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Abstract. In this paper, we present an automated techniqueswati: Synthesizing
Wordlengths Automatically Using Testing and Induction, which uses a combi-
nation of Nelder-Mead optimization based testing, and induction from examples
to automatically synthesize optimal fixedpoint implementation of numerical rou-
tines. The design of numerical software is commonly done using floating-point
arithmetic in design-environments such as Matlab. However, these designs are
often implemented using fixed-point arithmetic for speed and efficiency reasons
especially in embedded systems. The fixed-point implementation reduces imple-
mentation cost, provides better performance, and reduces power consumption.
The conversion from floating-point designs to fixed-point code is subject to two
opposing constraints: (i) the word-width of fixed-point types must be minimized,
and (ii) the outputs of the fixed-point program must be accurate. In this paper,
we propose a new solution to this problem. Our technique takes the floating-point
program, specified accuracy and an implementation cost model and provides the
fixed-point program with specified accuracy and optimal implementation cost.
We demonstrate the effectiveness of our approach on a set of examples from the
domain of automated control, robotics and digital signal processing.

1 Introduction

Numerical software forms a critical component of embedded systems such as robotics,
automated control and digital signal processing. These numerical routines have two
important characteristics. First, these routines are procedures that compute some math-
ematical functions designed ignoring precision issues of fixed-point arithmetic. Design
environments such as Simulink/Stateflow and LabVIEW allow design and simulation
of numerical routines using floating-point arithmetic thatclosely resembles the more
intuitive real arithmetic. Second, the implementation of these numerical routines run in
resource-constrained environments, requiring their optimization for low resource cost
and high performance. It is common for embedded platforms tohave processors with-
out floating-point units due to their added cost and performance penalty. The signal
processing/control engineer must thus redesign her floating-point program to instead
usefixed-point arithmetic. Each floating-point variable and operation in the original
program is simply replaced by a corresponding fixed-point variable and operation, so
the basic structure of the program does not change. The tricky part of the redesign pro-
cess is to find theoptimal fixed-point types, viz., the optimal wordlengths (bit-widths) of
fixed-point variables, so that the implementation on the platform is optimal — lowest
cost and highest performance —and the resulting fixed-point program is sufficiently



accurate. The following novel contributions are made in this paper to address this
problem:

– We present a new approach for inductive synthesis of fixed-point programs from
floating-point versions. The novelty stems in part from our use of optimization:
we not only use optimization routines to minimize fixed-point types (bit-widths of
fixed-point variables), as previous approaches have, but also show how to use an
optimization oracle to systematically test the program andgenerate input-output
examples for inductive synthesis.

– We illustrate the practical effectiveness of our techniqueon programs drawn from
the domains of digital signal processing and control theory. For the control theory
examples, we not only exhibit the synthesized fixed-point programs, but also show
that these programs, when integrated in a feedback loop withthe rest of the system,
perform as accurately as the original floating-point versions.

2 Preliminaries

Floating-point arithmetic [8] is a system for approximately representing real numbers
that supports a wide range of values. It approximates a real number using a fixed num-
ber of significant digits scaled using an exponent. The floating-point system is so called
because the radix point canfloat anywhere relative to the significant digits of the num-
ber. This is in contrast to fixed-point arithmetic [25] in which there are a fixed number
of digits and the radix point is also fixed. Due to this feature, a floating-point repre-
sentation can represent a much wider range of values with thesame number of digits.
The most common floating-point representation used in computers is that defined by
the IEEE 754 Standard [1]. The storage layout of the floating-point numbers consist of
three basic components: the sign, the exponent, and the mantissa. The storage layout of
the single-precision and double-precision floating point numbers is presented in Table 1

– Thesign bit is 0 for a positive number and1 for a negative number. Flipping the
value of this bit flips the sign of the number.

– The mantissa, also known as the significand, represents the precision bits of the
number. It is composed of an implicit leading bit and the fraction bits. In order to
maximize the quantity of representable numbers, floating-point numbers are typi-
cally stored with the radix point after the first non-zero digit. In base2, the only
possible non-zero digit is1. Thus, we can just assume a leading digit of 1, and
don’t need to represent it explicitly. As a result, the mantissa has effectively24 bits
of resolution, by way of23 fraction bits in single-precision floating-point numbers,
and53 bits of resolution, by way of52 fractional bits in double-precision.

– Theexponentfield needs to represent both positive and negative exponents. To do
this, a bias is added to the actual exponent in order to get thestored exponent. For
IEEE single-precision floats, this value is127. Thus, an exponent of0 means that
127 is stored in the exponent field. A stored value of200 indicates an exponent of
(200− 127), or 73. Exponents of−127 (all 0s) and+128 (all 1s) are reserved for
special numbers. For double precision, the exponent field is11 bits, and has a bias
of 1023.

