
Quicksilver: Automatic Synthesis of Relational

Queries

Edward Lu
Ras Bodik
Björn Hartmann, Ed.

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-68

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-68.html

May 15, 2013

Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

1

Quicksilver: Automatic Synthesis of Relational
Queries

Edward Kuanshi Lu, Rastislav Bodik
University of California, Berkeley

Berkeley, CA 94704 USA
edward.k.lu@berkeley.edu, bodik@cs.berkeley.edu

Abstract

Relational data has become so widespread that even end-users such as secretaries and teachers frequently
interact with them. However, finding the right query to retrieve the necessary data from complex databases can
be very difficult for end-users. Many of these users can be seen voicing their confusion on several Excel help
forums, receiving little help and waiting days for responses from experts. In this paper, we present Quicksilver,
a programming-by-demonstration solution that derives queries from user inputs. It is designed to be easy and
intuitive for users who are not familiar with database theory. We present Quicksilver’s interface designs and synthesis
algorithms. We conclude with a user study designed to evaluate Quicksilver’s performance.

Index Terms

Programming-by-demonstration, Program Synthesis, Databases

I. INTRODUCTION

As relational data becomes more efficient and useful, end-users increasingly need to use it to create visualizations,
data mine, design websites, and more. However, little work has been done to help the end-user transform this data
to a useable state. Designing the exact query to retrieve the right contents from a database should not be a skill
the end-user is expected to have. Queries can be very hard to understand, and even harder to debug, especially for
large databases.

Many users experience difficulties describing the transformations they want to execute over relational data.
For example, a study by Resiner evaluating SQL [7] showed that even after 14 hours of academic instruction,
nonprogrammers averaged a 65% on a test asking them to write SQL queries. This study does not account for
retention of knowledge, and it is reasonable to assume that most end-users would not spend that long learning SQL.

We can also see this online in Excel help forums.1 For example, one user, a business man, has a table with
over 18,000 lines of data and wishes to extract those rows that have revenues larger than a certain value. Another
user, a manager for a golf society, wishes to delete unwanted columns in his records of golf scores. A third user, a
teacher, has 20 worksheets, each recording different test results for his students. He would like to perform a join
across all worksheets on name, into what he calls a ”summary table”. These users struggled with achieving their
goals so they posted their question on these forums, waiting days to weeks for a response from an expert. Some
of these users have yet to receive a response on the forums. They would post a short example of the tables that
they have, and a few examples of what they would and would not like as the result of the transformations.

The main contribution of this paper is Quicksilver, a tool designed to become the expert for these users, providing
quick responses to the user’s examples. It is written as a web tool utilizing HTML5 and optional touch capabilities
in an effort to be accessible anywhere. Users upload tables that they want to transform to this tool, from which
Quicksilver creates a few samples. The user then drags cells from these samples to create examples of the final
table they want or negative examples of what they do not want to see. If the user is not satisfied with the samples,
the user can specify which rows he would like to use. Using synthesis techniques, Quicksilver can quickly respond

1http://www.excelforum.com, http://www.mrexcel.com/forum/excel-questions/, http://www.ozgrid.com/forum/

2

with its best guess at the user’s intentions by providing the user its suggested query and the result of applying this
query to the uploaded tables. It also highlights rows of this result table that it thinks may be incorrect. The user
can examine the suggested query and the results to determine if Quicksilver’s inference is correct. Should the user
be satisfied, they can download the resulting table and use it in regular spreadsheet programs. Otherwise, the user
can easily refine their intentions to Quicksilver by adding more examples or marking rows in the result table as
incorrect. Quicksilver will quickly respond with its updated guess.

This tool is limited to the expressibility of relational algebra, as its synthesis engine is restricted to this language.
This is enough to express any relational query a user may require. Transformations that involve semi-structured or
non-structured tables are out of scope of this paper and have been thoroughly explored in [10].

This paper will first explain the user interaction with Quicksilver through a series of scenarios. It will then discuss
the synthesis problem and the algorithms behind the tool. Additional features and related work will conclude the
paper.

II. SCENARIOS

All relational queries can be described by a combination of the relational algebra primitives: projections,
selections, cross products, set differences and set unions. To illustrate Quicksilver’s interface and capabilities,
we will show how our tool handles these primitives by walking through a few scenarios. First we describe the
premise behind all the scenarios. Then we will have an overview of relational algebra. We conclude this section
with 3 scenarios that describe our tool in more depth.

Professor Alice advises students every semester. One of Alice’s jobs is to review each of her advisee’s class
schedules for the upcoming semester. Should the schedule pass her inspection, she will give the advisee their unique
advising code. The student needs this code because it is required to begin signing up for next semester’s classes.
Alice keeps her advisees’ information in a table shown in Figure 1. To facilitate this process, Alice requests students
to signup for a time to meet and talk about their future class schedule. A sample of this table is shown in Figure 2.

Student Email Class GPA Adv. Code
John Doe jd@b.edu Senior 4.0 2315
Anne Foe af@b.edu Soph. 4.0 8112

Rachel Floe rf@b.edu Fresh. 3.3 2948
Lue Goe lg@b.edu Senior 3.2

Fig. 1: A sample of the Advisee Table

Time Name
1:00pm John Doe
1:20pm Anne Foe
1:30pm Jimmy Toe

Fig. 2: A sample of the Signup Table

A. Relational Algebra

Before we begin, we will first provide a brief overview of the relational algebra. All relational queries can be
described by a combination of primitives: projections, selections, cross products, set differences and set unions [4].
We will describe each of these, along with the commonly used join operation, below.

3

1) Projections: Projections, typically symbolized as ρ, manipulates the columns of a relational table. The
operation removes columns that a user may not want to see in the table. For example, ρName Advisees would
project Name from the Advisees table. The result of this operation would be the Name column of the Advisees
table.

