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Abstract

Hinted Collection

by

Philip Reames

Masters of Science in Computer Science

University of California, Berkeley

George Necula, Chair

Krste Asanović, Co-chair

Garbage collection is widely used and has largely been a boon for programmer productivity. However,
traditional garbage collection is approaching both practical and theoretical performance limits. In practice,
the maximum heap size and heap structure of large applications are influenced as much by garbage collector
behavior as by resource availability.

We present an alternate approach to garbage collection wherein the programmer provides untrusted
deallocation hints. Usage of deallocation hints is similar to trusted manual deallocation, but the consequence
of an inaccurate hint is lost performance not correctness. Our hinted collection algorithm uses these hints
to identify a subset of unreachable objects with both better parallel asymptotic complexity and practical
performance.

We present two prototype implementations of a stop-the-world hinted collector: one entirely serial and
one parallel. We evaluate our implementations by comparing against the Boehm-Demers-Weiser [12] conser-
vative garbage collector for C/C++. We leverage existing free calls in mature C programs to stand in for
deallocation hints. On some benchmarks, our serial collector implementation achieves 10-20% pause time
reductions over a well-tuned baseline. On four cores, our parallel implementation achieves similar benefits.

We include a discussion of the design trade-offs inherent in our approach, and lessons to be learned from
our collectors. We close with a discussion of several design variants which we have not been able to explore
in depth, but believe would be worthwhile to explore in future work.
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Chapter 1

Hinted Collection

1.1 Introduction

According to one popular language survey [1], eight of the top ten languages in use today use some form
of automatic memory management. Tracing garbage collection - in the form of sophisticated generational,
concurrent, or incremental collectors, but in some cases in that of relatively simple stop-the-world collectors
- is the most common mechanism used.

Several languages support a mixed model of memory deallocation - with some objects deallocated via
automatic mechanisms and others deallocated manually - which highlights an interesting middle ground that
is not well explored in the memory management literature. One language, Objective-C, uses a mixture of
compiler-assisted reference counting and trusted manual deallocation. Other languages have well accepted
best practices for nearly automatic memory management without language support. For example, C++ has
the widely used std::shared ptr template which provides a reference counting abstraction. Both schemes are
unsound due to the trusted nature of manual deallocation, but not all combined schemes have to be.

In this thesis, we propose a new variety of garbage collector which relies on hints from programmers for
performance, but not for correctness. Often, the developer of a program has a mostly accurate mental model
of the lifetimes of objects in their program. We use this knowledge to convert the standard reachability
problem of a tracing collector into an alternate form where a subset of hinted objects are confirmed as
unreachable. We call such a collector a hinted collector.

From the user perspective, a hinted collector is a hybrid between a traditional garbage collector and
an explicit memory allocator. Unlike a standard garbage collector, program performance can benefit from
users’ understanding of object lifetimes. The language is extended with a deallocation hint construct which
- as its name implies - provides an untrusted hint to the runtime that the annotated object will not be
reachable during the next collection. An inaccurate deallocation hint is wrong and should be fixed. Unlike
in an explicit memory deallocation scheme, the penalty for being wrong is performance, not correctness.

The expectation is that most user-provided deallocation hints are accurate - i.e. the annotated object will
be unreachable before the next collection cycle - and that it is feasible for the user to provide hints for most
deallocated objects. Given our collective experience with languages like C & C++ with explicit memory
allocation, we believe these to be reasonable assumptions. As we have learned the hard way, programmers’
mental models of object lifetimes are not always correct. The tremendous prevalence of use-after-free, double-
free, and uninitialized memory reads are strong evidence of this. However, the fact that we can write large
applications in these languages at all is good evidence that developers’ mental models are mostly accurate.

These assumptions allows us to restrict the problem we need to solve. Rather than attempting to
reclaim all unreachable objects, we will only reclaim a subset of unreachable objects. In particular, we will
assume that any object not hinted with a deallocation hint is live and will not attempt to reclaim it. As
in all collectors, any object reachable from an object assumed to be live must also be assumed live. To do
otherwise would be unsound.
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Traversal Collector

Hinted Collector

Figure 1.1: Minimum number of parallel steps required by a traversal collector and a hinted collector to
explore a long linked list.

This formulation gives fundamentally different scalability limitations than a standard tracing collector.
The key advantage of a hinted collector is the removal of a constraint on the order in which edges can be
visited. Consider the case of a long linked list which is live during the collection (Figure 1.1). A standard
traversal mark algorithm must traverse the list in order from head to tail - likely with low locality and
many cache misses - whereas a hinted collector can traverse the edges in the list in any desired serial or
parallel order. As a result, heap shape - the structure of references connecting objects in the heap - is largely
irrelevant to the performance of a hinted collector. Given that long data structures are not uncommon in
real world programs, heap shape has been widely identified as a limit to the parallel performance of tracing
collectors [33, 6, 5]. Removing this ordering dependency is a potentially profound change.

We present two working prototypes to illustrate the feasibility of hinted collection and to highlight the
interesting properties of such a design. We co-opt the existing free calls in C and C++ programs to act
as deallocation hints; this allows us to evaluate the feasibility of hinted collection on large programs. Our
serial prototype achieves pause times which are 40-60% faster than a standard tracing collector on some
microbenchmarks, and 10-20% faster on some of the SPEC 2006 benchmarks and one case study. Our
parallel collector slightly outperforms the parallel traversal collector baseline across our benchmarks. Worth
highlighting is that on one benchmark it achieves nearly a 75% reduction in maximum observed pause time.
We explore the limits of such a design and highlight opportunities for future exploration.

A hinted collector does need to be paired with a backup collector to recover objects which become
unreachable without being hinted. As we show, the actual leak rate of such objects is low in C and C++
programs - around 5% in the case study we considered. When paired with either a low frequency stop-the-
world tracing collector or a concurrent collector, our collector would likely achieve better average pause times
and overall throughput.

Interestingly, such a combined system would provide a clear path - by inserting additional hints or
improving the accuracy of those already present - for performance tuning without having to sacrifice memory
safety. We consider this to be one of the most exciting potential applications of hinted collection.

The key contribution of this work are:

• We introduce the concept of hinted collection, and frame the implicit graph problem - establishing
unreachability for a subset of hinted objects - for comparison with the reachability formulation of
standard garbage collectors.

• We present an algorithm for this problem which - when given exact hints - is asymptotically faster in
parallel settings. When given inexact hints, the algorithm reduces to a standard reachability traversal
over the inaccurately hinted objects.

• We present a mostly serial implementation of a hinted collector which outperforms a well tuned mark
implementation by between 40-60% on microbenchmarks, and between 10-20% for some of the SPEC
benchmarks and one real world case study.
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• We present a parallel implementation with proven performance with four marker threads. On the same
set of benchmarks, we match or slightly exceed the performance of a parallel traversal mark algorithm.
On one benchmark (perlbench), we outperform the baseline by nearly 4x.

• We highlight lessons learned with the current collector and propose a modified hinted collector design
so inspired. We reflect on the implications of hinted collection, and close with a extensive discussion
of possible future research direction.

1.2 Background

At its most fundamental, a garbage collector is an engine for soundly identifying dead objects which can be
reclaimed to recycle their allocated memory for future allocation. Garbage collection - as opposed to the more
general term automatic memory management - is specifically the use of the reachability abstraction to arrive
at such a sound approximation. At their heart, tracing garbage collectors use some traversal algorithm for
solving graph reachability. All of the practical garbage collectors of which we are aware are tracing garbage
collectors.

Reachability

The graph reachability problem is the following: given a graph consisting of objects (vertices), directed
edges connecting objects, and a set of root objects assumed a priori to be live, mark all objects which are
transitively reachable along any path from the root set.

Throughout this thesis we will use Vreachable and Vunreachable to describe the set of vertices reachable
and unreachable by a traversal. These sets are not known a priori, but are useful for analysis purposes. An
edge is reachable if the source vertex is reachable. When needed, we will use P to denote the number of
processors available. When a parallel complexity is presented without an explicit reference to P , this should
be read as the limit as P approaches infinity.

A property of reachability which will be useful in reasoning about the correctness of our hinted collector
is the following: The set of objects reachable from an initial set of roots must be a (non-strict) superset of
the set of objects reachable from a subset of those roots. Slightly more formally, this could be stated:

∀R1 ⊆ V,R2 ⊆ V.(R1 ⊆ R2 =⇒ Vreachable(R1) ⊆ Vreachable(R2))

In this thesis, we compare against the class of traversal based algorithms (such as breadth-first-search, or
depth-first-search). In principle, other classes of reachability algorithms could be used for a garbage collector,
but we are not aware of a collector that does so. The closest might be the optimistic marking of [6]. Standard
traversal algorithms for solving reachability have a serial complexity of O(|Vreachable| + |Ereachable|) and a
parallel complexity of O(D), where D is the depth of the graph1.

Garbage Collection

In the garbage collection literature, the application - which is ideally ignorant of all memory management
details - is known as the mutator. The reachability problem described above is referred to as the mark phase
of a tracing collector. Much of the work on garbage collection has been focused on improving two metrics:
throughput (the number of dead objects collected per unit time), and pause time (the time during which
the mutator can not run). Both of these metrics are usually dominated by time spent in the mark phase. A
number of options have been explored for accelerating the reachability traversal including:

1In practice, contention on concurrent updates to make bits and synchronization between processors introduce further
terms. We considered using an Concurrent Read Exclusive Write model to adjust for this, but found the results to be more
complicated and no more insightful. We note that other classes of algorithms can compute reachability in less than O(D) for
specific graph structures; we are not aware of a practical algorithm for program heap graphs.
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• Ordering the traversal to improve cache locality is not addressed in the asymptotic results, but is in
practice a major concern. The difference between having an item in cache vs not can be roughly two
orders of magnitude. As a result, numerous traversal orders have been explored [23, 14, 11].

• Executing the traversal using multiple hardware threads greatly decreases average pause times. As
hinted by the asymptotic results, performance does not continue to scale forever. Even ignoring the
costs of coordination, program heaps contain a finite degree of parallelism with deep data structures
not being uncommon [6, 5, 26].

• Sub-dividing the heap into sections (as in generational and region-based collectors such as [34, 4, 10, 9])
which can be collected mostly independently greatly reduces the average pause time, at the cost of
requiring some edges between regions to be tracked by the mutator. Worst case pause times are still
determined by the overall heap structure and may even be worsened by a poor division.

• Splitting the mark phase into a series of smaller steps which are interwoven with the mutator (as in
incremental or concurrent collectors) reduces the average pause time, but often reduces throughput.
The fundamental issue is that the mutator is essentially racing with the collector; if the mutator ever
exhausts the pool of reclaimed memory before the collector can refill it with unreachable objects, the
mutator must block on the collector for an amount of time bounded only by that required to perform
a full collection cycle.

Despite their limitations, such collectors are very widely used. Production collectors succeed in reducing
pause times to levels that do not impact most programs, and - with the help of some wasted space - achieve
“good enough” throughput rates. Current technology breaks down when applications have little tolerance
for pauses, extremely high turnover rates, or heaps measured in GB rather than MB2. Painfully long pause
times have been seen with nearly every production collector of which we are aware.

As we will explore, hinted collection has a parallel asymptotic complexity favorably comparable to reach-
ability based collection - particularly when given exact deallocation hints.

Related Work

The only work we know of that directly addresses the fundamental scalability of parallel collection is that
of Barabash & Petrank [6, 5]. They propose two techniques. The first is based on inserting shortcut
links into the heap dynamically, but does not include any mechanism for keeping links updated between
collections. The second uses optimistic marking from randomly chosen heap nodes with spare threads. The
issue identified (and not addressed) is a high rate of floating garbage caused by the optimistic marking.
Often, a practical responses to heap shape controlled pause times is to simply change the data structure
used. We are not aware of research which investigates this approach.

In the realm of systems which combine manual and automatic memory management, probably the best
well known is the line of conservative collectors for type-unsafe languages pioneered by Boehm and Weiser [12].
The Boehm-Demers-Weiser collector can be used to improve reliability by reclaiming leaks, avoid temporal
safety bugs by handling all deallocations, or for reporting leaks during debugging.

In the most recent edition of the C++ standard, support for referencing counting (std::shared ptr)
and unique pointers (std::unique ptr) has been added to the standard library (but not the language). In
recent years, Objective-C has moved from being a language with only manual memory deallocation to
a primarily reference counted language (with compiler support) where the use of manual deallocation is
strongly discouraged.

There is a wide range of literature on detecting and debugging various classes of deallocation errors (i.e.
temporal memory errors) in C and C++ programs [15, 28, 13]. The most relevant for our own work are
attempts to create memory allocators which can transparently tolerate deallocation errors in production

2For non-relocating collectors, one must also add long running applications impacted by fragmentation to this list. This is
out of the scope of this work.
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environments through over-provisioning with randomized object placement [8, 29, 25], type-specific pool al-
location [21, 2, 20], checkpointing and environmental perturbation [31], or runtime patching with probability
based identification [30]. We do not address spatial memory errors (such as array bounds violations) in this
work; our collector would be complemented by approaches such as baggy bounds checking [3] for detecting
and tolerating such errors.

