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Abstract. In this paper, we present an automated techniguag i: Synthesizing
Wordlengths_Aitomatically Using_€sting and ihduction which uses a combi-
nation of Nelder-Mead optimization based testing, and étida from examples
to automatically synthesize optimal fixedpoint implemé&otaof numerical rou-
tines. The design of numerical software is commonly donagufibating-point
arithmetic in design-environments such as Matlab. Howebese designs are
often implemented using fixed-point arithmetic for speed efficiency reasons
especially in embedded systems. The fixed-point implentienteeduces imple-
mentation cost, provides better performance, and reduo@grpconsumption.
The conversion from floating-point designs to fixed-poinleds subject to two
opposing constraints: (i) the word-width of fixed-point égomust be minimized,
and (ii) the outputs of the fixed-point program must be adeurkn this paper,
we propose a new solution to this problem. Our techniquesttiieefloating-point
program, specified accuracy and an implementation cost lnaodeprovides the
fixed-point program with specified accuracy and optimal enpentation cost.
We demonstrate the effectiveness of our approach on a sgaofptes from the
domain of automated control, robotics and digital signacpssing.

1 Introduction

Numerical software forms a critical component of embeddestiesns such as robotics,
automated control and digital signal processing. Theseenigad routines have two
important characteristics. First, these routines areqafores that compute some math-
ematical functions designed ignoring precision issuesxefifipoint arithmetic. Design
environments such as Simulink/Stateflow and LabVIEW all@gign and simulation
of numerical routines using floating-point arithmetic tichisely resembles the more
intuitive real arithmetic. Second, the implementationrefde numerical routines run in
resource-constrained environments, requiring theimaigtition for low resource cost
and high performance. It is common for embedded platforniat@ processors with-
out floating-point units due to their added cost and perforcegpenalty. The signal
processing/control engineer must thus redesign her fipgitaint program to instead
usefixed-point arithmeticEach floating-point variable and operation in the original
program is simply replaced by a corresponding fixed-poiniatéde and operation, so
the basic structure of the program does not change. The fpiak of the redesign pro-
cess is to find theptimal fixed-point typewiz., the optimal wordlengths (bit-widths) of
fixed-point variables, so that the implementation on théfpia is optimal — lowest
cost and highest performance andthe resulting fixed-point program is sufficiently



accurate. The following novel contributions are made i3 théiper to address this
problem:

— We present a new approach for inductive synthesis of fixedtpoograms from
floating-point versions. The novelty stems in part from ose wf optimization:
we not only use optimization routines to minimize fixed-gaypes (bit-widths of
fixed-point variables), as previous approaches have, botsiiow how to use an
optimization oracle to systematically test the program gederate input-output
examples for inductive synthesis.

— We illustrate the practical effectiveness of our techniqngrograms drawn from
the domains of digital signal processing and control theleoy the control theory
examples, we not only exhibit the synthesized fixed-poiogpams, but also show
that these programs, when integrated in a feedback loopthéthest of the system,
perform as accurately as the original floating-point versio

2 Preliminaries

Floating-point arithmetic [8] is a system for approximgtegpresenting real numbers
that supports a wide range of values. It approximates a tgaber using a fixed num-
ber of significant digits scaled using an exponent. The figagioint system is so called
because the radix point cloatanywhere relative to the significant digits of the num-
ber. This is in contrast to fixed-point arithmetic [25] in whithere are a fixed number
of digits and the radix point is also fixed. Due to this feafidloating-point repre-
sentation can represent a much wider range of values witkaime number of digits.
The most common floating-point representation used in céenpus that defined by
the IEEE 754 Standard [1]. The storage layout of the floatingit numbers consist of
three basic components: the sign, the exponent, and théssenthe storage layout of
the single-precision and double-precision floating poumhbers is presented in Table 1

— Thesign bitis 0 for a positive number antl for a negative number. Flipping the
value of this bit flips the sign of the number.

— The mantissa also known as the significand, represents the precisianobithe
number. It is composed of an implicit leading bit and the fi@atbits. In order to
maximize the quantity of representable numbers, floatimigtpumbers are typi-
cally stored with the radix point after the first non-zeroiditn base2, the only
possible non-zero digit i$. Thus, we can just assume a leading digit of 1, and
don’t need to represent it explicitly. As a result, the mssdihas effectivel§4 bits
of resolution, by way o£3 fraction bits in single-precision floating-point numbers,
and53 bits of resolution, by way 052 fractional bits in double-precision.

— Theexponentield needs to represent both positive and negative expsnémdo
this, a bias is added to the actual exponent in order to gedttited exponent. For
IEEE single-precision floats, this valueli87. Thus, an exponent @f means that
127 is stored in the exponent field. A stored value206 indicates an exponent of
(200 — 127), or 73. Exponents of-127 (all 0s) and+128 (all 1s) are reserved for
special numbers. For double precision, the exponent field ksts, and has a bias
of 1023.