2) Selections: Selections, typically symbolized as σ, acts like a filter across rows of a table. Selections are
defined by their conditions, which we refer to as selection predicates in this paper. If the selection predicate is true
on a given row, that row is outputted. Otherwise, it is ignored. For example, σName==JohnDoe Advisees would
select any rows from Advisees where the Name column equals “John Doe”.

3) Cross Products: Cross products, typically symbolized as ×, operates over two tables to create all possible
concatenations of the two tables’ rows. In psuedocode, cross products would be implemented as follows:

Algorithm 1 Cross product
1: procedure CROSSPRODUCT(A, B)
2: result = empty table
3: for row a in A do
4: for row b in B do
5: add concat(a,b) to result
6: return result

4) Set Unions: Set unions, denoted ∪, operates over two tables to create one table that contains all the rows
from each table without duplicates. It behaves exactly like a set union where each table is considered a set of its
rows. Formally, it is defined as A ∪B = {x : x ∈ A ∨ x ∈ B}.

5) Set Differences: Set differences, denoted \, also operates over two tables. It is defined as A \B = {x ∈ A :
x /∈ B}.

6) Set Operations: We refer to set unions and set differences as set operations for this paper. These are unique
in that they operate over multiple tables, each of which may contain different columns from the other. In order for
set operations to be valid, these operand tables must be set compatible. This means that for every set operation’s
arguments T1, T2, the columns of T1 must be the same length as the columns of T2. Additionally, the ith column
of T1 must match in type as the ith column of T2 for all i less than the total number of columns in T1.

7) Joins: Joins operate over two tables to create one table that contains concatenated rows from each table that
satisfy a join condition. This can be expressed as a cross product followed by a selection whose selection predicate
is the join condition.

We will now discuss 3 simple scenarios that describe how we handle each operation.

B. Joins

With the following scenario, we will show how our tool handles joins using a combination of cross products and
selections. We will also show how we handle projections.

Alice would like to have a common table that lists each student who signed up along with their advising code.
To do so, she uploads each table to Quicksilver, which directs her to the candidate pool, a list of tables that contain
sample rows taken from the uploaded tables. From here, she can illustrate examples to Quicksilver by dragging
cells from the candidate pool. She specifies a positive example, a tuple that she expects to see in the result, by
dragging cells “1:00pm” and “John Doe” from the Signup sample into a row in the result box. She then drags John
Doe’s Advising Code from the Advisee sample next to this row, as shown in Figure 3.

4

Fig. 3: Alice drags cells from the candidate pool into the result table to form a positive example (outlined by the
arrows). The Advising Code cell was retrieved when Alice was on the Advisees tab. If she didn’t find a good

example with these rows, she could specify new sample rows to add to the candidate pool using the button “Add
a sample row” above.

Once she confirms her examples, Quicksilver passes them onto its synthesis engine, producing its best guess at
the query. It guesses a query within milliseconds and displays the first few rows of executing this query on her
input tables, as seen in Figure 4. The query it found was:

ρc(σa(Advisees× Signups))

Where c is Signups.Time, Signups.Name, Advisees.Advising Code and a is Signups.Name == Advisees.Student.
In english, the query was a projection of columns c of the tuples in the cross product of the Advisees and Signups
tables that satisfy the predicate a. In this case, Quicksilver’s best guess was correct, so Alice is done here. However,
if Quicksilver had guessed wrong, Alice could mark any of the result rows as a negative example (a tuple that she
does not want to see in the result) by clicking the x next to the corresponding tuple. This will prompt Quicksilver
to guess a query that does not produce these negative examples. She could also add another positive example to
similarly cause Quicksilver to look for another query.

If Alice wanted to create this table without Quicksilver, she would most likely have to do it manually, by cutting
and pasting cells into their appropriate position. This would have been time consuming, especially if these tables
were large. If she had some knowledge of database programs, she may have uploaded the tables to an SQL database,
figure out the correct query to execute, and put the resulting table back into a readable format. However, most end-
users do not have this knowledge and working with relational database programs will be difficult. With Quicksilver,
however, all Alice had to do was specify one positive example to receive what she wanted in milliseconds. One
positive example here was sufficient because it expresses all required properties of the query such as the projection
columns and selection predicate. The synthesis engine’s ranking engine then decided on the correct query to guess

5

Fig. 4: Quicksilver’s response to Alice’s join examples. All of the advisees who signed up have their advising
code listed next to them. The query found is shown above, and the results of the query follow it.

that satisfied these properties.

C. Selection

Alice notices that her Advisee table is incomplete. In particular, students like Lue Goe do not have an advising
code (Figure 1). She would like a table of all the students who do not have advising codes, so she can send the
names to administration to ask for the codes. Alice goes to the candidate pool and creates one example from the
cell with Lue Goe’s name. She sends this example to Quicksilver, which synthesizes the following query:

ρName(Advisees)

The results of this query is shown in Figure 5. She notices that this cannot be the right query, as she knows that
John Doe does in fact have an advising code. So she refines the query by clicking the × button next to the John
Doe row. Quicksilver resynthesizes, and finds the following query:

ρName(σaAdvisees)

Where a is Advising Code == null. The results is shown in Figure 6. This is the correct query, so Alice is satisfied.

D. Set difference

In this next scenario, Alice notices that Rachel Floe, an advisee, hasn’t signed up yet (Rachel Floe is in Figure
1, but not in Figure 2). She wonders if anyone else hasn’t signed up yet so she can email them a reminder. Alice
returns to the candidate pool and creates two examples, as shown in Figure 7. The first example is positive, showing
that she wants to see the name Rachel Floe. The second example is negative, indicating that she does not want
to see John Doe, a student who has signed up. Notice that the negative example is colored red. Alice can toggle
between positive and negative examples by clicking the tuple. Quicksilver sends visual feedback in the form of
color: green being positive and red being negative. Once Alice confirms her examples, Quicksilver synthesizes the
following query:

ρa(Advisees)− ρb(Signups)

6

Fig. 5: Alice tries to find the names of advisees without advising codes.

