Using Telemetry to llluminate Policy Interactions: A
Case Study with RequestPolicy

Justin Samuel

ST NEFLELEL]

1]

h,
Y
4

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-62
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-62.html

May 15, 2013




Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

| would like to thank my advisor, Vern Paxson, for his mentorship,
guidance, and dedication.

| would also like to thank my readers, Bjoern Hartmann and Dawn Song, for
their feedback

and assistance. | am grateful to the users of RequestPolicy for their
patience and feedback

over the years as well as for their participation in our study. This work was
supported by

an NSF fellowship.



Using Telemetry to Illuminate Policy Interactions: A Case Study with
RequestPolicy

by
Justin Samuel
A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science
in
Computer Science
in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Vern Paxson, Chair
Professor Dawn Song
Professor Bjorn Hartmann

Spring 2013



The thesis of Justin Samuel, titled Using Telemetry to Illuminate Policy Interactions:

Case Study with RequestPolicy, is approved:

Chair Date

Date

Date

University of California, Berkeley



Using Telemetry to Illuminate Policy Interactions: A Case Study with
RequestPolicy

Copyright 2013
by

Justin Samuel



Abstract

Using Telemetry to [lluminate Policy Interactions: A Case Study with RequestPolicy
by
Justin Samuel
Master of Science in Computer Science
University of California, Berkeley

Professor Vern Paxson, Chair

Modern websites perform many cross-site requests that can be detrimental to user privacy.
Cross-site requests undermine privacy by allowing third-party websites—the websites that
are the recipients of cross-site requests—to track a user’s browsing behavior. As a result,
some users turn to browser extensions that give them control over these requests. One
such extension, RequestPolicy, implements a default-deny policy for cross-site requests and
provides users an interface through which they manage a whitelist to allow blocked requests.
This approach breaks many websites and requires frequent user interaction.

We set out to gain insight into how RequestPolicy is used. We study RequestPolicy’s
usage through an opt-in telemetry study. Over a period of 24 weeks, we collected data from
more than 2,500 RequestPolicy users about how they interact with RequestPolicy. We use

this data, user feedback, and our own experiences to guide a redesign of RequestPolicy.



Contents

Contents

List of Figures

List of Tables

1

2

Introduction

Background

2.1 RequestPolicy . . . . . . . .
2.2 Related Work . . . . . . .
Telemetry Study

3.1 Design . . . oL
3.2 Implementation . . . . . . . . ..
3.3 Results . . . . . .
Usability Issues

4.1 Barriersto Usage . . . . . . . . . . .
4.2 Limitations of Usage . . . . . . . . . . . . . . ...
4.3 User Interface . . . . . . .
Redesign

5.1 Policies and Rule System . . . . . . . ... ...
5.2 Subscriptions . . . . ...
5.3 Default Settings . . . . . . . . .
5.4 User Interface . . . . . . . . s,
Future Work

Conclusion

A IRB Application

iii

w

11
11
14
15

32
32
34
36

38
38
41
42
43

49

51

52



Bibliography

i

94



iii

List of Figures

2.1
2.2

2.3

24

3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

4.1
4.2

5.1

5.2

5.3

RequestPolicy 0.5 first-run window. . . . . . . . . . . .. oL )
RequestPolicy 0.5 menu. (Top) Submenu for blocked destination. (Bottom)
Submenu for allowed destination. . . . . . . ... .. ... Lo 6
RequestPolicy 0.5 menu showing other origin. (Top) Submenu for other origin.
(Bottom) Submenu for blocked destination of an other origin. . . . .. ... .. 7
RequestPolicy 0.5 preferences window showing user policy management. . . . . . 8
Histogram of length of time users had RequestPolicy installed as of the end of

the study. . . . . . . L 17
CDF of length of time users had RequestPolicy installed as of the end of the study. 17
Users’ total number of whitelist rules. . . . . . . . .. ... ... ... ... ... 22
Users’ number of whitelist rules by rule type. . . . . . .. ... ... ... ... 22
CDF of unique domains in user whitelists. . . . . . . .. ... ... ... .... 22
CDF of unique IP addresses in user whitelists. . . . . . . . ... ... ... ... 23
Ratios of unique origin and destination domains in user whitelists. . . . . . . . . 23
Scatter plot of user rule counts. . . . . . . .. .. ... oL 24
Rate of rule creation by how long RequestPolicy has been installed. . . . . . . . 26
Whitelist rule counts by how long RequestPolicy has been installed. . . . . . . . 26
Rule staleness by age of rules. . . . . . . . .. ... 26
Percentage of top-level documents on which users opened the RequestPolicy menu. 28
CDF of menu complexity seen by users. . . . . . . . .. .. .. ... ... 28
Duration menu remained open relative to menu complexity. . . . . . .. .. .. 28
Example of a “broken” site due to blocked cross-site requests. . . . . . ... .. 33
Example of a fully functional site with cross-site requests allowed. . . . . . . . . 33

JSON representation of a RequestPolicy 1.0 rule allowing requests from *.foo.com

to https://www.bar.com:1000. . . . . . . . . ... 39
RequestPolicy 1.0 initial setup window. (Top) Welcome page. (Bottom) Config-
uration page. . . . ... 44

RequestPolicy 1.0 menu. (Top) Opened. (Middle) Allowed destination selected.
(Bottom) Blocked destination selected. . . . . . ... .. ... ... ... 46



5.4  RequestPolicy 1.0 menu with other origins. (Top) Other origin selected. (Bottom)
Blocked destination of other origin selected. . . . . . . . .. .. ... ... ...
5.5  RequestPolicy 1.0 preferences window showing user policy management. . . . . .

v



List of Tables

2.1

3.1
3.2
3.3

3.4
3.5
3.6
3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14

5.1

Available types of whitelist rules in RequestPolicy. . . . . .. .. .. ... ... 3
Operating systems of study participants. . . . . . . . . ... .. ... ... ... 16
Browsers used by study participants. . . . . . .. ... o L. 16

Locales of study participants and the localizations (L.10n) available in RequestPolicy.
Localizations are translations of RequestPolicy’s user interface. When a localiza-
tion is available for the user’s locale, the RequestPolicy menu and preferences

window show text in the user’s language rather than in English. . . . . . .. .. 18
RequestPolicy preference settings of study participants. . . . . . . . . .. .. .. 19
RequestPolicy strictness settings of study participants. . . . . . . .. .. .. .. 19
Counts of non-default RequestPolicy preferences. . . . . . . .. ... ... ... 20
Browser preference settings for RequestPolicy (RP) users and the general Firefox

(Fx) user population. . . . . . . ... 20
Count per user of other privacy and security addons installed alongside RequestPolicy
(includes only addons our study tracked). . . . ... ... ... ... ... 21
Frequency of other privacy and security addons installed alongside RequestPolicy
(includes only addons our study tracked). . . . ... ... ... 000 21
Content types allowed by used rules. . . . . . .. .. ... ... ... .. ..., 27
Number of content types allowed by used rules. . . . . . . ... ... ... ... 27
Frequency of options selected from the RequestPolicy menu. . . . . . .. .. .. 29
Users who encountered mixed content requests (HTTPS to HTTP). . . . . . .. 30
Users who encountered non-standard ports for HTTP(S) requests. . . . . . . .. 31

Subscription rules used to block requests to Facebook except when visiting the
Facebook website. . . . . . . . ... 42



vi
Acknowledgments

I would like to thank my advisor, Vern Paxson, for his mentorship, guidance, and dedication.
I would also like to thank my readers, Bjorn Hartmann and Dawn Song, for their feedback
and assistance. I am grateful to the users of RequestPolicy for their patience and feedback

over the years as well as for their participation in our study. This work was supported by

an NSF fellowship.



Chapter 1
Introduction

In recent years, privacy in web browsing has moved from being a concern of a few technol-
ogists to being a mainstream issue. One important area of web privacy concern is that of
information leakage and user tracking through cross-site requests. Cross-site requests occur
when a page from one website instructs the browser to make requests to a different site.
Third-party sites can correlate HT'TP requests made by the same user through stateful in-
formation such as HTTP cookies as well as statelessly through browser fingerprinting [5, 17].
This ability to correlate requests allows third-party sites to track a user’s behavior as they
browse the web [16]. In the case of third-party sites that are nearly omnipresent on the web,
the third-party site often has the ability to track a user’s behavior across visits to unrelated
sites [8]. The information learned by third-party sites can range from the specific pages a
user visited to search queries revealing sensitive medical conditions [14]. User tracking is
performed for a variety of purposes ranging from web analytics to behaviorally targeted ad-
vertising. In some cases, the organization doing the tracking has no stated policy on what
they do with the information [22].

Providing practical privacy solutions for users is challenging. A 2007 study by Krish-
namurthy et al. concluded that all methods of preserving privacy in the face of cross-site
requests were inferior to blocking the requests outright [13]. However, that same study con-
cluded that blocking all cross-site requests often had a very negative impact on page quality
by breaking functionality or degrading the experience of using the site.

In 2008, we developed a browser extension, RequestPolicy, to provide users a reliable way



CHAPTER 1. INTRODUCTION 2

to block unwanted cross-site requests through a user-controlled whitelist. RequestPolicy
uses a default-deny policy, blocking requests unless the user has created rules that allow
the requests. This default-deny policy “breaks” many websites. For these websites, their
appearance and functionality is severely impaired until the user instructs RequestPolicy to
allow the necessary cross-site requests. As a result, RequestPolicy’s potential user base is
limited to people who are willing to sacrifice a significant amount of usability.

Despite more than four years of real-world usage, our understanding of how RequestPolicy
users interact with the extension and manage their policies is limited to our own experiences
and anecdotal evidence. We have no data about fundamental usage characteristics such as
how frequently users interact with the extension, the number and types of rules in their
whitelists, which preferences they change in the extension, how many users have additional
privacy and security extensions installed, and how long it takes users to make whitelisting
decisions.

