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Abstract—A common task for security analysts is to deter-
mine whether potentially unsafe code constructs (as found by
static analysis or code review) can be triggered by an attacker-
controlled input to the program under analysis. We refer to this
problem as proof-of-concept (POC) exploit generation. Exploit
generation is challenging to automate because it requires
precise reasoning across a large code base; in practice it
is usually a manual task. An intuitive approach to exploit
generation is to break down a program’s relevant computation
into a sequence of transformations that map an input value
into the value that can trigger an exploit.

We automate this intuition by describing an approach to
discover the buffer structure (the chain of buffers used between
transformations) of a program, and use this structure to
construct an exploit input by inverting one transformation
at a time. We propose a new program representation, a
hybrid information- and control-flow graph (HI-CFG), and
give algorithms to build a HI-CFG from instruction traces. We
then describe how to guide program exploration using symbolic
execution to efficiently search for transformation pre-images.

We implement our techniques in a tool that operates on
applications in x86 binary form. In two case studies we discuss
how our tool creates POC exploits for (i) a vulnerability in
a PDF rendering library that is reachable through multiple
different transformation stages and (ii) a vulnerability in the
processing stage of a specific document format in AbiWord.

Keywords-Exploit generation; binary analysis; symbolic ex-
ecution; data structure analysis

I. INTRODUCTION

Security analysts currently spend much of their time
analyzing software bugs to determine whether they might
constitute vulnerabilities. This task currently has relatively
little automated support, because it requires precise reason-
ing cross-cutting through a large code base; in practice it
is still mostly manual. We propose new techniques to scale
precise binary analysis to complex multi-stage information
flows, in order to automatically produce test cases that
demonstrate a vulnerability.

Specifically, we address the problem of proof of concept
(POC) exploit generation for programs that perform multiple
transformations of their input. Our system is given the
location of a possibly unsafe code construct such as an
instruction that might index an array out of bounds: for
instance this might be the output of a conservative static

analysis or from a core dump in a bug report. Our goal
is to automatically produce an input to the program that
demonstrates that the potential vulnerability is real. When
the program executes on this new input, it will trigger the
unsafe condition such as by accessing beyond the array
bounds and crashing.

Exploit generation is a challenging task for several rea-
sons. First, it requires reasoning about a program from
the original program input to the potentially vulnerable
code location. The data may undergo a number of different
transformations between the input and the vulnerability, and
the exploit generation process must take account of each.
Second, exploit generation also requires precise reasoning
since we require a specific input that demonstrates a vulnera-
bility. It is not enough to determine that a vulnerability might
be possible: a system must show how it really happens. (For
this reason, we might also refer to the exploit generation task
as vulnerability verification.) A third challenge is that we
assume that we have only access to a compiled binary. Our
technique does not depend on access to source code for the
program, which may be unavailable to a third-party analyst,
or for any libraries used whose source may not be available
even to the application developer. Thus an exploit generation
system should be able to work with stripped binaries that
lack symbol tables or debugging information.

In part because of the difficulty of exploit generation
(manual or automatic), many searches for security vulnera-
bilities use techniques such as fuzz testing that generate con-
crete crashing inputs directly. However concrete fuzz testing
has many limitations of its own: it can require significant
target-specific setup to perform well; it is unlikely to trigger
vulnerabilities that are guarded by complex, low-probability
conditions; and its results do not easily generalize. Better
automated exploit generation is thus complementary to fuzz
testing: it can produce exploits for some vulnerabilities
that fuzz testing would take too long to discover, and if
a vulnerability is initially found via fuzz testing, exploit
generation can be used to create further exploits in new
contexts or subject to additional constraints.

From an attacker’s perspective, this capability for gen-
erating new exploits is particularly useful in constructing



attacks that bypass signature-based filters. File formats that
include complex transformations can be an easy way to
implement sophisticated polymorphism for attacks on a
single vulnerability. For instance in the context of PDF
documents, we show in our case study how to exploit a
single vulnerability in font parsing using font streams trans-
formed via encryption, various forms of compression, and/or
hexadecimal coding. Any one of these transformations on its
own would defeat a simple signature-based attack detector,
but our approach also extends to arbitrary sequences of
transformations. If attackers have this capability, then no
defensive filter can be effective unless it implements all the
transformations that the vulnerable file-reading application
(e.g., Adobe Acrobat) does.

When an analyst is faced with the manual exploit gener-
ation problem, a natural task is to work backwards through
the program: for instance, first find an argument to the
vulnerable function which causes a failure, then find the
value for a previous variable that causes that argument, and
eventually work back to the program input. Our approach
is a way of automating this intuition. We first use binary
analysis to build a program representation, what we call
a Hybrid Information- and Control-Flow Graph (HI-CFG),
which shows the data structures within a program as well as
the code that generates and uses them. Based on the HI-CFG,
we identify a sequence of data structures, which we refer to
as buffers, that hold the data values leading to a potential
vulnerability between a sequence of transformations. Then,
we use an exploration technique based on symbolic execu-
tion to work backwards through this sequence of buffers.
Our tool first finds contents for the final buffer which cause
a failure, then finds contents for the second-to-last buffer
which lead to those final buffer contents, and so on back to
the original program input.

We implement this approach using binary trace collection,
a dynamic HI-CFG construction system, and a symbolic
exploration tool which is guided by the sequence of buffers
found in the HI-CFG. In two case studies we generate POC
exploits for (i) a font-related vulnerability in the Poppler
PDF parsing library, which includes a complex decompres-
sion stage followed by an integer overflow within a textual
header, and (ii) an illegal memory access when parsing an
Office Open XML (.docx) file in AbiWord.

Our work makes the following major contributions:
• We apply a transformation-aware input generation ap-

proach to the problem of POC exploit generation.
By taking advantage of the structure of buffers and
transformations in a program, this approach lets our
tool find exploits that could not be found by analyzing
a program as a monolithic whole.

• We introduce a new program representation that in-
tegrates control flow and data structures, the Hybrid
Information- and Control-Flow Graph (HI-CFG), and
give algorithms for building a HI-CFG from instruction

traces without source-level information.
• We show that the HI-CFG makes transformation-aware

input generation possible by automatically determining
a sequence of buffers and the transformations between
them that connect the attacker-controlled program input
to a vulnerable location.

• We present two case studies of real-world large pro-
grams: Poppler and AbiWord. In the case studies we
use our tool to automatically generate POC exploits for
bugs that are hidden behind several transformations.

The rest of this paper is organized as follows. Section II
gives a more detailed overview of the problem and our
approach to it. Section III describes our proposed Hybrid
Information- and Control-Flow Graph (HI-CFG) represen-
tation, and the specific variant we use for exploit genera-
tion. Section IV gives the algorithms we use for HI-CFG
construction, Section V describes how we use symbolic
execution to invert single transformations, and Section VI
describes how to use the HI-CFG to choose the sequence
of transformations to invert. Section VII describes the case
study in which we apply our system to real-world vulnerabil-
ities, and Section VIII provides some additional discussion
of our approach. Finally Section IX describes related work,
and Section X concludes.

II. OVERVIEW

The intuition behind our approach is to automatically
generate POC exploits by reversing buffer transformations
in a binary-only program. The input to our system is
(i) a potentially unsafe program location consisting of an
instruction location and a vulnerability condition (a boolean
formula) and (ii) a benign input that leads to an execution
trace that executes the vulnerable functionality but does not
trigger the vulnerability condition. Our tool builds a HI-CFG
from the execution trace and uses this HI-CFG to identify
buffers and to build a transformation chain between the input
buffer and the faulting instruction. We then use symbolic
execution to reverse individual transformations. The HI-CFG
information about the transformation chain is then used to
connect the inverse transformations into a POC generation
toolkit. Figure 1 gives a high-level overview of the workflow.

We next turn to describing the technical structure of our
problem and approach in more detail.

A. Problem

We refer to the problem our system addresses as proof
of concept (POC) exploit generation. Given a potentially
vulnerable location within a program, our goal is to produce
a program input demonstrating an unsafe behavior at that
location by searching executions similar to a given benign
execution.

