
Hardware Construction in Chisel

Huy Vo

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-98

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-98.html

May 17, 2013



Copyright © 2013, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Contents
1 Introduction 3

1.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Chisel 5
2.1 Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Basic Hardware Construction in Chisel 9
3.1 ListLookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Advanced Hardware Construction in Chisel 12
4.1 ListLookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Elaboration Time Hardware Construction 15
5.1 Elaboration Time Hardware Construction Interface . . . . . . . . . . . . . . . . . 15
5.2 When . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3 SRAM Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4 Automatic Pipeline Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Conclusion and Future Work 22

1



List of Figures
1 Chisel Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 2-Input Mux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Chisel Literal Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 Hierarchical 4-Input Mux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5 Chisel Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6 ListLookup as Chisel Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
7 Vec as Chisel Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8 ListLookup as Scala code and basic Chisel nodes . . . . . . . . . . . . . . . . . . 12
9 Vec as Scala code and basic Chisel nodes . . . . . . . . . . . . . . . . . . . . . . 13
10 Elaboration Time Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
11 When Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
12 5-stage CPU Datapath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
13 Resolving hazards through interlocks . . . . . . . . . . . . . . . . . . . . . . . . . 19
14 Resolving hazards through speculation and bypassing . . . . . . . . . . . . . . . . 20

2



1 Introduction
Chisel [2] is designed to be a hardware construction language so any design in Chisel will always
have a well defined mapping to low level hardware blocks. Chisel’s core programming features allow
users to accurately describe hardware circuits and can be easily extended for higher level hardware
designs. This paper categorizes Chisel hardware construction into three levels and discusses the
merits and drawbacks of each level.

We first introduce the core features of the Chisel hardware construction language in Chapter 2.
All hardware design in Chisel boils down to writing a Scala program that builds up a directed
graph of Nodes which are Scala objects that map to basic circuit elements. Chisel provides
basic operators for constructing and connecting nodes into subgraphs. The subgraphs can be
organized into Components which can be connected to other Components to form larger and
more complex graphs. Chisel code can be mapped to many different backends. We currently support
a C++ backend for high speed simulation and a Verilog backend to leverage existing ASIC tools.

Chapter 3 presents the lowest level of hardware construction in Chisel. We consider this the
lowest level since Chisel code is written at the granularity of Chisel’s most basic element, Nodes.
At this hardware construction level, Chisel user code looks identical to the targeted backend code.
This can be advantageous if the backend has syntax that the tools can use to synthesize efficient
hardware. The downside to this is that syntax in one backend might not have a parallel in another
backend.

Moving up the abstraction ladder, Chapter 4 presents the next level of Chisel hardware con-
struction in which the user writes code using Scala functions that generate hardware. Although the
Chisel code might look similar to Chisel from Chapter 3, the resulting Chisel graph is much denser
since this hardware construction level only uses the basic features of Chisel. Higher level hardware
facilities are abstracted away into Scala functions that implement the same functionality using only
basic Chisel Nodes. Although we no longer leverage backend tool support for special syntax, this
approach has the advantage of decoupling Chisel code from the backends.

The last level of hardware construction, Chapter 5, analyzes and transforms Chisel graphs
to produce different Chisel graphs. This hardware construction level is similar to the hardware
construction level of Chapter 4 in that users still write Scala programs to build hardware. The
difference is that these functions are invoked during elaboration time to modify a graph instead of
during runtime to build the graph. This hardware construction level is useful for circuit designs that
are difficult or undesirable to build during runtime.

1.1 Related Works
The most widely used hardware description languages (HDL), Verilog and VHDL, are actually
ill-suited for designing efficient, high-performance hardware. These languages lack the powerful
abstraction facilities that are readily available in modern programming languages. Without these
facilities, hardware designers using these languages are relegated to writing undescriptive and
non-reusable hardware modules which dramatically impedes the most important aspect of building
efficient hardware: design space exploration.

One way to circumvent this issue is to design hardware from within a specific domain. Esterel [3]
is synchronous programming language that uses event-based statement to describe reactive systems.
Bluespec [4] uses guarded atomic actions to describe state change. Spiral [5] generates hardware for
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linear signal transformations from an input problem description. Although these languages allow
designers to write more expressive hardware, they only work well when used for task that matches
their model and will fall short when used for general purpose hardware construction.

