
Benefits and Practicality of Super-Packets

Yunlong Li

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-83

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-83.html

May 16, 2013

Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

	
 1	

Benefits and Practicality of Super-Packets

Yunlong Li
yunlongli@berkeley.edu

UC Berkeley

Abstract

TCP’s slow-start was designed to prevent hosts from sending more data into the network than it is
capable of transmitting. A key component of slow-start is the initial congestion window or init_cwnd.
Today, it is set to at most four segments or roughly 4KB of data. As a result, every short-lived TCP
connection (henceforth “short flow”) suffers a performance hit when it comes to throughput (and by
extension, latency), for it does not last long enough to achieve its fair share of the network bandwidth. A
commonly proposed technique to lower latency for these short connections is to increase the size of
TCP’s initial congestion window. However, simply increasing the init_cwnd does not protect short flows
from packet loss, which affects them more adversely than it affects long-lived TCP connections. In this
paper, we introduce the concept of a super-packet to augment the proposal of increasing the initial
congestion window. A super-packet is a network abstraction consisting of a finite number of consecutive
packets. These packets form a logical unit on which a router makes a forwarding decision. We will
present an efficient algorithm for super-packet admission in routers, conduct a security analysis of the
algorithm, discuss deployment opportunities, and analyze the benefits of using super-packets.

1. Introduction

TCP’s slow-start was designed to prevent a computer host from sending more data into the network than
the network is capable of transmitting. A key component of slow-start is the initial congestion window.
Today, it is set to at most four segments* or roughly 4KB of data. As a result, every short-lived TCP
connection (henceforth “short flow”) suffers a performance hit when it comes to throughput (and by
extension, latency), for it does not last long enough to achieve its fair share of the network bandwidth. In
this paper, I propose and analyze a new technique for addressing this problem.

1.1. Motivation

Although most of the bytes transferred in the Internet are in bulk data transfers (e.g., video) [1], the
majority of connections are short-lived. Unfortunately, TCP’s slow-start forces many of these short flows
to take several round-trip times (or RTTs) to complete, because the initial congestion window (or
init_cwnd) is at most four segments or approximately 4KB of data [1], which is smaller than at least 30%
of HTTP Web objects. As the average size of HTTP Web objects increases, the current default for the
initial congestion window becomes increasingly less sufficient. A recent proposal by Google calls for
TCP’s initial congestion window to be increased to at least ten segments (about 15KB) to (i) reduce
latency for short flows and (ii) allow short flows to compete more fairly with bulk data transfers [3]. Their
argument goes as follows. Because 80% of HTTP Web objects have sizes within 8KB, an increased
init_cwnd will allow most short flows to complete within one RTT when there is no packet loss [4]. With
respect to bulk data transfers, when a short flow is initiated, it has to compete in the network with these
long-running flows that statistically already have a bigger congestion window than TCP’s init_cwnd.
Because the short flow can complete when its congestion window is still quite small compared to that of a
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

* A segment refers to a unit of data in the transport layer, while a packet refers to a unit of data in the network layer. For the purpose
of this paper, we will use the term packet to refer to both a packet and a segment.

	
 2	

long-running flow, it may never get a fair share of the network bandwidth. Thus, by increasing the
init_cwnd, short flows can use more of the network’s bandwidth right from the get-go.

Unfortunately, increasing the init_cwnd alone is not enough because it does not protect short flows
against packet loss. TCP’s mechanism for handling packet loss works as follows. Once a packet is lost,
for each subsequent packet that the receiver receives, the receiver sends a duplicated ACK message (or
duplicate ACK) with a 32-bit acknowledge number that acknowledges the receipt of all bytes prior to the
packet loss. Upon receiving three of these duplicate ACKs, the sender will deem the packet that has not
been acknowledged lost and retransmit that packet. This mechanism is called fast retransmit. If the
sender does not receive three duplicate ACKs in time, a timeout occurs, bringing the congestion window
(or cwnd), which is one factor that determines how many bytes can be outstanding, all the way down to 1
maximum segment size or MSS. Therefore, losing packets toward the end of a short flow can be
detrimental. For example, consider a short flow consisting of eight packets (init_cwnd = 8). If three
packets out of the last five, two packets out of the last four, or one packet out of the last three were
dropped, then there would not be enough duplicate ACKs to trigger fast retransmit. A timeout would
occur, bringing us back to the same problem as before: it would take several RTTs for the short flow to
complete.