Vulnerability Condition. Our approach is based on an-
alyzing the program at the binary level, so we represent
a potential vulnerability as the address of an instruction
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Figure 1. High-level overview of the workflow when generating POC
exploits.

within a binary and a vulnerability condition on the state
of execution at that point. The vulnerability condition is
a formula in terms of registers and memory locations
that, if true, indicates that the program will perform an
unsafe operation at that instruction. For instance, if the
vulnerability is a potential overflow of a 100-byte buffer
indexed by the register edx, the vulnerability condition
would be edx ≥u 100, where ≥u indicates an unsigned
comparison. Such a vulnerability condition might come from
a conservative static analysis of a binary, which checks
whether each instruction that accesses a data structure will
respect its boundaries. Another possibility is for the vul-
nerability condition to represent a failure previously seen
in a bug report: for instance, if we have a core dump
caused by a null dereference at a particular instruction,
we can create a vulnerability condition checking whether
the memory address can be null. An instruction for which
this conservative safety check fails represents a potential
vulnerability, but a conservative analysis can produce false
positives, so we can use exploit generation to find warnings
that correspond to true positives. We can also find potentially
vulnerable instructions in the course of a manual binary-
level security audit, or translate them from source level
conditions expressed in an assert statement. Our tool
supports vulnerability conditions that are arbitrary formulas
that combine the contents of registers and memory with
fixed-size arithmetic, bitwise and logical operators.

Our primary focus in this work is to show that an unsafe
operation can occur using a computed input, not to create
a complete attack. The creation of a typical control-flow
hijacking exploit can be broken down to four steps: (1)
finding a potential bug that causes memory corruption;
(2) constructing an input that will trigger the memory
corruption; (3) tweaking the input so that a function pointer
or other value in memory gets overwritten to eventually
influence the argument of a control-flow instruction; (4)
“weaponizing” the input with shellcode or with return-
oriented programming [1] and “hardening” the attack to
bypass common protections like DEP and ASLR.

Our technique focuses on step (2), what we refer to as
proof-of-concept (POC) exploit generation. While we refer
to what our tool does as exploit generation for brevity, we

do not discount the importance of the other steps in the
process. Because our tool is flexible about the format of the
vulnerability condition, we can also express more specific
necessary conditions for a vulnerability to be exploitable and
cover step (3). For instance, extending the buffer overflow
example above, we could ask for the overflowing value
to be a particular negative number that causes a function
pointer elsewhere in the machine state to be overwritten. Of
course, more specific exploit details like this depend on the
program’s memory layout, so they can only be checked at
the binary level. This condition-based approach is also com-
patible with techniques for automated exploit hardening [2].
Furthermore, even if a potential vulnerability is found by
fuzzing, meaning that an input is given which triggers
memory corruption at a specific point in the program, our
technique can still be used to decide whether the found bug
is exploitable for control-flow hijacking attacks (by using
additional conditions in the vulnerability condition).

Benign Input. The other input to our technique is a
benign program input that leads to an execution similar
to the desired exploit without triggering the vulnerability
condition. Our tool uses this execution as the starting point
for its search for an exploit. Because there will typically be
many program inputs that could trigger a vulnerability, an
analyst can vary aspects such as the size and structure of
the benign input to affect the corresponding aspects of the
generated exploit.

However, to make the search for an exploit efficient,
the benign input should exercise code near the potential
vulnerability. We do not require that the benign input execute
the vulnerable instruction, but it should execute the function
that contains the vulnerability. For instance, in the Poppler
case study of Section VII, to exploit a vulnerability in the
parsing of a Type 1 font in a PDF document, we choose as
a benign input a document that includes a Type 1 font.

B. Approach

The intuition behind our approach is the observation that,
in a large program, a value often undergoes a series of
transformations between being read as input and triggering a
potential vulnerability. Because of these levels of processing,
it would be infeasible for our system to reason automatically
about the entire transformation at once. Instead, our tool an-
alyzes the static binary and an execution trace to understand
the entire transformation as the composition of a series of
simpler transformations.

Our tool recognizes the structure of composed transforma-
tions by the structure of the program’s control flow, its data
structures, and how the code uses the data. Specifically, the
analysis breaks the transformation down into an alternating
series of buffers and smaller transformations. Each smaller
transformation corresponds to a code module such as a
function and the functions it transitively calls. A buffer is a
data structure that is used as the interface between different



parts of the program: the buffer contains data values that are
generated by one part of the program and used by another.

Given this breakdown into a sequence of smaller transfor-
mations, our system then uses the breakdown to structure its
search for a vulnerability-triggering input. Specifically, our
analysis generates vulnerability-triggering values one buffer
at a time. The analysis starts by searching for contents of the
final buffer in the sequence that cause the program to fail
(i.e., perform an unsafe operation). Assuming one is found,
the analysis then searches for contents of the second-to-last
buffer, which lead the program to produce the vulnerability-
triggering contents in the final buffer. The analysis repeats
this process for each of the remaining pairs of buffers until
the program’s input buffer is reached. If the system succeeds
at each step, the final result is an input to the entire program
that triggers the vulnerability.

A transformation-by-transformation approach can be
much more effective than a search that treats the program as
a single unit because there are many execution paths through
each transformation. A transformation-by-transformation ap-
proach has a search space that is the sum of the search
spaces for each transformation, while for a whole-program
approach the search space size grows as a product of the
individual search spaces (leading to a state explosion).

Our representation of the program and its buffers is a
Hybrid Information- and Control-Flow Graph (HI-CFG).
The HI-CFG is a graph that includes information about
code, data, and the relations between them; we describe its
structure in more detail in Section III. One could potentially
use a number of kinds of program analysis to produce a HI-
CFG, but for this project we use a dynamic approach that
builds a HI-CFG representing the code and data structures
exercised in one or more instruction-level traces. The details
of this construction process are in Section IV.

Given the HI-CFG, our approach then uses symbolic
exploration for the task of finding buffer contents that lead
to a failure or to the desired failure-triggering contents of
a later buffer. We refer to the latter process as finding
a preimage of the desired output for the transformation.
Symbolic exploration generates feasible execution paths of a
portion of the program by constructing symbolic expressions
for output values and path conditions, and solving those
formulas using a decision procedure. We describe the basics
of this technique, as well as optimizations that apply to the
preimage-computation problem, in Section V.

In order to discover the buffers in a program and ef-
ficiently find preimages for the transformations between
them, our system depends on three properties of the buffers
and transformations, which we have found to be quite
commonplace:

1) The buffers that our system detects must be stored
consecutively in memory; this generally corresponds
to data structures that are implemented using arrays
in C or C++. Though not a fundamental limitation,

we have focused on these data structures in our HI-
CFG construction algorithm because they are the most
common way for programs to store large quantities of
data of a variety of formats.

2) The individual transformations should be mostly sur-
jective: in other words, for any given transforma-
tion output, a corresponding preimage should exist.
This property ensures that the sequence of preimage
searches will not have to backtrack: when it finds
buffer contents that produce the desired result for
one stage of processing, it is likely that a sequence
of further suitable preimages will exist back to the
program input.

3) The individual transformations should be sequential
and streaming: in other words, they should read from
their input in order, write to their output in order, and
the reads and writes should be intermixed.

These properties bound the size of the search space that
must be explored to find a preimage: the search can reject
a candidate input prefix when it leads to an incorrect
output prefix. Examples of transformations that satisfy these
properties include many kinds of decompression, character
set transformations of text, signal processing, and encryption
and decryption (though there can be other challenges in
inverting cryptographic functions say if the key is not
available).

