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Abstract

Scalable Scheduling for Sub-Second Parallel Jobs
by
Patrick Mellen Wendell
Master of Science in Computer Science
University of California, Berkeley

Professor lon Stoica, Chair

Large-scale data analytics frameworks are shifting towaftbrter task durations and larger
degrees of parallelism to provide low latency. Howevergsiehing highly parallel jobs that com-
plete in hundreds of milliseconds poses a major challengel@ister schedulers, which will need
to place millions of tasks per second on appropriate nodeke wiffering millisecond-level la-
tency and high availability. We demonstrate that a deckn#id randomized sampling approach
provides near-optimal performance while avoiding the digitgput and availability limitations of a
centralized design. We implement and deploy our schedsjerrow, on a real cluster and demon-
strate that Sparrow performs within 14% of an ideal schedule
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Figure 1: Data analytics frameworks can analyze large atsafrdata with decreasing latency.

1 Introduction

Today'’s data analytics clusters are running ever shorthayher-fanout jobs. Spurred by demand
for lower-latency interactive data processing, effortsasearch and industry alike have produced
frameworks (e.g., Dremel [16], Spark [30], Hadapt [2], Ifgfd5]) that stripe work across thou-
sands of machines or store data in memory in order to comjallesaein seconds, as shown in Fig-
ure 1. We expect this trend to continue with a new generatidrameworks targeting sub-second
response times. Bringing response times into the 100mserailyenable user-facing services
to run sophisticated parallel computations on a per-quasysh such as language translation and
highly personalized search.

Providing low response times for parallel jobs that executéhousands of machines poses a
significant scheduling challenge. Parallel jobs are compo$ many (often hundreds or thousands)
of concurrent tasks that each run on a single machine. Respiione is determined by the last task
to complete, severytask needs to be scheduled carefully: even a single tas&gtaca contended
machine can increase response time.

Sub-second parallel jobs amplify the scheduling challeWdéfgen tasks run in hundreds of mil-
liseconds, scheduling decisions must be made at very higlughput: a cluster containing ten
thousand 16-core machines and running 100ms tasks mayeegeil over 1 million schedul-
ing decisions per second. Scheduling must also be perfomitadow latency: for 100ms tasks,
scheduling delays above tens of milliseconds represeavienatble overhead. Finally, as processing
frameworks approach interactive time-scales and are nsagstomer-facing systems, high system
availability becomes a requirement. These design reqeinesrdiffer substantially from those of
batch workloads.

Designing a traditional, centralized scheduler that sugmub-second parallel tasks presents
a difficult engineering challenge. Supporting sub-secasid requires handling two orders of
magnitude higher throughput than the fastest existingddbes (e.g., Mesos [12], YARN [19],
SLURM [14]); meeting this design requirement will be diffitwith a design that schedules and
launches all tasks through a single node. Additionallyjehg high availability would require
the replication or recovery of large amounts of state in setend time.

This paper explores the opposite extreme in the design $paasking how well a completely



decentralized task scheduler can perform. We propose sithgdrom a set of machines that op-
erate autonomously and without shared state. Such a delieedrdesign offers attractive scaling
and availability properties: the system can support mayaests by adding additional schedulers
and if a particular scheduler fails, users can direct reguesa different scheduler. For this reason,
in other domains such as web request load balancing, datieatt architectures are common-
place. Many of these architectures [8, 10] build on the powfdwo choices technique [17], in
which the scheduler simply probes two random servers arkd pihe less loaded one.

However, a decentralized scheduler based on the power attaices must address three chal-
lenges to provide low response times parallel jobs. First, as we show analytically, power of two
sampling performs poorly as jobs become increasingly [gdr#@ parallel job finishes only when
its last task finishes and thus its response time dependgyheathe tail distribution of its task du-
ration, which remains high even with the power of two choi@econd, due to messaging delays,
multiple schedulers sampling in parallel may experience @nditions. Third, the power of two
choices requires workers to estimate the durations of tastteeir queues, which is notoriously
difficult.

To address these challenges, we present Sparrow, a stadedtbuted task scheduler that is
scalable and highly resilient. Sparrow extends simplersiaag approaches using two core tech-
niques:batch samplingandvirtual reservations Batch-sampling applies the recently developed
multiple choices approach [20] to the domain of parallel ggheduling. With batch-sampling, a
scheduler places the tasks in a job on the least loaded @f. randomly selected worker ma-
chines (ford > 1). We show that, unlike the power of two choices, batch samjdiperformance
does not degrade as the job’s parallelism increases. Witlevreservations, node monitors queue
probes until they are ready to run the task. This elimindtesieed to estimate task durations and
eliminates race conditions due to multiple schedulers ngakoncurrent decisions.

We have implemented Sparrow in a working cluster and evatlds performance. When
scheduling TPC-H queries on a 100-node cluster, Sparrowiges response times within 14%
of an optimal scheduler and schedules with fewer than 8saitlbnds of queueing delay. Sparrow
provides low response times for short tasks, even in theepoesof tasks that take up to 3 orders of
magnitude longer. In spite of its decentralized designri®pamaintains aggregate fair shares, and
isolates users with different priorities (without resogtito preemption) such that a misbehaving
low priority user increases response times for high pgigobs by at most 41%. Simulation results
demonstrate that Sparrow continues to perform well asalsste increases to tens of thousands
of cores.

In summary, we make the following contributions:

e We propose Sparrow,d@ecentralized scheduléhnat is highly scalable and resilient.

e We introducébatch samplinga scheduling technique that, unlike the power of two chejté],

does not lead to larger response times as the parallelisobsfijcreases.

e We introducevirtual reservationghat, together with batch-sampling, allow Sparrow to dipse

approach the performance of an optimal scheduler.

e We show that in spite of its decentralized design, Sparrgwpstis common global policies,

such as proportional and priority scheduling.



