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Abstract

CANDID: Classifying Assets in Networks by Determining Importance and Dependencies

by

Scott Michael Marshall

Master of Science in Computer Science

University of California, Berkeley

Professor Sylvia Ratnasamy, Chair

Professor Vern Paxson, Co-chair

This thesis introduces CANDID, a passive NetFlow-based network traffic analysis plat-
form targeted at inferring relationships and dependencies among services running on hosts
in enterprise networks. These networks present challenges of great scale, complexity, and
nonstop dynamism, which hinder the ability for network administrators to maintain insight
into the complex relationships that exist in these networks. Consequently, administrators
do not always know how best to proceed if a network failure occurs. CANDID strives to
empower administrators by illuminating these relationships, such that they will be prepared
to remedy complex service failures.

The solutions presented here take the first steps towards understanding these complex
in-network relationships, with a special focus on inferring one class of dependencies and
detecting load balanced services. The focal point of this thesis is two radically different, yet
complementary, strategies for inferring the presence of load balancing for pairs of systems.

A case study using real NetFlow data from the network located at Lawrence Berkeley
National Lab is leveraged to validate the strategies presented here. Promising results indicate
this problem space is rich with unanswered research questions and is worthy of further
exploration.
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Chapter 1

Introduction

Like the Internet, enterprise networks have grown significantly to hundreds of thousands of
hosts and beyond, and Cisco Systems forecasts [2] that this growth is expected to continue
for the foreseeable future. This increase in scale, combined with the dynamic nature of
these networks, has made enterprise networks large and complex entities that are difficult
to manage. In many circumstances, enterprise network administrators are not fully aware
of what assets (service instances on network hosts) they have nor how these assets depend
on and interact with one another. Therefore, administrators lack understanding of the
roles network assets play towards supporting the missions of the enterprise. Consequently,
administrators are unable to identify which assets are most critical and whether or not any
resiliency is present (e.g., load balancing or failover) to protect those assets in the face of
failures or attacks. Therefore, network administrators do not always know how best to
proceed if an asset or network failure occurs, and security teams are unaware of which assets
are in greatest need of security protection and monitoring.

To solve these problems, the goal of CANDID (Classifying Assets in Networks by
Determining Importance and Dependencies) is to passively analyze network traffic in an
offline fashion, assign roles to assets (e.g., “authentication servers”), establish asset relation-
ships (load balancing, failover, and dependencies), and rank assets by importance. In this
thesis, I present several strategies for one phase of this analysis: establishing asset relation-
ships, with a primary focus on identifying load balancing. The remainder of the CANDID
solution is left for future work.

One aspect of CANDID that is different from many other projects in this space is that
it only uses NetFlow [1, 56, 22, 21] records and not packet traces (headers and/or payloads)
as the data source for network traffic classification and analysis. This is particularly impor-
tant since most existing enterprise network infrastructure supports NetFlow-based measure-
ment, which leads to a easy CANDID deployment strategy that does not require purchasing,
configuring, and installing new infrastructure. While relying on flow data presents several
challenges (see Chapter 4 for details), doing so does yield another benefit: use of flows in net-
work measurement studies reduces privacy concerns since flows hide many user-identifying
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characteristics. I take pride in presenting promising strategies that minimize abuse of user
privacy.

To evaluate the methodologies described in this work, I performed a case study on
Lawrence Berkeley National Lab (LBNL) SMTP [52] traffic. By analyzing anonymized
NetFlow records reflecting SMTP traffic over several 24-hour windows, CANDID was able
to identify several critical assets in the LBNL email processing system and inferred several
instances of load balancing. To establish ground truth and to validate these results, I con-
firmed my interpretation of LBNL’s SMTP behavior with LBNL network operations staff,
who indicated that my conclusions were correct.

In summary, this thesis develops several strategies wherein CANDID successfully lever-
ages passive NetFlow traffic analysis to infer relationships amongst assets in a real enterprise
network. The remainder of this introductory chapter reiterates the problem statement and
details the scope of this work in terms of the overall CANDID vision.

1.1 Problem Statement

As alluded to earlier in this chapter, my goals in this work are three-fold:

1. Identify assets in a network using only NetFlow traces.

2. Infer the complex relationships between those assets.

3. Determine the importance of individual assets and then rank them.

It is worth briefly noting here that there is more depth to these three goals than one
might initially perceive: clearly defining the terms asset, relationship, and importance is
an important component of any solution that attempts to tackle these goals. Detailed
motivation for why it is important to address these goals is provided in Section 2.1.

1.2 Contributions

The contributions of this work span beyond the problem domain outlined by the three goals
detailed in the previous section. In particular, some of these contributions come from the
fact that this is a measurement study, and serve as solid techniques to use in other Internet
and network measurement research. At a high level, these contributions can be summarized
as follows:

• A sophisticated data handling pipeline that maps unidirectional NetFlow records from
multiple network vantage points into a unified list of chronologically-ordered bidirec-
tional network connections.
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• Several data sanitization algorithms that can remedy common problems faced by re-
searchers working with empirical data.

• Multiple strategies for identifying load-balanced assets which leverage a variety of con-
nection attributes and characteristics.

Section 8.1 describes each contribution of this thesis in a more detailed fashion.

1.3 Thesis Summary

The scope of the CANDID project extends beyond that of this thesis alone; this thesis serves
as a foundation of and a jumping-off point for further research towards a complete solution
that encompasses all three aforementioned goals. While my initial research trajectory at-
tempted to identify asset dependencies, I shifted my focus and instead decided to tackle
inferring load balancing relationships, as this knowledge simplifies the network topology by
aggregating assets known to be clustered into single entities, which in turn can simplify
dependency analysis. Thus, the primary focus of this thesis is on understanding and infer-
ring one type of asset relationship: load balancing, and while this may seem like a simple
problem, it does not have a simple solution.

In this thesis, I develop a collection of strategies that take steps towards solving this
problem, describe the pros and cons of each, and share the lessons I learned along the way.
In particular, this thesis reveals that there is much more to modeling asset dependencies and
relationships than natural intuition might first suggest. Readers should understand that
while this work does not present a single comprehensive solution, there is research value in
understanding the attempted techniques and solutions and their corresponding limitations.
Further, the research community should take this work as a sign that this problem space is
in fact quite challenging and deserves further attention. As I discuss in Chapter 8, I feel the
best strategy for inferring load balancing is really a hybrid model that encompasses several
of the techniques I designed.

The remainder of this thesis is organized as follows. Chapter 2 motivates this work and es-
tablishes key definitions and ideas used throughout the remainder of this thesis. In Chapter 3,
I explore the expansive existing work in the research areas I build upon, while in Chapter 4,
I provide context for NetFlow, illuminate the benefits and challenges of working with this
type of measurement data, and describe the necessary data sanitation techniques required
for subsequent analysis. Then, in Chapters 5, 6, and 7, I describe the three major strategies
of analysis I have designed, providing design details and evaluations of each. Chapter 5
presents a technique for identifying asset dependencies from causal connection relationships,
while Chapter 6 leverages similarities in connection distributions to infer instances of load
balancing, and Chapter 7 revisits load balancing analysis through an alternative approach
that deduces load balancing from hosts’ peers. In Chapter 8, I recap the contributions of
this work and discuss future directions, and I conclude in Chapter 9.
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Chapter 2

CANDID Background

Before delving into the rich expanse of existing related research that precedes CANDID, it is
important to motivate this work by better understanding the problems and challenges that
have led to the goals outlined in Section 1.1. In addition, this chapter presents several key
terms and concepts that are necessary to explain CANDID solutions in detail.

2.1 Motivation

To better understand the context in which the three goals from Section 1.1 originate, consider
the following scenario:

You are a network administrator at a large corporation. Management tells you
that to cut costs, you need to close down a company data center and move systems
to a shared facility with minimal downtime. As you begin to plan the big move,
you wonder. . .

1. I have limited space at the shared facility. Do I know what all the systems
do? Are they all critical to daily operations, or can some be decommissioned?

2. Which assets can I relocate without impacting others? Are some in clustered
configurations so they can be split apart during the move without impacting
operations?

3. Is the network at the shared facility secure? My security team has a limited
budget, so I need to tell them which assets need the most protection.

You don’t have the time to inspect each system individually nor do you have the
option of deploying new specialized infrastructure capable of large-scale packet
capture of the enterprise network. However, your current network infrastructure
already supports traffic monitoring through use of NetFlow.

How might you answer these questions?
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From this example, it should be clear that administrators face a number of uncertainties
when working with networks of large scale. Even more importantly, the purpose of the
fictitious scenario is to highlight some potential problems an administrator might face and
the questions they might ask themselves when attempting to reach a resolution. Thus, it is
important for administrators to be able to answer these questions because while they might
have formal plans when new assets are initially deployed, these views are either inaccurate
or quickly become outdated for a variety of reasons, and not knowing the answers to these
questions presents big hurdles when problems arise.

Administrators Have Limited Visibility

While intuitively one might think that a network administrator has complete visibility into
their network, this actually is not always the case. Consider, for example, that as IT divisions,
which are spread across an enterprise, deploy new services, they may make use of an existing
network resource but may not notify the resource owner that it is something their asset now
relies on. At some point in the future, the owner may decommission the asset, not knowing
that doing so would impact other services.

Another reason administrators can lack visibility is because they deploy assets they have
not designed. Imagine a case where an appliance from a third-party vendor is purchased.
Appliances are effectively black-box solutions: these systems can be poorly or incorrectly
documented, such that an administrator deploying one really has no sense of the impact nor
the dependencies the new asset has on existing network entities (e.g., perhaps a new network
intrusion detection system which performs name lookups places a significant burden on DNS
servers).

Finally, consider the case of a clustered asset: a service provided by several systems
in either a load balanced or failover configuration (see Section 2.2 for definitions of these
terms). Due to human error (e.g., either a failure to properly configure it or to test it prior
to deployment), the cluster may not function as intended. For example, the transition from
the active to the backup system during failover may not occur. This leads to yet another
difference between the administrator’s understanding of the system’s behavior and actual
real-world behavior.

Configurations Change

Even in cases where design plans and configuration specifications might exist when an asset
is first added to a network, these truths do not necessarily hold indefinitely, as networks and
assets are dynamic. One major cause of this dynamic nature is configuration changes, and
these can take shape in several forms:

• To patch problems and minimize downtime, administrators hastily make changes to
existing (documented) configurations, but in their haste, fail to document these mod-
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ifications.

• Software patches may unknowingly or unintentionally modify existing well-understood
asset behaviors and relationships.

It is also worth briefly noting that configuration details (e.g., service configuration files,
firewall ACLs, monitoring parameters) for an asset are spread across multiple systems and
all of these must be changed to avoid inconsistencies in both the administrator’s view of the
network and in asset behavior.

Problems Arise

The consequences of not knowing asset roles and lacking visibility into asset-asset relation-
ships become particularly apparent when problems occur (and much to the displeasure of
system and network administrators, problems do occur). Even in the case of simple hardware
or software failures, accurate and complete network visibility is important as it helps guide
the initial troubleshooting steps an administrator takes towards resolving the problem —
how can an administrator efficiently and effectively solve a problem if he/she does not know
where to look?

Unfortunately, the complexity of this situation spans far beyond the case of simple fail-
ures. Security teams provide protection for all systems in enterprise networks, but will
usually add additional layers of security to critical assets. However, security teams need
network visibility to know which assets are the critical assets, as a compromised key asset
can lead to significant downtime and/or loss of revenue for the enterprise.

Finally, it is worth pointing out that due to asset dependencies, not all failures will be
simple failures. These dependencies can establish long chains of dependent assets, such that
the failure of one asset can lead to a “domino effect”, wherein an entire sequence of assets
subsequently fail.

I have argued how network and security administrators all have limited visibility into
the roles their assets play, the importance of each asset, and the many complex inter-asset
relationships that can exist in a large enterprise network. This inability to paint a complete
picture of sophisticated dynamic relationships can lead to trouble when problems arise. Thus,
it is for this reason — the need to understand asset roles and relationships — that I devised
the goals outlined in the problem statement (Section 1.1) and CANDID takes steps towards
accomplishing those goals.

2.2 Key Concepts

The remainder of this chapter shifts focus towards introducing concepts and defining terms
that will be used throughout the remainder of this thesis.
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Load Balancing Failover Remote-Remote 
Dependency

Local-Remote 
Dependency

1. DNS

2. SSH

1. HTTP

2. DB

Figure 2.1: Four fundamental asset relationship types

Assets

The term asset in computer systems and networks can be thought of in many different
ways; hardware (e.g., disks, hosts, or network appliances), software, network services, and
information (e.g., confidential data or intellectual property) all fall under this umbrella. In
the case of CANDID, an asset is defined as a network service provided by an individual host
entity 1 denoted as a 3-tuple: 〈L4 Protocol, IP Address, Destination Port〉. Use of this same
3-tuple for distinguishing service roles in networks is common in previous work [13, 51, 17, 43].

In general, using the three-tuple to identify assets is a sensible choice: it is lightweight,
intuitive, and is easy to determine (since it makes use of attributes present in NetFlow [1, 56,
22, 21] records from the IP header). The accepted downside of this choice, however, is that
it cannot perfectly capture and express all service models, since there is not a one-to-one
mapping between services and destination ports. For example, a web server may provide the
same service to clients on multiple ports (e.g., 80 and 443) or an application that is not a
web server could listen for clients on port 80 (as developers can choose to use any port(s) in
an application).

