
A Tool Integration Approach for Architectural

Exploration of Aircraft EPS with Ptolemy II / Metro II

Hokeun Kim
Liangpeng Guo
Alberto L. Sangiovanni-Vincentelli

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-9

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-9.html

February 11, 2013

Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

A Tool Integration Approach for Architectural
Exploration of Aircraft EPS with Ptolemy II /

Metro II
Hokeun Kim

EECS Department
University of California, Berkeley

Berkeley, CA 94720
Email: hokeunkim@eecs.berkeley.edu

Liangpeng Guo
EECS Department

University of California, Berkeley
Berkeley, CA 94720

Email: glp@eecs.berkeley.edu

Alberto Sangiovanni-Vincentelli
EECS Department

University of California, Berkeley
Berkeley, CA 94720

Email: alberto@eecs.berkeley.edu

Abstract—For emerging safety-critical systems, novel design
methodologies are becoming necessary to cope with early stage
design validation, performance and timing prediction, and design
space exploration. In this paper, we propose a tool integration
technique for architectural exploration of an aircraft electric
power system (EPS) controller using Ptolemy II and Metro
II to satisfy requirements imposed on safety-critical system
design. The functional model of a newly suggested co-simulation
environment is implemented with Ptolemy II and the model for
architectural exploration is realized by SystemC. To construct
the co-simulation environment and combine the functional model
and the architectural model, Metro II semantics is employed. We
verify effectiveness and extensibility of our new approach using
experiments and results with example candidates for the aircraft
EPS controller.

I. INTRODUCTION

Electrical systems have been replacing mechanical and
hydraulic systems in various safety-critical systems such as
aircraft and vehicles. Consequently, design methodologies to
validate safety and to explore implementation choices for the
electrical safety-critical systems are becoming increasingly
important in embedded system design. Moreover, since timing
correctness is a substantial portion of the design criteria for
such systems, the design methodology for electrical safety-
critical systems should also include timing correctness in its
inherent requirements.

Traditionally, designers and engineers of safety-critical sys-
tems tended to work on the functional design and architectural
design of the systems separately, and then integrate them to-
gether. However, if problems are discovered at the integration
stage, tracing back the design process to find a cause of the
problems will be difficult. This can significantly elongate the
time to market of the systems as well as reduce reliability.
Therefore, it is advantageous to map the functional design
to the architectural design at an early stage to validate them
before the integration. By carrying out mapping and validation
at an earlier stage, we can guarantee integrity of the safety-
critical systems using correctness by construction [1].

Many safety-critical systems are also hard real-time systems
where timing behavior and execution times are part of correct-

ness of the system. In such systems, missing deadlines for cer-
tain time-critical tasks can have disastrous effects on the whole
system. Therefore, the functional correctness for these kinds
of systems depends on the performance of the architectural
implementation, so predicting performance of a safety-critical
system on a given architecture is also advantageous.

We investigate the effectiveness of a mapping and design
exploration approach by integrating Metro II [2] and Ptolemy
II [3]. For implementing safety-critical systems, design choices
of architecture can affect correctness of systems, which in-
cludes timing. This type of decision can also determine total
cost to develop such systems. In order to assure safety of
the system and minimize cost of development, therefore,
architectural design space exploration is necessary. Highly
complex systems typically consist of components that are
heterogeneous in nature. Hence, a system design framework
supporting multiple models of computation such as Ptolemy
II help. Metro II, a design environment for platform-based
design [4], is suitable for model integration and architec-
ture exploration because it allows the mapping to be easily
changed.

In this paper, a novel tool integration approach to develop
a design framework that has potential to decrease design
costs while enhancing reliability of safety-critical systems is
proposed. This tool integration approach not only benefits
from both Ptolemy II and Metro II to address the problems
introduced above, but also reduces costs and complexity for
development compared to previous approaches which tried
to develop a single grand framework. This newly introduced
design framework provides both functional and architectural
views. The main contributions of our approach are summarized
as

• reduced developing costs of a validation framework
• co-simulation supporting multiple models of computation
• performance prediction on given architectures
• design space exploration at an early stage

for electrical safety-critical systems. We choose a target ap-
plication to show effectiveness and usability of the proposed

approach using experiments and results on examples with
measurements in section VI.