2 Design Goals

This paper focuses on task scheduling for low-latency,-oé&nsive applications. Such applica-
tions typically decrease latency by fanning work out ovegéanumbers of machines. As a result,
their workload is composed of many small, parallel taskss Btands in contrast to batch frame-
works which acquire resources for long periods of time. Tdteeduler’s job is to place these tasks
expediently on worker machines. Short-task workloadslresa set of unique scheduling require-
ments:

Low latency: To ensure that scheduling delay is not a substantial fractigob completion time,
the scheduler must provide at mosilisecond-scale scheduling delay

High throughput: To handle clusters with tens of thousands of nodes (andsgwrrelingly hun-
dreds of thousands of cores), the scheduler must suppltidns of task scheduling decisions per
second

High availability: Cluster operators already go to great lengths to increasevhilability of
centralized batch schedulers. We expect that low-lateraydworks will be used to power user-
facing services, makinigigh availability an operating requirement

To meet these requirements, we are willing to forgo manyfeatof sophisticated centralized
resource managers. In particular, we do not design forrarbyt long tasks that may run for days
or weeks, we do not allow complex placement constraints,(&wy job should not be run on
any machines where User X’s jobs are running”), we do notgperibin packing, and we do not
support gang scheduling. To co-exist with long-runnind¢cbgobs, our scheduler runs tasks in a
statically or dynamically allocated portion of the cludieat has been allocated by a more general
resource manager such as YARN [19], Mesos [12], Omega [22]Sphere [3].

Our key focus is on supporting a small set of features in a \hay tan be easily scaled,
minimizes latency, and keeps the design of the system sifufalry applications wish to run low-
latency queries from multiple users, so a scheduler shauflofee sensible resource allocation
policies when aggregate demand exceeds capacity. We absto @upport basic constraints over
job placement, such as task-level constraints (e.g. eakm&seds to be co-resident with input data)
and job-level constraints (e.g., all tasks must be placechachines with GPUSs). This feature set
is similar to that of the Hadoop MapReduce scheduler [25]thedSpark [30] scheduler.

3 Sample-Based Scheduling for Parallel Jobs

Traditional cluster schedulers maintain a complete viewvhich tasks are running on which
worker machines, and use this view to assign incoming taskssailable workers. To support
low-latency workloads, Sparrow takes a radically differgpproach: schedulers maintain no state
about cluster load and instead place tasks based on instanisload information acquired from
worker machines. Sparrow’s approach extends existing b@dahcing techniques [17, 20] to the
domain of parallel job scheduling and introduces virtuaereations to address practical problems.

3.1 Terminology

We consider a cluster composedvadrker machineghat execute tasks arsghedulerghat assign
tasks to worker machines. A scheduling request consists tasks that are allocated to worker
machines. Scheduling requests can be handled by any sehedwdcheduler assigns each task
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Figure 2: Placing a parallel, two-task job. Batch samplintperforms per-task sampling because
tasks are placed in the least loaded of the etiitehof sampled queues.

in the request to a worker machine. If a worker machine isgassi more tasks than it can run
concurrently, it queues new tasks until existing tasksaseenough resources for the new task to
be run. We usevait timeto describe the time from when a task is submitted to the sdbedntil
when the task begins executing aservice timeto describe the time the task spends executing
on a worker machineResponse timéescribes the time from when the request is submitted to the
scheduler until the last task finishes executing.

3.2 Per-Task Sampling

Sparrow’s design takes inspiration from the power of twoice® load balancing technique [17],
which provides near-optimal expected task wait times uaistateless, randomized approach. The
power of two choices technique proposes a simple improvemar purely random assignment
of tasks to worker machines: place each task on the leastdioafctwo randomly selected worker
machines. Mitzenmacher demonstrated that assigningtatfkis manner improves expected wait
time exponentially compared to using random placementy17]

We first consider a direct application of the power of two clesitechnique to parallel job
scheduling. The scheduler randomly selects two worker masHor each task and sendprabe
to each of the two worker machines, where a probe is a liglgtwdRPC. The worker machines
each reply to the probe with the number of currently queusHstaand the scheduler places the
task on the worker machine with the shortest queue. The stdregbpeats this process for each
task in the job, as illustrated in Figure 2(a). We refer tg tipplication of the power of two choices
technique aper-task sampling

Per-task sampling improves performance compared to rarmaoement but still provides
high tail wait times when jobs are parallel. Intuitivelyrfmbs that contain a large number of
tasks, every job is expected to experience tail task waitimaking response times with per-
task sampling 2x or more worse than optimal placement. Wellsied per-task sampling and
random placement in a 10,000 node cluster running 500-tdeskwhere the duration of each task

More precisely, expected task wait time using random plasgris1/(1 — p), wherep represents load. Using
the least loaded aof choices, wait time in an initially empty system over the fifstinits of time is upper bounded by

S, 0 1 o(1) [27]
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Figure 3: Comparison of random placement, per-task saggbiatch sampling, and batch sam-
pling with virtual reservations in a simulated 10,000 nodiester running 500-task jobs. Task
durations are exponentially distributed with mean 100mpgeted optimal job response time is
680ms (shown with the black dashed line).

is exponentially distributed with mean 100ms. Becausegsponse time is determined by the last
of 500 tasks to complete, the expected optimal job respomee(if all tasks are scheduled with
no wait time) is 680ms. We assume 1ms network RTTs, and we Injaakearrivals as a Poisson
process. As shown in Figure 3, response time increases magtkasing load, because schedulers
have increasing difficulty finding free machines on which tacp tasks. At 90% load, per-task
sampling improves performance by a factor of 5 comparedridam placement, but still adds
75% overhead compared to an optimal scheduler.

3.3 Batch Sampling

Batch sampling improves on per-task sampling by sharingrimétion across all of the probes
for a particular scheduling request. Batch sampling islsimo a technique recently proposed in
the context of storage systems [20]. With per-task sampbng pair of probes may have gotten
unlucky and sampled two heavily loaded machines (e.g., Taskigure 2(a)), while another pair
may have gotten lucky and sampled two lightly loaded mach{eey, Task 2 in Figure 2(a)); one
of the two lightly loaded machines will go unused. Batch skmgpaggregates load information
from the probes sent for all of a job’s tasks, and places this jo tasks on the least loaded of all
the worker machines probed. In the example shown in Figupei2task sampling places tasks in
qgueues of length 1 and 3; batch sampling reduces the maxinueoedength to 2 by using both
workers that were probed by Task 2 with per-task sampling.

To schedule using batch sampling, a scheduler randomlgtsele: worker machines (for
d > 1). The scheduler sends a probe to each ofd#theworkers; as with per-task sampling, each
worker replies with the number of queued tasks. The schegldees one of the job's: tasks on
each of them least loaded workers. Unless otherwise specificed, weluse2; we explore the
impact ofd in §7.7.



