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ABSTRACT
Software bugs are inevitable in software-defined network-
ing (SDN) control planes, and troubleshooting is a tedious,
time-consuming task. In this paper we discuss how one
might improve SDN network troubleshooting by presenting a
technique, retrospective causal inference, for automatically
identifying a minimal sequence of inputs responsible for trig-
gering a given bug in the control software. Retrospective
causal inference works by iteratively pruning inputs from the
history of the execution, and coping with divergent histories
by reasoning about the functional equivalence of events.

We apply retrospective causal inference to three open
source SDN control platforms—Floodlight, POX, and
NOX—and illustrate how our technique found minimal
causal sequences for the bugs we encountered.

1. INTRODUCTION
Would World War I still have occurred if Archduke Fer-

dinand had not been shot? Would the United States have
abolished slavery if Abraham Lincoln had not been elected?
That is, were those prior events intrinsic to the precipitation
of the historical outcome, or were they extraneous? Unfor-
tunately we can never know such historical counterfactuals
for sure.

When troubleshooting computer systems, we often need
to answer similar questions, e.g. “Was this routing loop trig-
gered when the controller learned of the link failure?” And
unlike human history, it is often possible to find answers to
such causality questions. In this paper we address the prob-
lem of programmatically answering them in the context of
software-defined networking.

Based on anecdotal evidence from colleagues and ac-
quaintances in the industry, it seems clear that developers
of software-defined networks spend much of their time trou-
bleshooting bugs. This should be no surprise, since software
developers in general spend roughly half (49% according to
one study [19]) of their time troubleshooting, and spend con-
siderable time on bugs that are difficult to trigger (the same
study found that 70% of the reported concurrency bugs take
days to months to fix). More fundamentally though, modern
SDN control platforms are highly complex, distributing state
between replicated servers [15], providing isolation and re-

source arbitration between multiple tenants [6], and globally
optimizing network utilization [25]. Most of this complexity
comes from fundamentally difficult distributed systems chal-
lenges such as asynchrony and partial failure. Even Google’s
Urs Höelzle, a leading networking and distributed systems
technologist, attests that [25] “[coordination between repli-
cated controllers] is going to cause some angst, and justifi-
ably, in the industry.”

The troubleshooting process is hindered by the large num-
ber of hardware failures, policy changes, host migrations,
and other inputs to SDN control software. As one data
point, Microsoft Research reports 8.5 network error events
per minute per datacenter [20]. Troubleshooters find little
immediate use from traces containing many inputs prior to
a fault, since they are often forced to manually filter extra-
neous inputs before they can start fruitfully exploring what
might be the root cause. It is no surprise that when asked
to describe their ideal tool, most network admins said “auto-
mated troubleshooting” [51].

Before continuing, we should clarify what we mean by
‘troubleshooting’ and ‘bugs’ in the SDN context. SDN net-
works are designed to support high-level policies, such as
inter-tenant isolation. A bug, in this context, creates situa-
tions where the network violates one or more of these high-
level policies; that is, even though the control plane has been
told to implement a particular policy, the resulting configura-
tion (i.e. flow entries in the switches) does not do so properly.
We call this an invalid configuration. We presume that the
control plane functions properly in most circumstances, so
that these policy violations are rare. Bugs may be triggered
by uncommon sequences of inputs, such as a simultaneous
link failure or controller reboot. The act of troubleshooting
is identifying which set of inputs triggered the bug. Debug-
ging then involves tracking down the error in the code itself,
given a set of triggering inputs. The smaller the set of trig-
gering inputs, the easier debugging will be.

Our focus here is on troubleshooting. When we observe
an invalid configuration, which is prima facie evidence for a
bug, our goal is to automatically filter out inputs to the SDN
software (e.g. link failures) that are not relevant to triggering
the bug, leaving a small sequence of inputs that is directly
responsible. This would go a long way towards achieving



“automated troubleshooting.”
If you consider a software-defined network as a dis-

tributed state machine, with individual processes send-
ing messages between themselves, one straightforward ap-
proach is to account for potential causality: if an external
input does not induce any messages before the occurrence
of the invalid configuration, it cannot possibly have affected
the outcome [32]. Unfortunately, pruning only those inputs
without a potential causal relation to the invalid configura-
tion does not significantly reduce the number of inputs.

Our approach is to prune inputs from the original run,
replay the remaining inputs to the control software using
simulated network devices, and check whether the network
re-enters the invalid configuration. In particular, we gen-
eralize delta debugging [50]—an algorithm for minimizing
test cases that are inserted at a single point in time to a sin-
gle program—to a distributed environment, where inputs are
spread across time and involve multiple machines.

The main difficulty in pruning historical inputs is coping
with divergent histories. Traditional replay techniques [13,
18] reproduce errors reliably by precisely recording the low-
level I/O operations of software under test. Pruning inputs,
however, may cause the execution to subtly change (e.g. the
sequence numbers of packets may all differ), and some state
changes that occurred in the original run may not occur.
Without the exact same low-level I/O operations, determin-
istic replay techniques cannot proceed in a sensible manner.

Our approach is to record and replay at the application
layer, where we have access to the syntax and semantics of
messages passed throughout the distributed system. In this
way we can recognize functionally equivalent messages and
maintain causal dependencies throughout replay despite al-
tered histories.

The output of our approach, minimized input traces,
represents a noteworthy improvement over the status quo;
painstaking manual analysis of logs is the de facto method
of troubleshooting production SDN control software today.

As far as we know, our work is the first to programmat-
ically isolate fault-inducing inputs to a distributed system.
Record and replay techniques such as OFRewind [46] and
liblog [18] enable you to step through the original execu-
tion and verify whether a set of inputs triggered a bug, but
the original run is often so large that the the set of poten-
tially triggering inputs verges on unmanageable. Tracing
tools such as ndb [24] provide a historical view into data-
plane (mis)behavior. In contrast, our technique provides in-
formation about precisely what caused the network to enter
an invalid configuration in the first place.

We have applied retrospective causal inferenceto three
open source SDN control platforms: Floodlight [4],
POX [35], and NOX [21]. Of the five bugs we encountered
in a five day investigation, retrospective causal inference re-
duced the size of the input trace to 36% of its original size in
the worst case and 2% of its original size in the best case.

2. BACKGROUND
We begin by sketching the architecture of the SDN control

plane and illustrating the correctness challenges encountered
by operators and implementers of SDN control software.

SDN networks are managed by software running on a set
of network-attached servers called ‘controllers’. It is the job
of the controllers to configure the network in a way that com-
plies with the intentions of network operators. Operators
codify their intentions by configuring behavioral specifica-
tions we refer to as ‘policies’. Policy constraints include
connectivity, access control, resource allocations, traffic en-
gineering objectives, and middlebox processing.