II. APPROACH

A controller for aircraft electric power systems (EPS), a
representative application of safety-critical systems, is chosen
as a target of this paper. With this target application, our
goal is to implement a co-simulation environment for the
aircraft EPS controller, using Metro II combined with Ptolemy
II, that enables early-stage mapping to validate correctness
of behavior, prediction of execution times and architectural
design space exploration.

In order to accomplish this objective, a functional model of
an EPS controller is implemented using Ptolemy II, and a gen-
eral architectural model that can be used for the EPS controller
is realized as an architectural model using SystemC. Ptolemy
II is chosen for the functional model of the system because
it supports multiple models of computation such as discrete-
events (DE), dataflow (SDF) and synchronous/reactive(SR)
with specific directors for each model of computation [5], and
thus it is proper for describing complex and heterogeneous
components in safety-critical systems. SystemC has signals
and processes which are simple and useful for expressing
real-time concurrent events [6]. For this reason, SystemC is
selected to compose the architectural model. These two models
are connected to each other by mapping events of both models
on a co-simulation platform using Metro II semantics which
can be used for synchronizing executions and events from
different models using special events, called Metro II events.

The co-simulation platform takes two inputs. The first input
is a Ptolemy II functional model with Metro directors and
Metro II actors, which are extensions of Ptolemy II directors
and Ptolemy II actors, respectively. In addition to their roles in
Ptolemy II, Metro II directors and actors can also create and
manage Metro II events mentioned above. The second input
is a SystemC architectural model which generates concurrent
SystemC events. By synchronizing the events occurring in
both models, the platform can simulate them simultaneously.
From results of the co-simulation, we can explore architectural
design choices, such as speed of processing elements, over-
head for scheduling and synchronization, and more complex
aspects such as parallelization of multiple tasks. Here are brief
descriptions for the functional and architectural models of the
target application.

A. Functional model
Using a given specification and constraints of the aircraft

EPS controller, a functional model of an EPS controller is
implemented with a Ptolemy II model. This functional model
describes a safety and time critical system. The EPS controller
takes the health status of components in an aircraft’s EPS and
generates control signals to maintain power for all AC loads,
while satisfying safety constraints for the power system.

B. Architectural model
For executing the functional model, a general architectural

model is implemented using SystemC. The architectural model

includes a scheduler to arrange tasks fired in the functional
model. When scheduling, the scheduler should be able to
reflect parameters that are set by a user. It also has to provide
useful information for the user to explore design candidates
in order to find the most suitable architectural design for the
aircraft EPS controller.

III. RELATED WORK

A. Electric power system

An aircraft EPS [7] is one of the safety-critical systems
as mentioned before. This type of system consists of various
components such as generators, buses, contactors and external
power. A power failure in the aircraft can be extremely
dangerous, so making sure that AC or DC loads of the aircraft
are always powered by at least one generator is critical, even
in case of failure of some generators and ports of contactors.
Complexity and reliability requirements of the aircraft EPS
brings about numerous modeling and design challenges.

B. Architecture exploration

There has been plenty of previous work related to archi-
tecture exploration of embedded systems [8] [9]. Our new
approach is similar to these previous approaches in the sense
that these approaches are trying to find the most proper
architecture for the given functional specification. However,
most of the previous work targets soft real-time systems
such as multimedia applications, in which high-performance
and low-power systems are main goals, rather than safety-
critical applications, which require different approaches related
to fault tolerance and real-time constraints. Thus, we focus
more on design exploration for meeting safety constraints than
optimization in this paper.

C. Hardware/software co-simulation

Creating a co-simulation platform for the aircraft EPS con-
troller is deeply related to previous work of hardware/software
co-simulation [10]. There have been previous approaches
various in the level of abstraction. Some of them such as
Synopsis Platform Architect [11] targeted the transaction level
and were faster but less accurate, therefore, they were proper
for early stage design space exploration. Other approaches
including Mentor Graphics Seamless [12] were designed for
register transfer level of abstraction, thus, they were useful for
verification at a final stage. Our approach aims at higher level
of abstraction because our goal is an early stage design space
exploration and design validation.