Furthermore, increasing the init_cwnd alone does not solve incast—a communication pattern wherein a
host issues read request to multiple servers who in turn concurrently respond with an aggregate large
amount of data that travels along a congested link on the way back to the host. To put it more concretely,
imagine that ten short flows, each consisting of eight packets and destined for the same destination,
arrive concurrently at a router with a bottleneck link that does not have enough buffer space to buffer all
the packets in time. If the router employs a droptail policy, each of these ten flows may see a few packet
drops, and these drops tend to be at the end. Therefore, the majority of flows are likely to experience a
timeout.

1.2. Introducing Super-Packets

To address these problems, we introduce the notion
of a “super-packet.” A super-packet is a finite number
of consecutive packets in a flow that is treated by the
network as a single logical packet (see Figure 1).
When a super-packet arrives at a router, the router
makes a forwarding decision for the entire super-packet. The router accepts all packets of the super-
packet if it decides to accept the super-packet. If the router decides to reject the super-packet, then it
intentionally drops all packets of the super-packet. We call this the “all-or-nothing property.”

If the sender treats his short flow as a super-packet, he can protect it against packet loss and incast. The
amount of protection is roughly proportional to the number of routers that support super-packets in the
path of the short flow. In the case where the super-packet is accepted by a router, the sender can be fairly
confident that the router will forward all packets of the super-packet. On the other hand, if the super-
packet is denied, the sender can try again after a short amount of time, (e.g., after RTO). Because
packets travel across the network via multiple routers, some of which with no super-packet support, it is
possible that a router with no super-packet support drops a packet that belongs to a super-packet. We will
discuss the recovery mechanism in Section 2.3 that handles this case.

There are various challenges associated with developing an abstraction of super-packets. First of all, one
must consider the interface that super-packets expose to the layers below and above. Secondly, one
must craft an admission algorithm in routers that is easy to reason about and efficient since routers are
performance-critical hardware devices. Lastly, one must provide reasons why super-packets are

Figure	
 1

	
 3	

preferable to normal packets as a means of transport for short flows. In This paper, we will address each
of these issues.

1.3. Outline

The rest of the paper is organized as follows. In Section 2, we describe our implementation of super-
packets, including the admission algorithm used in routers. Section 3 contains a security analysis of the
admission algorithm. Section 4 lays out the experimental results in ns2 that demonstrate the benefits of
using super-packets. We look at related work in Section 5 and discuss future research in Section 6.
Finally, we conclude in Section 7.

2. Implementation

2.1. Changes to IP Header

Implementing super-packets requires modification to
the network layer (layer 3). Every packet of a super-
packet contains basic information about the super-
packet (see Figure 2), such as the super-packet id sid,
which is unique per (src, dst) pair, where src and dst are the source’s IP address and the
destination’s IP address respectively, the length of the super-packet len, and the boolean first which
signifies whether it is the first packet or not. When a super-packet’s first packet arrives at a router*, the
router makes a decision about the entire super-packet using the information supplied by the first packet. If
it decides to accept the super-packet (i.e., accept the first packet of the super-packet), the router needs to
forward every packet of the super-packet. If it decides to drop the super-packet (i.e., drop the first packet
of the super-packet), the router drops every single packet of the super-packet.

2.2. Changes in Router

In the router, we implement the admission algorithm shown in Appendix A1. On a basic level, the router
needs to maintain a white-list (or a black-list) to remember which super-packet it has accepted (or
denied). The router uses this information to make an admission decision for the subsequent packets of a
super-packet. In our algorithm, we use a moving hash table hash that maps the tuple (src, dst) to the
tuple (#_of_total_packets_reserved, #_of_outstanding_packets).

A moving hash table is a hash table where each new entry is guaranteed to be present in the hash table
for no less than a specified amount of time (in our case EPOCH). Internally it is made up of two hash tables
h1 and h2 that after an EPOCH of time undergo the following transformation: h1 <− h2 and h2 = new
HashTable() (See Appendix A2). At any given moment, when a new entry is saved in hash, it is stored
in h2. At the end of each EPOCH, all entries from h1 are deleted and replaced by entries from h2. We use
a hash table to store information per (src, dst) to save memory and yet still have a way to perform
basic accounting on super-packets. If a source src sends a super-packet to a destination dst, and the
router accepts, we increment its #_of_total_packets_reserved by the length of the super-packet
len and increment the #_of_outstanding_packets by len - 1. Overall, as long as the

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

* We will use the term “super-packet” to refer to either the first packet of a super-packet or an entire super-packet as a whole. The
meaning of the term should be clear from the context. Also, an IP packet without any super-packet information will be referred to as
“normal.” Thus, all the packets in the Internet today are normal. We will use the phrase “a packet marked with super-packet
information” to refer to any packet inside a super-packet. We will use the phrase “a subsequent packet of a super-packet” to refer to
a non-first packet of a super-packet. Finally, when we will often address the congestion window size as unit numbers rather than
actual bytes (so cwnd of 1 is the same as 1 MSS).