For fault-tolerance, production SDN control software is
typically distributed across multiple servers. For scalabil-
ity, the responsibility for managing the network can be par-
titioned through sharding. Onix [31], for example, partitions
a graph of the network state across either an eventually con-
sistent distributed hash table or a transactional database.

In this distributed setting, controllers must coordinate
amongst themselves when reacting to state changes in the
network or policy changes from above. Coordination in
SDN is not exempt from the well-known class of faults in-
herent to all distributed systems, such as inconsistent reads,
race conditions over message arrivals, and unintended con-
sequences of failover logic.

Several production SDN controllers support network vir-
tualization [4, 11, 38], a technology that abstracts the details
of the underlying physical network and presents a simplified
view of the network to be configured by applications. In this
model, multi-tenancy is implemented by providing each ten-
ant with their own abstract view, which are multiplexed onto
the same physical network. A common pattern is to treat
an entire network (up to 100,000 v-switches in a large data-
center) as a single logical switch for each tenant. When an
entire datacenter network is abstracted in this way, the map-
ping between the logical switch and the physical topology is
highly complex.

In conjunction, the challenges of maintaining virtualized
and distributed objects while ensuring that critical invariants
such as isolation between tenants hold at all times make SDN
control software highly complex and bug-prone.

3. RETROSPECTIVE CAUSAL INFER-
ENCE

To illustrate the mechanics of retrospective causal infer-
ence, we start by describing an example bug in the Flood-
light open source control platform [16]. Floodlight is dis-
tributed across multiple controllers for high availability, and
provides support for virtualization. Switches maintain one
hot connection to a master controller and several cold con-
nections to replica controllers. The master holds the au-
thority to modify the configuration of switches, while the
other controllers are in backup mode and do not perform any
changes to the switch configurations unless they detect that
the master has crashed.
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Figure 1: Floodlight failover bug. External inputs are
depicted as red dots, internal events are depicted as black
dots, and the dotted message line depicts a timeout.

The failover logic in Floodlight is not implemented cor-
rectly, leading to the following race condition1 depicted in
Figure 1: a link fails (E1), and the switch attempts to notify
the controllers (E2,E4) shortly after the master controller has
died (E3), but before a new master has been selected (E6).
In this case, all live controllers are in the backup role and
will not take responsibility for updating the switch flow ta-
ble (E5). At some point, a backup notices the master failure
and elevates itself to the master role (E6). The new master
will proceed to manage the switch, but without ever clearing
the routing entries for the failed link (resulting in a persistent
blackhole).

There were only two external inputs (E1,E3) shown in our
example. However, a developer or operator encountering
this bug in practice would not be given this concise version
of events. Instead, the trace would a contain wealth of extra-
neous inputs, making it difficult to reason about the under-
lying root cause. In the worst scenario, operators may need
to examine logs from a production network, which contain a
substantial number of hardware failures, topology changes,
and other potential triggering events, all of which may ap-
pear characteristic of normal operating conditions at first
glance; assuming 8.5 network error events per minute [20],
and 500 VM migrations per hour [42], there would be at least
8.5 · 60+ 500 ≈ 1000 inputs reflected in an hour-long trace.

Given a trace of the system execution similar to the Flood-
light case, our goal is to prune events that are not neces-
sary for triggering errant behavior. We define errant behav-
ior in terms of correctness violations: configurations of the
network that are inconsistent with the policy. In the exam-
ple, the correctness violation is between a reachability pol-
icy specified in the logical switch (“A can talk to B”) and the
blackhole in the physical network (“A’s packets to B enter
the blackhole and do not arrive at B”).

Specifically, our technique identifies a minimal sequence
of inputs to the controllers that is sufficient for triggering a
known correctness violation. We refer to such inputs as a
minimal causal sequence (MCS). Going back to our exam-

1Note that this issue was originally documented by the developers
of Floodlight [16].

ple, suppose the log includes many more (extraneous) inputs.
Whenever an extraneous event is pruned, the blackhole will
still persist: when the controller crash is pruned, the black-
hole will be resolved properly, and when the link failure is
pruned, no blackhole will occur. The MCS returned is there-
fore the controller crash and the link failure in conjunction.

3.1 Delta Debugging
Delta debugging [49], a technique from the software engi-

neering community, gets us part of the way to our goal: given
a single input (e.g. an HTML page) for a non-distributed pro-
gram (e.g. Firefox), it performs a divide-and-conquer search,
repeatedly running the program on subsets of the input un-
til it finds a minimal subset (e.g. a single tag) that is suf-
ficient for triggering a known bug. Specifically, it finds a
locally minimal causal sequence [49], meaning that if any
input from the sequence is pruned, no correctness violation
occurs. The delta debugging algorithm is shown in Figure 2
(with ‘test’ replaced by ‘replay’).

Our problem differs from the original formulation of delta
debugging in two dimensions. First, delta debugging as-
sumes that input is inserted at a single point in time. In
contrast, input to SDN controllers includes many messages
spread throughout time. Second, delta debugging assumes
a single program under test. Our input depends on causal
relationships across concurrently running nodes.

For the purposes of this section, we model our problem
as follows. We are given a single, globally ordered trace of
events that ends in in a correctness violation, and we return a
minimal causal subsequence of the trace. The trace includes
input events (e.g. link failures), control message sends and
receipts between switches and controllers, and internal state
changes (e.g. the backup deciding to elevate itself to master
in the Floodlight case) labeled with the control process that
made the state change. In §4.1, we describe how we obtain
the globally ordered trace in practice.

In the rest of this section we describe how we replay in-
puts to control software and cope with alterations to the
causal history of an execution.

3.2 Simulated Execution
Unlike the example applications described by the original

delta debugging paper [49], the system we are troubleshoot-
ing is not a single program–it is all the nodes and links of a
distributed system, including controllers, switches, and end-
hosts. The asynchrony of distributed systems makes it diffi-
cult to reliably replay orderings of events without great care.
We therefore simulate the control-plane behavior of network
devices (with support for minimal data-plane behavior) on a
single machine. We then run the control software on top of
this simulator and connect the software switches to the con-
trollers as if they were true network devices, such that the
controllers believe they are configuring a true network. This
setup allows the simulator to interpose on all communica-
tion channels. The simulator uses these interposition points

3



Figure 2: Automated Delta Debugging Algorithm From [49]
Input: T8 s.t. T8 is a trace and replay(T8) = 8. Output: T ′

8
= ddmin(T8) s.t. T ′

8
⊆ T8, replay(T ′

8
) = 8, and T ′

8
is minimal.

ddmin(T8) = ddmin2(T8, ∅) where

ddmin2(T ′8, R) =


T ′

8
if |T ′

8
| = 1 (“base case”)

ddmin2
(
T1, R

)
else if replay(T1 ∪R) = 8 (“in T1”)

ddmin2
(
T2, R

)
else if replay(T2 ∪R) = 8 (“in T2”)

ddmin2
(
T1, T2 ∪R

)
∪ ddmin2

(
T2, T1 ∪R

)
otherwise (“interference”)

where replay(T ) denotes the state of the system after executing the trace T , 8 denotes a correctness violation,
T1 ⊂ T ′

8
, T2 ⊂ T ′

8
, T1 ∪ T2 = T ′

8
, T1 ∩ T2 = ∅, and |T1| ≈ |T2| ≈ |T ′8|/2 hold.

