
Near-optimal Assembly for Shotgun Sequencing with

Noisy Reads

Ka Kit Lam
David Tse
Asif Khalak

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-10

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-10.html

January 30, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Asif Khalak, David Tse

Near-optimal Assembly for Shotgun Sequencing with Noisy Reads

Ka-Kit Lam*, Asif Khalakˆ, David Tse*

*Department of EECS, UC Berkeley; ˆPacific Biosciences

Abstract. Recent work [1] identified the fundamental limits on the information requirements in terms
of read length and coverage depth required for successful de novo genome reconstruction from shotgun
sequencing data, based on the idealistic assumption of no errors in the reads (noiseless reads). In this
work, we show that even when there is noise in the reads, one can successfully reconstruct with informa-
tion requirements close to the noiseless fundamental limit. A new assembler, X-phased Multibridging,
is designed based on a probabilistic model of the genome. It is shown through analysis to perform well
on the model, and through simulations to perform well on real genomes.

Keywords De novo sequence assembly, genome finsihing, methods for emerging sequencing technologies
Contact author email kklam@eecs.berkeley.edu (Ka-Kit, Lam)

1 Introduction

1.1 Problem statement

Optimality in the acquisition and processing of DNA sequence data represents a serious technology challenge
from various perspectives including sample preparation, instrumentation and algorithm development. Despite
scientific achievements such as the sequencing of the human genome and ambitious plans for the future [20,
17], there is no single, overarching framework to identify the fundamental limits in terms of information
requirements required for successful output of the genome from the sequence data.

Information theory has been successful in providing the foundation for such a framework in digital
communication [18], and we believe that it can also provide insights into understanding the essential aspects
of DNA sequencing. A first step in this direction has been taken in the recent work [1], where the fundamental
limits on the minimum read length and coverage depth required for successful assembly are identified in terms
of the statistics of various repeat patterns in the genome. Successful assembly is defined as the reconstruction
of the underlying genome, i.e. genome finishing [16]. The genome finishing problem is particularly attractive
for analysis because it is clearly and unambigiously defined and is arguably the ultimate goal in assembly.
There is also a scientific need for finished genomes [12][11]. Until recently, automated genome finishing was
beyond reach [5] in all but the simplest of genomes. New advances using ultra-long read single-molecule
sequencing, however, have reported successful automated finishing [3, 8]. Even in the case where finished
assembly is not possible, the results in [1] provide insights on optimal use of read information since the heart
of the problem lies in how one can optimally use the read information to resolve repeats.

Figure 1a gives an example result for the repeat statistics of E. coli K12. The x-axis of the plot is the read
length and the y-axis is the coverage depth normalized by the Lander-Waterman depth (number of reads
needed to cover the genome [10]). The lower bound identifies the necessary read length and coverage depth
required for any assembly algorithm to be successful with these repeat statistics. An assembly algorithm called
Multibridging was presented, whose read length and coverage depth requirements are very close to the lower
bound, thus tightly characterizing the fundamental information requirements. The result shows a critical
phenomenon at a certain read length L = `

exact

crit

: below this critical read length, reconstruction is impossible
no matter how high the coverage depth; slightly above this read length, reconstruction is possible with
Lander-Waterman coverage depth. This critical read length is given by `

exact

crit

= max{`exact
interleaved

, `

exact

triple

}, where
`

exact

interleaved

is the length of the longest exact interleaved repeat and `

exact

triple

is the length of the longest exact
triple repeat in the genome, and has its roots in earlier work by Ukkonen on Sequencing-by-Hybridization
[21]. The framework also allows the analysis of specific algorithms and the comparison with the fundamental
limit; the plot shows for example the performance of the greedy algorithm and we see that its information
requirement is far from the fundamental limit.

(a) Information requirement for noiseless reads (b) Information requirement for noisy reads

Fig. 1: Information requirement to reconstruct E. coli K12. `exact
crit

= 1744, `approx
crit

= 3393

A key simplifying assumption in [1] is that there are no errors in the reads (noiseless reads). However
reads are noisy in all present-day sequencing technologies, ranging from primarily substitution errors in

Illumina R� platforms, to primarily insertion-deletion errors in Ion Torrent R� and PacBio R� platforms. The
following question is the focus of the current paper: in the presence of read noise, can we still successfully
assemble with a read length and coverage depth close to the minimum in the noiseless case? A recent work
[6] with an existing assembler suggests that the information requirement for genome finishing substantially
exceeds the noiseless limit. However, it is not obvious whether the limitations lie in the fundamental e↵ect
of read noise or in the sub-optimality of the algorithms in the assembly pipeline.