Floating-point solves a number of representation problems. Fixed-point has a fixed win-
dow of representation, which limits it from representing very large or very small num-
bers. Floating-point, on the other hand, employs a sort of “sliding window” of precision



Sign Exponent Fraction Bias
Single Precision1 [31] 8 [30− 23] 23 [22− 00] 127
Double Precision1 [63] 11 [62− 52] 52 [51− 00] 1023

Table 1: Floating-point Number Layout

appropriate to the scale of the number. The range of positivefloating-point numbers can
be split into normalized numbers (which preserve the full precision of the mantissa), and
denormalized numbers. The denormalized numbers do not havean implicit leading bit
of 1 and allow representation of really small numbers but with only a portion of the
fraction’s precision. The exponent of all0s (−127) and all1s (128) are reserved for
denormalized numbers and representing infinity respectively. A complete discussion on
the semantics of floating-point operations can be found in the IEEE 754 Standard [1]. A
floating-point unit (FPU) is used to carry out operations on floating-point numbers such
as addition, subtraction, multiplication, division and square root. FPUs are integrated
with CPUs in computers but most embedded processors do not have hardware support
for floating-point operations. Emulation of floating-pointoperations without hardware
support can be very slow. Inclusion of FPUs also increases the power consumption of
the processors. This has made the use of fixed-point arithmetic very common in em-
bedded systems. In spite of the benefits of floating-point arithmetic, embedded systems
often use fixed-point arithmetic to reduce resource cost andimprove performance. A
fixed-point number consists of a sign mode bit, an integer part and a fractional part. We
denote the fixed-point type of a variablex by fxτ (x). Formally, a fixed-point type is a
triple:

〈Signedness, IWL, FWL〉.

The sign mode bitSignedness is 0 if the data is unsigned and is1 if the data is
signed. The length of the integer part is called the integer wordlength (IWL) and the
length of the fractional part is called the fractional wordlength (FWL). The fixed-point
wordlength (WL) is the sum of the integer wordlength and fractional wordlength; that
is, WL = IWL+ FWL. A fixed-point number with fractional word length (FWL) is scaled
by a factor of1/2FWL. For example, a fixed point number01110 with 0 asSignedness
, integer wordlength of 3 and fractional wordlength of 2 represents14 × 1/22, that is,
3.5. Converting a fixed-point number with scaling factor R to another type with scaling
factor S, requires multiplying the underlying integer by R and dividing by S; that is,
multiplying by the ratio R/S. For example, converting01110 with 0 asSignedness,
integer wordlength of 2 and fractional wordlength of 2 into afixed-point number with
0 asSignedness, integer wordlength of 2 and fractional wordlength of 3 requires mul-
tiplying with 23/22 to obtain011100. If the scaling factor is to be reduced, the new
integer will have to be rounded. For example, converting thesame fixed-point number
01110 to a fixed-point number with fractional wordlength of0 and integer wordlength
of 2 yields011, that is,3 which is obtained by rounding down from3.5. The operations
supported by fixed-point arithmetic are the same as those in the floating-point arithmetic
standard [1] but the semantics can differ on custom hardware. For example, the round-
ing mode for arithmetic operations could be different, and the result could be specified
to saturate or overflow/underflow in case the wordlength of a variable is not sufficient
to store a computed result. One complete semantics of fixed-point operation is provided
with the Fixed-point Toolbox in Matlab [2]. The range of the fixed-point number is



much smaller compared to the range of floating-point numbersfor the same number of
bits since the radix point is fixed and no dynamic adjustment of precision is possible.
Translating a floating-point program into fixed-point program is non-trivial and requires

Number systems withWL = 32 Range Precision

Single-precision Floating-point± 10−44.85 to 1038.53 Adaptive
Fixed-point type:〈1, 8, 24〉 −102.11 to 102.11 10−7.22

Fixed-point type:〈1, 16, 16〉 −104.52 to 104.52 10−4.82

Fixed-point type:〈1, 24, 8〉 −106.93 to 106.93 10−2.41

Table 2: Range of32 bit fixed-point and floating-point numbers

careful consideration of loss of precision and range. The integer wordlengths and frac-
tional wordlengths of the fixed-point variables need to be carefully selected to ensure
that the computation remains accurate to a specified threshold.

3 Problem Definition

We introduce a simple illustrative example to explain the problem of synthesizing an
optimal fixed-point program from a floating-point program, and then present the formal
problem definition.

3.1 Floating-point Implementation

Given a floating-point program, we need to synthesize fixed-point type for each
floating-point variable.

Example 1: The floating-point program in this example 1 takesradius as the
input, and computes the correspondingarea of the circle. Notice that the fixed-point
program is essentially identical to the floating-point version, except that the fixed-point
types of variablesmypi, radius, t and area must be identified. Recall that the
fixed-point type is a triple〈sj, iwlj, fwlj〉 for j-th variable wheresj denotes the
Signedness of the variable,iwlj denotes the integer wordlength andfwlj denotes the
fraction wordlength. We useFfl(X) to denote the floating-point program with inputs
X = 〈x1, x2, . . . , xn〉. Ffx(X, fxτ ) denotes the fixed-point version of the program,
where the fixed-point type of a variablex ∈ X is fxτ (x). Note that the fixed-point
types inFfx(X, fxτ ) are defined by the mappingfxτ .

3.2 Input Domain

The context in which a fixed-point programFfx(X, fxτ ) is executed often provides a
precondition that must be satisfied by valid inputs〈x1, x2, . . . , xn〉. This defines the



Procedure 1Floating-point program to compute circle area
Input: radius

Output: area

doublemypi, radius, t, area
mypi = 3.14159265358979323846
t = radius× radius

area = mypi× t

return area

Procedure 2Fixed-point program to compute circle area
Input: radius, 〈sj, iwlj, fwlj〉 for j = 1, 2, 3, 4
Output: area

fx〈s1, iwl1, fwl1〉 mypi
fx〈s2, iwl2, fwl2〉 radius
fx〈s3, iwl3, fwl3〉 t
fx〈s4, iwl4, fwl4〉 area
mypi = 3.14159265358979323846
t = radius× radius

area = mypi× t

return area

input domain denoted byDom(X).