Where columns a and b are Advisees.Student and Signups.Name, respectively. This is the correct query. The query
is executed on the inputs (larger than what is shown in Figures 1 and 2), and Quicksilver shows Alice the results,
shown in Figure 8.

E. Unions

Unions can be similarly constructed through the use of multiple examples originating from different columns. For
example, if Alice wanted to see the names of all her advisees and all the students who signed up, she could provide
Quicksilver with any name from Advisee.Student and any name from Signup.Name. This would be sufficient for
the tool to produce a union of Advisee.Student and Signup.Name columns with the following query:

ρa(Advisees) + ρb(Signups)

We will next discuss our synthesizer. We will first describe its inputs as a language of demonstrations, then its
output as a language of queries, and finally the algorithms that connect the two languages.

III. DEMONSTRATIONS

Quicksilver’s synthesizer retrieves inputs as user demonstrations. These demonstrations can be represented as a
series of drag actions and mark actions.

7

Fig. 6: The results after Alice refines her original selection examples.

Fig. 7: Alice tries to find the names of advisees who have yet to sign up with these examples.

A. Drag Actions

A drag action is when the user drags a cell from the candidate pool into the result table, a table where the user
can specify positive or negative examples. We represent this action as drag(t,c,r,ec,er), where (t,c,r)
represent the table, column, and row of the cell’s original location (i.e. the one in the uploaded file) and (ec, er)
represent the column and row of the cell’s new location (i.e. the one in the result table). For example, the action
involving the “John Doe” cell in Figure 3 is represented as drag(Signups,1,0,1,0). Drag actions retain
information about the destination location of the cell in order to construct the examples. These actions contain
information about the source location in order to aid synthesis by limiting the search space. In particular, the
location can tell us which projection columns to use and hint at whether or not we need to use set operations. We
will explain this in more depth when we discuss projections sets in the Synthesis section.

Fig. 8: Quicksilver’s response to Alice’s set difference query.

8

D := D, d | D,m | d | m
d := drag(t,c,r,c,r)
m := mark(r,e)
e := positive | negative
t := table
c := column
r := row

Fig. 9: The demonstrations grammar

Q := unique(D) | D
D := diff(D,D) | E
E := project(S)
S := select(i, P)
P := P, (C,A) | (C,A) | null
A := A, c | c
C := C ∧ C | c = d | c 6= d | c > d | c < d
d := c | v
c := any column in I
i := the cross product of I
v := any cell value in I

Fig. 10: A grammar of synthesized queries

B. Mark Actions

A mark action is when the user defines an example row as either a positive or a negative example. The user
can do this by clicking the row, toggling its color from green (positive) to red (negative). As mentioned earlier, a
positive example is an example that must be present in the result and a negative example is one that must not be
present in the result. Mark actions are represented as mark(r,e), where r is the row number of the result table
and e is either positive or negative.

Our demonstrations grammar can be seen in Figure 9. We designed the grammar to be simple so that it would
lend to a simpler user experience.

IV. QUERIES

Quicksilver’s output consists of the relational algebra primitives: projections, selections, cross products, set unions,
and set differences. As mentioned before, these operators are supported so that we can output any relational algebra
query the user may request. The grammar of output queries can be seen in Figure 10.

We enforce an order on the grammar of these queries in order to limit the search space of our synthesizer. We
order them as, from first to last: cross product, selection, projection, set union, and set difference. We will discuss
how each operation is defined and the completeness this grammar in this section.

Each operator is defined in two different formats: (1) as functions, and (2) as a set of constraints in SMT format.
(1) is needed to interpret the results of our synthesis. (2) is necessary for our synthesis engine. We will describe
these operations in format (1) for this section, and in format (2) in our algorithms section.

A. Cross products

The cross product operation is defined in only one instance, a cross product of the input relational tables, I . I is
constructed as follows: for each drag(t,c,r,ec,er), we extract the row r from table t add it to an initially
empty representation of t in I . All queries we generate are functions of this cross product of I .

9

B. Selections

Selections are defined as select(i, P), where i is the cross product of I , and P is a list of pairs of selection
predicates and column lists. A column list is defined as a list of columns, which will be used for projections. The
pairing is used for set unions, which will be explained later. For each pair p ∈ P , the select operator evaluates
p’s selection predicate on every row r in i. If p evaluates to true, select will add (r, p’s column list) to a list.
This list is what select will return upon termination. In pseudocode:

Algorithm 2 Select as a function
1: procedure SELECT(i, P)
2: result = empty list
3: for r in i do
4: for (predicate, column list) in P do
5: if predicate(r) then
6: add (r, column list) to result
7: return result

C. Projections

Projections are defined as functions that are executed on a selection’s results. Given a list of (row r, column list
l) tuples L, project will, for each tuple, create a new row consisting of the columns of r that exist in l, in the
order they appear in l. In pseudocode:

Algorithm 3 Project as a function
1: procedure PROJECT(L)
2: result = empty list
3: for r, l in L do
4: row = empty list
5: for column in l do
6: add r[column] to row
7: add row to result
8: return result

D. Set unions

Set unions are defined inside selections as selection predicate, column list pairs. We can do this because each
operand of a set union, ui, can only differ from any other operand, uj , in projections and selections. They cannot
differ in cross products, because all other primitives operate over the same cross product of I . They cannot differ
in set difference, because of the order of operations we impose. Because of this, we can associate each ui with a
(selection predicate, column list) pair. If the selection of ui does not filter a row r out, then the selection predicate
will return true. r will then be projected as dictated by ui using the pair’s column list. This will occur in the
select and project stages.