Ultimately, we want RequestPolicy to be useful to people with all levels of privacy needs,
from those who are willing to sacrifice usability to those who are not. In this work, we work

toward this goal in two ways:

1. We use an opt-in telemetry study to learn about RequestPolicy users and how they
interact with the extension. A core requirement of our study is to maintain user privacy
by limiting the types of data we collect. The data we gather and analyze includes how
often users open the RequestPolicy menu, which actions they perform through the
menu, and the sizes and staleness of their whitelists. Our study shows varied usage
patterns among RequestPolicy users and provides a strong motivation for us to perform

further telemetry.

2. We redesign RequestPolicy with the intention of improving its usability. Our redesign
includes a new user interface, a new rule system, and defaults optimized for non-
advanced users. One important feature we add to enable ongoing improvements is
subscription policies. Subscription policies are rule sets maintained by us that automat-
ically update, allowing us to address website breakage and new privacy threats without
requiring user interaction. We leave a usability study of the redesigned RequestPolicy

to future work.



Chapter 2

Background

2.1 RequestPolicy

RequestPolicy is an extension for Firefox and other Mozilla browsers that implements a user-
controlled cross-site request whitelist [23]. When a user who has RequestPolicy installed visits
a web page, RequestPolicy uses Mozilla browser APIs to identify the origin and destination
URLs of every request the web page initiates. For cross-site requests (requests where the
origin and destination domains are different), RequestPolicy looks for a whitelist rule in the
user’s policy indicating that the request should be allowed. RequestPolicy is default-deny: if
there is no rule allowing a request, the request is blocked. Users are informed when requests
are blocked through a toolbar icon that turns red when a page has blocked requests. Users
can see which specific third-party sites have been blocked or allowed as well as manage their
whitelist through a menu accessible from the RequestPolicy toolbar icon.

The available types of whitelist rules are shown in Table 2.1. For any rule, the user can

add the rule persistently so that it remains across browser sessions or temporarily so that it

| Whitelist Rule Type | Example |

Origin Allow requests from foo.com
Destination Allow requests to bar.com
Origin-to-Destination | Allow requests from foo.com to bar.com

Table 2.1: Available types of whitelist rules in RequestPolicy.



CHAPTER 2. BACKGROUND 4

is forgotten after the current browser session ends (that is, when the browser is closed). All
rules can be revoked by the user at any time.

The ability for RequestPolicy users to understand the concept of “cross-site requests” may
be a fundamental obstacle to the usability of RequestPolicy. In this work, we do not focus
on this important but open question. We assume the majority of users install RequestPolicy
after they have developed privacy concerns. We believe a privacy-concerned user without a
technical understanding of cross-site requests will interpret the blocking of cross-site requests
as privacy-preserving and the allowing of cross-site requests as privacy-reducing.

The current version of RequestPolicy is version 0.5. Since its original release in 2008,
development has focused primarily on fixing bugs and maintaining compatibility with Firefox

as the browser and its APIs evolve.

User Interface
Initial Setup Window

When users install RequestPolicy, they are presented with a window that offers to import
a set of predefined rules into their whitelist. There are a total of 107 available predefined
rules divided across six geographic regions. These regions include an “international” region
that is selected by default and currently contains 49 rules. These initial rules are categorized
by region based on their origin or destination domains being specific to a geographic region.
For example, the rule with the origin domain yahoo.co. jp is in the Asia region.

This initial setup window (Figure 2.1) informs the user that the suggested rules involve
requests that are either requests between domains belonging to the same organization or
requests that will reduce website breakage and have a low privacy impact. The list of prede-
fined rules was initially generated by our own use of RequestPolicy with popular websites.

Occasionally, rules suggested by users have been added.

Menu

The RequestPolicy menu is the user’s primary interface to RequestPolicy. The menu tells

the user which destination domains the current page made requests to and whether requests



CHAPTER 2. BACKGROUND 5

RequestPolicy @
1' RequestPolicy Initial setup
Add sites to your cross-site whitelist
The sites in these lists were selected either because (1) they involve requests
between sites owned by the same company, or (2] they reduce the problems you
may encounter and have a very low impact on privacy and security.

International [7] USandCanada

[ Americas []  Europe and Russia

[  Asia [[] ©Oceania

Origin Destination

blogger.com google.com -

blogspot.com blegger.com ‘:‘

cnet.com COM.LCom ;

download.com com.com

facebook.com fhcdn.net

flickr.com yahoo.com

flickr.com yimg.com

fotolog.com fotologs.net

gamespot.com com.com

gmail.com google.com

google.com blegger.com

nnnale cam nnnht rom Z
oK l ’ Cancel

Figure 2.1: RequestPolicy 0.5 first-run window.

to each destination were allowed or blocked. The menu also gives users the ability to add
and remove whitelist rules (Figure 2.2).

Arguably the most complex aspect of the menu is the management of rules related to
other origins. In RequestPolicy terminology, an other origin exists when a framed cross-
site web page initiate its own cross-site requests. Each other origin has its own submenu
hierarchy similar to that of the main menu. To add or remove whitelist rules related to
destinations of other origins, the user has to navigate submenus three levels deep from the

main RequestPolicy menu (Figure 2.3).

Preferences Window

Users can manage various settings, import and export their whitelist, and edit their whitelist
through the RequestPolicy preferences window. Figure 2.4 shows the whitelist management
interface available through the preferences window. The settings users can change include
whether RequestPolicy should automatically reload the current page after rules are added

or removed through the menu, whether RequestPolicy should show placeholders for blocked



CHAPTER 2. BACKGROUND 6

v @ || M~ Google Al K B

Preferences

Show Request Leg
Temporarily allow all requests

a Other erigins within this page 4

Blocked destinations

Allow requests from reddit.com to redditstatic.com redditstatic.com 4
Temporarily allow requests from reddit.com to redditstatic.com googleapis.com 4
= = - i 4
Allow requests to redditstatic.com HoodleataRi=can
Temporanly allow requests to redditstatic.com Allowed destinations
redditmedia.com 4

Allow requests from reddit.com

Temporarily allow requests from reddit.com

S 'E." Google o .ﬁ. ﬂ'

Preferences

Show Request Log
Temporarily allow all requests
a Other arigins within this page L4

Blocked destinations

redditstatic.com 4
googleapis.com b
google-analytics.com L4

Allowed destinations

redditmedia.com 4

ey

Forbid requests from reddit.com to redditmedia.com

Allow requests from reddit.com

Temporarily allow requests from reddit.com

Figure 2.2: RequestPolicy 0.5 menu. (Top) Submenu for blocked destination. (Bottom)
Submenu for allowed destination.



CHAPTER 2. BACKGROUND 7

[ ".'v Google Al E H EB-
Preferences
Show Request Log
Temporanly allow all requests
Blocked destinations redditmedia.com b ia Other origins within this page 4
itai » . .
[ LR Blocked destinations
Allowed destinations redditstatic.com 4
. . i »
Allow requests from redditmedia.com gongieapEcom
google-analytics.com 4

Temporarntly allow requests from redditmedia.com

Allowed destinations

redditmedia.com 4

Allow requests from reddit.com

Temporanily allow requests from reddit.com

| |- Google P m fH B-

Preferences

Show Request Log

Temporarily allow all requests
Blocked destinations i redditmedia.com 4 ig Other origins within this page L4

redditgifts.com 4 Allow requests from redditmedia.com to redditgifts.com
Allowed destinations Temporarily allow requests from redditmedia.com to redditgifts.com v
Allow requests from redditmedia.com Allow requests to redditgifts.com g
Temporartly allow requests to redditgifts.com 4

Temporarily allow requests from redditmedia.com

Allowed destinations

redditmedia.com 4

Allow requests from reddit.com

Temporarily allow requests from reddit.com

Figure 2.3: RequestPolicy 0.5 menu showing other origin. (Top) Submenu for other origin.
(Bottom) Submenu for blocked destination of an other origin.

images, and how strict RequestPolicy should be when classifying requests as same-site or

cross-site.

Strictness Mode

The strictness mode is the approach RequestPolicy uses to classify URLs as either same-site

or cross-site. Using RequestPolicy’s default strictness mode, a request is only allowed if the



CHAPTER 2. BACKGROUND 8

RequestPolicy Preferences @
Eh - 7 !
v @ |/ ¥ T A
General Appearance  Whitelist Export Import Advanced
Originleestinations Origins-to-Destinations
Origin Destination Temporary
bbe.co.uk bbci.co.uk
bbec.co.uk bbcimg.co.uk
reddit.com redditmedia.com
reddit.com redditstatic.com
Remove Selected Sites
Origin Destination Allow
0K l ’ Cancel

Figure 2.4: RequestPolicy 0.5 preferences window showing user policy management.

registered domain name of the origin is the same as that of the destination.! A registered
domain is the portion of the domain name which an organization has control over through
their domain’s registrar (e.g. example.com or example.co.uk). Classifying URLs only by
registered domain name is a simple but imperfect approach to cross-site request identification.
For example, organizations may point DNS CNAME records for subdomains to hostnames
that belong to other organizations for purposes of analytics and advertising [15].

In order to provide finer-grained control for advanced users, RequestPolicy offers stricter
same-site classification modes that users can enable through the preferences window. In
addition to the default of classifying URLs as same-site if their registered domain names
match, the user can select full hostname strictness or protocol + full hostname + port strict-
ness. When either of these stricter classification modes is enabled, the whitelist rules that
the RequestPolicy menu offers to create include either the full hostname or the protocol, full

hostname, and port.

'If the host specified in the URL is an IP address, the address is used instead of a domain name.