Process

OpenFlow

Policies

Controller 1

Process

OpenFlow

Policies

Controller N

...

= interposition

Simulator

Figure 3: Simulation infrastructure. We simulate net-
work devices in software, and interpose on all communi-
cation channels.

to delay, drop, or reorder messages as needed for replay. The
overall simulation architecture is depicted in Figure 3.

Given a sequence of inputs (e.g. link failures, controller
crashes, host migrations, or policy changes) and an invari-
ant checking probe (provided by tools such as HSA [27, 28]
or Anteater [29,34]), delta debugging finds a minimal causal
sequence responsible for triggering the policy violation. The
simulator is responsible for replaying intermediate input
subsequences chosen by delta debugging. For example, the
simulator replays link failures by disconnecting the edge in
the simulated network, and sending a port status message
from the adjacent switches to their parent controller(s).

The input subsequences chosen by delta debugging are
not always valid. For example, it is not sensible to replay
a recovery event without a preceding failure event; nor is it
sensible to replay a host migration event without modifying
its starting position when a preceding host migration event
has been pruned. The simulator checks validity before re-

playing a given subsequence to account for this possibility.2

Currently our simulator accounts for validity of all network
state change events (shown in Table 2), but does not support
policy changes, which have more complex semantics.

3.3 Replay
The timing of the inputs injected by the simulator is

crucial for reliably reproducing the correctness violation.
Naïvely injecting inputs often fails to trigger the original cor-
rectness violation, even without having pruned any events.
In particular, we tried and failed to reproduce errors when
scheduling inputs with the following simple algorithm:

t′0 = 0

t′i = t′i−1 + |ti − ti−1|

where t′i is the simulation’s clock value when it injects the
ith input, and ti is the timestamp of the ith input from the
original run. In other words, simply maintaining the relative
timing between inputs is not sufficient.

The problem with the simple scheduling algorithm is that
it does not take into account events that are internal to the
control software, such as message receipts, timers going off,
or internal state changes like the backup node in the Flood-
light example deciding to elevate itself to master; if the or-
dering of inputs and internal events is perturbed, the final
output may differ. Consider for example that if a controller’s
garbage collector happens to run while we replay inputs, it
may delay an internal state transition until after the simulator
injects an input that depended on it in the original run.

The challenge is to maintain causal relationships. For-
mally, to reliably reproduce the original correctness viola-
tion we need to inject an external input e at exactly the point
when all other events (both external and internal) that pre-
cede it in the happens-before relation ({i | i→ e}) from the
original execution have occurred [43].

2Handling invalid inputs is crucial for ensuring that the delta de-
bugging algorithm we employ [49] is guaranteed to find a minimal
causal sequence, since it assumes that no unresolved test outcomes
occur. Zeller wrote a follow-on paper [50] that removes the need
for this assumption, but incurs an additional factor of N in com-
plexity in doing so.
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Internal message Masked values
OpenFlow headers transaction id
OpenFlow FLOW_MODs cookie, buffer id
Log statements varargs parameters to printf

Table 1: Example internal messages and their masked
values. The masks serve to define equivalence classes.

While the input and internal events from the original
run are given to us, we become aware of internal events
throughout replay by (i) monitoring control message receipts
between controllers and switches, and (ii) interposing on
the controllers’ logging library and notifying the simula-
tor whenever the control software executes a log statement
(which serve to mark relevant state transitions). Note that
to achieve truly deterministic replay, these log statements
would need to be highly granular, capturing information
such as thread scheduling decisions; we show in §5 however
that pre-existing, course granular log statements are often
sufficient to successfully reproduce bugs.

3.4 Fingerprinting
Replay is made substantially more complicated by the fact

that the delta debugging algorithm is pruning inputs from the
history of the execution, thereby changing the resulting in-
ternal events generated by the control software. In particular,
internal events may differ syntactically (e.g. sequence num-
bers of control packets may all differ), old internal events
from the original execution may not occur after pruning, and
new internal events that were not observed at all in the orig-
inal execution may appear.

Our first observation is that many internal events are func-
tionally equivalent, in the sense that they have the same ef-
fect on the state of the system with respect to triggering the
correctness violation (despite syntactic differences). For ex-
ample, flow modification messages may cause switches to
make the same change to their forwarding behavior even if
the transaction identifier of the messages differ.

We leverage this observation by defining domain-specific
masks over semantically extraneous fields of internal
events.3 We show four examples of masked values in Ta-
ble 1.

These masks define equivalence classes of internal events.
Formally, we consider an internal event i′ observed in an al-
tered trace equivalent to an internal event i from the origi-
nal trace iff all unmasked fields have the same value and i
occurs between i′’s preceding and succeeding inputs in the
happens-before relation.

3.5 Handling Absent Internal Events
Given an equivalence relation over internal events, replay

is responsible for maintaining equivalent happens-before
3One consequence of applying masks is that bugs involving
masked fields are outside the purview of retrospective causal in-
ference.

Safe Notify
Parents

 Link Failure

Receive Flush

Switch

Controllers

Backup Master

Master Failure
Send 
Flush

Receive Link Failure Notification

Figure 4: Simplified state machines for the switch and
controllers in the example Floodlight bug. Double out-
lined states represent presence of the blackhole.

constraints from the original execution. But syntactic differ-
ences are not the only possible change induced by pruning:
internal events from the original may also cease to appear.

The structure of the control software’s state machine
(which we do not assume to know) determines whether in-
ternal events disappear. Consider the simplified state ma-
chines for the switch and controllers from the Floodlight
case shown in Figure 4. If we prune the link failure input,
the master will never receive a link failure notification and
transition to and from ‘Send Flush’.

In the hope that absent internal events are not actually rel-
evant for triggering the correctness violation, we proceed
with replay. Specifically, our approach is to wait for ex-
pected equivalent internal events, but time out and proceed
if they do not occur within a certain time ε.

In most cases this approach successfully reproduces the
original correctness violation, assuming ε is larger than vari-
ations in execution speeds between internal events. If the
value of ε is too large, however, we may end up waiting
too long for the happens-before predecessors of an input ei
such that a successor of ei occurs before we have injected ei,
thereby violating the remaining happens-before constraints.

If the event scheduling algorithm detects that it has waited
too long, it replays the trace from the beginning up until the
immediately prior input,4 this time knowing exactly which
internal events in the current input interval are and are not
going to occur before injecting the next input. We show the
overall event scheduling algorithm in Figure 5.