1.3 The Hinted Collector Algorithm

In this section, we present an idealized hinted collector. We focus on the mark phase of the collector, which
must establish the invariant that any unmarked object can be safely reclaimed. A standard sweeping phase
(either eager or lazy [11]) can follow the mark to actually do the reclamation. Following the discussion of the
algorithm, we explore the fundamental scaling limits of such a collector (both in serial and parallel versions)
and then close with a discussion of certain key properties of the algorithm.

The Problem

The graph problem posed to our collector is slightly different from the standard reachability problem solved
by standard collectors. We still have a directed graph consisting of a set of objects (vertices), a set of directed
edges, and a set of root objects that are assumed live. However, in addition, some of those objects are hinted
- meaning the user has given a deallocation hint for that object since the last collection, whereas others are
unhinted. Rather than seeking to identify all unreachable objects, the collector is only asked to identify a
subset of the hinted objects which are in fact disconnected from the roots - i.e. unreachable. Another way to
view the modified problem is to consider the set of hinted objects as an approximate solution to the standard
reachability problem. The task at hand is to refine that approximate solution into a subset of objects which
are, in fact, unreachable. It is this slightly modified problem statement that allows us to improve parallel
scalability over a standard tracing collector. (See Section 1.3)

We term an individual hint accurate if the object so hinted is unreachable. We describe an unhinted
unreachable object as having a missing hint. We term a set of hints where every hint is accurate and with
none missing to be exact. We will occasional use the informal terms mostly accurate and nearly exact for sets
of objects. We expect that in the common case, hints will be mostly accurate and few hints will be missing.

The Abstract Algorithm

The hinted collector marking algorithm (given in Figure 1.2) conceptually has three main phases: marking
unhinted objects, marking objects directly reachable from unhinted objects, and a reachability traversal to
locate objects which were hinted, but are actually reachable. When all hints are exact, only the first two
execute. We note that the version presented in this section is organized for ease of discourse and clarity, not
efficiency of implementation.

The key assumption made by our hinted collector algorithm is that the sets of hinted objects and unhinted
objects can be efficiently tracked and objects within those sets can be cheaply iterated. We discuss one means
of achieving this in Section 2.1. As with a standard collector, we associate a mark bit with each object that is
set if that object is assumed to be live. The collector starts with all objects unmarked. When the algorithm
completes, any reachable object will have been marked. We note that the algorithm may also mark objects
unreachable in a standard traversal due to missing hints.

Phase 1 In the first phase, any unhinted objects are marked. Hinted objects in the root set are also
marked. A key observation is that there are no restrictions on the iteration order of unhinted objects;
iteration can be done in any serial or parallel order.

Phase 2 In the second phase, all outbound references from unhinted objects are traced and their target
marked. The net effect of this phase is to mark any hinted object which is directly reachable from an unhinted
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1 phase 1: /* unhinted objects and roots */

2 for o in unhinted objects:

3 mark(o)

4 mark all roots

5

6 phase 2: /* hinted, directly reach. from unhinted */

7 exact = (are all roots unhinted?)

8 for o in unhinted objects:

9 for e in o.outbound_edges:

10 if not e.target.marked:

11 mark e.target

12 exact = false

13

14 if exact:

15 exit with marking done

16

17 phase 3: /* hinted, reachable from hinted only */

18 for o in hinted objects:

19 if o.marked:

20 push(o)

21 while( mark stack not empty ):

22 o = pop

23 for e in o.outbound_edges:

24 if not e.target.marked:

25 mark e.target

26 push e.target

Figure 1.2: Hinted collection algorithm discussed in Section 1.3.

object. If no new objects are marked during this phase, we have established that no objects were marked
inaccurately and do not need to execute phase 3 at all. Note that this is a sufficient, but not necessary,
condition; missing hints may trigger the execution of phase 3 even when all given hints were accurate.

As with the first phase, the iteration order is completely arbitrary. Care must be taken to assure that
the marking of an object is idempotent, but once this is true, marking can occur in any order. The structure
and connectivity of the unhinted subgraph is irrelevant.

Phase 3 In the third phase, any objects reachable from the previously marked hinted objects are marked.
The purpose is to prevent objects which were inaccurately hinted, but are only reachable from other inaccu-
rately hinted objects, from being incorrectly reclaimed. This phase may also mark accurately hinted objects
due to the existing of missing hints.

As in a standard collector, a stack-based depth-first-search algorithm is used. A mark stack holds
references to objects which have been marked, but not yet scanned for outbound references. For now, we
will assume an infinite mark stack to avoid overflow issues; we will return to this in Section 2.1. The first step
is to scan the set of hinted objects and push any that have been marked onto the stack. A standard traversal
is then initiated. When processing an object from the stack, references to objects which have already been
marked are ignored since they have either already been traced, or are currently on the mark stack. Once the
depth-first-search has terminated, any reachable object must by definition be marked.



9

Sequential Parallel
Phase 1 |Vunhinted| 1
Phase 2 |Eunhinted| 1
Phase 3 (Exact) n/a n/a
Phase 3 (General) |Vhinted|+ (|Vhinted|+ |Ehinted|) Dhinted

Overall (Exact) |Vreachable|+ |Ereachable| 1
Overall (General) |V |+ |E|+ |Vhinted| Dhinted

Standard Traversal |Vreachable|+ |Ereachable| D

Table 1.1: Summary of asymptotic complexity results for hinted collector mark algorithm using an ideal
Parallel Random Access Machine (PRAM). The “Exact” results are for the case where all unreachable objects
are hinted, and all reachable objects are unhinted. The “General” results allow both inaccurate and missing
hints.

Asymptotic Scalability

Extending the definitions introduced previously, we introduce terms Vhinted, and Vunhinted with the expected
meanings. Ehinted, and Eunhinted are the set of edges leaving each vertex set respectively. Similarly, we will
use the terms Vmissing and Emissing for the set of objects with missing hints and the set of edges leaving
such objects. We note that all of these terms are usually incomparable with the terms for reachability.

Extending this, the set of objects with inaccurate hints is merely Vinaccurate ≡ Vhinted ∩ Vreachable. In
the case where all hints are accurate then Vhinted ⊆ Vunreachable and Vinaccurate = ∅. We say that the set
of hints is mostly accurate if |Vinaccurate| << |Vreachable|. We expect that in the common case, hints will be
mostly accurate and few hints will be missing.

We’ll begin by summarizing the results for the entire algorithm, and then exploring the analysis of each
phase in isolation. Where appropriate, we will note both general results and constrained results for when
hints are exact. A summary of these results in Table 1.1.

Summary Taking all three phases together, we are left with a sequential complexity of O(|V | + |E| +
|Vhinted|). When the hints are exact, this reduces to O(|Vreachable| + |Ereachable|) since phase 3 does not
execute and, by assumption, the unhinted and reachable sets are equivalent. Worth noting, this is exactly
the complexity of the standard traversal algorithm.

When it comes to the parallel complexity, the hinted collector comes out ahead. In the general form, the
asymptotic complexity is O(Dhinted), where Dhinted is the depth of the hinted subgraph. In the case where
the hints are exact, this drops to a mere O(1) since traversal of the hinted subgraph is not required. With
an infinite number of processors, the running time of a hinted collector is only influenced by the subset of
the graph which consists of inaccurately hinted objects or hinted objects reachable from objects with missing
hints. This subset is in turn bounded by the set of hinted objects.

Phase 1 Phase 1 has a serial complexity of O(|Vunhinted|+ |Vroots|) since it must consider every unhinted
vertex and every root. Since there is no aliasing of mark bits, the parallel complexity scales inversely with
P (the number of processors). As P goes to infinity, the complexity drops to O(1).

We assume that Vroots is small compared to Vunhinted. For clarity of presentation, we omit this term
from the remainder of our results. In the worst case, Vroots is trivially bounded by Vreachable and would not
change the overall sequential results in a significant way. The parallel results are entirely unaffected by the
presence of this term.

Phase 2 Phase 2 has a serial complexity of O(|Eunhinted|) since we must explore every outbound edge
from every unhinted object exactly once. In the limit, the parallel complexity is again O(1).
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Note that unlike Phase 1, there may be aliasing when we add parallel processors. As such, it is likely
that the scalability of phase 2 would practically be limited by the contention on updates to mark bits by
multiple processors. With a straight-forward implementation, this would be linear in the maximum in-degree
(O(maxV ∈V indegree(v))). In principal, this dependence could be reduced from linear to logarithmic in the
number of inbound edges using a parallel reduction operation. We doubt this would result in a practical
marking algorithm and have not explored the topic.

Phase 3 Phase 3 has a sequential complexity of O(|Vhinted| + (|Vhinted| + |Ehinted|)). The first term is
influenced by the number of hinted objects. The second is driven by the need to perform a graph traversal
of the reachable hinted objects. The parallel complexity is O(Dhinted) as P goes to infinity.

Naively, the portion of the graph explored is bounded by Vreachable(Vmissing)∪Vinaccurate where the first
term is the objects reachable from objects with missing hints and the second is the set of objects inaccurate
hinted. While at first glance it seems like a missing hint could force an exploration of the entire unreachable
graph, this is not the case. Any portion of the unreachable graph which was not also hinted has already been
marked. As a result, the subgraph explored is bounded by (Vreachable(Vmissing) − Vunhinted) ∪ Vinaccurate

which we know to be a subset of Vhinted.
As a reminder, if the set of hints is exact phase 3 does not execute. If the given hints were only nearly

exact, the second term should be small, leaving O(|Vhinted|) and O(1) as the dominant terms for the sequential
and parallel cases respectively. Our expectation is that the set of hints is often nearly exact.

Key Observations

It is useful to discuss the impact of hint accuracy on the proposed algorithm. On one extreme, a collection
for which all objects are hinted reduces to a standard traversal based collector. Phase 1 and 2 become trivial,
and only Phase 3 does useful work. The scanning for marked objects at the beginning of Phase 3 is mostly
wasted, but since the roots are marked, the traversal will eventually mark all reachable objects. On the
other extreme, if no objects are hinted, then the collector reduces to a pair of scans over the set of objects
which mark every object and reclaim nothing.

Given a mixture of accurate (unreachable) and inaccurate (reachable) hints, we claim that all reachable
nodes will be marked after the algorithm executes. This follows directly from our earlier observation that
increasing the root set for a reachability traversal can only grow the set of reachable objects, not shrink it.
Phase one ensures that any unhinted object is marked and that any hinted root is marked. Phase 2 and 3
can be be abstracted as a reachability traversal - with a slightly strange ordering - starting from the union of
the actual roots and the unhinted objects. Since this union must by definition be a superset of the root set,
we know that the set of objects reachable from this initial set must be a superset of the set reachable from
only the roots. Another way of reasoning about this is that each hinted object reachable from the roots must
be reachable (without passing through a marked object) from at least one object which would be marked as
a result of phases 2 and 3 combined. By the same arguments, the presence of missing hints can not cause an
object to be incorrectly reclaimed. To summarize this point, it suffices to say that missing and inaccurate
hints are safe for correctness, if not necessarily performance.
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Chapter 2

A Serial Collector

Taking the algorithm from the previous section, we implemented two versions of a hinted collector for C
and C++ programs. The version described in this chapter is a serial implementation. We will extend this
to a parallel implementation in the following chapter. The source code for both collectors – including all
microbenchmarks, test drivers and most data files – is available at the following url: https://github.com/
preames/hinted-collection.

By replacing the normal “free” routine with one which simply records the deallocation hint for later
processing, we are able to evaluate the effectiveness of a hinted collector on real programs with large numbers
of deallocation hints.

2.1 Design & Implementation

Moving from an abstract collector to a concrete one, there are a few questions we need to address:

• How does one efficiently record membership in the sets of hinted and unhinted objects?

• How does one handle overflow during Phase 3 of the algorithm?

• What are the practical bottlenecks and what key optimizations are relevant?

As before, our discussion will focus nearly exclusively on the mark phase of the collector. The implementation
uses lazy-sweeping during allocation to reclaim objects unmarked by the collector. This is not a point of
difference with a conventional collector.

Platform

We have modified the Boehm-Demers-Weiser [12] conservative garbage collector for C/C++. The Boehm-
Demers-Weiser collector provides a well tuned implementation of a sequential mark-sweep stop-the-world
collector.

The Boehm-Demers-Weiser collector provides a free-list style malloc/free allocator. When acting as a
pure garbage collector, calls to free are ignored by the allocator. There are a number of predefined size
classes. Each size class has an associated set of heap blocks (hblks) which store objects of that size, and a
free list threaded through the free objects in those pages. Information about the contents of the hblk are
stored in a header (hblkhdr) which is allocated in scratch space. Not every hblk has its own header; when
larger blocks of memory are needed, multiple hblks are coalesced with only a single header associated with
all of them.

https://github.com/preames/hinted-collection
https://github.com/preames/hinted-collection
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Set Membership Metadata

By default, all objects are assumed to be unhinted. To record deallocation hints, we modified the allocator
to store a boolean flag in the hblkhdr to indicate some object in the hblks associated with that header has
been hinted. The advantages of the chosen approach are:

• Adding the flag did not require modifying the heap layout. Room was already available in the hblkhdr
for additional flags.

• Iterating through objects in a given set can be done cheaply by iterating through a preexisting table
of hblkhdrs.