Researchers in embedded system design have been work-
ing on more effective and accurate hardware/software co-
simulation approaches. A C/C++ based method for describing
both hardware and software [13] was employed for fast co-
simulation. There was also previous research on fast and
accurate co-simulation using FPGA-configured soft proces-
sors [14]. Hoffmann et al. [15] developed a co-simulation
framework for supporting multiple layers of abstractions.

Fig. 1. A given specification of the functional model of aircraft EPS

A co-simulation approach using automated software annota-
tion [16] was researched to increase accuracy of simulation
while maintaining the fast speed of behavioral simulation.

Our newly suggested method mainly differs from previous
work in the sense that functional modeling and simulation
techniques are clearly decoupled, while other related ap-
proaches are realized in a single framework. Our approach is
based on tool integration of Ptolemy II and Metro II, therefore,
they can work together while they evolve independently. As
research on safety-critical systems is still in progress, new
models of computation and novel simulation techniques for
those systems will keep developing rapidly. Hence, applying
new models and techniques for co-simulation become easier
and quicker in our tool integration approach. On the other
hand, applying new models and techniques will take more
effort and time if we use a single grand framework and this
will increase costs and time-to-market for the safety-critical
systems.

IV. FUNCTIONAL MODEL

A. Specification

An overview of the aircraft EPS used in this paper is
illustrated in Fig. 1. There are four power generators and
six contactors with three ports for each. Two AC loads that
need power supplied from generators through contactors are
located at the other ends of this system. All the components
are connected by power buses denoted by solid lines. The
EPS controller should produce control signals on contactors
guaranteeing that both left and right AC loads are always
powered by exactly one generator. In addition, at most one
generator should be connected on each power bus at all times
to prohibit more than a generator connected to each other.
Meanwhile, the two AC loads are assumed to have capacitors,
thus, they are allowed to be unpowered briefly within well-
defined amount of time to satisfy the strict constraints above.

B. Overall implementation

An aircraft electric power system (EPS) controller can be
implemented with three tasks as shown in Fig. 2. The input

Arrange
RightPath

Control
SignalGen

Arrange
LeftPath

in

Generator / Path
for Left AC Load

Generator /
Path for Right
AC Load

out

Fig. 2. Task block diagram of aircraft EPS controller functional model

of this EPS controller is the health status of generators and
ports on each contactor, and the output is control signals,
which indicate whether a port is open or closed, for ports
on each contactor to supply power for both of the left and
right AC loads. The control signals are required to guarantee
safety constraints imposed on the controller and they should
be generated within a specified amount of time for the safety
of an aircraft. The control signal outputs of the controller are
inputs for contactors.

C. Ptolemy II implementation

The functional model of the system is described using
an extended version of Ptolemy II with Metro II related
directors and actors. The functional model here is implemented
with a Metro II synchronous reactive (SR) director, which
implements a model of computation where every reaction is
instantaneous and simultaneous [17]. The block diagram of the
functional model is described in Fig. 3. This functional model
takes health status of generators and ports of each contactor as
inputs and produces control signals for contactors exhibiting
port choices that guarantee power supply for both AC loads as
well as safety constraints imposed by specification. The health
status is used to indicate availability of components.

The health status of generators and ports in the contactors is
expressed as a 32 bit integer. The lower four bits of the most
significant byte (MSB) indicate health status of generators as
depicted in Fig. 4. Each bit of this region implies a left engine
HV (LHV), an auxiliary power unit 1 (APU1), an external
power unit (EXT) and a right engine HV (RHV), respectively.

The following three bytes are divided into small blocks of
four bits to express the status of ports on each contactor as
shown in Fig. 4. The first bit of this block is reserved as zero
and the following three bits denote each port of contactors.
The first port means the leftmost port or the topmost port of
each contactor in Figure 1, the second port is the one in the
middle and the third port indicates the rightmost port or the
bottommost port.

This format of the status word can be also used as a control
signal, where each bit of contactors represents whether the
port should be closed (or connected) rather than whether the
port is alive. Another use of this format is for generator and
path selection, where the first byte is used to indicate which
generator is in use and the last byte specifies the path index.