1.2 Acknowledgments
The Chisel HDL is an ongoing project. Jonathan Bachrach is the original author. I joined the
project in 2011 where I worked with Jonathan and Brian Richards to port an existing FPU library
from Verilog to Chisel. I continued working with Jonathan to implement Chisel’s type system.
In 2012 I work with Yunsup Lee to port an existing vector machine to Chisel. During this time I
developed Vec to better express the hardware in the vector machine. I eventually moved Vec into
Chisel’s library. Since then Jonathan has added support for bidirectional wires to Vec and Andrew
Waterman has added new functionality to Vec such as contains and forAll methods. Jonathan
is responsible for the original implementation of Chisel’s when statement. Andrew implemented
Chisel’s elaboration time interface. Yunsup, Andrew, and I have written various SRAM backends for
the chips we built. The automatic pipeline synthesis tool is CS294-88 class project that I developed
with Wenyu Tang.

4



2 Chisel
Chisel is a domain-specific language embedded in the Scala programming language [7] so it is really
just a library of Scala functions and data structures. Someone writing Chisel code is essentially
writing a Scala program that uses the provided functions and data structures to construct hardware.
This chapter introduces the core components of the Chisel hardware construction language; readers
interested in a more a detailed specification of Chisel should consult the Chisel manual [1] which
can be found on the Chisel website.

2.1 Node
Hardware circuits are represented in Chisel as directed graphs of Nodes, which are the base
class from which all circuit elements are derived. Figure 1a shows the Chisel class hierarchy and
Figure 1b shows the API for the Node class.

Types. Chisel has its own type system that is maintained independent of the Scala type system.
Figure 1a shows the Chisel data types and their hierarchy (everything rooted at Data). Bits is
used to represent raw collection of bits, Bool is used to represent Boolean literals, and Num is used
to represent numbers. Note that Num has two subclasses, Fix and UFix which are used for signed
and unsigned numbers respectively.

Node

Updateable Lit Op

Data Mem Reg

Bits Bool Num

Fix UFix

(a) Hierarchy

abstract class Node {
  // user assigned name of Node
  val name: String
  // incoming edges
  val input: ArrayBuffer[Node]
  // width inferance
  def inferWidth: Int
}

(b) API

Figure 1: Chisel Node

Arithmetic and Logic. Arithmetic and logic operations are represented with Op nodes. The
Chisel manual has an exhaustive list of supported operations. Op nodes are constructed whenever a
user invokes the corresponding type node member function for the operation. For example, suppose
we have two Bits nodes, a and b, and want to connect them to the inputs of an AND gate. The
Chisel code that will do this is a & b which is actually syntactic sugar for a.&(b). The &
function that Bits defines will instantiate an Op node to represent the & and put the two Bits nodes,
a and b, into the Op node’s input.

The example Chisel code in Figure 2 shows Bits nodes and Op nodes interacting to create a
2-input multiplexor built out of & and | gates. In this example, a, b, and sel are incoming Bits.
Invoking a & sel will create a new Op and connect that node to a Bits since both inputs are
Bits. The output of the circuit, c, will be the Bits connected to the | Op.

Literals The Lit node works in conjunction with type Nodes to represent literals. Figure 3
shows example Chisel code for instantiating literals. True and false literals are represented as Bools
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val c = a & sel | b & ~sel

Op(|)

Op(&)

Op(&)

Bits

Bits

Bits

Bits

Bits

a

sel

b

cBits

Figure 2: 2-Input Mux

connected to Lit nodes 1 and 0 respectively. Arbitrary bit strings can be represented with Bits
Nodes and numbers can be represented with Fix and UFix Nodes, all of which are connected to
Lit Nodes with the appropriate value.

Registers The Reg node, Chisel most basic state element, represents a positive-edge-triggered
flip-flop. Reg nodes, unlike the previous nodes, are manually instantiated by the user. The manual
details the different ways that a Reg can be constructed. Briefly, Regs can be constructed either
with or without an update signal. Reg’s constructed without an update signal can be conditionally
updated.

Memories Mem Nodes are used to represent random access memories. These memories can
be accessed with either Bits or UFix nodes. Writes to these memories are positive-edge-triggered
while reads can be either combination or positive-edge-triggered.

2.2 Component
In addition to Nodes, Chisel also provides Components to allow users to organize their directed
graph of Nodes into subgraphs, adding a hierarchical structure to their hardware. Figure 4 shows
an example of a Chisel implementation of a 4-input mux built from three 2-input muxes.

Interfaces When defining a new Component, users have to fill out the io field which is the
input-output interface that Components expose to each other. An input or output node in Chisel
is represented with a type Node where the direction field is set to either INPUT or OUTPUT. The
example in Figure 2 shows Component interfaces built out of Bits nodes. Input and output nodes
can be collected into Bundles, which are functionally similar to C structs, for better organization.