Figure	
 2

	
 4	

#_of_outstanding_packets remains above 0, the source src has at least one legitimate packet of a
super-packet that he has yet to send to the destination dst. All subsequent packets of an admitted super-
packet will be admitted as well, and the value #_of_outstanding_packets is decremented by 1 for
each of these packets that arrives at the router.

To test whether a specific packet is part of a super-packet that has been accepted and to determine
which internal hash (h1 or h2) to use to do accounting, we use a moving bloom filter to test its
membership (shown in Appendix A3). The key to the bloom filter is (src, dst, sid).

2.3. Changes in TCP

Changes must be made to TCP in order to accommodate super-packets. One major change directly
addresses what happens if a super-packet is denied. In this case, the sending host can simply resend the
super-packet after a timeout. If the super-packet is continuously being denied, then after a few attempts
(e.g., 3), the sender can try sending the short flow using normal packets (fall back to regular TCP).

Another major change centers around the question, “What happens when a non-first packet of a super-
packet is dropped?” Because packets travel across the network via multiple routers, it is possible that a
non-first packet of a super-packet gets lost (via packet corruption or being dropped by a router with a
congested link and no super-packet support). In this case, the sending host can simply send the dropped
packet as a normal packet (i.e., no super-packet information in the IP header). In other words, we simply
strip the packet of its super-packet information and rely on the underlying TCP algorithm to ensure the
reliable delivery of that packet.

2.4. Admission Policy

The admission policy
we have implemented
inside routers is fairly
simple. We basically
divide the buffer space
via a threshold value t. For simplicity, assume that all packets (normal packets and packets marked with
super-packet information) are of the same size (e.g., 1500 bytes). If not, t will simply be an actual size
limit (i.e., x bytes). The picture shown in Figure 3 demonstrates a lightly queued buffer. Each grey block
represents either a normal packet or a packet marked with super-packet information. Thus, if an entire
super-packet of length len is queued (i.e., all packets of the super-packet are present in the queue, not
necessarily back-to-back), then it will contribute as len in the total number of packets in the queue. As
long as the number of packets in the queue is less than t, the router will continue to accept super-packets
as well as normal packets. If the number of packets in the queue is t or more, then the router will stop
accepting normal packets and any new super-packet. In other words, it will only accept the subsequent
packets of the super-packets that it has accepted.

The threshold t cannot have one single optimal value for all workloads, and we have used different
values of t in different experiments. The general rule is that the more super-packets there are in the
network, the smaller the threshold t should to be. The value of t should be dynamically adjusted to
accommodate a varying workload.

3. Security Analysis

Figure	
 3

	
 5	

Security is an important concern when it comes to supporting super-packets in a network. Super-packets
may allow malicious users to exploit new vulnerabilities in the network. They may make existing attacks
such as IP address spoofing and distributed denial-of-service (or DDoS) more severe. Therefore, our
super-packet system (the changes we make to the network layer, the changes we make to TCP, and the
actual admission algorithm running in routers) has to be evaluated to determine the feasibility of
deployment in an un-safe environment.

3.1. Security Analysis of the Admission Algorithm

The admission algorithm tries to strike a balance between memory consumption and performance. If an
adversary were to attack a state table, then she would look at two places. First is the hash table h2. With
IP address spoofing, an adversary could perform a denial-of-service attack on a router using this table.
Since the hash is keyed on (src, dst), she could send an inordinate amount of spoofed first packets
of super-packets with random faked IP addresses in the src field. The router would create a new entry
for each unique (src, dst) pair it sees. Depending on how the hash table is implemented, if there are
a large number of entries in it, lookup and/or resizing might become very computationally expensive. For
example, if the entries in the same bucket of the hash table are chained together in a linked list, then to
lookup the #_of_outstanding_packets count associated with a particular (src, dst) pair, we
have to traverse an entire list, which is 𝑂(𝑛) in complexity where 𝑛 is the size of the list. If the router has
to perform 𝑂(𝑛) computations for each packet with super-packet information to determine whether to
accept it or not, it would make the use of super-packets very infeasible.