CHAPTER 2. BACKGROUND 9

Rule System

RequestPolicy internally represents whitelist rules as strings in the format “origin | destination”
where either the origin or the destination is optional. For example, a rule for allowing all
requests from foo.com in the default strictness mode would be represented as “foo.com|”.
Rules for non-default strictness modes contain the full hostname or the combination of the
protocol, full hostname, and port. For example, a destination rule created when the user is in
strictest classification mode might be “|http://www.foo.com:81”. Whitelist rules are, for
the most part, specific to a single strictness mode. The one exception to rule incompatibility
is that a rule such as “|foo.com” will work in full hostname strictness mode for requests to
the full hostname foo.com.
For persistence, the user’s non-temporary rules are stored using the Firefox preference

system. Thus, they are written to the profile’s prefs. js file where all other user preferences
are stored. At browser startup, these rules are read into a hash table and rule lookups are

performed by key lookups in the hash table.

2.2 Related Work

Hilbert and Redmiles surveyed attempts to automate analysis of data collected from user
interface events to identify usability issues [10]. Their focus is on inferring information from
program behavior. They note that it is useful when a developer can instrument a program
to explicitly report events of interest but such manual instrumentation increases the burden
on application developers. Further, they note that relying on manual instrumentation may
result in missing usability-related information that the developer has not explicitly reported.

The use of telemetry is well established in software engineering for tracking program
resource usage, environment information, system settings, and user interactions. Telemetry
is used by all of the major browsers [18, 7, 9]. Of the major browsers, only Internet Explorer
enables telemetry by default [18].

Identifying usability problems in security and privacy software is an important area of
research in order to increase the number of users who can benefit from the software. Norcie

et al. studied points in the installation and use of the Tor Browser Bundle, an application



CHAPTER 2. BACKGROUND 10

for anonymous web browsing, where users would stop using the software due to confusion
or frustration [20]. Of their recommendations, most relevant to RequestPolicy may be the
importance of setting realistic expectations for users. For RequestPolicy, this would mean
ensuring users know that website breakage is normal and to be expected as well as ensuring
users know how to identify when breakage is the result of blocked requests. Similarly, Clark
et al. used cognitive walkthroughs to study the usability of multiple client applications that
exist for the Tor anonymity network [4].

Besides RequestPolicy, there are other extensions that block cross-site requests. Adblock
Plus [21] provides blacklist-based blocking of advertisements. By default, Adblock Plus does
not indicate to users when it blocks requests. Ghostery [2] notifies users of cross-site requests
that it believes are for user tracking. Ghostery notifies the user of potentially user-tracking
requests through a small box it overlays at the top-right of the webpage. Ghostery does
not block requests by default but instead gives the user options to block requests through
a menu it adds to the browser. Both Adblock Plus and Ghostery use curated lists of URL
patterns against which they check each request the browser intends to make. These lists are
automatically updated by the extensions. Another blacklist-based extension, BlockSite [11],

allows manual blacklisting of request destinations.



11

Chapter 3
Telemetry Study

To understand how the current version of RequestPolicy is used, we conducted an opt-in
telemetry study of RequestPolicy users. We collected information about each participating
user’s whitelist rules, menu interactions, preferences, and other data that could help us
understand RequestPolicy’s usage and inform our redesign of the extension. As the study
involved collecting potentially identifying data, we obtained IRB approval for the study. To

assist other researchers, we've included our IRB application as Appendix A.

3.1 Design

Our telemetry system is designed around events. An event is a JSON object generated by
RequestPolicy that it sends back to our data collection server. In addition to the event
contents, each event contains enough information for us to know which events were sent by
the same user, the order in which the events were generated, the time when each event was
generated, how many browser sessions the user has had while participating in the study (that
is, how many times the user has started and exited the browser), and which browser session

each event was generated from.



CHAPTER 3. TELEMETRY STUDY 12

Event Categories

The following is the complete list of events we used in our study. In no cases are URLSs or

domain names included in the events.

Whitelist Rules

These events uniquely identified and reported each of a user’s whitelist rules as a salted hash
of the rule’s origin and destination components. Therefore, the rule “allow requests from
foo.com to example.com” would be reported to us using a different identifier than the rule
“allow requests from foo.com.” The per-user, browser-generated salt ensured that the same
rule reported by two different users would have a different identifier.

For each rule, we tracked the most recent hour that the rule was used to allow a re-
quest, each time the rule was created or deleted, whether the rule is one of the rules in the
initial suggested whitelist, and what types of content the rule has allowed (e.g. “image”,
“stylesheet”, etc.)

For persistent rules we stored this rule-related data and the salt in a file in the browser’s

profile directory so that information gathering could be continued across browser restarts.

Addons of Interest

These events reported the name, version, install date, and status (enabled/disabled) of spe-
cific addons if they were installed. Reporting was only done at browser startup. Therefore,
extensions that were installed but subsequently uninstalled before the browser was restarted
were not reported.

The addons we reported were chosen for one of two reasons:

1. We were interested in the addon because it has known or potential conflicts with
RequestPolicy. These addons were Web Developer, GreaseFire, Sage-Too, NewsFox,
Brief, Xmarks Sync, Norton Toolbar, Update Scanner, SimilarWeb, and Dr. Web Link
Checker.

2. We were interested in the addon because it is privacy or security related. These addons

were Better Privacy, HI'TPS Everywhere, NoScript, Ghostery, Adblock Plus, and Col-



CHAPTER 3. TELEMETRY STUDY 13

lusion. Knowing which of these addons the user has installed gives us insight into the

user’s concerns and overall browsing experience.

Browser Preferences

These events reported the values of specific browser preferences. The preferences whose
values were reported indicate whether recording of browsing history is enabled, whether Do-
Not-Track (DNT) is enabled, the user’s locale, and whether the browser starts in private
browsing mode (PBM).

RequestPolicy Preferences

These events reported the values of the RequestPolicy preferences as well as when they
changed.

Browser Environment

These events reported the browser name (e.g. “Firefox”), browser version (e.g. “13.0.17),
and operating system name (e.g. “Linux”, “WINNT”  or “Darwin”).

Non-Standard Port Requested

These events reported whenever a document or resource was requested that used a non-
standard port (e.g. port 8080 for HTTP instead of the standard port 80). We did not
track the actual port number. We included a domain ID for the origin and destination
domains. The IDs are sequential integers that started over on each browser session and did

not correspond to the rule hashes we reported.

Mixed HTTP/HTTPS Content Requested

These events reported whenever an HT'TPS document included plain HTTP resources. We
tracked the type of content that was included insecurely (e.g. an image, script, etc.) as well

as origin and destination domain IDs as discussed above.



CHAPTER 3. TELEMETRY STUDY 14

Preferences Window Actions

These events tracked the opening and closing of the RequestPolicy preferences window as
well as the modification of rules and rule import/export actions performed through the

preference window.

Origins-per-Destinations, Destinations-per-Origin

These events reported two separate lists of integer counts without any identifiers:

e The number of unique destination domains that each origin domain requested during

the browser session.

e The number of unique origin domains that each destination domain requested during

the browser session.

Document Loads and Menu Interactions

These events tracked the time and the current document’s domain ID for each RequestPolicy
menu interaction (open, close, or menu item selection) as well as for each top-level document
load (a document loaded in a tab or window, not an iframe). Additionally, for menu open
events, the event reported the number of allowed and blocked destinations that were visible

in the menu.

3.2 Implementation

Extension Changes

The only user-visible change in our instrumented version of RequestPolicy was the addition
of a new item in the RequestPolicy menu. The new item read “Participate in research
study” in blue text. When selected, a new tab opened showing a consent form. In order
to participate in the study, the user had to click on an agreement button at the bottom of
the consent form, as shown in Appendix A. Once the user was participating in the study,

the “Participate in research study” menu item was replaced with a new menu item that



CHAPTER 3. TELEMETRY STUDY 15

read “End participation in research study” in black text. Selecting the menu item to end
participation sent any pending events to our server and deleted study-related data stored
in the user’s profile directory. The menu would then once again show the option to begin
participating in the study.

Telemetry was implemented in RequestPolicy as an event queue to which other code in
RequestPolicy could add events. Every ten minutes the items in the event queue, if any, were
sent to our data collection server using SSL. For some of the data related to the user’s non-
temporary rules, the aggregated data was also stored in a file in the user’s profile directory.
This persistent data allowed us to track certain information—such as the last time a rule
was used, added, or deleted—across browser sessions. Like the rule data sent to us, the rules
stored in this file were salted and hashed. Unlike the rule data sent to us, the salt was also
stored in this file. Altogether, the changes added approximately 1,500 lines of JavaScript in
three new files and 450 lines of JavaScript in eight existing files.

Within the extension, we set December 31, 2012 as the end date for the study. After
this date, the user’s participation in the study was automatically terminated and the menu

options related to the study were hidden.

Data Collection Server

Our data collection server stored events in a MongoDB database and was implemented in
approximately 100 lines of Python. This Python server sat behind an Nginx instance running
on the same system which terminated SSL connections and proxied requests through to the

Python server. Our data collection server did not log IP addresses.

3.3 Results

Our study ran from July 11, 2012 to December 31, 2012. In that time, 2,522 users' of
RequestPolicy opted in to participation in the study.

'We will refer to each installation of RequestPolicy as a user. It is likely that some users have multiple
browser profiles each with RequestPolicy installed and participating in our study. We have no way to know
how many truly unique users there are in our study.



CHAPTER 3. TELEMETRY STUDY 16

| Operating System | Users (%) |

Windows 69.0
Linux 23.2
Mac 7.5
FreeBSD 0.3
NetBSD 0.1

Table 3.1: Operating systems of study participants.

| Browser Name | Users (%) |

Firefox 93.8
Iceweasel 2.5
Pale Moon 1.1
SeaMonkey 1.0
Abrowser 0.8
Firefox-Trunk 0.4
IceDragon 0.4

Table 3.2: Browsers used by study participants.