As shown in Figure 3, batch sampling improves performancepased to per-task sampling.
With exponentially distributed task durations, batch skmgpreduces job response time by over
10% compared to per-task sampling. For other task duraigtnkalitions including constant and
Pareto, batch sampling improves performance by a factowof(tesults omitted for brevity).
Nonetheless, batch sampling adds over 50% of overhead atl@dccompared to an optimal
scheduler.

3.4 Problemswith Sample-Based Scheduling

Sample-based techniques perform poorly at high load duea@toblems. First, schedulers place
tasks based on the queue length at worker nodes. Howevere deregth provides only a coarse
prediction of wait time. Consider a case where the schegutdres two workers to place one task,
one of which has two 50ms tasks queued and the other of whbi@a300ms task queued. The
scheduler will place the task in the queue with only one tag&n though that queue will result in

a 200ms longer wait time. While workers could reply with atireate of task duration rather than

gueue length, accurately predicting task durations ismaisly difficult.

Sampling also suffers from a race condition where multipleeslulers may concurrently place
tasks on a worker that appears lightly loaded. Consider a wdmre two different schedulers
probe the same idle worker maching, at the same time. Since the worker machine is idle, both
schedulers are likely to place a taskwonhowever, only one of the two tasks placed on the worker
will arrive in an empty queue. The queued task might have Ipdeced in a different queue had
the corresponding scheduler known thatvas not going to be idle when the task arrived.

3.5 Virtual Reservations

Sparrow introducesirtual reservationgo solve the aforementioned problems. With virtual reser-
vations, workers do not reply immediately to probes andemdtplace a reservation for the task
at the end of an internal work queue. When this reservatianohes the front of the queue, the
worker sends an RPC to the scheduler requesting a specKicTtias scheduler assigns the job’s
tasks to the firstn workers to reply, and replies to the remainifay— 1)m workers with a no-op
signalling that all of the job’s tasks have been launchedhig;manner, the scheduler guarantees
that the tasks will be placed on the probed workers where they will be launched soonest. For
exponentially-distributed task durations at 90% loadfual reservations improve response time
by 35% compared to batch sampling, bringing response timathon 14% of optimal (as shown

in Figure 3).

The downside of virtual reservations is that workers are wlhile they are sending an RPC
to request a new task from a scheduler. All current clusteedualers we are aware of make this
tradeoff: schedulers wait to assign tasks until a workenagthat it has enough free resources
to launch the task. In our target setting, this tradeoff $etada 2% efficiency loss. The fraction of
time a worker spends idle while requesting task&lisRTT)/(¢ + d - RTT) (whered denotes the
number of probes per task, RTT denotes the mean network rioyntime, and: denotes mean
task service time). In our deployment on EC2 with an un-ozit network stack, mean network
round trip time was 1 millisecond. We expect that the shotéesks will complete in 100ms and that
scheduler will use a probe ratio of no more than 2, leadingd toast a 2% efficiency loss. For our
target workload, this tradeoff is worthwhile, as illusegdtby the results shown in Figure 3, which



incorporate network delays. In other environments whete/ord latencies and task runtimes are
the same order of magnitude, virtual reservations will mespnt a worthwhile tradeoff.

4 Scheduling Policies and Constraints

Sparrow aims to support a small but useful set of policiehiwiits decentralized framework.

This section outlines support for two types of popular scitedpolicies: constraints over where
individual tasks are launched and inter-user isolatiomcpes to govern the relative performance
of users when resources are contended.

4.1 Handling Placement Constraints

Sparrow handles two types of constraints, job-level anktiagel constraints. Such constraints are
commonly required in data-parallel frameworks, for ins&rto run tasks co-resident with a ma-
chine that holds data on disk or in memory. As mentiongirSparrow does not support complex
constraints (e.g., inter-job constraints) supported byesgeneral-purpose resource managers.

Job-level constraints (e.g., all tasks should be run on &evavith a GPU) are trivially handled
at a Sparrow scheduler. Sparrow randomly selectsitheandidate workers from the subset of
workers that satisfy the constraint. Once il workers to probe are selected, scheduling proceeds
as described previously.

For jobs with task-level constraints, Sparrow uses pdetather than batch sampling. Each
task may have a different set of machines on which it can rar§marrow cannot aggregate in-
formation over all of the probes in the job using batch santplinstead, Sparrow uses per-task
sampling, where the scheduler selects the two machinesotze dor each task from the set of
machines that the task is constrained to run on.

Sparrow implements a small optimization over per-task dengor jobs with task-level con-
straints. Rather than probing individually for each tagiai®ow shares information across tasks
when possible. For example, consider a case where task @ssramed to run in machines A, B,
and C, and task 1 is constrained to run on machines C, D, andfgpoSe the scheduler probed
machines A and B for task 0, which were heavily loaded, andgaonachines C and D for task 1,
which were both idle. In this case, Sparrow will place taskmachine C and task 1 on machine
D, even though both machines were selected to be probedstoti ta

Although Sparrow cannot use batch sampling for jobs witlk-tegel constraints, our dis-
tributed approach still provides near-optimal responsesi for these jobs. Jobs with task level
constraints can still use virtual reservations, so the dulee is guaranteed to place each task on
whichever of two probed machines that the task will run sstrigecause task-level constraints
typically constrain a task to run on three machines, evedeal i omniscient scheduler would only
have one additional choice for where to place each task.

4.2 Resource Allocation Policies

Cluster schedulers seek to allocate resources accordiagpecific policy when aggregate de-
mand for resources exceeds capacity. Sparrow supportsyes tof policies: strict priorities
and weighted fair sharing. These policies mirror thoseretfdoy other schedulers, including the
Hadoop Map Reduce scheduler [29].