• The many-to-one nature of the flag increases the odds that the flag will be in cache if checked for many
objects at once. This will be useful in implementing an edge-filtering optimization.

The downside of the metadata storage scheme is that - since headers are shared by many objects - when
one object is hinted by the user, many objects are actually hinted. A likely effect is that many of those extra
objects were inaccurately hinted - resulting in slightly longer pause times. We will investigate the impact of
this, and discuss possible alternative implementations in Section 4.3.

Mark Stack Overflow

Before introducing the concrete implementation, we need to address a slightly more fundamental issue with
the algorithm presented previously. In that discussion, we made the assumption that the mark stack - used
during Phase 3 depth first traversal of hinted objects - was infinite. In practice, the mark stack is finite and
could potentially overflow.

To understand why overflow can occur, picture a heap graph where the entire space is consumed by an
inaccurately hinted long linked list. Unless there is room in the mark stack for every object in the program,
the mark stack must overflow1. We must preserve correctness in this case without reserving an excessively
large amount of memory for the mark stack in the normal case.

The Boehm-Demers-Weiser mark implementation includes a mechanism to restart a general heap mark.
Every time an object is to be pushed onto the mark stack, it is marked first. If the mark stack overflows,
excess items are dropped and the traversal continues. Once the current mark stack empties - to make as
much progress as possible - the mark stack is expanded2, and the heap is scanned for marked objects. Any
unmarked objects directly reachable from a marked object is pushed on the mark stack. The mark stack may
overflow again, but some forward progress must be made during the emptying of the mark stack. The process
will eventually terminate since there are only a finite number of reachable objects. As should be clear, this
is a fairly complex process, and in the worst case, could result in the heap being scanned approximately
O(log(|V |)) times for a total runtime of O(|E| ∗ log(|V |)).

We must adapt this handling to our own marking algorithm. Neither Phase 1 or 2 use the mark stack
in any way. Phase 3, on the other hand, is an adaption of the classic mark algorithm. We extend it with
overflow handling in a similar way to the Boehm-Demers-Weiser mark implementation. For the full version
of the modified phase 3, see Figure 2.1.

To avoid needing a mark stack large enough to hold every hinted object, we interrupt the scan occa-
sionally3 to empty the mark stack. If despite this measure, the mark stack overflows, any objects which

1As described, the mark stack could consume up to 50% of total memory since every object could contain only a single
“next” field and be inaccurately hinted. During the depth-first traversal, every object would be on the mark stack at once.
This particular case could easily be avoided by optimizing the traversal to remove single reference objects from the mark stack
before exploring their children, but similar cases could be easily constructed for unbalanced trees of arbitrary degree.

2We note that expanding the mark stack is not required for correctness. In a low memory situation, the mark stack might
not be expanded and more iterations would be required.

3We currently perform the modified traversal when the mark stack is 50% full. The performance of the collector is largely
insensitive to this parameter.
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1 func modified_dfs:

2 while( mark stack not empty ):

3 o = pop

4 for e in o.outbound_edges:

5 if not e.target.marked:

6 mark e.target

7 if not mark_stack full:

8 push e.target

9 else:

10 mark_stack_too_small = true;

11

12 func mark_hinted_objects:

13 for o in hinted objects:

14 if o.marked:

15 push(o)

16 occasionally modified_dfs();

17 modified_dfs();

18

19 phase 3:

20 mark_stack_too_small = false

21 mark_hinted_objects()

22 while( mark_stack_too_small ):

23 resize_mark_stack( 2 * mark_stack_size )

24 mark_stack_too_small = false

25 mark_hinted_objects()

Figure 2.1: Phase 3 of the hinted collector with mark stack overflow protection added. The algorithm is
otherwise unchanged.

would have otherwise been added are simply discarded and an overflow flag is set. The traversal continues
- potentially discarding many objects - until it is once again empty. We then increase the size of the mark
stack, and repeat the entire process. Since every object is marked before being placed on the mark stack,
we are guaranteed to make progress; since there are a finite number of hinted objects, we will eventually
terminate.

Since only edges from hinted objects must be considered when repopulating the mark stack, our fully
functional algorithm can execute in O(|Ehinted| ∗ log(|Vhinted|)) - i.e. potentially significantly less than the
standard algorithm.

Worth highlighting is that the mark stack can only overflow if a large number of hinted objects are
reachable from those unhinted. By design, this should be a rare case. Long chains occurring solely within
the unhinted (i.e. live) section of the heap graph are never traversed and can not trigger overflow. Even in
theory, we would expect such a case to be rare given the imprecise hinting implied by our current approach
to metadata storage. Assuming that the probability of any particular object being imprecisely hinted is
approximately uniformly random, the likelihood of finding a long chains solely within a imprecisely hinted
region falls off exponentially with the length of the chain. We believe this to be a reasonable assumption
based on knowledge of typical allocation patterns and allocator strategies, but can not formally justify it.
We have no data to justify this assumption or refute it.
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1 for hdr in hblkhdrs:

2 if not hdr.hinted:

3 set_all_mark_bits(hdr)

Figure 2.2: Phase 1 of the concrete collector.

Practicalities

In the previous subsections, we have addressed the two key differences between the idealized algorithm and
the form we can actually implement. Next, we describe the actual implementation - which has some minor
differences from the ideal algorithm - and describe key optimizations which reduce the absolute runtime
without changing the asymptotic complexity.

Phase 1 Phase one is the simplest to implement. Conceptually, we simply need to walk the set of hblkhdrs,
select those with the deallocation hint flag not set, iterate over each object they contain, and mark all of
them. The naive implementation is correct, but the inner-most loop adds about 20% to the overall runtime.
Instead, we can take advantage of the layout of mark bits - which are stored in a contiguous bitmask in
the hblkhdr - to set all the mark bits for a given hblkhdr at once with a small handful of assignments.
Pseudocode for phase 1 is listed in Figure 2.2.

In the implementation, the marking of root objects is integrated into the modified depth first search of
phase 3. The only reason for this is that it allows us to use a manually unrolled and pipelined routine to
process items on the mark stack for marking all objects in the root set quickly. There is no intrinsic reason
this code could not be duplicated and executed earlier in the process.

Phase 2 The starting point for optimization is a fairly simple loop that iterates over each unhinted ob-
ject and marks any unmarked object it references. For simplicity, we re-purposed the mark stack and its
supporting routines. This was desirable since the task of filtering the word-sized values to identify potential
outbound references - required by the fact we are targeting an type-unsafe language - is fairly complex and
error prone. The unoptimized version of the code loops through every object in every hinted hblk, pushes all
the objects onto the mark stack (without marking them again), and then calls a modified stack processing
routine which does not push outbound edges onto the mark stack. This involves a lot of redundant memory
traffic on the mark stack for no good reason (in the serial collector), but has the benefit of being easy to
audit for correctness and simplifies implementing the parallel collector.

While functionally correct, this version is not sufficiently fast to be competitive with the well tuned tracing
collector baseline. Phase two consumes the majority of runtime for the case study and microbenchmarks we
have investigated. We therefor incorporated the following two key optimizations:

• Edge-Filtering – Before checking to see whether an object pointed to by a reference is marked, we
check to see whether the target is an unhinted object. If so, the target must have been marked in phase
1 and we avoid dereferencing the pointer. Since it is expected that most hinted objects are unreachable,
if we can filter edges to objects already known to be marked, we can ignore most outbound edges. The
set membership check reduces to a read of a flag in the hblkhdr. The header check itself is relatively
cheap since, in practice, there are few enough header blocks that most of them fit in cache at any one
time. By performing the additional check, we can shave about 10% of runtime from the full hinted
collection. In Section 2.2, we discuss alternate designs considered.

• Object Combining – Instead of processing individual objects, we combine all objects in a hblk into a
single contiguous range and process all potential references together. Since we have to be conservative
about what might possibly be an outbound reference anyway, this combining of objects allows us to
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1 func mark_targets(begin, end):

2 while begin < end:

3 if is_reference(begin):

4 if is_hinted(begin):

5 if not begin.marked:

6 mark(begin)

7 exact = false

8 begin += 1 word

9

10 phase 2:

11 exact = true

12 for hdr in hblkhdrs:

13 if combinable(hdr):

14 mark_targets(hdr.hblk_start, hdr.hblk_end)

15 else:

16 for o in hdr.objects:

17 edges = o.outbound_edges

18 mark_targets(edges.start, edges.end)

19

20 if exact:

21 exit with marking done

Figure 2.3: Phase 2 with Edge-Filtering & Object-Coalescing.

completely forgo the outer loop. Depending on the benchmark, we see as much as a 30% improvement
from this change alone4.

We believe this to be from a mixture of low level code quality improvements (i.e. increased instruc-
tion level parallelism and overlapping memory loads from a hand unrolled and prefetched loop) and
decreased memory traffic on the mark stack.

The combined algorithm is shown in Figure 2.3. One point that is important to mention is that we do not
implement the check for exactly correct hints shown. The key reason for this check is to avoid executing
phase 3 - which affects the theoretical results slightly, but does not have a significant impact on the running
time of the practical algorithm. This might be worthwhile to implement at some point, it just has not been
done yet.

Phase 3 The implementation of Phase 3 of the algorithm is a mostly direct translation of the version
discussed in Section 2.1. When tuning Phase 3, there are two major goals. First, we want the case where
very few hinted objects are marked - hopefully the common case - to mostly reduce to a single pass over each
hinted object. Second, we want the graph traversal to be as fast as possible when it is forced to execute.

For the scan of hinted objects, we take a similar approach to the unoptimized algorithm described for
Phase 2, but with the difference that marked objects are pushed onto the mark stack rather than directly
scanned. If we find a marked object, then we must follow any outbound references to ensure that any
reachable hinted objects are marked. Given the algorithm’s similarity to a standard reachability collector,
we were able to reuse many of the components of the Boehm-Demers-Weiser collector.

4This optimization is applicable to most (but not all) object classes. The unsupported object classes fall back to the correct,
but slow version described above. There is no fundamental reason the other object classes could not be supported.
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In principle, we could use a variant of the object-combining optimization to reduce traffic on the mark
stack and potentially improve scan performance, but we have not implemented this. We have implemented
a version of the edge-filtering optimization.

Sweep Once Phase 3 has terminated, any reachable object is known to be marked. This is the same
invariant ensured by the mark phase of a mark-sweep collector. As a result, we are able to reuse the sweep
phase from the baseline collector without modification. The Boehm-Demers-Weiser collector uses a lazy
sweeping strategy. Control immediately returns to the mutator after marking and memory is incrementally
reclaimed on demand during allocation.

2.2 Evaluation

In Table 2.1, we present results from a set of microbenchmarks written to highlight the strengths and
weaknesses of hinted collection. As a reminder, the implementation we evaluate in this section is a serial
collector. A brief discussion of some preliminary results with the parallel collector can be found in Section 3.2.

Methodology & Test Platform

All microbenchmarks were written in C++, but use only malloc/free for memory management. Each bench-
mark was written in a style to allow manual memory deallocation, but with the free call redirected to the
hinted collector library as a deallocation hint. When freeing data structures, we chose not to break internal
references; this ensures that the hinted collector results pay the full possible penalty when inaccurate hints
are given for the relevant benchmarks. All benchmarks were compiled with GCC 4.6.3 with -O3 specified.
We also compiled and ran them with Clang 3.1, but do not report these results since they were essentially
identical5.

The times reported in this section are the pause times of individual collections. We do not report overall
runtimes or mutator utilization ratios. Each benchmark is run 20 times, and the arithmetic mean value is
reported. Before each benchmark run, we fragment the relevant size classes by allocating a large number
of objects with high average turnover, but randomly chosen lifetimes. We disable garbage collection while
building the heap structures and hinting any objects necessary. To prevent accumulation of fragmentation,
we use a fork/join wrapper around each iteration. As a result, every data point for a particular benchmark
shares the same starting heap state. After each collection, we eagerly reclaim all available memory. This
enables us to report on memory reclaimed by each collector.

All results except the scalability experiment were run on a Lenovo Thinkpad with a Intel(R) Core(TM)
i7-2620M CPU which has 2 x86 64 cores, each 2-way SMT. The memory hierarchy is organized as a 32 KB
L1, 256 KB L2, and 4 MB L3 cache, backed by 8GB of DDR3-1333 memory. There are two memory channels
with a maximum bandwidth of 21.3 GB/s.

Overall Performance

The first two sets of benchmarks illustrate the fundamental performance trade-off of a hinted collector. The
hinted collector is able to outperform a tracing collector when the entire heap is live and unhinted (the
common case). In these microbenchmarks, the tracing collector wins in all other cases; this is caused by the
fact that we truncate the data structures at the root, leaving no tracing work.