Asset Relationships

CANDID examines four types of relationships that exist between assets, two of which (load
balancing and failover) express clustering relationships and two of which (remote-remote
dependency and local-remote dependency) express dependency relationships. These rela-

1A host entity is typically a single host. However, in the case of an asset provided by a cluster, the entire
cluster is the host entity for that asset.
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tionships are illustrated in Figure 2.1. The names and definitions for the two dependency
relationships are from Orion [17].

Load Balancing In this relationship (depicted by the first diagram in Figure 2.1), the
administrator wishes to distribute the client workload across a cluster of several servers
to maximize throughput, minimize latency, and/or make use of fault-tolerance. A
crucial characteristic 2 of load balancing is that all backend servers are configured to
serve the same mission, typically with the same software and even the same hardware.
However, the workload is not necessarily equally distributed among cluster members:
load balancing workload distribution mechanisms can be static or dynamic in nature,
and further, can make use of weighting. Load balancing can be achieved in several
ways: (i) inline via a proxy or L4/L7 device (e.g., [20, 28, 14]), (ii) external servers
routing requests (e.g., DNS round-robin), and/or (iii) directly by clients distributing
the requests they issue (e.g., memcached client sharding [7]), but regardless of the
mechanism, the key intuition is that all cluster members take on the same role since
they all provide the same service.

Failover This is the second type of clustered relationship and is depicted in the second
diagram of Figure 2.1. In a failover configuration, only one system is active at any
given time (unlike load balancing, where several systems are active simultaneously).
Failover provides fault-tolerance guarantees, but does not improve performance like
load balancing does. Failover is frequently implemented by sending a heartbeat [59, 55]
between the two systems: when the backup server detects that the primary server has
failed (by a lack of heartbeat packets), it takes over the active role. The technique for
identifying failover is similar to that of load balancing (in that failover systems exhibit
the same service behavior), except for the fact that network connections to failover
systems will be mutually exclusive rather than simultaneous (in time).

Remote-Remote Dependency A remote-remote (RR) dependency is one in which a sys-
tem must first contact one host before issuing a request to the desired host (i.e., con-
nections emit from the same client in an iterative fashion). The “remote-remote” name
stems from the fact that the system relies on two remote (i.e., not local to the system)
services to accomplish the desired task. For example, using the third scenario illus-
trated in Figure 2.1, the inferred dependency relationship is: the client depends on the
remote DNS service to use the remote SSH service.

Local-Remote Dependency This is the second general type of dependency relationship.
A local-remote (LR) dependency is where a system must issue a request to a remote
system in order to complete an outstanding request issued to a local service. With
LR dependencies, connections appear in a recursive pattern. This scenario is depicted

2Recall that a major focus of this thesis is to accurately and robustly identify characteristic(s) which act
as indicators of similar asset behavior.
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in the last diagram in Figure 2.1, wherein the web server needs a response from the
database server in order to respond to the client. Here, the inferred dependency rela-
tionship is: the web server depends on the database server, but one could extend this
to include the notion that the client’s task depends on the database server.

Asset Importance

The final phase of CANDID analysis is to rank assets using a quantitative metric that
captures the importance of each asset. The motivation behind establishing this single im-
portance metric and ranking is that it is difficult for administrators to compare thousands of
assets when they are each involved in complex combinations of relationships. A single asset
importance metric provides network and security administrators at-a-glance illumination as
to which assets are critical (i.e., if they fail or are attacked that the enterprise at large is
subject to service disruptions, the inability to complete tasks, and/or financial loss).
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Chapter 3

Related Work

CANDID spans across a multitude of network research areas: network measurement, general-
purpose traffic classification, host role identification, host grouping, flow ranking, and ap-
plication dependency analysis. This chapter serves to explore the contributions of existing
literature to develop the context for the ideas that CANDID builds upon and to highlight
the ways in which CANDID is different. An important takeaway from this chapter is that
none of the existing research has made use of role identification in combination with host
grouping to specifically identify cases of load balancing — as previously stated, this is the
primary intent of this thesis and one of the goals of the overarching CANDID work. Subse-
quent sections of this chapter address related work in each of the six aforementioned research
areas.

3.1 Network Measurement

Performing a network measurement study presents many challenges, particularly with respect
to data handling: empirical data can have spikes, network traces (even when expressed as
NetFlow records) are frequently large in size, and timestamps can be inaccurate.

Some fundamental network measurement concerns are outlined in [48]. While this work
addresses a wide range of challenges (e.g., maintaining measurement metadata, performing
consistency checks, ensuring experiment reproducibility), this thesis most closely relates to
the points about the precision of system clocks and the presence of spikes and outliers in
network trace data. The first point is particularly relevant to CANDID since several forms
of analysis in this thesis rely on flow timestamps. As evidence that these concerns are in fact
a legitimate problem, the LBNL flow data contained several cases where flows were of zero
duration or where flow characteristics exhibited spikes. These issues are discussed in detail
in Chapter 4.

Many of the analysis techniques presented in this thesis are based on statistical method-
ologies. In [46], three key ideas are presented that are reused in Chapter 6: the λ2 metric

10



of discrepancy (which is used to quantitatively assess closeness-of-fit of two empirical dis-
tributions), an estimation of bin widths for the χ2 test, and a quantitative mechanism for
comparing random variables.

3.2 General-Purpose Traffic Classification

There is a large corpus of existing research that presents strategies for classifying network
traffic, and the intention here is to provide context via a cross-section of that literature.

Kim et al. [37] provide a survey of several current traffic classification proposals, sepa-
rated into two broad categories: flow-feature based and host-behavior based. The former
describes classification strategies that leverage flow attributes (e.g., flow duration or pack-
ets transferred), while the latter considers the interactions hosts have with other hosts.
CANDID leverages these same two categorizations: Chapter 6 describes strategies focused
on flow attributes, while Chapter 7 focuses on hosts’ interactions with their peers.

Unlike many other traffic classification approaches which assume complete bidirectional
traffic visibility, [26] introduces a traffic classification technique for cases where only uni-
directional traffic is visible (this frequently occurs at the network core where routes are
asymmetric). The proposed solution makes use of k-means clustering on six traffic charac-
teristics (packet count, mean packet size, mean payload size, bytes transferred, flow duration,
and mean packet inter-arrival time). While the raw data used by CANDID is composed of
unidirectional NetFlow records, CANDID first maps unidirectional flows into bidirectional
connections (see Chapter 4 for details). However, since not all unidirectional flows have a
corresponding flow to pair up with to form a bidirectional connection, one could consider
using this strategy for those corner cases. CANDID does not do this since the fraction of
unpaired flows in the LBNL dataset is small (see Chapter 4), but should other datasets have
this characteristic, this approach is worth considering.

Moore and Papagiannaki highlight the issue that there is not a one-to-one mapping
between networked applications and ports [42]. The proposed solution introduces eight
classifiers that are applied to packet traces to determine the true application associated with
a flow. Unfortunately, the approach makes use of DPI (deep packet inspection) in several
classifiers by leveraging packet traces that include full payloads. Since CANDID minimizes
user privacy concerns by only using NetFlow records, this solution is not applicable, and
the aforementioned one-to-one mapping problem is a recognized shortcoming of the asset
definition introduced in Section 2.2.

The authors of [13] propose several simple criteria to translate unidirectional flow records
into bidirectional flows using a few flow characteristics: endpoint addresses, number of pack-
ets, flags, and timestamps. As previously mentioned, CANDID also accomplishes this same
task, but does so by considering a different set of flow characteristics: endpoint addresses
and ports and timestamps (but not packet count nor flags). A challenge faced with unidirec-
tional to bidirectional flow mapping is establishing which endpoint is the server and which
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is the client 1, and [13] proposes combining seven heuristics via Bayesian inference to make
this determination. While CANDID design details are saved for Chapter 4, I propose a far
simpler approach that proves to work well with the LBNL dataset.

Kannan et al. present a strategy for inferring application session structure in a semi-
automated fashion [34, 35]. This work has two contributions: (i) causal aggregation of
individual connections into user-initiated sessions, and (ii) extraction of application commu-
nication structure from these sessions. The first contribution leverages knowledge of Poisson
arrival processes in combination with hypothesis testing to assess if a connection is indepen-
dent of others versus caused by another. The second contribution infers application session
structure by mapping state machines (where edges represent individual connections of a ses-
sion) to applications. While CANDID does not make use of these contributions directly, it
does leverage statistical methodologies similar to the ones presented in this work.

3.3 Host Role Identification

Basic traffic classification can be extended to infer the roles specific hosts have in a net-
work. Role assignment is important for two reasons: it provides stronger inference into host
behavior than simple IP↔service asset mappings, and it establishes a baseline of expected
behavior for each system in the network. The latter feature is primarily useful in forensic
contexts, where a change in a hosts’ role may be a signal of malicious activity; CANDID is
only concerned with the former benefit.

One proposal for host role assignment through behavioral classification is driven by foren-
sic motivations [41]. Nonetheless, this proposal does determine host roles by processing
NetFlow records to construct 3-tuples of the format 〈L4 Protocol, Destination Port, Volume
Tier〉 for each host and uses those in a neural network to discover a host’s most prominent
behavioral pattern. The “Volume Tier” tuple component represents placement in one of five
traffic volume tiers, which helps to constrain the set of tuples produced. However, between
the need to train the neural network with baseline data and the potentially brittle selection
of the five fixed traffic volume thresholds, this solution may not hold up well for datasets
other than that used by the authors.

In [25], the authors outline nine features they use in combination with a clustering algo-
rithm to assess host roles. While many of the nine features cannot be applied by CANDID
because they require additional traffic visibility than that afforded by NetFlow (e.g., packet
size distributions), some features overlap with a CANDID strategy. In particular, the authors
surmise that host behavior is a function of the peers it communicates with, and CANDID
leverages this same intuition (see Chapter 7 for details).

1While NetFlow could present this information (for TCP traffic), it does not.
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3.4 Host Grouping

Host grouping makes use of one or more host characteristics to group hosts together that
are determined to be similar in some way. For example, a host grouping algorithm could
first assess host roles using a technique described in the previous section, then group hosts
together that are found to have the same role. The ability to group hosts together is relevant
to CANDID because this notion serves as the basis for identifying load balanced assets (see
Chapter 6 and Chapter 7 for details).

Aiello et al. present two techniques for grouping hosts together into communities without
first performing any host behavioral classification [9]. Their work presents two strategies for
forming communities of hosts (but does not map these communities to load balancing or
another clustering model): popularity, wherein the percentage of hosts that interact with all
of the target hosts in the grouping must exceed a certain threshold for the group to be valid,
and frequency, wherein two hosts are grouped if they communicate with one another during
small time periods. CANDID does make use of a notion similar to the popularity concept,
with the intuition that load balanced systems will have peers in common over long time scales.
In contrast, the frequency notion is not used; this is the case for two reasons: (i) there is
not any fundamental principal which indicates that load balanced systems will frequently
communicate with one another (as intra-cluster communication patterns may heavily depend
on the clustering implementation), and (ii) load balanced systems are likely members of
the same IP subnet, such that these communication patterns will not be represented in
the NetFlow records (see the discussion of the NetFlow “blind spot” in Chapter 4 for an
explanation).

A similar approach to the popularity notion from [9] is detailed in [58]. Here, the authors
propose making use of peer relationships from connection patterns to define host groups.
The work develops a similarity metric for a host pair by computing the intersection of
peers contacted by the two hosts in the host pair. This approach is similar to a CANDID
approach, wherein the Jaccard Index is used to compute peer similarity (see Chapter 7).
However, the difference between these two strategies is that the Jaccard Index computation
used by CANDID encompasses both the intersection and union of peers for a host pair, and
not just the intersection. Incorporation of the union is important, since it better illuminates
the true peer relationship for a pair of assets.

Finally, BLINC [36] brings together many of the same analysis ideas used in CANDID.
In particular, BLINC presents a multifaceted approach to classify systems and their appli-
cations, leveraging social behavior (the peers hosts communicate with), functional behavior
(whether a host acts as a server, client, or both), and application behavior (source and
destination addresses and ports, transport protocol, and mean packet size) to complete its
analysis. BLINC establishes host groups by using host addresses to locate bipartite cliques,
wherein each member of a collection of hosts acting as clients establishes connections with
members of a collection of hosts acting as servers. As previously mentioned, CANDID does
make use of social behavior to establish groups of load balanced hosts, but simplifies the
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problem by working with assets in a pairwise manner rather than with full communication
graphs. Also, while CANDID targets the enterprise LAN context, BLINC focuses on per-
forming analysis from traffic on WAN access links. Finally, while CANDID does make use
of application properties (e.g., request sizes) to aid in load balancing inference, it does not
follow BLINC’s footsteps with regards to all application behavior, as mean packet sizes are
not available with NetFlow records.

3.5 Flow Ranking

As first mentioned in Section 1.1, one of the goals of CANDID is to determine the importance
of each asset and then subsequently rank them. While this thesis does not address this
importance metric nor the ranking mechanism, it is still worth surveying previous research
in this space to build context for this problem space. However, unlike the CANDID goal,
previous work has focused on ranking flows rather than assets.