Example 2: In our example of computing area of a circle, suppose that we are only
interested in the radii in the range[0.1, 2.0). Then, the input domainDom(radius) is

radius ≥ 0.1 ∧ radius < 2.0

3.3 Correctness Condition for Accuracy

The correctness condition specifies an error functionErr(Ffl(X), Ffx(X, fxτ )), and
a maximum error thresholdmaxError. The error function and error threshold together
define a bound on the “distance” between outputs generated bythe floating-point and
fixed-point programs respectively. Anaccuratefixed-point program is one whose error
function lies within the error threshold for all inputs in the input domain. Some common
error functions are:

• Absolute difference between the floating-point function and fixed-point function:
|Ffl(X)− Ffx(X, fxτ )|

• Relative difference between the floating-point function and fixed-point function:
∣

∣

∣

Ffl(X)−Ffx(X,fxτ)
Ffl(X)

∣

∣

∣

• Moderated relative difference:
∣

∣

∣

Ffl(X)−Ffx(X,fxτ)
Ffl(X)+δ

∣

∣

∣
. This approaches the relative

difference forFfl(X) >> δ and approaches a weighted absolute difference for
Ffl(X) << δ. WhenFfl(X) can be zero for some values ofX , the moderated
relative difference remains bounded unlike the relative difference which becomes
unbounded.



Thecorrectness condition for accuracyrequires that for all inputs in the provided
input domainDom(X), the error functionErr(Ffl(X), Ffx(X, fxτ )) is below the
specified thresholdmaxError; i.e.,

∀X ∈ Dom(X) . Err(Ffl(X), Ffx(X, fxτ )) ≤ maxError

Example 3: In our running example of computing area of a circle, the error function
is chosen to be relative difference, the error threshold0.01, and thus the correctness
condition is∀radius, s.t. radius ≥ 0.1 ∧ radius < 2.0

Ffl(radius)− Ffx(radius, fxτ )

Ffl(radius)
≤ 0.01

3.4 Implementation Cost Model

The cost modelof the fixed-point program is a function mapping fixed-point
types to a real number. For a given fixed-point programFfx(X, fxτ ), let T =
{t1, t2, . . . , tk} be the set of fixed-point program variables with corresponding types
{fxτ (t1), fxτ (t2), . . . , fxτ (tk)}. Then the cost model (or simplycost) of Ffx is a func-
tion

cost : (fxτ (t1), fxτ (t2), . . . , fxτ (tk)) → R

In practice,cost is often just a function of the total wordlengths (WL = IWL+ FWL) of
the variables. It can incorporate hardware implementationmetrics such as area, power
and delay. A number of cost models are available in the literature [17, 18, 5, 6], and all
of these can be used in our approach.
Example 4:The cost model proposed by Constantinides et al [6] for the running exam-
ple yields the following cost function. We use this cost model in all our examples.

cost(fxτ(mypi), fxτ(radius), fxτ(t), fxτ(area)) =

cdelay(WL(mypi)) + cmul(WL(radius), WL(radius), WL(t))

+cmul(WL(mypi), WL(t), WL(area)) , where

cdelay(l) = l + 1 and cmul(l1, l2, l) = 0.6× (l1 + 1) ∗ l2 − 0.85 ∗ (l1 + l2 − l)

The area of a multiplier grows almost linearly with both the coefficients and the
data wordlength. The first term in the Constantinides model represents this cost. The
second term represents the area cost of computational elements required only for carry
propagation. The coefficients0.6 and0.85 were obtained through least-squared fitting
to area of several hundred multipliers of different coefficient value and width [6].

3.5 Problem Definition

Definition 1 (Optimal Fixed-point Types Synthesis). The optimal fixed-
point types synthesis problem is as follows. Given a floating-point program
Ffx(X, fxτ (T )) with variables T , an input domain Dom(X), a correct-
ness conditionErr(Ffl(X), Ffx(X, fxτ (T ))) ≤ maxError, and a cost model
cost(fxτ (t1), fxτ (t2), . . . , fxτ (tk)), the optimal fixed-point types synthesis problem
is to discover fixed-point types

fxτ∗(T ) = {fxτ∗(t1), fxτ
∗(t2), . . . , fxτ

∗(tk)}



such that the fixed-point programFfl(X) with the above types for fixed-point variables
satisfies the correctness condition for accuracy, that is,

(a) ∀X ∈ Dom(X) . Err(Ffl(X), Ffx(X, fxτ∗(T ))) ≤ maxError

and has minimal cost with respect to the given cost function among all fixed-point types
that satisfy condition (a), that is,

(b) fxτ ∗ = argmin
fxτ satisfies (a)

cost(fxτ (T ))

Our goal is to automated this search for optimal fixed-point types. We illustrate this
problem using the running example below.

Example 5: In our running example of computing thearea of a circle, we need
to discoverfxτ∗(mypi), fxτ∗(radius), fxτ ∗(t) andfxτ ∗(area) such that

(a) the fixed-point program with the given fixed-point types satisfies the correctness
condition; that is,∀radius, s.t., radius ≥ 0.1 ∧ radius < 2.0

Ffl(radius)− Ffx(radius, fxτ
∗)

Ffl(radius)
≤ 0.01

(b) and the cost is minimized; that is,

fxτ∗ = argmin
fxτ satisfies (a)

cost(fxτ (mypi, radius, t, area))

We use this example to illustrate the trade-off between costand error and how a human
might use trial and error to discover the correct wordlengths. We vary the wordlength
of the variables. The integer wordlength is selected to avoid overflow and the remaining
bits are used for fractional wordlength.
Case 1(Figure 1):WL = 8 for all variables.fxτ (mypi) = 〈0, 2, 6〉, fxτ(radius) =
〈0, 1, 7〉, fxτ(t) = 〈0, 2, 6〉, fxτ(area) = 〈0, 4, 4〉. Cost is81.80.
Case 2 (Figure 2): WL = 12 for all variables. fxτ (mypi) =
〈0, 2, 10〉, fxτ(radius) = 〈0, 1, 11〉, fxτ(t) = 〈0, 2, 10〉, fxτ(area) = 〈0, 4, 8〉. Cost
is 179.80.
Case 3 (Figure 3): WL = 16 for all variables. fxτ (mypi) =
〈0, 2, 14〉, fxτ(radius) = 〈0, 1, 15〉, fxτ(t) = 〈0, 2, 14〉, fxτ(area) = 〈0, 4, 12〉.
Cost is316.20.