Fig. 3. Ptolemy II implementation of the functional model

0000 1111 0111 0111 0111 0111 0111 0111

MSB LSB

Generators B1 B2 B3 B4 B5 B6

Contactors

32 bit integer

LHV/APU1/EXT/RHV

Reserved/1st/2nd/3rd

Fig. 4. Heath status expression in a 32 bit integer format

D. Tasks

The aircraft EPS controller functional model is composed of
three main tasks as mentioned above and several miscellaneous
tasks. The three main tasks are Metro II modal models that
are similar to modal models in original Ptolemy II except
that they can generate Metro II events. The modal modes in
original Ptolemy II are finite state machines with states that
can have refinements for representing hierarchical Ptolemy II
models [18]. Here are descriptions of these main tasks and
other miscellaneous tasks.

1) ArrangeLeftPath and ArrangeRightPath: These two
tasks are designed as state machines that react for every health
status input. As their names suggest, the ArrangeLeftPath
(ALP) task chooses power supply for the left AC load while
the ArrangeRightPath (ARP) task undertakes the same compu-
tation for the right AC load. The output of these state machines
contains which generator and path are used for each AC load.

These state machine based tasks select the generator and
path using priority tables illustrated in Table I and Table II
so that they can select proper generators and paths for guar-
anteeing safety-critical constraints. By choosing the separate
generator first, then searching for APU1 and EXT in the same
order as well as searching ports in the same order, they can
avoid possible interconnection of two different generators and
supplying power with more than one generator. The state
machines for ALP and ARP tasks are designed to always
react in one cycle using immediate transitions inside the state
machine.

TABLE I
GENERATOR SELECTION PRIORITY TABLE FOR TWO AC LOADS (LOWER

NUMBER INDICATES HIGHER PRIORITY)

Priority
Generators
Left AC Load Right AC Load

1 Left Engine HV Right Engine HV

2 APU1 APU1

3 EXT EXT

4 Right Engine HV Left Engine HV

TABLE II
PORT SELECTION PRIORITY TABLE FOR CONTACTORS

Priority Ports
1 First port (leftmost or topmost)

2 Second port (middle)

3 Third port (rightmost or bottommost)

2) ControlSignalGen: The other main task is ControlSig-
nalGen (CSG) that receives the generator and path selection
results from the two path arranging tasks ALP and ARP,
and then, generates control signals for contactors. The output
of this task contains control signals for the ports on each
contactor, which indicate whether the ports should be open
or closed to supply power satisfying the constraints specified.
The state machine for this CSG task is also a Metro II modal
model which always reacts in one cycle.

3) Miscellaneous: In addition to main tasks for EPS con-
troller, there are several tasks to support this controller. The
TestBenchGen task is a sequence source that generates test
cases. Some expressions are used in order to divide the result
from each ArrangePath task into generator information and
path information. Python actors are used to convert integer-
typed health status, generator - path selection, and control
signals into strings and show the information combined with
a Display actor.

V. ARCHITECTURAL MODEL

A. Overview

The main role of the architectural model is to run syn-
chronously with the functional model and simulate the be-
havior of the functional model on a specific architecture. To
describe various architectures, the architectural model also
includes a set of parameters that are pertinent to the perfor-
mance of the system, such as execution times of processors,
synchronization overheads and parallelization of tasks. The
architectural model is implemented using SystemC with Sys-
temC processes. The architectural model consists of two types
of SystemC processes, task processes and a scheduler process.
There are task processes for each task in the functional model,
while there is only one scheduler process for the whole
environment.

To communicate with the functional model, the architec-
tural model is connected to the functional model through a
named pipe, which is one of the inter-process communication
methods. They communicate with each other using Metro II

Linux Pipes

Linux Pipes
Named Pipes

Notify Metro II events Propose Metro II events

Functional Model Architectural Model

Task1 Task2 Task3

Scheduler

Arrange
RightPath

Control
SignalGen

Arrange
LeftPath

in

Generator / Path
for Left AC Load

Generator /
Path for Right
AC Load

out

Fig. 5. Mapping and communication of the functional model and the
architectural model

events by reading and writing with blocking on the pipes to
synchronize their events. Task processes in the architectural
model propose Metro II events through the pipes or try to
read data from the pipes with blocking. Meanwhile, tasks in
the functional model notify the Metro II events through the
pipes or write data into the pipes with blocking. The Metro II
events will be notified when the tasks in the functional model
are actually fired, and the task processes will be blocked until
the proposed Metro II events are notified. The tasks in the
functional model are not allowed to proceed until the data
written by the tasks on the pipes is read by the architectural
model through the Metro II event proposals. Thus, the process
tasks in the architectural model and the tasks in the functional
model are synchronized. This mapping and communication
between two models are depicted in Fig. 5.