One interesting trend among participating users is that they appear less likely to par-
ticipate in the study if they already had RequestPolicy installed at the time we began the
study. The study lasted 24 weeks and user participation is noticeably lower for users who had
RequestPolicy installed for more than 24 weeks at the time of the study’s end. Figure 3.1
shows the number of users participating in the study grouped by the number of weeks they
had RequestPolicy installed as of the end of the study. A CDF of the same data is shown in
Figure 3.2. One possible explanation for the greater participation of new users is that they
considered the study to be a standard part of RequestPolicy, whereas existing users may
have had more privacy concerns due to it being unusual. It is also possible that the rate of
RequestPolicy installations increased around the time the study began.

The operating systems of users are shown in Table 3.1. Relative to the global operating
system usage statistics of a popular website [26], RequestPolicy users participating in the
study had significantly greater usage of Linux (23.2% vs. 5.0%) and less usage of Windows
(69.0% vs. 83.8%).

RequestPolicy supports the Firefox and SeaMonkey web browsers. There are also a

handful of lesser-known Firefox-based browsers that RequestPolicy is compatible with, as



CHAPTER 3. TELEMETRY STUDY 17

70 ! ! ! ! !
of oM T T ] .
o ih || — I A S ]
P40 1 | | ' | '

0 20 40 60 80 100
Weeks installed

Figure 3.1: Histogram of length of time users had RequestPolicy installed as of the end of
the study.

100 ! ! ! !
" — o - — T -

2 — A S — e —

% of users

R o e e —

20F R o o R e

0 20 40 60 80 100
Weeks installed

Figure 3.2: CDF of length of time users had RequestPolicy installed as of the end of the
study.



CHAPTER 3. TELEMETRY STUDY 18

| Locale . | Users (%) | L10n | [Tocale | Users (%) | L10n |
en (English) 596 | v fi (Finnish) 0.2
ru (Russian) 125 | sv (Swedish) 021 v
.de (SGerI:llan)) 122 j id (Indonesian) 0.2
Ja \Japanese : nb (Norwegian Bokmal) 0.2
es (Spanish) L7 v is (Icelandic) 0.1
fr (Frer}ch) 16| v et (Estonian) 0.1
zh (Chinese) 1.3 v tk (Turkish) 0.1
pt (Portuguese) 1.3 v tk (Thai) 0.1
ul (Dutch) 0] v el (Greek) 0.1
alz Egrabf; 82 ~ ca (Catalan) 0.1
Sl G (i’il) 0'5 hu (Hungarian) 0.1
p. (Fous . 1t (Lithuanian) 0.0 v
it (Italian) 04| v ro (Romanian) 0.0
;:s Egzec.gl) 8; bg (Bulgarian) 0.0
e (S;ilish) 02 st (Serbian) et
i (Vietnamesd) 0o sl (Slovenian) 0.0

Table 3.3: Locales of study participants and the localizations (L10n) available in
RequestPolicy. Localizations are translations of RequestPolicy’s user interface. When a
localization is available for the user’s locale, the RequestPolicy menu and preferences win-
dow show text in the user’s language rather than in English.

can be seen in Table 3.2. The standard Firefox browser accounts for more than 93% of all
RequestPolicy usage in our study.

The most common three locales of participating RequestPolicy users—English, Russian,
and German—make up over 80% of users (Table 3.3). The rest of the study participants are

spread across 30 additional locales.

RequestPolicy Preferences

RequestPolicy has eight preferences users can configure from the preferences window. These
preferences, their default values, and the percentage of users who changed each preference’s
default value are shown in Table 3.4. One of these preferences, the user’s strictness level,
has three possible values. As can be seen in Table 3.5, approximately 90% of installations
kept the default and most liberal strictness policy of classifying requests as same-site if the
registered domain name of the origin and destination were the same. More than two-thirds

of users kept all preference values as the defaults (Table 3.6).



CHAPTER 3. TELEMETRY STUDY 19

’ Preference \ Default value | Non-default (%) ‘
Allow persistent whitelisting in PBM False 10.6
Strictness Reg. domain 9.6
Reload page after whitelist change True 8.5
Show RequestPolicy menu in context menu | True 6.5
Start with “allow all” enabled False 6.3
Disable DNS prefetching on startup True 4.6
Indicate blocked images True 4.1
Disable link prefetching on startup True 4.0

Table 3.4: RequestPolicy preference settings of study participants.

| Strictness Sefting | Users (%) |
Registered domain [default] 90.4
Hostname (i.e. full domain) 4.9
Protocol 4+ hostname + port 4.7

Table 3.5: RequestPolicy strictness settings of study participants.

By default, RequestPolicy reloads web pages after the user creates or removes a whitelist
rule through the menu. More than 8% of users disabled automatic reloading of web pages.

The RequestPolicy menu normally only offers temporary whitelisting options when the
user is in PBM or has history disabled.? RequestPolicy’s default removal of persistent
whitelisting options in PBM is to prevent these users who do not want browsing data stored
across sessions from accidentally leaving records of their browsing in their RequestPolicy
whitelist. Nearly 10% of users overrode this default and enabled the ability to create persis-
tent whitelist rules through the menu while they are in PBM or have history disabled.

RequestPolicy adds a copy of its menu to the right-click context menu that is available

on web pages. More than 6% of users disabled this addition to the context menu.

Browser Preferences

In December 2012, Mozilla collected data on the browser privacy preference settings of

Firefox users [3]. Table 3.7 shows how RequestPolicy users compare to the general Firefox

2PBM is a mode offered by the browser, not by RequestPolicy. Extensions must take into account
whether the user is in PBM so that they do not violate the user’s assumptions. For example, the user’s
browsing history should not be saved during PBM.



CHAPTER 3. TELEMETRY STUDY 20

Non-default Preferences | Users (%) |

67.5
19.3
7.9
2.9
1.5
0.6
0.1
0.1
+ 0.0

0| T =W N —O

Table 3.6: Counts of non-default RequestPolicy preferences.

’ Preference \ Default value \ RP users non-default (%) \ Fx users non-default (%) ‘
Do-Not-Track header False 414 11.3
Clear data on shutdown | False 23.0 2.8
Keep history True 124 1.5
Start in PBM False 9.9 5.0

Table 3.7: Browser preference settings for RequestPolicy (RP) users and the general Firefox
(Fx) user population.

user population in terms of changing browser privacy preferences. For each of the preferences
we studied, RequestPolicy users were 2 to 8 times as likely to change a browser preference
in order to increase privacy.

More than 41% of study participants enabled the Do-Not-Track (DNT) header. If we
assume that most RequestPolicy users would want to enable DN'T, it seems likely that many
users are either unaware of or have forgotten to change this browser preference. To change
this preference, Firefox users have to open the browser preferences, go to the “Privacy” tab,
and check the box for “Tell websites I do not want to be tracked.”

Almost one quarter of study participants have their browser configured to delete data
when the browser is shut down. The data that these users can have deleted on shut down
includes browsing history, download history, cookies, and cache.

Approximately 12% of users have their browser history disabled. Almost 10% have
configured their browser to start in PBM.



CHAPTER 3. TELEMETRY STUDY 21

| Addons | Users (%) |

0 15.7
18.8
20.9
21.3
15.9
6.7
0.6

O UY x| W N+

Table 3.8: Count per user of other privacy and security addons installed alongside
RequestPolicy (includes only addons our study tracked).

’ Addon \ Users (%) ‘
Adblock Plus 65.8
NoScript 58.5
BetterPrivacy 34.3
Ghostery 33.0
HTTPS-Everywhere 26.3
Collusion 7.5

Table 3.9: Frequency of other privacy and security addons installed alongside RequestPolicy
(includes only addons our study tracked).

Addons

More than 84% of study participants had at least one other privacy or security addon in-
stalled (Table 3.8). As there are many privacy and security addons we did not track, the
percentage of users with other privacy/security addons may be even higher. More than
half of study participants used Adblock Plus or NoScript (Table 3.9), the two most popular
privacy /security addons for Firefox [19].

Rules

Approximately 80% of users have 400 rules or less in their whitelist (Figure 3.3). Origin-
to-destination rules are much more common than either origin rules or destination rules
(Figure 3.4). The corner in the origin-to-destination rules plot in Figure 3.4 is likely due
to the 49 suggested whitelist rules that are selected by default in the initial setup window
(Section 2.1).



CHAPTER 3. TELEMETRY STUDY

100
] R P SEIIIISIIY S B SRR PR PPRIS P ST PRPROIOOE STSPROTPRONS PR
2
G GO weeeemr oo
)
S AOf
x
20 of e
0 i i i 1 1 1 1
0 200 400 600 800 1000 1200 1400
Rules
Figure 3.3: Users’ total number of whitelist rules.
100 ‘
&) .
] :
] :
] .
S i —
° | Origin
20+ erveers e ol — Dest. :
g — Origin-to-dest.
i i
01 10 100 1000
Rules
Figure 3.4: Users’ number of whitelist rules by rule type.
100
GO I
2
A B T
=)
S AO
O\ . . .
20k f i — Origin domains §
: : : : | — Destination domains
| | | | | | |
00 100 200 300 400 500 600 700 800

Unique values in rules

Figure 3.5: CDF of unique domains in user whitelists.

22



CHAPTER 3. TELEMETRY STUDY 23

100 ‘ ‘ ‘ ‘
95 e e e oo
90 : | : | : | 3

85
80
75
70

% of Users

: : : : — Origin IP addresses

65 o o S — Destination IP addresses |7
I I I I I

©05 5 10 15 20 25 30 35 40
Unique values in rules

Figure 3.6: CDF of unique IP addresses in user whitelists.

100

80

60

40t

% of Users

20

|
%.1 1.0 10.0
Ratio of origin to destination domains

Figure 3.7: Ratios of unique origin and destination domains in user whitelists.