Many cluster sharing policies reduce to using strict pties; Sparrow supports all such poli-



Number of servers in the cluster
Load (fraction non-idle slaves)
Tasks per job

Probes per task

Mean task service time

L% Mean request arrival rate

- 3o 3

Table 1: Summary of notation.

cies by maintaining multiple queues on worker nodes. FIFDjest deadline first, and shortest
job first all reduce to assigning a priority to each job, andning the highest priority jobs first.
For example, with earliest deadline first, jobs with eartieadlines are assigned higher priority.
Cluster operators may also wish to directly assign presitior example, to give production jobs
high priority and ad-hoc jobs low priority. To support thgs®icies, Sparrow maintains one queue
for each priority at each worker node. When resources beé@agSparrow responds to the reser-
vation from the highest priority non-empty queue. This naggém trades simplicity for accuracy:
nodes need not use complex gossip protocols to exchangenation about jobs that are waiting
to be scheduled, but low priority jobs may run before higlogpty jobs if a probe for a low priority
job arrives at a node where no high priority jobs happen tousigd. We believe this is a worth-
while tradeoff: as shown if7.6, this distributed mechanism provides good performdmchigh
priority users. Sparrow does not currently support pre@nptzhen a high priority task arrives at
a machine running a lower priority task; we leave exploratbpreemption to future work.

Sparrow can also enforce weighted fair shares. Each worla@mtains a separate queue for
each user, and performs weighted fair queuing [9] over tlypsies. This mechanism provides
cluster-wide fair shares in expectation: two users usiregséime worker will get shares propor-
tional to their weight, so by extension, two users using thimes set of machines will also be
assigned shares proportional to their weight. We choosesthiiple mechanism because more ac-
curate mechanisms (e.g., Pisces [23]) add considerablglegity; as we demonstrate V.5,
Sparrow’s simple mechanism provides near-perfect fairesha

5 Analysis

Before delving into our experimental evaluation, we usehmatatical analysis to prove that batch
sampling, the key technique underlying Sparrow, achieeas-optimal performanceggardless of
the task duration distributiorSection 3 demonstrated that Sparrow performs well, byt ondler
one particular workload; this section generalizes thoseltg to all workloads. Batch sampling’s
good performance comes in contrast to the performance a@bgkrsampling: the performance of
per-task sampling decreases exponentially with the nurobtasks in a job, making it perform
poorly for parallel workloads.

To analyze the performance of batch and per-task sampliegexamine the probability of
placing all tasks in a job on idle machines, or equivaleqigyiding zero wait time. Because an
ideal, omniscient scheduler could place all jobs on idle mrees when the the cluster is under
100% utilized, quantifying how often our approach placdssjon idle workers provides a bound
on how Sparrow performs compared to an optimal scheduler.

We make a few simplifying assumptions for the purposes o éimalysis. We assume zero
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Table 2: Probability that a job will experience zero waitéiomder three diffelacement approaches.
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Figure 4: Probability that a job will experience zero waité in a single-core environment, using
random placement, sampling 2 servers/task, and samplingiachines to place an-task job.

network delay, an infinitely large number of servers, and ¢#agh server runs one task at a time.
Our experimental evaluation evaluates results in the aleseiithese assumptions.

Mathematical analysis corroborates the resul§3idemonstrating that per-task sampling per-
forms poorly for parallel jobs. The probability that a peuiar task is placed on an idle machine is
one minus the probability that all probes hit busy machimesp? (wherep represents cluster load
andd represents the probe ratio; Table 1 summarizes notatidwe) pfobability thatll tasks in a
job are assigned to idle machineg1s— p?)™ (as shown in Table 2) because adlsets of probes
must hit at least one idle machine. This probability deasasxponentially with the number of
tasks in a job, rendering per-task sampling inappropriates¢heduling parallel jobs. Figure 4 il-
lustrates the probability that a job experiences zero wat {equivalent to the probability that all
of a job’s tasks are placed in idle queues) for both 10 andta®kjobs, and demonstrates that the
probability of experiencing zero wait time for a 100-task jdrops to less than 2% at just 20%
load.

Batch sampling can place all of a job’s tasks on idle machatesuch higher loads than per-
task sampling. In expectation, batch sampling will be ablplace allmn tasks in empty queues as
long asd > flp Crucially, this expression does not depend on the numbrsss in a job#)!
Figure 4 illustrates this effect: for both 10 and 100-tadksjahe probability of experiencing zero
wait time drops from 1 to 0 at 50% lo&d.

Our analysis thus far has considered machines that can tyropa task at a time; however,
today’s clusters typicaly feature multi-core machines.ItMare machines significantly improve

2With the larger, 100-task job, the drop happens more ragigiyause the job uses more total probes, which
decreases the variance in the proportion of probes thatleitiachines.

9
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Figure 5: Probability that a job will experience zero waitd in a system of 4-core servers.

the performance of batch sampling. Consider a model whegle server can run up to tasks
concurrently without degraded performance compared toingnthe task on an idle machine.
Because each server can run multiple concurrent tasks,peabk implicitly describes load an
processing units rather than just one, which increaseskihlbod of finding an idle processing
unit on which to run each task. To analyze performance in diconé envirionment, we make
two simplifying assumptions: first, we assume that the ithistion of idle cores is independent of
whether the cores reside on the same machine; and secondsumathat the scheduler places
at most 1 task on each machine, even if multiple cores areB@sed on these assumptions, we
can replacep in Table 2 withp® to obtain the results shown in Figure 5. These results imgrov
dramatically on the single-core results: for batch sangphath 4 cores per machine and 100 tasks
per job, batch sampling achieves near perfect performa®®@®% of jobs experience zero wait
time) at up to 79% load. This result demonstrates that batoiping performs weltegardless of
the distribution of task durations

6 Implementation

We implemented Sparrow to evalute its performance in a ngholuster. The Sparrow code, in-

cluding scripts to replicate our experimental evaluati®publicly available aht t p: / / gi t hub.
com r adl ab/ sparr ow.

6.1 System Components

As shown in Figure 6, Sparrow schedules from a distributédtechedulers that are each re-
sponsible for assigning tasks to slaves. Because batchlisgnajees not require any communi-

cation between schedulers, arbitrarily many schedulens oparate concurrently, and users or
applications may use any available scheduler to place ptisedulers expose a cross-platform
Thrift service [1] (illustrated in Figure 7) to allow framenks to submit scheduling requests. Each
scheduling request includes a list of task specificatidresspecification for a task includes a task
description and a list of constraints governing where tek tan be placed.