5To reproduce our results, we strongly suggest starting with our publicly available source code. The benchmarks exploit
undefined behavior in C++, and compilers are extremely good at breaking such programs. The benchmarks are carefully
engineered to get correct results with the versions of the compilers used. We assume the compiler can not identify dead stores
across procedure boundaries and that no-inlining directives are respected.
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benchmark heap size gc hintgc speedup

Linked List (Dead, Hinted) 31.8 MB 1.45 2.00 0.72
Linked List (Dead, Unhinted) 31.8 MB 1.40 7.75 0.18
Linked List (Live, Hinted) 31.8 MB 11.95 12.10 0.99
Linked List (Live, Unhinted) 31.8 MB 12.10 7.40 1.64
Fan In (Dead, Hinted) 23.7 MB 0.00 0.00 n/a
Fan In (Live, Hinted) 23.7 MB 12.85 12.90 1.00
Fan In (Live, Unhinted) 23.7 MB 12.50 8.25 1.52
2560 x 1k element LL 88.6 MB 31.70 19.80 1.60
256 x 10k element LL 88.6 MB 30.95 18.90 1.64
1/3 Cleanup 184.6 MB 50.10 31.95 1.57
Deep Turnover 56.6 MB 20.50 12.30 1.67
Unbalanced (Live) 744.6 MB 252.85 176.50 1.43
Unbalanced (Partly Dead) 744.6 MB 246.30 175.25 1.41

Table 2.1: Average mark times (in ms) for the serial collectors. “gc” is the baseline tracing collector. “hintgc”
is the hinted collector as described in the text with header edge-filtering and object combining. “speedup”
shows the improvement of the hinted collector over the tracing collector.

• Linked List - If the heap contains a long list of objects which is reachable from the root, then any
traversal to establish reachability must traverse every object in turn. The hinted collector is able to
avoid this long chain of dependent loads.

• Fan In - A heap graph with a single root node with edges to N >> P vertices, all of which have a
single reference to a final vertex. While this structure may seem contrived, is actually fairly common.
It arises frequently from objects which implement copy-on-write semantics; at least one platform we
are aware of uses this to optimize the creation of strings.

The remaining benchmarks highlight cases where a hinted collector has a strong advantage. The first two
are useful for understanding properties of the two collectors, while the remaining three highlight behavior
relevant in real world programs.

• The 2560 x 1k element LL and 256 x 10k element LL benchmarks consist of a set of linked lists
reachable directly from the root set. We vary the number of linked lists and the number of elements
to produce two different heap configurations with different heap structures. The entire heap is live. It
is interesting to note that the tracing collector comparatively performs slightly better with shorter but
more numerous linked lists. This is exactly what we would expect.

• 1/3 Cleanup highlights the performance of the collectors when only a portion of the heap becomes
unreachable with non-trivial data structures remaining. To illustrate, we allocated six one-million
element linked lists and then deallocated two of them. As expected, the hinted collector outperforms
the tracing collector by a significant margin.

• In Deep Turnover a relatively small portion of the heap is being deallocated. However, that portion
is deep inside a long linked list. (We choose to delete 1000 elements off the end of a 1 million element
linked list.) This case was chosen to reflect a common pattern in real programs where most of the heap
stays around for a long period with small chunks of it being recycled.

• In the two Unbalanced results, we see a benchmark with most live space consumed by a collection
of 256 depth-6 octtrees. A similar number of linked lists are allocated, but not retained. The first
experiment is with all the lists held live, the second is when they are allowed to die. Interestingly, the
percentage difference between the two rows is much higher for the standard traversal than the hinted
collector. This highlights the stability of our approach with regards to heap shape.
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benchmark heap size base no-oc no-ef header range both

Linked List (Dead, Hinted) 31.8 MB 10.10 0.15 0.30 2.00 2.05 0.15
Linked List (Dead, Unhinted) 31.8 MB 10.55 10.30 8.35 7.75 7.50 7.60
Linked List (Live, Hinted) 31.8 MB 12.00 11.70 12.30 12.10 12.25 12.30
Linked List (Live, Unhinted) 31.8 MB 11.10 10.70 8.85 7.40 7.25 7.05
Fan In (Dead, Hinted) 23.7 MB 0.00 0.00 0.00 0.00 0.00 0.10
Fan In (Live, Hinted) 23.7 MB 13.25 12.35 13.30 12.90 12.50 12.15
Fan In (Live, Unhinted) 23.7 MB 14.60 9.35 11.10 8.25 6.00 6.60
2560 x 1k element LL 88.6 MB 28.60 27.70 21.75 19.80 18.50 18.05
256 x 10k element LL 88.6 MB 29.00 27.35 21.65 18.90 18.35 18.50
1/3 Cleanup 184.6 MB 55.80 44.60 37.15 31.95 35.45 32.55
Deep Turnover 56.6 MB 16.30 15.70 16.55 12.30 10.00 10.80
Unbalanced (Live) 744.6 MB 240.05 223.95 192.15 176.50 174.85 174.70
Unbalanced (Partly Dead) 744.6 MB 237.30 223.40 187.30 175.25 175.90 174.90

Table 2.2: Average mark times (in ms) for variants of the hinted collector. “base” is a variant with neither
edge-filtering or object-combining and illustrates well the importance of the two optimizations. “no-oc” is
a variant without object combining, but with header edge-filtering. “no-ef”, “header”, “range”, and “both”
are variants of the hinted collector with no edge-filtering, header-filtering, range-filtering, and both header
and range filtering respectively; all three use object-combining. The “header” configuration is the same
described elsewhere in the thesis.

The key reason the hinted collector outperforms a standard collector on these benchmarks is its ability
to explore live objects and edges in any order. There are two key benefits that result:

• As previously discussed, not having to follow edges between live nodes in order of discovery prevents
the hinted collector from being sensitive to the depth of the live graph. This would mainly benefit a
parallel collector, but we see some benefit in our serial collector due to instruction level parallelism and
instruction reordering by the hardware.

• By allowing the collector to explore the live edges in any order, the hinted collector converts a series
of dependent loads - which is primarily limited by the latency of a memory access - to a set of parallel
loads - which is limited by the bandwidth of the memory system. While not reflected in the asymptotic
results, this is probably of more practical importance.

We do not directly report the amount of memory reclaimed for each collector on each benchmark. We
have manually inspected each benchmark and confirmed that all hinted data is reclaimed for these examples.
When unhinted, a small amount of memory (80k) is still reported as being reclaimed, but this is mostly
independent of the benchmark. We believe this amount to be from internal approximation in the collector
framework; the amount does not vary between collector types.

Edge-Filtering and Object-Combining

We investigated the impact of the edge-filtering and object-combining optimizations - introduced in Sec-
tion 2.1 - by running each of the micro benchmarks against versions of the collector with each optimization
disabled. We additionally explored an alternate edge-filtering implementation based on tracking a high and
low water mark for hinted pointers (henceforth range-based)6. If during the scan a pointer outside this range
was found, it clearly must be unhinted. Next. we considered the combination of both edge-filtering imple-
mentations, with the range check executing first. Finally, we evaluated a version with neither edge-filtering
or object-combining.

6This implementation was inspired by a similar range base filtering optimization used by the Boehm-Demers-Weiser imple-
mentation to quickly discard potential references which could not be actual pointers to objects.
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Figure 2.4: Scalability of hinted and tracing collectors given 10% (left) and 50% (right) deallocation rate
over range 200 MB to 10GB of allocated data. Despite the difference in y-axis ranges, the trend is similar.

As can be seen from the results in Table 2.2, edge filtering is clearly advantageous, in some cases con-
tributing a substantial improvement over the base algorithm. When comparing the different implementation
options, it is clear the range-based check and the default header flag check both have their own advantages.
The combination of the two (in the last column), appears to perform well across the board. Object-combining
is clearly also profitable. Note that all the results presented elsewhere in this thesis use (only) the header
implementation of edge-filtering and object-combining.

Scalability

We ran an additional experiment with a microbenchmark which allocated reasonably complex heap structures
of an arbitrary size and then deallocated a specified amount7. In Figure 2.4, you can see the results of an
experiment which varied the heap size from 200 MB to nearly 10 GB while deallocating a fixed percentage
at each heap size. We varied the percentage of objects deallocated and present two representative graphs:
one at 10% deallocation, and another at 50%.

The hinted collector outperforms the standard collector across the entire range with a roughly 20%
reduction in pause time for a given heap graph. As shown, the absolute runtime of both collectors is heavily
influenced by the total amount of memory which must be explored (i.e. is live). We can see this in two
ways. First, as the allocated amount increases with the percentage deallocated fixed, so does the runtime.
Second, when the fraction of the heap which is live decreases with the amount allocated held constant, so
does runtime. We believe that the relative difference between the collectors can be attributed to the hinted
collectors ability to better exploit memory bandwidth. We do not see the dependence on heap structure in
this benchmark since the heap graph is fairly shallow, which allows both collectors to perform well.

These results are fairly insensitive to the percentage deallocated, but only up to around 90% where the
much smaller heap explored by the tracing collector allows it to break even. Unlike the tracing collector,
The hinted collector must inspect the mark state of every hinted objects even it doesn’t scan them. This
penalty is fairly minimal, but with a large fraction of the heap deallocated it can come to dominate. We note
that while the exact thresholds are dependent on the structure of the benchmark, but the general pattern
was observed across multiple workloads.

SPEC 2006

Full results from running a subset of the C programs in the SPEC 2006 benchmark suite can be found in
Table 2.4 and 2.3. Table 2.4 focuses on the pause times observed, while Table 2.3 focuses on the amount of

7The heap structure allocated was essentially an extremely wide shallow tree (depth two) with a short linked list (length
50) hanging off each leaf. The amount allocated was varied by controlling the number of children at the root level. Nodes in the
first level had a fixed degree of 500. All references to hinted objects are explicitly set to NULL ensuring their are no inaccurate
hints.
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benchmark hinted reclaimed % rec leaked % leak
bzip 0 bytes 0 bytes n/a 0 bytes n/a
cactusADM 7.03 GB 7.00 GB 99.56 23.87 MB 0.34
calculix 64.08 GB 62.47 GB 97.50 1.14 GB 1.79
gobmk 2.89 GB 2.89 GB 99.97 1.76 MB 0.06
gromacs 14.01 MB 13.83 MB 98.74 621.12 KB 4.30
h264ref 3.79 GB 3.41 GB 90.12 284.11 MB 7.69
hmmr 8.09 GB 7.90 GB 97.61 227.58 MB 2.80
lbm 0 bytes 0 bytes n/a 0 bytes n/a
libquantum 2.63 GB 540.99 MB 20.58 67.46 MB 11.09
mcf 0 bytes 0 bytes n/a 0 bytes n/a
milc 260.67 GB 252.23 GB 96.76 3.10 GB 1.22
perlbench 104.36 GB 100.27 GB 96.08 15.18 GB 13.15
sjeng 0 bytes 0 bytes n/a 0 bytes n/a
sphinx3 48.73 GB 48.71 GB 99.96 101.25 MB 0.21

Table 2.3: Summary of space reclamation across all collections for each SPEC benchmark. “hinted” is the
total number of bytes directly hinted by the application. “reclaimed” is the amount of space reclaimed by
the hinted collector. “% rec” is the percentage of hinted data reclaimed; due to collateral hinting, this can
be greater than 1.0. “leaked” is the total bytes reclaimed by the tracing collector. “% leaked” is the leaked
column divided by the total memory available for collection (leaked + reclaimed).

memory reclaimed by the hinted collector.
To summarize the results, out of the 10 benchmarks with any deallocation captured by a collection

cycle, 9 reclaim 90% or more of the memory hinted as free across the run. The 10th (libquantum) reclaims
only 20% of the hinted memory, but the tracing collector reclaims only a small amount more. It appears
that libquantum is retaining a reference to dead data past the last collection cycle. We will discuss this
benchmark more in Section 3.2 since this behavior limits the performance of both parallel collectors.

The benchmark perlbench has the largest amount of memory leaked by the hinted collector at 13.15%.
Despite this, the reclaim rate for the hinted collector is actually quite high at 96%. The fact that these
numbers sum to more than 100% implies that the original benchmark had a memory leak when run with
manual deallocation. Most of the other benchmarks are in the 1-5% range. We suspect, this leakage is most
likely due to hinted objects not actually becoming unreachable until after the next collection.

Pause time results are mixed with several benchmarks taking slightly longer with the hinted collector
than the standard collector. A few benchmarks (perlbench, milc, cactusADM) show significant pause time
improvement; perlbench improves by nearly 40%.

Methodology Each benchmark was run three times using its reference input set. Statistics were computed
across all observed collections for each benchmark. gcc and wrf were excluded since they failed to complete
when run with the collector inserted via LD PRELOAD. gcc is known to use xrealloc which is not currently
supported. The cause of failure for wrf has not been investigated.