Floating-point solves a number of representation probl&med-point has a fixed win-
dow of representation, which limits it from representingyarge or very small num-
bers. Floating-point, on the other hand, employs a sortlafifgy window” of precision



| Sign| Exponent | Fraction |Bias

Single Precisiofl [31]] 8 [30 — 23] [23 [22 — 00]] 127

Double Precisiofi [63]]11 [62 — 52]|52 [51 — 00][1023
Table 1: Floating-point Number Layout

appropriate to the scale of the number. The range of positigéng-point numbers can
be splitinto normalized numbers (which preserve the fidbjsion of the mantissa), and
denormalized numbers. The denormalized numbers do notarairaplicit leading bit
of 1 and allow representation of really small numbers but witly anportion of the
fraction’s precision. The exponent of & (—127) and all1s (128) are reserved for
denormalized numbers and representing infinity respdgtikecomplete discussion on
the semantics of floating-point operations can be founderBEE 754 Standard [1]. A
floating-point unit (FPU) is used to carry out operations oatfhg-point numbers such
as addition, subtraction, multiplication, division andiace root. FPUs are integrated
with CPUs in computers but most embedded processors do wettaadware support
for floating-point operations. Emulation of floating-poaygerations without hardware
support can be very slow. Inclusion of FPUs also increaseptiver consumption of
the processors. This has made the use of fixed-point aritbiwety common in em-
bedded systems. In spite of the benefits of floating-poittaetic, embedded systems
often use fixed-point arithmetic to reduce resource costilapdove performance. A
fixed-point number consists of a sign mode bit, an integergrat a fractional part. We
denote the fixed-point type of a variahteby fx7(x). Formally, a fixed-point type is a
triple:

(Signedness, IWL, FWL).

The sign mode biSignedness is 0 if the data is unsigned and isif the data is
signed. The length of the integer part is called the integerdVength {wL) and the
length of the fractional part is called the fractional wendlyjth £WL). The fixed-point
wordlength @L) is the sum of the integer wordlength and fractional wordtenthat
is, WL = IWL + FWL. A fixed-point number with fractional word lengtB{L) is scaled
by a factor of1 /2F"=. For example, a fixed point numb@t110 with 0 asSignedness

, integer wordlength of 3 and fractional wordlength of 2 esgantsi4 x 1/22, that is,
3.5. Converting a fixed-point number with scaling factor R to thueo type with scaling
factor S, requires multiplying the underlying integer by Rialividing by S; that is,
multiplying by the ratio R/S. For example, convertidgl 10 with 0 asSignedness,
integer wordlength of 2 and fractional wordlength of 2 intbix@d-point number with
0 asSignedness, integer wordlength of 2 and fractional wordlength of 3 regsimul-
tiplying with 23 /22 to obtain011100. If the scaling factor is to be reduced, the new
integer will have to be rounded. For example, convertingstiiae fixed-point number
01110 to a fixed-point number with fractional wordlength@&nd integer wordlength
of 2 yields011, that is,3 which is obtained by rounding down frosn5. The operations
supported by fixed-point arithmetic are the same as thoseifidating-point arithmetic
standard [1] but the semantics can differ on custom hardwareexample, the round-
ing mode for arithmetic operations could be different, damelresult could be specified
to saturate or overflow/underflow in case the wordlength cdirdable is not sufficient
to store a computed result. One complete semantics of fisgtt-@peration is provided
with the Fixed-point Toolbox in Matlab [2]. The range of th&efil-point number is



much smaller compared to the range of floating-point numioethe same number of
bits since the radix point is fixed and no dynamic adjustmémpirecision is possible.
Translating a floating-point program into fixed-point pragris non-trivial and requires

[Number systems withL = 32] Range [Precision
Single-precision Floating-poifit 10~"*®° to 10°%°3| Adaptivé
Fixed-point typex(1, 8, 24) —10*" to 10t | 1077
Fixed-point typex(1, 16, 16) —10%"? to 10777 | 10”152
Fixed-point typex(1, 24, 8) —10%% t010%%% | 107 2%

Table 2: Range o$2 bit fixed-point and floating-point numbers

careful consideration of loss of precision and range. Tteger wordlengths and frac-
tional wordlengths of the fixed-point variables need to beftdly selected to ensure
that the computation remains accurate to a specified thigesho

3 Problem Definition

We introduce a simple illustrative example to explain thelgbem of synthesizing an
optimal fixed-point program from a floating-point programgahen present the formal
problem definition.

3.1 Floating-point Implementation

Given a floating-point program, we need to synthesize fixadiptype for each
floating-point variable.

Example 1: The floating-point program in this example 1 takesdius as the
input, and computes the correspondiga of the circle. Notice that the fixed-point
program is essentially identical to the floating-point v@nsexcept that the fixed-point
types of variablesnypi,radius,t and area must be identified. Recall that the
fixed-point type is a triple(s;, iwl;, fwl;) for j-th variable wheres; denotes the
Signedness of the variablejiwl; denotes the integer wordlength afll ; denotes the
fraction wordlength. We usEy;(X) to denote the floating-point program with inputs
X = (z1,22,...,2n). Frz(X, fx7) denotes the fixed-point version of the program,
where the fixed-point type of a variable ¢ X is fx7(z). Note that the fixed-point
types inF, (X, fx7) are defined by the mappirfgr.

3.2 Input Domain

The context in which a fixed-point prografiy, (X, fx7) is executed often provides a
precondition that must be satisfied by valid inp(ts, zo, ..., z,). This defines the



Procedure 1Floating-point program to compute circle area
Input: radius
Output: area

doublemypi, radius, t, area

mypi = 3.14159265358979323846

t = radius X radius

area —mypi X t

return area

Procedure 2Fixed-point program to compute circle area
Input: radius, (sj,iwl;, fwl;) forj =1,2,3,4
Output: area

fx(s1,iwly, fwli) mypi

fx(s2,iwlz, fwlz) radius

fX<S37 in37 le3> t

fx(sa4,iwly, fwls) area

mypi = 3.14159265358979323846

t = radius X radius

area = mypi X t

return area

input domain denoted bpom(X).