3.6 Handling New Internal Events
The last possible change induced by input pruning is the

occurrence of new internal events that were not observed in
the original trace. Ultimately, new events leave open mul-
tiple possibilities for where we should inject the next input.
Consider the following case: if i2 and i3 are internal events
observed during replay that are both in the same equivalence
class as a single event i1 from the original run, we could

4An alternative would be to take a snapshot of the controllers’ state
at every injected input and start from the latest snapshot.
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subsequence = [e1, e2, ..., ej]
// e1 is always an input

function replay(subsequence):
bootstrap the simulation
for ei in subsequence:

if ei is an internal event and
ei is not marked absent:

Δ = |ei.time - ei-1.time| + ε
wait up to Δ seconds for ei
if ei did not occur:

mark ei absent
else if ei is an input:

if a successor of ei occurred:
// waited too long
return replay(subsequence)

else:
inject ei

Figure 5: Replay Algorithm Pseudocode. In practice we
account for other vagaries not shown here.

inject the next input after i2 or after i3.
In the general case it is always possible to construct two

state machines that lead to differing outcomes: one that only
leads to the correctness violation when we inject the next in-
put before a new internal event, and one that only leads to
the correctness violation when we inject the next input af-
ter a new internal event. In other words, to be guaranteed
to traverse any existing suffix that leads to the correctness
violation, it is necessary to recursively branch, trying both
possibilities for every new internal event. This implies an ex-
ponential number of possibilities to be explored in the worst
case.

Exponential search is not a practical option. Our heuristic
when waiting for expected internal events is to proceed nor-
mally if there are intermediate new internal events, always
injecting the next input when its last expected predecessor
either occurs or times out. This ensures that we always find
suffixes that contain only a subset of the (equivalent) origi-
nal internal events, but leaves open the possibility of finding
divergent suffixes that still lead to the correctness violation.
This is reasonable because not even branching on new in-
ternal events is guaranteed to find the shortest fault-inducing
input sequence: there may be other unknown paths through
the state machine leading to the correctness violation that are
completely disjoint from the original execution.

Luckily, crucially ambiguous new internal events are not
problematic for the control software we evaluated, as we
show in §5. We conjecture that ambiguous new internal
events are rare because SDN is a control plane system, and
is designed to quiesce quickly (i.e. take a small number of
internal transitions after any input event, and stop at highly
connected vertices). Concretely, SDN programs are often
structured as (mostly independent) event handlers, meaning

that pruning input events simply triggers a subset of the orig-
inal event handlers. As an illustration, consider the state ma-
chines in Figure 4: the controllers quickly converge to a sin-
gle state (either “Master” or “Backup”), as do the switches
(“Safe”).

3.7 Complexity
The delta debugging algorithm terminates after O(log n)

invocations of replay in the best case, where n is the number
of inputs in the original trace [49]. In the worst case, delta
debugging has O(n) complexity.

If the replay algorithm never needs to back up, it replays
n inputs, for an overall runtime of O(nlog n) replayed in-
puts in the best case, and O(n2) in the worst case. Con-
versely, if the event scheduling needs to back up in every
iteration, another factor of n is added to the runtime: for
each input event ei, it replays inputs e1, . . . , ei, for a total
of n × n+1

2 ∈ O(n2) replayed inputs. In terms of replayed
inputs, the overall worst case is therefore O(n3).

The runtime can be decreased by observing that delta de-
bugging is readily parallizable. Specifically, the worst case
runtime could be decreased to O(n2) by enumerating all
subsequences that delta debugging can possibly examine (of
which there are O(n)), replaying them in parallel, and join-
ing the results.

The runtime can be further decreased by taking snapshots
of the controller state at regular intervals. When the replay
algorithm detects that it has waited too long, it could then
restart from a recent snapshot rather than replaying the entire
prefix.

SDN platform developers can reduce the probability that
the replay algorithm will need to back up by placing causal
annotations on internal events [17]: with explicit causal in-
formation, the replay algorithm can know a priori whether
certain internal are dependent on pruned inputs.

3.8 Limitations
Having detailed the specifics of retrospective causal infer-

ence, we now clarify the scope of our technique’s use.
Partial Visibility. Our event scheduling algorithm assumes
that it has visibility into the occurrence of all relevant inter-
nal events. In practice many relevant internal state changes
are already marked by logging statements, but developers
may need to add additional logging statements to ensure re-
liable replay.
Non-determinism Within Individual Controllers. Our
tool is not designed to reproduce bugs involving non-
determinism within a single controller (e.g. race-conditions
between threads); we focus on coarser granularity errors
(e.g. incorrect failover logic), which we find plenty of in
§5. The upshot of this is that our technique is not able to
minimize all possible failures, such as data races between
threads. Nonetheless, the worst case for us is that the devel-
oper ends up with what they started: an unpruned log.
Troubleshooting vs. Debugging. Our technique is a trou-
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Link failure Link recovery
Switch failure Switch recovery
Control server failure Control server recovery
Dataplane packet injection Dataplane packet drop
Dataplane packet delay Dataplane packet permit
Control message delay Host migration

Table 2: Input types supported by STS

bleshooting tool, not a debugger; by this we mean that retro-
spective causal inference helps identify and localize inputs
that trigger erroneous behavior, but it does not directly iden-
tify which line(s) of code cause the error.
Bugs Outside the Control Software. Our goal is not to
find the root cause of individual component failures in the
system (e.g. misbehaving routers, link failures). Instead, we
focus on how the distributed system as a whole reacts to the
occurrence such inputs. If there is a bug in your switch, you
will need to contact your hardware vendor; if you have a bug
in your policy specification, you will need to take a closer
look at what you specified.
Globally vs. Locally Minimal Input Sequences. Our ap-
proach is not guaranteed to find the globally minimal causal
sequence from an input trace, since this requires O(2N )
computation in the worst case. The delta debugging algo-
rithm we employ does provably find a locally minimal causal
sequence [49], meaning that if any input from the sequence
is pruned, no correctness violation occurs.
Correctness vs. Performance. We are primarily focused on
correctness bugs, not performance bugs.

4. SYSTEM DESIGN AND USAGE SCE-
NARIOS

STS (the SDN Troubleshooting Simulator) is our realiza-
tion of the techniques described in §3. STS is implemented
in roughly 10,000 lines of Python in addition to the Has-
sel network invariant checking library [28]. We have made
the code for STS publicly available at http://ucb-sts.
github.com/sts/. To date, three industrial SDN com-
panies have expressed interest in adopting it.

In the rest of this section, we highlight salient points of
STS’s design, and illustrate a workflow for users of STS.

We show the input types supported by STS in Table 2. Our
software switches notify controllers about link, switch, and
host migration events by sending OpenFlow messages [39].
Although the software switches do support packet forward-
ing, we have not focused on simulating high-throughput dat-
aplane behavior.