The tracing collector was run immediately after the hinted collector completed. This was done to ensure
both collectors encounter the same heap graph; it would be undesirable for one collector to encounter a deep
narrow heap graph (for example) which the other collector misses due to a difference in collection timing
between runs. Unfortunately this choice has, in practice, the effect of minorly understating the tracing
collector’s runtime. There is some noise in the amount of data reclaimed, though we do not believe it to
be significant for the overall results. We have seen up to a few hundred KB of space per collection falsely
accounted due to marking of collector structures such as free lists. The most likely effect is to overstate the
leaked amount slightly.
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Hinted Collector Tracing Collector
benchmark count min max mean median min max mean median
bzip 36 6.0 118.0 57.03 57.0 6.0 116.0 55.58 56.0
cactusADM 33 0.0 183.0 91.52 74.0 0.0 194.0 94.76 72.0
calculix 786 0.0 77.0 12.47 0.0 0.0 62.0 11.51 0.0
gobmk 156 1.0 21.0 10.46 11.0 1.0 20.0 10.88 11.0
gromacs 15 0.0 3.0 0.87 0.0 0.0 3.0 1.20 1.0
h264ref 134 0.0 25.0 7.38 5.0 0.0 19.0 7.10 5.0
hmmr 1025 0.0 15.0 0.95 0.0 0.0 6.0 0.75 0.0
lbm 3 42.0 42.0 42.00 42.0 41.0 41.0 41.00 41.0
libquantum 24 6.0 902.0 121.62 18.0 6.0 910.0 123.33 20.0
mcf 3 1.0 1.0 1.00 1.0 1.0 1.0 1.00 1.0
milc 181 64.0 562.0 413.34 422.0 62.0 607.0 450.71 462.0
perlbench 545 0.0 291.0 101.29 106.0 0.0 482.0 122.26 134.0
sjeng 6 12.0 24.0 18.00 18.0 12.0 23.0 17.50 17.5
sphinx3 1538 0.0 24.0 11.02 11.0 0.0 16.0 12.47 13.0

Table 2.4: Statistical summary of pause times observed for each SPEC benchmark. All times are in msec.
The first set of columns are from the hinted collector; the second set are a standard collector run immediately
after the hinted collector completes. We note that this slightly understates the standard collectors runtime
since some garbage has already been reclaimed. Interesting highlights include the sharp drop in maximum
pause time for perlbench, and improvement in mean & median pause times for milc.

Case Study

To highlight the possible impact of hinted collection, we ran a case study with the Clang/LLVM compiler
toolchain. We used instrumented versions of Clang 3.1 and the GNU gold linker 1.11 to build Clang itself
from source. We instrument the programs to keep track of the amount of data hinted, perform a hinted
collection, and then immediately perform a traditional collection.

As can be seen in the table below, the hinted collector reduced the maximum pause time observed by
12% and 99th percentile pause by 18% (across 34861 unique collections). We consider this a strong result.
We note that both collectors encountered mark stack overflows during some of the collections; as a result,
the reduced overflow cost of the hinted collector was advantageous. Across all the runs, the hinted collector
was able to reclaim 95% of all memory hinted, with 5% of memory leaked.

version min max mean median 95th 99th
Hinted 0.0 490.0 20.42 10.0 70.0 140.0
Tracing 0.0 560.0 24.53 10.0 90.0 170.0
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Chapter 3

A Parallel Collector

In addition to the serial implementation presented previously, we have completed a parallel implementation
of the hinted collection algorithm. The results presented in this section illustrate that hinted collection is
performance competitive with a standard tracing collector on a four-core machine.

3.1 Design & Implementation

As highlighted in the discussion of our serial implementation, phases 1 & 2 consume the majority of the
collector time in the common case. Given this, we choose to prioritize the parallelization of these phases. We
have not invested in parallelizing phase 3 explicitly, but since some of the traversal code is reused from the
baseline collector, we see some parallel speedup in that phase as well. After discussing the implementation of
the core algorithm, we discuss an optimization which helps to reduce parallel overhead for some collections
and identify a few code changes outside for core mark algorithm that turned out to be critical for performance.

Mark Implementation

We choose to use a batch-synchronous style of parallelism where each phase of the algorithm is fully paral-
lelized, but each phase completes fully before the next phase begins. To parallelize each phase, we adapted
the load balancing approach used by the baseline parallel collector. It is worth noting that the barrier be-
tween phases 1 and 2 is only necessary if the header edge-filtering optimization is not being used. Otherwise,
the execution of these two phase can be overlapped - potentially reducing synchronization overhead. The
barrier between phases 2 and 3 is never necessary for correctness, but is likely best retained for performance.
We have evaluated neither of these options and defer doing so to future work.

Background In the baseline collector, the global mark stack becomes a mark queue, and each marker
thread has its own local mark stack. Ideally, most marking activity uses only the thread-local mark stack.
The only cases where the marker threads interact with the global mark queue are to push work to the global
queue when either the local mark stack is nearly full or the global queue is empty, and to pull work from the
global queue when the local mark stack is empty. Additions to the global mark queue are performed using
a single global lock. This ensures correctness, but at the potential cost of some performance.

Pulling work from the global mark queue is assumed to be a much more frequent operation, so a non-
blocking read scheme is used. The consequence of this scheme is that the mark queue never shrinks – though
the actively considered part of it does – implying that space on the global mark queue can not be reused.
Additionally, since items in the global queue can be copied to multiple local stacks, every work item in
the global queue must be idempotent - i.e. executing it one or more times must give an equivalent result.
We experimented with a locking based variant and didn’t find the lock free access to the global queue to
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be significant for the performance of the hinted collector in the cases we examined; it is significant for the
traversal collector in some cases. Our investigation of this trade-off was by no means exhaustive.

To support efficient lookup of hblk headers from arbitrary pointers, the baseline collector includes a data
structure (either a tree or hash table depending on configuration) which includes at its lowest level a doubly
linked list of arrays of hblk descriptors. From this linked list, one can access every active in-use hblk managed
by the collector. The entries in this list are called bottom index structures.

The core marking loop used by both the baseline collector and the hinted collector supports four distinct
marking tasks. The simplest and most common is simply a range of addresses to be scanned - represented
by a start pointer and a length. The other three are largely irrelevant for our purposes except that one -
GC DS PROC (which can be used by a developer to provide custom mark procedures for specific object
types) is entirely unused in any C program which has not been specifically modified for use with the collector
library. As a result, none of our benchmarks use this marking task. Nor would any standard C program.

Implementation Details To adapt this framework to the hinted collector, we replace the GC DS PROC
marking task with a custom one of our own. In principal, our custom marking task could be implemented
as one of the user specified marking functions (thus not breaking the functionality exposed to clients of the
library), but our implementation does not do so. The new marking task encodes a pointer to one of the
bottom index structures and an index into the array of hblks contained by that bottom index.

On entry to each phase of the algorithm, we walk (in serial) the linked list of bottom index structures
and place a marking task for each bottom index found into the global mark queue. The index field, which
will be used for the load balancing described shortly, is set to the maximum index. Since the array of hblk
pointers is statically sized, this is a known small constant.

Once this is accomplished, each marker thread is started with its own local mark stack. Each will steal
some work from the global queue and process it. When executed, the new marking task examines some set
of hblk regions and pushes any work required to process them fully onto the local mark stack. The highest
index remaining to be processed (in the array of hblk pointers) is then stored back into the task. When a
task with nothing remaining to be processed is encountered, it is removed from the mark stack. There are
two key design parameters here:

• Should the scanning of the hblk regions be immediate (i.e. done within the new marking task) or
deferred (i.e. added to the mark stack)? Scanning immediately reduces traffic on the mark stack and
improves best case performance. Deferring the scanning of hblk regions enables load balancing since
the bottom index marking task can be passed to another thread while the local thread is busy scanning
hblks.

• How many hblk regions should be examined in a single step? A smaller granularity improves load
balance in some cases (by allowing other threads to steal work), but does impose a performance
penalty.

Some form of load balancing is clearly needed. Consider a program which allocates a small number of very
large objects (for example, in a custom allocator). As a result, there are only a small handful of hblk regions
in use - potentially fewer than there are mark threads. Without the deferred processing described above,
some marker threads would be utterly unutilized. It is unclear how common such cases might be in practice.

Currently, we choose to enable load balancing by not scanning hblk regions immediately and process
at least 10 hblks in each examination step. These choices appear to be a good balance between best case
performance and worst case load balancing1. However, we can not claim to have fully explored the parameter
space; there may exist a better balance that we have not identified.

There are two non-obvious concerns to this approach worth explicitly discussing:

1Worth noting is that the runtime performance of the collector is heavily influenced by the code quality of the inner marking
loop. As a result, several optimizations that might seem like a good idea (ex: separate marking routines for phases 1 and 2),
turn out to have negative performance impacts. It took significant careful effort to ensure that adding load balancing did not
disrupt the code quality of this critical inner loop.
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• First, each bottom index task must be able to locally guarantee that the result of examining a given
number of hblks does not overflow the mark stack. It must be the case that all entries placed on the
mark stack by a given bottom index execution can be processed in their entirety without overflowing.
(This requirement comes from the fact that we do not use the mark-then-push scheme leveraged
elsewhere in the collector to ensure progress in the event of overflow.)

In practice, this has not been a concern since the per hblk functions in each phase store at most a
fixed amount of data on the local mark stack (the number of objects in a single hblk). In addition to
this, we rely on the facts that a) there can be at most a small constant number of bottom index tasks
on a local mark stack at any time, b) we process the mark stack in DFS order, and c) that we do not
recursively follow edges during the first two phases. Together, these facts ensure that the local mark
stack does not overflow. Various more complicated schemes could be devised to handle the relaxation
of some of these assumptions, but this has not been a practical performance limit.

• Second, we assume that the number of bottom index structures is small enough to all fit in the global
mark queue at once. In practice, this has been the case for all benchmarks we’ve considered.

If we did encounter a case where the number of bottom index structures exceeded the mark stack
size we could either a) simply grow the mark stack since the parallel threads haven’t started yet, or
b) run multiple iterations of the parallel step handling some of the bottom index structures in each
iteration. Since the per-hblk actions taken by phases 1 and 2 are dependence-free, this would be correct
if potentially slow.

Interesting, the next performance bottleneck encountered in the parallel implementation was not phase
3 of the mark algorithm. Currently in phase 3, we scan all of the hinted blocks for marked objects in serial
using only a single thread. We do leverage the baseline collector’s mark implementation once the mark
stack has been populated. We have not found this phase of the algorithm to be a performance limit except
in one special case: that of libquantum from the SPEC 2006 benchmarks. This case will be discussed in
Section 3.2.

We note that the implementation strategy described here was chosen primarily for speed of implementa-
tion, and that a – largely unexplored – design space of parameter choices exist within our current implemen-
tation. We would like to explore this further. Alternatively, there may be (and likely are) alternate parallel
implementation strategies work pursuing.

Parallel Overhead & Wasted Effort

As would be expected, there is a higher initialization cost for running the parallel implementation than for
executing the serial algorithm. This is true of both the hinted collector and the baseline traversal collector.
In large heaps, these overheads are largely amortized away, but for smaller heaps the differences in absolute
mark times can be significant.

When inspecting data on these small collections, we noticed an interesting pattern. Many of the small
collections were not collecting any garbage at all. This was true of both the hinted and traversal collectors.
Further investigation revealed that many of these collections were occurring during the warmup phase of an
application; objects were being allocated, exhausting the currently available heap space, and then forcing an
expansion of the heap. A key observation was that no deallocation had occurred since program initialization.
Several benchmarks show multiple small collections which fit this pattern.

Another interesting pattern revealed in the SPEC 2006 results from the serial collector was that all
collections for some benchmarks (in particular bzip, ibm, mcf, and sjeng) fail to reclaim any garbage.
This isn’t simply a quirk of the collectors; these benchmarks fail to deallocate any data until after the last
collection. This implies that every collection performed during the execution of the benchmark is wasted
effort for both collectors.

To capitalize on these observations, we introduced a special case to the hinted collection algorithm which
skips the collection if there are no hinted objects in the heap. This avoids wasted work since the amount
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of memory reclaimed by a hinted collection is bounded from above by the amount hinted. This is an
optimization that is only possible for a program with deallocation hints. We refer to this optimization as
the profitability-check. The benefit of this optimization can be clearly observed by comparing the serial
(run without) and parallel results (run with) for the previously discussed benchmarks.

Currently, we implement this optimization only for the parallel hinted collector. There is no reason
it couldn’t be extended to the serial version. We deliberately disable this optimization for most of the
microbenchmarks results reported since it complicates the writing of effective benchmarks.

In principle, this exact check could be extended to a heuristic based on an estimate of profitability of the
upcoming collection. The amount of hinted data provides one easy upper bound, but an estimation heuristic
could also use information about reclamation rates from previous collections. We have not investigated this
further, but believe such a check might be worth implementing. Similarly, we have not explored extended
this check to the traversal collector in a combined system.

Metadata Tracking Overhead

After parallelizing phases one and two of the mark algorithm, we observed that while the core mark algorithm
for the hinted collector was faster than that of the traversal baseline collector, the overall mark time was
not. In fact, the difference was a large fraction - roughly 20% - of the absolute mark time . The portion
outside the core mark algorithm includes the logic to stop-the-world, clear mark bits, initialize the collector,
start lazy reclaim, and clear hint metadata after the collection. (All times reported elsewhere include the
time for these actions in addition to the core mark algorithm.)

Investigation revealed that two serial actions were limiting performance: 1) the check for hinted ob-
jects just described, and 2) the need to clear the per-hblkhdr hint flag after the collection had completed.
Thankfully, each is easily addressed.

• The scan for hinted objects in the profitability-check optimization can be replaced with a single global
flag which is set the first time a hint is given during a collection cycle.

It is worth noting that the original implementation of the check was not an early-exit loop. Even
if a hinted hblkhdr was found, every hblkhdr would be visited. It is possible that simply using an
early-exit loop would give the same benefit for the case when a collection must occur. The single flag
implementation is clearly superior when the collection is not needed.