Another target is the bloom filter b2. The bloom filter turns on a few bits for each super-packet that the
router accepts. The adversary could increase the likelihood of a false positive by sending an inordinate
amount of super-packets. Furthermore, using IP address spoofing, she could try to undermine another
sender’s #_of_outstanding_packets count by sending in spoofed packets that trigger a false
positive and cause the router to decrement it.

There are also indirect attacks. Suppose that super-packet support is ubiquitous in the Internet. The
adversary could buy rich media ads that include JavaScript that requests the user’s browser to send a
super-packet to a target server. If many people see these ads around the same time, then that server will
be inundated with super-packets.

A more subtle security concern comes from the implementation of the moving hash table and the moving
bloom filter. The interface we expose to hosts is that all packets of a super-packet need be sent to the
router within the time period EPOCH. In reality, a super-packet’s state is maintained for a time period
between one EPOCH and two EPOCHs, depending on when the super-packet arrives at the router. An
adversary could try to synchronize with the moving hash table/bloom filter to maximize the amount of time
her super-packet state is maintained. If every host takes this greedy approach, then we will encounter a
large aggregate burst of traffic at the beginning of each epoch.

Because of the security concerns mentioned above, super-packet deployment seems to work only in a
trusted environment. One example of a trusted environment is a datacenter.

3.2. Deployment Opportunities

Super-packet deployment seems to be only feasible in a trusted environment (e.g., a datacenter). In
datacenters, a typical network topology consists of either two- or three-level trees of switches or routers
[6]. In a three-tiered topology, the edge tier is connected to the leaves or hosts of the network. The set of
routers that connects to the edge routers forms the aggregation tier. Finally, the routers in the aggregation
layer are connected to each other via a set of routers in the core tier.

	
 6	

Oftentimes, many datacenters oversubscribe their resources as a means to lower cost. In a network
topology, this translates to an oversubscribed output link of a router in the edge or aggregation tier. There
is an opportunity to deploy super-packets whenever a router’s output link is oversubscribed, because it
can bring all the benefits mentioned in the next section (Section 4).

4. Experimental Results

We conducted experiments in ns2, a discrete event simulator used for networking research [7]. Our
super-packet implementation differs from our ideal in that once a router denies a super-packet, we simply
fall back to the original TCP implementation (for these experiments, we used TCP New Reno). That is, we
do not construct another super-packet to send, but rather let the short flow, consisting of the super-
packet, timeout and cwnd be reduced all the way to 1 MSS. We then retransmit the short flow using
normal packets. Despite using this weaker version of the retransmission scheme, we were able to confirm
that super-packets reduced the average latency of short flows across all our experiments.

4.1. Experimental Methodology

Every TCP connection begins with a SYN packet. In our experiments, we tried to remove the effect of the
SYN packet on our latency measurements. Although the mechanisms (described in the following
sections) we put in are not perfect, we do not believe that the presence of the SYN packet influences our
latency measurements significantly.

4.2. Incast

The first experiment we report shows that super-packets solve the incast problem to the best degree
possible. Incast is a communication pattern wherein a receiver issues read requests to multiple senders
who in turn concurrently respond with an aggregate large amount of data back to the receiver. The
response from all senders can travel along a bottleneck link, leading to a dramatically reduced throughput
for each sender [5]. Our system tackles the incast problem by concentrating packet loss to as few flows
as possible.

Using ns2, we set up a topology, shown in
Figure 4, consisting of ten nodes all sending to
the same destination via a router in the
middle. The role of the destination is that of
the receiver in the incast definition. The ten
nodes serve as the senders. In this setup,
each of the ten nodes initiates a TCP
connection to the destination as opposed to
the other way around, but the desired behavior
is exactly the same as incast.

The ten nodes each sends a SYN packet to
the destination. Once the destination sends
the SYNACKs to these ten nodes, they each
concurrently sends a short flow consisting of
10 packets to the destination. We set the
init_cwnd to be 10 so that the entire flow can
be transmitted in one round. We set up two scenarios to look at the benefit of using super-packets.

Figure	
 4

	
 7	

In the first scenario, the senders send normal packets through a regular droptail router in the middle that
does not support super-packets. The router has a buffer size of 50. In the second scenario, the senders
send super-packets of length 10 through a special router with super-packet support in the middle. The
router has a buffer size of 50, a t of 5, and an EPOCH of 0.08 second.

The value of EPOCH in this experiment (and
subsequent ones) is set to be big enough such that the
state associated with a new super-packet does not
expire pre-maturely inside the hash table and the
bloom filter. In practice, EPOCH should be proportional
to a small multiple of the round-trip time of the entire
super-packet. This encourages the sender to send all
packets of his super-packet as tightly as possible.