A Sparrow node monitor runs on each slave, and federatesneEsaosage on the slave by

10
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Figure 7: RPCs (parameters not shown) and timings assdontk launching a job. Sparrow’s
external interface is shown in bold text.

engueuing virtual reservations and requesting task spatidns from schedulers when resources
become available. Node monitors run tasks in a fixed numbestot§ slots can be configured
based on the resources of the underlying machine, such as@sland memory.

Sparrow performs task scheduling for one or more concuyr@merating frameworks. As
shown in Figure 6, frameworks are composed of long-lifredtendand executorprocesses, a
model employed by many systems (e.g., Mesos [12]). Frostandept high level queries or job
specifications (e.g., a SQL query) from exogenous sourcgs éedata analyst, web service, busi-
ness application, etc.) and compile them into parallelddsk execution on workers. Frontends
are typically distributed over multiple machines to pravtdgh performance and availability. Ex-
ecutor processes are responsible for executing tasks,radng-lived to avoid startup overhead
such as shipping binaries or bringing large datasets intbecaExecutor processes for multiple
frameworks may run co-resident on a single machine; the numlgtor federates resource usage
between co-located frameworks. Sparrow requires exextoaccept d aunchTask() RPC
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from a local node monitor, as shown in Figure 7; treunchTask() RPC includes a task de-
scription (opaque to Sparrow) provided by the applicatrontend.

6.2 Spark on Sparrow

In order to test batch sampling using a realistic workload,have ported Spark [30] to Sparrow
by writing a Spark scheduling plugin that uses the Java Spectient. This plugin is 132 lines of
Scala code.

The execution of a Spark job begins at a Spark frontend, wtichpiles a functional query
definition into a multi-phase parallel job. The first phaseth#d job is typically constrained to
execute on machines that contain partitions of the cachmd data set, while the remaining phases
(which read data shuffled over the network) can execute aesgviihe Spark frontend passes a
list of task descriptions (and any associated placemerstnts) for the first phase of the job to a
Sparrow scheduler, which assigns the tasks to slaves. Be&parrow schedulers are lightweight,
we run a scheduler alongside each Spark frontend to ensmienom scheduling latency. When
the Sparrow scheduler assigns a task to a slave, it passeskisescription provided by the Spark
frontend to the Spark executor running on the slave, whies tise task description to launch the
task. When one phase completes, Spark requests schedutivgtasks in the subsequent phase.

6.3 Fault Tolerance

Because Sparrow schedules from multiple schedulers, thigrdés inherently fault tolerant: if

a scheduler becomes unavailable, an application can dise@quests to one of many alternate
schedulers. When initializing a Sparrow client, appliocas pass a list of schedulers to connect to.
When a scheduler fails, the Sparrow clients using it re-eohto the next available scheduler and
trigger a callback at the application. This approach leasnfeworks decide how to handle tasks
which were in-flight during the scheduler failure. In somees they may want to simply ignore
failed tasks. Other frameworks might want to re-launch tleemdetermine whether they have run
once already. Spark’s approach to failure tolerance isidsed further i§7.3.

7 Experimental Evaluation

We evaluate Sparrow by performing a variety of experimentd 0 node 16-core EC2 clusters.
Unless otherwise specified, we use a probe ratio of 2. Firstuse Sparrow to schedule tasks
for a TPC-H workload, which features heterogeneous amalyfueries. We provide fine-grained
tracing of the exact overhead that Sparrow incurs and dyatgtiperformance in comparison with

an optimal scheduler. Second, we evaluate Sparrow’s ahdlitsolate users from one another in
accordance with cluster-wide scheduling policies. Finalle perform a sensitivity analysis of key

parameters in Sparrow’s design.

7.1 Performance on TPC-H Workload

To evaluate Sparrow against a realistic workload, we meaSparrow’s performance scheduling
TPC-H queries. The TPC-H benchmark is representative dicadjueries on business data, which
are a common use case for low-latency data parallel framesvor

We use Shark [11], a large scale data analytics platfornt baoitop of Spark, to execute the
TPC-H benchmark queries. Shark lets users load workingis&gtanemory on several parallel
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Figure 8: Median, 5th, and 95th percentile response time$R&-H queries with several place-
ment strategies.

machines and analyze them using a SQL-based query langDagexperiment features several
users concurrently using Shark to run ad-hoc analyticaligsi@ a 100-node cluster. The data set
and queries are drawn from the TPC-H OLAP database benchmark

The query corpus features four TPC-H queries, with 2, 3, 8, mphases respectively. The
gueries operate on a denormalized in-memory copy of the FIR@put dataset (scale factor 2.5).
Each frontend queries a distinct data-set that is striped 8 of the 100 machines: this consists
of 30 three-way replicated partitions. Each Shark quenglksedown into multiple phases. For
example, for query 3, the first phase scans and filters recthhdssecond aggregates data into
groups (via a shuffle) and the third sorts by a group-relatdger These phases are each scheduled
through Sparrow'subm t Request RPC.

In the experiment, each of 10 users launches random peiongatf the TPC-H queries con-
tinuously for 30 minutes. The queries are launched at aneggte rate of approximately 30 per
second in order to keep the cluster 65% utilized, on averQgeries are launched through 10
Sparrow schedulers, which use a sample ratio of 2 to asssf§gs ta worker machines.

Shark queries are compiled into multiple Spark [30] stapes ¢ach trigger a scheduling re-
guest to Sparrow. The response time of a Shark query is éittat the accumulated response time
of each sub-phase. The duration of each phase is not unifostead varying from a few tens
of milliseconds to several hundred. The phases in this warkhave heterogeneous numbers of
tasks, corresponding to the amount of data processed iphiase. The queries require a mix of
constrained and unconstrained scheduling requests.

Figure 8 plots the median, 5th, and 95th percentile respiimss for each TPC-H query across
all frontends during a 2 minute sampled period in the middléhe experiment. Approximately
4000 queries are completed during this window, resultingriound 12TB of in-memory table
scans (the first phase of each query scans the entire talble)figure compares response time
using Sparrow to response time with three alternatives.firsiealternative, random placement,
places each task on a randomly selected machine. The secatad)g implements batch sampling
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Figure 9: Latency distributions for each stage in the Spastheduling algorithm. Note that con-
trol plane messages are much shorter than task durations.

and uses queue-length estimations. The third group rapsetiee full Sparrow algorithm, which
includes virtual reservations.