As we will show in the next section, our approach computes fixed-point types that
meet the accuracy threshold and yield a cost of only104.65, which, while being less
than the cost in Case 1, satisfies the correctness criterion like Case 2. In the following
section, we discuss our automated approach to solve this problem.

4 Our Approach

A central idea behind our approach,swati is to identify a small set ofinterestinginputs
S(X) using testing from the input domainDom(X) such that the optimal implementa-
tion found using induction that satisfies the correctness condition for the inputs inS(X)
will be optimal and correct for all inputs in the given input domainDom(X).
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Fig. 1: Error forWL = 8. Error threshold at0.01 is violated.
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Fig. 2:WL = 12. Error threshold at0.01 is violated.

The top-level synthesis algorithm is presented in Procedure 3.WLmax is an upper
bound on wordlengths beyond which it is non-optimal to use the fixed-point version.
The algorithm starts with a randomly selected set of examplesS0 from the given input
domain. Then, a fixed-point implementation that satisfies the accuracy condition for
each of these inputs and is of minimal cost is synthesized using the routineoptInduce.
If no such implementation is found, the algorithm reportsINFEASIBLE. Otherwise, the
testing routinetestErr checks whether the implementation fails the correctness con-
dition for any input. If so, a set of inputsBadi on which the implementation violates
the correctness condition are added to the setSi used for synthesis, and the process
is repeated. If the correctness condition is satisfied, the resulting fixed-point types are
output. In the rest of this section, we describe the main components of our approach in
detail, including the theoretical result.
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Fig. 3:WL = 16. Error threshold at0.01 is not violated.

4.1 Synthesizing Optimal Types for a Finite Input Set

TheoptInduce function (see Procedure 4) is used to obtain optimum fixed-point types
such that the fixed-point program with these types satisfies the correctness condition
for a finite input setS and has minimal cost. First, the floating-point programFfl is
executed for all the inputs in the sampleS and the range of each variableti as well as its
Signedness is recorded by the functionsgetRange andisSigned respectively. Then,
the integer wordlengthIWL sufficient to represent the computed range is assigned to
each variableti and theSignedness is 1 if the variable takes both positive and negative
values, and0 otherwise. If the fixed-point program with maximum wordlengthsWLmax

fails the correctness condition, we conclude that the synthesis is not feasible and return
⊥. If not, we search for the wordlength with minimum cost satisfying the correctness
condition using our optimization oracleOS . The result is used to compute the fractional
wordlengths, and the resulting fixed-point types are returned.

More precisely, OS solves the following optimization problem overfxτ :
Minimize cost(fxτ ) s.t.

∧

x∈S

Err(Ffx(x, fxτ ), Ffl(x)) ≤ maxError (1)

Let us reflect on the nature of the above optimization problem. The overall synthesis
algorithm might make several calls toOS for solving the optimization problem for
different sets of inputs and hence,OS must be a fast procedure. But it is a discrete
optimization problem with a non-convex constraint space, aproblem class that is known
to be computationally hard [7]. This rules out any computationally efficient algorithm
to implementOS without sacrificing correctness guarantees. Since the space of possible
types grows exponentially with the number of variables, brute-force search techniques
will not scale beyond a few variables. Satisfiability solvers can also not be directly
exploited to search for optimal wordlengths since the existential quantification is over
the types and not the variables. The arithmetic operators have different semantics when
operating on operands with different types and hence, the only way to encode this search
problem as a satisfiability problem is to case-splitexhaustivelyon all possible types



Procedure 3Overall Synthesis Algorithm:swati
Input: Floating-point programFfp,

Fixed-point programFfx with fixed-point variablesT ,
Domain of inputsDom, Error functionErr,
maximum error thresholdmaxError, Cost Modelcost,
maximum wordlengthsWLmax

Output: Fixed-point typefxτ for variablesT
or INFEASIBLE

S0 = random sample fromDom, Bad0 = S0, i = 0
while Badi 6= ∅ do

i = i+ 1
Si = Si−1 ∪Badi−1

fxτ i = optInduce(Ffp, Ffx, Dom,Err,maxError,
cost, WLmax, S

i)
if fxτ i = ⊥ then

return INFEASIBLE

end if
Badi = testErr(Ffp, Ffx, fxτ

i, Dom,Err,maxError)
end while
return fxτ∗ = fxτ i

(word-lengths), where each case encodes the fixed-point program with one possible
type. The number of such cases is exponential in the number ofthe variables in the
program under synthesis and hence, SAT problems will be themselves exponentially
large in size. Further, one would need to invoke SAT solvers multiple times in order
to optimize the cost function. Thus, satisfiability solvingwould be a wrong choice to
address this problem. Further, the space of possible types is also not totally ordered
and hence, binary search like techniques would also not work. For a binary search like
technique to work, we will need to define a domination ordering over the types which
has three properties. Firstly, it is a total ordering relation. Secondly, if a particular type
assignment satisfies the correctness condition for all inputs then all dominating types
satisfy the correctness condition for all inputs. Thirdly,the cost function is monotonic
with respect to the domination ordering relation. In general, this may not be feasible for
any given floating-point program and cost function. Hence, we implementOS using a
greedy proceduregetMinCostWL presented in Procedure 5.