The result of this experiment is that the average
latency of flows is 0.197 second when the senders do
not use super-packets and 0.130 second when they do
use super-packets of length 10. In other words, we see
a 33.8% improvement in the average latency. The
actual distribution of the latency of flows is shown in
Figure 4a, 4b and 4c. As one can see from Figure 4a,
when the senders do not use super-packets, the
majority of the short flows experience packet loss that
triggers a timeout and brings their cwnd down to 1
MSS. In fact 9 out of the 10 senders experience a
timeout due to an insufficient number of duplicate
ACKs.

On the other hand, when the senders use super-
packets, the majority of the short flows get through the
bottleneck link (shown in Figure 4b). Here, 6 out of 10
senders are able to successfully transmit their short
flows in one round. There are 3 senders that
experience one timeout and 1 very unlucky sender that
experiences two timeouts. Despite this misfortune, the
average latency is smaller because the majority of the
flows are able to get through the bottleneck link on the
first try.

Furthermore, if the senders, whose super-packets are
rejected the first time, do not fall back to the original
TCP New Reno algorithm and instead send another
super-packet with a cwnd of 10 after the timeout (i.e., if
we use our ideal algorithm), then the average latency
is 0.0857 second, or a 56% improvement. We
obtained this result without having to implement our
ideal algorithm by creating four additional senders that
send out four brand new super-packets when the short
flows labled 7 through 10 timeout for the first time. We tear down flows 7 through 10 before they are
retransmitted as normal packets. In other words, we “replace” the four senders that timeout with four new

Figure	
 4a:	
 TCP	
 short	
 flows	
 and	
 their	
 completion	
 time.

Figure	
 4b:	
 TCP	
 short	
 flows	
 as	
 super-­‐packets	
 and	
 their	

completion	
 time.

Figure	
 4c:	
 TCP	
 short	
 flows	
 as	
 super-­‐packets	
 and	
 their	

completion	
 time	
 if	
 we	
 use	
 our	
 ideal	
 retransmission.

	
 8	

senders. Although a bit awkward, this mechanism produces the exact same result as that of our ideal
algorithm.

4.3. Short Flows Competing with Long Flows

In order to see how super-packets would help short
flows compete with long-running flows, we devised
the topology shown in Figure 5. Host A sends ten
long flows to the destination and fills the pipe
completely (i.e., the two links connecting A to the
router and the router to the destination are 100%
utilized*). Host A’s long flows each have an
init_cwnd of 26 and an upper bound of 26 on the
congestion window. Hosts B and C send short
flows, each consisting of 10 packets, to the
destination using a Poisson distribution. To minimize the effect of the SYN packet, we make the link
between the router and the destination a bit faster than the link between each sender and the router, and
instruct the router to always accept a SYN packet. Again, we set the init_cwnd of short flows to be 10 and
set up two scenarios.

In the first scenario, the senders B and C send normal packets through a regular droptail router in the
middle that does not support super-packets. The router has a buffer size of 20. In the second scenario, B
and C send super-packets of length 10 through a special router with super-packet support in the middle.
The router has a buffer size of 20, t of 10, and EPOCH of 0.08 second.

In the first scenario, the average latency of the flows is 0.0264 second. In the second scenario, the
average latency of the flows is 0.0186 second. This is a 29.8% improvement.

4.4. Short Flows and the TCP Equation

One interesting side effect of using super-packets is that
we are able to de-couple the maximum segment size (or
MSS) from network constraints. It has been long known
that the throughput of TCP is roughly proportional to !""

!"" !
,

where 𝑝 is the drop rate. Indeed, the throughput depends
on the MSS, which is limited by the maximum transfer unit
(or MTU) since the former must be smaller than the latter.
By using a super-packet, the sender is able to “enlarge”
the MSS beyond the MTU.

To show this, we created the topology shown in Figure 6.
There are 49 senders that simply send long flows. These
long flows have an init_cwnd of 10 and an upper bound of
10 on the congestion window. One special sender sends a
single long flow whose packets either have an enlarged
MSS (scenario 1) or are wrapped inside super-packets of
length 10 (scenario 2). In other words, for scenario 2, we
break up the long flow into a sequence of super-packets.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

* The link from the router to the destination has a bit less than 100% utilization.