E. Set differences

Set differences are defined as functions of two lists of rows, l1 and l2. For each row in l1, we check that it does
not belong in l2. If it does not, we add it to the result list. Otherwise we ignore it. In pseudocode:

10

Algorithm 4 Set difference as a function
1: procedure DIFF(l1, l2)
2: result = empty list
3: for r1 in l1 do
4: match = false
5: for r2 in l2 do
6: if r1 == r2 then
7: match = true
8: break
9: if match then

10: add r1 to result
11: return result

F. Set compatibility

We do not reason over column types. Therefore we do not make any guarantees about set compatibility. We
assume two rows are set compatible as long as their lengths are equal.

G. Uniqueness

If set operations are involved, we make sure that there are no duplicate rows. We do this by executing unique
on the final list of rows. We can detect if set operations are involved by checking if P in select is greater in
length than 1 (implies set unions) and if diff was executed.

H. Completeness

There are two aspects of this grammar that limit the queries we can create: (1) limiting cross products to cross
products of I , and (2) limiting the order of our operations as cross product, selection, projection, set union, and
set difference.

Before we continue, we define query equivalence as the following: two queries a and b are strictly equivalent
if the result of executing either of them on any input is indistinguishable. a and b are λ-equivalent if the result of
executing either of them on the set of input tables λ is indistinguishable. a and b are partial-equivalent if they are
λ-equivalent for some λ but not strictly equivalent.

We argue here that limitations (1) and (2) only prevent us from creating queries that are either not useful or
queries that have strictly equivalent queries that we can create.

Let us first discuss limitation (1). We first discuss the input to the cross product, I . For each drag(t,c,r,ec,er),
we extract the row r from table t add it to an initially empty representation of t in I . This implies that we do
not consider cross products with uploaded tables whose cells are never used in examples, since these tables would
never be in I . For example, if Alice only dragged cells from the Signups table, Quicksilver will never consider data
from the Advisees table. We believe it is reasonable to assume that we do not need tables that are not mentioned
in the examples.

Another implication of (1) is that we do not consider cross products of a superset of I . This is reasonable we
have no reason to use inputs outside of what the user provides. Also, we do not consider cross products of elements
of I that occur more than once (e.g. Advisees × Advisees × Signups). We assume that the user does not want
queries like these, because they always produce duplicate information.

Similarly, we do not consider cross products over a strict subset of I . For example, if Alice dragged cells from
both the Signups and Advisees table, Quicksilver will never consider queries that execute over data from only
one of these tables. To explain why this is acceptable, we will discuss two classes of queries: queries without set

11

operations, and queries with set operations. Queries without set operations will never need to operate over data
from a strict subset of I . This is because I contains all of the user’s examples. If we construct a query that operates
over a strict subset of I , then we are missing data from some of the user’s examples. Thus we do not satisfy the
user’s examples and this query is incorrect. Queries with set operations may legitimately involve data over a cross
product of a strict subset of I . For example, consider our previous scenario with Alice when she wanted to see a
table with both her Advisees’ names and Signups’ names in one column. The query is repeated here:

ρStudent(Advisees) + ρName(Signups)

In this case, I consists of rows from both the Advisees and Signups tables. Thus R would be a cross product of
these tables. We want a union of two subqueries: s0 = ρStudent(Advisees) and s1 = ρName(Signups). Each of
these subqueries operates over only one table, which we consider a cross product of a strict subset of I (here we
refer to a single table as a cross product of one table for generality). This means we need to pass as arguments to
these queries rows that do not belong in a cross product of I . However, we can show that this is not a problem
with Theorem 1.

Theorem 1 Let T be any relational algebraic query whose domain consists of a set of cross products of strict
subsets of I and that the union of these subsets equals I . Let Ω be the set of queries whose domain is R. There
exists a query ω ∈ Ω such that ω is strictly equivalent to T .

Proof Every row that exists in T (i.e. passes the selection predicates and does not exist in the right hand side
of a set difference) is a subset of at least one row in R. This is true because R is a cross product of I whereas
T ’s domain contains cross products of strict subsets of I . Because of this fact, we can see that if T and ω have
the same row existence criteria (i.e. same selection predicates and set operations), the rows that exist in T will be
a subset of the rows that exist in ω. It is a subset because many rows in the cross product of I may be supersets
of a row in T . If T and ω have the same projections, then the rows that T produce will be the same as ω minus
some duplicate rows in ω’s results.

T ’s domain consists of a set of cross products of strict subsets of I and the union of these subsets is I . This
implies that T can be factored into at least two subqueries, si, such that each subquery operates over a cross product
of a unique subset of I , ii. Because each subquery operates over a different ii, they have different column lists, so
we know that the operation between these subqueries is a set operation (only set operations can have operands of
differing column lists). One feature of set operations is that all duplicate rows are removed. Thus the result of T
must have no duplicates. If we choose a ω such that its query structure is exactly the same as T , we can see that all
of ω’s potential duplicate rows would have been removed by these set operations. Thus T is strictly equivalent to ω.

The ordering limitation (2), does not limit our expressiveness. We can see this by the fact that any query q0
whose domain is ⊆ I produces results that can be replicated with a query q1 whose domain is R, the cross product
of I , with the same reasoning as Theorem 1. Any selection can be pushed to immediately after the cross product,
because every column that could be used in the selection predicate exists in R. Projections can be pushed to the end
of these selections, because these operations do not affect any other operation except for selections. If a projection
happens before selection, it may potentially remove data that a selection may need for a predicate, thus projections
must happen after a selection in order to not lose expressiveness. Set unions and set differences occur at the end.
This is acceptable because a projection that happens after set operations can happen before them with no side
effect. A selection that happens after set operations can be factored inside each operand of these set operations.
Finally, a cross product of set operation equations can be equated to set operations of R. We can see this because
any set operation equation cannot produce tuples outside of R, so we can trivially select and project only those
tuples that belong in this cross product of set operation equations.