B. Co-simulation

A block diagram that shows the process of co-simulation
in the architectural model is in Fig. 6. The scheduler and
tasks in the SystemC architectural model, which are SystemC
processes, are executed concurrently. The scheduler task waits
for events from SystemC tasks, while the SystemC tasks
propose Metro II events for each task in the functional model
and wait for notification from the functional model. When one
of the Ptolemy II tasks is fired, it notifies the corresponding
SystemC task process using a Metro II event notification.
Then, the process task will notify the scheduler to arrange the
schedule using given parameters and after the tasks schedule
is arranged, the next Metro II event will be proposed again.

The process of co-simulation follows the Metro II execution
semantics for mapping [19] which includes base model phase,
quantity annotation phase and constraint solving phase. This
is also illustrated in Fig. 7, and each state and transitions in
this figure can correspond to behaviors of the scheduler.

The three phase execution semantics for Metro II is as
follows. First, the scheduler starts from the base model phase
and proposes Metro II events using task processes mapped to
the tasks in the Ptolemy II model. The Ptolemy II functional
model will notify the scheduler of task execution. At this point,
a notified task has two quantity annotations, the global time
when it became executable and its execution time, which is
given from parameters. After this quantity annotation phase,

Task1 Task2 Task3

Wait for
SystemC
events

Notify
systemC
events

Propose
Metro II events
for each task
in Ptolemy II

Notify
Metro II
events

SystemC
Architectural
Model

Ptolemy II
Functional
Model

Scheduler

Arrange
RightPath

Control
SignalGen

Arrange
LeftPath

in out

Fig. 6. Co-simulation process of the architectural model combined with the
functional model

1 Introduction

This document details the ongoing meetings among the authors to discuss the Metro II execution
semantics of mapping. The outcome of these meetings, held primarily in the Summer of 2007, is a set
of three proposals for the execution semantics of mapping in Metro II. The purpose of this document
is to clearly illustrate the pros and cons of these three proposals as well as provide concrete design
scenarios by which these and future proposals will be judged. In order to illustrate the semantics, hand
example traces are provided for each proposal. These hand examples are created at a level of granularity
which provides enough insight to compare the proposals without overwhelming the reader.

More importantly however, the design scenarios will serve as “necessary, but not sufficient” bench-
marks for any modifications or other proposed execution semantics. The design scenarios are intended
to capture a wide variety of potential situations a designer may want to model. We propose that the
tables which contain the hand traces in this document set the standard by which Metro II execution is
presented.

This document describes four main pieces: the general execution semantics shared by all proposals,
the execution semantics’ assumptions, the individual design scenarios, and each proposal with its ac-
companying hand execution traces for the design scenarios. It is the authors’ hope that this document
will prevent ambiguity regarding the semantics and facilitate discussions on Metro II. This is achieved
by clearly defined scenarios and a standardized way to present Metro II execution.

It should be noted as well that this document is not intended to be a comprehensive discussion of
Metro II. We refer the reader to [2] for more information (which should be read before this document).
Aspects of this document may later be used for a future journal submission (i.e. an IEEE Transactions
on Computers special issue). Also the reader should inspect the MetroII code base, as this document
may not reflect the latest implementation details.

2 Execution Semantics Overview

1. Base
Model

2. Quantity
Annotation

3.
Constraint

Solving

Proposed
Events

Proposed Events
with Annotations

Enabled
Events

Figure 1: Metro II: Three Phase Execution

This section describes the common portion of the execution semantics for all of the proposals. Figure
1 illustrates the current 3-phase execution semantics consisting of:

1. Base phase - Where components execute concurrently and propose events.

2. Quantity annotation phase - Where proposed events are assigned physical quantities such as
time or power.

3

Fig. 7. Metro II: Three phase execution [19]

the scheduler makes transition into the constraint solving
phase where the execution order of tasks is determined by the
scheduler according to priorities assigned through parameters,
and the global clock is increased according to annotated
execution time. Finally, the events of constraint-solved tasks
are proposed again using task processes.