1.2 Results

The di�culty of the assembly problem depends crucially on the genome repeat statistics. Our approach
to answering the question of the fundamental e↵ect of read noise is based on design and analysis using
a parametric probabilistic model of the genome that matches the key features of the repeat statistics we
observe in genomes. In particular, it models the presence of long approximate repeats. Figure 1b shows
a plot of the predicted information requirement for reliable reconstruction by various algorithms under a
substitution error rate of 1%. The plot is based on analytical formulas derived under our genome model
with parameters set to match the statistics of E. coli K12. We will show that it is possible in many cases to
develop algorithms that approach the noiseless lower bound even when the reads are noisy. Specifically, the
X-phased Multibridging algorithm has close to the same critical read length L = `

exact

crit

as in the noiseless
case and only slightly greater coverage depth requirement for read lengths greater than the critical read
length.

We then proceed to build a prototype assembler based on the analytical insights and we perform ex-
periments on real genomes. As shown in Figure 2, we test the prototype assembler by using it to assemble
noisy reads sampled from 4 di↵erent genomes. At coverage and read length indicated by a green circle, we
perform assembly and succeed in reconstruction. We note that the information requirement is close to the
noiseless lower bound. Moreover, the algorithm (X-phased Multibridging) is computationally e�cient with
the the most computational expensive step being the computation of overlap of reads/K-mers, which is also
an unavoidable procedure in most assembly algorithms. The main conclusion we draw from this work is

(a) Prochlorococcus marinus (b) Helicobacter pylori

(c) Methanococcus maripaludis (d) Mycoplasma agalactiae

Fig. 2: Simulation results on a prototype assembler (substitution noise of rate 1.5 %)

that, with an appropriately designed assembly algorithm, the information requirement for genome assembly
is surprisingly insensitive to read noise. The basic reason is that the redundancy required by the Lander-
Waterman coverage constraint can be used to denoise the data. This is consistent with the asymptotic result

obtained in [13] and the practical approach taken in [3]. However, the result in [13] is based on a very
simplistic i.i.d. random genome model, while the model and genomes considered in the present paper both
have long approximate repeats. A natural extension of the Multibridging algorithm in [1] to handle noisy
reads will allow the resolution of these long approximate repeats if the reads are long enough to bridge them,
thus allowing reconstruction provided that the read length is greater L = `

approx

crit

= max{`approx
interleaved

, `

approx

triple

},
where `

approx

interleaved

is the length of the longest approximate interleaved repeat and `

approx

triple

is the length of the
longest approximate triple repeat in the genome. This condition is shown as a vertical asymptote of the
”Multibridging” curve in Figure 1b. By exploiting the redundancy in the read coverage to resolve read er-
rors, the X-phased Multibridging algorithm can phase the SNP’s across the approximate repeat copies using
only reads that bridge the exact repeats. Hence, it can achieve reconstruction with a read length close to
L = `

exact

crit

, same as the noiseless limit.

1.3 Related work

All assemblers must somehow address the problem of resolving noise in the reads in the genome reconstruction
– however, the traditional approaches to measuring assembly performance makes quantitative comparisons
challenging for unfinished genomes [14]. In most cases, the heart of the assembly problem lies in processing
of the assembly graph, as in [22, 4, 19]. A common strategy for dealing with ambiguity from the reads lies in
filtering the massively parallel sequencing data using the graph structure prior to traversing possible assembly
solutions. In the present work, however, we are focused on the often overlooked goal of optimal data e�ciency.
Thus, to the extent possible we distinguish between the read error and the inherent ambiguity associated
with the shotgun sampling process. The proposed X-phased Multibridging assembler thus adds information
to the assembly graph from analyzing the underlying reads to resolve assembly graph ambiguities in a novel
way.

1.4 Paper outline

The path towards developing that algorithm is described in the paper as follows. In section 3, the repeat
characteristics of certain genomes are reviewed and we develop a parametric model to captures the long
tail of the repeat statistics. Section 4 contains the core analytical and algorithmic development towards
finding approaches with minimal information requirements – close to the noiseless lower bound. In section
5, simulation-based experiments on real and synthetic genomes are used to characterize the performance of
a prototype assembler for genome finishing. Finally, section 6 describes an extension to the algorithm that
addresses the problem of indel noise. We find similar qualitative behavior between the cases of indel noise
and substitution noise, but with increased computational burden in our prototype assembler.