According to Figure 3.5, the number of unique origin domains in user whitelists is quite
similar to the number of unique destination domains. (Unique IP addresses are shown in
Figure 3.6). However, the per-user ratios of unique origin domains to unique destination
domains in user whitelists (Figure 3.7) shows that the similarity of unique origin and desti-
nation domains in Figure 3.5 is due to considering the entire study population as a whole.

As with Figure 3.4, the corner in the plot of Figure 3.5 is likely due to the 49 suggested
whitelist rules that are selected by default in the initial setup window. The users who choose
not to import any of the suggested whitelist rules start with a completely empty whitelist. It

may also be the case that some users import the suggested whitelist rules and then remove



CHAPTER 3. TELEMETRY STUDY 24

250 T T T T T 250
S | | |
2000 47 S— S— _—
S 1175 @
: . >
R R R S o 1| Jis08
= A s s r r T
s v . . . £
< ? . i : 11254
2 i | '5 o
S L0OF G e 77 ] 1008
e : : L] -E
roo.. ee . '9
I{... ° L] i ’ .. é ° ’ : L] ] 75 O
50_.?;..........'. ............ . !i..‘.... .............. L |
!:;“. o o I e : ¢ E | 50
Bolargtoe St e 0 T : 25
: > O ‘l ° o .-' o .co . ® .' .. . °
0 . mln;‘. ~....‘:.c". .: ..... : 0. % ..., f B . I ? B ]
i i i i i
0 50 100 150 200 250 0

Destination rules

Figure 3.8: Scatter plot of user rule counts.

some of these rules without adding additional rules.

In an attempt to illuminate rule creation patterns among users, Figure 3.8 plots individual
users’ numbers of origin rules, destination rules, and origin-to-destination rules. Figure 3.8
hints that there may be interesting ways to classify users by the number of each type of
rule they have created. However, further analysis would be needed to draw conclusions.
We believe it may be interesting to consider additional information when looking for pat-
terns of rule creation among users. For example, there may be differences in rule creation
for users when considering their operating system, locale, RequestPolicy preferences, and

browser preferences. Additionally, it would be interesting to study whether the types of



CHAPTER 3. TELEMETRY STUDY 25

rules individual users create changes over time.

Figure 3.9 shows the rate at which users added whitelist rules based on the number of
weeks since they installed RequestPolicy. Similarly, Figure 3.10 shows users’ rule counts by
time since installation. In our earlier work, we noted that feedback indicated the first two
weeks of use required the heaviest whitelisting [23]. Figure 3.9 does indicate users perform
heavier whitelisting during their first few weeks of use. Despite the linear regression we have
plotted in Figure 3.10, the rate of change of rule counts is unlikely to be linear because the
rate of rule creation shown in Figure 3.9 appears to decrease linearly. That is, if the rate of
rule creation decreases, total rule counts should not increase linearly. We show Figure 3.10
only through week 40 due to limited data.

When a rule is used, that rule has been responsible for allowing a request. Figure 3.11
shows how recently rules had been used based on their age. For rules that were 20 days old,
approximately 20% of them had not been used within the preceding seven days. For rules
that were 120 days old, approximately 30% of them had not been used within the preceding
thirty days.

We also looked at the types of content that were allowed by rules. For rules that were
used during the study, Table 3.10 shows the percentage of rules that allowed specific types of
content. We see that three-quarters of rules allowed images, half of rules allowed scripts, and
one-third of rules allowed stylesheets. Relatedly, Table 3.11 shows the number of different
types of content that used rules allowed. Almost half of rules were used to allow a single

type of content.

Menu Interaction

As our telemetry tracked each top-level document load as well as which top-level document
a user was on when they interacted with the menu, we can determine the percentage of
top-level documents on which the user interacted with the menu.® A top-level document is a
document loaded in a tab or window, not an iframe. Top-level document loads occur when a

user enters an address in their address bar, clicks a link, or is redirected to another top-level

3We remind the reader that user privacy was paramount to our study. How we collected data about
loaded top-level documents was discussed in Section 3.1.



CHAPTER 3. TELEMETRY STUDY

Rules created per week

Weeks installed

Figure 3.9: Rate of rule creation by how long RequestPolicy has been installed.

700 T
600_ -~ mean
— median

- 500 N T TSN
5 L
§ 1010 BB I\ ...............................
[
L3
o

200

100 :

0 1 1 1 1 1 i 1
0 5 10 15 20 25 30 35 40

Weeks installed

Figure 3.10: Whitelist rule counts by how long RequestPolicy has been installed.

100

80\

60

% of rules

40| — Last used within 30 days of creation|....... S ST ]
— Last used within 7 days of creation j j j
Last used within 1 day of creation |- -------------------- -------------------- --------------------
—— Last used within 1 hour of creation : : ‘

|

20

I I I I
0 20 40 60 80 100 120 140
Days since rule created

Figure 3.11: Rule staleness by age of rules.

26



CHAPTER 3. TELEMETRY STUDY 27

Content types allowed | Rules (%) |

Image 74.0
Script 53.3
Stylesheet 34.5
Subdocument 20.0
Object 11.3
Object Subrequest 10.5
Document 9.5
Font 4.7
XMLHttpRequest 1.9
Media 0.8
Websocket 0.2

Table 3.10: Content types allowed by used rules.

| Number of content types allowed | Rules (%) |

454
19.0
17.7
9.7
5.0
2.0
0.8
0.3
0.1

O 00| | O UY | W N —

Table 3.11: Number of content types allowed by used rules.

document by JavaScript running in a page they are visiting.

Figure 3.12 shows the percentage of top-level documents visited by each user where the
user opened the RequestPolicy menu. Approximately half of users opened the RequestPolicy
menu on less than 2% of the documents they viewed. Approximately 90% of users opened
the RequestPolicy menu on less than 10% of the documents they viewed.

When users open the menu, the number of allowed and blocked destinations shown in
the menu varies. We call the total number of destinations shown in the menu the menu’s
complexity. Figure 3.13 shows a CDF of the complexity of the menu when it was opened.

Figure 3.14 shows the amount of time the menu remained open relative to the complexity
of the menu. We see a very clear increase in the time required for the user to close the menu

or make a menu selection as the complexity of the menu increases. For menus showing a



CHAPTER 3. TELEMETRY STUDY 28

100 ; ; ! ) ]

% of Users

% of Webpages Where Menu Opened

Figure 3.12: Percentage of top-level documents on which users opened the RequestPolicy
menu.

100

80

60

40

% of menu opens

20

0 5 10 15 20 25
Destinations shown in menu

Figure 3.13: CDF of menu complexity seen by users.

O B N W A U O N

Duration menu opened (sec.)

Destinations shown in menu

Figure 3.14: Duration menu remained open relative to menu complexity.



CHAPTER 3. TELEMETRY STUDY 29

| Menu selection | % |
Menu closed without selection | 36.0
Allow origin to dest. 20.1
Temp. allow origin to dest. 18.1
Temp. allow origin 10.0
Allow origin 3.7
Temp. allow all enabled 3.3
Allow dest. 3.2
Temp. allow dest. 1.2
Temp. allow all disabled 0.9
Forbid origin to dest. 0.9
Revoke temp. permissions 0.8
Preferences opened 0.6
Request log opened 0.4
Request log closed 0.3
Forbid origin 0.3
Forbid dest. 0.1

Table 3.12: Frequency of options selected from the RequestPolicy menu.

single destination, the median time required to make a decision was two seconds. For menus
showing ten destinations, the median time required to make a decision was more than three
seconds. Taking into account both Figure 3.13 and Figure 3.14, about 75% of menu opens
had a median time-to-decision of less than three seconds.

Table 3.12 shows the relative frequencies of menu option selections. When users open the
RequestPolicy menu, more than one-third of the time they close the menu without selecting
any items from the menu. There are various reasons a user may close the menu without
making a selection, though we do not know the relative frequencies of these or if there are
reasons we are unaware of. For example, a user may open the menu only out of curiosity as
to which destination domains the web page makes requests to and which were blocked and
allowed. If the user has additional browser extensions that block requests, they may look at
which requests are blocked by each extension before making decisions about what action to
perform. Users may also close the menu because they are unable to decide what action to
perform.

Approximately 38% of the time users open the menu, they choose to create either persis-
tent or temporary origin-to-destination rules. About 14% of menu selections were to create

persistent or temporary origin rules. Almost 5% of the time, users create persistent or



CHAPTER 3. TELEMETRY STUDY 30

| Content Type | Users (%) |

’ Any ‘ 90.2 ‘
Image 87.1
Subdocument 68.2
Script 67.9
Object Subrequest 58.2
Stylesheet 56.5
Object 38.9
Media 29.1
XMLHttpRequest 279
Font 22.6

Table 3.13: Users who encountered mixed content requests (HT'TPS to HTTP).

temporary destination rules.

Mixed Content

Plain HTTP resources requested from HTTPS pages are often referred to as mixed content.
Table 3.13 shows that 90% of users encountered mixed content during the study. The risk
posed by mixed content depends on the situation, though scripts (JavaScript files) and
objects are generally the most dangerous forms of mixed content.* In our study, about 68%
of users encountered HTTPS pages that requested scripts as mixed content.

Mozilla has recently implemented optional blocking of mixed content in Firefox 18, re-
leased in January 2013. Mozilla will enable blocking of mixed content by default in Firefox 23,
to be released in August 2013.

Non-Standard Ports

As shown in Table 3.14, 77% of users in our study encountered requests for content on
non-standard ports. One-third of users encountered requests for top-level documents on
non-standard ports. Normally, the only time a user would be aware of non-standard ports is

when viewing a top-level document retrieved over a non-standard port as the port would be

4In Firefox, stylesheets can use XBL bindings to execute scripts when the stylesheets are obtained from
the same origin as the document. XBL is a markup language used by Firefox for declaring the behavior of
user interface widgets.