4.2 Verifying a Candidate Fixed-Point Program

In order to verify that the fixed-point programFfx(X, fxτ ) satisfies the correctness
condition, we need to check if the following logical formulais satisfiable.

∃X ∈ Dom(X) Err(Ffx(X, fxτ), Ffp(X)) > maxError (2)

If the formula is unsatisfiable, there is no input on which thefixed-point program vio-
lates the correctness condition.

For arbitrary (possibly non-linear) floating-point and fixed-point arithmetic opera-
tions, it is extremely difficult to solve such a problem in practice with current constraint
solvers. Instead, we use a novel optimization-based approach to verify the candidate
fixed-point program. The intuition behind using an optimization-based approach is that



Procedure 4Optimal Fixed-Point Types Synthesis:optInduce

Input: Floating-point programFfp,
Fixed-point programFfx with fixed-point variablesT , Domain of inputsDom, Error function
Err,
maximum error thresholdmaxError, Cost Modelcost,
max wordlengthsWLmax, InputS

Output: Optimal wordlengthsWL for inputsS or ⊥
for all fixed-point variableti in Ffx do

IWL(ti) = ⌈log(getRange(ti, Ffl, S) + 1)⌉
Signedness(ti) = isSigned(ti, Ffl, S)

end for
if WLmax < IWL then

return ⊥
end if
fxτ = 〈Signedness, IWL, WLmax − IWL〉
if Err(Ffp(x), Ffx(x, fxτ)) > maxError then

return ⊥
end if
WL = getMinCostWL(Ffp, Ffx, Dom,Err,maxError,

cost, WLmax, S
i, IWL, Signedness)

return fxτ = 〈Signedness, IWL, WL− IWL〉

Procedure 5getMinCostWL
Input: Floating-point programFfp,

Fixed-point programFfx with fixed-point variablesT ,
Domain of inputsDom, Error functionErr,
maximum error thresholdmaxErr, Cost Modelcost,
max wordlengthsWLmax, InputS

Output: Optimal wordlengthsWL
valcandWL = {WLmax}
while valcandWL is not emptydo

WL = argmin
vcWL∈valcandWL

cost(vcWL)

fxτ = 〈Signedness, IWL, WL− IWL〉
candWL = ∅, valcandWL = ∅
for all fixed-point variableti in Ffx do

WLi−(j) = WL(j) ∀j 6= i, WLi−(i) = WL(i)− 1
WLi+(j) = WL(j) ∀j 6= i, WLi+(i) = WL(i) + 1
candWL = candWL ∪ {WLi−, WLi+}

end for
for all cand in candWL do

candfxτ = 〈Signedness, IWL, candWL− IWL〉
if Err(Ffp(x), Ffx(x, cand)) ≤ maxErr ∀x ∈ S
and cost(candfxτ) < cost(fxτ) then

valcandWL = valcandWL ∪ {cand}
end if

end for
end while
return fxτ



the error function is continuous in the inputs or with very few discontinuities [19, 4],
and hence, optimization routines can easily find inputs which maximize error function
by starting from some random input and gradually adjusting the output to increase the
value of the error function. The optimization oracleOV is used to maximize the error
functionErr(Ffx(X, fxτ ), Ffp(X)) over the domainDom(X). If there is no input
X ∈ Dom(X) for which the error function exceedsmaxError, the fixed-point pro-
gram is correct and we terminate. Otherwise, we obtain an example input on which
the fixed-point program violates the correctness condition. Multiple inputs can also be
generated where they exist.

In practice, with the current state-of-the-art optimization routines, it is difficult to
implementOV to find a global optimum. Instead, we use a numerical optimization
routine based on the Nelder-Mead method [21] which can handle arbitrary non-linear
functions and generates local optima. Procedure 6 definestestErr which invokes the
Nelder-Mead routine (indicated by “argmaxlocal”). This routine requires one to supply
a starting value ofX , which we generate randomly. To find multiple inputs, we invoke
the routine from from different random initial points and record all example inputs
on which the fixed-point program violates the correctness condition. Since a global
optimum is not guaranteed, we repeat this searchmaxAttempts times before declaring
that the fixed-point program is correct.

Procedure 6Verification RoutinetestErr
Input: Floating-point programFfp,

Fixed-point programFfx, Fixed-point typefxτ ,
Domain of inputsDom, Error functionErr,
maximum error thresholdmaxError

Output: InputsBad on whichFfx violates correctness condition
Bad = ∅
while i ≤ maxAttempts do

i = i+ 1, X0 = random sample fromDom
Xcand = argmaxlocal

X

(Err(Ffp(X), Ffx(X, fxτ)), X0)

if Err(Ffp(Xcand), Ffx(Xcand, fxτ)) > maxError andX ∈ Dom then
Bad = Bad ∪ {X}

end if
end while

4.3 Illustration on Running Example

The initial sampleS0 is of size 10. maxAttempts in the verification routine was
also set to10. The number of Our algorithm took 4 iterations. We record thein-
termediate implementations produced bysynthMinCost in each of the last 3 iter-
ations taken by our algorithm. The initial selected random sample is of size10 and
theMAXATTEMPTS was set to10. The number of samples used in each subse-
quent step of iteration after adding examples discovered bytestErr procedure was
18, 22 and 34. Figure 4,5 and 6 illustrates the error using the intermediate imple-
mentations and the final implementation produced by our approach. The wordlengths
in Figure 4 aremypi(2, 3), radius(1, 8), t(2, 11), area(4, 11), those in Figure 5
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Fig. 4: Iteration 2
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Fig. 5: Iteration 3

aremypi(2, 5), radius(1, 8), t(2, 11), area(4, 12) and in Figure 6 aremypi(2, 3),
radius(1, 9), t(2, 11), area(4, 10). We observe that the number of inputs violating
correctness constraint reduces after each iteration. Thisillustrate how our algorithm
works by identifying a few representative inputs violatingcorrectness condition in each
iteration and adding that to the set of examples for which we synthesize the least cost
implementation.