2 Shotgun sequencing model and problem formulation

2.1 Sequencing model

Let xG be a length G target genome being sequenced with each base in the alphabet set ⌃ = {A,C,G, T}. In
the shotgun sequencing process, the sequencing instrument samples N length L reads r

1

, . . . , r

N

, sampled
uniformly and independently from xG. This unbiased sampling assumption is made for simplicity and is
also supported by the characteristics of single-molecule (e.g. PacBio R�) data. Each read is a noisy version
of the corresponding length L subsequence on the genome. The noise may be base insertions, substitutions
or deletions. Our analysis and simulations focus on substitution noise first. In Section 6, indel noise are
addressed. In the substitution noise model, let p be the probability that a base is substituted by another
base, with probability p/3 to be any other base. The errors are assumed to be independent across bases and
across reads.

2.2 Formulation

Successful reconstruction by an algorithm is defined by the requirement that, with probability at least
1� ✏, the reconstruction x̂

G

is within edit distance � from the target genome x

G

. This formulation implies
automated genome finishing, because the output of the algorithm is one single contig. The fundamental
limit for the assembly problem is the set of (N,L) for which successful reconstruction is possible by some
algorithm. If x̂

G

is directly spelled out from a correct placement of the reads, the edit distance between x̂

G

and x

G

is of the order of pG, since the error rate is p. Hence, for concreteness, we fix � = 2pG. The quality
of the assembly can be further improved if we follow the assembly algorithm with a consensus stage in which
we correct each base, e.g. with majority voting. But the consensus stage is not the focus in this paper.

3 Genome statistics and modeling

3.1 Statistics for long approximate repeats in genome

Genome complexity lies in the repeat structure of DNA, and the success of a de novo assembly algorithm
depends on whether one can resolve repeats. An exact repeat is defined to be two copies of a substring
appearing at di↵erent position of the DNA genome. In [1], it was observed that the read length and coverage
depth required for successful assembly using noiseless reads for quite many genomes is governed by the long
exact repeats. It is because there are only a few long repeats within the genomes and those long repeats are
the bottle neck for genome finishing. The distribution of approximate repeats, which becomes important in
the case of noisy reads, is similarly long-tailed for many genomes in the GOLD database – as observed by
[7] who studied the distribution of approximate repeats with 95% homology.

While exact repeats may be defined as the region terminated on each end by a single di↵ering base, the
structure of approximate repeats is more complicated. Therefore, it is instructive to look at the empirical
data to see if it is possible to obtain a simple model that one can use to investigate the e↵ect of approximate
repeats in a systematical way.

Typical approximate repeats have two characteristics:

1. the regions surrounding the two copies of an approximate repeat are statistically independent. We term
this surrounding region the random flanking region.

2. There are relatively few di↵erences (SNPs) within the approximate repeat region.

A typical approximate repeat is shown in Fig 3.

Fig. 3: Approximate repeat pattern

Fig. 4: Parametric model for the genome

In Figure 3, we analyze the neighborhood of an approximate long repeat from the E. coli K12 genome.
Figure 3 shows the result of computing the Hamming distance between two copies of the approximate
repeat within sliding windows of 10 bases. The x-axis of Figure 3 is the position of the window. Within the
exact repeat region the distance, as shown on the y-axis, is 0 because the windowed substring are identical.
In the genomes studied, the average distance (Hamming) in the flanking regions around the approximate
repeat is approximately 7.5 = 10X 3

4

, which suggests that these flanking regions are essentially statistically
independent.Additional statistical analysis of the homology pattern in the neighborhood of the approximate
repeat is detailed in the Appendix.