III. THE HYBRID INFORMATION- AND
CONTROL-FLOW GRAPH

For the central program representation used in our ap-
proach we propose what we call a Hybrid Information-
and Control-Flow Graph (“HI-CFG” for short, pronounced
“high-C-F-G”). The HI-CFG combines information about
code, data, and the relationships between them. Because data
structures represent the interface between code modules, a
HI-CFG is a suitable representation for many tasks that re-
quire decomposing a large binary program into components.
Listing 1 shows a simple transformation that copies data
from buffer buf0 to buf1. Figure 2 shows the HI-CFG
that contains the control flow graph as well as the data flow
graph and the producer/consumer edges between the two
graphs.

We start by describing the kinds of nodes and edges found
in a HI-CFG (Section III-A). Then we mention potential
variations of the concept and applications for which they
would be suitable (Section III-B). Finally, we describe the
particular kind of HI-CFG we use for our exploit generation
task (Section III-C).

A. Nodes and Edges

A HI-CFG is a graph with two kinds of nodes: ones
representing the program’s data structures, and ones repre-
senting its code blocks. Data structure nodes are connected
with information-flow edges showing how information is



1 // ISO-8859-1 to UTF-8 conversion
2 void trafo(char *src, char *dst, int len) {
3 while (len-- > 0) {
4 if (*src < 0x80) {
5 *dst++ = *src++;
6 } else {
7 *dst++ = 0xc0 | (*src & 0xc0) >> 6;
8 *dst++ = 0x80 | (*src++ & 0x3f);
9 }

10 }
11 }
12 ...
13 trafo(buf0, buf1, 256);

Listing 1. A simple example transformation involving two buffers.

3

4

7,85

9

10

CFG view

buf0

buf1

Data flow view

Control flow

Data flow

Producer/ 
Consumer

Figure 2. HI-CFG of the simple transformation in Listing 1 (the CFG
nodes show the corresponding source code line numbers).

transferred from one data structure to another. Code block
nodes are connected with control-flow edges indicating the
order in which code executes. Finally, data nodes and code
nodes are connected by producer-consumer edges, showing
which information is created and used by which code: a
producer edge connects a code block to a data structure it
generates, while a consumer edge connects a data structure
to a code block that uses it. A more detailed example HI-
CFG is shown in Figure 3.

The subgraph of a HI-CFG consisting of code blocks
and control-flow edges is similar to a control-flow graph
or call graph, and the subgraph consisting of data structure
nodes and information-flow edges is similar to a data-flow

Figure 3. A detailed example of a coarse-granularity HI-CFG for a
program which parses two kinds commands from its input, decodes those
commands with the help of lookup tables, and then performs an appropriate
computation for each command.

graph. However, the HI-CFG is more powerful than a simple
combination of a control-flow graph and a data-flow graph,
because the producer-consumer edges additionally allow an
analysis to find the code that is relevant to data or the data
that is relevant to part of the code.

A HI-CFG is distinguished from a program dependence
graph (PDG), as used in slicing [3], [4], by its explicit
representation of data structures. The nodes in a PDG
represent code blocks, and two code blocks are connected
by a data-dependence edge if one code block can read data
written by the other. But the structure of the data values
themselves is not represented in a PDG; it is only implicit
in the placement of the data-dependence edges.

B. Generality and Uses

We can create a HI-CFG at differing levels of granularity
for code and data. A fine-grained code representation would
have one code block per instruction, or per basic block, while
a coarse-grained representation would have one code block
per function. Analogously, a fine-grained data representation
would have a data structure node for each atomic value
(like an integer), while a coarse-grained data representation
would have one data structure node per allocated memory
region. To record information about finer-grained structure,
we can augment a coarse-grained data structure node with
an inferred type that describes its internal structure.

When an analysis can recover only part of the information
about a program’s structure, such as when combining static
and dynamic approaches, we can also annotate each HI-CFG
edge with a confidence value between 0 and 1. A confidence
value of 1 represents a relationship that our system knows
definitively to hold, whereas a fractional value indicates an
uncertain relationship, with lower values being less certain.

Component Identification. One application of a HI-CFG
would be to identify functional components within a binary.
The hierarchical, modular structure of a program is impor-
tant at the source level for both developer understanding
and separate compilation, but this structure is lost after a
compiler produces a binary. Below the level of a dynamically
linked library, a text segment is an undifferentiated sequence
of instructions. However we would often like to determine
which parts of a binary implement a certain functionality,
such as to extract and reuse that functionality in another
application. Caballero et al. [5] demonstrate the security
applications of such a capability for single functions, but
many larger functional components would also be valuable
to extract.

An insight that motivates the use of a HI-CFG for this
problem is that the connection between different areas of
functionality in code are data structures. A data structure
that is written by one part of the code and read by another
represents the interface between them. Thus locating these
data structures and dividing the code between them is the
key to finding functional components. Given a HI-CFG, the



functional structure of the program is just a hierarchical
decomposition of the HI-CFG into connected subgraphs, and
data structures connected to multiple areas of functionality
represent the interfaces of those components.

Information-flow Isolation. A different kind of decom-
position would be valuable for large programs that oper-
ate on sensitive data. In a monolithic binary program, a
vulnerability anywhere might allow an attacker to access
any information in the program’s address space. But often
only a small portion of a large application needs to access
sensitive information directly. Just as automatic privilege
separation [6] partitions a program to minimize the portion
that requires operating system privileges, we would like to
partition a program to minimize the portion that requires
access to sensitive information. This problem can again
be seen as finding a structure within the HI-CFG, but for
information-flow isolation we wish to find a partition into
exactly two components, where there is information flow
from the non-sensitive component to the sensitive one but
not vice-versa.

C. Application to Exploit Generation

For the purposes of this paper, of course, our application
of the HI-CFG is to find the structure of a program’s buffer
usage to facilitate efficient exploit generation. For this, we
use a relatively coarse-grained HI-CFG. We represent code
at the level of functions, so control-flow edges correspond
to function calls and returns. To represent data structures,
we use a level of granularity intermediate between atomic
values and memory allocations: our tool detects buffers
consisting of adjacent memory locations that are accessed in
a uniform way, for instance an array. Our current prototype
implementation detects only one level of buffers, so we do
not infer types to represent their internal structure.

Because our HI-CFG construction algorithm, as described
in Section IV, is based on dynamic analysis, each edge
in the HI-CFG represents a relationship that was observed
on a real program execution. Thus all edges effectively
have confidence 1.0. The converse feature of this dynamic
approach is that relationships that did not occur in the
observed execution do not appear in the HI-CFG. However
this is acceptable for our purposes because we base the
HI-CFG, and thus the search for an exploit, on an analyst-
chosen benign execution. If the first benign input does not
allow our tool to find an exploit, the analyst can try again
with a benign input that exercises different parts of the
program functionality.

We will return to the question of how to find buffers
and transformations in the HI-CFG in Section VI, after
covering the building blocks of how to construct the HI-
CFG (Section IV), and how to find transformation preimages
(Section V).

IV. DYNAMIC HI-CFG CONSTRUCTION

In this section, we describe our approach to HI-CFG con-
struction: first some infrastructure details, then techniques
fo collecting control-flow information from dynamic traces,
categorizing memory accesses into an active memory model,
grouping data accesses into buffers, tracking information
flow via targeted taint analysis, and merging significantly
similar buffers.

A. Infrastructure

To construct a HI-CFG via dynamic analysis, we take
a trace-based approach, which lets us easily explore and
test a variety of specific techniques and evaluate them with
concrete examples.

We use the open-source Tracecap [7] tool from UC Berke-
ley to record instruction traces. Tracecap records statistics
about loaded executables and libraries, tracks the entry of
tainted data to the process space, and produces a log of
function calls including arguments and return values that
we later use to track standard memory allocation routines.

Our modular trace analysis system interfaces with Intel’s
XED2 [8] library (for instruction decoding) and Tracecap
(for reading and writing instruction traces). It includes an
offline taint propagation module that allows for a virtually
unlimited number of taint marks, and a configurable number
of taint marks per byte in memory and registers.

B. Control Flow

The HI-CFG construction module primarily identifies
functions by observing call and ret in the instruction
trace. Upon observing a call instruction, the module will
update the call stack for the current thread and create
a control-flow edge from the caller to the callee. Upon
observing a ret instruction, the module finds the matching
entry in the call stack and marks any missed call stack entries
as invalidated.