Wiring Once a Component’s interface and circuit implementation are defined, users will need
to connect Components together. Chisel provides two different ways for connecting Components

val t = Bool(true)
val f = Bool(false)

Bool Bool

Lit(0) Lit(1)

(a) Bool literals

Bits

Lit(5)

val b = Bits("b101")

(b) Bits literals

UFix

Lit(6)

val u = UFix(6) 

(c) UFix literals

Fix

Lit(-3)

val u = Fix(-3) 

(d) Fix literals

Figure 3: Chisel Literal Examples
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class mux2 extends Component {
  val io = new Bundle {
    val a = Bits(INPUT, 1)
    val b = Bits(INPUT, 1)
    val sel = Bits(INPUT, 1)
    val out = Bits(OUTPUT, 1)
  }

  io.out := io.a & io.sel |
            io.b & io.sel
}

Op(|)

Bits Bits Bits

Op(&) Op(&)

BitsBits

a sel b

c

Bits
mux2

(a) 2-Input Mux

class mux4 extends Component {
  val io = new Bundle {
    val a = Bits(INPUT, 1)
    val b = Bits(INPUT, 1)
    val c = Bits(INPUT, 1)
    val d = Bits(INPUT, 2)
    val sel = Bits(INPUT, 2)
    val out = Bits(OUTPUT, 1)
  }

  val m1 = new mux2
  val m2 = new mux2
  val m3 = new mux2
  // connect the muxes...
}

Bits Bits Bits Bits Bits

mux2

mux2

mux2

Bits
mux4

a b sel c d

out

(b) 4-Input Mux

Figure 4: Hierarchical 4-Input Mux

together. := is used for connections going from right to left while <> is used for connections that
go in either direction. Both connection operators can be used to connect either individual ports or
entire Bundles. If used for the latter, the connection operator will recursively walk through Bundle
and wire each element individually.

2.3 Backend
The Backend takes as input a directed graph of Nodes and generates code for the specified backend.
Figure 5 shows how Chisel’s backend generates code from a directed graph of nodes. Chisel
currently generates code for two backends: Verilog and C++.

Elaboration The elaboration phase performs backend specific transformation on the graph in
order to generate valid code for that backend. For example, it is desirable to preserve Component
hierarchy when targeting the Verilog backend, so the elaboration phase will do a graph walk to
match nodes into components. For the C++ backend, the elaboration phase will transform the graph
into a directed acyclic graph and perform a topological sort.

The elaboration phase also performs transformations and checks that are common to both
backends such as width inference and combinational loop detection.

Code Generation Figure 5b shows the API for generating code from an elaborated graph of
nodes. The emitDec function is called to generate the code for declaring the node, emitRef
is called to generate the reference to a node, and emitDef is called to generate the code. As an
example, suppose the Verilog backend is generating code for an Op node that performs an add. The
emitDec function, when called, returns the string

wire [31:0] a;

assuming that the Op is 32-bits wide and its user assigned name is a. The emitDef function, when
called, returns the string

assign a = b + c;

assuming that the two nodes in the Op’s input list have names b and c.
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Op(|)

Op(&)

Op(&)

Bits

Bits

Bits

Bits

Bits

Bits

mux.v

elaborate

verilog backend

code generation

mux.cpp

elaborate

C++ backend

code generation

(a) Elaboration and Code Generation Process

abstract class Backend {
  // emit name
  def emitRef(n: Node): String
  // emit declaration
  def emitDec(n: Node): String
  // emit code
  def emitDef(n: Node): String
}

(b) Backend API

Figure 5: Chisel Backend
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3 Basic Hardware Construction in Chisel
The Chisel constructs presented in the previous chapter are adequate for most hardware circuits. We
have in fact built an entire floating point library using only those constructs. Occasionally, users
might want to leverage syntax for hardware facilities available in a target backend from within
Chisel. Suppose for example that a user is having Chisel target a backend that has support for highly
optimized FFT circuits. One way to leverage this facility is to introduce a new type of Node into
Chisel that maps directly to that syntax in the backend. This approach keeps the Chisel graph sparse
since all the hardware construction complexity is pushed into the backends where the backend
synthesis tools could possibly map the hardware facility to very dense circuits. The downside to this
approach is that Chisel code using Nodes designed to target these backend hardware facilities now
have a strong dependence on that backend. Furthermore, targeting a new backend would require
effort to port the Chisel user code if the new backend does not have built-in support for the hardware
facility.

The nuts and bolts to pay attention to when implementing a new Node are the node’s code
generation functions and the node’s inputs list. Let’s say we are implementing a new Node called
Foo. If Foo’s code generation function need to reference nodes B, A, and R, then all three of
those nodes must go into Foo’s input list. Omitting a node can lead to a scenario where Chisel is
unable to reach the omitted node and thus never emits the backend code for that node. The result is
Foo’s backend code will make reference to non-existing hardware. This chapter will show how
ListLookup and Vec nodes can be implemented to target Verilog’s case statements and arrays.