Example 2: In our example of computing area of a circle, suppose thatneealy
interested in the radii in the rang@1, 2.0). Then, the input domaiom (radius) is

radius > 0.1 Aradius < 2.0

3.3 Correctness Condition for Accuracy

The correctness condition specifies an error funclon(Fy;(X), Fr.(X, fx7)), and

a maximum error thresholthxError. The error function and error threshold together
define a bound on the “distance” between outputs generatddebjoating-point and
fixed-point programs respectively. Accuratefixed-point program is one whose error
function lies within the error threshold for all inputs iretmput domain. Some common
error functions are:

e Absolute difference between the floating-point functior dixed-point function:
[Fi(X) = Fra (X, £x7)|
e Relative difference between the floating-point functiord dixed-point function:
Fri(X)—Fro (X, fx7)
Fpi(X)

e Moderated relative differenc%.F -“(););(};(f')’fr);’f"” . This approaches the relative
difference forFy;(X) >> ¢ and approaches a weighted absolute difference for
Fn(X) << 0. When Fy;(X) can be zero for some values &f, the moderated
relative difference remains bounded unlike the relatiiiecBnce which becomes
unbounded.




The correctness condition for accuracgquires that for all inputs in the provided
input domainDom(X), the error functionErr(Fy(X), Fr. (X, fxT)) is below the
specified thresholdaxError; i.e.,

VX € Dom(X) . Err(Fp(X), Frs (X, fx7)) < maxError

Example 3:In our running example of computing area of a circle, the refuaction
is chosen to be relative difference, the error thresloldd, and thus the correctness
condition isVradius, s.t. radius > 0.1 A radius < 2.0

Fyi(radius) — Fy,(radius, fxr)

<0.01
Ffl (radius) -

3.4 Implementation Cost Model

The cost modelof the fixed-point program is a function mapping fixed-point
types to a real number. For a given fixed-point progréim (X, fxr), let T =
{t1,1t2,...,t;} be the set of fixed-point program variables with correspogdypes
{fx7(t1), fx7(t2),...,fx7(t;)}. Then the cost model (or simpéps) of F, is a func-
tion

cost : (fx7(t1), fx7(t2),...,fx7(tx)) = R
In practicecost is often just a function of the total wordlength&.(= IWL + FWL) of
the variables. It can incorporate hardware implementatietrics such as area, power
and delay. A number of cost models are available in the titeed17, 18, 5, 6], and all
of these can be used in our approach.
Example 4: The cost model proposed by Constantinides et al [6] for thaing exam-
ple yields the following cost function. We use this cost madell our examples.

cost(fx7(mypi), fx7(radius), fx7(t), fx7(area)) =

cdelay(WL(mypi)) + cmul(WL(radius), WL(radius), WL(t))
+cmul (WL(mypi), WL(t), WL(area)) , where
cdelay(l) =1+ 1 and cmul(ly,l2,1) = 0.6 X (I1 + 1) *lo — 0.85 % (Iy + 12 — 1)

The area of a multiplier grows almost linearly with both theefficients and the
data wordlength. The first term in the Constantinides moeletesents this cost. The
second term represents the area cost of computational elemegjuired only for carry
propagation. The coefficients6 and0.85 were obtained through least-squared fitting
to area of several hundred multipliers of different coedfitivalue and width [6].

3.5 Problem Definition

Definition 1 (Optimal  Fixed-point Types Synthesis). The optimal fixed-
point types synthesis problem is as follows. Given a flogtioigt program
Fro(X,fx7(T)) with variables 7', an input domain Dom(X), a correct-
ness conditionErr(Fy (X)), Fr.(X,fx7(T))) < maxError, and a cost model
cost(fxr(t1), fx7(t2),...,fx7(t;)), the optimal fixed-point types synthesis problem
is to discover fixed-point types

fx7(T) = {fx77(t1), fx77(t2), ..., fx7" (tx)}



such that the fixed-point prograf; (X') with the above types for fixed-point variables
satisfies the correctness condition for accuracy, that is,

(a) VX € Dom(X) . Err(Fr(X), Fre(X, fx7"(T))) < maxError

and has minimal cost with respect to the given cost functioargg all fixed-point types
that satisfy condition (a), that is,

(b) fx* =  argmin  cost(fx7 (7))

fx7 satisfies (a)

Our goal is to automated this search for optimal fixed-pojipes. We illustrate this
problem using the running example below.

Example 5: In our running example of computing therea of a circle we need
to discoverfxr™ (mypi), fx7* (radius), fx7*(t) andfxr " (area) such that

(a) the fixed-point program with the given fixed-point typesisfies the correctness
condition; that isyradius, s.t., radius > 0.1 A radius < 2.0

Fyi(radius) — Fy.(radius, fx7")

<0.01
Fyi(radius) -

(b) and the cost is minimized; that is,

fxt* =  argmin  cost(fxT(mypi,radius,t,area))
fx7 satisfies (a)

We use this example to illustrate the trade-off betweenaodterror and how a human
might use trial and error to discover the correct wordleagthle vary the wordlength
of the variables. The integer wordlength is selected tochwwerflow and the remaining
bits are used for fractional wordlength.

Case 1(Figure 1):W L = 8 for all variablesfx7(mypi) = (0,2, 6), fx7(radius) =
0,1,7),fx7(t) = (0,2,6), fx7(area) = (0,4, 4). Cost is81.80.

Case 2 (Figure 2): WL = 12 for all variables. fxr(mypi) =
(0,2,10), fx7(radius) = (0,1, 11), fx7(t) = (0,2, 10), fx7(area) = (0,4, 8). Cost
is179.80.