In addition to literal call instructions, our system also
recognizes optimized tail-calls by noticing execution at ad-
dresses that have otherwise been call targets. A limitation
of this approach is that tail-called functions will never be
recognized if not directly called. This limitation of the
current implementation could be addressed by adding a static
analysis step to the HI-CFG construction process, but it has
not been a problem so far.

C. Memory Hierarchy

The HI-CFG construction records memory accesses in
a hierarchical model of memory which follows the lat-
tice shown in Figure 4. space types at the top of the
lattice represent an entire process address space. At the
bottom of the lattice, primitives represent memory
accesses observed in the instruction trace. The categoriza-
tion of a memory access corresponds to a path from the
top of the lattice to the bottom. Existing entries in the



Figure 4. The hierarchy of types in the model of memory used in our
HI-CFG construction algorithm.

memory model add their own types as additional require-
ments in the path. For example, a memory access under
an existing dynamically allocated memory region will at
least have the path space, dynamic region, dynamic
allocation, primitive. The memory model will then
insert the memory access and create or adjust layers accord-
ing to the types in the path.

Memory structures such as dynamic allocations and stack
frames are added to the memory model as they are identified
by one of several indicators. Dynamic allocations are added
to the memory model by tracking standard memory allo-
cation routines such as malloc and free. Stack frames
are created by tracking esp during call instructions and
claiming all memory accesses between the base of the stack
frame and the end of the stack region during matched ret
instructions.

Memory structures such as stack and dynamic regions are
based on memory pages. The “region” type classification
relies on the intuition that most programs tend to use each
page for a single purpose such as for stacks, dynamic
allocations, memory-mapped executables, or operating sys-
tem structures. In addition to the constraints implied by
the lattice, additional constraints prohibit stack frames and
dynamic allocations from appearing in the memory model
without their respective regions.

D. Grouping Buffers

Instruction traces contain every individual load and store
instruction performed by the traced program, but for the HI-
CFG we wish to group these accesses into buffers to better
understand their structure. We identify buffers as groups
of adjacent memory locations between which the program
expresses commonality.

We experimented with several heuristics for identifying
buffers and currently use a combination of two approaches.
Our first system recognizes instructions that calculate mem-
ory access addresses by adding an index to a base pointer.
The system searches the operands involved in the address
calculation for a suitable base pointer (which must point to

Figure 5. Identifying spatially adjacent seqences of memory accesses on
a trace of strcpy.

an active page of memory). Upon finding a suitable base
pointer, the system submits a candidate buffer consisting
of an address equal to the value of the base pointer and
a size that extends the buffer from the base pointer to the
end of the observed memory access. For example, analyzing
a one-byte memory access of address 0x800000ff by the
instruction movzbl (%esi,%edx,1), %eax where the
base pointer esi is 0x80000000 would yield a 0x100-
byte candidate buffer from 0x80000000 to 0x800000ff.

The first system often detects both arrays consisting
of homogeneous data types and structures consisting of
heterogeneous data types. However, it fails when the address
of the memory access is constructed by pointer arithmetic
across multiple instructions. Our second system addresses
this weakness by recognizing spatially adjacent memory
accesses. To reduce the false positive rate of buffer detec-
tions, our second system also tracks the order of memory
accesses within each function. Upon observing a return
instruction and updating the call stack, or freeing a chunk
of dynamically allocated memory, the second system uses
the accesses from the returned function or freed memory as
starting points to search through the active memory model
for linear access patterns. If found, the system will submit
the candidate buffer for a final stage of processing.

The memory access patterns in case of strcpy can be
seen on Figure 5. Similar access patterns across multiple
calls to the same function, such as by functions that access
one byte of a buffer per call, are also recognized by this
system. In addition, access patterns are stored within buffers
so that they may grow with subsequent accesses.

Once the first and second systems have submitted their
candidate buffers, the HI-CFG module chooses the most
suitable buffers (with a preference for larger buffers) and
commits them to the active memory model. Adding a buffer
to the active memory model merges the grouped memory
accesses with the new buffer, which summarizes relational
information such as producer and consumer relationships
with functions and information flow to other buffers, which



are described in the next subsection. Subsequent buffers
submitted to the active memory model will merge their
relational information with existing buffers, and potentially
extend the buffer if certain criteria are met (e.g., the buffers
share a starting or ending address).

E. Information Flow

To trace the information flow between buffers, our system
primarily uses a specialized form of dynamic taint analysis.
We introduce a fresh taint mark for each buffer as a possible
source for information flow. We then propagate these taint
marks forward through execution as the data values are
copied into registers and memory locations. When a value
with a taint mark is stored into another buffer distinct from
the source buffer, we record an information flow from the
source to that target. Like most techniques based on dynamic
taint analysis, this technique will not in general account for
all possible implicit flows, so we also supplement it with
an upper-bound technique that constructs a low-confidence
information-flow edge when ever the temporal sequence of
buffers consumed and produced by a function would allow
an information flow.

F. Buffer Summarization

Buffers in the active memory model are moved into the
historical memory model when they or their hierarchical par-
ents are deactivated. Primarily, this occurs for stack allocated
buffers (when functions return) and dynamically allocated
buffers (when the allocated chunk is freed). The remaining
entries in the active memory model are deactivated when the
HI-CFG construction module analyzes the last instruction in
the trace.

Passthrough buffers, through which information flows
without being acted upon by multiple functions, are not
added to the historical memory model after deactivation.
The motivations for this phase are twofold: first, passthrough
buffers are generally less interesting for our analysis and
their removal is a slight optimization; second, passthrough
buffers will connect legitimately separate sections of the HI-
CFG with information flow. Removing passthrough buffers
improves the precision of the HI-CFG by eliminating cases
that would indicate spurious information flow: for instance,
if memcpy copied through an internal buffer that were not
removed, every source of a copy would appear information-
flow connected to every target.

We define passthrough buffers as those that satisfy the
following criteria:

• The buffer is not a source of information flow (i.e., it
has at least one incoming information flow edge).

• The buffer is not a sink of information flow (i.e., it has
at least one outgoing information flow edge).

• The buffer is produced and/or consumed by exactly one
function.

If all of the criteria are met, the passthrough buffer is
removed from the graph, and new information flow edges
connect buffers that were connected by the passthrough
buffer. When deactivated buffers do not meet the criteria
for passthrough buffers, they are moved into the historical
memory model and summarized, as we describe next.

The summarization process finds buffers that are related
(intuitively, multiple instances of the “same” buffer), and
merges them along with their relational information. We
define when two buffers should be merged by giving each
buffer a value we call a key. Two buffers should be merged if
they have both the same parent (perhaps because previously-
separate parents were themselves merged) and the same key.
(To save storage space, we in fact just store an MD5 hash
of the key material.) The key always includes an identifier
for the type of an object, and by default it also contains the
object’s offset within its parent object.

The keys for dynamic allocations and stack frames con-
tain different information in addition to a type identifier.
Dynamic allocations use the calling context of the allocation
site, up to a configurable depth (currently set to 10 calls),
similar to a probabilistic calling context [9]. Stack frames
use the address of the function. As a result, our system is
able to identify two local and dynamic variables as the same
across multiple calls to the same function and in the presence
of custom memory allocation wrappers.

We use an approach similar to a disjoint-set union-find
data structure to manage the identities of buffers as they are
summarized. The merging of buffers corresponds to a union
operation, and we use a find operation with path compres-
sion to maintain a canonical representative, associated for
instance with a taint mark. This allows the tool to efficiently
maintain information-flow from historical buffers even after
they are deactivated.

V. PRE-IMAGE SEARCH VIA SYMBOLIC EXECUTION

Our exploit-generation system uses symbolic execution to
search for buffer contents that either trigger a vulnerability,
or lead to a desired value being generated in a subsequent
buffer. Except for the difference in goal, the two search
processes operate in a similar way. We start by giving a
brief introduction to the use of symbolic execution for pro-
gram exploration (Section V-A), then describe three features
and optimizations that make the preimage search efficient:
pruning (Section V-B), prioritization (Section V-C), and the
treatment of lookup tables (Section V-D).