3.1 ListLookup

ListLookup

addr1 Lit1,1 Lit1,2 Lit1,n...

m

Bits1,1 Bits1,2 Bits1,n...

LLR1,1 LLR1,2 LLR1,n

b1 b2 bn

...

...

addr

(a) ListLookup Node. Lit = Literal node, LLR
= ListLookupRef nodes, and addr is shorthand
for a Bits node used as an address. Boxes with
(addrj, litsi,j) represent Scala tuples.

always @ (*) begin
  casez(addr)
    addr1: begin
      b1 = lit1,1
      b2 = lit1,2
         ...
      bn = lit1,n
    end
    addr2: begin
      b1 = lit2,1
      b2 = lit3,2
         ...
      bn = lit3,n
    end
       ...
end

(b) Generated ListLookup Code. There are m gen-
erated case statements each with n literal assign-
ments.

Figure 6: ListLookup as Chisel Node

9



We introduce ListLookup and ListLookupRef nodes to target Verilog’s case statement
from within Chisel which is useful for writing decode tables.

ListLookup Node.The inputs to this node are an address, a default list of literals, and a list
of tuples (ai, litsi) where litsi is a list of a literals. Figure 6a shows how the inputs to
the ListLookup nodes are managed. This node is different from other nodes in that it does not
have an entry for emitDec and emitRef. The only code generation function it fills out is the
emitDef function which generates the case statements in Figure 6b. The ListLookup generates a
case statement for every (ai, litsi) tuple where each case statements will have an assignment
for each literal in litsi. The address input to the ListLookup is used as the lookup address into
the case statement and the ai’s are used to match against the address. If no address matches, the
default assignment is used.

ListLookupRef Node. Creating a new ListLookup will not return the ListLookup
to the user, rather, a list of ListLookupRef nodes are returned instead. The length of the
ListLookupRef list matches the length of litsi. ListLookupRef nodes do not have an
entry for emitDef since the assignments to these nodes are actually done in the emitDef of a
ListLookup node.

3.2 Vec

Vec

addr1

VecRef

addr2

VecRef

myVec

Bits Bits Bits

Bits Bits
r1 r2

i1 i2 i3

(a) Vec Node. Example three entry Vec with two
read ports.

wire [31:0] myVec [0:2];
wire [31:0] r1;
wire [31:0] r2;

assign myVec[0] = i1;
assign myVec[1] = i2;
assign myVec[2] = i3;
assign r1 = myVec[addr1];
assign r2 = myVec[addr2];

(b) Generated Vec Code. The two VecRef nodes
map to array accesses in Verilog.

Figure 7: Vec as Chisel Node

We use Vec and VecRef nodes to target 2-D Verilog arrays from within Chisel. Vecs are
useful for organizing small collection of wires into an indexable structure.

Vec Node. The Vec node maps directly to the 2-D Verilog array. Users instantiate this node
with the desired number of entries and then populate the node using := assignments. Figure 7a
shows a 3-entry Vec where the user has connected i1-3 to the Vec. The width of a Vec node is
inferred to be the maximum width of its inputs (in this example, 32-bits wide). Vec’s emitDec
function will return the string

wire [width-1:0] vec name [0:entries-1];
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where vec name is the name of the node, width is the inferred width, and entries is the
number of entries in the Vec. The emitDef function emits an assign statement for each entry in
the Vec.

VecRef Node. After instantiating and populating the Vec, users will want to access the Vec with
dynamic addresses. Each access with a new address will make a new VecRef node. The inputs
to a VecRef node are an address and a Vec and its inferred with is the width of its input Vec.
Figure 7a two VecRef nodes made from accessing the same Vec with two different addresses.
VecRef’s emitDec simply declares the name and width of the node. Its emitDef entry will
return the string

assign ref name = vec name[addr];

where ref name is the name of the VecRef node, vec name is the name of the Vec and addr
is the address.
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4 Advanced Hardware Construction in Chisel
Another way to support hardware facilities in Chisel, as opposed to building new nodes, is to write
a Scala program that aggregates the features of Chisel from Chapter 2 into a directed graph of
nodes that implement the same hardware functionality. This approach moves the complexity of
the hardware facility into the Scala graph but makes the hardware facility much more accessible.
Unlike the approach from Chapter 3, the hardware facilities are now built out of basic Chisel Nodes
so there is no dependence on backend support and no designer effort is needed to target different
backends. Users can fall back to this style of hardware construction if they are targeting a backend
that does not have support for the hardware facility they are using. The downside is that the resulting
Chisel graph is much denser which can lengthen the time spent in elaboration. We are also giving
up on any optimization the backend synthesis tool could provide for supported hardware facilities.

