower bound due to triple repeats
We translate the generalized Ukkonen’s condition prohibiting unbridged triple repeats into
a condition on L and N . Let cm denote the number of triple repeats of length m. Then a
union bound estimate gives

P(E) ≈
∑
m

cme
−3λ(L−m−1) . (4.35)

Requiring P(E) ≤ ε and solving for L gives

L ≥ 1
3λ log γ3

ε
= G

3N log γ3

ε
, (4.36)

where γ3 := ∑
m cme

3(N/G)(m+1).
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Truncation estimate for bridging repeats (Greedy and
MultiBridging)
The repeat statistics am and cm used in the algorithm performance curves are potentially
overestimates. This is because a large repeat family—one with a large number of copies
f—will result in a contribution

(
f
2

)
≈ f 2/2 to am and

(
f
3

)
≈ f 3/6 to cm.

We focus here on deriving an estimate for the required N,L for bridging all repeats with
probability 1− ε. This upper bound reduces the sensitivity to large families of short repeats.
The analogous derivation for all-bridging all triple-repeats is very similar and is omitted.

Suppose there are am repeats of length m. The probability that some repeat is unbridged
is approximately, by the union bound estimate,

P(E) ≈
∑
m

ame
−2λ(L−m) . (4.37)

Requiring P(E) ≤ ε and solving for L gives

L ≥ 1
2λ log γ

ε
= G

2N log γ
ε
, (4.38)

where γ := ∑
m ame

2(N/G)m. Now, if am overcounts the number of repeats for small values
of m, the bound in (4.38) might be loose. In order for each read to overlap the subsequent
read by x nucleotides, with probability of failure ε/2, it suffices to take

L ≥ LK-cov

(
x,
ε

2

)
:= x+ 1

λ
log 2N

ε
. (4.39)

Thus, for any x < L, we may replace (4.38) by

L ≥ min
x

max{ 1
2λ log 2γ(x)

ε
, LK-cov(x, ε2)} , (4.40)

where γ(x) = ∑
m>x ame

2(N/G)m, and obtain a looser bound.

4.8 Feasibility Plots
In this section we display the output of our pipeline for 12 datasets. For each dataset we
plot

log(1 + a`),

the log of one plus the number of repeats of each length `. From the repeat statistics am,
bm,n, and cm, we produce a feasibility plot. The thick black line denotes the lower bound on
feasible N,L, and the green line is the performance achieved by MultiBridging.
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Figure 4.19: Human Chrom 14. G = 88, 289, 540, `triple = 611, `interleaved = 805, `repeat =
1022.
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Figure 4.20: Lactofidus. G = 2, 078, 001, `triple = 3027, `interleaved = 3313, `repeat = 5321.
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Figure 4.21: Buchnera. G = 642, 122, `triple = 27, `interleaved = 23, `repeat = 39.
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Figure 4.22: Heli51. G = 1, 589, 954, `triple = 219, `interleaved = 2122, `repeat = 3478.
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Figure 4.23: Staphylococcus Aureus. G = 2, 872, 915, `triple = 1397, `interleaved = 1799,
`repeat = 2862.
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Figure 4.24: Salmonella. G = 2, 215, 568, `triple = 112, `interleaved = 163, `repeat = 1011.
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Figure 4.25: Perkinsus marinus. G = 1, 440, 372, `triple = 770, `interleaved = 92, `repeat = 1784.
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Figure 4.26: Sulfolobus islandicus. G = 2, 655, 198, `triple = 734, `interleaved = 761, `repeat =
875.
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Figure 4.27: Rhodobacter sphaeroides. G = 3, 188, 599, `triple = 114, `interleaved = 271,
`repeat = 695.
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Figure 4.28: Ecoli536. G = 4, 938, 920, `triple = 2267, `interleaved = 3245, `repeat = 3353.
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Figure 4.29: Yesnina. G = 4, 504, 254, `triple = 3573, `interleaved = 3627, `repeat = 5358.
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