C. Scheduler parameters

Using the scheduler implemented above, it becomes possi-
ble to schedule the notified tasks generated by fire events in the
functional model reflecting features of the given architecture.

In reality, scheduling of tasks can be implemented in
various ways in system architectures, such as round-robin
scheduling, rate monotonic scheduling, or earliest deadline
first scheduling, which usually leads systems having different
scheduling overhead. Sometimes this scheduling overhead can
be negligible; however, it can be a critical factor determining
timing behavior of time-critical systems.

Priorities of tasks are also an important criterion for de-
ciding the performance of a system. Execution order of the
tasks can affect contents of cache and memory, thus, this
can influence cache hit and miss rates for data access. The
scheduler in the architectural model can reflect the task
priorities in scheduling by getting priority information before
the execution. When there is more than one task available
at the point of executing the scheduler, it will choose one
of them based on the given priorities. The scheduler will
propose Metro II events again for executed tasks in the same

order as the execution order according to priorities. Currently
this scheduling supports only fixed-priority non-preemptive
scheduling; however, it can be extended to provide dynamic
scheduling by simply allowing changing the priority parameter
of the scheduler at runtime. Preemptive scheduling can also be
implemented by interleaving task executions when scheduling
the tasks.

Execution times of tasks on a given architecture are def-
initely one of the most crucial elements that can affect per-
formance of the system. In this co-simulation platform, it is
assumed that execution times of tasks are predetermined before
the simulation. Whenever the scheduler choose a certain task
to execute, after being notified through the Metro II event
notification and the SystemC event notification by a task in
the functional model, it will increase the global clock of the
SystemC model and order the task process that is mapped to
the task in the functional model to propose the next Metro II
event to allow the functional model to continue execution.

Moreover, parallelization of tasks and synchronization over-
head that follows parallelization should also be considered as
part of critical parameters that determine overall performance
of the system. In general, we can map tasks into a single
processing element or multiple processing elements connected
by some network architecture; the network architecture can be
an on-chip network, a shared memory, the Ethernet network,
or even wireless networks. In any case, there must be some
communication overhead for synchronization of concurrent
tasks. Therefore, the scheduler parameter also includes par-
allelization method and its synchronization overhead to reflect
this real hardware network architecture.

VI. EXPERIMENTS AND RESULTS

A. Performance prediction and design space exploration

In this section, we perform a design space exploration
of a simple example through comparing design candidates
characterized by parameters defined in the architectural model.

Here are three possible architecture alternatives to be com-
pared with various parameters in task execution times, par-
allelization and synchronization overhead. The first candidate
has a single processor with high computation speed to execute
three tasks in the functional model. The second and the third
candidates both consists of two processors that can execute
ArrangeLeftPath (ALP) task and ArrangeRightPath (ARP) task
concurrently. They differ in the sense that the second candidate
has processors with slow speed and low synchronization
overhead while the third candidate has medium speed pro-
cessors with relatively high synchronization overhead. Other
parameters such as scheduling overhead and task priorities are
assumed to be same to focus on the effect on performance
of processing elements and the manner of parallelization
with synchronization overhead. The parameters represented in
numbers for these three candidates are summarized in Table
III.

The results in total execution time of these tasks from the
co-simulation of the functional and architectural designs using
the parameters in Table III are shown in Table IV. These results

TABLE III
PARAMETERS OF THREE POSSIBLE EXAMPLE CANDIDATES FOR THE

ARCHITECTURAL MODEL OF THE AIRCRAFT EPS CONTROLLER

Parameters
Candidate number
1 2 3

Scheduling overhead (ns) 10 10 10

Execution Time (ns)
ALP 40 60 50
ARP 45 65 55
CSG 25 35 30

Synchronization overhead (ns) 0 5 15

Parallelization of ALP and ARP No Yes Yes

TABLE IV
TOTAL EXECUTION TIME OF THE AIRCRAFT EPS CONTROLLER
FUNCTIONAL MODEL ON GIVEN ARCHITECTURAL CANDIDATES

Candidate Total execution time (ns)
1 775

2 800

3 750

describe total execution times of ten iterations of the functional
model for a given test bench. As stated in the section IV-D,
the main tasks, ALP, ARP, and ControlSignalGen (CSG) are
designed to react in one cycle no matter which input they
accept. Therefore, the input pattern of the test bench does not
necessarily affect the firing behavior of the functional model
in this case so we can replace the test bench with any test
bench that can last for at least ten iterations of the scheduler.