4.4 Theoretical Results

The following theorem summarizes the correctness and optimality guarantees of our
approach.

Theorem 1. The synthesis procedure presented in Procedure 3 is guaranteed to syn-
thesize the fixed-point program which is of minimal cost and satisfies the correctness
condition for accuracy if optimization oraclesOS andOV find globally-optimal solu-
tions (when they exist).
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Fig. 6: Iteration 4 (last)

Proof. We first prove correctness and then optimality of the obtained solution. Consider
Equation 2:

∃X ∈ Dom(X) Err(Ffx(X, fxτ ), Ffp(X)) > maxError

If OV finds globally-optimal solutions, it will find theX ∈ Dom(X) that maximizes
Err(Ffx(X, fxτ ), Ffp(X)), and hence determine where or not Equation 2 is satisfi-
able. Thus, the correctness condition for accuracy is satisfied.

Next, letfxτ∗ ( 6= ⊥) be the fixed-point type returned by Procedure 3. Let us assume
that there exists a fixed-point typefxτ ′ with a cost lower thanfxτ∗ which also satisfies
the correctness condition:

∀X ∈ Dom(X) Err(Ffx(X, fxτ ′), Ffp(X)) ≤ maxError

∧ cost(fxτ ′) < cost(fxτ∗)

Hence, for anyD ⊆ Dom(X),

∀X ∈ D Err(Ffx(X, fxτ ′), Ffp(X)) ≤ maxError

∧ cost(fxτ ′) < cost(fxτ∗)

But fxτ∗ is the solution generated by applyingOS to the optimization problem of
Equation 1:

Minimize cost(fxτ ) s.t.
∧

x∈S

Err(Ffx(x, fxτ ), Ffl(x)) ≤ maxError (3)

SinceOS is guaranteed to generate globally-optimal solutions, setting D = S, we
obtain a contradiction. Hence, there exists no fixed-point type fxτ ′ with a cost lower
than fxτ∗ which also satisfies the correctness condition. Hence,fxτ∗ is the optimal
correct solution.



As noted earlier, it is difficult to implement idealOS andOV (that find global op-
tima) with current SAT and optimization methods for arbitrary floating-point programs.
Nonetheless, our experience with heuristic methods that find local optima has been very
good. Also, improvements in optimization/SAT methods can directly be leveraged with
our inductive synthesis approach. In contrast, the currenttechniques for synthesizing
fixed-point versions of floating-point programs perform heuristic optimization over a
randomly selected set of inputs (see Sec. 6 for a detailed discussion). Such techniques
do not provide any correctness guarantees and the number of inputs needed could be
much larger. Our approach systematically discovers a smallnumber of example inputs
such that the optimal fixed-point program for this set yieldsthat for the entire input
domain.

5 Experiments

Apart from the running example, we present case studies fromDSP and control
systems to illustrate the utility of the presented synthesis approach. Our technique
was implemented in Matlab, and Nelder-Mead implementationavailable in Matlab as
fminsearch function was used for numerical optimization. We use the Constantinides
et al [6] cost model.

5.1 Running Example

We illustrate the synthesis approach (more details in [14])presented in Section 4 us-
ing the running example. Our algorithm used34 examples and needed4 iterations. To
evaluate our approach, we exhaustively simulated the generated fixed-point program
on the given domain (0.1 ≤ radius < 2) at intervals of0.0001. The is presented in
Figure 5.1.
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Fig. 7: Our Approach on Running Example.

As a point of comparison, we also show the result of synthesizing a fixed-point pro-
gram using theoptInduce routine with100 inputs (3 times as many as our approach)
selected uniformly at random (Figure 5.1). The horizontal line in the plots denotes the
maximum error threshold of0.01 on the relative difference error function. The cost of
the fixed-point program synthesized with random sampling is89.65, and the fixed-point
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Fig. 8: Running Example Using Random Inputs.

types of the variables arefxτ (mypi) = 〈0, 2, 3〉, fxτ (radius) = 〈0, 1, 8〉, fxτ (t) =
〈0, 2, 10〉 and fxτ (area) = 〈0, 4, 8〉. Notice, however, that it is incorrect for a large
number of inputs. In contrast, the cost of the implementation produced using our tech-
nique is104.65, and the fixed-point types of the variables arefxτ (mypi) = 〈0, 2, 3〉,
fxτ (radius) = 〈0, 1, 9〉, fxτ (t) = 〈0, 2, 11〉 andfxτ (area) = 〈0, 4, 10〉.

5.2 Infinite Impulse Response (IIR) Filter

The first case study is an IIR filter which is used in digital signal processing applications.
It is a first-order direct form-II IIR filter with the schematic shown in Figure 9. The con-
stants area1 = −0.5, b0 = 0.9 andb1 = 0.9. The fixed-point variables are identified in
the schematic. We use our synthesis technique to discover the appropriate fixed-point
types of these variables. The input domain used in synthesisis −2 < input < 2.
The correctness condition for accuracy is to ensure that therelative error between the
floating-point and fixed-point program is less than0.1.