We designed STS to be as resilient to non-determinism
as is practically feasible, while avoiding modifications to
control software whenever possible. When sending data
over multiple sockets, the operating system exhibits non-
determinism in the order it schedules the socket I/O oper-
ations. STS optionally ensures a deterministic order of mes-

sages by multiplexing all sockets in the controller process
onto a single true socket.5 STS currently overrides socket
functionality within the control software itself.6 In the fu-
ture we plan to implement deterministic message ordering
without code modifications by loading a shim layer on top
of libc (similar to liblog [18]).

STS needs visibility into the control software’s internal
state changes to reliably reproduce the system execution. We
achieve this by making a small change to the control soft-
ware’s logging library7: whenever a control process executes
a log statement, we notify STS that a new state transition is
about to occur, and optionally block the process. STS then
sends an acknowledgment to unblock the controller after
logging the state change. If blocking was enabled during
recording, we force the control software to block at internal
state transition points again during replay until STS gives
explicit acknowledgment.

Routing the gettimeofday() syscall through
STS makes replay more resilient to alterations in ex-
ecution speeds.8 As an added benefit, overriding
gettimeofday() allows us to ‘compress’ runtime
in some cases (similar to time-warped emulation [22]).

If the control software under test utilizes random number
generators, we attempt to manually replace any such func-
tionality with deterministic algorithms if possible. Our cur-
rent implementation does not account other sources of non-
determinism, such as asynchronous signals, or interruptable
instructions (e.g. x86’s block memory instructions [13]).

Developers and operators can use STS in a number of
ways. Here we illustrate a general workflow.

4.1 Bug Exploration
Use of STS begins with bug exploration. STS itself is

well-suited for finding input traces that trigger bugs: it read-
ily simulates common network input events, and ships with
a suite of invariant checking algorithms [28]. With com-
plete control over event orderings, STS is especially useful
for exploring corner cases. Along these lines, Amin Vahdat
has testified to the value of Google’s SDN network simula-
tor [10]:

“One of the key benefits we have is a very nice
emulation and simulation environment where the
exact same control software that would be run-
ning on servers might be controlling a combina-
tion of real and emulated switching devices. And
then we can inject a number of failure scenarios
under controlled circumstances to really acceler-
ate our test work.”

5Alternatively, we could employ a mutex [33].
6Only supported for POX at the moment.
7Only supported for POX and Floodlight at the moment.
8When the pruned trace differs from the original, we make a best-
effort guess at what the return values of these calls should be.
For example, if the altered execution invokes gettimeofday()
more times than we recorded in the initial run, we interpolate the
time values of neighboring events
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Developers can use STS to generate randomly chosen in-
put sequences [36], feed them to controller(s), and monitor
invariants at chosen intervals. Driving the execution of the
system in this way allows STS to record a totally-ordered log
of the events to be replayed later.

Developers can also run STS interactively to generate re-
playable integration tests, similar to Nebut et al. [37]. In in-
teractive mode developers can examine the state of any part
of the simulated network, observe and manipulate messages,
and follow their intuition to induce orderings that they be-
lieve may trigger bugs.

Generating integration tests in this fashion frees develop-
ers to be more agile and spend spend less time writing test
cases. As developers and operators encounter additional fail-
ure cases they can add them to a suite of integration tests
later used to validate the correct behavior of future versions
of the software. Since STS makes limited assumptions about
the control software under test, the overall SDN community
could potentially collect a common repository of test cases.

4.2 Replay
Having discovered a bug, developers can use STS to re-

play the inputs that triggered the bug. Repeated replay in
conjunction with print statements or source-level debuggers
is how troubleshooters can ultimately find the buggy line(s)
of code (as envisioned by [46]).

Replay with STS has the potential to change how devel-
opers elicit help from mailing lists or coworkers. The status
quo is to describe the conditions needed to reproduce the
bug as carefully as possible and hope that others are able
to replicate the issue. With STS, developers can record er-
rant executions in the simulated environment, and exchange
traces to be replayed again at other developer’s machines.

4.3 Minimizing Input Traces
Moving beyond network replay, STS’s main value is in

automatically minimizing input traces. Troubleshooting can
be highly time-consuming and challenging when the devel-
oper has no intuition as to where the problem might arise and
only a large input log to work with. For instance, stepping
through a 1000 event trace in a source level debugger can
involve taking thousands of individual steps. When inspect-
ing log files, developers are often confronted with dozens of
lines of debug output per event and hundreds of thousands of
log lines overall. With retrospective causal inference, much
of the heavy lifting can be performed automatically before
the developers begin to diagnose the root cause.

At the least, retrospective causal inference reduces the
runtime of test cases and eliminates distracting events during
replay. More importantly, minimal causal sequences give de-
velopers intuition about what code path is throwing the net-
work into an invalid configuration. In our own experience
investigating the bugs described in §5, we had little under-
standing of what the problem was at first. After identifying
the MCS, it became easier to understand what corner case

was triggered, and how the bug might be resolved.
Minimal causal sequences also serve to consolidate redun-

dant test cases: if two test failures have the same minimal
causal sequence, it is likely that the same underlying bug is
responsible [50]. This eliminates time wasted investigating
bug reports with the same root cause.

4.4 Analysis of Production Logs
Input generation, interactive execution, replay, and test

case minimization are implemented and used in STS today.
Forensic analysis of production logs, while not currently im-
plemented, may be another valuable use case of STS. Here
we present a sketch of how forensic analysis could be per-
formed with retrospective causal inference.

While retrospective causal inference takes as input a sin-
gle, totally-ordered log of the events in the distributed sys-
tem, production systems maintain a log at each node. Instru-
mentation and preprocessing steps are therefore needed.

Production systems would need to include Lamport clocks
on each message [32] or have sufficiently accurate clock syn-
chronization [12] to obtain a partial global ordering consis-
tent with the happens-before relation.9 Contrast this with
STS’s testing mode, where a global event ordering is ob-
tained by logging all events at a single location.

The distributed logs would also need to make a clear dis-
tinction between internal events and external input events.
Further, the input events would need to be logged in suffi-
cient detail for STS to reproduce a synthetic version of the
input that is indistinguishable (in terms of control plane mes-
sages) from the original input event.

Without care, a single input event may appear multiple
times in the distributed logs. A failure of the master node, for
example, could be independently detected and logged by all
other replicas. The most robust way to avoid redundant input
events is to employ perfect failure detectors [7], which log
a failure iff the failure actually occurred. Alternatively, one
could employ root cause analysis algorithms [47] or manual
inspection to consolidate redundant alarms.