A. Background: Symbolic Exploration

Symbolic execution is a program analysis technique that
combines features of dynamic and static analysis by consid-
ering families of executions that traverse the same execution
path. Certain inputs to a program or code fragment under
test, rather than taking concrete values such as particular



integers, are replaced by symbolic variables. As the code ex-
ecutes, computations on these values produce more complex
symbolic expressions. When a symbolic expression occurs
in a branch condition, we can use a decision procedure
such as STP [10] to determine which directions for future
execution are feasible. Symbolic execution is useful because
the symbolic execution of a single path can correspond to a
large number of concrete executions, but still be precise:
no approximation is involved in computing the symbolic
expressions. Another advantage is that arbitrary additional
conditions can be conjoined with the formulas (as if they
were additional branches in the program) and checked in
the same way. For instance, in this way our tool can easily
check whether a vulnerability condition is satisfiable.

One common application of symbolic execution is to
explore within the space of all feasible executions of a
code fragment, which we refer to as symbolic exploration.
Our system takes an approach that explores one execution
path at a time, starting with no constraints on the symbolic
variables. Each time execution reaches a symbolic branch,
the tool is free to explore either side of the branch, subject
to a feasibility check (ensuring the choice is compatible with
the earlier branches taken). The tool keeps track of which
sequences of branch choices lead to parts of the execution
space that have been fully explored, and avoids them. We
describe a further basis it uses for deciding between branch
directions below in Section V-C; when all else is equal, it
chooses randomly. A more in-depth discussion of symbolic
execution techniques is found in the form of a survey [11],
or in papers describing tools [12], [13]. Our implementation
builds on an existing tool [14].

If it were allowed to run forever, a symbolic exploration
tool would eventually explore every possible execution path
through a code fragment. But for all but the smallest
fragments, the number of paths is so large (even infinite)
that this is not a practical strategy. The key to effective
use of symbolic exploration is to guide the search towards
execution paths that are more likely to be interesting, which
will be the focus of the next two subsections.

B. Search Pruning

The most important technique for reducing the size of
the space that must be searched for a preimage is to prune
prefixes of the input buffer contents that produce the wrong
prefix of the output buffer contents. This technique applies
to streaming transformations that read their input and write
their output sequentially, and also closely interleave writes
with reads. This is a very common pattern for transforma-
tions that can apply to an unbounded input, but keep only a
limited-size internal state.

While exploring the execution of the transformation, at
each point at which the code writes a value to the output
buffer, we check whether it is possible that the written value
can be equal to the desired output value at that position.

If it cannot be equal, then no extension of the currently
explored path could create the desired output, so the search
can be pruned at that point, and no extensions are explored.
If the values can be equal but are not necessarily equal,
such as if the written value is an unconstrained symbolic
variable, we add the constraint that they match to the path
condition, which can also prune the search space by making
some future paths infeasible.

An indication of the power of this pruning is that if the
number of reads between consecutive writes is bounded,
it will typically reduce the number of paths that can be
explored from exponential in the input size to linear in the
input size. However applying just this technique the linear
factor can still be quite large, which can be further addressed
by the two optimizations we describe next.

C. Search Prioritization

Another optimization that can take advantage of checking
as the code produces the desired output is to bias the search
toward paths that have produced the most correct output val-
ues. Intuitively, this approach directs the exploration to spend
more of its time attempting to extend paths that have already
proved promising, as opposed to paths that have not shown
results yet. This approach can be described in terms of a
utility function for states in the exploration space, which for
our preimage computation is the number of correct output
values produced by the path up to that point. To implement
this approach, our tool records, before each branch point
in the search space, the minimum and maximum utilities
of all of the states that have been explored beyond that
point. When returning to a branch point that has been visited
before, the search will prefer the branch direction with the
higher maximum utility, or if the maximum utilities are equal
it will prefer the one with the higher minimum utility.

As in any search process, our search for a preimage has a
tension between local and global search. Prioritizing states
that have proved effective so far will speed the search if
the search space is well behaved. But one would not want
to unconditionally prefer the already-proven states, because
the search space might have dead ends that appear initially
promising, but cannot be extended to give the complete
desired output. We do not want a search process that is
required to explore such dead ends exhaustively before
trying another path. To strike this balance, our system’s
search prioritization is not absolute. Instead, each time the
search reaches a state with a utility-based preference, we
flip a biased coin. If the coin comes up heads, we follow
the preference, otherwise we fall back to a random choice
strategy. For the experiments in this paper, we have set the
probability of the biased coin to follow the utility-based
preference with probability 0.95. This probability works
well for our case studies and follows a greedy strategy that
ensures that we first search the depth of the tree before
backing up and searching more in the breadth.



D. Lookup Tables

A final aspect of our use of symbolic execution is not
specific to exploring transformations, though it often applies
to them. As previously mentioned, an advantage of symbolic
execution is that a single symbolic path can correspond to
multiple concrete paths. A trade-off with respect to how
many concrete paths a symbolic path represents occurs when
the code uses a load from memory to implement a lookup
table.

This trade-off arises when the address value used in a
load from memory is symbolic, so that the load might refer
to multiple locations. How should the symbolic execution
system implement this load?

One approach, which is the default in our symbolic
execution tool, is to treat the selection of which address to
load like a multi-way branch. The tool chooses one feasible
value for the address, and continues execution subject to
this choice. Later, when it returns to the branch point, it can
choose a different feasible value. Since choosing a value for
the address effectively makes it concrete, this approach tends
to create simple symbolic formulas which can be evaluated
efficiently. On the other hand, if many address values are
possible, the number of paths to explore can quickly become
large.

An alternative approach is to represent all the possible
values from the load in the symbolic expression. This
approach makes sense for the case in which the possible
loaded values represent a lookup table, though it need not be
limited to that case. The formula representing the symbolic
results of the load will itself have the structure of a lookup
table (or, equivalently, a circuit representing a ROM). The
main limitation is that the number of possible addresses and
loaded values cannot be too large, lest the symbolic formula
become unmanageable.

The trade-off that comes with the lookup table approach
is that the number of execution paths to be explored will be
much smaller, but at the cost of the symbolic formulas for
each path becoming much larger and slower to reason about.
Essentially this approach delegates more of the exploration
to the decision procedure. It can improve performance
overall because the decision procedure can use many of its
own optimizations, though representing and reasoning about
large formulas can increase memory usage.

The table lookup approach is perhaps more natural in
source-level symbolic execution systems that know when a
variable has array type. In binary-level symbolic execution,
the first challenge is to recognize when a table lookup
is occurring. Our system detects a table lookup when the
effective address of a load is the sum of a constant value
and a symbolic one, when the constant value is in the range
of a memory address, and the symbolic value (treated as
the table index) is bounded. Specifically we recognize table
sizes that are a power of two, with smaller tables rounded up,

which makes the construction of the lookup formula more
convenient. In some cases the bound on the index expression
is evident from its syntax (for instance, if it is zero-extended
from a byte value); if not, our tool uses additional decision
procedure queries in a binary search to find the smallest
power-of-two bound. The maximum allowed table size is
configurable; for this paper, it was 216.

VI. CHOOSING BUFFERS AND TRANSFORMATIONS

Next we describe how our system uses the information
from the HI-CFG to determine the relevant buffers that lead
to a potential vulnerability, and the transformations on which
we apply symbolic exploration to find preimages.

A sequence of transformations leading to the function
containing a potential vulnerability will appear in the HI-
CFG as a path (as shown in the motivating example in Fig-
ure 1). The first node in the path is a buffer representing
the program input. The remaining nodes in the path before
the last are additional buffers internal to the program,
connected by information-flow edges. Finally the path ends
with a consumer edge leading to the function containing the
potential vulnerability.