The hardware facilities built in this section will use the same syntax as their counterparts from
Chapter 3. The difference now is that we are reusing basic Chisel Nodes and not implementing
new Nodes. This chapter will show how to implement ListLookup and Vec using only the basic
Chisel nodes presented in Chapter 2.

4.1 ListLookup

Mux

Mux

Mux

...

Lit Lit Lit Lit
1,1 - 1,m

...

addr

addr1

Op(==)

addr2

Op(==)

addrm

Op(==)
...

Mux

Mux

Mux

...

Lit Lit Lit Lit
2,1 - 2,m

...

Mux

Mux

Mux

...

Lit Lit Lit Lit
n,1 - n,m

......

...

...

...

Bits Bits Bits...

b1 b2 bn

Figure 8: ListLookup as Scala code and basic Chisel nodes

The syntax for ListLookup remains the same. Users provide an address for lookup and a list of
size m of tuples (ai, litsi) where ai is the address to match the lookup address against and litsi
is a list of size n of literals to return when there is a match. The ListLookup will then construct the
graph in Figure 8. The function returns a list of Bits b1, ... bn who will take on the values
of litsi if ai matches the lookup address.
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ListLookup graphs are constructed as follows. Given the input list of tuples (ai, litsi), create
n list of m tuples ((a1, l1,k), ...(aj, lj,k), ..., (am, lm,k)). Each of these list represents a mux chain
and there are n such list (k ranges from 1 to n). The mux chains are constructed using ai ===
addr as the select signal to the corresponding mux. If the address matches, then literal li,k is
outputted for Bits bk.

4.2 Vec

Bits Bits Bits BitsScala
Vec

Mux

Mux

Mux

Mux

Mux

Mux
addr1 addr2

Bits Bits

Mux

Mux

Mux

Mux

Mux

Mux

Mux

Mux

write
logic

read
logic

waddr1 waddr2 Bits Bits Bits

wdata1 wdata2 default

r1 r2

Figure 9: Vec as Scala code and basic Chisel nodes

Figure 9 shows the resulting graph from building a Vec using only basic Chisel nodes. Note
that Vec is now a Scala array of Bits and is not a Node. The syntax for constructing a Vec is
unchanged; users instantiate the Vec with the desired size. Since the Vec is now a Scala array, users
populate the Vec using Scala array syntax, e.g.

v(1) = Bits(width=32)

where v is the name of the Vec. The syntax for reading and writing to the Vec is also unchanged. The
difference is that reads and writes will now construct the graph in Figure 9 instead of instantiating
special read and write nodes.
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Reads A Vec can be indexed with either Scala integer or a Chisel Node. If a Scala integer is
used, no Nodes are created and the element at that index is returned. If a Chisel Node is used,
then a Mux chain is built to mux out the correct element of the Vec. The select signal to the mux is
addr === idx where addr is the address and idx ranges from zero to length of the Vec minus
1. When addr matches an idx, the element at v(idx) is outputted.

Writes Like reads, a Vec can be written to using either a Scala integer or a Chisel Node for
indexing. If a Scala integer is used, then the corresponding element is accessed and written to and
no nodes are constructed. If a Chisel Node is used, then a mux is placed in front of each element
in the Vec. The select signal to the mux is waddr ==== idx where waddr is the input write
address and idx ranges from zero to the length of the Vec minus 1. If the write address matches the
idx, then the element at v(idx) is written to with the write data, otherwise v(idx) is written to
with the default data. If the Vec contains Bits then the user supplies the default data. If the Vec
contains Reg nodes then no default signal is needed.
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5 Elaboration Time Hardware Construction
The methods for constructing hardware in the previous chapters are all similar in that the user
directly interfaces with them. The user directly constructs the directed subgraph of Nodes that
implements the desired circuit and connects that subgraph to the main graph. We refer to that class
of hardware construction as runtime hardware construction since the hardware is constructed as
Scala is making a pass over user-written code. This chapter discusses another class of hardware
construction that we refer to as elaboration time hardware construction since the hardware is
constructed during Chisel elaboration. This class of hardware construction is useful since it is not
always possible or desirable for the user to construct the circuit as they are building up the Chisel
graph. The remainder of this chapter presents the interface for writing elaboration time hardware
construction routines and three examples of how to use that interface.