• The clearing of the per-hblkhdr metadata can be combined with the initialization of lazy sweeping.
The lazy sweep implementation needs to visit every hblkhdr to reclaim the block if the entire region is
empty or queue it for later processing if not. By combining the two visits, we can remove the extra scan
required by the hinted collector. Note that combining the hint clear is not strictly free; it introduces
a write into a code path which previously only performed reads in the common case. Despite this,
overall, it is clearly a net win.

With these two changes, the time outside the core mark algorithm for the hinted collector and the traversal
collector became roughly equivalent. Interestingly, on large heaps both collectors still spend significant
fractions of their runtime clearing mark bits in serial on the main thread before even beginning the mark
algorithm. Since this was not a difference between the two, we did not investigate parallelizing this step;
we believe it would likely be profitable to do so if the goal was to improve absolute rather than relative
performance.

3.2 Evaluation

This section focuses on evaluating the performance of our parallel implementation run with four marker
threads on a machine with two cores (each 2-way SMT, giving 4 hardware thread contexts). This is the
same machine used for the majority of the evaluation of the serial collector.
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Hinted Collector Tracing Collector
benchmark heap size 1P 4P speedup 1P 4P speedup
Linked List (Dead, Hinted) 31.8 MB 2.00 1.05 1.90 1.45 1.00 1.45
Linked List (Dead, Unhinted) 31.8 MB 7.75 5.70 1.36 1.40 1.00 1.40
Linked List (Live, Hinted) 31.8 MB 12.10 21.35 0.57 11.95 13.00 0.92
Linked List (Live, Unhinted) 31.8 MB 7.40 5.90 1.25 12.10 13.10 0.92
Fan In (Dead, Hinted) 23.7 MB 0.00 0.25 n/a 0.00 0.05 n/a
Fan In (Live, Hinted) 23.7 MB 12.90 6.45 2.00 12.85 5.25 2.45
Fan In (Live, Unhinted) 23.7 MB 8.25 7.05 1.17 12.50 5.10 2.45
2560 x 1k element LL 88.6 MB 19.80 13.90 1.42 31.70 13.00 2.44
256 x 10k element LL 88.6 MB 18.90 12.80 1.48 30.95 13.20 2.34
1/3 Cleanup 184.6 MB 31.95 30.60 1.04 50.10 33.65 1.49
Deep Turnover 56.6 MB 12.30 7.55 1.63 20.50 16.35 1.25
Unbalanced (Live) 744.6 MB 176.50 97.95 1.80 252.85 110.25 2.29
Unbalanced (Partly Dead) 744.6 MB 175.25 96.60 1.81 246.30 109.00 2.26

Table 3.1: Average collection times (in ms) for microbenchmark results. The machine used in these experi-
ments had two cores with 4 hardware contexts total. One key methodology note is that we have disabled the
profitability-check optimization for these results. This was done to give more insight into the general case
without having to modify the benchmarks to deallocate.

Methodology The methodology for comparison is identical to that used for evaluating the serial collector.
The only difference is the baseline collector used. In this section, we compare against the parallel stop-the-
world mark algorithm provided by the baseline collector.

Worth noting is that the baseline collector is run from the same code base as the hinted collector. We
have strived to avoid modifying codepaths used by the baseline collector, but there is the possibility we may
have biased the results. We don’t believe this has occurred. Where possibly we have sanity checked our
results against an unmodified baseline collector, but we can not always do so.

Microbenchmark Results

In Table 3.1, we contrast the performance of our hinted collector and a baseline tracing collector. One key
methodology note is that we have disabled the profitability-check optimization for these results. This was
done to give more insight into the general case without having to modify the benchmarks to deallocate.

From a parallelization perspective, the first seven benchmarks are relatively uninteresting. As we would
expect, the hinted collector outperforms the tracing collector when given exact hints, but the inverse holds
when entirely inaccurate hints are given.

The 2560 x 1k element LL and 256 x 10k element LL benchmarks consist of a set of linked lists
reachable directly from the root set. As we would expect, both collectors are able to fully utilize the available
memory bandwidth with four threads and achieve essentially the same performance. Worth noting is that
the hinted collector performs substantially better in the single threaded case.

Two cases worth highlighting occur in 1/3 Cleanup and Deep Turnover. These benchmarks highlight
the common case where only a section of the heap graph is collectible. With four threads, the traversal
collector has not matched the hinted collector’s single thread performance. In each case, the parallel hinted
collector reduces pause times further. We see the same general trends in the Unbalanced benchmarks, but
the results are less pronounced.
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Figure 3.1: Percentage of memory reclaimed (gray) and leaked (red) by hinted collector. 100% indicates
the amount of memory manually deallocated. The sum of the amounts collected by the hinted and tracing
collectors can exceed this amount.

SPEC 2006 Results

Full results from running a subset of the C programs in the SPEC 2006 benchmark suite can be found in
Table 3.2 and 3.3. The format of these tables is identical to those from the serial collector, as is the set of
benchmarks run.

The results for the amounts of memory reclaimed by the parallel collector are largely uninteresting. As
one would expect, the amounts of memory reclaimed by the parallel version of the hinted collector are quite
similar to those amounts reported by the serial implementation. Some benchmarks leaked slightly more,
some leaked slightly less, but in all cases the changes are within normal variation. There is slightly more
variation in parallel runs than serial runs; we believe the variation to be complete explained by differences
in collection timings across runs. A graphical summary of the results can be found in Figure 3.1.

The pause time results show the general trends we would expect. Both collectors show substantial
speedups for collections which were previously long running, but have non-trivial slow downs for small
collections due to coordination overhead. For benchmarks eligible for the profitability-check optimization,
hinted collection times drop to zero. For the benchmarks with pauses over 100ms in the serial run, the
reduction in worst-case pause time is on the order of 2-2.5x across the board for the hinted collector. The
traversal collector sees the same general trend, but with one glaring exception (perlbench) which we’ll
discuss shortly. The exceptions to these trends reveal some interesting facts:

• libquantum – As noted when discussing the memory leakage results for the serial collector, the
libquantum benchmark is retaining pointers to large amounts of memory after freeing it. This means
that neither collector can reclaim most of the freed memory. It also implies that most of the hints
given to the hinted collector are inaccurate. By breaking down the results (not shown), we see that the
majority of the runtime for the hinted collector is in the phase 3 traversal. As a result, the performance
of the hinted collector for this benchmark is limited by the performance of the tracing collector.

As an experiment, we modified each of the calls to free in this benchmark to assign NULL to the
pointer passed to free2 and then reran only this benchmark. As expected, this removed some of the
dangling references to free data.

2This was done by defining a macro which overrode the definition of free provided by the C standard library. Our macro
replaced each call to free with a direct call to the GC free routine and an assignment to NULL. This is sufficient for a test, but
in general, such macro magic is extremely dangerous. We note that this technique only works for a subset of the benchmarks
in SPEC since it can not distinguish between rvalue and lvalue arguments.
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benchmark hinted reclaimed % rec leaked % leak
bzip 0 bytes 0 bytes n/a 0 bytes n/a
cactusADM 5.74 GB 5.69 GB 99.15 42.87 MB 0.75
calculix 64.05 GB 62.26 GB 97.20 595.16 MB 0.95
gobmk 2.89 GB 2.89 GB 99.97 1.85 MB 0.06
gromacs 36.84 MB 36.75 MB 99.75 899.22 KB 2.39
h264ref 3.81 GB 3.57 GB 93.68 165.41 MB 4.42
hmmr 8.08 GB 7.98 GB 98.83 133.69 MB 1.65
lbm 0 bytes 0 bytes n/a 0 bytes n/a
libquantum 2.23 GB 336.77 MB 15.12 11.66 MB 3.35
mcf 0 bytes 0 bytes n/a 0 bytes n/a
milc 259.71 GB 249.19 GB 95.95 3.72 GB 1.47
perlbench 103.36 GB 96.67 GB 93.52 17.54 GB 15.36
sjeng 0 bytes 0 bytes n/a 0 bytes n/a
sphinx3 48.71 GB 48.67 GB 99.91 141.29 MB 0.29

Table 3.2: Summary of space reclamation across all collections for each SPEC benchmark when run with four
marker threads for each collector. “hinted” is the total number of bytes directly hinted by the application.
“reclaimed” is the amount of space reclaimed by the hinted collector. “% rec” is the percentage of hinted
data reclaimed; due to collateral hinting, this can be greater than 1.0. “leaked” is the total bytes reclaimed
by the tracing collector. “% leaked” is the leaked column divided by the total memory available for collection
(leaked + reclaimed).

Hinted Collector Tracing Collector
benchmark count min max mean median min max mean median
bzip 36 0.0 0.0 0.00 0.0 2.0 40.0 19.89 20.0
cactusADM 33 0.0 66.0 30.39 18.0 0.0 66.0 30.06 18.0
calculix 789 0.0 49.0 7.81 0.0 0.0 34.0 6.59 0.0
gobmk 158 0.0 16.0 5.85 6.0 0.0 9.0 5.26 6.0
gromacs 16 0.0 1.0 0.56 1.0 0.0 1.0 0.56 1.0
h264ref 138 0.0 8.0 3.07 3.0 0.0 7.0 2.79 2.0
hmmr 762 0.0 11.0 0.84 0.0 0.0 4.0 0.38 0.0
lbm 3 0.0 0.0 0.00 0.0 15.0 17.0 15.67 15.0
libquantum 21 2.0 511.0 79.19 10.0 2.0 514.0 79.71 10.0
mcf 3 0.0 0.0 0.00 0.0 0.0 1.0 0.33 0.0
milc 147 0.0 240.0 182.50 190.0 22.0 246.0 184.19 193.0
perlbench 546 0.0 153.0 58.02 60.5 0.0 614.0 68.01 69.5
sjeng 6 0.0 0.0 0.00 0.0 4.0 10.0 7.17 8.0
sphinx3 1537 0.0 18.0 6.44 6.0 0.0 8.0 5.06 5.0

Table 3.3: Statistical summary of pause times (in msec) observed for each SPEC benchmark when run with
four marker threads for each collector. The first set of columns are from the hinted collector; the second set
are a standard collector run immediately after the hinted collector completes.
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Figure 3.2: The parallel collectors scale with heap size and with the amount of live data. (The hinted
collector actually scales with the total amount, but in this case the effect is the same.) Note that the y-axis
ranges in the two plots are not the same.

benchmark hinted reclaimed % rec leaked % leak
libquantum 2.45 GB 682.91 MB 27.88 5.39 MB 0.78

Examining the results, we see that there is substantially more memory reclaimed in absolute terms
(688.3 MB vs 348.4 MB) and that the fraction reclaimed by the hinted collector also increases (27.88%
vs 15.12%). Oddly, the total amount reclaimed is still low. This implies that there must be other
dangling references not involved in calls to free. Despite this, the runtime of both collectors improved
substantially.

Hinted Collector Tracing Collector
benchmark count min max mean median min max mean median
libquantum 28 2.0 378.0 33.68 6.0 2.0 383.0 33.82 6.0

• perlbench – For this benchmark, the traversal collector slowed down when adding more threads. This
is in sharp contrast to the hinted collector whose performance improved by nearly 2x. As a result,
the hinted collector is nearly 4x faster for this benchmark. This result hints at a larger issue with the
scalability of the baseline tracing collector.

Overall, we consider these to be highly encouraging results. When moving from one thread to four, we see
a consistent scaling for the hinted collector of around 2-2.5x. This is not strong scaling with the number of
cores, but closely matches the read bandwidth available. When running a simple read bandwidth benchmark
on the same machine, we see approximating the same practical scaling behavior as we add threads. (1 thread:
8GB/s, 4 threads: 18GB/s, ideal: 21.3GB/s) The fact that we are seeing the same scaling trend is a strong
result.

Heap Size Scalability

As with the serial collector, we ran a simple experiment where we varied the amount allocated over a wide
range and varied the percentage deallocated before a collection. As we can see from Figure 3.2, the running
times of the two collectors are comparable across the entire range. The hinted collector does have a very
slight advantage, but nowhere near as much as seen for the serial collector3.

3This is the same benchmark as used to evaluate the scalability of the serial collector, but is run on a different machine
(“Machine 2” vs “Machine 3”) due to the variance issues described in Section 3.2.
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Digging into these results for larger heap sizes, we found that both collectors are spending a large fraction
of their time in serial code clearing the mark bits before the collection begins. At small heap sizes, the effect
is small, but with larger heap sizes an increasing fraction of total runtime is spent in this serial code (ex:
roughly 1

8 th of total execution time for the 3.5 GB data point). This code is shared by both collectors. It
would be fairly simple to parallelize this step, but the need to do so hints at a lack of tuning in the baseline
implementation for large heap sizes.

Parallel Scalability

All of the results presented previously are for four marker threads. We have also run a number of experiments
on machines with larger core counts, but have had somewhat disappointing results. As you can see from
the results in Figure 3.3, both collectors quickly approach a performance plateau and stop scaling with the
number of threads. It appears that on most of the benchmark we have examined that both collectors are
limited by the available memory bandwidth on the system. When we plot measured memory bandwidth
against number of threads in use, we see very similar curves.