In general, the HI-CFG may contain multiple paths of the
form described above. For instance, in addition to the buffers
containing the primary data that the program is processing,
there may be an additional information-flow path of buffers
containing meta-data. In choosing a path to search for an
exploit, we expect to have more luck with the primary
data than with meta-data. To implement this preference, our
system attempts to distinguish buffers that are more likely
to contain primary data by their larger size. Among all the
paths of the form described in the previous paragraph, we
choose the path for which the size of the smallest buffer on
the path is maximized.

Once the tool has chosen the sequence of buffers to trigger
the vulnerability, the HI-CFG also contains information
about which functions in the program implement the trans-
formation from the contents of one buffer to the contents
of another. Specifically, each function that implements part
of the transformation will have a consumer edge from the
earlier buffer, and a producer edge to the later buffer. In
the case where the transformation is spread across multiple
functions, the nearest call-graph ancestor that dominates all
of the functions connected to both buffers will generally be
a function whose execution performs the transformation.

VII. CASE STUDIES

As case studies, we have applied our exploit-generation
system to two applications that transform their inputs before
processing them. These programs are open-source, and we
use the source code to verify our results, but the system does
not use the source code or source-level information such as
debugging symbols.



A. Poppler

Poppler is a PDF processing library used in applications
such as Evince. The vulnerability for which we generate
an exploit is cataloged as CVE-2010-3704 [15]. PDF doc-
uments can contain embedded fonts in the Type 1 format,
which is derived from PostScript and allows properties and
the character encoding to be expressed in a flexible text
format. Poppler includes a lightweight parser that attempts to
recover the character encoding, a mapping from byte values
to character glyphs. The index values for the encoding are
intended to be integers between 0 and 255 inclusive, and the
syntax does not allow a minus sign to indicate a negative
decimal integer.

However the syntax does allow integers to be specified
in octal with a prefix of 8#, and Poppler’s conversion from
ASCII octal to binary does not check for overflow. Further,
the check that determines whether the code value is in
bounds uses a signed comparison to 256, so a negative
value will be incorrectly accepted. Thus, if a malicious font
specifies a very large octal value for a character position, it
will overflow to a negative value. When this negative value
is multiplied by 4 and used to index the encoding array, an
arbitrary location elsewhere in memory will be overwritten.

The “stream” that contains an embedded font within a
PDF document is typically compressed to save space; it can
also be encrypted if the document uses access control, or
transformed using a number of other filters. By applying
our system with benign documents that use various filters,
we can create PDF files where the exploit is transformed in
various ways. For current versions of PDF the most com-
monly used compression format is named FlateDecode,
an implementation of the Deflate algorithm specified in RFC
1951 [16]. We’ll first describe how our technique works
when the font is Flate-compressed, and then discuss other
filters.

We apply our system to create a POC exploit for this
vulnerability in a PDF document containing a Type 1 font.
We use a test program pdftoppm included with the Poppler
library that renders a PDF document to a bitmap. As the
vulnerable instruction, we take the jg branch that performs
a signed comparison between the index value and 256. A
simple version of the vulnerability condition would simply
require that the index value be negative.

Of course more steps are needed to weaponize the exploit,
and especially to create an exploit that works in the presence
of defense mechanisms such as ASLR and W⊕X. We have
confirmed that the vulnerability can be exploited in the
presence of modern defenses by building by hand a complete
exploit. The exploit overwrites the virtual destructor vtable
entry of the font object (part of a nearby heap object
unaffected by ASLR) with the entry point of ROP-based
shellcode that calls the execve system call.

Completely automating the construction of such a hard-
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Figure 6. An excerpt of the HI-CFG for our Poppler case study showing the
buffer sequence. The input travels from left to right and FoFiType1::parse
contains the vulnerability.

ened exploit is outside the scope of the present project,
but has been the subject of other research such as the Q
system [2]. Since our symbolic execution approach is similar
to systems such as Q, we can show how to use our system
with a more complex vulnerability condition as part of
constructing such a hardened exploit. For instance consider
the task of constructing an octal value which when used as
an index in %edx will cause the font object vtable to be
overwritten. The object pointer is at an offset of -316 from
the frame pointer, and the vtable and the encoding array
pointers within the object are at offsets 0 and 24 respectively.
So the vulnerability condition is:

mem[mem[ebp-316]+24] + 4*edx == mem[ebp-316]

As a benign input, we use a PDF file generated by
pdftex applied to a small TEX file, which contains a
FlateDecode-compressed Type 1 version of the Computer
Modern Roman 10 point font.

An excerpt of the relevant portion of the HI-CFG gen-
erated by our tool from the processing of the benign input
is shown in Figure 6. Input passes through a sequence of
four buffers before the vulnerable code is triggered, so our
tool must find contents for the final buffer which trigger a
vulnerability in the font parser, and then it must compute
three levels of preimages of this value. However, two of
the transformations are direct copies for which preimage
computation is trivial. The first and second buffers contain
information in the same format. They both contain data
directly from the input file: the first buffer is maintained by
the standard I/O functions of the C library, while the second
is a FileStream object that is part of Poppler. The third and
fourth buffers also are in the same format: the third buffer
is a FlateStream object containing a decompression buffer,
and the fourth is a copy of the completely decompressed
font. The non-trivial inversion between the second and
third buffers computes a preimage under the FlateDecode
transformation: a compressed font that decompresses to the
attack font.

The execution trace from the benign execution contains
13,560,478 instructions, and constructing the HI-CFG took
about 4.5 hours (16207.58 s) on a Xeon X5670. The
generated HI-CFG contains 947 functions and 18654 groups.



Computation Paths explored Run time (s)
Font parse 36 107.57
Font copy 1 32.29
FlateDecode 111 6598.69
fread copy 1 16.99

Figure 7. Statistics for the symbolic exploration of four computations
within the execution of the Poppler PDF parsing library, for generation
of a POC exploit. Our tool generates a font that triggers a vulnerability
within font parsing, and then computes preimages through two copy
transformations and a decompression routine to create contents for the
compressed PDF file to trigger the failure.

Statistics for the symbolic exploration are shown in Figure 7;
running times are from an Intel Core 2 Duo E8400. Since
the search process is randomized, the paths explored and the
running time vary: we took 10 runs, dropped the fastest and
slowest, and report the average of the remaining 8.

By comparison, applying the same symbolic exploration
tool to the whole program at once, with the relevant part
of the font stream symbolic and lookup tables treated sym-
bolically, ran for more than 12 hours without even reaching
the vulnerable instruction. In fact, this search was only able
to explore 15 paths: with no pruning possible, each path
became very long. Treating lookup tables concretely allowed
the search to cover 898 paths in 12 hours, but still without
reaching the vulnerable instruction.

To trigger the vulnerability in font parsing, our tool makes
a 16-byte portion of the font symbolic, and searches for
contents which trigger the vulnerability condition. We help
the search by supplying 8 preferred directions for branches.
These cause the tool to prefer executions in which three
loops, which check for newlines, null characters, and the end
of the sequence of octal characters, each do not end early.
Similar annotations have been automatically generated by
static analysis in previous work [17]; the loop exhaustion
strategy of AEG [18] is also similar. The tool finds the
contents “ 8#0027777774674” (where the first character
is a space).

Even considering this stage on its own shows how this
vulnerability could not feasibly be found by random fuzzing.
Long octal numbers would be unlikely to appear in benign
seed inputs, and if a tool were to choose characters at
random, the probability of choosing a string of the form
8#ooooooooooooo, in which each character o is between
0 and 7, would be about 4 · 10−25. We confirmed this
by applying a random fuzzing tool to modify the benign
compressed data: the tool generated 63834 inputs in 12
hours, and more than 500,000 over about 4 days, without
triggering the vulnerability.

The other non-trivial task for symbolic execution is to
effectively find a sequence of bytes in the DEFLATE com-
pressed data format which decompress to the vulnerability-
triggering octal number mentioned above. The decompres-
sion routine uses several large tables, such as a table with 214

entries to decode Huffman code words that, in this stream,
can be up to 14 bits long. The tool treats each of the table
lookups symbolically, which reduces the number of paths to
explore at the cost of making each decision procedure query
relatively expensive. On average this search takes a little less
than 2 hours.