Case 3 (Figure 3): WL = 16 for all variables. fxr(mypi) =
(0,2,14), fx7(radius) = (0,1,15),fx7(t) = (0,2,14),fxr(area) = (0,4,12).
Cost is316.20.

As we will show in the next section, our approach computesifpxeint types that
meet the accuracy threshold and yield a cost of dol.65, which, while being less
than the cost in Case 1, satisfies the correctness critékimiChse 2. In the following
section, we discuss our automated approach to solve thiggmno

4 Our Approach

A central idea behind our approacivati is to identify a small set dhterestinginputs
S(X) using testing from the input domainom (X)) such that the optimal implementa-
tion found using induction that satisfies the correctnesslition for the inputs inS(X)
will be optimal and correct for all inputs in the given inpurdain Dom(X).
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Fig. 2: WL = 12. Error threshold ab.01 is violated.

The top-level synthesis algorithm is presented in Proa@uWL,, .. iS an upper
bound on wordlengths beyond which it is non-optimal to useftked-point version.
The algorithm starts with a randomly selected set of exaslérom the given input
domain. Then, a fixed-point implementation that satisfiesabcuracy condition for
each of these inputs and is of minimal cost is synthesizewyukie routineptInduce.

If no such implementation is found, the algorithm repaoxtseAsIBLE. Otherwise, the
testing routinecestErr checks whether the implementation fails the correctness co
dition for any input. If so, a set of inputBad’ on which the implementation violates
the correctness condition are added to theSetised for synthesis, and the process
is repeated. If the correctness condition is satisfied, ékalting fixed-point types are
output. In the rest of this section, we describe the main amapts of our approach in
detail, including the theoretical result.



Absolute Difference

iy
i i
A Y

06 08 1 12 14

Input

-3
Q
2 10210
g 8
5 6 1
g 4 ]
£ 2- 4
% ATl o b " L 1 1 L L 1
22 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Input

Fig. 3:WwL = 16. Error threshold ab.01 is not violated.

4.1 Synthesizing Optimal Types for a Finite Input Set

TheoptInduce function (see Procedure 4) is used to obtain optimum fixadtpypes
such that the fixed-point program with these types satisfiesorrectness condition
for a finite input setS and has minimal cost. First, the floating-point prograim is
executed for all the inputs in the samplend the range of each variableas well as its
Signedness is recorded by the functiongtRange andisSigned respectively. Then,
the integer wordlengtAWL sufficient to represent the computed range is assigned to
each variable; and theSignednessis 1 if the variable takes both positive and negative
values, and otherwise. If the fixed-point program with maximum wordI#m&WL,,, ...
fails the correctness condition, we conclude that the ®giths not feasible and return
L. If not, we search for the wordlength with minimum cost ggtigg the correctness
condition using our optimization oract®s. The resultis used to compute the fractional
wordlengths, and the resulting fixed-point types are retdrn

More precisely, Os solves the following optimization problem ovefxr:
Minimize cost(fx7) s.t.

/\ Err(Fy(z,fx7), Fi(x)) < maxError 1)
zeS

Let us reflect on the nature of the above optimization problEne overall synthesis
algorithm might make several calls 8 for solving the optimization problem for
different sets of inputs and hena®g must be a fast procedure. But it is a discrete
optimization problem with a non-convex constraint spagepdlem class that is known
to be computationally hard [7]. This rules out any compotadily efficient algorithm
to implementO¢ without sacrificing correctness guarantees. Since theespgfganssible
types grows exponentially with the number of variablestdxforce search techniques
will not scale beyond a few variables. Satisfiability sob/ean also not be directly
exploited to search for optimal wordlengths since the exigal quantification is over
the types and not the variables. The arithmetic operatue théferent semantics when
operating on operands with different types and hence, tlyanay to encode this search
problem as a satisfiability problem is to case-spkhaustivelyon all possible types



Procedure 30verall Synthesis Algorithmswati
Input: Floating-point progrand’,,
Fixed-point progranf’s, with fixed-point variableg’",
Domain of inputsDom, Error functionErr,
maximum error thresholflaxError, Cost Modelcost,
maximum wordlength&L 4.
Output: Fixed-point typefxr for variablesT
Or INFEASIBLE
S° = random sample fronfom, Bad® = S°,i =0
while Bad® # 0 do
t=1+1
S =81 U Bad™!
fxri = optInduce(Fyp, Ffy, Dom, Err,maxError,
cost, Whonaz, S°)

if fx7' = 1 then
return INFEASIBLE
end if
Bad' = testErr(F},, Fy., fx7", Dom, Err,maxError)
end while
return fxr* = fxr’

(word-lengths), where each case encodes the fixed-poigrgmowith one possible
type. The number of such cases is exponential in the numbtreofariables in the
program under synthesis and hence, SAT problems will be sbbmes exponentially
large in size. Further, one would need to invoke SAT solveutiple times in order
to optimize the cost function. Thus, satisfiability solviwguld be a wrong choice to
address this problem. Further, the space of possible typasd not totally ordered
and hence, binary search like techniques would also not.vixanka binary search like
technique to work, we will need to define a domination ordgmer the types which
has three properties. Firstly, it is a total ordering relatiSecondly, if a particular type
assignment satisfies the correctness condition for allt;fiien all dominating types
satisfy the correctness condition for all inputs. Thirdheg cost function is monotonic
with respect to the domination ordering relation. In geheings may not be feasible for
any given floating-point program and cost function. HencejmplemeniOg using a
greedy procedurgetMinCostWL presented in Procedure 5.