FlowRank [60] establishes causal flow dependencies by how closely in time flows appear to
each other (as well as how frequently this occurs), and subsequently ranks flows by applying
an algorithm based on the PageRank [45] algorithm to the flow dependencies. The proposed
algorithm works by looking at links between nodes (i.e., dependencies between flows), each
with associated weights (e.g., traffic volume), to highlight the most important flows (e.g.,
elephant flows or flows representative of security threats).

The authors of FlowRank take a similar but slightly different approach to tackling the
same problem as FlowRank in [61]. Here, a simpler flow dependency model is developed,
which is based on the flow chain notion presented in Chapter 5. Unlike FlowRank, the
authors of this work propose using the HITS [39] algorithm to rank the inferred flow de-
pendencies. In a nutshell, the HITS algorithm assess importance by evaluating two node
metrics: the authority value (how many other nodes are dependent on it) and the hub value
(how many other nodes it depends on). Both the PageRank and HITS algorithms seem to
be effective at ranking the importance of flows via their dependencies, but neither of these
existing approaches addresses ranking assets ; FlowRank briefly suggests that accumulation
of important flows could map to high-value assets, but does not discuss the idea in detail.

3.6 Application Dependency Analysis

A large expanse of existing literature has explored techniques to perform application de-
pendency analysis in both distributed systems and in networks. While CANDID is only
concerned with the networking context, this section explores related research in both of
these areas.
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Host-Based Network-Based

Active ADD [15]
X-Trace [30]

Passive Sherlock [11, 10]
Macroscope [51]
Orion [17]
Constellation [12, 10]

Kind [38] & Caracaş [16]
eXpose [33]
Dechouniotis [23]
NSDMiner [43]
Peddycord [49]
CANDID

Table 3.1: Taxonomy of existing network dependency literature.

Distributed Systems

From a distributed systems context, work from Aguilera et al. [8] explores dependencies
in distributed applications by analyzing RPC behavior. In particular, the authors present
two strategies for identifying these dependencies: the presence of nested RPC calls (where
one call depends on a complete request-response pair of a second RPC call in order to
complete) and the cross-correlation of delays between RPC calls (as the time delay between
dependent RPC calls is statistically significant as compared to the delay between RPC calls
that are not related). The notion of nested calls is explored in a networking context in both
NSDMiner [43], which is discussed later in this section, and in CANDID (see Chapter 5).

Network Applications

There are two major factors that are typically used to categorize tools which analyze net-
work asset dependencies. The first factor is whether the approach is active or passive, that
is, whether or not it generates network traffic and interacts with the network in some way
in order to complete its analysis. The second factor is whether the approach is host-based
or network-based. Host-based systems require instrumentation of each end-host (which can
include application modification), and consequently, have visibility into information that
network-based approaches do not. However, host-based approaches require greater deploy-
ment effort since modifications must be made at each end-host, whereas network-based
approaches require deployment at only one (or a few) vantage points. Note that many host-
based solutions still make use of a centralized service to aggregate data and to aid in the
analysis process, and are not necessarily entirely distributed in operation. Table 3.1 shows
this taxonomy.

CANDID is a passive, network-based solution. By only relying on the passive collection
of NetFlow records from within the network, CANDID has a simple and feasible deployment
strategy. While NetFlow records do not provide per-packet granularity, CANDID will show
that lightweight flow-level data still illuminates network behavior and provides visibility into
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relationships inside the network. The remainder of this section highlights the approaches and
contributions of existing work outlined in Table 3.1 and details how they relate to CANDID.

Active Approaches

ADD [15] takes an active stance in determining application dependencies by perturbing sys-
tems with workloads of various intensities, and using application instrumentation to collect
performance and availability metrics. Then, ADD uses a statistical model that relates the
collected metrics to the level of perturbation to assess dependency relationships. While the
design of ADD is intuitive, it has several potential limitations: (i) active perturbation can
disrupt a production system (or, if a system is tested in isolation, it may not be representa-
tive of a true deployment), (ii) the accuracy of results is heavily dependent on monitoring all
applications involved (if an application is not instrumented for monitoring, results may miss
dependencies), and (iii) as an active solution, all endpoint systems must be instrumented for
accuracy of results.

X-Trace [30] uncovers application dependencies by instrumenting the datapath. More
specifically, X-Trace requires modifications to applications to tag requests with special meta-
data to allow them to be traced throughout the request-response lifecycle, thereby illumi-
nating dependencies. While X-Trace’s approach can be comprehensive, it is only successful
if the entire datapath is instrumented 2 to tag requests.

Passive Approaches – Host-Based

Sherlock [11, 10] leverages packet capture running at each end-host to infer dependencies.
Sherlock constructs a directed dependency graph by modeling component states (up, trou-
bled, down) and the conditional probability of observing connections in a fixed dependency
interval. Unfortunately, Sherlock has some drawbacks: (i) it only tackles remote-remote
(RR) dependencies (and not local-remote (LR) dependencies), (ii) traceroute is required to
determine the network topology, (iii) the dependency discovery algorithm uses a fixed time
window when computing conditional probabilities of related connections (which can lead
to a solution that lacks generality, hindering utility on traffic data from a wide range of
environments), and (iv) while Sherlock’s model can represent load balancing and failover
relationships, the algorithm requires manual human input to indicate where/how clustering
is used (i.e., inference of cluster activities is not automatic). While CANDID also uses a
fixed interval (see Chapter 5), it does not require topology information and it shows great
promise for automatically inferring instances of load balancing (see Chapters 6 and 7).

Macroscope [51], like Sherlock, makes use of end-host packet capture to complete depen-
dency analysis. However, unlike Sherlock, Macroscope also collects connection tables from

2Interestingly, one could argue that the action of manually instrumenting the datapath is a way of
documenting a subset of an application’s dependencies, particularly those that are static and fundamental
to the application’s operation.
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end-hosts to associate ongoing flows (from packet capture) with applications via process
IDs, avoiding the shortcoming that port numbers do not have a one-to-one mapping with
applications. Macroscope then uses these mappings as the first step towards uncovering ap-
plication dependencies on network services. However, to account for ephemeral port usage,
Macroscope uses the frequencies with which users and applications do and do not access ser-
vices to further assess dependencies, with the intuition that repeated access of a service by
an application from several users is a stronger indication of a dependency. While CANDID
does not have access to application-specific behavior, I do think this is an excellent approach
for overcoming potential effects of the one-to-one service/port mapping problem. It is worth
noting, however, that CANDID avoids some concerns surrounding ephemeral source port
usage by excluding the source port from the 3-tuple that defines an asset (Section 2.2).

Orion [17], which defined the remote-remote and local-remote dependency terms, is sim-
ilar to [8] in that it leverages delay distributions to assess dependencies. Orion builds up
probability distributions for delays in start times of flows, and looks for peaks in these delay
distributions that would be indicative of a flow relationship. Unfortunately, Orion suffers
from issues that overlap with Sherlock: (i) it contains several fixed constants (e.g., window
size, minimum flow count) that are selected without data calibration, which might lead to
a solution that lacks generality and robustness, and (ii) while it can group hosts for load
balancing and failover, it requires configuration-specific out-of-band information (e.g., DNS
naming patterns or manual human input) to assess cluster membership.

Constellation [12, 10] is similar to Orion — it infers dependencies by using the difference
between flow start times. However, Constellation is different in two major ways: (i) it uses
expectation maximization fitting to map observed delays to a set of models that indicate
whether one set of packets has caused another set of packets to occur, and (ii) it runs in
a fully-distributed fashion, not requiring a centralized server to extract dependencies from
traffic collected by endpoints.

Passive Approaches – Network-Based

Both [38] and [16] take a similar approach to inferring network service dependencies. In
both projects, the general idea is to look for flow correlations, wherein not only do two flows
start closely-together in time, but also do so with great frequency. It can be difficult to
perform this style of analysis when many flows are overlapping; in [16], the authors outline
a rough strategy for working around this challenge, but indicate the complete solution will
be published in a full paper at a future point in time.

eXpose [33] uncovers dependencies by finding flow groups that co-occur in windows of
time with high frequency, and evaluates these co-occurrences using the JMeasure (a metric
from the data-mining community used to quantify mutual information from two sources;
i.e., the lack of independence between the two sources). While the eXpose authors present
a strategy based on packet capture, eXpose will work correctly with NetFlow, lending itself
nicely to a passive network-based solution. A potential downside of eXpose is that, like

17



Sherlock, it defines the fixed-window size as a constant, which can lead to a brittle solution.
While CANDID takes an alternate strategy to understand asset dependencies, it does make
use of the Jaccard Index (another similarity measure) to help illuminate instances of load
balancing.

In [23], Dechouniotis et al. present a solution that identifies both RR and LR depen-
dencies. Their approach maps basic flow attributes (source and destination addresses) to
the logical definitions of local-remote and remote-remote dependencies. Then, rather than
relying on the frequency of observations (like eXpose), their solution uses a collection of
four confidence variables (that evaluate the relationship between the observation of a flow
and any associated events) combined with timestamps along with a genetic algorithm to
determine dependencies. A downside of this approach is that the genetic algorithm requires
training data to be effective, which limits its usability as a general-purpose solution.

NSDMiner [43] illuminates LR dependencies by locating nested connections, wherein one
complete request-response pair starts and completes between the request and response of
another connection (matching the expected recursive connection pattern). The proposed
algorithm accomplishes this by passively monitoring network traffic and processing flows
in a chronological order, looking for matches of the source IP of a new flow with previous
flows destined for that same IP address. This approach is similar to both [8] and CANDID
(see Chapter 5). While NSDMiner is effective at tackling this one area of the network
dependencies problem space, it does not determine RR dependencies, nor does it provide a
technique for automatically detecting clusters.

Peddycord et al. present three improvements to NSDMiner in [49]. In the original
NSDMiner solution, weighted directed graphs were constructed to assess the confidence
of dependencies, where graph nodes represented services (weighted by the total number of
accesses to the service) and graph edges represented service dependencies (weighted by the
number of times one service accessed another while being used). This original strategy then
computed ratios of edge to node weights to assess confidence in the discovered dependencies;
the first improvement in [49] is that logarithmic weighting, where the base of the computed
logarithm is the node weight, is used to compute these confidence metrics in lieu of simple
ratios. This improves dependency inference accuracy, since it better accounts for the magni-
tude of graph weights. CANDID does not make use of logarithmic weighting, however, this
general idea is worth considering in future work. The second improvement attempts to find
dependencies that NSDMiner fails to find due to insufficient traffic, since infrequent network
observations lead to weights of small magnitude in the weighted graph, which in turn leads to
small confidence metrics. The proposed improvement boosts the confidence of dependencies
of an infrequently-used service by seeing whether a similar set of hosts are involved in another
well-known dependency. This style of inference may have potential benefits in overcoming
the NetFlow “blind spot” (see Chapter 4), but is unexplored in this thesis. The third and
final improvement is a basic attempt at identifying clusters by looking for equal probability
in accessing one of several systems providing a service dependency. More specifically, the
technique evaluates the computed dependency graph to locate services (i.e., graph nodes)
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providing service on the same port number with roughly equal use by other services in the
dependency graph (as indicated by graph edges). This approach is somewhat limited: not
only does it require dependency analysis (the load balancing detection strategy presented in
this thesis works independent of dependencies), but it also assumes that the client request
workload is distributed evenly across all members of a load-balanced cluster (the solutions
I present in thesis do not make that assumption). Given these limitations, I still consider
the problem of performing passive general-purpose load balancing identification unsolved.
Finally, while these additions do improve upon NSDMiner, Peddycord et al.’s solution still
does not detect remote-remote dependencies.

3.7 Summary

This chapter has presented a wide array of existing literature that has explored a variety
of problems and solutions that share one or more similarities with CANDID. In particular,
the reviewed literature supports the solutions presented in subsequent chapters of this thesis
by showing how similar flow and host characteristics can be leveraged to assess host and
application behavior and relationships through passive traffic classification. Nonetheless, it is
important to remember that none of this existing research has made use of role identification
in combination with host grouping to specifically identify cases of load balancing, which is a
key contribution of this thesis.
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Chapter 4

Working with NetFlow

NetFlow is a standardized and frequently-used protocol and data format for IP traffic mon-
itoring that was developed by Cisco Systems [1, 56, 22, 21]. This chapter both provides
NetFlow context for readers unfamiliar with the technology and details several data san-
itization and processing phases performed by CANDID that are required for subsequent
asset relationship analysis. Further, this chapter serves to introduce the Lawrence Berkeley
National Lab dataset used for the case study that is presented in subsequent chapters.

4.1 NetFlow Essentials

NetFlow is typically deployed as follows:

1. A set of network appliances, placed at various vantage points in a network, act as
NetFlow probes, aggregating packets (oftentimes sampled [27], rather than all packets)
into L4 flows, each of which is represented by a NetFlow record.

2. Once a flow has completed (e.g., TCP FIN flag is observed, no packets for the flow
occur for a duration set by a timeout parameter, or the flow is evicted to make room
in memory for sampling another flow), the probe transmits a UDP packet with the
record to a centralized NetFlow collector.