5.1 Elaboration Time Hardware Construction Interface
The Chisel compiler maintains a list of functions that it invokes during elaboration time to refine the
input user graph of Nodes. These functions must adhere to the interface described in Figure 10.
The bodies of the functions in Figure 10a varies from transformation to transformation but will
usually follow two phase format. The first phase performs some analysis on the Chisel graph to
collect information, e.g. find all Reg nodes. The second phase will then use the information from
the first phase to construct a circuit and perform some transformation on the graph, e.g. generate an
enable circuit for every Reg node and connect the circuit into the Reg node.

(a) Elaboration Time Functions
def tranformA(c: Component): Unit = {
  // body
}

def transformB(c: Component): Unit = {
  // body
}

(b) Elaboration Time Hook

transforms += transformA
transforms += transformB

Figure 10: Elaboration Time Interface

5.2 When
Chisel provides a when - elsewhen - otherwise statement for performing conditional
updates on Bits and Reg nodes. This statement appears behavioral but actually constructs a
hardware circuit to perform the update. The construction of this circuit is delayed until elaboration
time since it is easier to construct the circuit once the user has specified all the updates than it is to
construct the circuit as the user is specifying updates.

Runtime. Instead of constructing hardware whenever a when statement is executed, we simply
record information to be used during elaboration. For this purpose, we maintain a mapping of
node to list of update tuples with the format (cond, bits) where cond is the condition of the
when statement and bits is the update data. These update tuples are constructed for every update
statement within the body of a when statement and appended to the list mapped to the node on the
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when (condA) {
  reg := updateA
} .elsewhen (condB) {
  reg := updateB
} .otherwise {
  reg := default
}

(a) When Code

Reg

Mux

Mux

Bits

reg

c b acondA condB

Op(!)

Op(&)

Op(!)

(b) When Graph

Figure 11: When Statement

left hand side of that update statement. Note that the updates in this list do not have to be mutually
exclusive. In the case when multiple updates are enabled, Chisel has the semantics that the last
update in program order (i.e the last update in the list of updates) takes priority.

Figure 11a shows an example usage of when statements to conditionally update a register.
When this statement is executed, it will add 3 update tuples to reg’s list of update tuples. The
first statement adds the tuple (condA, updateA), the second adds (condB && !condA,
updateB), and the third adds (!condB && !condA, updateC).

Elaboration Time. The elaboration time transformation function does not need to perform any
analysis since we store all the information for elaboration during runtime in the form of a mapping
from node to list of update tuples. For each entry in this mapping, we construct a chain of Mux
nodes from the list of update tuples and connect the output of that chain into the input of the node in
the mapping. If the node in the mapping is a Reg node then nothing is done for the case when no
updates are enabled. Otherwise, the node in the mapping is a Bits node and we have an additional
Mux node to mux out a default signal provided by the user. If no default signal is provided, Chisel
reports an error to the user.

5.3 SRAM Backend
Users targeting the Verilog backend will want to map Mems to SRAMs with backend specific
SRAM interfaces. One way to target these SRAM interfaces is to encode the interface into the
Chisel user code. This has the disadvantageous effect of muddling the code with SRAM specific
information and makes it an unnecessarily tedious to compile the Chisel for a different SRAM
backend.

A better way to target backend specific SRAM interfaces is to write an elaboration time function
that transforms the Chisel graph to target specific SRAM interfaces. Let’s say we want to target an
SRAM that has an init pin which needs to be wired to the top level module. We first perform
either a breadth first search or depth first search to find all Mem nodes in the graph. For every Mem
node, we create a new Bits node to stand in for the init pin. We add this node to the Mem node’s
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input. Finally, we walk up the Component hierarchy starting at the Component that contains
the Mem node and ending at the top level Component. For every Component along this path, we
create a new port to connect up the init pin.

Targeting SRAM interfaces in this way allows us to decouple the SRAM backend from the
user code. If we want to switch to a different SRAM target we only need to switch to a different
elaboration time function and do not need to modify the user code.

5.4 Automatic Pipeline Synthesis

Reg

Decode
Table

TMem

Mem

wen
waddr
wdata
wen

waddr
wdata

Mux

Mux

raddr

ALU

I$ Req I$ Res D$ Req D$ Res

raddr

Branch
Logic

CPU
(a) Datapath Graph. CPU datapath represented as a directed dataflow graph in Chisel.
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lines represent pipeline boundaries.