V. ALGORITHMS

Our main algorithm’s goal is as follows: given user specified positive examples P , negative examples N , and
input tables I , find a query Q such that executing Q on I will produce a set of rows, Q(I), such that Q(I) is either

12

equal or a superset of P , and there does not exist a negative example n in N such that n is in Q(I).

We divide this into two problems. We first find a query Q such that P exists in Q(I). This is our synthesis step.
We then check if any n ∈ N exist in Q(I). This is our verification step. If no such n is found, we terminate and
return Q as our best guess at the user’s intentions. Otherwise, we return to the synthesis step to find a different
Q. We loop until we find a Q that does not contain N , or until we cannot find anymore queries. We discuss these
steps in more detail below.

A. Synthesis

Quicksilver’s synthesis algorithm is designed to solve the following problem:

∃Q
(
∀p ∈ P

(
∃r ∈ R | Q(r) == p

))
(1)

Where P is the set of positive examples provided by the user, Q is the query we are solving for, and R is the
cross product of the input relational tables, I . The query Q is constructed as described in our discussion of our
query language. (However, Q does not contain set differences. This is implemented in the synthesis-verification
loop and will be discussed later.)

To state the problem in other words, the synthesizer first finds the cross product of I . For each positive example,
it will find a row r from this cross product such that Q(r) is equivalent to said example.

This algorithm is encoded as SMT constraints. We will discuss these constraints in the order of Q’s construction
as dictated by the query grammar in Figure 10.

1) Cross products: The cross product of I , R, is the input to our synthesis algorithm. We first encode each table
in I , Ti, as a bitvector. Then, for each positive example p, we encode a row rp as follows:

Algorithm 5 Encoding rp
1: start = 0
2: end = 0
3: for T in I do
4: end += length of the columns of T
5: assert rp from indices start to end equals a row from T
6: start += length of the columns of T

Since rp is a concatenation of a row from each table in I , rp is in the cross product of I .

2) Selections and Set Unions: Selections and set unions are defined in Q as selection predicates and column
lists. Before we describe how we encode these, we first introduce the selection atom. A selection atom is defined
as an operation over c1 and c2, or c1 and v, where ci is any column in I and v is any value in I . We encode
selection atoms in four values: sel ite, sel c1, sel c2, and sel v. If sel ite is 0, the selection atom is of the form
c1 == c2, otherwise it is of the form c1 == v. To support more operations (such as inequalities), we simply
increase the range of values sel ite can take and have it decide which operator to implement. However, we do not
show this in this section for the sake of brevity. sel c1 encodes c1, sel c2 encodes c2, and sel v encodes v. We
fix the number of selection atoms in our ranking phase (which happens before synthesis), which we describe later.
Next, we introduce the selection aggregate, α. This is defined as follows: for a row r, we assert that if the selection
atom ai is true on r, α[i] = 1, otherwise α[i] = 0.

Now we describe how we encode selection predicates and column lists. Column lists are encoded as follows:
for each example p ∈ P , we extract p’s column list and encode it as a bitvector, li. Each selection predicate, s, is

13

encoded as three indices, is0, i
s
1, and isl . i

s
l refers to which column list s is connected to. The other indices index

the selection aggregate, α. A selection predicate with indices is0, i
s
1 is the conjunction of all selection atoms that

influence α[is0 : is1]. In other words, if there is a 0 in α[is0 : is1], selection predicate s is false. Otherwise it is true.
Like with selection atoms, we fix the number of predicates we will generate before the synthesis in our ranking
phase. The pseudocode for our encoding is shown below.

Algorithm 6 Encoding selection and set unions
1: procedure ENCODESELECTIONANDUNIONS(columnLists, numPredicates, numAtoms, r, columns, values)
2: α = empty array . the selection aggregate
3: for i from 0 to length(columnLists) do
4: assert li == bitvector(columnLists[i])
5: for i from 0 to numAtoms do
6: assert sel itei == 0 or 1
7: assert sel c1i == a column in columns
8: assert sel c2i == a column in columns
9: assert sel vi == a value in values

10: if sel itei == 0 then
11: assert (r[sel c1i] == r[sel c2i] and α[i] == 1) or (α[i] == 0)
12: else
13: assert (r[sel c1i] == sel vi and α[i] == 1) or (α[i] == 0)
14: assert previous0 = 0
15: for s from 0 to numPredicates do
16: assert is0 == previouss
17: assert is0 < is1 < length(α)
18: assert 0 <= isl < length(columnLists)
19: assert previouss+1 == is1 . no selection predicate indices overlap

3) Projections: Finally we project each rp and assert that it equals p. We first have to make sure that the selection
predicate that is associated with p’s column list is true. Thus we assert that one of the isl is equal to the index that
points to p’s column list, and that the associated predicate must be true. In pseudocode:

Algorithm 7 Encoding projection
1: procedure ENCODEPROJECTION(p, rp, α, selectionPredicates, p’s column list index)
2: assert one of isl in selectionPredicates == p’s column list index
3: for (is0, i

s
1, i

s
l) in selectionPredicates do

4: if isl == p’s column list index then
5: for j from is0 to is1 do
6: assert α[j] == 1

7: for column in p do
8: assert rp[column] == p[column]

B. Verification

To support negative examples, we introduce a CEGIS loop (synthesis-verification loop) into our synthesis. The
loop first synthesizes as described in the previous section. The resulting query is passed onto our verifier, which
solves the following:

∃n ∈ N
(
∃r ∈ R | Q(r) == n

)
(2)

Where N is the set of negative examples. Should the verifier be unsatisfied, we know that Q does not produce
any negative example and the CEGIS loop exits. If the verifier is satisfied, we know that Q is not the query
the user desires. We then take the values that define Q’s behavior and assert that the next synthesis cannot assign

14

Q to these values. These restrictions will continue to expand until either the verifier or the synthesizer is unsatisfied.