It is worth acknowledging that since UDP does not guarantee reliable delivery, some
flow records may be lost during transmission. However, given that NetFlow often
samples packets (and thus, may not reflect all flows), lack of complete flow visibility is
already an acknowledged limitation of this measurement approach. Nonetheless, some
NetFlow implementations [18, 5, 19] support the transmission of flow records to the
collector via reliable SCTP [6].

3. The accumulated data is written to permanent stable storage by the collector.

4. Analysis tools, such as CANDID, make use of stored flows.
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It is worth emphasizing that each NetFlow record represents a unidirectional flow.
Mapping these unidirectional flows into bidirectional connections is a challenge that is ad-
dressed later in this chapter. Each NetFlow record contains basic aggregated statistics for an
observed flow. While NetFlow record fields vary across protocol versions, the fields present
in the NetFlow records used in this work are:

• Flow start & end timestamps

• Ingress & egress interface IDs (particularly relevant when the NetFlow probe is a router
with many interfaces)

• Source & destination IP addresses and port numbers

• The L4 transport protocol (e.g., 6 for TCP)

• The union of all observed flags

• Total packet count and total (including headers) byte count 1

4.2 NetFlow Benefits

As compared to other network measurement data collection techniques (i.e., packet headers
or full-payload packet traces), NetFlow provides several clear advantages:

Widespread Support NetFlow [1, 56, 22, 21] and similar flow monitoring and reporting
implementations (e.g., JFlow [32], NetStream [31], sFlow [50, 57], and IPFIX [54]) are
popular protocols supported on a wide array of network devices, including switches,
routers, middleboxes (e.g., [24]), and even end-hosts (e.g., [4] and [3]).

The fact that NetFlow is widely supported is particularly important, since it means
most enterprises already have the infrastructure necessary to use CANDID. In contrast,
enterprises that wish to deploy solutions that leverage packet capture and per-packet
analysis oftentimes must purchase and deploy new specialized infrastructure specifically
dedicated to this task (rather than simply “turning on” NetFlow in existing network
components).

Privacy Since NetFlow provides flow statistics in aggregate, rather than per-packet details
(e.g., sizes and timing) and packet contents, it minimizes exposure of information about
users of the network and software details [40, 63].

Resource Footprint NetFlow requires a far smaller resource footprint (both for the cap-
ture process and for storage and subsequent processing) since it reports flow informa-
tion in aggregate and because it is oftentimes sampled [27].

1These counts are most meaningful for TCP flows, where flow boundaries are well-defined.
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Structure NetFlow records can be stored as well-structured lines in an ASCII text file, with
each delimited record field as a member of a column. This makes NetFlow records easy
to parse and process.

4.3 NetFlow Challenges

Unfortunately, even in light of the benefits outlined in the previous section, NetFlow has
several limitations and poses several challenges:

Low Fidelity Leveraging an existing well-deployed traffic measurement technology and
minimizing user privacy exposure through aggregated flow data does come at the cost
of lower fidelity of measurement data. This lack of visibility into complete network
behavior does pose some challenges: not only does it mask characteristics of individual
packets in a flow (e.g., the distribution of packet sizes), it also masks the presence
of multiple request-response pairs that might exist between two communicating hosts.
For example, if communication between a web server and a database server is done with
a pool of persistent connections, or if communication between a web client and web
server is achieved with a single connection leveraging HTTP Keep-Alive [29], NetFlow
will not capture the individual communication instances between the pair of hosts, and
instead will simply provide start and end timestamps for the overarching flow. Both
of these cases make it difficult to infer a relationship among request-response pairs
between the web client & web server and between the web server & database server.

“Blind Spot” Unlike detailed application logging or packet capture, which are frequently
performed at end-hosts, NetFlow probes are often located at the network core. Con-
sequently, flow records will only represent inter-subnet traffic, but not intra-subnet
communication. Further, it is likely that not all switches and routers in a network are
configured to emit NetFlow records, meaning that even some inter-subnet traffic may
not be visible in traffic traces. So, while this problem takes on many forms, it can
generally be thought of as NetFlow having a “blind spot”.

As an example, imagine a set of four assets spread across three subnets that are com-
municating. This network topology is depicted in Figure 4.1. In this scenario, Asset
#1 in Subnet A needs to communicate with Asset #2 in Subnet B, which causes As-
set #2 to communicate with Asset #3 in Subnet B, which then causes Asset #3 to
communicate with Asset #4 in Subnet C. Ideally, a dependency analysis tool such as
CANDID should flag this entire sequence of connections as a series of dependencies 2,
but since Asset #2 and Asset #3 are members of the same subnet, the monitoring
router does not observe any of their communication (though the router does observe

2Admittedly, the introduction of “chained” connections here is premature – see Chapter 5 for the complete
design details.

22



1 3 42

Subnet A Subnet CSubnet B

Figure 4.1: NetFlow “blind spot” traffic diagram, where intra-subnet communication in
Subnet B between Assets #2 and #3 is not observed.

communication between Assets #1 and #2 and between Assets #3 and #4). Thus,
in this case, communication between Assets #2 and #3 is unfortunately hidden in the
NetFlow “blind spot”.

Unidirectional NetFlow records represent unidirectional flows. While mapping unidirec-
tional flows into bidirectional connections for analysis purposes is a challenge, unidi-
rectional flow monitoring can also pose another issue. Network routes are known to be
asymmetric [47], so a single vantage point may only capture one-half of a connection
with a single unidirectional flow. While asymmetric routing tends to occur on the
WAN, it can still occur on a LAN, so it is important to keep this issue in mind. These
unidirectional flow visibility limitations represent another type of “blind spot”.

Sampling As previously mentioned, NetFlow records are often derived from sampled pack-
ets, rather than all packets. Sampling is done to reduce the workload on the network
probe. While NetFlow does have a smaller resource footprint than packet capture,
routers and switches are simply not designed to monitor all traffic.

Although these limitations and challenges present several hurdles that make analysis
difficult, CANDID resolves several of these issues and does yield promising results.

4.4 LBNL Dataset Overview

Subsequent chapters of this thesis present several strategies for inferring host relationships
as steps towards solving all of the CANDID goals. A case study using real network data
from Lawrence Berkeley National Lab (LBNL) is presented to evaluate these strategies. I
believe the traffic from this large research institute is representative of a typical enterprise
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Figure 4.2: LBNL network topology and NetFlow vantage points.

network. The remainder of this section describes the LBNL data collection methodology
and gives a summary of the specific dataset used in this work.

Traffic Collection Methodology

Network traffic at LBNL is recorded by three main border routers (labeled R1, R2, and
R3) as shown in Figure 4.2. This specific configuration has three vantage points acting
both as NetFlow probes and as collectors, such that NetFlow records are stored in three
separate files, one for each router. Further, this topology leads to records for each router
that include both communication with external hosts, as well as inter-subnet communication
that may cross more than one router (which leads to duplicate flow entries from multiple
routers observing the same flow). Finally, while NetFlow data is typically sampled due to
control-plane overhead [27], the datasets used by CANDID are not sampled.
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June 1, 2011 June 2011

# of Flows 1,156,826 32,177,513
Data
Transferred

38.19 GiB 916.98 GiB

# of Hosts 106,095 780,262
Internal 56,475 (53.23 %) 129,842 (16.64 %)
External 49,620 (46.77 %) 650,420 (83.36 %)

Table 4.1: General statistics of LBNL SMTP NetFlow data prior to conversion into bidirec-
tional connections and data sanitization.

Dataset Summary

The data provided by LBNL represents all SMTP [52] traffic (records for TCP flows with
source or destination port 25) for the month of June 2011. Flow records are broken up
into files representing each day of the month, and in many cases, evaluations in this thesis
focus on a single 24-hour time period: June 1, 2011. So, unless otherwise noted, readers
may assume that any data presented in this thesis is that of June 1, 2011 only. Table 4.1
summarizes the flow data for both June 1, 2011 and the entire month of June 2011. The
larger fraction of external hosts present in the month’s span of flow records is likely due to
a wider range of external domains participating in electronic mail exchange as compared to
during the 24-hour period.

In this dataset, all source and destination IP addresses have been anonymized (the
anonymization process is consistent across the source files from all three routers). Each IP
address is represented as either addr-intern-1234 (for internal hosts) or addr-extern-1234
(for external hosts), where 1234 is a unique integer for each observed internal or external
host. As a shorthand, future host references in this thesis will be expressed as i1234 or
e1234.

Readers may be troubled that provided traffic records focus on a single application pro-
tocol. However, since this work is just the first step of many towards solving all of the
CANDID project goals, the choice to focus on a single application protocol helps keep the
dataset manageable and reduces the level of human intervention needed with LBNL staff for
establishing ground truth and validating results.

4.5 Data Handling and Sanitization

To overcome some of the challenges enumerated in Section 4.3 and to account for anomalies
that are found in empirical data (e.g., invalid flow timestamps), CANDID performs several
data transformation tasks prior to executing asset dependency or relationship analysis. Fig-
ure 4.3 provides a graphical overview of this data handling pipeline, and Table 4.2 (at the
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Figure 4.3: CANDID data handling and sanitization pipeline

end of this chapter on page 35) summarizes statistics of the dataset to illustrate the conse-
quences of each data handling phase to ensure the empirical data is not being inappropriately
treated (e.g., filtered too aggressively due to an incorrect assumption). The data processing
and sanitization tasks are enumerated and explained in the remainder of this section (note
that some of the phases illustrated in Figure 4.3 encompass multiple tasks from this listing).

Unproductive Connection Filtering

As a part of the flow pairing phase (described further in the next task), unproductive flows
are discarded. An unproductive flow is one in which no meaningful IP-level communication
occurs between the client and server.

Since the LBNL flow data used for the case study in this thesis is entirely composed of
TCP traffic, a rather simplistic, yet robust, heuristic for identifying unproductive connections
has been used: a productive connection must have at least two packets in each direction 3.
This approach was used in lieu of the NetFlow flags field, because while this field was present
in the LBNL NetFlow records, it was always 0, and thus could not be used for this purpose.

A commonplace example in which unproductive communication occurs is when a system
scans an entire subnet, looking for the presence of a service on a port or range of ports on
each host. In this example, since many hosts will not provide such a service (i.e., it is unlikely

3This is derived from the notion that meaningful TCP communication requires connection establishment
via the three-way TCP handshaking process (composed of the SYN, SYN/ACK, and ACK) followed by data
transfer.
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that every user’s workstation is running a SMTP server), then flow records will show the
scanning system’s rejected connection attempts with each end-host. This is clearly evident
in Table 4.2, where the first two columns reveal a dramatic drop in the number of servers
from 60,176 down to 4,203.

Therefore, since these types of flows do not provide meaningful information about asset
dependencies and relationships for current CANDID analysis strategies, CANDID discards
these flows.

Unidirectional Flow Pairing

As noted previously in Section 4.1, NetFlow records only represent unidirectional commu-
nication. CANDID makes use of several flow characteristics in order to pair flows together
such that these unidirectional flow pairs can be mapped into bidirectional connections. The
criteria to pair flows is as follows:

1. Given a flow with start timestamp t0 and 5-tuple 〈L4 Protocol, Source IP Address,
Source Port, Destination IP Address, Destination Port〉, the set of candidate flows is
composed of all flows with start times t1 > t0 and with mating 5-tuple 〈L4 Protocol,
Destination IP Address, Destination Port, Source IP Address, Source Port〉 (note that
the source and destination have been swapped).

2. Of all flows in the set of candidate flows, only those where t1− t0 is less than the match
time threshold 4 are eligible for pairing, where t1 is the start time of the candidate flow.

3. Finally, of all eligible flows from the previous step, the flow pair whose t1−t0 difference
is smallest is selected for pairing. If the set of candidate flows from the first step is
empty, then the flow is designated an unpaired flow and is discarded.

Figure 4.4 shows empirical CDFs (ECDFs) of all candidate flow start time differences
and matched flow start time differences. The figure reveals that the selected match
time threshold is rather liberal with constructing flow pairings. A thorough study of
false positives and the ideal value for this threshold is deferred for future work.

If a matching candidate flow is found, then a connection is formed by combining data
from the two flows to produce a unified set of properties. These connection properties
and their derivations are:

• Start timestamp, which is defined as the earlier of the start timestamps of the
two composing flows.

• End timestamp, which is defined as the later of the end timestamps of the two
composing flows.

4This is a configurable constant that represents the maximum start time difference for a pair of flows.
In this work, a value of 60 s was used.
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Figure 4.4: Empirical CDFs of flow start time differences (t1 − t0) for all candidates and flow
pairings that are the best match. The selected 60 s match time threshold is also shown.

• Source interface, IP address, and port.

• Destination interface, IP address, and port.

• The L4 transport protocol.

• Source packet count and byte count (i.e., quantity of traffic sent by the source to
the destination).

• Destination packet count and byte count.

Without unproductive flow filtering, a large number of unpaired flows can exist, since
a flow may exist from a scanning system to each host on a subnet, but return flows from
scanned hosts may not exist. Connections can still be constructed from these unpaired flows
(this was done for the “All Connections” column of Table 4.2), but doing so provides little
utility. Rather, what is useful is understanding the quantity of unpaired flows that exist
after unproductive flows have been filtered out. In the case of the LBNL dataset, only a
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small fraction (3.55 %) of all productive flows were unpaired flows. Several unpaired flows
were manually inspected to ensure that the flow pairing algorithm had not made a mistake;
the reviewed flows did in fact lack pairs for matching. A concrete cause for the presence of
these unpaired flows is unclear and warrants further investigation in the future. These flows
are not represented in the “Productive Connections” column (or any subsequent columns)
in Table 4.2.