As shown in Figure 8, Sparrow improves the median query respdme by 2-&, and the
95th by up to 13& compared to naive randomized techniques. In addition poaring on existing
techniques, Sparrow also provides good absolute perfarena@sponse times using Sparrow are
within 14% of an offline optimal. To determine the offline aptl, we take each query and calcu-
lates the response time of the query if all tasks were lauhohenediately; that is, with zero wait
time. This offline optimal calculation is conservative—ae$ not take into account task launch
delay or queuing that is unavoidable due to small utilizabarsts—both of which are inevitable
even with an omniscient scheduler. Even so, Sparrow pesforithin 14% of the offline optimal.

7.2 Scheduling Latency

Figure 9 deconstructs Sparrow scheduling latency from tbegeding TPC-H experiment into
four components. These describe a complete trace of 21egfists. Four lines are plotted, each
characterizing the latency of a particular phase of thef®pescheduling algorithm. These phases
are depicted in Figure EnqueueRes plots the time it takes for the scheduler to enqueue a
given task reservation on a slave no@et Task describes the time it takes for the slave to fetch
and run a new task. This includes time spent asking for “rtalks which were already launched
elsewhereSer vi ceTi me and QueueTi ne reflect the amount of time individual tasks spent
running or queued on the slave nodes. The messaging in 8parfast, requiring only a handful
of milliseconds to enqueue and dequeue individual tasks nTdjority of this time is spent shipping
the task information itself, a component@ t Task, which is an unavoidable overhead. Sparrow
achieves good performance because it keeps queue time lativeeo service time. The long
enqueue reservation 99th percentile latency does nott giéeformance: workers that take a long
time to receive or response to a reservation are simply sigr@ead a task.
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Figure 10: TPC-H response times for two frontends subngjtjuneries to a 100-node cluster. Node
1 suffers from a scheduler failure at 20 seconds.

7.3 How do scheduler failuresimpact job response time?

Sparrow is resilient to scheduler failure, providing auédia client failover between schedulers.
Figure 10 plots the response time for ongoing TPC-H querieani experiment parameterized
exactly as irg7.1. This experiment features 10 Shark frontends which gutontinuous queries.
The frontends are each initialized with a list of severalr&pa schedulers and initially connect to
the scheduler resident on the same node. At tim20, we terminate the Sparrow scheduler on
Node 1. The frontend is programmed to fail over to a scheduiédode 2, so we plot that node as
well.

The speed of failover recovery makes the interruption atranaoticeable. Because Sparrow
schedulers maintain no session state, the process ofgfailiar reduces to timing out and con-
necting to another node. The Sparrow client library detéstares with a fixed 100ms timeout.
On failure, it triggers an application-layer failure hagdivhich has the option of resubmitting in-
flight tasks. In the case of Spark, that handler instantlpugches any phases which were in-flight.
In this experiment, detecting the failure took 100ms, cating to a new scheduler took less than
5ms, and re-launching outstanding tasks took less than.1Gmg a small number of queries (2)
have tasks in flight during the failure; these queries sisitene overhead.

7.4 Synthetic Workload

The remaining sections evaluate Sparrow using a synthetiklsad composed of 10 100ms tasks,
unless otherwise specified. Each task runs floating-pointiphications to fully utilize a single
CPU for 100ms. In this workload, ideal job completion timealgvays 100ms, which helps to
isolate the performance of Sparrow from application-lasgiations in service time. As in previous
experiments, these experiments run on a cluster of 110 E®@2rsewith 10 schedulers and 100
workers.
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Figure 11: Cluster share used by two users that are eacladsgyual shares of the cluster. User
0 submits at a rate to utilize the entire cluster for the engixperiment while user 1 adjusts its
submission rate each 10 seconds. Sparrow assigns boththsiermax-min fair share.

7.5 How well can Sparrow’s distributed fairness enforcement maintain fair shares?

Figure 11 demonstrates that Sparrow’s distributed fagmeschanism enforces cluster-wide fair
shares and quickly adapts to changing user demand. Uses Dane both given equal shares in
a cluster with 400 slots. Unlike other experiments, we usg 4-@ore EC2 machines; Sparrow’s
distributed enforcement works better as the number of coi@gases, so to avoid over stating
performance, we evaluate it under the smallest number esame would expect in a cluster today.
User 0 submits at a rate to fully utilize the cluster for thérenduration of the experiment. User
1 changes her demand every 10 seconds: she submits at a catestone 0%, 25%, 50%, 25%,
and finally 0% of the cluster’s available slots. Under maxfairness, each user is allocated her
fair share of the cluster unless the user’'s demand is lessi#iashare, in which case the unused
share is distributed evenly amongst the remaining usenss,Tuser 1's max-min share for each
10-second interval is 0 concurrently running tasks, 10Rsta®00 tasks, 100 tasks, and finally O
tasks; user 1's max-min fair share is the remaining ressu®@garrow’s fairness mechanism lacks
any central authority with a complete view of how many tasksheuser is running, leading to
imperfect fairness over short time intervals. Nonethesshown in Figure 11, Sparrow quickly
allocates enough resources to User 1 when she begins sinignsitheduling requests (10 seconds
into the experiment), and the cluster share allocated byr@paxhibits only small fluctionations
from the correct fair share.

7.6 How much can low priority usershurt response times for high priority users?

Table 3 demonstrates that Sparrow provides response tiitte4@96 of optimal for a high priority
user in the presence of a misbehaving low priority user. Tdle priority user submits jobs at a rate
to fill 25% of the cluster, while the low priority user increassher submission rate to well beyond
the capacity of the cluster. Without any isolation mechasisvhen the aggregate submission rate
exceeds the cluster capacity, both users would experiefioée queueing. As described §d.2,

16



HP LP | HP Response LP Response

Load | Load Time Time
025, O 106 (111) N/A
0.25| 0.25| 108(114) 108 (115)
0.25| 0.5 | 110(148) 110 (449)

0.25| 0.75| 136 (170) | 40202 (46191)
0.25| 1.75| 141 (226) | 254896 (269661

Table 3: Median and 95th percentile (shown in parenthessgonse times for a high priority
(HP) and low priority (LP) user running jobs composed of 108 tasks in a 100-node cluster.
Sparrow successfully shields the high priority user frorava priority user.