During one set of user interactions, Quicksilver will save the set of restrictions for future use. If the user defines
a new negative example, these restrictions are guaranteed to be a subset of the restrictions that will be found in the
new CEGIS loop. Thus by saving these restrictions now, we save time for future user interactions.

We require a CEGIS loop because it is faster to find a counterexample through our verifier than to exhaustively
search every row created by Q to make sure that none of these rows are in N .

C. Set difference

If we never find a Q that satisfies the synthesizer, this implies that either (1) the synthesis step cannot find a Q
such that it satisfies all postive examples, or that (2) the synthesis step cannot find a Q such that the verifier would
be unsatisfied (i.e. Q(I) contains a n ∈ N). The case of both happening would be considered case (1), because
the synthesis step would never have completed in time for the verifier to be unsatisfied. In case (1), we terminate
and suggest possible errors in the user’s inputs (see section on additional features below). In case (2), we consider
set differences in Q.

In case (2), there exists some set of negative examples in N , G, such that our CEGIS loop cannot find a
satisfying query Q that does not contain G. Thus we introduce a new subquery, Q−, to be part of a new query
Q =diff(Q+, Q−), where diff is the set difference operator described in our query language. We run our CEGIS
loop to create both Q+ and Q−. Each subquery is created using our inputs I and a subset of the examples that
were provided for Q. Q+ is given P and G as its positive examples, because we know we can’t synthesize a query
Q such that Q(I) contains P but does not contain G. We also give Q+ N \ G as its negative examples, as we
know that we can synthesize a query Q(I) that contains P and does not contain N \G. For Q−, we give it G as its
positive examples, because we want Q− to remove G from the set of rows Q+(I) in order for us to achieve a Q
that satisfies all of P and N . We also give Q− P as its negative examples, because we do not want Q− to remove
any positives examples from Q+(I), as it would ultimately remove these examples from Q. Note that this part of
the algorithm is recursive, so we can have any nesting of set differences and are not limited to one set difference.
If we find Q− and Q+, we have found a Q that satisfies the user examples and we terminate.

VI. ADDITIONAL FEATURES

A. Ranking

Quicksilver ranks candidate queries preemptively. We use a heuristic similar to that of Occam’s Razor: the
simplest query is most likely the one the user wants. We rank queries by restricting the kinds and number of
instances of operations Q can consist of. Should the synthesizer be unsatisfied, we relax the restriction a little and
repeat. The first query that satisfies synthesis would be the simplest query we could find and our best guess at
the user’s intentions. We rank complexity using the following hierarchy: selections over columns < selections over
values < set operations.

B. Questionable Results

Quicksilver highlights result tuples that may need user inspection. These tuples are “questionable”, or the tuples
that are most likely wrong if our best guess is incorrect. We mark questionable tuples by synthesizing two queries
instead of one. The second query would be our next best guess. We then mark the result tuples of our best guess
that do not exist in our next best guess as questionable.

C. Input Noise

If the user provides erroneous examples, Quicksilver may not find the right query. It may even give up once the
query complexity reaches a high enough threshold. In this case, we want to be able to suggest to the user examples

15

that may have been inputted incorrectly. We do this as follows:

Let E be the list of all user specified examples. Let qi be the query produced by Quicksilver on E− ei for each
ei ∈ E. Let qj be the query with the least complexity. This query is most likely to be correct. Thus, ej is most
likely to be the incorrect user example.

VII. IMPLEMENTATION

Quicksilver’s interface is built on Python and Javascript. Uploaded files are parsed for tabular data and a few
rows are chosen from each table to present to the user as the candidate pool. The candidate pool is a tab-separated
list of uploaded tables. Each cell in the table can be dragged and dropped into a “Result Table” by mouse or by
touchscreen. The Result Table consists of a user-specified number of rows. This is the destination of drag actions.
When the user clicks on these rows, the user creates a mark action. Each click will cycle the mark type of the
row.When the user confirms their examples, the Result Table’s rows are sent to the synthesizer.

The synthesizer and verifier run on Microsoft Research’s Z3 SMT solver and is encoded entirely in bitvector
logic for speed. The synthesis results are translated into a relational query and is applied to the uploaded tables until
a user-specified number of result tuples are produced. These are then shown to the user. The user can then refine
the query by marking tuples as incorrect (using mark actions), or by adding new examples. The user may also
remove incorrect examples that may contradict the correct query. This interaction continues until the user is satisfied.

When executing a query with set differences on the uploaded tables, we first execute Q−. We then execute Q+

and filter any results from Q+ that belong in Q−. Also, when the query involves set operations, we make sure to
filter out any duplicate tuples.

A. Translators

Another part of Quicksilver’s implementation are its translators. We define translators as functions that translate
a synthesized query into another form. We created two translators for Quicksilver: an optimizer and an english
translator.

The ordering of operations for our synthesized query does not lend to fast query execution. For instance, doing
cross products before projections would result in the creation of unnecessary data. Thus we implemented an
optimizer that implements a few simple heuristics, such as pushing projections and selections as early as possible,
and pushing expensive operations such as cross products as late as possible.

Users may benefit from reading the query that is synthesized. However, the synthesized query is simply a series
of bitvector values and indicies. Thus we implemented an english translator that converts these values into a more
human readable format.

VIII. EVALUATION

We conducted a user study to evaluate how users interact with our system. We wanted to learn if users, especially
ones without programming knowledge, would find our tool easier to use than their own methods. We describe the
methodology, measures, demographics, and results in this section.

A. Hypothesis

We hypothesize that, given the choice of using our tool or using anything else that comes to the user’s mind,
the user would prefer using our tool to perform table transformations. We also hypothesize that most users will not
be able to efficiently (i.e. not manually copying and pasting cells) complete common table transformations without
using our tool.