As depicted in Figure 4.3, each NetFlow record source (which may be from different
vantage points or different time periods) is processed by the flow pairing data handling phase
separately. One potential downside of performing flow pairing for each data source separately
is that flow pairs along asymmetric paths will never be paired together to form a connection.
However, based on the LBNL network topology depicted in Figure 4.2, asymmetric routes
are not expected with the LBNL dataset. Exploring this design choice and the associated
trade-offs is saved for future work.

Connection Directional Correction

A critical step of mapping pairs of flows into bidirectional connections is selecting which flow
represents client→server communication and which flow represents server→client communi-
cation. While previous work [13] has indicated that assignment of client and server roles
requires complex heuristics, the CANDID technique is based on two simple principles:

• Clients initiate network connections, and therefore, given a matched pair of flows, the
flow with the earlier start timestamp represents client→server communication and the
flow with the later start timestamp represents server→client communication.

• The LBNL data showed a significant number of connections (34.04 % of all productive
connections) that upon human inspection appeared reversed. The exact cause of this is
unclear — the timestamping process in network devices is known to be unreliable [48],
but since connections are composed of two flows from the same network vantage point,
it is unlikely that clock-related issues are the cause (unless each network interface
has a separate clock). To correct for this direction problem, a frequent assumption
regarding port numbers is made: ephemeral ports (≥ 1024) are associated with clients,
while privileged ports (< 1024) are associated with servers. Thus, CANDID swaps the
direction of any connection that is found to violate this assumption.

Figure 4.5 uses a pair of ECDF curves to compare connection duration distributions
for connections that did and did not require directional correction. While both ECDF
curves have the same shape, connections with reversed directions typically have shorter
durations than those with correct directions. However, beyond this minor difference,
the ECDF comparison does not yield any striking properties that better illuminate
causes of this behavior.
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Figure 4.5: Empirical CDFs for connection duration distributions, comparing connections
that require directional correction to those that were already correct.

This task completes the flow pairing phase, as flows have been mapped to connections
and any connection direction errors have been corrected.

Connection Ordering

The purpose of this data handling stage is to combine connection records from separate
NetFlow sources (e.g., multiple vantage points or windows of time) into a single temporally-
ordered stream of connections. Fortunately, since the CANDID flow pairing phase ensures
that the connections it produces are temporally-ordered by their start timestamps 5, this

5While unreliability of the timestamping process may yield minor ordering inconsistencies, the primary
purpose of this processing phase is to bring together data from several time periods, so these inconsistencies
are not of concern.
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Figure 4.6: Histogram of connections with durations of 10 ms or less.

phase is quite simple: connection ordering checks the start timestamp of the next connection
at each flow→connection mapper, and chooses the connection with the oldest timestamp.

Zero-Duration Filtering

The LBNL data revealed several connections (0.95 % of all productive connections) where
the start and end timestamps are identical, yet an inconsequential quantity of data (i.e.,
hundreds to thousands of bytes) was transferred. Clearly, however, it is unreasonable to
think that a connection of zero-duration can be established, let alone transfer any data.

As previously mentioned, clocks and the timestamping process in network devices have
been known to be unreliable [48]. Therefore, it is reasonable to assume that such connections
were derived from flows with incorrect timestamps. What is less, clear, however, is how to
address these connections, and further, if other connections with extremely short lifetimes
(e.g., 1 ms, 2 ms, . . . ) exist, where to draw a boundary between acceptable and unacceptable
connection lifetimes. This is particularly difficult to do, because while the speed of light
does provide a lower bound on communication times, different enterprise network topologies
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Figure 4.7: Flow duplication due to multiple vantage points along the same communication
path.

and environments will have different minimum latency characteristics. In fact, Figure 4.6
provides a histogram of these short connections (those with duration ≤ 10 ms), and reveals
that there are a significant number of connections with durations below 4 ms.

To simplify this problem space, the current CANDID implementation discards any con-
nection with zero-duration, and does not apply any filtering to connections with extremely
short lifetimes. Nonetheless, this issue is worth exploring further in future work.

Connection Deduplication

As illustrated in Figure 4.2, the LBNL network contains several NetFlow vantage points,
and it is not unreasonable to assume that other enterprise network operators also perform
traffic monitoring from multiple vantage points.

Consider the scenario depicted in Figure 4.7: a host X in a subnet attached to router R1
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Figure 4.8: Heat map of start and end timestamp differences for candidate duplicate con-
nections, with differences of 10 s or less.

communicates with a host Y in a subnet attached to router R2. Regardless of whether or not
routers R1 and R2 are directly connected or communicate via a common peer, network traffic
between hosts X and Y must pass through both routers R1 and R2, and thus, both routers
will produce flow records (and thus, connections) for this communication.

From the example scenario, it is easy to see how networks with multiple vantage points
can lead to duplicate connection data, and the purpose of this connection deduplication data
handling stage is to remove these duplicates. CANDID deems two connections duplicates of
one another if all of the following criteria are met:

• Their 5-tuples 〈L4 Protocol, Source IP Address, Source Port, Destination IP Address,
Destination Port〉 are identical.

• The difference in their start timestamps is less than or equal to the similarity thresh-
old 6.

6This is a configurable constant that represents the maximum difference in connection timestamps that
indicate connections are similar. In this work, a value of 500 ms was used.
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Figure 4.9: Heat map of start and end timestamp differences for candidate duplicate con-
nections, with differences of 1 s or less. The 500 ms similarity threshold is marked by the
crossing green lines.

• The difference in their end timestamps is less than or equal to the same similarity
threshold.

Figures 4.8 and 4.9 provide heat maps showing the differences in start and end times for
connections deemed similar by the aforementioned 5-tuple. Figure 4.8 includes connections
with timestamp differences up to 10 s, while Figure 4.9 provides greater detail around the
selected similarity threshold by only including connections with timestamp differences up to
1 s. The two heat maps clearly show that the majority of duplicate connection candidates
have negligible timestamp differences, which shows that selection of 500 ms for the similarity
threshold is a satisfactory choice.

Should CANDID identify two connections that are duplicates of one another, it discards
one of them. The impacts of deduplication are shown in the last column of Table 4.2.
Connection deduplication is the last CANDID data handling phase – connections that have
satisfied all sanitization requirements are passed on to the asset relationship and dependency
analysis components described in subsequent chapters.
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Chapter 5

Finding Dependencies via Connection
Chains

This is the first of several chapters that presents the various CANDID analysis strategies.
Each of these chapters is structured with the same three key components: (i) the intu-
ition behind the strategy is introduced, (ii) details of the design are provided, and (iii) an
evaluation, focused on the LBNL case study, is performed.

When this research venture first began, my initial goal was to tackle dependency inference,
focusing only on local-remote (LR) dependencies. The basic idea for this approach is to use
the element of time to establish causal relationships among connections.

5.1 Strategy Intuition

To better understand the intuition behind the dependency analysis approach detailed in
this chapter, it is best to first recall the definition of LR dependencies by referring to the
rightmost scenario depicted in Figure 2.1. In that example, the inferred relationship is: the
web server depends on the database server, and the reason is because the web server needs a
response from the database server in order to respond to the client.

The aforementioned example leads directly into the intuition behind this analysis strat-
egy: a LR dependency will exist between two hosts if a pair of connections is observed to
occur closely together in time with a shared “middle” host (e.g., the web server in the ex-
ample), and the strength of that LR dependency is related to the frequency with which that
observation is made. This intuition and related terms are formalized in the next section.
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Figure 5.1: Connection chain of length 2 with a LR dependency.

5.2 Design Details

Inferring Causality

CANDID establishes the notion of causality for inferring LR dependencies though the idea
of connection chains. Here, a connection chain is defined as a set of two or more temporally-
ordered connections, wherein the destination host of one connection is the source host of the
next connection. Further, the difference in start times of each pair of adjacent connections
in the overall chain must be no greater than the time bound ∆T1

1. Note, however, that this
definition does not apply any constraints to the relative ending times of adjacent connections
in the chain. The primary motivation for this decision stems from the fact that flow-level
measurement data does not reflect individual request-response pairs, and moreover, that
flow end times can be incorrect since connection termination is not the only mechanism for
setting the flow end timestamp (e.g., eviction from the flow cache; see Section 4.1 for details).

As a simple, yet concrete, example of a connection chain, see Figure 5.1, which illustrates
a connection chain of length 2. In this example, the client establishes a connection to the
web server. At a later point in time, but within the time bound of ∆T1, the same web server
establishes a connection to the database server. From this observation, CANDID would
identify a causal relation between the two connections and, thus, would infer that “the web
server depends on the database server” (and, by extension, that “the client depends on the
database server”). As previously noted, the timing and ordering of responses from the web

1A discussion regarding the selection of ∆T1 and its effect on results follows later in this section.
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server to the client and from the database server to the web server are unimportant, and
thus, are shown as dashed lines (i.e., they may be temporally-ordered differently than as
illustrated).

As chains are identified, CANDID tracks the number of times each chain occurs. The
final output from CANDID for this analysis stage is a sorted list of all chains observed, with
the chain that occurs most frequently at the top of the list.

Comparison to Existing Approaches

Previous literature, such as NSDMiner [43] and others (e.g., [49] and [8]), all use a similar idea
of locating connection chains to perform dependency analysis. However, those approaches all
rely on seeing fully-nested connections, wherein the request and response of one connection
must occur after the start and before the end of the previous connection in the chain (and,
more stringently, must occur before the response of the preceding connection in the chain).
While the tighter bound of nested connections does indeed better match the intuition outlined
at the start of this chapter, flow data can mask individual request-response pairs, and so
CANDID introduces the modified variant of the technique which avoids the fully-nested
requirement.

Selecting ∆T1

Astute readers may be concerned with the selection of the ∆T1 constant. Without a doubt,
it is difficult, if not impossible, to arbitrarily (or intentionally) assign a single “one size fits
all” value to a constant of this nature, where it would need to apply to all types of traffic for
all applications in all enterprise networks. Making such a design choice can lead to a brittle
solution that will inevitably fail to correctly infer asset relationships for cases where timing
characteristics are at odds with the selected value for ∆T1, leading to false positives and/or
false negatives.

With this in context, a value of ∆T1 = 5 s was selected for this work. The thought behind
selecting this value is as follows: the value must be large enough to capture the latency of
the enterprise network combined with application response time, but not so large that it
casts too wide of a net such that CANDID infers nonexistent causal relationships. Ideally,
however, it would be best to calibrate this constant through some means (e.g., evaluation of
enterprise traffic with known causal connection chains).

5.3 Evaluation

The causal connection chain analysis technique described in the previous section was imple-
mented and the June 1, 2011 SMTP dataset from LBNL was used to evaluate this strategy.
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Case Study

At the start of the case study, the intention was to identify the entire LBNL incoming
email processing chain, with the notion that there are several assets involved with receiving
incoming messages, applying various stages of filtering (e.g., anti-spam and anti-virus), and
then storage at the user’s mail server. Unfortunately, after struggling to find evidence of
these connection chains, LBNL operations staff confirmed that the majority of this incoming
mail processing occurs on assets that are all members of the same network subnet. Therefore,
due to the NetFlow “blind spot” (introduced in Section 4.3), CANDID is unable to illuminate
these causal relationships.

Nonetheless, this strategy did reveal rather interesting information regarding the roles
of hosts that appeared in the top six connection chains. Of all 1,967 connection chains,
539 unique chains were identified, and the top six connection chains represent 33 % of all
observed chains:

• i5→i63→i1 (8.8 % of all chains)

• i3→i63→i1 (7.5 % of all chains)

• i5→i25→e158 (4.8 % of all chains)

• i3→i25→e158 (4.6 % of all chains)

• i5→i35→i1 (3.8 % of all chains)

• i3→i35→i1 (3.5 % of all chains)

These chains are visually illustrated in Figure 5.2. Observing that these six chains appear to
come in pairs that share a common suffix and have similar frequencies gives a clue that the
hosts i3 and i5 may be load balanced. While the purpose of the chaining strategy presented
in this chapter is not to find load balanced hosts, the load balancing analysis strategies
presented in Chapters 6 and 7 will show that hosts i3 and i5 are in fact load balanced.

Strengths

The greatest strength of this causal connection chain strategy is that it captures LR de-
pendencies without applying constraints to flow end timestamps, which can mask individual
request-response pairs or be unreliable. It would be relatively simple to modify this strategy
to infer RR (remote-remote) dependencies by changing the common host requirement to ap-
ply to the source host of both connections in a pair (rather than the destination of one and
the source of the other). However, due to several limitations with this general strategy (par-
ticularly concern for significant false positives or false negatives due to the ∆T1 constant),
this was not pursued further.
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Figure 5.2: Asset dependencies inferred from the most frequent connection chains.

Limitations

As previously alluded to, this causal chain design suffers from several shortcomings:

• This initial implementation is näıve, in that the initiating client is included as a mem-
ber of each connection chain. From one perspective, the identity of the client is relevant
because different clients could induce different behavior from the same asset, leading to
different suffixes to chains that start with the same first link. However, since many dif-
ferent clients can induce the same behavior from an asset, chains may exhibit common
suffixes where only the initiating client is different.