More troubling, when we increase the number of marker threads past low double digits, we began observ-
ing extremely high variance in the execution times. The baseline tracing collector is particularly impacted
(with 4-5x slowdowns observed), but the hinted collectors variance increases noticeably as well. Interest-
ingly, the hinted collector and the traversal collector exhibits variation on largely non-overlapping sets of
benchmarks.

After examining the data, we could not identify a hypothesis that seemed to clearly explain this variation.
Through a series of experiments, we have been able to eliminate the following factors with reasonable
confidence: NUMA latency, thread preemption, cache contention, contention in the memory system, use of
hyper-threading, and our own code changes. Given that we can not explain these results, we have chosen not
to include them in full. All of the raw data files can be found in the publicly released source code repository.

Previous work by Endo et al [22] has identified several contributing causes that limit the scalability of
the Boehm-Demers-Weiser collector. Since the time of that work, some (but not all) of the improvements
suggested have been integrated into the baseline collector. One avenue for future work would be to compare
our parallel hinted collector implementation against that of Endo et al [22].
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Figure 3.3: Scalability of the collectors with various numbers of marker threads on four different machines.
The benchmark used is the same as the heap size scalability experiment.
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Chapter 4

Discussion

This chapter focused on the idealized hinted collection algorithm and some of its implications. The points
raised here should apply equally to the serial and parallel collector implementations of the last two chapters.

4.1 Memory Leaks

A hinted collector can leak memory unless paired with a backup collector. Such leaks can come from several
sources:

• Missing hints (direct) - If the user fails to provide a hint for an object, it will not be reclaimed.

• Missing hints (indirect) - If the user provides a hint for a given object, but does not provide a hint
for an object which references it, neither object will be reclaimed. The collector can not distinguish
between an object being retained due to references from live objects and references from dead objects
which are merely unhinted. As one special case of this, any cycle which contains an unhinted object
will be retained in its entirety.

• Hint races - If an object is hinted just before a collection, the last reference might survive into the
collection where the hint would be cleared without being the object being collected.

• Conservative References - Since our collector is a conservative collector, we may falsely identify a word
value as a valid reference. This could cause an object subgraph to be falsely retained.

• Old References - Our collector scans all objects in hblks that contain unhinted objects; it does not
distinguish between objects which might be live and those known to be dead - such as objects on a free
list. As a result, references in previously reclaimed objects can force the retention of hinted object.

Out of these sources, only the first two are fundamental to our approach; the latter are artifacts of our
particular implementation and could be avoided with an alternate design. Fortunately, as we saw with our
case study in Section 2.2, very little memory is leaked in practice. We have not attempted to break down
the contributing causes.

One slightly unintuitive fact is that a hinted collector can leak memory which was correctly hinted. If
a pointer into the hinted subgraph is found in any unhinted object, that subgraph will be traversed by
the collector and retained. In the worst case, a single missing hint can force the retention of an arbitrary
subgraph. Consider a long linked list which is unreachable. If all but the head node of the list is hinted, the
collector will find an edge crossing from unhinted to hinted and retain the entire list. We have not observed
this to be a practical concern. It is possible – though not, we believe, likely – that the use a per-hlbkhdr
flag for hinted metadata is obscuring the impact of such missing hints. Another possibility is that our use of
mature programs written for manual deallocation – and thus not expected have many missing hints – might
be causing our results to understate the performance impact of missing hints.
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During development we did encounter a case where old references triggered retention of large amounts
of unreachable objects. In the linked list benchmark, one node from the previous iteration was not reused
and by happenstance both lived on an unhinted hblk and pointed into the new list at an early position. We
believe this to be a very unusual reuse pattern that is unlikely to arise in real programs. As a safeguard, we
plan to introduce a concurrent cleaner to break references in dead objects after they have been reclaimed.
This would prevent old references from accumulating over time.

In principle, the hint metadata could be accumulated across multiple collection cycles. This would result
in some additional objects being reclaimed over time, but at the cost of inaccurate hints accumulating and
slowing down the collector. From our experience with patterns of common mistakes in manual deallocation,
it is not clear this would be a profitable approach. In practice, we chose to reset the hint metadata on every
collection. This is currently a somewhat arbitrary choice.

4.2 Manual Reasoning & Software Engineering

As noted earlier, our entire approach is premised on the assumption that it is reasonable to ask programmers
to understand object lifetimes in their programs. We believe the prevalence of programs written in languages
with manual deallocation to be conclusive evidence that it is. By that same evidence, we accept the fact
that such reasoning is not always simple and that programmers can not in general be always correct about
object lifetimes. In the context of our current work, we believe that our results clearly demonstrate that real
programs provide enough accurate hints to justify the use of a hinted collector.

Taking a step back, we acknowledge that there are times - such as when implementing lock-free data
structures - where not having to explicitly manage memory greatly simplifies design, reasoning about cor-
rectness, and can increase performance. These are among the key reasons that garbage collection has been
such a boon for software engineering productivity.

In a production collector, we would expect to pair a hinted collector with some form of backup collector
to ensure that small leaks do not accumulate over time. Conceptually, this is very similar to a manual
memory deallocation scheme paired with a background collector to increase the reliability and uptime of a
long running process, but without the potential unsoundness of trusted deallocation. We have not explored
the design space of possible pairings, and suggest this would be a profitable area for future work.

Long term, we would like to explore what programs written from scratch in a language with deallocation
hints would look like. We expect that most programmers will rely on common programming idioms or
patterns, but not invest in providing deallocation hints in most cases. This is perfectly acceptable; if the
concurrent collector can keep up with the application’s needs, this is entirely desirable.

In such programs, we foresee deallocation hints coming from two sources. First, library authors are
likely to provide hints where possible; widely used libraries already go out of their way to simplify memory
management - even in languages with garbage collection. Second, when an application does encounter the
limits of the backup collector, we foresee programmers selectively adding deallocation hints to reduce burden
on the backup collector. We expect profitable sites would be identified via a profile-guided optimization
methodology using some form of an instrumented collector to record reachability. This is similar to how
programmers tune the garbage collection performance of Java programs today.

4.3 Metadata Design Alternatives

One of the key design decisions in a hinted collector is how to store the set of hinted objects. As described
in Section 2.1, we chose to store a single bit in the hblkhdr - implicitly giving hints for many objects when
any one is given. In retrospect, we do not believe this to be the ideal design.

In many ways, the choice of how to store whether an object has been given a deallocation hint parallels
the ways to record mark bits in a standard collector; much of the previous work from that field should carry
over. For instance, one could place a status flag in an object header, a bitmask stored on the side, a flag per
group of objects, or even an extra bit per object.
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Interestingly, there are also options which are unique to hinted collection. As an example, one could
take advantage of hinted collection’s tolerance of approximation by using a data structure such as a bloom
filter to store an approximate set of deallocation hints. This would reduce the amount of storage required
at the cost of some additional objects being hinted (i.e. false positives). Bloom filters have well understood
trade-offs between size and false positive rates; it would be interesting to explore this design space.

Critique As a reminder, in the current implementation we choose to store hint metadata using a single-bit
flag for each hblkhdr (a large group of objects of common size). This has the effect of implicitly hinting
many objects - all those described by the same hblkhdr - every time a true hint is recorded.

The issue with our current scheme is that phase 3 of the collector algorithm is no longer something which
runs only when the user gives inexact hints. Instead, a user may give exactly the right hints (all accurate,
none missing) and the collector might still be forced to explore a large section of the (live) heap graph since
large portions of it may have been implicitly hinted.

While this has not been a problem so far, we are dissatisfied having this case invoked when exact hints
have been given. Since its parallel scalability is limited by heap depth, this portion of the algorithm is
likely to be a bottleneck in a parallel collector – as we see with libquantum in the four mark thread SPEC
2006 results. Another downside is that the current behavior potentially endangers the tune-ability that is
so attractive about a hinted collector. It is unclear with the current implementation whether adding a new
(accurate) deallocation hint is actually going to improve performance. If one got unlucky and implicitly
hinted part of a large linked list, adding an (accurate) hint could hurt performance substantially.

One potential cost of moving away from the current implementation is that implicit hinting of objects
gives some protection against missing hints forcing the retention of unreachable objects. As mentioned
previously, we don’t believe this to be a major effect, but it is something to be considered.

marked-by-default If we eventually re-implement our collector, we plan to reuse the existing mark bits
to store deallocation hints between collections. The basic scheme would be to mark all objects initially on
allocation and only unmark an object when a deallocation hint is given. The lack of marking would indicate
a deallocation hint had been given for that object and that object only; there would be no collateral damage,
as there is now. During collections, the mark state invariant would be restored by marking any hinted objects
as in phases 2 & 3 of the current algorithm. Notably, only missing or inaccurate hints would trigger phase 3.

There are two tricks to this representation. First, we would need a way to perform the edge filtering
optimization. Assuming that per object mark bits continue to be stored in the page header as a bitmask,
this check could be implemented via a series of bit operations. Second, having objects which are live, but
unmarked between collections complicates lazy-sweeping to reclaim objects. The easiest solution would be
to store a “safe-to-sweep” bit in the hblkhdr that is cleared on the first deallocation hint to a hblk. This
same flag could be used for the edge-filtering optimization as well. An alternate approach would be to use
multiple sets of mark bits – similar to how one might support concurrent marking and sweeping as in [18].

One optimization this scheme makes obvious is to restore the page level flag if all the objects in the
hblkhdr become marked during the collection. This could potentially improve the efficiency of the edge-
filtering optimization within a single collection. We note that this optimization isn’t actually specific to
this representation of hints, but follows more naturally from this then our current implementation. The
performance of this would need to be explored.

An additional possibility enabled by this design is the optional integration of a read barrier that could
silently fix mistaken deallocation hints if the object is again accessed. This read barrier is not necessary for
correctness. It is not clear that it would be a net win, but further investigation is certainly merited. Again,
this optimization could be used for any storage scheme that has one hint flag per object. It is not specific
to the marked-by-default scheme described here.

One concern that might arise when considering a marked-by-default design is the possibility that out-
of-bound writes from the mutator could cause the collector to reclaim an object which isn’t actually dead.
With an adversarial mutator, we can’t write out this possibility entirely (neither can the standard tracing
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collector), but by the properties of the hinted collector algorithm we can be sure that arbitrary writes to
only the mark-bits will not cause collector malfunction. Assuming the roots are gathered correctly and every
outbound edge from a marked object is explored, the actual reachable subgraph must be marked after the
collection. This follows from the properties of reachability given in Section 1.2.

4.4 Explicit Hinted Object Sets & Hazard Pointers

In this section, we describe an alternate implementation strategy for a hinted collector that tracks an explicit
set of hinted objects and periodically checks the membership of that set against the set of live pointers. The
key difference here is that the set of hinted objects is tracked as a separate data structure rather than by
using hblkhdr flags or reusing mark bits (see 4.3). This implementation is partly of historical interest -
it is actually the first one we implemented - but is also interesting as it highlights parallels with hazard
pointers [27] - a methodology used for safe deallocation in lock-free algorithms in languages with manual
deallocation - which are not as clear with the current algorithm.

Before considering the current algorithm for hinted collection, we had constructed a prototype implemen-
tation that was primarily intended for instrumentation rather than collection. It was far too slow to be a
viable collector. The basic strategy was to create an explicit linked list of deallocated but not yet reclaimed
objects. Periodically, we would walk through the entire heap checking to see if any pointer we encountered
was also in the list of deallocated objects. If it was, we’d remove that object from the link list and scan it
as well. There are obvious ways to accelerate this, but we never implemented them since we moved to the
new algorithm instead.

What’s interesting about this implementation is that it is nearly identical to the “scan” operation of a
hazard pointer implementation. As a brief reminder, the hazard pointer methodology [27] is widely used
to ensure correct high-performance object recycling in lock-free algorithms and data structures in languages
with manual deallocation. Objects that are to be retired are placed on a special “retired list”. Periodically,
this list is scanned for objects which are known to be dead. The key invariant that must be upheld by an
implementation is that there must be a pointer to any retired object which might still be in use in a special
set of roots called “hazard pointers”. Pointers to retired objects can also exist elsewhere, but if they do,
there must also be a pointer in the set of hazard pointers which refers to that object.

In the terminology of hazard pointers, our list of hinted objects is simple the “retired list”. The key
difference between hazard pointers and the more general hinted collection is in what set of potential source
pointers gets checked against the objects in this list. The invariant upheld by hazard pointer implementations
provides two key guarantees our hinted collector does not have:

• First, that scanning only the set of hazard pointers (i.e. not other stack variables, or heap objects) is
sufficient to soundly identify any reachable retired objects.

• Second, that recursive traversal of retired objects found to be potentially live is not required.

To put this another way, hazard pointers are simply a specialized implementation of hinted collection which
leverages a user maintained invariant to avoid exploring most edges in the heap.

In making this reduction, we do not mean to minimize the importance of the hazard pointers methodology.
In practice, hazard pointers is a far more efficient implementation for this particular use case than hinted
collection will ever be. What we find deeply exciting is that there may be other special cases of hinted
collection - leveraging some other, as yet unknown invariant - which could be used to reason about the
correctness of other interesting patterns of manual deallocation.
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Chapter 5

Future Work

This chapter focus on work that we have not completed. The first section discusses ideas for direct extensions
of the current work. The second describes a set of design sketches for how our current stop-the-world
implementation of hinted collection might be extended to a generational, incremental, or concurrent collector.
The final section takes a step back and describes two alternate approaches to the problems hinted collection
aims to address. This entire chapter is somewhat speculative by nature.