4.2 Verifying a Candidate Fixed-Point Program

In order to verify that the fixed-point prograii, (X, fx7) satisfies the correctness
condition, we need to check if the following logical formugasatisfiable.

3X € Dom(X) Err(Fre(X,fx7), Ffp(X)) > maxError 2)

If the formula is unsatisfiable, there is no input on which fiked-point program vio-
lates the correctness condition.

For arbitrary (possibly non-linear) floating-point and fixgoint arithmetic opera-
tions, it is extremely difficult to solve such a problem ingtfee with current constraint
solvers. Instead, we use a novel optimization-based appriwaverify the candidate
fixed-point program. The intuition behind using an optintiza-based approach is that



Procedure 40ptimal Fixed-Point Types Synthesigst Induce
Input: Floating-point progran,,
Fixed-point progrant’s, with fixed-point variable§”, Domain of inputsDom, Error function
Err,
maximum error thresholtlaxError, Cost Modelcost,
max wordlengthd/L,,,q., Input S
Output: Optimal wordlengthsiL for inputsS or L
for all fixed-point variable; in Fy, do
IWL(¢;) = [log(getRange(ti, Fi,S) + 1)]
Signedness(t;) = isSigned(ts, Fyi, S)
end for
if WLinaz < IWL then
return L
end if
fx7 = (Signedness, IWL, WLyae — IWL)
if Err(Frp(z), Fra(x, fx7)) > maxError then
return L
end if
WL = getMinCostWL(Fyp, Fyz, Dom, Err,maxError,
cost, WLomax, S*, IWL, Signedness)
return fxr = (Signedness, IWL, WL — IWL)

Procedure 5getMinCostWL
Input: Floating-point progran,,
Fixed-point progranf’s, with fixed-point variableg’",
Domain of inputsDom, Error functionErr,
maximum error threshol¢hax Err, Cost Modelcost,
max wordlengthd/L,,,q., Input S
Output: Optimal wordlengths$iL
valecandWL = {WLyae }
while valcandWL is not emptydo
WL = argmin cost(vcWL)
veWLEvalcandWL
fxT = (Signedness, IWL, WL — IWL)
candWlL = (), valcandWL = ()
for all fixed-point variable; in Fy, do
WL (§) = WL(j) V9§ # i, WL*™ (i) = WL(i) — 1
WL (§) = WL(§) V9§ # 4, WL*T(3) = WL(4) + 1
candWL = candWL U {WL'~ ,WL'"}
end for
for all cand in candWL do
candfxT = (Signedness, IWL, candWL — IWL)
if Err(Frp(2), Frz(z, cand)) < mazErr Vx € S
and cost(candfx7) < cost(fxr) then
valcandWL = valcandWL U {cand}
end if
end for
end while
return fxr




the error function is continuous in the inputs or with verwfdiscontinuities [19, 4],
and hence, optimization routines can easily find inputs Wwii@ximize error function
by starting from some random input and gradually adjustiregdutput to increase the
value of the error function. The optimization oracle is used to maximize the error
function Err(Fy, (X, fx7), Ff, (X)) over the domaimDom(X). If there is no input
X € Dom(X) for which the error function exceedmxError, the fixed-point pro-
gram is correct and we terminate. Otherwise, we obtain amplainput on which
the fixed-point program violates the correctness condifidultiple inputs can also be
generated where they exist.

In practice, with the current state-of-the-art optimiaatroutines, it is difficult to
implementOy to find a global optimum. Instead, we use a numerical optititina
routine based on the Nelder-Mead method [21] which can lesaditrary non-linear
functions and generates local optima. Procedure 6 detimesErr which invokes the
Nelder-Mead routine (indicated byi'gmaxlocal”). This routine requires one to supply
a starting value o', which we generate randomly. To find multiple inputs, we ke/o
the routine from from different random initial points anctoed all example inputs
on which the fixed-point program violates the correctnesslitmn. Since a global
optimum is not guaranteed, we repeat this searctittempts times before declaring
that the fixed-point program is correct.

Procedure 6Verification RoutinecestErr
Input: Floating-point progran,,
Fixed-point progran¥’, Fixed-point typefx,
Domain of inputsDom, Error functionErr,
maximum error thresholtlaxError
Output: Inputs Bad on which F;, violates correctness condition
Bad =
while ¢ < maxAttempts do
i =1+ 1, Xo = random sample fronbom
Xecana = argmaxlocal(Err(Frp(X), Fra (X, £x7)), Xo)
X

if Err(Frp(Xcand), Fra(Xecand, £x7)) > maxError andX € Dom then
Bad = Bad U{X}
end if
end while

4.3 lllustration on Running Example

The initial sampleS® is of size 10. maxAttempts in the verification routine was
also set to10. The number of Our algorithm took 4 iterations. We record ithe
termediate implementations produced aynthMinCost in each of the last 3 iter-
ations taken by our algorithm. The initial selected rand@amgle is of sizel0 and

the MAX ATTFEM PTS was set tol0. The number of samples used in each subse-
quent step of iteration after adding examples discovereddatErr procedure was
18,22 and 34. Figure 4,5 and 6 illustrates the error using the interntediaple-
mentations and the final implementation produced by ourcr. The wordlengths

in Figure 4 aremypi(2,3), radius(1,8), t(2,11), area(4,11), those in Figure 5
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are mypi(2,5), radius(1,8), t(2,11), area(4,12) and in Figure 6 arenypi(2,3),
radius(1,9), t(2,11), area(4,10). We observe that the number of inputs violating
correctness constraint reduces after each iteration. illdrate how our algorithm
works by identifying a few representative inputs violatoggrectness condition in each
iteration and adding that to the set of examples for which yvetesize the least cost
implementation.