Therefore, the fact that this current implementation does not aggregate chains by com-
mon suffixes means that the number of unique chains presented in results is somewhat
inflated. Enhancing chain aggregation to group chains by common suffixes is deferred
for future work.

• As previously acknowledged, the presence of the ∆T1 constant leads to a brittle design
that may fail to correctly infer chains of all types (due to differences in network and/or
application timing characteristics). While not reviewed in detail, tests showed that
changing the value of ∆T1 did impact results. Solutions that base their assessments
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on distributions derived from the difference in start times (e.g., [8], Orion [17], and
Sherlock [11]), as compared to this approach with a fixed threshold, are more robust
in this regard and serve as guidance for future work.

• The strategy presented in this chapter only infers LR dependencies and not RR de-
pendencies (though a rough starting point for a RR dependency solution based on this
approach was previously mentioned when the strengths of this strategy were discussed).

• Identifying chains, like many other strategies, is vulnerable to the NetFlow “blind
spot”. It is particularly difficult to remedy this issue of missing data, as a researcher
at best can make assumptions about whether or not any other communication might
have existed at the point in time when flow data was collected. While statistical
inference could potentially support filling in a few “gaps”, that is not the case here; it
would be difficult, if not impossible, to infer communication patterns since there is a
complete lack of intra-subnet communication information.

5.4 Summary

This chapter presented a strategy for inferring LR dependencies by composing chains of
connections linked by common hosts and similar starting timestamps. While this technique
faced robustness challenges (e.g., selection of an appropriate value for the ∆T1 constant),
it does yield interesting results that aid in the exploration of load balancing conducted in
future chapters of this thesis. Further, the approach described here shows great promise for
future enhancements that will yield richer results.

The end of this chapter marks a change in course from focusing on asset dependencies to
working towards robust strategies for inferring instances of load balancing. The motivation
for this shift in focus is the thought that identifying the presence of asset clustering (i.e., load
balancing and failover) would allow multiple assets acting as cluster members to be coalesced
into a single asset entity, which should simplify dependency analysis. The remainder of this
thesis focuses on those load balancing detection strategies, with all outstanding dependency
and ranking concerns saved for future work.
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Chapter 6

Detecting Load Balancing via Flow
Characteristics

This chapter and the next chapter explore strategies for inferring the presence of load balanc-
ing from two different perspectives: this chapter focuses on flow attributes representative of
application behavior (e.g., request and response sizes) that are indicators of load balancing,
while the next chapter focuses on host attributes (e.g., the set of peers an asset communicates
with) that do the same.

6.1 Strategy Intuition

The basic intuition behind the strategy presented in this chapter is as follows: if two (or
more) assets are load balanced, then they have been configured to provide the exact same
service to all of their clients. If these systems are providing the same service, then each
instance of that service should exhibit the same behavior (i.e., the load balanced assets
should all have the same role). To evaluate asset behavior from flow characteristics, only
those characteristics that are a direct result of an asset’s service behavior should be selected.
In this work, three flow characteristics have been selected and are used:

Request Size The total number of bytes sent by the client (connection source) to the server
(connection destination).

Response Size The total number of bytes sent by the server in response to the client.

Connection Duration The duration of the connection, which is defined as the difference
between the connection’s end and start timestamps.

Selection of the request and response size flow characteristics is an excellent starting point, as
they directly map to application behavior. The motivation for including connection duration
is more subtle: load balanced assets are likely located close to one another in the network,
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such that any effects of network congestion (e.g., reduced throughput or elevated latency)
or topological placement will likely impact all such assets.

If CANDID finds that these selected characteristics are similar for an asset pair, then
CANDID infers that those assets are load balanced.

Readers should note that when pairs of assets are evaluated for similarity of the three
aforementioned flow properties, the client and server behavior of assets are evaluated sepa-
rately. In other words, if a service running on a host participates with other network entities
both as a client (i.e., initiating connections) and as a server (i.e., responding to connection
requests), then that asset will participate in two separate similarity comparisons: one for
client activity and one for server activity. Client and server behavior are separated as these
can reflect two significantly different aspects of the way in which a service interacts with the
network.

6.2 Design Details

Pre-Filtering Candidate Assets

This analysis strategy functions by evaluating assets in a pairwise fashion: every asset is
paired with every other asset and the load balancing assessment (to be described later in
this chapter) is performed. Naturally, however, there is no reason to evaluate every single
host in the empirical dataset. To begin with, all external hosts are excluded from this
assessment, since the purpose of CANDID is to infer clustering of assets in an enterprise
network, not outside of the network.

A slightly more subtle asset filtering choice is made with regards to asset popularity. It
is reasonable to assume that services provided in a load balanced manner are popular and
are frequently used. Therefore, to reduce the number of assets paired up for load balancing
assessment since the number of pairs grows at a costly rate of O(N2), only popular assets
are included in these pairings. CANDID deems an asset popular if it falls in the top 25 %
of hosts when sorted by connection count. Selection of an appropriate popularity threshold
remains an open question, however, intuition suggests that critical load balanced services will
receive significant use, such that they will fall above the selected 25 % threshold. Moreover,
so long as this threshold is not so small as to exclude any load balanced assets, it is merely
an optimization. Table 6.1 summarizes the effects of this asset popularity filtering operation
on both the number of assets involved as well as the number of connections those assets
participate in. It is worth noting that while the asset counts are quartered (as expected),
the connection counts are barely reduced, which shows that a majority of connections involve
a small subset of all assets.
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Asset Role
Assets Connections

Total Remaining Total Remaining

Client 796 204 205,451 203,728
Server 143 36 275,842 275,166

Table 6.1: Effects of filtering internal assets on connection popularity, with a threshold of
keeping the top 25 %.

Building Flow Distributions

To perform statistical analysis on flow characteristics for each asset pair, CANDID assembles
distributions for each desired flow characteristic (e.g., request size, response size, and con-
nection duration) for each asset (treating client and server behavior separately, as previously
noted). In other words, CANDID processes each connection instance and extracts the de-
sired properties, which are then stored in 6 collections of values, which are the distributions
of the flow attributes for the client and server participating in the connection.

Statistical Techniques

Once the set of candidate assets has been pre-filtered and distributions of flow characteristics
for each asset have been assembled, CANDID begins statistical processing. More specifically,
CANDID leverages several statistical goodness-of-fit techniques to assess whether the data
values from the distributions for a pair of candidate assets are likely from the same dis-
tribution. If so, CANDID concludes that the assets represented by the pair in question
are load balanced. The three goodness-of-fit tests CANDID uses are: (i) the two-sample
Kolmogorov-Smirnov (K-S) test [53, §14.3.3], (ii) a two-sample variant of the well-known χ2

test [53, pp. 733–734], and (iii) the λ2 measure of discrepancy [46]. Note that for all of these
tests, I use a significance level of α = 5 %.

K-S Test

The two-sample K-S test is a hypothesis test that works as follows:

1. The test begins by creating empirical cumulative distribution functions (ECDFs) of
the two empirical distributions being evaluated.

2. As if the two ECDFs are plotted and overlaid on the same set of axes, the test statistic
D is computed as the maximum vertical distance between the two ECDFs.

3. The D measurement is compared to an estimated critical-value threshold derived from
the number of samples [62], and if it is less than the threshold, then the test concludes
that the two ECDFs are consistent with data values coming from the same distribution.
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CANDID considers the two-sample K-S test to “pass” if it indicates that the two empirical
data collections being compared are consistent with coming from the same distribution. So,
when using the two-sample K-S test, CANDID considers two assets to be load balanced if
and only if the test passes for all three (request size, response size, and connection duration)
flow characteristics, each at the α = 5 % significance level. Failure of the test for any one
of the three characteristics indicates the two assets in question are not providing identical
service, and thus, are not load balanced.

χ2 Test

CANDID makes use of a variant of the well-known χ2 test designed for assessing goodness-
of-fit of two empirical distributions. Without describing all of the details here (see [53,
pp. 733–734] for details of the two-sample variant), this test functions as follows:

1. The two empirical distributions the test is evaluating are log2-transformed (per [46]).

2. Histograms are created for the two transformed distributions from the previous step.

It is critical that the same binning methodology (i.e., assignment of bin boundaries
in the histogram) is used when creating the two histograms. Rather than using the
suggested fixed bin-width (FBW) formula presented in [46], CANDID uses a fixed bin
count (FBC) of 10 bins. The FBC binning methodology determines histogram bin
boundaries as follows:

a) All of the values from the two source empirical distributions are collected together
(including repeating values) to form a single empirical distribution.

b) The 9 deciles (i.e., 10 %, 20 %, . . . , 90 %) for the single unified distribution are
computed.

c) The 9 values from the previous step join the 0 % and 100 % boundaries to define
the edges of the 10 bins for the unified distribution.

d) The computed boundaries for the 10 bins are applied to the two source empirical
distributions separately, thereby constructing two histograms with identical bin
boundaries for the test.

So, in summary, the FBC methodology produces bins which are bounded by the deciles
computed from combing the two distributions together. While this FBC binning strat-
egy does not guarantee that each of the 10 bins will be the same width, it does ensure
that each bin contains roughly the same number of values (which is ideal for the χ2

test). Should this FBC binning process fail, due to the inability to create 10 unique
bins (due to insufficient variance of the source data), or should any of the 10 bins in
either histogram contain fewer than 5 items (per [44]), testing does not proceed (and
a “no outcome” result is generated).
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3. The test computes a squared and scaled difference in bin quantities for the two his-
tograms, one bin pairing at a time, accumulating the total difference across the entire
histogram pair as the test statistic, χ2.

Scaling is performed to account for the fact that the two source empirical distributions
may have different numbers of values (i.e., the two assets being compared participated
in an unequal number of connections). The complete equation for calculating the
two-sample χ2 test statistic is shown in Equation 6.1, where DA represents the first
empirical dataset and DB represents the second (the DA,Bin notation represents a single
histogram bin for the given dataset and the | · · · | notation represents the number of
values in the specified quantity).

χ2 =
10∑

Bin=1

(√
|DB |
|DA|
· |DA,Bin| −

√
|DA|
|DB |
· |DB,Bin|

)2

|DA,Bin|+ |DA,Bin|
(6.1)

4. The χ2 test statistic is compared to a critical-value, and if the statistic is less than this
threshold, the test concludes that the two histograms provide insufficient evidence to
indicate that the two empirical distributions differ.

Like the two-sample K-S test, CANDID considers this test to “pass” if it indicates the
two flow characteristic distributions come from the same distribution. Also like the K-S test,
CANDID deems two assets to be load balanced if and only if the χ2 test passes for all three
flow characteristics for a pair of assets.

λ2 Measure of Discrepancy

This third approach is particularly interesting, because unlike the K-S and χ2 tests, which
are hypothesis tests that yield boolean results, this approach yields a quantitative closeness-
of-fit metric. Two strengths of the λ2 metric are: (i) it can be used to compare closeness-
of-fit results for several source distributions, even when the number of empirical values or
the number of histogram bins varies, and (ii) the test result includes both the discrepancy
metric and the associated standard deviation, which enhances the ability to compare results.
Concrete details on computing the λ2 measure of discrepancy and the associated standard
deviation are described in [46] — the purpose of this section is to show how CANDID makes
use of this discrepancy metric to infer load balancing. This analysis strategy is designed as
follows:

1. Like the χ2 test, the λ2 test metric and associated standard deviation σλ are computed
from histograms assembled from the log2-transformed empirical data and the FBC
binning strategy.

2. CANDID computes 〈 λ2, σλ 〉 for all 3 flow characteristics for each asset pairing.
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Asset Role Total Pairs Test Type Passing Pairs

Client 20,706
K-S 301 (1.45 %)
χ2 0 (0.00 %)

Server 630
K-S 11 (1.75 %)
χ2 0 (0.00 %)

Table 6.2: Summary of load balancing inference results using the K-S and χ2 tests for client
and server asset pairs. λ2 results are not included in this table since they are of a different
form (ranking).

3. The <σ comparison operator, described in [46], is used to sort asset pairs using the
computed 〈 λ2, σλ 〉 in ascending order (such that the first item in the sorted result
represents the closest or “best” fit and the last item represents the farthest or “poorest”
fit).

4. The sorting operation is performed for each of the three flow characteristics indepen-
dently, such that each asset pair has three “rankings” (e.g., positions in the three sorted
lists).

5. The test result for an asset pair is the arithmetic mean of the three rankings computed
in the previous step. Use of the arithmetic mean not only provides a single and easy-
to-understand “ranking” by which all asset pairings can be compared, but also avoids
giving preference or weight to any of the individual test results.

In the current implementation, human intervention is necessary to manually interpret
test results to set a threshold in the sorted results that separates asset pairs that are likely
load balanced from those that are not. However, given the relatively-small number of asset
pairs that generally pass this test, this limitation is acceptable.

6.3 Evaluation

All three statistical techniques were implemented to perform load balancing inference as
described in the previous section. The 24-hour set of NetFlow records representing SMTP
traffic from LBNL (date June 1, 2011) was used to evaluate these three techniques.

Case Study

Table 6.2 summarizes the results of the K-S and χ2 tests. Reviewing these results led to
some immediate observations:
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• There are significantly more asset pairs where the assets are acting as clients rather
than as servers.