CHAPTER 3. TELEMETRY STUDY 31

| Content Type | Users (%) |

’ Any ‘ 7.2 ‘
Image 57.9
Script 47.6
Object Subrequest 37.5
Document 33.3
Subdocument 24.5
XMLHttpRequest 22.5
Stylesheet 22.0
Object 12.2
Media 2.3
Font 1.3

Table 3.14: Users who encountered non-standard ports for HT'TP(S) requests.

visible in the URL shown in the address bar. Only the small fraction of study participants
who use the strictest cross-site classification mode would have blocked requests to resources
on non-standard ports from web pages on standard ports or different non-standard ports.
It is possible that RequestPolicy users encounter non-standard ports more frequently than
the general population due to an increased proportion of web developers and similar users
among RequestPolicy users. In particular, web developers may run services on non-standard

ports for development purposes.



32

Chapter 4
Usability Issues

To inform our redesign of RequestPolicy, we identify various usability issues we should con-
sider and usability problems we should strive to correct. In addition to telemetry data, we
look at user feedback, public discussion on blogs for privacy software projects [24, 25], and

our own observations as both users and developers.

4.1 Barriers to Usage

Strictness and Impact on Browsing

One of the most commonly mentioned problems seen in public discussions about RequestPolicy
is that its strictness makes it too difficult to use. When a RequestPolicy user first visits a
site, the site will often appear as a plain document with no images as shown in Figure 4.1.
Figure 4.2 shows the same site after the user has allowed cross-site requests that are re-
quired for the site’s appearance and functionality. The impact of RequestPolicy’s strictness
on usability has been given as a reason to not include RequestPolicy with privacy-focused
browsers such as the Tor Browser Bundle (TBB) and Tails [24, 25].

The root of this problem is RequestPolicy’s fundamental design decision to enforce a
default-deny policy on cross-site requests. There is no option in RequestPolicy for a default-
allow mode. For a default-allow mode to be useful, RequestPolicy would need to support

a user-defined blacklist. Additionally, as these two default policies appeal to very different



CHAPTER 4. USABILITY ISSUES 33

[ Firefox = [ CNM.com - Breaking News, U.S, Wurld,.ul + ‘ == Firefox ‘n(NNmm—Bmakmg NEws,U‘S‘,Wm\d,”.l + | =R
€ & wuwenncom C | |20 Google Pl E s B- € @ waenn.com | 29~ Google Al B4 B-

@ SETEDITION: US. | nrerwamional | meaco | arsaic

TV: GNN ‘ GhNi ‘ GNN en Espaiol | HLN

QELCE TV & Video CHNTrends U.S. World Politics Justice Entertainment Tech Health
* SET EDITION: U.S.
+ INTERNATIONAL
* MEXICO
* ARABIC

. TV
* CNN
* CNN en Espaitol
* HLN

* Signup
e Login

b

)

Figure 4.1: Example of a “broken” site due Figure 4.2: Example of a fully functional
to blocked cross-site requests. site with cross-site requests allowed.

types of users, many other design decisions would need to take into account the greater

variety of users and use cases.

Difficulty Correcting Broken Sites

When a RequestPolicy user encounters a site whose functionality or appearance is severely
impaired, the cause is likely blocked requests. Users seeking fine-grained control over requests
will often proceed to begin allowing requests to the page’s destinations via the RequestPolicy
menu. Based on our own experience as users as well as user feedback, identifying which
destination or combination of destinations must be allowed in order to return functionality
to the website can be difficult. In many cases, the domain names of destinations are not
useful in making these decisions and the only option is trial and error: progressively allowing
requests to the page’s destinations until the site’s functionality returns.

At a high level, there are two primary ways to alleviate this problem. First, RequestPolicy
could do a better job of allowing cross-site requests that are critical to a website. The
suggested initial whitelist attempts to mitigate this problem but is extremely inadequate
and a different solution such as subscription policies may be appropriate. That is, rather
than having the user import a set of rules into their own policy, RequestPolicy could include
separate policies maintained by us or third parties that update automatically. This would be

similar to the subscriptions used by Adblock Plus. Second, RequestPolicy could provide the



CHAPTER 4. USABILITY ISSUES 34

user more detailed information about what was blocked, the context of the blocked request,
and potentially make suggestions for what requests the user should allow to enable a site to
work again.

Aside from decreasing the need to whitelist or making whitelisting decisions easier, we
can also make the process of creating multiple whitelist rules less frustrating. One of the
most frequent feature requests we receive is to allow the selection of multiple menu options
before the menu closes and the page refreshes. This may be one of the factors contributing to

nearly 10% of users disabling automatic page reloading after whitelist changes (Section 3.3).

4.2 Limitations of Usage

RequestPolicy’s most significant limitations relate to its simplistic rule system and completely
manual approach to rule management. We will discuss how we address these limitations in

Section 5.

Whitelist-only

Even with only a default-deny policy, RequestPolicy suffers from the lack of a blacklist: rules
that specify requests that should be blocked rather than allowed. For example, a user may
want to allow all requests from an origin example.com except for requests to the destination
foo.com. With a more advanced rule system, this could be accomplished in default-deny
mode with one allow rule and one deny rule.

For a rule system that included both allow rules and deny rules, an important decision
to be made is how powerful and complex to make the rule interactions. A very powerful
approach would be to order rules and base rule priority on rule order. This is similar to
how many firewalls implement rule priorities. However, an order-based approach to rule
priority may be unnecessarily complex for the majority of RequestPolicy’s users and could

significantly complicate the menu.



CHAPTER 4. USABILITY ISSUES 35

Users Repeating Whitelisting Work

The initial whitelist import offered by RequestPolicy 0.5 serves a worthwhile goal: to reduce
the need for individual RequestPolicy users to manually create the same whitelist rules.
However, the one-time import approach suffers from multiple problems. A one-time import
means that additions to the initial whitelist will never be made available to existing users.
Similarly, a one-time import means that any rule which later may need to be removed
cannot be removed from the policies of users who have already imported the initial whitelist.
Notably, this situation has happened with the RequestPolicy initial whitelist after Google
bought Recaptcha. We believed many of our users would not want to allow requests from
any site they visit to a Google-owned website. Therefore, we removed the “allow requests
to recaptcha.net” rule from RequestPolicy’s initial whitelist. A possible solution to this

problem is the use of subscription policies.

Fine-Grained Rules Require Strict Default

As discussed in Section 2.1, rules created for one strictness mode are not compatible with
other strictness modes. Thus, it is not possible to use fine-grained rules such as those
containing subdomains when using the default mode of cross-site request classification which
considers only registered domain names. Similarly, course-grained rules are not available
when using very strict classification modes.

This lack of rule compatibility across strictness modes limits the amount of control one
has in the default strictness mode and makes RequestPolicy usage more difficult in the
stricter classification modes. The lack of compatibility also makes switching strictness modes

burdensome because the user essentially starts over with an empty policy.

Limited Rule Expressibility

Aside from problems of rule compatibility across strictness levels, the RequestPolicy rule
system can only express very simple rules and is difficult to extend to support new features
because of the way rules are stored and used. The most frequently requested feature for the

RequestPolicy rule system is support for subdomain wildcards. Having rules with subdomain



CHAPTER 4. USABILITY ISSUES 36

wildcards would allow a user to create a single rule that allows requests to all subdomains
of foo.com while still being able to create a rule that only allows requests to bar.com, not
its subdomains. The two other major feature requests for the rule system are the ability to

specify URL paths and rules that restrict the type of content (e.g. stylesheet, image, etc.).

4.3 User Interface

The RequestPolicy user interface has remained the same since its launch in 2008. Here we
discuss what we believe are inherent problems in the UI. These problems were identified by

our own experience with RequestPolicy as well as through user feedback.

Initial Setup Window

The initial setup window that opens after RequestPolicy is installed prompts users to add a
set of pre-defined rules to their whitelist (Figure 2.1). The problems with the initial setup

window include:

e The user is being asked to “[a]dd sites to [their| cross-site whitelist” with no explanation
of what a cross-site request is and what it means to add sites to their whitelist.

e The user is shown the list of items to be imported despite the fact that non-advanced
users are unlikely to find this useful for making an initial import decision.

e The user is shown checkboxes for importing whitelist entries specific to geographic
regions. Selecting regions is an unnecessary decision users are forced to make as we
do not believe any of these rules have a negative impact on privacy. Further, selecting

any of these boxes does not make clear which additional items will be imported.

Menu

Our use of hierarchical menus has resulted in menus up to four levels deep: there are up to
three levels of menus off of the main menu (recall the other origins menus of Figure 2.3).
Usability research on depth/breadth trade-offs in menu design indicates that menu breadth

should be increased to avoid menus more than two or three levels in depth [12].



CHAPTER 4. USABILITY ISSUES 37

RequestPolicy’s use of Firefox’s traditional application menu system has limited our
flexibility of what we can display in the menu and how we can display it. For example,
despite the infrequency with which users open the preferences window or the request log
from the menu (Table 3.12), both of these menu items are equally as prominent as rule-
related menu items.

A major oversight in the menu that is not related to the menu system itself is the lack
of a “help” option. For a new user who has just installed RequestPolicy, there is no way to
obtain more information about RequestPolicy. There are similarly no menu entries a user
might think could ultimately lead them to more information (e.g. “About RequestPolicy”)
in the absence of a “help” option.

The most common user feedback we have received regarding the menu has been the
inability to make multiple whitelist changes through the menu before the menu closes and

the current page is automatically reloaded.

Preferences

The RequestPolicy preferences open as a separate window which attempts to maintain the
look and feel of the web browser itself. We are increasingly uncertain of the benefit to
users of opening a separate window for preferences and attempting to maintain look-and-
feel consistency. Instead, using browser tabs with HTML pages for preferences management
provides a powerful and flexible alternative to native windows. Google’s Chrome browser
was one of the first browsers to use browser tabs populated with HTML for its settings

windows.