Figure	
 5

Figure	
 6

	
 9	

The experiment has a duration of 10 seconds. During the first second, the 49 senders begin their TCP
connections to the destination. Starting at time 1, the special sender begins its TCP connection to the
destination. We measure the throughput from when the special sender sends the second packet (after it
receives the SYNACK).

In scenario 1, the special sender sends enlarged packets having 10 times the MSS of a normal packet
(i.e., 14600 bytes) through a special router with super-packet support in the middle. The special sender’s
long flow has an init_cwnd of 5 and an upper bound of 5 on its congestion window. The router has a
buffer size of 20 and t of 10.

In scenario 2, the special sender sends
super-packets through the same special
router with super-packet support in the
middle. But this time, rather than
sending enlarged packets, the special
sender breaks up his long flow into a
sequence of super-packets of length 10
(so a super-packet has a total MSS of
14600 bytes) and send them in
succession. The router has a buffer size
of 20 and t of 10 as before but since
now we are dealing with actual super-
packets, it must be mentioned that the
router has an EPOCH of 0.08 second.

We measure and compare the
throughput of the special sender in the
two scenarios. The throughput graphs
are shown in Figure 6a and 6b. The
throughput of the special sender when it
uses packets with 10 times the MSS of a
normal packet is 2280 kBps, whereas
the average throughput of the other 49
flows is 178 kBps (shown in Figure 6a).
On the other hand, the throughput of the
special sender when it uses super-
packets of length 10 is 1577 kBps,
whereas the average throughput of the
other 49 flows is 223 kBps (shown in
Figure 6b). As one can see, the
throughput has gone up significantly in both cases.

It should be noted that for various flows (regular flows, flows with enlarged MSS, flows with super-
packets), a different set of values for the init_cwnd and the upper bound on the cwnd can change the
outcome of any experiment. However, the benefits of using super-packets are definite regardless of the
actual parameter values.

5. Related Work

Figure	
 6a:	
 Throughput	
 of	
 regular	
 flows	
 from	
 the	
 49	
 senders	
 vs.	
 the	

throughput	
 of	
 the	
 special	
 sender	
 sending	
 enlarged	
 packets.	
 The	
 flow	

that	
 consists	
 of	
 these	
 enlarged	
 packets	
 is	
 termed	
 “jumbo	
 flow.”

Figure	
 6b:	
 Throughput	
 of	
 regular	
 flows	
 from	
 the	
 49	
 senders	
 vs.	
 the	

throughput	
 of	
 the	
 special	
 sender	
 sending	
 super-­‐packets.	
 The	
 flow	
 that	

consists	
 of	
 these	
 super-­‐packets	
 is	
 termed	
 “sp	
 flow.”

	
 10	

It is widely known in the networking community that short flows have a disadvantage when it comes to
obtaining a fair share of the network bandwidth. Google has proposed to increase the initial congestion
window of TCP as a means to reduce latency for short flows and to give short flows a better chance to
compete with long-running flows in the network for bandwidth [3]. This paper extends Google’s proposal
by introducing the notion of a super-packet. Super-packets help protect short flows from packet loss,
allowing them to complete faster on average.

Nandita Dukkipati and Nick McKeown argue that flow-completion time is the right metric for congestion
control [6]. Their work inspired us to focus on flow-completion time in our research. Specifically, we
focused on improving the flow-completion time for short flows by protecting them from packet loss.
Although packet loss does not significantly impact the flow-completion time percentage-wise for long
flows, this is not the case for short flows. A few packet drops can result in the doubling or tripling of the
flow-completion time for short flows because there are just not enough duplicate ACKs to trigger fast
retransmit.

Forward Error Correction or FEC is another method used to improve the latency of flows by protecting
them against packet loss. FEC encodes redundant information in the transmitted data to avoid costly
retransmits or timeouts. The basic idea is that the sender sends 𝑛 pieces of data, but the receiver only
requires 𝑘, where 𝑘 < 𝑛, pieces of data to reconstruct the original message. Therefore in the face of
packet loss, as long as the receiver successfully receives 𝑘 packets out of 𝑛, then there would be no need
for retransmission. However, using FEC creates an overhead (i.e., an additional amount of data needs to
be transmitted). Furthermore, FEC does not solve the incast problem. Therefore, we deem super-packets
to be a more effective means of protecting flows, specifically short flows.

Jumbo frames are Ethernet frames with more than 1500 bytes of payload. In a sense, super-packets are
like jumbo frames because they both bypass the MTU constraint of 1500 bytes. However, super-packets
are better in that the packets that make up a super-packet do not need to be transmitted one immediately
after another. This results in greater statistical multiplexing by the router. Also with super-packets, the
length of a super-packet can be made arbitrarily large and is more flexible than that of a jumbo frame.