Probe Ratio 1.5 Probe Ratio 3.0 =1
Probe Ratio 2.0 571
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Figure 12: Effect of probe ratio on median response timeorHrars depict 5th and 95th percentile
performance.

Sparrow node monitors run all queued high priority taskef@faunching any low priority tasks,

allowing Sparrow to shield high priority users from misbehng low priority users. While Sparrow

prevents the high priority user from experiencing infiniteegeing, the high priority experiences
40% worse response times when sharing with a demanding lmsitpruser than when running

alone on the cluster. Because Sparrow does not use preemipig priority tasks may need to

wait to be launched until low priority tasks (that are rurgimhen the higher priority task arrives)
complete. In the worst case, this wait time may be as longeotigest running low-priority task.

Exploring the impact of preemption is a subject of future kvor

7.7 Probe Ratio Sensitivity Analysis

This section seeks to answer two questions: first, if Sparemmces messaging by using a probe
ratio less than 2, how does it perform; and second, how muctadarger probe ratio improves
Sparrow’s performance? Figure 12 illustrates response dinmcreasing load in a system running
our synthetic workload. We use 4-core nodes for this expaninto emphasize the difference be-
tween probe ratios; with larger numbers of cores, fewer @s@re necessary. A higher probe ratio
decreases tail behavior at loads of at most 90%, but at 958 lgang a probe ratio of 3 leads
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Figure 13: Sparrow provides low response time for jobs casadmf 10 100ms tasks, even when
those tasks are run alongside much longer jobs.

to increased response times due to the increased messAdmger probe ratio of 1.5 provides
nearly as good performance as a probe ratio of 2; systemswhessaging is expensive might
choose to use a lower probe ratio.

7.8 Breaking Sparrow with Heterogeneity

We hypothesized that heterogeneous task distributions therweak point in Sparrow’s design: if

some workers were running long tasks, we expected Sparappsoach to have increasing diffi-

culty finding idle machines on which to run tasks. We found 8arrow works well unless a large

fraction of tasks are longnd the long tasks are many orders of magnitude longer than i sh
tasks. We ran a series of experiments with two types of jaiertgobs, composed of 10 100ms
tasks, and long jobs, composed of 10 tasks of longer duratays are submitted to sustain 80%
cluster load. Figure 13 illustrates the response time aftgblos when sharing the cluster with long

jobs. We vary the percentage of jobs that are long, the duratithe long jobs, and the number of
cores on the machine, to illustrate where performance brdakn. Sparrow’s provides response
times for short tasks within 11% of optimal (100ms) when tingnon 16-core machines, even
when 50% of tasks are 3 orders of magnitude longer. Shors ek more significant performance
degredation in a 4-core environment.

7.9 ScalingtoLargeClusters

We use simulation to evaluate Sparrow’s performance iretastyisters. Figure 3 demonstrated that
Sparrow continues to provide good performance in a 10,00@ ctuster.

8 Practical Challengesfor Low-Latency Workloads

This paper focuses on optimizing scheduling for low-lageparallel workloads. In removing the
scheduling bottleneck, we discovered numerous otherdrario supporting low latency; eliminat-
ing such bottlenecks will be important for future framewstkat seek to provide low latency. This
section outlines three such issues and discusses how wesaddrthem in our implementation and
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evaluation.

Overhead of control-plane messages Messaging can impose significant overhead when tasks
become very short. In particular, launching a task on a wankee requires shipping the relevant
task information to that node (which occurs in response ¢éogiht Task() RPC). Long-lived
executor processes running on the node help reduce thefsiie mformation, because the appli-
cation need not ship binaries or other information sharedsascall jobs. Nonetheless, the applica-
tion must send information about the task, including infation about input data, a partial query
plan, function closures, or other meta data. If a node isdhing a job composed of hundreds
of tasks, task descriptions must be small enough to ensateetlen the last task to ship doesn’t
experience appreciable delay. We found that 100-200Kbdaskriptions impacted performance
of Shark jobs on a 100-node cluster, and as a result, invested to compress tasks down to
approximately 5Kb. Even with 5Kb task descriptions, shigpall of the tasks for a large job re-
quires significant messaging at the scheduler. The overbetds messaging presents another
compelling reason to distribute scheduling (and assatiaessaging) over many schedulers.

Skew in data partitioning If partitions of a dataset are unevenly distributed, haitsplevelop
that can significantly slow response time. Such data skevwhaarperformance, even in the face
of very efficient scheduling. For the experiments in thisgrapre leveraged two features of Shark
to alleviate hot-spots. First, we replicated each partitttmemory on multiple machines, which
allows the underlying scheduler more choice in placinggaSlecond, we tightly controlled data-
layout of each table to ensure that partitions were balanced

Virtualized environments Many modern clusters use CPU virtualization to multiplexkvo
loads between users and improve efficiency. Unfortunatetyalization can inflate network round
trip times to as much as 30ms, as discussed in Bobtail [28Ja®e Sparrow node monitors are
idle while requesting new tasks from the scheduler, 30msad&tRTTs significantly degrade per-
formance, particularly at high system load. To mitigats firioblem, all experiments in this paper
were run on EC2 high memory cluster compute instances wittoi€s (crl.xlarge) to minimize
the presence of swapping. We found that even medium to lazgeE<C2 nodes (e.g., quad-core
m2.2xlarge instances) introduced unacceptable virtatdin-induced network delay.

9 Limitationsand Future Work

To handle the latency and throughput demands of low-latéacyeworks, our approach sacrifices
some of the features sometimes available in general pumgsseirce managers. Some of these
limitations of our approach are fundamental, while otheesthe focus of future work.

Scheduling Policies When a cluster becomes over-subscribed, batch samplingpaspmggre-
gate fair-sharing or priority-based scheduling. Sparsafistributed setting lends itself &pproxi-
matedpolicy enforcement in order to minimize system complexiyunding this inaccuracy under
arbitrary workloads is a focus of future work.

With regards to job-level policies, our current design doetshandlanter-job constraintge.g.
“the tasks for job A must not run on racks with tasks for job .BBupporting inter-job constraints
across frontends is difficult to do without significantlyeslhg Sparrow’s design.