38

Chapter 5

Redesign

To address the most pressing usability issues discussed in Chapter 4, we undertook a major
redesign of RequestPolicy. The primary design changes involved a new rule system, support
for blacklists and a default-allow mode, default settings optimized for non-advanced users,
and a new user interface.

Throughout the redesign, we have kept in mind the maintainability costs of additional
complexity [1]. An important factor in minimizing complexity is to consider the requirements
of features that may be implemented in the future without burdening the design with un-
necessary generality. In Chapter 6, we discuss the extent to which we have future-proofed

our redesign and how we may use this flexibility in the future.

5.1 Policies and Rule System

The primitive rule system used by RequestPolicy 0.5 met the very simple requirements of
that version. For RequestPolicy 1.0, we needed a rule system to support the following
functionality.
e Default-allow mode. A default-allow mode should be available for users who want
to allow all requests except for those they’ve created rules to block.
e “Deny” rules. Users should be able to create “deny” rules in addition to “allow”
rules. This is necessary for a default-allow mode and is a requested feature for the

default-deny mode.



CHAPTER 5. REDESIGN 39

{
"O"Z {
"h": "x.foo.com"
+,
I|dll: {
llsll: llhttpsll s
"h": "www.bar.com",
"port": 1000
}
+

Figure 5.1: JSON representation of a RequestPolicy 1.0 rule allowing requests from
*x.foo.com to https://www.bar.com:1000.

e Flexible rules. Rules should support specifying any combination of hostname, scheme
(protocol), and/or port for the origin and/or destination. Rule hostnames should
support subdomain wildcards.

e Extensible policy storage format. The storage format for policies and their rules
should allow for future additions (e.g. rules specifying the URL path).

e Strictness-agnostic rules. Rules should continue to work when a user changes set-
tings related to RequestPolicy’s strictness.

e Support for subscription policies. Users should be able to subscribe to automati-

cally updating rule sets that are curated by us or third parties.

Rule Format and Policy Storage

As discussed in Section 2.1, RequestPolicy 0.5 represented rules as simple strings (e.g.
“foo.com|bar.com” for an origin-to-destination rule). In order to support richer rules in
version 1.0, we have represented rules as objects with origin and destination attributes where
the origin and destination values are themselves objects that can have a protocol, host, and
port. An example rule is shown in Figure 5.1. Rule hostnames can include subdomain
wildcards using the * character.

As version 1.0 rules are conveniently represented as JSON, policies (that is, collections

of rules) can be represented as JSON objects that contains separate lists of “allow” rules



CHAPTER 5. REDESIGN 40

and “deny” rules. We represent the user’s non-temporary policy using this format with
some additional metadata such as the policy format version. We store the user’s policy in a
separate file in the user’s profile data directory. The choice to store the data independently
of the Firefox preference system and its prefs. js file was made for a few reasons. First,
functionality such as backup and restore of the user’s policy is simplified. Second, we can take
more precautions in writing the policy file to disk than Firefox does in writing the prefs. js
file to disk (e.g. performing atomic writes by writing to a temporary location, reading back
and verifying the written contents, and then renaming the temporary file). Third, we can

use the same code and storage format for distributing and storing subscriptions policies.

Rule Lookup

To efficiently support subdomain wildcards, we leverage the fact that domain names are
hierarchical. For each policy, we build a prefix tree of the policy where each node corresponds
to a dot-separated label of a hostname. At each node in the prefix tree, there is a possibly
empty list of rules. Thus, if the policy has a rule for “example.com”, the policy’s prefix tree
will have a top-level node “com” with a list of rules. That node “com” will have a child node
“example” with a separate list of rules. We also build for each policy a hash table of rule IP
addresses.

Each rule entry in a node’s list of rules specifies whether it is an allow or deny rule,
whether the rule represents an origin or destination, and any non-hostname rule criteria
(e.g. protocol and port). To represent origin-to-destination rules, each rule entry is also
the root of a possibly empty prefix tree representing destination hostnames. Subdomain
wildcards are represented with a * character as the label in leaf nodes in a prefix tree.

Rule lookups are performed by splitting a request’s origin and destination URLs into
their components (scheme, host, and port) and further splitting hostnames into labels. For
both the origin and destination URL, the policy’s prefix tree is traversed starting from the
top-level domain to find an exact match or wildcard match. If a matching node in the prefix
tree is found, each rule in the node’s list of rules is compared against the other components
of the URL. For origin-to-destination rules, we first find a matching origin rule and then

search that rule’s destinations prefix tree for a matching destination rule.



CHAPTER 5. REDESIGN 41

For simplicity, we chose not to use rule ordering for priority. Instead, when the user is
in default-allow mode, allow rules have precedence over deny rules. When the user is in

default-deny mode, deny rules have precedence over allow rules.

5.2 Subscriptions

Subscription policies for RequestPolicy 1.0 are a mechanism by which policies can be main-
tained by us or the community and updates to these policies can be received automatically
by users. Many subscriptions will involve personal judgment as to what should be included
in the subscription. For now, all subscriptions are curated and maintained by us.

We have implemented multiple, optional subscription policies in RequestPolicy 1.0. Our
implementation makes different policies available based on whether the user is in default-
allow or default-deny mode. The user’s policy always takes precedence over subscription
policies. Thus, overriding a subscription policy rule is done by creating a user policy rule
that does the opposite (e.g. allow instead of deny) of what the subscription policy rule does.

In default-allow mode, a single subscription policy is currently available. This subscrip-
tion blocks destinations we believe to be likely causes of privacy loss. This subscription
policy includes rules to block requests to advertisers such as DoubleClick as well as com-
monly embedded sites such as Facebook. In the case of a site like Facebook where the site
uses multiple domains to serve content used by third parties as well as by the site itself
when visited directly, a combination of allow and deny rules are needed. Table 5.1 shows
the rules currently used in this subscription to block requests to Facebook domains except
when visiting Facebook directly.

In default-deny mode, there are three subscription policies available that include allow
rules to minimize website breakage. These are 1) a policy that allows destinations that
belong to the same organization as the origin webpage, 2) a policy that allows requests that
are needed for websites to function correctly even if the request may have privacy impact,
and 3) a policy that allows requests for embedded content such as images from flickr.com
and videos from youtube. com.

Additionally, in default-deny mode there are two subscription policies available that min-



CHAPTER 5. REDESIGN

Rule Type \ Origin

Destination

42

Allow * facebook.com | *.facebook.com
Allow * facebook.com | *.facebook.net
Allow * facebook.com | *.fbcdn.net
Allow * fbedn.net * facebook.com
Deny * facebook.com
Deny * facebook.net
Deny * fbedn.net

Table 5.1: Subscription rules used to block requests to Facebook except when visiting the
Facebook website.

imize blocking browser-related requests.! The first of these policies allows requests to Mozilla
websites which are performed as unprivileged content requests through special locations such
as about:addons. The second of these policies allows requests that other extensions per-
form as unprivileged content requests. Traditionally, when browser-related requests have
been blocked by RequestPolicy, a new version of RequestPolicy would be released that in-
cludes hard-coded rules to allow these requests. This has resulted in both a delay in getting
these workarounds to users as well as a slow iteration time when the rules added to work
around these issues were not correct the first time. By alternatively or additionally including
these rules in subscription policies, users can obtain these updates much faster than waiting
for a new version of RequestPolicy to be released.

Currently, these policies are maintained solely by us. We discuss ideas for community-

maintained subscriptions in Chapter 6.

5.3 Default Settings

A primary goal for RequestPolicy 1.0 is to be usable by a wider range of people. As blocking
requests by default results in frequent and significant website breakage, RequestPolicy 1.0
defaults to allowing requests. Users can switch to default-deny through the RequestPolicy

preferences.

IPrivileged requests such as those performed to obtain browser updates are never blocked by
RequestPolicy.



CHAPTER 5. REDESIGN 43

5.4 User Interface

The main elements of the RequestPolicy Ul are the menu through which users view the
current tab’s destinations and do the majority of their rule management, the preferences
window where settings are managed and the user’s entire rule set can be viewed and edited,
and the window users see after they have installed RequestPolicy for the first time. In our
redesign, we have made significant changes to each of these. Our goal has been to simplify

the user experience despite the addition of new functionality.

Initial Setup Window

The redesigned RequestPolicy has increased the number of configuration options, adding
default-allow vs. default-deny and optional subscriptions. As these options cater to very
different types of users, RequestPolicy has a new problem to solve: when and how does a
user configure RequestPolicy?

As we have decided that our default settings will be optimized for non-advanced users
while allowing advanced users the ability to increase their control as desired, we take the
same approach with our redesigned first-run window. When a user installs RequestPolicy 1.0,
they are shown a very simple window (Figure 5.2, top) that encourages the user to proceed
directly to a tutorial. Available in this window is a de-emphasized link for configuring

RequestPolicy which takes the user to a configuration page (Figure 5.2, bottom).

Menu

Given the limitations of traditional menu systems, for RequestPolicy 1.0 we have opted to
create a flat menu of our own design (Figure 5.3). Though flat, the user has access to
“deeper” functionality through selections that alter the menu state. Options not related to
the currently active browser tab are de-emphasized with a smaller font and placed at the
bottom of the menu.

When the user opens the menu, the upper left corner of the menu lists the origin domain of
the current page. The rest of the left side of the menu optionally lists the following, if needed:

the additional origin domains within the page, the blocked destinations domains from the



CHAPTER 5. REDESIGN 44

| * | &0 chrome://requestpolicy/content/settings/setup. htmi# rve | |'.:" Google P| B & E-

Welcome to RequestPolicy

For most users, RequestPolicy's default settings are ideal.

However, you can configure RequestPolicy to make it much more strict (only recommended for advanced users).