Another commonly used transformation of streams in PDF
files in RC4 encryption. In the “user password” mode, PDF
files are unreadable unless a required password is supplied
to decrypt their streams. In “owner password” mode, infor-
mation sufficient to recover the encryption key is provided
inside the PDF, but DRM-compliant implementations will
refuse to perform operations disallowed by a permission
bitmap. It is easy for our tool to re-encrypt modified data by
constructing pre-images for RC4 decryption because RC4
is a stream cipher, and the key is fixed. Essentially our
system automatically implements the standard mutability
attack against a stream cipher by solving constraints of
the form “decrypted byte = encrypted byte XOR fixed
keystream byte”. We applied our technique to a version of
the previously described sample document with RC4 and an
owner password. Since no branching is involved, only one
symbolic path needs to be explored, and the running time is
20 seconds, mostly devoted to program startup.

Two further transformations supported by PDFs include
run-length encoding and a hexadecimal encoding of binary
data. PDF’s simple run-length encoding operates at the byte
level: bytes indicate either a repeat count for a single byte,
or a run of bytes to be copied to the output verbatim. The
hexadecimal encoding is intended for representing binary
data in printable ASCII: each byte is represented by two
case-insensitive hex digits, and whitespace is skipped. We
test inverting these two transformations with a PDF file
that again contains the benign Type 1 font, but run-length
encoded and then hex-encoded. These transformations are
again relatively easy to invert via symbolic execution; we
use two branch-direction annotations, like the ones described
earlier for DEFLATE, to prefer hexadecimal strings that do
not include whitespace. The preimage computation requires
143 seconds and 315 symbolic paths.

B. AbiWord

AbiWord is a word-processing application that can import
documents from a number of formats. In particular we
examined its processing of documents in Office Open XML
format (used with the extension .docx), which is the
default format of recent versions of Microsoft Word. An
Office Open XML document is structured as a compressed
Zip file containing multiple XML documents representing
the document contents and metadata.

Recent versions of AbiWord (we used 2.8.2) suffer from
a crash in XML processing that is triggered when a shading
tag occurs outside of a paragraph tag. The code attempts to
fetch the top element of an STL stack containing pointers to



<w:document xmlns:w="http://schemas.
openxmlformats.org/
wordprocessingml/2006/main">
<w:body><w:sdt><w:sdtEndPr>
<w:xxxxxxxx>
<w:shd w:fill="AAAAAAAAAAA"/>
</w:xxxxxxxx>
</w:sdtEndPr></w:sdt></w:body></w:document>

Figure 8. When the string “xxxxxxxx” in the above XML document
is replaced with a certain tag name, the resulting .docx file crashes
AbiWord version 2.8.2. Our symbolic execution tool automatically finds
that “rPr ” and “pPr ” cause the crash.

enclosing document objects, but when the shading tag occurs
in an unusual (but legal according to the schema) location,
the stack is empty causing the reference to dereference an
invalid pointer. We have not yet determined whether this
bug is exploitable: a common presentation is a page-zero
load (from an address of 504, computed as a null pointer,
plus the length of an internal object in an STL deque, minus
the size of one stack element).

The execution trace collected from the benign execution
contains 69,503,117 instructions, and constructing the HI-
CFG took about 9.3 hours (33557 s). The generated HI-
CFG contains 5139 functions and 7816 groups. Looking at
the sequence of buffers in the HI-CFG, the document data
starts in a standard-IO input buffer, and is then decompressed
by the inflate function. The decompressed buffer is then
copied unchanged via memmove into a structure called the
parser context, which is used by xmlParseDocument; the
function containing the vulnerability is a callback from this
parser.

As shown in the HI-CFG, there are two non-trivial pro-
cessing steps between the input file and the crash: a de-
compression transformation from the Zip-file encapsulation,
followed by a vulnerable XML parser. Our POC exploit
generation process starts with the XML parser. Since the
crash is caused by a legal but unusual nesting of XML tags,
an exploit could be generated straightforwardly by a concrete
fuzzer that was aware of the schema for .docx files. How-
ever building such a fuzzer requires significant effort that
would have to be duplicated for each new file format fuzzed.
By comparison symbolic execution is computationally more
expensive, but its search effectively infers the grammar of
the input file automatically, replacing human effort with
machine effort. It is beyond the current capabilities of our
symbolic execution tool to generate the crashing input from
scratch, but we can demonstrate its ability to reason about
possible inputs by using it to convert a benign file into an
exploit. (It would also be possible to integrate a grammar-
aware concrete fuzzer with the HI-CFG, something we leave
for future work.)

The non-crashing XML document is shown in Figure 8.
This document is not legal because xxxxxxxx is not a valid

tag, but out of approximately 600 Office Open XML tags
recognized by AbiWord’s .docx import plugin, two will
cause a crash when they are inserted in place of xxxxxxxx.
To find these tags using our symbolic execution tool, we
mark the x bytes as symbolic, and add constraints requiring
that the bytes represent either letters or trailing spaces, and
that the opening and closing tags match. Though the space of
possible values for the “x”es is astronomical, even under the
additional constraints (more than 528 > 4·1011), the number
of execution paths taken for invalid tags is relatively small,
because AbiWord can determine relatively early that a tag is
invalid. Specifically, AbiWord checks whether tags are valid
by using an STL map (implemented as a red-black tree) and
strcmp. Splitting the search to run in parallel across the 26
possible initial letters, our tool finds the exploit tag rPr after
53 symbolic paths and 2423 s in the “r” search, and pPr
luckily after 3 iterations and 86 s in the “p” search. (This
would roughly correspond to 17.5 hours of sequential search;
speedup was less than linear because the Xeon X5670 used
has only 12 cores.)

Given the crash-inducing XML text, our tool finishes
the task of producing a exploit .docx file by finding a
preimage for the compression used for the XML text in the
.docx file’s Zip encapsulation. In fact Zip files use the
same DEFLATE algorithm mentioned earlier in the Poppler
case study, though an independent implementation, so we
do not repeat the details. The symbolic execution tool runs
somewhat faster than in the Poppler example because the
benign input file we generated used a smaller Huffman tree
which required smaller decoding tables. On average (across
10 runs dropping the fastest and slowest), the search requires
237 seconds and 92 symbolic paths.

VIII. DISCUSSION

Next we discuss in more detail some of the features,
applicability, and limitations of our approach.

A. Sources of Vulnerability Conditions

Our tool attempts to construct an exploit for a given
vulnerability condition; it does not itself search for a po-
tential vulnerability. For instance, it can be used to verify or
exploit potential vulnerabilities discovered via static anal-
ysis, dangerous situations discovered during manual code
audit, a crash location recovered from a core dump file, or
application-specific conditions expressed via assertions. If a
POC exploit already exists, the tool could also be used to
construct new exploits based on different benign inputs.

B. Invertible Transformations

Our approach for computing inverse images via symbolic
execution depends on several features of a transformation
implementation in order to find an inverse efficiently. While
common, these features are not universal.



First, our tool is designed for transformations whose
input and output come via contiguous data structures such
as arrays that are accessed sequentially. With additional
data-structure inference, the approach could be extended
to more complex linked and nested structures. However,
observe that for pruning to apply, it must be clear when the
transformation has committed to an output value: our current
approach works when each output location is written exactly
once.

Second, pruning is most effective if the transformation’s
input and output are closely interleaved, so that unproductive
paths can be pruned early. This is typical of streaming
transformations that keep a small internal state. By contrast,
if a transformation performs no output until the end of its
execution, pruning will have no benefit.

One example of a class of transformations that do not
satisfy these features, and cannot generally be inverted by
our approach, are cryptographic hash functions. Of course,
such functions are explicitly designed to be difficult to invert.