The results in Table IV reveal that there is a difference in
total execution time among three candidates. This informa-
tion can be used to choose one candidate as the functional
model’s architectural model. If the requirement of the aircraft
EPS controller specifies that the total execution time for ten
iterations should not exceed 780 nanoseconds, we should leave
out the second candidate which took 800 nanoseconds for ten
iterations. The first candidate can be selected over the third
candidate if the design cost of first candidate is less than the
third candidate and other conditions are the same.

B. Measuring co-simulation overhead

This co-simulation environment employs SystemC to rep-
resent the architectural model and uses named pipes for com-
munication between the functional and architectural models
as stated in the section V-A. Using SystemC and the pipes
can place overhead on the Ptolemy II model, resulting in
increase of total execution time compared to the standalone
execution of Ptolemy II model. Hence, it is worth measuring
the overhead imposed on Ptolemy II to assess scalability
of this co-simulation environment. To measure co-simulation
overhead of this environment, we compare the total execution
time between the standalone version and the co-simulation
version as a function of number of iterations of synchronous-
reactive (SR) director.

Results of the measurement of co-simulation overheads are
displayed in milliseconds in Fig. 8. This experiment is carried

4,595

11,584

17,997

35,495

1,675
4,670

7,298

15,480

0 200 400 600 800 1000

To
ta

l e
xe

cu
tio

n
tim

e
(m

s)

Number of iterations of the SR director

Measurement of co-simulation overhead
Co-simulation

Standalone

Fig. 8. Execution times of the standalone Ptolemy II functional model and
co-simulation environment

out in a 64-bit Ubuntu Linux 12.04 LTS with the kernel
version of 3.2.0 on a machine with 2.3 GHz Intel Core i7
and 8 GB 1600 MHz DDR3 RAM. Total execution times in
Fig. 8 are obtained by averaging total execution times for ten
executions of each setting. 100, 300, 500, and 1000 iterations
of the SR director are used as experimental settings for both
co-simulation version and standalone version of the Ptolemy
II model in order to show a tendency of execution times
according the increase of the number of iterations.

As illustrated in Fig. 8, total execution times of both the co-
simulation version and the standalone version tend to increase
linearly as their number of iterations grows. The results of the
co-simulation version indicate it has approximately 2.5 times
greater execution times compared to the standalone version.
These facts suggest that this newly proposed approach has
potential for extensibility and scalability.

VII. CONCLUSION

In this paper, a co-simulation environment is created using
Metro II combined with Ptolemy II and SystemC for the
Aircraft EPS that supports performance prediction and com-
parison of architectural design candidates for design space ex-
ploration. The implementation details in the functional model
and the architectural model are explained throughout this paper
using block diagrams and tables.

Experiments and following results on the implementation of
this co-simulation environment showed effectiveness, usability
and considerable potential to extend this project for more
complex safety and time-critical systems with possible design
candidates. The motivations mentioned in introduction are
proved to be satisfied by using examples and experiments.

This work can be extended to cover other complex safety-
critical systems with a variety of components and to support
more parameters for architectural design space exploration.
Possible future work would be generalizing this co-simulation
environment to be applicable to other kinds of safety-critical
systems and considering more architectural parameters such

as network topology, memory access overheads and external
I/O operation overheads.

REFERENCES

[1] M. Bordin and T. Vardanega, “Correctness by construction for high-
integrity real-time systems: A metamodel-driven approach,” Reliable
Software Technologies–Ada Europe 2007, pp. 114–127, 2007.