Teach me how to use RequestPolicy Return to browsing ~ Configure RequestPolicy

| (— | @ chrome://requestpolicy/content/settings/setup. html rve | |"‘.:l' Google p| B & E-

Configure RequestPolicy

Default Policy
When you don't have any "allow" or "block” rules that match a request, this is what RequestPolicy will do.

Allow requests by default.
@ Block requests by default (For advanced users. Breaks many websites )

Subscription Policies

Subscription policies are sets of rules maintained by us with help from the community. These rules are updated
automatically and aim to minimize website breakage while blocking requests that impact your privacy.

Yes, use subscription policies. (Recommended.)
© No, don't use subscription policies.

Teach me how to use RequestPolicy Return to browsing

Figure 5.2: RequestPolicy 1.0 initial setup window. (Top) Welcome page. (Bottom) Config-
uration page.



CHAPTER 5. REDESIGN 45

current origin, the allowed destination domains from the current origin, and destination
domains from the current page that have both blocked and allowed requests. If the user
has enabled default-deny mode, the right side of the menu will provide options to allow all
requests from the current origin.

When the user selects a destination, they are shown destination-specific policy options.
These options vary depending on whether the user is in default-allow or default-deny mode.
In default-allow mode, destinations are only blocked because a rule caused requests to be
blocked. In this case, the menu offers to stop blocking the requests (Figure 5.3, middle).
That is, the specific rule that caused requests to be blocked will be removed if it is a rule in
the user’s policy or overridden if it is a rule in a subscription policy. If relevant, the menu
will also offer to allow requests from the origin to the destination (creating a separate allow
rule unrelated to the rule that caused the requests to be blocked). In default-deny mode, the
options for a blocked destination will simply be to allow requests to the blocked destination
(an allow rule will be created). For allowed destinations, similar relevant options are shown
based on the user’s default policy and any existing rules that have caused requests to be
blocked or allowed (Figure 5.3, bottom).

When the menu offers to “stop blocking requests” (remove or override a deny rule) or
“stop allowing requests” (remove or override an allow rule), it displays a readable represen-
tation of the rule. RequestPolicy 1.0 rules are flexible but ultimately they follow a simple
pattern that lends itself well to internationalization: “stop allowing/blocking requests [from
origin] [to destination])”. The menu constructs the string to display for the origin and des-
tination values of a rule by combining the parts of the rule that are defined. A rule that
specifies the origin with a protocol of “http” and a hostname of “*.foo.com” will have the
origin represented as “http://*.foo.com”.

When the site has other origins, the user can perform policy management related to an
other origin by first selecting the other origin they are interested in. Once selected, the list
of destinations on the left side of the menu changes to show only the destinations from that
origin (Figure 5.4). From there, the user can select a destination to see destination-specific
policy options as they would for the primary origin of the page.

Note that when the user is in default-allow mode, allow rules take precedence over deny

rules. This ordering of rule processing based on the default policy is intentionally not com-



CHAPTER 5. REDESIGN

77 v & | 29 Googie

s m A B-

reddit.com

Other origins
redditmedia.com

Blocked destinations
google-analytics.com

Allowed destinatio

googleapis.com
redditmedia.com
redditstatic.com

=}

Dizable blocking Help Preferences Manage Policies Request Log
77 v | |49~ Google s m a B~
reddit.com Stop blocking requests to *_google-analytics.com
Other origins Allow requests from *.reddit.com to *.google-analytics.com
redditmedia.com Temporarily allow requests from *reddit.com to *.google-analytics.com
Blocked destinations
google-analytics.com
Allowed destinations
googleapis.com
redditmedia.com
redditstatic.com
Dizable blocking Help Preferences IManage Policies Request Log
77 v || $]- Google s mf B~
reddit.com Block requests from * reddit.com to *.googleapis.com
Temporarily block requests from *reddit com to * googleapis.coim
Other origins Block all requests to *.googleapis.com
redditmedia.com Temporarily block all requests to * googleapis. com
Blocked destinations
google-analytics.com
Allowed destinations
googleapis.com
redditmedia.com
redditstatic_com
Disable blocking Help Preferences Manage Policies Reguest Log

46

Figure 5.3: RequestPolicy 1.0 menu. (Top) Opened. (Middle) Allowed destination selected.
(Bottom) Blocked destination selected.



CHAPTER 5. REDESIGN

C | |29~ Googte A e fF B~
reddit.com
redditmedia.com
doubleclick net
Dizable blocking Help Preferences IManage Policies Request Log
C ||~ Google 2 m & B

reddit.com

redditmedia.com

doubleclick.net

Stop blocking requests to *.doubleclick.net

Allow requests from *_redditmedia.com to *.doubleclick_net

Dizable blocking Help Preferences Manage Policies

Request Log

47

Figure 5.4: RequestPolicy 1.0 menu with other origins. (Top) Other origin selected. (Bot-
tom) Blocked destination of other origin selected.

municated to the user. Our belief is that the appropriate Ul design can remove the need for

such explanation, though future study of the new menu will be needed to determine whether

our design is, in fact, self-explanatory with respect to rule ordering.

Preferences Window

We have implemented the RequestPolicy 1.0 preferences window using HTML and JavaScript.

Instead of opening a fixed-size dialog window, the preferences are opened in a new browser

tab as shown in Figure 5.5.



CHAPTER 5. REDESIGN

€ > chrome://requestpolicy/content/settings/yourpolicy.html oM P Em fF D~
RequestPolicy  Your Policy
Preferences Type Origin Destination Search
Manage Policies Allow *.reddit.com * redditstatic.com -
Help Allow * reddit.com * redditmedia.com
About
Allow =ytimg.com
Allow * youtube.com * gstatic.com
Your Policy
Default Policy Allow * slashdot org * fsdn.com
Subscriptions
Allow = github.com * googleapis.com L
Allow = github.com * akamai.net
Allow * linkedin.com *licdn.com
Allow *bbe.co.uk * bbei.co.uk
Allow *bbe.co.uk * bbeimg.co.uk
Block * berkeley.edu * cloudfront.net x =

© Block

[7] Temporary
Origin scheme  host port
Destinalion  scheme  host port

Learn more about rules.

Figure 5.5: RequestPolicy 1.0 preferences window showing user policy management.



49

Chapter 6

Future Work

In order to evaluate the effectiveness of our new design in RequestPolicy 1.0, we will need to
gather telemetry from users of the new version as well as perform usability studies. This could
also give us insight into how useful the inferences from our telemetry of RequestPolicy 0.5
appear to have been. Additionally, we could integrate a survey into the new RequestPolicy
to directly get feedback from users.

The changes we have made for RequestPolicy 1.0 are significant but still leave much to
be desired. First and foremost, the subscription policy system we have implemented is only
one piece of what is needed for subscriptions to be highly useful. The next major step for
subscriptions will be to implement tools that enable an engaged subset of RequestPolicy
users to help us improve and maintain subscriptions policies. These tools could include a
website where users can discuss our subscriptions as well as curate their own. Additionally,
we intend to investigate methods that can enable all users to contribute to the quality
of subscription policies by sharing information such as which websites they have found to
be broken (e.g. through a button in the menu). It is possible that telemetry could be a
useful tool for automatically identifying websites that RequestPolicy “breaks,” though the
telemetry required would likely need to reveal user-visited URLs. For example, the fact that
a user opens the menu on a particular web page is likely a strong indication that the page is
broken. Relatedly, it would be highly useful to identify privacy-preserving ways for users to
share the contents of their own policies.

The new menu format creates many new possibilities for ways to provide information to



CHAPTER 6. FUTURE WORK 50

users and help them make whitelisting and blacklisting decisions. For example, a common
form of website breakage occurs when requests for stylesheets have been blocked, usually
resulting in a page’s HTML being rendered using the browser’s default styles (white back-
ground, large serif font, bulleted lists, and significant whitespace). If stylesheets have been
blocked, RequestPolicy could inform the user and give them an option to add any rules
necessary to enable the stylesheet requests the site is making. The same is true for images,
videos, and even scripts. A difficulty here is in deciding which options should be made
available such that we avoid overloading the user with choices and complicating the menu.

The extensible rule format introduced in RequestPolicy 1.0 will allow us to implement
additional, interesting rule criteria. Most significantly, we plan to enable rules to specify
URL paths and content type (image, stylesheet, video, etc.).

Though we believe the first-run window of RequestPolicy is significantly improved, we
are not certain that having a first-run window at all is the best approach. For example,
the menu could offer options to read a tutorial or perform advanced configuration. Thus,
our primary post-install objective would be to make the user aware of the existence of the
RequestPolicy icon that was added to their toolbar.

Recent developments in the Google Chrome browser have opened up the possibility of
porting RequestPolicy to Chrome. Specifically, Chrome has recently added an API that
allows blocking requests [6]. We may also consider adding support for Firefox Mobile if its
market share becomes significant.

It is worth noting that the feedback from users of RequestPolicy 1.0 will likely influence
our future development priorities. Over the past four and a half years, RequestPolicy users
have been the source of many great suggestions that may have eluded us or that we would
not have realized the importance of. This is especially true given that RequestPolicy 1.0 will

be usable by an entirely new group of users due to its less strict default behavior.



o1

Chapter 7
Conclusion

Our telemetry study is a starting point for understanding the usage of and improving policy-
based privacy and security tools. Prior to our study, we had only anecdotal evidence of
how RequestPolicy is used. Our lack of real-world usage data for RequestPolicy limited our
understanding of how users other than ourselves interact with the extension.

Through our study, we’ve begun to see usage patterns among RequestPolicy users, in-
cluding differences in the types of rules users prefer to create. These differences may be due
to many factors, some of which are intuitive and some of which we may not be aware of. For
example, users may have differences in their levels of privacy and security concern, different
threats they are concerned about,