Finally, some care is needed to prevent the logs from
growing so large that retrospective causal inference’s run-
time becomes intractable. Here, causally consistent snap-
shots [8] can minimize the number of inputs retrospec-
tive causal inference needs to examine. Specifically, with
causally consistent snapshots of the distributed system taken
at regular intervals, STS can bootstrap its simulation from
the last snapshot before the failure. If the MCS starting from
this snapshot is empty, it can iteratively move backwards,
starting from earlier snapshots.

5. EVALUATION
We have applied STS to three open source SDN control

9 Note that a total ordering is not needed, since it is permissible
for retrospective causal inference to reorder concurrent events from
the production run so long as the happens-before relation is main-
tained [14].
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Bug Name Topology Replay Success Rate Total Inputs MCS Size
POX list removal 2 switch mesh 20/20 76 (69) 2 (2)
POX in-flight blackhole 2 switch mesh 15/20 [20/20*] 68 (26) 25 (11)
POX migration blackhole 4 switch mesh 20/20* 117 (29) 3 (2)
NOX discovery loop 4 switch mesh 18/20 358 (150) 58 (18)
Floodlight loop 3 switch mesh 15/50 548 (284) 404 (?)

Table 3: Overview of Case Studies. Totals shown in parentheses are with dataplane permit events excluded.
*with multiplexed sockets and logging interposition enabled.

platforms: POX [35], NOX [21], and Floodlight [4]. Over
a span of roughly five days of investigation we found a total
of five bugs. We show a high-level overview of our results
in Table 3, and illustrate in detail how retrospective causal
inference found their minimal causal sequences in the rest
of this section.

5.1 POX List Removal
The first SDN control platform we examined was POX,

the successor of NOX. POX is a single-machine control plat-
form intended primarily for research prototyping and educa-
tional use (i.e. not large scale production use). Nevertheless,
POX has been deployed on real networks, and has a growing
set of users.

The POX application we ran was a layer two routing mod-
ule (‘l2_multi’) that learns host locations and installs exact
match per-flow paths between known hosts using a variant
of the Floyd-Warshall algorithm. It depends on a discov-
ery module, which sends LLDP packets to discovery links
in the network, and a spanning tree module, which config-
ures switches to only flood packets for unknown hosts along
a spanning tree.

We start with a relatively trivial bug to illustrate that
STS is useful for early stage development and testing. We
employed STS to generate random sequences of inputs, and
found after some time that POX threw an exception due to
attempting to remove an element from a list where the ele-
ment was not present.

There were 76 randomly generated inputs in the trace
leading up to the exception. We invoked retrospective causal
inference to identify a two element MCS: a failure of a con-
nected switch followed by a reboot/initialization of the same
switch. The nearly logarithmic runtime behavior of retro-
spective causal inference for this case is shown in Figure 6.

Apparently the developers of POX had not anticipated this
particular event sequence. Given the rarity of switch re-
covery events, and the tediousness of writing unit tests for
scenarios such as this (which involved multiple OpenFlow
intitialization handshakes), this is not entirely unsurprising.
STS made it straightforward to inject inputs at a high seman-
tic level, and the minimized event trace it produced made for
a simple integration test.

5.2 POX In-flight Blackhole
We discovered the next bug after roughly 20 runs of ran-
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Figure 6: Minimizing the POX list remove trace.

S1 S2A B
1.2 1.1

2.1 2.2

Figure 7: Topology for POX in-flight blackhole. Num-
bers denote port labels.

domly generated inputs. We noticed that STS reported a per-
sistent blackhole while POX was bootstrapping its discovery
of link and host locations. We encountered this bug on a sim-
ple topology, depicted in Figure 7, consisting of two hosts A
and B and two switches S1 and S2 connected by a single
link.

There were 68 inputs in the initial trace, and retrospective
causal inference returned a 25 input MCS (runtime shown
in Figure 8). With the MCS in hand we took out paper and
pencil to decipher what had transpired.

Before the discovery module had learned of the link con-
necting the two switches, there were six traffic injection
events between hosts (A→ B and B→A). At the point when
the link was discovered, POX had previously learned of B’s
location at port 2.2, and correctly unlearned a previous lo-
cation for A at port 2.1 (which it now knew to be a switch-
switch link).

Directly after the link discovery we observed an in-flight
packet arriving from A→B at port 2.1 (without a prior flow
notification from S1). This was POX’s first error. Upon ex-
amining the code, we found that it did not account for in-
flight packets concurrent with link discovery. As a result,
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Figure 8: Minimizing the POX in-flight blackhole.

POX incorrectly learned A’s location at 2.1, even though it
knew that the link could not have hosts attached. If the first
packet had instead originated at 1.1, POX would not have
made this mistake.

The next event we observed was another in-flight packet
from B→A arriving at port 1.1. S1 notified POX of the un-
matched flow, and POX appropriately printed a log statement
indicating that a packet had arrived at an internal switch port
without a previously installed flow entry. What happened
next puzzled us though. POX proceeded to install a path
for this new B→A flow, but the path itself contained a loop:
POX installed a B→A entry going out both 1.1→2.1 and
2.2→2.1, whereas it should have installed only the latter
(given A’s current known location). The default behavior
of OpenFlow switches is to ignore matching route entries
(with wildcarded in ports) that forward out the same port the
packets arrived on. This is where we started observing the
blackhole: now whenever B sent traffic to A, it would be
dropped at S1 until the faulty routing entry would eventually
expire 30 seconds later.

We investigated the code that handled in-flight packets ar-
riving on switch-switch ports. The log statement that we
had observed earlier was inside a nested conditional, and the
code for installing the path was below and outside of the
nested conditional conditional. What struck us was that there
was a commented out return statement directly after the log
statement. The comment above it read: “Should flood in-
stead of dropping”. We tried reinserting the return statement
and replaying, and the blackhole ceased to appear.

In summary, we found that the crucial triggering events
were two in-flight packets (set in motion by prior traffic in-
jection events): POX incorrectly learned a host location as
a result of the first in-flight packet, and failed to return out
of a nested conditional as result the second in-flight packet.
We have sent the replayable trace generated by retrospective
causal inference to the lead developer of POX, and await
his response. We suspect that these fine-grained race condi-
tions had not been triggered before because message timing
in Mininet [23] or real hardware is not delayed arbitrarily as
it was in STS.
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Figure 9: Minimizing the POX migration blackhole.

5.3 POX Migration Blackhole
Having examined the POX code in some depth, we no-

ticed that there might be some interesting corner cases re-
lated to host migrations. We set up randomly generated in-
puts, included host migrations this time, and checked for
blackholes. Our initial input size was 117 inputs. Before
investigating the bug we ran retrospective causal inference,
and ended up with a 3 input MCS (shown in Figure 9): a
packet injection from a host A, followed by a packet injec-
tion by a host B towards A, followed by a host migration
of host A. This made it immediately clear what the prob-
lem was. After learning the location of A and installing a
flow from B to A, the routing entries in the path were never
removed after A migrated, causing all traffic from B to A
to blackhole until the routing entries expired. We did not
know it at the time, but this was a known problem, and this
particular routing module did not support host migrations.
Nonetheless, this case demonstrates how the MCS alone can
point to the root cause.