Figure 12: 5-stage CPU Datapath. ALU = arithmetic logic unit. D$ = data cache. I$ = instruction
cache. TMem = TransactionalMem. x.R = read port of node x. x.W = write port of node x

Pipelining is a commonly used microarchitectural technique for improving the performance of a
datapath. Hardware designers usually determine up front the desired pipeline depth and then bake
the corresponding pipelining logic into their datapath code. This approach clutters an otherwise easy
to read datapath with extraneous logic unrelated to original functionality of the datapath, making it
difficult to modify the datapath or even change the pipeline depth. A better approach that overcomes
these issues is to separate the pipelining logic from the datapath specification [6]. The designer
provides only the datapath and pipeline specification. Then during elaboration, Chisel generates the
pipelining logic.
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Datapath and Pipeline Specification. In our approach, the Chisel datapath code that imple-
ments a transaction is maintained separate of the datapath’s pipeline specification. The datapath
code is viewed as a set of architectural state elements and next-state logic that reads the architectural
state and computes the updates. We use Reg nodes and TransactionalMems to represent
architectural state. For Reg nodes, we view the enable signal and the update signal as the wen
and wdata of the Reg. The Reg node itself is treated as the rdata. A TransactionalMem
is a Chisel Component that wraps a Chisel Mem node. TransactionalMems are instantiated
with the desired number of virtual write ports and physical write ports. Each virtual write port
has an explicit wen, wdata, and waddr port. The TransactionalMem generates the logic to
multiplex the virtual write ports over the physical write ports if there are more virtual write ports
than physical write ports.

Our pipeline synthesis tools provides the functions setPipelineComponent for specifying
the datapath to pipeline, and setPipelineStage for specifying in what pipeline stage a Node
or Component belongs. These functions allow the user to succinctly describe a pipeline and
unclutter the datapath code since the pipeline specification can be maintained independent of the
datapath.

Pipeline Generation. During elaboration our pipeline synthesis tool reads the datapath and
pipeline specification to determine register placement. We first mark nodes with the stage number
that the user has indicated in their pipeline specification. For each node with a stage number we
propagate the node’s stage numbers to node’s producers and consumers in a breadth first search
like manner. We only propagate a stage number if (1) the node currently does not have a stage
number conflict and (2) all of its children (producer and consumer nodes) are ready to receive a
stage number. When receiving a stage number, a node will take a stage number that is either equal
to the max stage number of its producers (if the node is receiving a propagation from its producer
side) or equal to the min stage number of its consumers (if the node is receiving propagation from
its consumer side).

Nodes can be marked with multiple stage numbers since it is possible to reach nodes from
different pipeline stages. Our tool adds pipeline registers to the node’s inputs (between the node and
its producer) or to the node’s outputs (between the node and its consumer) to resolve stage number
conflicts. Resolving a node’s stage number conflict before propagation allows our tool to more
deterministically assign stage numbers.

A node is ready for propagation from the producer side if all of its producers have a stage
number. Likewise, a node is ready for propagation from the consumer side if all of its consumers
have a stage number.

Once all nodes are marked with a stage number, we make one final pass through the Chisel
graph to insert pipeline registers between adjacent nodes with different stage numbers.

Hazard Detection. Inserting pipeline registers into the datapath graph introduces pipelining
hazards that are not present in the unpipelined datapath. Here we discuss how to handle data hazards
which result from a transaction reading a state element (a Reg node or a TransactionalMem)
before an earlier transaction writes to that state element.

We first search through the datapath graph to find all state elements. For every state element, we
determine whether or not a hazard exists on it. If there is a hazard on a state element, we add the
hazard condition into a list. For Reg or TransactionalMem, a hazard condition exists if the
state element belongs in a stage that precedes the stage of its write enable or write data signal. The
actual Boolean hazard condition is wen && ren for a Reg node and wen && ren && waddr
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Figure 13: Resolving hazards through interlocks

== raddr for a TransactionalMem.
Figure 13a shows the hazard conditions that our tool identifies on the TransactionalMem.

when analyzing the generated pipeline in Figure 12b. We first search the pipeline for all state
elements. In this example, the Reg node and the TransactionalMem are the only state elements.
We then examine the read and write ports of these state elements to determine whether or not there
are any hazards. The Reg has its write port in the second stage but its read port is in the first stage.
So we generate a hazard signal in the first stage. The TransactionalMem has its write port in
the fifth stage but its read port is in the second stage. We trace backwards from the wen in the
fifth stage to the second stage to find all the other wen signals. For each (weni, waddri) pair, we
generate a hazard condition weni === reni && waddri === raddr.

Hazard Resolution - Interlocks. The easiest way to resolve hazards is through interlocks. This
hazard resolution method requires no additional input from the user. Every identified hazard is
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placed into the stage of the read port that generates the hazard. In Figure 13a, the hazards would
be placed into the second stage because the corresponding read port is in the second stage. We
then go through every stage and perform an OR reduction on all the hazards in that stage as well as
all the hazard conditions in the following stages to produce the stall condition for that stage. The
second part of interlocking a pipeline is to push bubbles. We go through every stage and generate
a pushBubble signal if there is a hazard condition in that stage and no following stages have a
hazard.