C. Multiple Threads
Our trace collection system and the HI-CFG construction

algorithms are designed to accommodate traces of multi-
threaded applications, but the current prototype implemen-
tation of the symbolic execution engine currently only
explores executions of a single thread. The Poppler case
study program is single-threaded.

D. Transformation-level Path Explosion
Our approach is based on selecting a path (sequence)

of transformations by which data flows from an attacker-
controlled input to a vulnerability, and then searching for
an input that travels that path. Because transformations
represent a higher level of abstraction than program control
flow, there will generally be many fewer transformation-
level paths than control-flow paths that reach a potential
vulnerability; this is what we observed in the case study.
In general, if there are many transformation-level paths, our
approach might need to be repeated to search through them.
However, we believe that in many cases, a large proportion
of the transformation-level paths can be used to produce an
exploit. For instance, in Poppler there are many possible
sequences of stream filters, but any filter could be applied
to the Type 1 font exploit.

E. Exploit Weaponization
In this paper we focus on proof-of-concept (POC) exploit

generation, the process of creating a program input that
proves that a vulnerability is a real danger. Further steps
are required to transform a POC exploit into one that
could be used in a real attack, including adding an attack
payload (i.e., shellcode), and hardening against defensive
techniques. Because of the flexibility of symbolic execution,
many existing automated techniques for these weaponization
tasks could be incorporated naturally with our tool.

IX. RELATED WORK

Here we mention some other recent research projects that
are similar in goals, approach, or both, to our project.

Perhaps the most similar end-to-end approach is the
decomposition and restitching of Caballero et al. [19]. They
also tackle the problem of vulnerability conditions which are
difficult to trigger directly because of other transformations
the input undergoes, in their case studies decryption. Though
they also used symbolic exploration to find vulnerabilities,
they used a different technique to generate preimages that
was based on searching for an inverse function in the same
binary. The decomposition and restitching technique can
also recompute checksums, which is a key capability of
TaintScope [20]. TaintScope uses taint-directed fuzzing to
search for vulnerabilities, and a checksum can typically
be recomputed using simple concrete execution. However
TaintScope uses symbolic execution, including lookup tables
identified by IDAPro, to find preimages for transformations
of the checksum value in a file, such as endian conversions or
decimal/binary translation. Optimizations such as the others
we describe in Section V-A would not be necessary here
because checksum values are usually short.

Another project that shares our end-to-end goal of auto-
matically creating exploits is the AEG system [18]. AEG
also uses symbolic execution, though it takes a mixed
source-code and binary approach. AEG automates a larger
part of the exploit generation process, including searching
for a vulnerability and generating some common kinds of
jumps to shellcode. A successor system MAYHEM [21]
removes the requirement for source code and introduces sev-
eral optimizations. Notably MAYHEM’s index-based mem-
ory model provides the same benefits as the treatment of
accesses we describe in Section V-D (and was developed
concurrently). However, these projects do not describe any
vulnerabilities as involving transformation of the input prior
to the vulnerable code, which is the key challenge we ad-
dress. Beyond finding a single exploit, symbolic exploration
can also be applied to the problem of characterizing all
the possible exploits of a vulnerability, which is valuable
for signature generation [22]; our techniques would also be
valuable in this context.

The kinds of program information contained in the HI-
CFG have been available separately using existing tech-
niques; the focus of our contribution is on showing the
extra value that comes from combining them in a single
representation. For instance, having both information-flow
and producer-consumer edges allows our approach to char-
acterize a transformation in terms of both the data structures
it operates on and the code that implements it. The program
dependence graph (PDG) [3], [4] also has edges representing
both control and data flow, but it is unsuitable for our
application as it has no nodes representing data structures.

Our problem of computing preimages for transformations



is similar to the “gadget inversion” performed by the Inspec-
tor Gadget system [23], which also applies to functionality
automatically discovered within a binary. Inspector Gadget’s
search for inverses uses only concrete executions, but it
keeps track of which output bytes depend on which input
bytes. Symbolic execution can be seen as a generalization
in that symbolic expressions indicate not just which input
values an output value depends on, but the functional form
of that dependence. This often allows symbolic execution to
compute a preimage using many fewer executions.

Our technique is based on the intuition of searching back-
wards through the program execution to see if a vulnerability
can be triggered by the input. A similar intuition has been
applied to the control flow of a program (as opposed to
information flow as we consider); examples include the static
analysis tool ARCHER [24] and the call-chain-backward
symbolic execution approach of Ma et al. [25].

Our techniques for determining which memory access
constitute a buffer are most similar to the array detection
algorithms of Howard [26], [27], a tool which infers data-
structure definitions from binary executions. Our algorithms
are somewhat simpler because we do not currently at-
tempt, for instance, to detect multidimensional arrays. Other
systems that perform type inference from binaries include
REWARDS [28] which has been used to guide a search for
vulnerabilities, and TIE [29] which can be either a static or
dynamic analysis. Compared to these systems our HI-CFG
also contains information about code and the relationships
between code and data, which are needed for our application.
Similar algorithms have also been used for inferring the
structure of network protocols [30].

X. CONCLUSION

We have proposed a technique for automatically generat-
ing proof-of-concept exploits for vulnerabilities in binary
x86 executables that perform input transformations. We
introduce a new data structure, the Hybrid Information-
and Control-Flow Graph (HI-CFG), and give algorithms for
constructing a HI-CFG from traces. The HI-CFG captures
the structure of buffers and transformations that a program
uses for processing its input. This structure lets us perform
the search for an exploit input more efficiently by applying
symbolic exploration to smaller vulnerable functions and
to find preimages for individual transformations. We show
the feasibility and applicability of our approach in two case
studies. The first study uses the Poppler PDF parsing library;
our tool creates a POC exploit involving both a complex
vulnerability and a decompression transformation, among
other transformations. Constructing exploits that involve
such complex transformation sequences would also be useful
for attackers attempting to bypass signature-based filters.
The second study automatically generates a POC exploit for
an XML parsing error in the support for opening .docx
XML documents in AbiWord.

ACKNOWLEDGMENTS

We would like to thank Lenx Tao Wei for his comments
and work on the HI-CFG paper and implementation. This
work was supported in part by the DARPA award HR0011-
12-2-005 and the AFOSR MURI award FA9550-09-1-0539.

REFERENCES

[1] H. Shacham, “The geometry of innocent flesh on the bone:
return-into-libc without function calls (on the x86),” in
CCS’07.

[2] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit
hardening made easy,” in USENIX Security’11.

[3] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program
dependence graph and its use in optimization,” TOPLOS’87,
vol. 9, no. 3.

[4] S. Horwitz, T. W. Reps, and D. Binkley, “Interprocedural
slicing using dependence graphs,” TOPLAS’90, vol. 12, no. 1.

[5] J. Caballero, N. M. Johnson, S. McCamant, and D. Song, “Bi-
nary code extraction and interface identification for security
applications,” in NDSS’10.

[6] D. Brumley and D. Song, “Privtrans: automatically parti-
tioning programs for privilege separation,” in USENIX Se-
curity’04.

[7] “BitBlaze: Binary analysis for computer security,” http://
bitblaze.cs.berkeley.edu/.

[8] Intel, “Pin website,” http://www.pintool.org/ , Nov. 2012.
[9] M. D. Bond and K. S. McKinley, “Probabilistic calling

context,” in OOPLSA’07.
[10] V. Ganesh and D. L. Dill, “A decision procedure for bit-

vectors and arrays,” in CAV’07.
[11] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever

wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask),” in
IEEE S&P’10.

[12] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted
and automatic generation of high-coverage tests for complex
systems programs,” in OSDI’08.

[13] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: a plat-
form for in-vivo multi-path analysis of software systems,” in
ASPLOS’11.

[14] Reference omitted for anonymous submission.
[15] MITRE, “CVE-2010-3704: Memory corruption in

FoFiType1::parse,” http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2010-3704, Oct. 2010.

[16] P. Deutsch, “DEFLATE compressed data format specifica-
tion,” IETF RFC 1951, May 1996.
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