4.4 Theoretical Results

The following theorem summarizes the correctness and afititguarantees of our
approach.

Theorem 1. The synthesis procedure presented in Procedure 3 is gusedrtb syn-
thesize the fixed-point program which is of minimal cost aatisBes the correctness
condition for accuracy if optimization oracl€3s and Oy find globally-optimal solu-
tions (when they exist).



Fig. 6: Iteration 4 (last)

Proof. We first prove correctness and then optimality of the obthsmution. Consider
Equation 2:

3X € Dom(X) Err(F.(X,fx7), F§p(X)) > maxError

If Oy finds globally-optimal solutions, it will find th& € Dom(X) that maximizes
Err(Fr (X, fx7), Fr,p (X)), and hence determine where or not Equation 2 is satisfi-
able. Thus, the correctness condition for accuracy isfeatis

Next, letfx7* (# L) be the fixed-point type returned by Procedure 3. Let us assum
that there exists a fixed-point tyfier’ with a cost lower thatfix~* which also satisfies
the correctness condition:

VX € Dom(X) Err(F, (X, fx7"), Ff,(X)) < maxError
A cost(fx7') < cost(fxr™)

Hence, for anyD C Dom(X),

VX € D Err(Fr (X, fx1'), Ffp(X)) < maxError
A cost(fx7') < cost(fxr™)

But fx7* is the solution generated by applyit@@s to the optimization problem of
Equation 1:

Minimize cost(fx7) s.t.

/\ Err(Fy(z,fx7), Fi(x)) < maxError (3
€S

Since Og is guaranteed to generate globally-optimal solutiongjingetD = S, we
obtain a contradiction. Hence, there exists no fixed-pgipe fx7’ with a cost lower
than fx7* which also satisfies the correctness condition. Hefice’ is the optimal
correct solution.



As noted earlier, it is difficult to implement ide&s and Oy (that find global op-
tima) with current SAT and optimization methods for arbigrloating-point programs.
Nonetheless, our experience with heuristic methods thatdical optima has been very
good. Also, improvements in optimization/SAT methods cmedlly be leveraged with
our inductive synthesis approach. In contrast, the cutesitniques for synthesizing
fixed-point versions of floating-point programs perform h&ic optimization over a
randomly selected set of inputs (see Sec. 6 for a detailedisifon). Such techniques
do not provide any correctness guarantees and the numbepwukineeded could be
much larger. Our approach systematically discovers a smatlber of example inputs
such that the optimal fixed-point program for this set yidlst for the entire input
domain.

5 Experiments

Apart from the running example, we present case studies @R and control
systems to illustrate the utility of the presented synthegiproach. Our technique
was implemented in Matlab, and Nelder-Mead implementadicailable in Matlab as
fminsearch function was used for numerical optimization. We use thestamtinides
et al [6] cost model.

5.1 Running Example

We illustrate the synthesis approach (more details in [pAdsented in Section 4 us-
ing the running example. Our algorithm usetlexamples and needddterations. To
evaluate our approach, we exhaustively simulated the g&tefixed-point program
on the given domain(1 < radius < 2) at intervals 0f0.0001. The is presented in
Figure 5.1.

Fig. 7: Our Approach on Running Example.

As a point of comparison, we also show the result of syntliregi fixed-point pro-
gram using theptInduce routine with100 inputs ¢ times as many as our approach)
selected uniformly at random (Figure 5.1). The horizorited In the plots denotes the
maximum error threshold df.01 on the relative difference error function. The cost of
the fixed-point program synthesized with random samplig i85, and the fixed-point



Fig. 8: Running Example Using Random Inputs.

types of the variables afx7(mypi) = (0,2, 3), fxr(radius) = (0, 1,8), fx7(t) =
(0,2,10) andfxr(area) = (0,4, 8). Notice, however, that it is incorrect for a large
number of inputs. In contrast, the cost of the implementapieoduced using our tech-
nique is104.65, and the fixed-point types of the variables &e (mypi) = (0,2, 3),
fx7(radius) = (0, 1,9), fx7(t) = (0,2, 11) andfxr(area) = (0,4, 10).

5.2 Infinite Impulse Response (IIR) Filter

The first case study is an lIR filter which is used in digitahsifprocessing applications.
Itis a first-order direct form-I11 lIR filter with the schematshown in Figure 9. The con-
stants are;; = —0.5,00 = 0.9 andbl = 0.9. The fixed-point variables are identified in
the schematic. We use our synthesis technique to discogeappropriate fixed-point
types of these variables. The input domain used in synthesi® < input < 2.
The correctness condition for accuracy is to ensure thatetlagive error between the
floating-point and fixed-point program is less thah.

b0
t1 t4 t7 t8
—{ + V = X —> —
input output
t3 t6
t5
-al bl

Fig. 9: lIR Filter Schematic



Input
— Floating—point output
-~ ~ Fixed—-point output

Signal
o N

|
N
T

Relative Difference

Fig. 10: IR Filter Using Floating-point and Fixed-poinh the top plot, the floating-point and
fixed-point outputs are virtually superimposed on eachrothe

In order to test the correctness of our implementation, veel f@8 common input
signal to both the IIR filter implementations: floating-poiersion and the fixed-point
version obtained by our synthesis technique. The inpugsigra linear chirp front) to
£s Hzin1 second.

|4 F
input = (1 —271%) x sin(r x 78 x t2)

whereF's = 256 andt = 0to1 — % and is sampled at intervals 9}; Figure 10
shows the input, outputs of both implementations and ttaivel error between the two
outputs. We observe that the implementation satisfies titrecoess condition and the
relative error remains belo® 1 throughout the simulation.