Gang Scheduling  Applications that need to run inter-communicating tasks require gang schedul-
ing. Gang scheduling is typically implemented using bickpag algorithms which search for and
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reserve time slots in which an entire job can run. Becauser@pajueues tasks on several ma-
chines, there is no central point from which to perform backing. While it is often the case that
Sparrow places all jobs on entirely idle machines, this isqu@aranteed. Applications that use
Sparrow could implement inter-task communication by usingap-reduce model, where data is
shuffled and stored (in memory or on disk) before being joifdds trade-off is also made by
several other cluster schedulers [12, 19, 13]).

Cancellation Schedulers could reduce the amount of time slaves spendudléo virtual reser-
vations by canceling outstanding reservations once ddstasa job have been scheduled. Cancel-
lation would decrease idle time on slaves with little cost.

10 Reated Work

Scheduling in large distributed systems has been extdnsitedied in earlier work.

HPC Schedulers The high performance computing (HPC) community has prodwcéroad
variety of schedulers for cluster management. HPC jobs tertd monolithic, rather than com-
posed of fine-grained tasks, obviating the need for highuiiinput schedulers. HPC schedulers
thus optimize for large jobs with complex constraints, gstonstrained bin-packing algorithms.
High throughput HPC schedulers, such as SLURM [14], targetimum throughput in the tens to
hundreds of scheduling decisions per second.

Condor The Condor scheduler [24] targets high throughput compguginvironments using a
combination of centralization and distribution. Condastheduling throughput is again in the
regime of 10 to 100 jobs per second [6]. This is the result eés®d complex features, including
a rich constraint language, a job checkpointing featurd, support for gang scheduling, all of
which result in a heavy-weight matchmaking process. UrSigarrow, Condor is a general purpose
cluster resource manager.

Fine-Grained Schedulers Quincy [13] provides fairness and locality by mapping thieestuling
problem onto a graph and using a solver to compute the optinale schedule. Because the size
of the graph is proportional to the number of slaves, schiegulhtency grows with cluster size. In
a 2500 node cluster, the graph solver takes over a secondioute a scheduling assignment [13];
while multiple jobs can be batched in a single schedulinggassent, waiting seconds to schedule
a job that can complete in hundreds of milliseconds is unaebée overhead.

Dremel [16] achieves response times of seconds with extyehigh fanout. Dremel uses a
hierarchical scheduler design whereby each query is deaseadnto a serving tree. This approach
exploits the internal structure of Dremel query’s and itgage layout — it is closely tied to the
underlying architecture of the system.

Cluster Resource Managers Cluster resource managers federate resource usage betwéen
ple users and applications running in a cluster, typicading a centralized design. These resource
managers target coarse grained resource allocation andtdesigned to handle fine-grained task
assignment.

YARN [19] extends the original Hadoop Map Reduce sched@®g} o support multiple frame-
works by introducing distributed per-job application neaist YARN relies on periodic (1s, by de-
fault) heartbeats from slaves to determine when resoumesthecome available. To avoid wasted
resources, heartbeats need to occur more frequently tkeaxgected task turnover rate on a ma-
chine; to handle a multi-core machines running sub-secasist each slave would need to send
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hundreds of heartbeats per second, which would easily dhnadmvthe resource manager. Further-
more, high availability has not yet been implemented for YAR

Mesos [12] imposes minimal scheduling overhead by delegaili aspects of scheduling other
than fairness to framework schedulers and employs batdoirfgandle high throughput. Still,
Mesos was not designed to handle short tasks, so batchesdutiogerequests to provide high
throughput. This batching introduces scheduling delayherotrder of seconds.

A variety of other schedulers, e.g., Omega [22], target ®sgrained scheduling, scheduling
dedicated resources for services that handle their owrestdevel scheduling. Batch sampling
instead targets fine-grained scheduling, which allows hbigfzation by sharing resources across
frameworks; we envision that batch sampling may be usedhedide a static subset of cluster
resources allocated by a general scheduler like Omega.

Straggler Mitigation Straggler mitigation techniques such as task speculadio8l], 5, 8] deal
with the nondeterministic variation in task execution ti(rether than task wait time) due to un-
predictable causes (e.g., resource contention and fajluf@ese techniques are orthogonal (and
complementary) to Sparrow’s distributed scheduling tépine, and could be implemented in Spar-
row or by applications running on top of Sparrow.

Load Balancing A variety of projects explore load balancing tasks in mplocessor shared-
memory architectures [21, 7, 27, 10]. In such systems, ggaseare dynamically scheduled amongst
an array of distributed processors. Scheduling is necggsah time a process is swapped out,
leading to a high aggregate volume of scheduling decisibngse projects echo many of the de-
sign tradeoffs underlying our approach, such as the needoid aentralized scheduling points.
They differ from our approach because they focus on a siq@ellel machine with memory
access uniformity. As a result, the majority of effort is sgadetermining when teeschedule
processes to balance load.

Theoretical Work While a huge body of existing work analyzes the performaridbe power

of two choices load balancing technique, as summarized hyeMimacher [18], to the best of
our knowledge, no existing work explores performance foala jobs. Many existing analyses,
including the work that inspired batch sampling [20], exaena setting where balls are assigned
to bins, and analyze how many balls fall into the most loadadThis analysis is not appropriate
for a scheduling setting, because unlike bins, worker nmeshprocess tasks to empty their queue.
Other work analyzes scheduling for single tasks; parailles$ jare fundamentally different because
a parallel job cannot complete until theest of a large number of tasks completes.

Parallel Disk Request Scheduling Scheduling parallel tasks has been explored in the context o
parallel disk 10 in RAID disk arrays [26].

11 Conclusion

This paper presented Sparrow, a stateless decentralizedider that provides near optimal perfor-
mance using two key techniques: batch sampling and pu#ébasheduling. Using mathematical
analysis, we demonstrated Sparrow’s provable performaiNeaised a realistic TPC-H workload
to demonstrate that Sparrow provides response times witl¥itmiof an optimal scheduler, and used
a synthetic workload running on a deployed cluster to demnatesthat Sparrow is fault tolerant,
provides aggregate fair shares, can enforce prioritiesjsaresilient to different probe ratios and
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distributions of task durations. In light of these resulig,assert that distributed scheduling using
Sparrow presents a viable alternative to centralized sdbesifor low latency parallel workloads.
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