5.4 NOX Discovery Loop
The next SDN control platform we examined was NOX,

the original OpenFlow controller. NOX is also a single ma-
chine control platform, but unlike POX it has been used
fairly extensively in real networks.

Similar to POX we exercised NOX’s routing module
(‘sprouting’), since it draws in a large number of other com-
ponents. Routing learns link and host locations, installs all-
to-all paths between hosts on a per-flow basis, and is de-
signed to be resilient to looped topologies.

We initially tested NOX on a two node topology, but did
not find any immediate problems. We then extended the
topology to a four-node mesh, and discovered a routing loop
between two switches (involving routes for two hosts) within
roughly 20 runs of randomly generated inputs.

Our initial input size was 358 inputs, a minute’s worth
of execution. Retrospective causal inference returned a 58
input MCS. The most salient inputs in the MCS were 3 dat-
aplane packet drops mid-way through the execution, inter-
spersed with 14 traffic injections. We are in the process
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Figure 10: Minimizing the NOX discovery loop.

of pinpointing the exact root cause with NOX developers,
based on the 58 input MCS.

5.5 Floodlight discovery loop.
We subjected the current (unmodified) open source ver-

sion of Floodlight (git commit f37046a) to fuzz testing with
a three node fully meshed topology and high failure event
rates. In an hour-long experiment, the fuzzer found an event
sequence with 777 total events (548 input, 229 internal) that
results in a 3-node forwarding loop being set up.

Floodlight makes use multiple kernel level threads, and
thus can exhibit non-deterministic behavior. Thus, it is not
surprising that we do not achieve full reproducibility of this
bug during replay without further instrumentation. On aver-
age, 15/50 (30%) of replays reproduce the bug. To proceed
with MCS isolation, we replayed the execution up to 13 re-
plays for each subsequence chosen by delta debugging. Sta-
tistically, this enables STS to correctly diagnose violations
in >99% of cases.10

Retrospective causal inference was able to reduce the
number of input events from 548 to 404 in 168 iterations
(note that this is not the final result; the algorithm crashed
due to a trivial error a few hours before the deadline). Com-
paring output traces of successful and unsuccessful runs, we
noticed that the bug seems to correlate with specific thread
level race conditions between state updates in the LinkDis-
covery module and the Forwarding module. We are in the
process of investigating the actual root cause.

This experiment provides a baseline for a worst case sce-
nario of our system. STS exercised an unmodified, multi-
threaded controller that it does not have deterministic control
over. The bug appears to depend on fine-grained thread-level
races conditions that are difficult to guarantee. Still, STSwas
instrumental in pointing out a previously unknown bug, and
reducing the input size.
Overall Results. The overall results of our case studies are
shown in Table 3. For the Replay Success Rate column
we repeatedly replayed the original unpruned event trace,
and measured how often we were able to reproduce the pol-

10ln(1− 0.99)/ln(1− 0.30) ≈ 13

icy violation. There was indeed non-determinism in some
cases, especially Floodlight. For the specific case of POX in-
flight blackhole, we were able to eliminate the relevant non-
determinism by employing multiplexed sockets and wait-
ing on POX’s logging messages. We expect that we would
see similar improvements if we applied these techniques to
Floodlight.

We show the initial input size and MCS input size in the
last two columns. We also show the input sizes excluding
dataplane forwarding permit events, since these inputs are
an artefact of how we currently store and replay event traces.
We plan on making dataplane permits a default.

We measured the runtime of retrospective causal infer-
ence for these case studies in Figures 6 & 8–11. While some
instances ran in logarithmic time, the worst case was mini-
mizing NOX discovery loop, which took more than 5 and a
half hours. Nonetheless, even long iteration sizes are often
preferable to spending software developer’s time on manual
diagnosis.

5.6 Parameters
Our algorithm leaves an open question as to what value

ε should be set to. We experimentally varied ε on the POX
in-flight blackhole and the POX list removal bugs. We found
for both cases that the numbers of events we timed out on
while isolating the MCS became stable for values above 25
milliseconds. For smaller values, the number of timed out
events increased rapidly. We currently set ε to 100 millisec-
onds.

In general, larger values of ε are preferable to smaller val-
ues (disregarding runtime considerations), since we can al-
ways detect when we have waited too long (viz. when a suc-
cessor of the next input has occurred), but we cannot detect
when we have timed out early on an internal event that is in
fact going to occur. Analyzing event frequencies for partic-
ular bugs could provide more ideal εvalues.

6. DISCUSSION
Or evaluation of retrospective causal inference leaves

open several questions, which we discuss here.
Aren’t SDN controllers relatively simple and bug free? It
is true that the freely available SDN applications we inves-
tigated are relatively simple. However, they are most defi-
nitely not bug-free since, in a short period of time, we were
able to demonstrate bugs in all of them. Production SDN
platforms are far more complex than the freely available
ones, for a variety of reasons. Larger deployments cannot
be managed with reactive microflows, and thus require more
complex proactive or hybrid strategies. For fault tolerance,
controllers are replicated on multiple physical servers, and
sharded for scalability [31]. Multi-tenant virtualization crit-
ically requires tenant isolation to be preserved at all times.
SDN controller platforms interact with cloud orchestration
platforms and must correctly react to concurrent changes on
their north- and southbound interfaces. Thus, we expect that
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these production SDN platforms will continue to be under
active development, and have ongoing issues with bugs, for
years to come. From our conversations with several SDN
controller vendors, we are aware that they all invest signifi-
cant resources to troubleshooting. Several commercial play-
ers have voiced interest in our tool as a way to improve their
troubleshooting.
Aren’t the bugs described here trivial in nature? Yes, the
bugs we found were trivial, but that is evidence that with-
out better troubleshooting tools tracking down even trivial
bugs is difficult. We were particularly surprised how quickly
our tool was able to identify policy violations in the stan-
dard routing modules of all investigated platforms, because
we assumed that the routing modules would have been well-
tested through years of use. However, these bugs remained
undiagnosed because they arise from unexpected interac-
tions between different elements in the control plane (e.g.,
shortest path routing and topology discovery). We expect
more complex bugs to surface once we aim our tool at more
complex platforms, such as those used in production set-
tings.
Are simulated failures really indistinguishable from ac-
tual failures? There will always be some failure modes ob-
served in practice that are not reproducible without adding
significant complexity to the simulator. Our approach is
not particularly well-suited to model fine-grained low-level
behavior, especially on the data plane, e.g., when switches
are dropping packets due to memory or slow path con-
straints. Conversely, our approach excels at investigating
corner cases in distributed control plane interactions, which
are the source of many complex bugs. That said, as the sys-
tem is entirely built in software, it is in principle possible to
add more fine grained low-level behavior simulation at the
cost of performance (with logical clock speeds adjusted ac-
cordingly). Additional experience with production systems
will help us determine how to best trade off improved simu-
lation fidelity against degraded performance.
Will this approach work on all control platforms? We
make limited assumptions about the controller platform in
use. Two of the three investigated controller platforms were
exercised with retrospective causal inference without any
modifications. Limited changes to the controller platforms
(e.g., the possibility to override gettimeofday()) can
increase replay accuracy further. In general, we expect retro-
spective causal inference to support controllers conforming
to OpenFlow 1.0 out of the box.
Why do you focus on SDN networks? SDN represents
both an opportunity and a challenge. In terms of a challenge,
SDN control platforms are in their infancy, which means that
they have bugs that need to be found and corrected. Based on
our conversations with commercial SDN developers, we are
confident there is a real need for improved troubleshooting
in this sector.