Further investigation led me to realize that, unfortunately, one property of the LBNL
dataset is that a majority of asset communication only appears as client-side behavior
and not server-side behavior, due to the NetFlow “blind spot” problem.

With this shortcoming duly noted, a new research question arose: is client behavior an
accurate indicator of whether or not the server is load balanced? So, in the remainder
of this thesis, the strategies for inferring load balancing are applied to client behavior,
and server behavior when possible, to see if this research question can be answered.

• The K-S test, while passing for less than 2 % of all asset pairs, still yielded far more
passing pairs than a human can reasonably validate.

• No asset pairs passed the χ2 test. This is discussed further in the Limitations section.

To aid in the validation process, which as previously mentioned, requires communication
with LBNL operations staff, I elected to try a different approach. Rather than blindly apply-
ing these load balancing inference tests to all popular asset pairs (recall, this is the top 25 %),
I elected to select assets participating in the largest number of connections and evaluated
only those for the presence of load balancing. Histograms presenting asset connection counts
are shown in Figures 6.1 and 6.2 (on pages 52 and 53) for clients and servers, respectively.
Curiously, the client connection count histogram shows that the popular assets appear in
pairs with similar connection counts, which hints that some or all of these top pairs may be
load balanced. On the other hand, the server connection count histogram does not show this
pairing pattern. Also, readers will recall that in Chapter 5, two hosts (i3 & i5) appeared
in balanced chains with common suffixes and since these assets also appear in Figure 6.1 in
a paired fashion, it is likely that these assets are load balanced.

Communication with LBNL operations staff confirmed the presence of three load balanced
asset pairs:

1. i3 & i5

2. i37 & i50

3. i3306 & i56474

Other load balanced assets may exist in the LBNL network, however, due to the network’s
scale, we could not confirm the existence of any other instances of load balancing. Thus,
readers should be aware this evaluation does not consider false negatives nor false positives 1

and that the remainder of this chapter focuses only on the three known load balanced asset
pairs.

1Given the significant number of asset pairs passing the K-S test (Table 6.2), false positives are likely.
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Asset Pair # Connections K-S Test χ2 Test λ2 Rank

i3 & i5
Client 134,602 Pass Fail 1 of 19
Server 274 Pass Fail No Result

i37 & i50 Client 33,153 Fail Fail 2 of 19
3306 & i56474 Server 261 Pass Fail No Result

Table 6.3: Summary of connection counts and statistical load balancing test results for
known load balanced asset pairs.

Results Overview

Each of the statistical methodologies described in this chapter was applied to the three
known load balanced asset pairs. Note that due to the NetFlow “blind spot”, the LBNL
data only has client behavior for the i37 & i50 asset pair and only server behavior for the
i3306 & i56474 asset pair. Table 6.3 summarizes the test results of all three strategies for
the known load balanced asset pairs and includes the total connection count for each asset
pairing to give a sense of the effects of the NetFlow “blind spot” on observations of server
behavior.

To visualize each of the distributions evaluated by the tests, a collection of empirical CDF
(ECDF) plots of the request size, response size, and connection duration flow characteristics
are presented in Figures 6.3 through 6.12 (pages 54 through 63). In these plots, the ECDF
for each asset in a pairing is overlaid on the same axes, with the legend indicating the asset
pairing in question. Note that the numbers in parenthesis in the legend indicate the number
of connections the associated asset has participated in, and that in some ECDFs, the x-axis
is log-scaled (see the axis label for details).

At a glance, Table 6.3 shows that: (i) the two-sample K-S test shows promising results
since it passes for most of the known load balanced pairs, (ii) the χ2 test is a point of concern
since it never passes, and (iii) the λ2 metric yields compelling results for client behavior but
not for server behavior. Next, test results are explored in detail and reasons for test failures
are examined.

Results in Detail

Perhaps the most striking load balancing relationship is that of the client behavior of the i3

& i5 asset pairing. Not only does this pairing pass the K-S test, it also scores the top rank
for the λ2 test. These results are well-justified, seeing as how the ECDFs in Figures 6.3, 6.4,
and 6.5 reveal that the flow characteristic distributions for the two assets are nearly indis-
tinguishable. This is a strong indication that the answer to the open research question, “Is
client behavior an accurate indicator of whether or not a server is load balanced?” may in
fact be yes. While the failure of the χ2 test in this case may come as a surprise, a closer
study of Figure 6.3 using a region of detail shown in Figure 6.13 reveals that the two flow
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distributions are in fact noticeably different.
The server behavior ECDF plots of the asset pairs i3 & i5 and i3306 & i56474, shown

in Figures 6.6 and 6.7 and Figures 6.11 and 6.12, respectively, are less compelling. However,
it is clear why both the χ2 and λ2 tests failed to produce results: the request size ECDFs
(Figures 6.6 and 6.11) show essentially no variance, which means that the FBC binning
strategy (which requires dataset variance to produce 10 distinct bins for the histogram)
cannot produce histograms for these distributions. The fact that SMTP server requests lack
variance suggests non-natural behavior, as the expectation is that a variety of message sizes
should generate a wide variance in request sizes; combined with the observation that these
assets participated in few connections, it is likely that the NetFlow “blind spot” is masking
a majority of the relevant traffic.

While the λ2 result for client behavior of the asset pair i37 & i50 is a good sign (second-
highest rank, with i3 & i5 claiming the top rank), readers may be troubled that this asset
pair fails the K-S test (and is the only asset pair to do so). However, a review of the request
size distributions depicted in the ECDF of Figure 6.8 shows noticeable differences between
the two distributions at the 10 % and 60 % points.

To confirm that my intuition for this general strategy (asserting that flow distributions
will be similar for load balanced assets and different for assets that are not load balanced), I
visually inspected two ECDFs for asset pairs that LBNL has confirmed are not load balanced.
Figure 6.14 shows the request size distributions for the pairing i3 & i37 and Figure 6.15
shows the response size distributions for the pairing i5 & i50. These two figures confirm
my intuition: that flow characteristic distributions for assets that are not load balanced are
clearly different. While this is only a visual inspection, it is reasonable to assume that the
three statistical methodologies introduced in this chapter would confirm this result.

Strengths

In my mind, the results in Table 6.3 make one major strength of the presented solutions
apparent: the λ2 test. First, the test appears to be effective at whittling down the total
number of candidate asset pairs (given that worst rank is 19, while Table 6.2 shows 20,706
total client asset pairs). Second, and perhaps more importantly, the combined ranking
strategy does appear to be an effective mechanism for making sense of results, as two known
load balanced pairs do hold the top two ranking positions.

Limitations

While the λ2 metric of discrepancy does yield promising results, the solutions presented in
this chapter do have several limitations.

As [48] aptly points out, the style of statistical testing used in this chapter (χ2 in partic-
ular) is of the nature that it becomes extremely sensitive as the size of the dataset grows.
Therefore, while unfortunate, it is not surprising in retrospect that these tests never yield
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passing results, since they catch subtle differences in the ECDF plot pairs, even in situations
where the curves appear near-identical. Also, as previously noted, both the χ2 and λ2 are
unable to produce meaningful results for many asset pairs since the FBC binning algorithm
requires many data points and significant variance to be effective.

More generally, however, the three statistical methodologies have a variety of trade-offs,
which include:

• While the two-sample K-S test works well for distributions with both small and large
numbers of elements, it is not a terribly sensitive test, given the significant number of
passing client asset pairs in Table 6.2 and the likelihood that not all of those ∼300
pairs are load balanced.

• Both the χ2 and λ2 tests are unable to provide meaningful results for distributions with
a small number of values or little variance, because it is difficult to create histograms
from distributions with these properties. While the specific requirements of different
binning strategies (e.g., FBC or FBW) may vary, the need to construct a histogram
for these tests means that these limitations are fundamental for this class of tests.

• The K-S and χ2 tests provide boolean results (due to their hypothesis testing nature),
which are easy to interpret, but lack the ability to give any sense of the strength of
the load balancing relationship (and thus, do not provide any guidance as to how to
compare two different asset pairs that both “pass” a test).

• The λ2 test illuminates the size of the discrepancy between two distributions, but does
not provide any guidance as to where the boundary between “good” and “bad” fits is
located.

In summary, there is not a single “one size fits all” goodness-of-fit nor closeness-of-fit
statistical test. Consequently, in future work, it is worth pursuing a methodology that is a
hybrid of these individual methodologies, that selects the best statistical test given a pair
of distributions. The biggest hurdle in that work will be establishing a means of comparing
results across all test strategies.

6.4 Summary

This chapter introduced the idea of using statistics to find cases of similar flow characteristics
as a means of inferring asset load balancing. Of the three statistical methodologies presented,
the λ2 metric of discrepancy is the best and most promising approach for a robust solution.
While the inability to observe a significant portion of the server-side behavior of known load
balanced assets initially presented a challenge, this chapter showed that client-side behavior
can still be a strong indicator of whether or not a pair of servers is load balanced. This novel
contribution is a notion that has not been explored in previous work.
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Chapter 7

Detecting Load Balancing via Host
Peers

This chapter explores load balancing inference from a different perspective than that of
Chapter 6. In this chapter, I propose exploring similarities in host communication properties
(i.e., the set of peers a host communicates with) as a means of assessing the presence of load
balanced assets.

7.1 Strategy Intuition

Like the strategies in the previous chapter, the general approach taken here is to infer
load balancing by looking for property similarity. However, rather than focusing on flow
properties, the idea here is to focus on asset communication properties.

Given that two assets are load balanced (and thus, are providing identical service), intu-
ition suggests the assets ought to exhibit similar social behaviors. In other words, I would
expect all member assets of a load balanced cluster to communicate with a common set of
hosts. Therefore, the strategies presented here infer asset load balancing by evaluating the
similarity of peers 1.

7.2 Design Details

The strategies presented here are variations on two common themes: (i) constructing sets of
peers each asset communicates with and (ii) using the Jaccard Index.

1This model assumes dynamic load balancing, where the mapping of incoming client requests to cluster
members is not fixed (i.e., statically partitioned).
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Given two sets, X and Y , the Jaccard Index, J , is defined as the size of their intersection
divided by the size of their union:

J =
|X ∩ Y |
|X ∪ Y |

(7.1)

In this work, I present several variations of the basic Jaccard Index computation shown
in Equation 7.1 that leverage filtering and weighting in an effort to give more credit to peer
relationships that occur repeatedly. Regardless of the equation used, these strategies all
work similarly:

1. A set of peers for each asset is constructed by observing all connections in which the
asset participates. Like in Chapter 6, the client and server behavior of assets are
treated separately.

Some of the variations of this strategy make use of the number of connections each peer
participates in, rather than constructing a strict set of an asset’s peers (i.e., counting
an asset-peer relationship more than once vs. only once). This distinction will be made
clear.

2. Assets considered for pairwise testing are pre-filtered just as in Chapter 6 (i.e., using
the 25 % popularity filter). Then, each candidate asset is paired with every other
asset, and the desired Jaccard computation is applied to the peer sets for the given
asset pairing.

3. Results are sorted in descending order, so that the asset pairing with the greatest
Jaccard value (indicative of a strong similarity in peer sets) appears at the top of the
list with rank 1.

A third strategy that quantifies peer similarity by constructing distributions that capture
the relative spread of connections across peers (rather than absolute connection counts) is
in active research, and will not be presented here. However, preliminary results indicate this
is a promising approach worth pursuing further.

7.3 Evaluation

The general peer set comparison strategy described in the previous section was implemented.
By reviewing results from the LBNL case study and learning about limitations of the initial
approach, I made several revisions to the base Jaccard Index computation (Equation 7.1).
The case study will walk through the various equations and the reasoning behind each of
the attempted variations.
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Asset Pair JA Rank JB Rank JC Rank JD Rank JE Rank

i3 & i5 57,283 1 1 8,696 8,231
i37 & i50 72,512 No Result 2 11,360 14,368

Worst Rank 316,410 301 316,410 316,410 316,410

Table 7.1: Client asset rankings for a variety of Jaccard-derived peer similarity assessment
strategies.

Asset Pair JA Rank JB Rank JC Rank JD Rank JE Rank

i3 & i5 97 1 26 744 367
i3306 & i56474 145 2 32 743 366

Worst Rank 10,153 11 10,153 10,153 10,153

Table 7.2: Server asset rankings for a variety of Jaccard-derived peer similarity assessment
strategies.

Case Study

Results Overview

Tables 7.1 and 7.2 summarize the results of the case study using the same set of known
load balanced asset pairs that were introduced in the previous chapter. Table 7.1 presents
the rankings of known asset pairs based on client behavior (where peers are servers) for the
various Jaccard-derived strategies, while Table 7.2 presents similar results for server behavior
(where peers are clients). The last row in each table, labeled “Worst Rank”, represents the
poorest rank an asset pair could be assigned for the given test; this value is equal to the
number of asset pairs evaluated.

Naturally, the results presented in Table 7.2 are more in line with the intuition intro-
duced at the start of this chapter, since they evaluate server behavior. However, due to
the aforementioned effects of the NetFlow “blind spot” on the LBNL data set, client-side
behavior exhibits richer peer data. In fact, like in Chapter 6, one motive of this case study
is to attempt to answer the previously-stated open research question, “Is client behavior an
accurate indicator of whether or not a server is load balanced?”.