6. Future Research

In this section, we describe additional work that could be done in the area of super-packets for improving
the performance of short flows in the Internet.

6.1. The Value of t

Recall that our algorithm uses a parameter t, which specifies when to stop accepting new super-packets.
In our work, we used a static setting for t. Ideally, however, the value of t should be dynamically adjusted
to accommodate a varying workload. For example, an exponential moving average that takes into account
the number of recent super-packet arrivals may be appropriate. Alternatively, since we know the total
number of outstanding packets of all super-packets that the router has accepted, we can use that
information along with a deflation factor 𝑑𝑓 in the range (0, 1] to determine the value of t at any given
time. That is, the value of t can make use of 𝑑𝑓 ∗ Ω!!

!!! , where 𝑛 is the number of super-packets that the
router has accepted and Ω! is the #_of_outstanding_packets of super-packet 𝑖. The motivation
behind the deflation factor is that some of the packets of a super-packet are forwarded before all of its
packets arrive. Assume that the packets of a given super-packet are received by the router at a rate 𝑟!"
and are forwarded at a rate 𝑟!"#, where 𝑟!"# ≤ 𝑟!", then we claim that 𝑑𝑓 = (1 − !!"#

!!"
).

	
 11	

To see why, let 𝑠𝑝𝐿𝑒𝑛 be the length of the given super-packet. Then, it takes 𝑡 = !"#$%
!!"

 for the router to

receive all the packets of the super-packet. During that time, the router forwards 𝑡 ∗ 𝑟!"# = 𝑠𝑝𝐿𝑒𝑛 ∗ !!"#
!!"

packets. Thus, when the last packet of the super-packet arrives, we have

𝑠𝑝𝐿𝑒𝑛 − 𝑠𝑝𝐿𝑒𝑛 ∗
𝑟!"#
𝑟!"

= 𝑠𝑝𝐿𝑒𝑛 ∗ 1 −
𝑟!"#
𝑟!"

= 𝑠𝑝𝐿𝑒𝑛 ∗ 𝑑𝑓

packets of the super-packet in the router queue.

Now, the value of 𝑑𝑓 should be dynamically adjusted as well since the value of 𝑟!"# depends on the
workload.

Whatever method we choose, we have to ensure that there is enough incentive for users to choose
super-packets over normal packets. Therefore, we can also think about an admission algorithm based on
an incentive goal we want to achieve. For example, a good incentive would be to have the router reject a
super-packet with roughly the same probability as the probability that it drops a normal packet. Based on
that goal, one can try to devise an algorithm (or even adapt the algorithm we have) to meet that goal.

6.2. More Extensive Experiments

More experiments need to be done to solidify the theoretical foundation of super-packets. We would like
to implement our ideal retransmission scheme of retransmitting the entire super-packet after a timeout if
the super-packet is rejected. On the one hand, this circumvents the congestion avoidance of TCP. On the
other hand, the all-or-nothing property of super-packets will act as a counter-force to this aggressive
retransmission scheme.

6.3. Real Implementation

In order to move from theory to practice, we would like to do a complete implementation of super-packets
in the Click modular router [8]. Ultimately, we would like to verify that super-packets could help reduce the
latency of short flows in real world network traffic workloads.

7. Conclusion

Short flows in the network suffer severe performance degradation if one or more packets are dropped. An
increased initial congestion window certainly allows for short flows to complete faster if there is no packet
loss, but otherwise, it is not sufficient. In order to protect short flows from packet loss, we have developed
the concept of a super-packet. A super-packet is a logical packet consisting of a finite number of
consecutive packets in a flow. A super-packet-capable router makes a forwarding decision on the entire
super-packet, either accepting or rejecting all packets of the super-packet. Super-packets help protect
short flows from packet loss and help them compete better with long-running flows in the network.
Interestingly, super-packets also enable hosts to decouple the maximum segment size from network
constraints. In this paper, we have presented an efficient algorithm for super-packet admission in routers.
The algorithm is keyed on the notion of the threshold value t. In practice, this value needs to take into
account the workload experienced by the router running the admission algorithm. We have shown that the
security implications of using super-packets mandate that any deployment should be carried out in a
trusted environment like a datacenter. We ran a set of initial experiments, and they showed that super-
packets have the potential to address the key shortcomings of short flows. By using super-packets, we
can help protect short flows, reduce their latency on average, and ultimately make the Internet faster.