16

B. Demographics

We surveyed 12 people from various backgrounds. We asked them the following questions and graph our
demographics based on the answers to these questions.

1) How familiar are you with spreadsheet programs (scale of 1-10)?
2) How familiar are you with relational databases (scale of 1-10)?
3) How many years of computer science experience have you had?

Fig. 11: Our participants’ familiarity with spreadsheets.

Fig. 12: Our participants’ familiarity with relational databases.

17

Fig. 13: Our participants’ experience with computer science.

Most of our participants were somewhat familiar with spreadsheets. To put the scale in perspective, we said that
anyone with a score of 6 or higher knows some Excel-like functions. A score of 10 would indicate that the subject
knew most of the functions available to spreadsheet programs. A score of 1 would indicate that the subject never
uses spreadsheets.

A great majority of our participants did not have any experience with relational databases (including SQL). One
knew SQL, and two others knew high level relational database theory.

Most of our participants fit our target audience, as they had little to no computer science experience. We had
3 participants with more than one year of computer science experience to see if they would work as well with
Quicksilver as the others.

C. Methods

We performed a within-subjects study with two conditions. In the experimental condition, participants used
Quicksilver to perform two data transformation tasks after a 5 minute tutorial on the tool. In the control condition,
participants performed the same transformation tasks using any method they preferred. We provided the participants
the data in a browser-based spreadsheet application (Google Spreadsheets), but they were allowed to download the
data and use it on any other program. Such spreadsheets are the status quo tool that Quicksilver’s target audience
uses today. Any questions that do not refer to the tool were answered. Questions that did refer to the tool were not
answered after the tutorial. Ordering of conditions was randomized to account for learning effects.

1) Tables: The data transformation tasks used two data tables. The first is a 1000 tuple long table of advisees,
similar in format as the one shown in Figure 1. It has fields for Name, GPA, Email, and Advising Code. We made
this table 1000 tuples long to mimic the difficulties of operating with large data sets. We will refer to this table
as the Advisee table. The second table is a 650 tuple long table of signups, similar in format as the one shown in
Figure 2. We will refer to this table as the Signup table. It has fields for Time, and Student. All students mentioned
in the Signup table is present in the Advisee table, but not vice versa.

2) Task A: Task A involved asking the subject to produce a table similar to the one described in the Joins
section of our Scenarios discussion. In other words, we asked the subject to create a table that lists everyone who
signed up, next to their signup time, next to their advising code for only those people who signed up. The query

18

we requested is shown below.
ρa(σb(Advisee× Signup))

Where a is Name, Time, and Advising Code and b is Advisee.Name == Signup.Student. We gave the subject a 20
minute time limit. They were allowed to give up at any time.

3) Task B: Task B involved asking the participant to create a table that lists every advisee who did not sign up,
with the same time limit. The query we requested is shown below.

ρName(Advisees) \ ρStudent(Signups)

They were also allowed to give up at any time during this task.

4) Measures: Our main quantitative measures are task success, task completion time, and the number of iterations
it took for the subject to solve each task (only applicable to the experimental condition). We also elicited user
preferences. We define an iteration as one communication from the subject to the synthesis engine. In other words,
the number of iterations is equal to the number of inferred queries.

5) Questions: To gain a more nuanced understanding of the strengths and shortcomings of each tool, we also
asked a set of qualitative questions listed below.

1) (If the user did not complete Task B) If you had more time, what would you have done for Task B?
2) Did you prefer using Quicksilver or the method you came up with in Task B?

D. Results

We first present the graphs of our recorded measures. We will then finish this section with an analysis of these
graphs and the responses to our qualitative questions.

Fig. 14: Our participants’ completion times for experimental condition task A.

19

Fig. 15: Our participants’ completion times for experimental condition task B.

Fig. 16: Our participants’ completion times for control condition task A.

20

Fig. 17: Our participants’ completion times for control condition task B.

Fig. 18: The number of iterations our participants executed to complete experimental condition task A.

21

Fig. 19: The number of iterations our participants executed to complete experimental condition task B.

1) Completion Statistics: Our participants finished the experimental condition task A in an average of 2.75
minutes, with a standard deviation of approximately 2. Two participants gave up during experimental condition task
B. The rest completed the task in an average of 5.1 minutes, with a standard deviation of 3.4. In comparison, only
one person successfully completed control condition task A and B. Everyone else gave up. The one who completed
the control conditions task finished task A in 19 minutes, and task B in 14 minutes. These statistics show that our
participants overwhelmingly found Quicksilver easier and more efficient compared to the method they came up
with in the control condition.

2) Experimental Condition Iteration Statistics: Experimental condition task A took an average of 1.3 iterations
to complete, with a standard deviation of 0.49. Experimental condition task B took an average of 2 iterations to
complete, with a standard deviation of 1.05. For the subjects who completed these tasks, the number of iterations
was well within acceptable limits. The only user to show some frustration at using Quicksilver took the maximum
4 iterations for task B.

3) Control Condition Methods: When asked for the method that they would use in the control condition, eight
subjects stated that they would manually copy and paste the data in the correct place (650 rows for task A, 350 for
task B). When asked if they could come up with another method, they stated that they could not. One subject used
Google to find how to execute a join in Excel. This subject found a post describing how to use vlookup, which
was exactly what the subject was looking for. However, the subject ignored the writing, stating that “it didn’t look
like something I’d understand”. The last three searched Excel documentations for relevant functions, but only one
understood and successfully applied the functions necessary to complete the control condition tasks (vlookup for
task A, and isna, match and sort for task B). This successful subject was our most experienced subject, with 10
years of computer science experience. Even with this much experience, the subject encountered many difficulties in
completing the task, only finishing task A in 19 minutes and task B in 14 minutes, much slower than the completion
times for the experimental condition.