Unmodified Jaccard, JA

The unmodified version of the Jaccard Index is presented as approach JA. Thus, in this
case, Equation 7.1 is used without any modifications. Further, this approach uses strict sets
of peers — even if a peer participates in multiple connections with the same assets, the JA
computation will only count that peer once, and not multiple times.
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Results in the JA column of Table 7.1 reveal inflated rankings for asset pairings that are
known to be load balanced. Closer inspection of test results revealed that of the 316,410
asset pairs evaluated by this test, 57,208 (18.1 %) of them tied with the top score. In
retrospect, the reason for this outcome is not surprising: any pair of assets that happens to
have a single common peer (perhaps due to infrequent communication occurring during the
selected 24-hour time period captured by the NetFlow data) will earn that top score. Clearly,
this unmodified form of the Jaccard Index is not well-suited to accurately pinpointing the
presence of load balancing. While this behavior is not as pronounced in the server results
shown in the JA column of Table 7.2, a review of the test results revealed similar effects.

Jaccard Variation JB

The first Jaccard variant, JB, had two changes from the base Jaccard expression that was
presented as JA and shown in Equation 7.1:

• The set computations were adjusted to be connection-count aware, such that if a peer
participates in more than one connection with an asset, each connection instance is
included in the Jaccard computation, rather than simply counting the peer once.

This change was motivated by the intuition that repeated connections from a common
peer ought to strengthen the confidence that a given pair of assets is load balanced.
Otherwise, two different pairs of assets, each with a single common peer will earn the
same score, regardless of how many times that peer communicates with each asset
pairing.

• The numerator component of the Jaccard expression (i.e., the intersection term) is
squared 2. CANDID squares this component to give greater weight to similarity in the
Jaccard computation. This modification is depicted in Equation 7.2.

J =
|X ∩ Y |2

|X ∪ Y |
(7.2)

Further, in Jaccard variant JB, only asset pairs that are first deemed load balanced by the
two-sample K-S test (Chapter 6) are evaluated. This change was made because results from
the JA test were flooded with many asset pairs which happened to have a single peer in
common, thereby earning a “perfect” JA = 1.0 score, which diluted any meaningful test
output. By first applying the two-sample K-S test, the Jaccard search scope is narrowed to
only include asset pairings that are likely load balanced, removing those spurious results.

A review of the JB column in Tables 7.1 and 7.2 indicates that this first variation on the
base Jaccard strategy is reasonably effective, as all asset pairs that yielded results occupy top
ranking positions. More importantly, however, it validates the intuition outlined at the start
of the chapter, which stated that common peers would be an indicator of load balancing.

2This is not a standardized modification of the Jaccard Index.
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Jaccard Variation JC

Due to the fact that the client behavior i37 & i50 asset pair does not pass the K-S test, it
made sense to adjust strategy JB. Rather than simply removing the K-S pre-filter, the new
strategy takes a different approach. It is natural to think that, due to the finite quantity
of measurement data used, some peers which communicate infrequently with a cluster may
only be observed to have connections to one of the two assets in that cluster. Therefore,
the Jaccard computation should only take peers into account that each asset in the pair
communicates with frequently. Thus, this new strategy, JC , is different from JB in that:
(i) it does not use the K-S test to whittle down the set of eligible asset pairings, and (ii) it
only includes the top 25 % 3 most popular peers of each asset in the computation. Note that
this peer popularity filter is independent of the candidate asset popularity filter described in
Section 7.2, which is used for all five Jaccard tests presented in this chapter. The numerator
in the JC computation remains squared.

Based on the results, this strategy seems quite effective at inferring load balancing rela-
tionships from client behavior. Unfortunately, the server behavior results suffer in this case
due to the removal of K-S pre-filtering.

Jaccard Variation JD

The fourth Jaccard test, JD, is quite similar to variation JC , except for the fact that it
does not square the numerator in the Jaccard computation, leading to an expression like
Equation 7.1. The primary motivation for this variation was to bring the expression back
towards the traditional Jaccard Index, which is well-understood.

A quick glance at the results shows that the ability to correctly infer load balancing from
both client and server behavior is severely impacted when weighting of the intersection term
is removed. More specifically, of the 316,410 host pairs evaluated, 8,650 (2.7 %) of them tied
with the top score, which makes it difficult to interpret results. While it remains an open
question of what the best approach to weighting the intersection component is to achieve
appropriate score differentiation, this series of Jaccard variations shows that some form of
weighting is required.

Jaccard Variation JE

The final Jaccard variation explored is identical to strategy JD, except that the set of peers
included in the computation is not pre-filtered. This variation was completed to understand
to what extent the pre-filtering impacts results.

The results for strategy JE show little improvement over those of strategy JD; in fact,
asset pair i37 & i50 scores poorer with JE. The reason for the minor shift in scores (and
small improvement in 3 of the 4 asset pairs) has not been analyzed in detail; I suspect it must

3Evaluation of the most appropriate peer popularity threshold is deferred for future work.
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stem from the intersection component growing far more quickly than the union component
when the peer pre-filter is removed. This suggests that the selected peer popularity threshold
of 25 % may not be the most appropriate value.

Jaccard Strategies Summary

Table 7.3 summarizes the properties of the base Jaccard Index and the four Jaccard variations
that were just presented. In particular, the table focuses on whether or not any pre-filtering
is applied to the asset pairs evaluated or peers included in the test computation, whether the
computation is connection count aware (rather than counting a peer just once, regardless of
the number of connections it participates in), and whether or not the intersection component
is squared.

Results from the four Jaccard variants presented in this thesis lead to a few key ideas:

• Combining Jaccard testing with a flow-based analysis technique (e.g., K-S in JB) can
have merit if the right flow-based technique is selected.

• The basic Jaccard Index, JA is not connection count aware, nor does not give weight to
common peers. Counting connections is important, as it better highlights relationships
with repeated connections from common peers, and some form of intersection weighting
is necessary to best illuminate instances of load balancing.

• Pre-filtering the set of peers included in the computation warrants further exploration,
particularly with respect to choosing an appropriate popularity threshold.

Strengths

The greatest strength of the Jaccard-derived strategies presented in this chapter is that they
do effectively illuminate instances of load balancing for both client and server behavior. This,
in essence, validates the initial intuition I described at the start of the chapter and suggests
that an approach (even if not Jaccard-derived) which evaluates asset social behavior will be
an effective mechanism for inferring load balancing.

Limitations

The five strategies presented in this chapter showcased how pre-filtering and weighting impact
the strength with which an asset’s peers illuminate a load balancing relationship. As a part
of this iterative process, two shortcomings emerged:

• With the exception of JB, all of these variations only consider social behavior, and
disregard any knowledge of the service characteristics explored in Chapter 6.
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Jaccard
Variant

Pre-Test
Filtering?

Connection
Count Aware?

Squared
Intersection

JA None No No
JB Only considers as-

set pairs for which
K-S claims equal
distributions.

Yes Yes

JC Only includes the
top 25 % peers of
each asset.

Yes Yes

JD Only includes the
top 25 % peers of
each asset.

Yes No

JE None Yes No

Table 7.3: Key properties of Jaccard Index computation variations.

• Not giving stronger weight to the intersection over the union fails to illuminate load
balancing, but the current weighting strategy (squaring the intersection term) also
lacks a principled methodology.

7.4 Summary

This chapter took a radically different approach from the previous chapter, in that rather
than inferring load balancing by evaluating similarities in flow characteristics, it presented
strategies that attempt to illuminate load balancing via host social behaviors. Of the five
strategies presented here, JC (peer popularity pre-filtering and a squared intersection com-
ponent) performed best for client behavior while JB (K-S pair pre-filtering and a squared
intersection component) performed best for server behavior. These strategies validated the
initial intuition and provide guidance as to how best to proceed in future CANDID research.
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Chapter 8

Discussion

The previous three chapters provided details of the approaches I have taken towards inferring
LR (local-remote) dependencies and locating cases of load balanced assets. This chapter
reviews the contributions of this thesis and paves the beginning of the path towards further
research in this area.

8.1 CANDID Contributions

The contributions of this thesis span beyond the specific solutions presented in Chapters 5
through 7. In fact, perhaps the greatest contribution of this thesis is not one I initially set
out to tackle: the idea that the behavior an asset partakes in as a client does directly reflect
its role as a server. Thus, I see the contributions of this work to be as follows:

• As just noted, the realization and concrete evidence that network measurement of an
asset’s client behavior can be directly tied to it’s behavior as a server.

• Two drastically different strategies for inferring load balanced assets, one which focuses
on application behavioral characteristics from flow data (Chapter 6), while the other
focuses on asset social behavior from connection peers (Chapter 7).

• A comprehensive data handling and sanitization pipeline that addresses challenges
other researchers may face when working with unidirectional NetFlow records as well
as multiple network vantage points (Chapter 4).

• A causal connection chain strategy that works towards identifying LR dependencies.
Further, results from this work shed light on a new approach set aside for future work:
aggregating chains by common suffixes as a way to separate clients from shared services
with common dependency components.
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8.2 A Fresh Take: a Hybrid Approach

I am currently investigating a new comprehensive solution for identifying load balanced
assets. As this is currently in active research, the solution has not been fully formalized, nor
are results available. However, it is worth briefly explaining my idea here, as it serves as a
strong jumping-off point for future work. A review of Chapters 6 and 7 shows that there are
currently two disparate solutions for inferring load balancing. What I have come to realize is
that while both sets of techniques are based on correct intuition of load balancing behavior,
neither solution alone is sufficient to correctly characterize the presence of load balancing.
Therefore, I believe the best approach to inferring load balancing is a new hybrid approach
that leverages three facets of host and application behavior:

• Application behaviors, based on flow characteristics, which are evaluated for similarity
using the λ2 metric of discrepancy (Chapter 6).

• Host social interactions, based on similarity of peer sets, via a weighted Jaccard Index
(Chapter 7).

• Peer connection patterns, which capture the relative balance of connections from peers
across a pair of potentially load-balanced assets. This is different from the previous
point in that it is more concerned with how peers communicate with a pair of assets,
rather than with whom those assets communicate.

When these three perspectives are combined, a tool like CANDID can confidently assess
assets for load balancing relationships. The remainder of this exploration is deferred for
future work.

8.3 Lemonade from Lemons?

Admittedly, initial results from this research showed limited promise, particularly due to the
NetFlow “blind spot” and the use of the fixed ∆T1 threshold. However, once I discovered
that client-side behavior does appear to be an indicator of whether or not an asset is load
balanced, I recall one of my advisors noting that we might be able to “make lemonade from
lemons”.

As I now reflect on the question, “Did I make lemonade from lemons?”, I think the
answer is a resounding Yes. Without a doubt, the contributions described in Section 8.1 are
important, as are the individual results from the LBNL case study. However, I don’t think
any of these things alone are the “lemonade”.

To me, the “lemonade” is the broader insight this work shares with the research com-
munity: (i) the idea that seemingly-trivial inference of load balancing via passive network
measurement is a challenging research problem, (ii) that client network traffic is indicative
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of server behavior, and (iii) the idea of a new hybrid approach (Section 8.2) towards solving
this problem.

8.4 Future Work

This thesis has made great strides towards addressing the goals outlined in the problem
statement from Section 1.1, yet at the same time, has raised new issues and avenues of
research that are worthy of further exploration.

I see the two most-important tasks for the future to be: (i) completion of the hybrid design
and peer connection distribution strategy introduced in Section 8.2 and (ii) evaluation of
enterprise NetFlow records with a heterogeneous application mixture (i.e., not just SMTP),
to validate that the intuition and assumptions introduced here apply to all network traffic.

More generally, some of the problems and tasks raised for future research include:

• Performing unidirectional flow pairing using all vantage points (rather than separately
for each vantage point) to tackle route asymmetries.

• Evaluation of RR (remote-remote) dependencies and establishing an asset dependency
ranking.

• Aggregation of connection chains by common suffixes (rather than by all chain mem-
bers).

• Evaluation of causal connection chain membership via delay distributions (similar to
Orion [17], Sherlock [11], and [8]), rather than a fixed threshold.

• Selection of an appropriate peer popularity threshold for the peer pre-filtering per-
formed in Chapter 7.

• Selection of an appropriate weighting strategy to apply to the base Jaccard Index.

• A closer study of connections of short duration (i.e., 0 ms, 1 ms, 2 ms, . . . ) to char-
acterize their cause and to establish an appropriate data sanitization strategy for this
class of connections.

Interested readers and researchers are encouraged to explore any and all of these tasks.
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Chapter 9

Conclusion

Enterprise networks are large, dynamic, and complex; system, network, and security ad-
ministrators face the constant challenge of trying to track the networked assets they have
and how these assets interact and depend on one another. With this limited visibility, and,
consequently, the lack of a strong grasp of these issues, administrators are ill-equipped to
tackle problems when they arise.

This thesis presents CANDID, a passive network-based approach for inferring asset re-
lationships and dependencies in enterprise networks. In this work, three avenues of analysis
are presented for inferring dependencies and detecting instances of asset load balancing, and
each of these solutions is accompanied by a case study centered around NetFlow records for
LBNL SMTP traffic.

Future work targets exploration of a new hybrid approach that introduces peer connection
distributions and blends the individual strategies presented in this work together into a
comprehensive solution.
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