In terms of an opportunity, SDN control platforms have
two properties that make them particularly amenable to an

automated troubleshooting approach such as ours. First,
and most importantly, SDN control software is designed to
quickly converge to quiescence—that is, SDN controllers
become idle when no policy or topology changes occur for
a period of time.11 This means that most inputs are not rel-
evant to triggering a given bug, since the system repeatedly
returns to a valid quiescent state; often there is only one crit-
ical transition from the last quiescent valid configuration to
the first invalid configuration. If this were not the case, it
is not clear that the minimal causal subsequences found by
our technique would be small, in which case our approach
would not yield significant advantages.

Second, SDN’s architecture facilitates the implementa-
tion of STS. The syntax and semantics of interfaces be-
tween components of the system (e.g. OpenFlow between
controllers and switches [39], or OpenStack Quantum’s API
between the control application and the network hypervi-
sor [2]), are open and well-defined–a property that is crucial
for fingerprinting. Moreover, controllers are small in num-
ber compared to the size of overall network, which makes it
much easier to superimpose on messages.

In future work we hope to measure the effectiveness of
our technique on other control plane systems such as NAS
controllers that share the same properties.

7. RELATED WORK
Our work spans three fields: software engineering, sys-

tems and networking, and programming languages.
Software Engineering The software engineering commu-
nity has developed a long line of tools for automating aspects
of the troubleshooting process.

Sherlog [48] takes on-site logs from a single program that
ended in a failure as input, and applies static analysis to in-
fer the program execution (both code paths and data values)
that lead up to the failure. The authors of delta debugging
applied their technique to multi-threaded (single-core) pro-
grams to identify the minimum set of thread switches from
a thread schedule (a single input file) that reproduces a race
condition [9]. Chronus presents a simpler search algorithm
than delta debugging that is specific to configuration debug-
ging [45]. All of these techniques focus on troubleshooting
single, non-distributed systems.

Rx [40] is a technique for improving availability: upon
encountering a crash, it starts from a previous check-
point, fuzzes the environment (e.g. random number gener-
ator seeds) to avoid triggering the same bug, and restarts the
program. Our approach perturbs the inputs rather than the
environment prior to a failure.
Systems and Networking The systems and networking
community has also developed a substantial literature on
tools for testing and troubleshooting.

We share the common goal of improving troubleshooting
of software-defined networks with OFRewind [46] and re-
cent project ndb [24]. OFRewind provides record and replay

11Complex bugs may occur when several such processes overlay.
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of OpenFlow control channels, and allows humans to man-
ually step through and filter input traces. We focus on test-
ing corner cases and automatically isolating minimal input
traces.

ndb provides a trace view into the OpenFlow forwarding
tables encountered by historical and current packets in the
network. This approach is well suited for troubleshooting
hardware problems, where the network configuration is cor-
rect but the forwarding behavior is not. In contrast, we fo-
cus on bugs in control software; our technique automatically
identifies the control plane decisions that installed erroneous
routing entries.

Neither ndb nor OFRewind address the problem of diag-
nostic information overload: with millions of packets on the
wire, it can be challenging to pick just the right subset to in-
teractively debug. To the best of our knowledge, retrospec-
tive causal inference is the first system that programmati-
cally provides information about precisely what caused the
network to enter an invalid configuration in the first place.

Trace analysis frameworks such as Pip [41] allow devel-
opers to programmatically check whether their expectations
about the structure of recorded causal traces hold. Mag-
Pie [3] automatically identify anomalous traces, as well as
unlikely transitions within anomalous traces by constructing
a probabilistic state machine from a large collection of traces
and identifying low probability paths. Our approach identi-
fies the exact minimal causal set of inputs without depending
on probabilistic models.

Network simulators such as Mininet [23], ns-3 [1], and
ModelNet [44] are used to prototype and test network soft-
ware. Our focus on comparing diverged histories requires
us to provide precise replay of event sequences, which is in
tension with the performance fidelity goals of pre-existing
simulators.

Root cause analysis [47] and dependency inference [26]
techniques seek to identify the minimum set of failed com-
ponents (e.g. link failures) needed to explain a collection of
alarms. Rather than focusing on individual component fail-
ures, we seek to minimize inputs that affect the behavior of
the overall distributed system.
Programming Languages Finally, the programming lan-
guages community has developed numerous verification and
static analysis techniques.

Model checkers such as Mace [30] and NICE [5] enumer-
ate all possible code paths taken by control software (NOX)
and identify concrete inputs that cause the system to enter in-
valid configurations. Model checking works well for small
control programs and a small number of machines, but suf-
fers from exponential state explosion when run on large sys-
tems. For example, NICE took 30 hours to model check
a network with two switches, two hosts, the MAC-learning
control program (98 LoC), and five concurrent messages be-
tween the hosts [5]. Rather than exploring all possibilities,
we take as input a particular event trace that is known to
trigger a bug, and systematically enumerate subsequences of

that event trace in polynomial time.

8. CONCLUSION
SDN is widely heralded as the “future of networking”, be-

cause it makes it much easier for operators to manage their
networks. SDN does this, however, by pushing the complex-
ity into SDN control software itself. Just as sophisticated
compilers are hard to write, but make programming easy,
SDN platforms make network management easier for oper-
ators, but only by forcing the developers of SDN platforms
to confront the challenges of asynchrony, partial failure, and
other notoriously hard problems that are inherent to all dis-
tributed systems. Thus, people will be troubleshooting and
debugging SDN control software for many years to come,
until they become as stable as compilers are now.

Current techniques for troubleshooting SDN networks are
quite primitive; they essentially involve manual inspection
of logs in the hope of identifying the relevant inputs. In this
paper we developed a technique for automatically identify-
ing a minimal sequence of inputs responsible for triggering a
given bug. We have applied this system to three open source
SDN platforms. Of the five bugs we encountered in a five
day investigation, our technique reduced the size of the in-
put trace to 36% of its original size in the worst case and 2%
of its original size in the best case.
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