4) Preference: Every subject concluded that they preferred using Quicksilver for table transformations.
5) Learning: Not only do these results indicate that Quicksilver is easy to use, but also that Quicksilver is easy

to learn. This is because we only provided the user 5 minutes worth of instruction on the tool. In comparison,
Resiner showed that even after 14 hours of academic instruction on SQL, nonprogrammers averaged a 65% on a
test asking them to write SQL queries [7].

IX. RELATED WORK

Our paper deals heavily with program synthesis, the creation of programs based on underspecified specifications.
Many synthesis techniques that involve demonstrations exist in different fields. In particular, Gulwani has explored

22

this problem in string transformations [8] and unstructured spreadsheet tables [10].

There has also been work in the database community on generating queries based on user inputs. For example,
Zloof created a graphical user interface to database systems that allowed users update the database and query it
using examples in Query by Example [5]. His system was implemented in an entirely different fashion and required
much more involvement from the user.

Query by Output [6] tries to find a class of queries that, when executed on a given database, produce the same
given output. Their goal is to simplify the user’s input query and to educate the user on the database schema
by providing the user alternative, instance-equivalent queries. Our goal is different from theirs and we synthesize
queries based on incomplete outputs, whereas they find projection, selection, and join queries based on complete
outputs.

Das Sarma et. al. in Synthesizing Views Definitions From Data [1] attempts to synthesize queries whose outputs
are close to a given output (or view) on a single relational table, with no joins, projections, or set operations.

DataPlay [2] is a query tool integrated into databases to simplify query creation for users. It introduces graphical
representations of queries that the user can directly manipulate. It also builds new queries based upon user-specified
constraints. From these queries, DataPlay shows the user its results, which the user can mark with ’want out’ and
’keep in’ labels. DataPlay will then find a new query based on these specifications with the smallest change to
its last query. Quicksilver differs from DataPlay in several aspects. Quicksilver is designed to operate on various
formats of tabular data, not just databases. Quicksilver also has a much simpler demonstrations grammar, whereas
DataPlay’s graphical query language is somewhat complex, presenting a significant learning curve to the user.
Quicksilver’s online nature and touch-compatibility allow for the tool to be used in much wider situations as well.

Wrangler [9] is an online data transformation tool. A user can upload a table to this tool, which then suggests
transformation operations to the user. The interactions between the user and the tool involve the user selecting
areas of the table, and then executing suggested operations from the tool. Wrangler is different from our tool in its
language of demonstrations and transformations. We focus on relational transformations, whereas Wrangler focuses
on operations such as reshaping tables and splitting data.

Cheung et. al. developed a code analysis algorithm called QBS [3]. QBS transforms fragments of application
logic into SQL queries in order to reduce the amount of data sent from databases to applications. It could also
help the database optimize these operations. QBS is related to Quicksilver somewhat in its synthesis of queries,
however its inputs and applications are vastly different.

X. CONCLUSION

In this paper we presented an online tool that synthesized relational algebra from user demonstrations. We
discussed the grammar of demonstrations, the scope of our generated queries, algorithms behind the tool, and
limitations that we accepted. There is still some work to be done on this subject, such as finding efficient ways
to overcome the limitations of our approach. Another interesting avenue of research would be to find out how to
apply these concepts to tables that change frequently in a way that is easy for end-users to understand.

XI. ACKNOWLEDGMENTS

The authors would like to acknowledge the contributions of Bjoern Hartmann.

REFERENCES

[1] Anish Das Sarma, Aditya Parameswaran, Hector Garcia-Molina, and Jennifer Widom. 2010. Synthesizing view definitions from data.
In Proceedings of the 13th International Conference on Database Theory (ICDT ’10), Luc Segoufin (Ed.). ACM, New York, NY, USA,
89-103.

23

[2] Azza Abouzied, Joseph Hellerstein, and Avi Silberschatz. 2012. DataPlay: interactive tweaking and example-driven correction of graphical
database queries. In Proceedings of the 25th annual ACM symposium on User interface software and technology (UIST ’12). ACM,
New York, NY, USA, 207-218.

[3] Cheung, Alvin, Armando Solar-Lezama, and Samuel Madden. ”Optimizing Database-Backed Applications with Query Synthesis.” (2013).
[4] M. Tamer Özsu; Patrick Valduriez (2011). Principles of Distributed Database Systems (3rd ed.). Springer. ISBN 978-1-4419-8833-1.
[5] Moshé M. Zloof. 1975. Query-by-example: the invocation and definition of tables and forms. In Proceedings of the 1st International

Conference on Very Large Data Bases (VLDB ’75). ACM, New York, NY, USA, 1-24.
[6] Quoc Trung Tran, Chee-Yong Chan, and Srinivasan Parthasarathy. 2009. Query by output. In Proceedings of the 2009 ACM SIGMOD

International Conference on Management of data (SIGMOD ’09), Carsten Binnig and Benoit Dageville (Eds.). ACM, New York, NY,
USA, 535-548.

[7] Reisner, P., Boyce, R.F., and Chamberlin, D.D. Human factors evaluation of two data base query languages - Square and Sequel. In
Proc. Nat. Computer Conf., AFIPS Press, Arlington, Va., 1975, pp. 447-452.

[8] Rishabh Singh, Sumit Gulwani: Learning Semantic String Transformations from Examples. PVLDB 5(8): 740-751 (2012)
[9] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wrangler: interactive visual specification of data

transformation scripts. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’11). ACM, New
York, NY, USA, 3363-3372.

[10] W. Harris and S. Gulwani. Spreadsheet table transformations from examples. In Proceedings of the ACM SIGPLAN 2012 workshop on
Partial evaluation and program manipulation (PEPM ’12). ACM, New York, NY, USA, 43-52.