Figure 13b shows the interlock logic that our tool generates to handle the hazards from Figure 13a.
Since the TransactionalMem’s read port is in the second stage, all the hazardis go into the
second stage. When examining the second stage, the tool would OR reduce all the hazardis to
generate a stall condition in the second stage. This stall condition is used to stall the second and
first stage. The same hazard condition is then used to generate the pushBubble signal. There
are no other sources of hazards further down the pipeline so the hazard condition in the second
stage is sufficient for pushing a bubble into the second stage. Although not shown, we also generate
interlock logic for Reg whose read port is in stage one and write port is in stage two. We generate a
hazard condition in the first stage that is used to stall only the first stage. A bubble is pushed into
stage two if this hazard condition is asserted the second stage’s hazard condition is not asserted.
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(a) Speculation. Using speculation to resolve hazards on the Reg node whose read
port is in the first stage and write port is in the second stage.
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Figure 14: Resolving hazards through speculation and bypassing
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Hazard Resolution - Speculation. Our tool provides the function speculate that users can
use to specify the stage element whose write value they want to speculate along with the value they
want to use for speculation. This hazard resolution option is useful for transactions that produce
data that takes on one value with a very high likelihood since we can have dependent transactions
guess that value, allowing us to avoid stalls. In a processor pipeline, for example, transactions
will usually write PC+4 to the PC register. To take advantage of this regularity, we can guess that
every transaction will write PC+4 to the PC register. During elaboration, we modify the Chisel
graph to use the speculation value that the user provides to update the node that the user marks for
speculation. The speculation value is pipelined until the actual data value is produced. We compare
the speculation value to the actual value. If the values match, we continue as normal. Otherwise,
we flush every stage starting at the speculation stage up to but not including the stage where the
speculation value is checked.

To see how our speculation tool works, let’s examine the pipeline in Figure 14a. Notice that since
every transaction writes to the Reg node in the second stage while another transaction reads the
node in the first stage, the interlock hazard resolution option would cause our pipeline to stall every
other cycle. This scenario is a good match for the speculation resolution option since transactions
tend to write a very predictable value into that node. We use the speculate function to indicate
that we are guessing that the Reg node will take on SpecVal. We mux in SpecVal into the Reg
and then pipeline SpecVal once (since the Reg is read in the first stage and written in the second
stage). We compare SpecVal to the actual value to generate a kill signal that is asserted whenever
the two signals do not match. The kill signal is used to write the correct value into the Reg and we
kill stage one.

Hazard Resolution - Bypassing. Transactions that depend on the results of previous transac-
tions can make use of bypass networks to receive these results instead of interlocking until those
results are committed. Our tool provides the functions bypassTo to annotate a read port for
bypassing and avoidBypassFrom to annotate that a write path should not be bypassed. During
elaboration, the pipeline synthesis tool generates the appropriate bypassing network. For each read
port, the tool traces backwards from the corresponding write port to find all wen, wdata, and
waddr signals and filters out the write ports from avoidBypassFrom. For each (wen, wdata,
waddr) tuple that the tool finds, generate a mux at the read port to mux out wdata whenever wen
&& waddr === raddr giving priority to (wen, wdata, waddr) tuples from earlier pipeline
stages. We then search for that condition in the hazard list and remove it to avoid generating the
interlock logic for that condition.

Figure 14b shows an example bypass network. In this example, the user annotates the second
read port of the TransactionalMem with bypassTo function and has told the tool to not
bypass from the data cache with the avoidBypassFrom function. The tool generates a chain of
three muxes since it found three write paths out of the ALU in the third, fourth, and fifth stage.
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6 Conclusion and Future Work
We have classified Chisel hardware construction into three different levels. The first level of
Chisel hardware construction has users working directly with Nodes to construct hardware. At
the second level of hardware construction, Chisel Nodes are abstracted away into Scala functions.
We present examples of two useful hardware facilities ListLookup and Vec implemented at
both levels to highlight the advantages and disadvantages of each level. Finally, the third level of
hardware construction has users writing elaboration time functions that the Chisel compiler invokes
to build hardware. We present Chisel when statements, SRAM backends, and an automatic pipeline
synthesis tool as examples of hardware construction at this level.

In future work, we would examine other ways of constructing hardware in Chisel. One possible
way to further raise the hardware construction abstraction level would be to implement a process
language DSL in Chisel for writing state machines. We would also explore other possible use
cases of Chisel’s elaboration interface such as generating multithreaded datapaths and FAME [8]
transformations.
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