[2] A. Davare, D. Densmore, T. Meyerowitz, A. Pinto, A. Sangiovanni-
Vincentelli, G. Yang, H. Zeng, and Q. Zhu, “A next-generation design
framework for platform-based design,” in Conference on Using Hard-
ware Design and Verification Languages (DVCon), vol. 152, 2007.

[3] J. Davis, M. Goel, C. Hylands, B. Kienhuis, E. Lee, J. Liu, X. Liu,
L. Muliadi, S. Neuendorffer, J. Reekie et al., “Ptolemy II: Heterogeneous
concurrent modeling and design in java,” University of California,
Berkeley, Tech. Rep. UCB/ERL M, vol. 99, 1999.

[4] A. Sangiovanni-Vincentelli and G. Martin, “Platform-based design and
software design methodology for embedded systems,” Design & Test of
Computers, IEEE, vol. 18, no. 6, pp. 23–33, 2001.

[5] C. Brooks, E. Lee, and S. Tripakis, “Exploring models of computation
with Ptolemy II,” in Hardware/Software Codesign and System Synthesis
(CODES+ ISSS), 2010 IEEE/ACM/IFIP International Conference on.
IEEE, 2010, pp. 331–332.

[6] T. Grötker, S. Liao, G. Martin, and S. Swan, System design with SystemC.
Springer, 2002.

[7] K. Emadi and M. Ehsani, “Aircraft power systems: technology, state of
the art, and future trends,” Aerospace and Electronic Systems Magazine,
IEEE, vol. 15, no. 1, pp. 28–32, 2000.

[8] A. Kahng, B. Li, L. Peh, and K. Samadi, “Orion 2.0: A fast and accurate
noc power and area model for early-stage design space exploration,”
in Proceedings of the conference on Design, Automation and Test in
Europe. European Design and Automation Association, 2009, pp. 423–
428.

[9] B. Mei, A. Lambrechts, J. Mignolet, D. Verkest, and R. Lauwereins,
“Architecture exploration for a reconfigurable architecture template,”
Design & Test of Computers, IEEE, vol. 22, no. 2, pp. 90–101, 2005.

[10] J. Rowson, “Hardware/software co-simulation,” in Design Automation,
1994. 31st Conference on. IEEE, 1994, pp. 439–440.

[11] Synopsys Inc. Platform Architect. [Online]. Avail-
able: http://www.synopsys.com/Systems/ArchitectureDesign/Pages/
PlatformArchitect.aspx

[12] Mentor Graphics Seamless. [Online]. Available: http://www.mentor.
com/products/fv/seamless/

[13] L. Séméria and A. Ghosh, “Methodology for hardware/software co-
verification in c/c++ (short paper),” in Proceedings of the 2000 Asia
and South Pacific Design Automation Conference. ACM, 2000, pp.
405–408.

[14] J. Ou and V. Prasanna, “Matlab/simulink based hardware/software co-
simulation for designing using fpga configured soft processors,” in
Parallel and Distributed Processing Symposium, 2005. Proceedings.
19th IEEE International. IEEE, 2005, pp. 148b–148b.

[15] A. Hoffman, T. Kogel, and H. Meyr, “A framework for fast hardware-
software co-simulation,” in Proceedings of the conference on Design,
automation and test in Europe. IEEE Press, 2001, pp. 760–765.

[16] A. Bouchhima, P. Gerin, and F. Pétrot, “Automatic instrumentation of
embedded software for high level hardware/software co-simulation,” in
Design Automation Conference, 2009. ASP-DAC 2009. Asia and South
Pacific. IEEE, 2009, pp. 546–551.

[17] S. Edwards, “The specification and execution of heterogeneous syn-
chronous reactive systems,” Ph.D. dissertation, Citeseer, 1997.

[18] E. Lee and S. Tripakis, “Modal models in ptolemy,” in 3rd International
Workshop on Equation-Based Object-Oriented Modeling Languages and
Tools (EOOLT), vol. 47. Citeseer, 2010, pp. 11–21.

[19] D. Densmore, T. Meyerowitz, A. Davare, Q. Zhu, and G. Yang, “Metro II
execution semantics for mapping,” Technical Report UCB/EECS-2008-
16, University of California, Berkeley, Tech. Rep., 2008.