+ X +

XX

 delay

input

−a1

b0

b1

output

t1

t3

t4

t6

t7 t8

t5

Fig. 9: IIR Filter Schematic
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Fig. 10: IIR Filter Using Floating-point and Fixed-point. In the top plot, the floating-point and
fixed-point outputs are virtually superimposed on each other.

In order to test the correctness of our implementation, we feed a common input
signal to both the IIR filter implementations: floating-point version and the fixed-point
version obtained by our synthesis technique. The input signal is a linear chirp from0 to
Fs
2 Hz in 1 second.

input = (1− 2−15)× sin(π ×
Fs

2
× t2)

whereFs = 256 andt = 0 to 1 − 1
Fs

and is sampled at intervals of1
Fs

. Figure 10
shows the input, outputs of both implementations and the relative error between the two
outputs. We observe that the implementation satisfies the correctness condition and the
relative error remains below0.1 throughout the simulation.

5.3 Finite Impulse Response (FIR) Filter

The second case study is a low pass FIR filter of order 4 with tapcoefficients
0.0346, 0.2405, 0.4499, 0.2405 and0.0346. The input domain, correctness condition
and input signal to test the floating-point implementation and synthesized fixed-point
program are same as the previous case study. Figure 11 shows the input, outputs of both
implementations and the relative error between the two outputs. We observe that the
implementation satisfies the correctness condition and therelative error remains below
0.1 throughout the simulation.

5.4 Field Controlled DC Motor

The next case study is a field controlled DC Motor. It is a classic non-linear control
example from Khalil [15]. The system dynamics is described by the following ordinary
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Fig. 11: FIR Filter Using Floating-point and Fixed-point. The floating-point/fixed-point outputs
are virtually superimposed on each other.

differential equations.

v̇f = Rf if + Lf i̇f

v̇a = c1ifω + Lai̇a +Raia

J̇ ω̇ = c2if ia − c3ω

The first equation is for the field circuit withvf , if , Rf , Lf being its voltage, cur-
rent, resistance, and inductance. The variablesva, ia, Ra, La are the corresponding volt-
age, current, resistance, and inductance of the armature circuit described by the second
equation. The third equation is a torque equation for the shaft, with J as the rotor in-
ertia andc3 as a damping coefficient. The termc1ifω is the back electromotive force
induced in the armature circuit, andc2if ia is the torque produced by the interaction of
the armature current with the field circuit flux. In the field controlled DC motor, field
voltagevf is the control input whileva is held constant. The purpose of the control is
to drive the system to the desired set point for the angular velocity ω.

We can now rewrite the system dynamics in the following normal form wherea =
Rf

Lf
, u =

vf
Lf

, b = Ra

La
, ρ = va

La
, c = c1

La
, θ = c2

J
, d = c3

J
.

i̇f = −aif + u

i̇a = −bia + ρ− cifω

ω̇ = θif ia − dω

We assume no damping, that is,c3 = 0 and set all the other constantsa, b, c, θ, ρ to 1.
The state feedback law to control the system is given by

u =
θ(a+ b)if ia + θρif − cθi2fω

θia + ǫ

where ǫ = 0.01 is added to denominator to avoid division by0. ia ap-
proaches0 at equilibrium. The corresponding floating-point code is shown be-
low.



Input: if, ia, ω, θ, ρ,c, ǫ
Output: u

t1 = θ × ia; t2 = ǫ+ t1; t3 = 1/t2; t31 = a+ b;
t32 = if × ia; t33 = t31× t32; t4 = θ × t33; t41 = ρ× if;
t5 = θ × t41; t6 = if × if; t61 = t6× ω; t62 = t61× θ;
t7 = c× t62; t8 = t4+ t5; t9 = t8− t7; u = t3× t9;
return u

The system is initialized with field currentif = 1, armature currentia = 1 and angular
velocityω = 1.
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Fig. 12: DC Motor Using Floating-point and Fixed-point Controller with zoomed-in view for2
to 3 seconds.

The computed control law can be mathematically shown to be correct by designers
who are more comfortable in reasoning with real arithmetic but not with finite precision
arithmetic. Its implementation using floating-point computation also closely mimics the
arithmetic in reals but the control algorithms are often implemented using fixed-point
computation on embedded platforms. We use our synthesis technique to automatically
derive a low cost fixed-point implementation of the control law computingu. The input
domain is0 ≤ ia, if , ω ≤ 1.5. The correctness condition for accuracy is that the abso-
lute difference between theu computed by fixed-point program and the floating-point
program is less than0.1.

Figure 12 shows the simulation of the system using the fixed-point implementa-
tion of the controller and the floating-point implementation. This end-to-end simulation
shows that fixed-point program generated by our technique can be used to control the
system as effectively as the floating-point program. This illustrates the practical utility
of our technique. Figure 13 plots the difference between thecontrol input computed by
the fixed-point program and the floating-point program. It shows that the fixed-point
types synthesized using our approach satisfy the correctness condition, and the differ-
ence between the control input computed by the fixed-point and floating-point program
is within the specified maximum error threshold of0.1. The number of inputs needed
in our approach was127. In contrast, the fixed-point types found using635(5X our ap-



proach) randomly selected inputs violate the correctness condition for a large number
of inputs.
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Fig. 13: Error in Control Input Using Fixed-point and Floating-point Program