	
 12	

References

[1] M. Allman, S. Floyd, and C. Partridge. Increasing TCP’s Initial Window. RFC 3390, 2002.
[2] http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11

-481360_ns827_Networking_Solutions_White_Paper.html. Cisco Visual Networking Index:
Forecast and Methodology, 2011-2016.

[3] N. Dukkipati et al. An Argument for Increasing TCP’s Initial Congestion Window. In ACM
SIGCOMM CCR, 2010.

[4] S. Ramachandran. Web metrics: Size and number of resources.
https://developers.google.com/speed/articles/web-metrics, 2010.

[5] Y. Chen et al. Understanding TCP Incast Throughput Collapse in Datacenter Networks. In
Workshop on Research in Enterprise Networks, 2009.

[6] N. Dukkipati and N. McKeown, Why Flow-Completion Time is the Right Metric for Congestion
Control. In ACM SIGCOMM Computer Communication Review, Volume 36, Number 1, 2006.

[7] Network simulator 2: http://www.isi.edu/nsnam/ns/
[8] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek. The Click modular router. ACM

Transactions on Computer Systems, 18(3):263-297, 2000.

Appendix A1

Variable Definition
buffSize Size of the buffer in number of packets (assume all packets are the same size for now).
pktCnt Number of packets currently in the buffer.

t Buffer threshold, where buffSize - t is larger than the maximum expected super-
packet size.

pkt Reference to packet.
isFirst Function that takes a pkt and returns true if pkt is the first packet of a super-packet

and false otherwise. Same value as first in pkt.
regular Function that takes a pkt and returns true if pkt is a normal packet (not a packet

belonging to a super-packet). False otherwise.
accepted Function that takes a pkt and returns true if pkt is a non-first packet of a super-packet

that the router has accepted. False otherwise.

On packet arrival:

if (regular(pkt)) {
 if (pktCnt < t) {
 pktCnt = pktCnt + 1;
 enqueue pkt;
 }
 else {
 drop pkt;
 }
}
else {
 if (isFirst(pkt)) {
 if (pktCnt < t) {
 install state;
 pktCnt = pktCnt + 1;

	
 13	

 enqueue pkt;
 }
 else {
 drop pkt;
 }
 }
 else {
 if (accepted(pkt)) {
 if (pktCnt < buffSize) {
 update state;
 pktCnt = pktCnt + 1;
 enqueue pkt;
 }
 else {
 drop pkt;
 }
 }
 else {
 drop pkt;
 }
 }
}

Appendix A2

Variable Definition
time Function that gives the current time.
prev The starting time of the current epoch.
h1 Reference to first hash table.
h2 Reference to second hash table.
b1 Reference to first bloom filter.
b2 Reference to second bloom filter.

Constant Definition
EPOCH A predefined period of time.

On packet arrival:

 if (time() – prev > EPOCH) {
 perform epoch shift;
 }

On epoch shift:

 h1 = h2;
 h2 = new HashTable();

 b1 = b2;
 b2 = new BloomFilter();

 prev = time();

	
 14	

Appendix A3

On state installation:

 b2.add((src,dst,sid));
 h2.update((src,dst), (len,len - 1));

On state update:

 bool inb1 = b1.test((src,dst,sid));
 bool inb2 = b2.test((src,dst,sid));
 bool inh1 = h1.contains((src,dst));
 bool inh2 = h2.contains((src,dst));

 if (!inb1 && !inb2) {
 drop pkt;
 exit;
 }
 else if (inb1 && !inb2) {
 if (!inh1) {
 //false positive
 drop pkt;
 exit;
 }
 else if (h1.get((src,dst))[1] <= 0) {
 //#_of_outstanding_packets is 0
 drop pkt;
 exit;
 }
 else {
 h1.update((src,dst), (0,-1));
 }
 }
 else if (!inb1 && inb2) {
 if (!inh2) {
 //false positive
 drop pkt;
 exit;
 }
 else if (h2.get((src,dst))[1] <= 0) {
 //#_of_outstanding_packets is 0
 drop pkt;
 exit;
 }
 else {
 h2.update((src,dst), (0,-1));
 }
 }
 else {
 //false positive
 if (!inh1 && !inh2) {
 drop pkt;

	
 15	

 exit;
 }
 else if (inh1 && h1.get((src,dst))[1] > 0) {
 h1.update((src,dst), (0,-1));
 }
 else if (inh2 && h2.get((src,dst))[1] > 0) {
 h2.update((src,dst), (0,-1));
 }
 else {
 drop pkt;
 exit;
 }
 }