5.3 Finite Impulse Response (FIR) Filter

The second case study is a low pass FIR filter of order 4 with ciagfficients
0.0346, 0.2405,0.4499, 0.2405 and 0.0346. The input domain, correctness condition
and input signal to test the floating-point implementatiod aynthesized fixed-point
program are same as the previous case study. Figure 11 d@wptit, outputs of both
implementations and the relative error between the twoudstpNVe observe that the
implementation satisfies the correctness condition andetlagive error remains below
0.1 throughout the simulation.

5.4 Field Controlled DC Motor

The next case study is a field controlled DC Motor. It is a étassn-linear control
example from Khalil [15]. The system dynamics is describgthe following ordinary
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Fig. 11: FIR Filter Using Floating-point and Fixed-pointhd floating-point/fixed-point outputs
are virtually superimposed on each other.

differential equations.
Uy = Ryiy + Lfif
b = C1ijw + Laiq + Raia
Jo = Colflg — C3W
The first equation is for the field circuit withy, iy, R;, L; being its voltage, cur-
rent, resistance, and inductance. The variables,, R,, L, are the corresponding volt-
age, current, resistance, and inductance of the armatargétalescribed by the second
equation. The third equation is a torque equation for thétswih J as the rotor in-
ertia andcs as a damping coefficient. The termi yw is the back electromotive force
induced in the armature circuit, ang /i, is the torque produced by the interaction of
the armature current with the field circuit flux. In the fieldhtmlled DC motor, field
voltagew; is the control input whiley, is held constant. The purpose of the control is
to drive the system to the desired set point for the angulacitg w.
We can now rewrite the system dynamics in the following ndifiorem wherea =
iy m 2 pm e pm o= £, 0= d= 5.

if = —aif+u
iq = —big + p—cijw
w= Hifia — dw
We assume no damping, that ig,= 0 and set all the other constants, ¢, 0, p to 1.
The state feedback law to control the system is given by
_ O(a+b)ipiq+ Opiy — c@i?w
Oi, + ¢

where ¢ = 0.01 is added to denominator to avoid division Wy i, ap-
proaches0 at equilibrium. The corresponding floating-point code iowh be-
low.




Input: if,i.,w,d,p,c,e

Output: u
t1 =0 X i, t2=c+t1;t3=1/t2;t31 =a+b;
32 = i X ia;t33 = t31 X t32; t4 = 6 X t33; t4l = p X ig;
t5 =0 X t41;t6 = if X if; t61 = t6 X w; t62 = t61 X 0;
t7 =c X t62;t8 =t4 4+ t5;t9 =t8 —t7;u = t3 X t9;
return u

The system is initialized with field current = 1, armature current, = 1 and angular
velocityw = 1.

— fixed-point field current
floating-point field current

—— fixed-point armature current
floating-point armature current

—— fixed-point angular velocity
floating-point angular velocity

065, 002, 157,
0.015] 1565
064
0.01] 156
1
2 25 3 2 25 El 2 25 3

Variables

4 ) 6 8 10
Time

Fig. 12: DC Motor Using Floating-point and Fixed-point Cianiker with zoomed-in view for2
to 3 seconds.

The computed control law can be mathematically shown to becbby designers
who are more comfortable in reasoning with real arithmatioiot with finite precision
arithmetic. Its implementation using floating-point cortgtion also closely mimics the
arithmetic in reals but the control algorithms are often lenpented using fixed-point
computation on embedded platforms. We use our synthegigitpee to automatically
derive a low cost fixed-point implementation of the contesVlcomputing:. The input
domainis0 < i,,iy,w < 1.5. The correctness condition for accuracy is that the abso-
lute difference between the computed by fixed-point program and the floating-point
program is less tha.1.

Figure 12 shows the simulation of the system using the fix@dtpmplementa-
tion of the controller and the floating-pointimplementati@his end-to-end simulation
shows that fixed-point program generated by our techniqonéeaused to control the
system as effectively as the floating-point program. Thissitates the practical utility
of our technique. Figure 13 plots the difference betweerttimrol input computed by
the fixed-point program and the floating-point program. ks that the fixed-point
types synthesized using our approach satisfy the corresrendition, and the differ-
ence between the control input computed by the fixed-poihflaating-point program
is within the specified maximum error threshold(of. The number of inputs needed
in our approach was27. In contrast, the fixed-point types found usiégH(5X our ap-



proach) randomly selected inputs violate the correctnesdition for a large number
of inputs.