5.5 Two-Wheeled Welding Mobile Robot

The next case study is a nonlinear controller for a two-wheeled welding mobile robot
(WMR) [3]. The robot consists of two wheels and a robotic arm.The wheels can roll
and there is no slipping.(x, y) represents the Cartesian coordinate of the WMR’s center
point andφ is the heading angle of the WMR.v andω are the straight and angular
velocities of the WMR at its center point. The welding point coordinates(xw, yw) and
the heading angleφw can be calculated from the WMR’s center point:

xw = x− l sinφ

yw = y + l cosφ

φw = φ

So, the equation of motion for the welding point is as follows:

ẋw = v cosφ− lω cosφ− l̇ sinφ

ẏw = v sinφ− lω sinφ+ l̇ cosφ

φ̇w = ω

The objective of the WMR controller is to ensure that the robot tracks a reference
point R. The reference point R moving with a constant velocity of vr on the reference
path has coordinates(xr , yr) and the heading angleφr. The tracking error is the differ-
ence between the location of the robot and the reference point.
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The two control parameters in the model arev andω. In order to ensure that the
error quickly converges to0, a nonlinear controller based on Lyapunov stability is as
follows:

v = l(ωr + k2e2vr + k3 sin e3) + vr cos e3 + k1e1

ω = ωr + k2e2vr + k3 sin e3

wherek1, k2 andk3 are positive constants. Table 3 provides the numerical values of
constants and initial values of the state variables from Buiet al [3]. All lengths are in
meters, angle in radians and time in seconds.

Table 3: Numerical and Constant Values

ParametersValues ParametersValues
k1 4.2 l 0.15

k2 5000 l̇ 0
k3 1 vr 7.5e− 3
xr 0.280 xw 0.270
yr 0.400 yw 0.390
φ 0 φw 15
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Fig. 14: Reference Welding Line

We use our synthesis technique to automatically synthesizefixed-point program
computing both control inputs:v andω. The error function used forv is the relative
difference

vfloating−point − vfixed−point

vfloating−point

and the error function used forω is the moderated relative difference

ωfloating−point − ωfixed−point

ωfloating−point + δ
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Fig. 16: Error in computingv

whereδ = 0.001. The moderated relative difference is useful here sinceωfloating−point

can be0. We require that the difference values for both controllersare less than0.1.
Figure 14 shows the reference line for welding and Figure 15 shows the distance of
the WMR from the reference line as a function of time for both cases: firstly, when the
controller is implemented as a floating-point program and secondly, when the controller
is implemented as a fixed-point program synthesized using our technique. The robot
starts a little away from the reference line but quickly starts tracking the line in both
cases. Figure 16 and Figure 17 show the error between the floating-point controller and
fixed-point controller for both control inputs:v andω, respectively.

Table 4 summarizes the performance of our technique in the four case-studies.
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Fig. 17: Error in computingω

Table 4: Performance

Case-studyRuntime (seconds)# of Iterations
IIR Filter 268 5
FIR Filter 379 4

DC Motoru 4436 8
WMR v 2218 7

ω 1720 4

6 Related Work

Previous techniques for optimizing fixed-point types are based on statistical sampling
of the input space. These methods sample a large number of inputs and heuristically
solve an optimization problem that minimizes implementation cost while ensuring that
some correctness specification is met over the sampled inputs. The techniques differ
in in the heuristic search method employed, in the measure ofcost, or in how accu-
racy of fixed-point implementation is determined. Sung and Kum [24] use a heuristic
search technique which starts with the minimum wordlength implementation as the ini-
tial guess. The wordlengths are increased one by one till theerror falls below an accept-
able threshold. Han et al. [10, 11] use a gradient-based sequential search method which
starts with the minimum wordlength implementation as the initial guess. The gradient
(ratio of increase in accuracy and increase in wordlengths)is computed for a set of
wordlength changes at each step and the search moves in the direction with maximum
gradient. Shi et al. [22] propose a floating-point to fixed-point conversion methodology
for digital VLSI signal processing systems. Their approachis based on a perturbation
theory which shows that the change to the first order is a linear combination of all
the first- and second-order statistics of the quantization noise sources. Their technique
works with general specification critera, as long as these can be represented as large en-
semble averages of functions of the signal outputs. For example, they use mean-squared
error (MSE) as the specification function. The cost of the implementation is a quadratic
function. Monte Carlo simulation of a large number of input examples is used to for-
mulate a quadratic optimization problem based on perturbation theory. In contrast, our



specification requires that the accuracy condition holds for all inputs and not just on an
average. Further, the cost function can be any arbitrary function for our technique and
need not be quadratic. Perhaps most importantly, our technique does not rely on apriori
random sampling of a large number of input values, instead using optimization to dis-
cover a small set ofinterestingexamples which suffice to discover optimal fixed-point
implementation. Purely analytical methods [23, 16] based on dataflow analysis have
also been proposed for synthesizing fixed-point programs based on forward and back-
ward propagation in the program’s dataflow graph. The advantages of these techniques
are that they do not rely on picking the right inputs for simulation, can handle arbitrary
programs (with approximation), and can provide correctness guarantees. However, they
tend to produce very conservative wordlength results. Inductive synthesis based on sat-
isfiability solving has been previously used for synthesizing programs from functional
specifications. These approaches [13, 9] rely on constraintsolving in much the same
way as we rely on optimization routines. However, these approaches only seek to find
a correct program, without any notion of cost and optimization. A central intuition in
our work is to exploit the nearly continuous nature of error function [20]. These results
were first reported in Chapter 4 of [12].

7 Conclusion

In this paper, we presented a novel approach to automated synthesis of fixed-point pro-
gram from floating-point program by discovering the fixed-point types of the variables.
The program is synthesized to satisfy the provided correctness condition for accuracy
and to have optimal cost with respect to the provided cost model. We illustrated our
approach on a set of case studies from digital signal processing and control systems.
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