5.1 Direct Extensions

Integration

Our current effort has focused on evaluating the performance of a hinted collector vs a standard tracing
collector in isolation. As a result, we’ve tried to keep as much of the environment fixed as we could. This
has meant that we have not modified such factors as the frequency of collections or allocation strategy. For
most of our experiments, we have substituted eager sweeping to ensure a fair comparison between the two
collectors. It would be interesting to explore how the performance of a hinted collector changes when the
timing of collection is influenced by its own collection rate (rather than the traversal collector’s) and what
information about scheduling could be extracted from deallocation hints being provided by the program.
We have not explored any of these design choices and recommend them for future work.

It might be profitable to choose between hinted and traditional collection at runtime based on properties
of the program observed. One interesting approach would be to use techniques from machine learning
classification to learn a dividing hyperplane through the parameter space. This might provide interesting
insights that could be leveraged in making runtime decisions. This is an aspect that we have not pursued.

Depth Bounded Hinted Collection

One way of accelerating the hinted collector further would be to give up (i.e. reclaim nothing) if a deep
structure was detected in the hinted subgraph. By avoiding the degenerate case where a hinted collection
is forced to explore a large portion of the heap to ensure any objects reclaimed are unreachable, you could
improve average and worst case hinted collector pause times at the cost of some increased memory leakage.
This would have the effect of strongly encouraging correct hint usage (i.e. to get good performance), but
would not sacrifice correctness or even memory leakage provided a backup collector was present in the system.

Design Space Exploration

As should be clear from the previous chapters, the space of viable designs for a hinted collector is as large if
not larger than the design space of traditional tracing collectors. Thankfully, many of the design decisions -
if not the appropriate choices - are fairly clear from the preceding discussion and the literature on traditional
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tracing collection. We would strongly suggest that, rather than building a particular point in this huge
design space, that future work should instead focus on building a collector generator - i.e. a program which
is parametrized by the available decisions and outputs appropriate code which can be compiled and tested
- and use auto-tuning and design space exploration techniques to discover the most profitable designs. In
retrospect, this would have been a much better approach for the entire project.

A few design choices that we believe might be particularly profitable to explore are:

• The traversal order used in phase 3 of the mark algorithm. The current implementation inherits the
traversal code from the baseline collector (i.e. DFS in serial collections, DFS w/BFS-like work stealing
in parallel collections), but it is unclear whether this is the ideal strategy for a hinted collector. In
principal, a “typical” traversal in phase 3 might look very different than a standard collection.

• The collection scheduling heuristic. Exploring the space of possible decision heuristics (which are
mainly linear combinations of statistics with a few branches), could be quite profitable and should be
easily tractable with a fairly simple auto-tuner.

• The load balancing of the parallel implementation. There is a delicate balance between single thread
performance and load balancing. We lightly explored this space, but a more extensive evaluation would
be worthwhile. There might also be room for runtime decisions which we have not explored.

Minimum Number of Hints

The current work has focused on establishing the core idea behind hinted collection and establishing that
such a collector is feasible at all. With this goal, we have focused on using mature programs from a language
with manual deallocation. This has ensured that the set of hints are likely to be reasonably exact. It would
be interesting to explore whether hinted collection is still feasible when hints are much less exact. We see
two worthwhile approaches:

• The first would be to implement hinted collection for a garbage collected language - i.e. one without
existing free calls which can be leveraged as hints - and determine what the smallest code change
required to achieve good performance would be.

• An alternate approach to the same question would be to start with a language with manual deallocation,
combine a hinted collector with a fallback traversal collector, and then reduce the number of free calls
in the benchmark programs until performance starts to drop off.

We suspect that the number and placement of deallocation hints required in either case would be relatively
small, but we also suspect the two approaches might arrive at subtly different answers. This difference would
be extremely interesting since it would hint at the fundamental design difference of programs written with
manual deallocation vs garbage collection in mind. We note that a similar experiment could be run with
a system which combined traditional garbage collection and manual deallocation (like the Boehm-Demers-
Weiser collector), and might provide similar insight.

Compile Time Deallocation & JIT deallocation

One possibility we would like to explore is how deallocation hints might affect efforts on compile-time object
deallocation [16, 17, 24]. If a compiler could predict with high accuracy where an object was likely to become
dead, a deallocation hint could be automatically inserted, even if the compiler could not prove the correctness
of deallocation at that point. This enables the use of unsound analyzes and techniques such as purely local
pattern matching. We are particular excited by the possibilities of what a just-in-time compiler could do
with a combination of runtime profiling and compiler insertion of deallocation hints.



38

5.2 Advanced Collector Design Sketches

In this section, we give rough design sketches for incremental, concurrent, and generational versions of a
hinted collector.

Generational Collection

Extending a hinted collector to a generational scheme is fairly straight-forward. As with any generational
collector, a means to track reference between generations is required. Once this has been provided, the inter-
generational references can simply be treated as additional roots in phase 1 of the hinted collector algorithm.
The region of the heap outside the current generation can be excluded from the rest of the algorithm with the
addition of simple boundary checks on the ranges of hblks explored and a range-based filter during reference
detection in phase 31.

Worth noting is that the profitability of using a hinted collector for one generation in a generational
collector is far from clear. We suspect that a hybrid implementation – one with both a hinted and traversal
collector available for a given generation – would actually be more profitable.

One scheme would be to have the hinted collector run at a slightly higher frequency than the standard
collector for the young generation. If the hinted collector – possibly a depth bounded variant (see 5.1) to
minimize pause times – could achieve a high enough reclamation rate, promotion of objects to the older
generation could be delayed. Analogous to the previous possibility, a hinted collector could be used in
concert with a tracing collector to collect the older generation. This could potentially reduce the average
cost to collect a large old generation, but would not benefit worst case collection times.

An alternate idea would be to use the information provided by deallocation hints to dynamically resize
the youngest generation as in [7]. By leveraging information about when objects are expected to be dead,
a generational collector could delay collection (by expanding the young generation) until a threshold value
was breached or a specific rate of deallocation was observed. Assuming that hints were mostly accurate and
relatively few missed - a fact that could be observed and potentially predicted by a runtime system - this
could allow a generational collector to avoid wasted collections of the young generation (i.e. promotion of
objects into the old generation which will die early.) This isn’t strictly speaking a use of the hinted collection
algorithm described in this thesis, but it would certainly be a use of deallocation hints.

Incremental or Concurrent Collection

Interweaving the execution of a hinted collector with mutator activity should require relatively little innova-
tion beyond what is done for tracing collectors today. During the execution of phase 2, a barrier is needed
to ensure that references to hinted objects are not written into unhinted objects which have already been
scanned. Without such a barrier, it is possible that a hinted object would escape being marked by the
collector and be incorrectly reclaimed. Assuming we are using the marked-by-default scheme described in
Section 4.3, phase 1 no longer exists, and phase 3 is simply a standard traversal to which all the standard
approaches should apply.

One interesting observation is that unless the mutator was actively manipulating references in or pointing
into the hinted subgraph - which would be an odd program to say the least - few barriers would be triggered
by the mutator. As a result, any form of barrier trap storm - where mutator performance is negatively
impacted by correcting garbage collector invariants for a large number of objects in a small time period -
would be highly unlikely.

As with the options described for integrating a hinted collector into a generation collector, there are several
obvious possibilities for combining concurrent hinted and tracing collectors into a combined system. When
you introduce the possibilities of depth-bounded hinted collection (see Section 5.1) and truly concurrent

1Note that we are ignoring any additional issues introduced by the fact our prototype is a conservative collector. The unique
challenges of building a non-relocating conservative collector have been well explored [19, 7], and should map cleanly to a hinted
collector if required.
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mark and reclaim phases [18], the design space is too large to make any prediction of profitability with
reasonable confidence. We can only suggest this as a potential avenue for future work.

5.3 Alternate Approaches

This section describes two alternate approaches to leveraging developer knowledge to accelerate collection
without sacrificing soundness. The first is an alternate take on hinted collection, while the second inverts
the idea of deallocation hints to consider what could be done with hints that an object should be assumed
live instead of dead.

Hinted Edges

An alternate framing to the idea of a hinted collector is to associate deallocation hints with the edges in the
heap graph rather than the objects. The intuition behind such edge hints is that the hinted edge should
not contribute to the reachability of the target object unless the source of the hinted edge is itself reachable.
When an object is expected to be reclaimed, all of the object’s outbound edges would be marked as hinted
and the local reference to that object would be made null.

The collector algorithm would explore all edges in parallel (analogous to phase 2 of the current algorithm),
and mark any object with an inbound unhinted edge. This would have the effect of leaving unmarked any
object which is only directly accessible from hinted edges. As a second step (analogous to phase 3 of the
current algorithm), any edges (regardless of hint) reachable from a marked object would be recursively
followed and the target marked. Finally, any remaining unmarked objects would be reclaimed.

We believe that this approach is isomorphic with the algorithm for our current collector, but we have
not proven this. There may be practical engineering advantages to using one scheme or the other. As an
example, the edge hinting scheme separates the storage of hinting metadata and mark bits which could be
advantageous for concurrent collector designs since it would remove the need to coordinate hints with the
marking phase. (A tagged pointer could be used to combine the hint flag and the reference into one pointer
sized storage location.) On the other hand, the edge hinted algorithm has to traverse the edges twice even
in the best case.

Relation to weak pointers It is interesting to consider how an edge hinted collector compares with
the traditional weak pointer construct which is supported by many reference counted and garbage collected
systems. A weak pointer is a pointer which does not itself establish reachability of the target object. If there
are no normal (a.k.a. strong) pointers to the object, the object will be deallocated and the weak pointer will
(atomically) be made null.

The key differences between a weak pointer and a hinted pointer is that the weak pointer is strictly a
local decision. On the other hand, a hinted edge contributes to a global decision about the reachability of a
subgraph (not only an object). It is unclear whether one approach is strictly better than the other. Since this
is nothing intrinsically conflicting about the two, it may be desirable to support both in a given language.

Retain Hints - Inverting the Problem

Rather than having a programmer give hints about when objects should be deallocated, we could instead
ask a programmer to specify when an object should be specifically retained. In the case of exact hints, these
two framings are obviously equivelent, but the effect of incomplete hints is interestingly different.

The expected use of retain hints would be to provide hints only for large long lived data structures.
The hope would be that starting with these objects marked would enable the collector to avoid repeated
exploration of large sections of the heap graph on every collection. Consider a program which uses a long
link list to manage a queue between a producer and a consumer. By pre-marking every node in the queue -
which should be simple for the implementer of the queue - the collector could completely skip the traversal
of the list and instead skip directly to exploring objects reachable from each of the items in the queue.
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The collector for a retain hint based system would function in a manner largely similar to phase 3 of
the current algorithm except that all heap blocks would need to be explored, not simply those with hints.
The retain hints could be viewed as essentially jump starting a standard traversal collector with a much
larger root set. As with a deallocation hint collector, the collector would be sound (i.e. any object reclaimed
was actually unreachable), but not complete (i.e. not all unreachable objects might be reclaimed). The
correctness argument follows from the same property of reachability as our current hinted collectors.

A retain hint collector has one key advantage over the class of hinted collectors described in this thesis.
Like a hinted collector, a retain hint collector could still end up exploring part of the unreachable graph.
Unlike a hinted collector, this could only happen if an inaccurate hint was given (i.e. an object marked for
retention became dead without having the hint removed), not from missing hints. The downside is that the
portion of the unreachable graph explored is not limited to the nodes hinted like in a hinted collector.

It is unclear whether a retain hint collector would be more profitable than our current hinted collector
design; there are far too many trade-offs to predict with any certainty. We suggest this would be an interesting
and potentially fruitful topic for future work.
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Conclusion

We have proposed a new approach to the classic problem of automatic memory management. By allowing
users to provide hints about object deallocations, we are able to simplify the task that a collector must solve.
As we have shown, this leads to better parallel asymptotic bounds and practical performance improvements.

We presented two collector implementations – one serial, one parallel – which are both practical and
efficient. On a collection of benchmarks and one case study, we are able to show reductions in pause time of
up to 10-20% for the serial collector. For the parallel collector run with four marker threads, we demonstrated
pause times which are competitive with the baseline implementation for all benchmarks considered. For one
benchmark (perlbench), we demonstrate a 75% (60%) reduction in worst case pause time over the parallel
(serial) traversal collector. In this case, the parallel traversal collector is slower than the serial version by a
large margin; our hinted collector does not exhibit this behavior.

We used a collection of standard benchmarks and a case study to assess the practical leak rate implied
by requiring hints to reclaim an object. As expected, the actual rate of leaked memory was low at less than
5% for most benchmarks. Such a low rate could be easily addressed by pairing a hinted collector with a
more standard backup collector.

In an expanded discussion section, we highlight the importance of a well chosen representation for hint
metadata, the software engineering implications of hinted collections, and how our technique relates to others
for safe memory management. Finally, we close with an extensive discussion of possible research directions
for exploring the topic of hinted collection in more depth.
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