—Error with our Approach
— Error Using Random Inputs
- - Specified Threshold

5
Time

Fig. 13: Error in Control Input Using Fixed-point and Floatpoint Program

5.5 Two-Wheeled Welding Mobile Robot

The next case study is a nonlinear controller for a two-wée@lelding mobile robot
(WMR) [3]. The robot consists of two wheels and a robotic afiime wheels can roll
and there is no slippindz, y) represents the Cartesian coordinate of the WMR's center
point and¢ is the heading angle of the WMR. andw are the straight and angular
velocities of the WMR at its center point. The welding poinbadinates«,,, y.,) and

the heading angle,, can be calculated from the WMR’s center point:

Ty = —lsing
Yuw =y + lcoso
v = ¢
So, the equation of motion for the welding point is as follows
Ty = VCOSP — lwcos ¢ — isinqﬁ
Y = vsing — lwsin ¢ + icos¢
buw = w

The objective of the WMR controller is to ensure that the tdbacks a reference
point R. The reference point R moving with a constant vejoeftv,. on the reference
path has coordinatés.., y,-) and the heading angle.. The tracking error is the differ-
ence between the location of the robot and the reference. poin

e1 cos¢p sing 0 Ty — Top
es | = | —sing cos¢ 0 Yr — Yw
€3 0 0 1 (br - ¢w



The two control parameters in the model arandw. In order to ensure that the
error quickly converges t0, a nonlinear controller based on Lyapunov stability is as
follows:

v = l(w, + keeov, + kgsines) + v, coses + kieq
W = Wy + koeov, + k3 sines
wherek;, ko and ks are positive constants. Table 3 provides the numericalegabf

constants and initial values of the state variables fromeduail [3]. All lengths are in
meters, angle in radians and time in seconds.

Table 3: Numerical and Constant Values

Paramete¥alues|ParametelsValues

k1 4.2 l 0.15
ko 5000 l 0
ks 1 [ 7.5¢ — 3

Zr 0.280 Tw 0.270
Yr 0.400 Y 0.390
2 0 D 15

0.81

—Reference Welding Path

0.7r

0.6

0.4t

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 14: Reference Welding Line

We use our synthesis technique to automatically synthdsied-point program
computing both control inputs: andw. The error function used for is the relative

difference
Ufloating—point — Ufixzed—point

Ufloating—point
and the error function used faris the moderated relative difference

W floating—point — W fixed—point

Wfloating—point +0
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Fig. 16: Error in computing

whered = 0.001. The moderated relative difference is useful here sinGguing—point
can be0. We require that the difference values for both controlbmes less tha.1.
Figure 14 shows the reference line for welding and Figuretdws the distance of
the WMR from the reference line as a function of time for baikes: firstly, when the
controller is implemented as a floating-point program ardsdly, when the controller
is implemented as a fixed-point program synthesized usimgeminique. The robot
starts a little away from the reference line but quickly tstaracking the line in both
cases. Figure 16 and Figure 17 show the error between thmflgadint controller and
fixed-point controller for both control inputs:andw, respectively.

Table 4 summarizes the performance of our technique in tineciase-studies.
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Table 4: Performance

Case-studyRuntime (secondg} of Iterations
IIR Filter 268 5
FIR Filter 379 4
DC Motor u 4436 8
WMR v 2218 7
w 1720 4

6 Related Work

Previous techniques for optimizing fixed-point types arselobon statistical sampling
of the input space. These methods sample a large humber wsiapd heuristically
solve an optimization problem that minimizes implemewiagost while ensuring that
some correctness specification is met over the sampledsinpbe techniques differ
in in the heuristic search method employed, in the measumstf or in how accu-
racy of fixed-point implementation is determined. Sung ann24] use a heuristic
search technique which starts with the minimum wordlengipplémentation as the ini-
tial guess. The wordlengths are increased one by one tiéittoe falls below an accept-
able threshold. Han et al. [10, 11] use a gradient-basecds¢igusearch method which
starts with the minimum wordlength implementation as thahguess. The gradient
(ratio of increase in accuracy and increase in wordlengthspmputed for a set of
wordlength changes at each step and the search moves irr¢legah with maximum
gradient. Shi et al. [22] propose a floating-point to fixedrpoonversion methodology
for digital VLSI signal processing systems. Their approschased on a perturbation
theory which shows that the change to the first order is a fliceanbination of all
the first- and second-order statistics of the quantizat@sensources. Their technique
works with general specification critera, as long as thesdeaepresented as large en-
semble averages of functions of the signal outputs. For plgitihey use mean-squared
error (MSE) as the specification function. The cost of thelengentation is a quadratic
function. Monte Carlo simulation of a large number of inpwamples is used to for-
mulate a quadratic optimization problem based on pertimb#beory. In contrast, our



specification requires that the accuracy condition holdsfianputs and not just on an
average. Further, the cost function can be any arbitrargtiom for our technique and
need not be quadratic. Perhaps most importantly, our tqakrdoes not rely on apriori
random sampling of a large number of input values, insteadyusptimization to dis-
cover a small set ahterestingexamples which suffice to discover optimal fixed-point
implementation. Purely analytical methods [23, 16] basediataflow analysis have
also been proposed for synthesizing fixed-point prograraedan forward and back-
ward propagation in the program’s dataflow graph. The adwgad of these techniques
are that they do not rely on picking the right inputs for siatigdn, can handle arbitrary
programs (with approximation), and can provide corretigesrantees. However, they
tend to produce very conservative wordlength results. dtidel synthesis based on sat-
isfiability solving has been previously used for synthegjzirograms from functional
specifications. These approaches [13, 9] rely on constsaintng in much the same
way as we rely on optimization routines. However, these @gghes only seek to find
a correct program, without any notion of cost and optim@atiA central intuition in
our work is to exploit the nearly continuous nature of errordtion [20]. These results
were first reported in Chapter 4 of [12].

7 Conclusion

In this paper, we presented a novel approach to automatéoesys of fixed-point pro-

gram from floating-point program by discovering the fixedrptypes of the variables.
The program is synthesized to satisfy the provided coresstitondition for accuracy
and to have optimal cost with respect to the provided costehdtle illustrated our

approach on a set of case studies from digital signal protgasd control systems.
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