3.2 Parametric probabilistic model for genome

Consider a target genome as a random vector xG of length G. It may be modeled by the following parametric
model (Figure 4). First, we generate a random vector of length G, composed of uniformly and independently
picked bases from the alphabet set ⌃ = {A,C,G, T}. This forms the random ”background” of the genome. To
model the longest approximate simple repeat, we randomly choose a segment of the genome of length `

approx

simple

.
and duplicate it at another random location in the genome to form a repeat. For the longest approximate

interleaved repeat, we randomly choose a segment of length `

approx

interleaved

(where `

approx

interleaved

< `

approx

simple

) and
duplicate it elsewhere, which is randomly positioned to interleave with the longest approximate simple repeat.
Finally, the longest approximate triple repeat is formed by randomly choosing three starting locations and
generating a triple repeat of length `

approx

triple

(where `

approx

triple

< `

approx

simple

).
To model the SNPs within the approximate repeats, we first fix the parameters to be the length of longest

exact duplicating segment(`

exact

simple

, `exact
interleaved

, `exact
triple

) within the approximate repeats and the number of
SNPs(n

simple

, n
interleaved

and n

triple

) within the approximate repeats. The location of the SNPs are then ran-
domly chosen to fit these parameters. Without loss of generality, assume that `exact

simple

> max(`exact
interleaved

, `

exact

triple

).
We note that `

exact

simple

, `exact
interleaved

, `exact
triple

corresponds to the length of the longest exact simple, interleaved,
triple repeat respectively. For simplicity of notation, we define `approx

crit

= max(`approx
interleaved

, `

approx

triple

) and `

exact

crit

=

max(`exact
interleaved

, `

exact

triple

). Note that the Ukkonen’s condition on read length is that L > `

exact

crit

.

4 Algorithm design and analysis

4.1 An overview of algorithm design

In Fig 1a, we plot the curves of (N,L) requirement for two algorithms to successfully assemble noiseless reads.
We briefly survey the two algorithms in [1]. Greedy Algorithm merges reads greedily based on the overlap
score. The critical read length requirement is around `

exact

simple

. Multibridging Algorithm utilizes a K-mer De
Bruijn graph to capture the structure of the genome. It also utilizes long reads(or long K-mers of reads) to
resolve long repeats. The corresponding information requirement is very close to the noiseless lower bound,
with the critical read length requirement around `

exact

crit

.
In the following sections, we design algorithms to assemble noisy reads . Fig 1b shows how we progressively

reduce the information requirement(specifically on read length). We generalize Greedy Algorithm by defining
a repeat-aware overlap rule for noisy reads. The critical read length requirement is around `

approx

simple

(Sec 4.2).
We generalize Multibridging Algorithm by extending DeBruijn graph to a noisy setting and performing
graph surgery to remove faulty edges due to noise. The critical read length requirement is around `

approx

crit

(Sec
4.3). Finally, we use X-phased Multibridging to phase long approximate repeats. X-phased Multibridging
utilizes the redundancy induced by coverage through multiple sequence alignment and maximum likelihood
estimation. We note that the information requirement of X-phased Multibridging is near the noiseless lower
bound, with critical read length requirement around `

exact

crit

(Sec 4.4).

4.2 Overlap criterion for reads

Let x and y be two length-l i.i.d. randomly chosen segments (i.e. chosen from the random background.)
A naive method to determine whether x and y are extracted from the same genomic location or not is by
considering the Hamming distance(i.e. d(x, y)) between them . If d(x, y)  ↵·l, then they are , otherwise, they
are not. This naive method is a reliable enough metric to di↵erentiate every pairs of length-l segments that
are extracted from the background genome given a long enough length l > l

iid

(p, ✏, G) and an appropriately
chosen threshold ↵ = ↵(p, ✏, G).

By bounding both the false positive and false negative probability by ✏/3 , one can find l

iid

(p, ✏, G) and
↵(p, ✏, G) to be the (L,↵) solution of

(
G

2· exp(�L ·D(↵|| 3
4

)) = ✏

3

G· exp(�L ·D(↵||2p� 4

3

p

2)) = ✏

3

where D(a||b) = a log a

b

+ (1� a) log 1�a

1�b

is the Kullback-Leibler divergence.
However, when the segments are extracted from location covering the long repeats of the genome, this

naive rule of determining overlap is not enough. Let us look at the example in Fig .5.
As shown in Fig. 5, the overall Hamming distance between two segments is not a reliable enough metric

for determining overlap. It is because the long repeat leads to a small overall distance between the segments
that are extracted from di↵erent copies of the repeat(e.g Segment 1 and Segment 3 in Fig. 5). The naive
method will either result in a high false positive rate or a high false negative rate unless the length l is
increased significantly. To properly handle such scenario, we can define a repeat-aware overlap rule (we call
it RA-rule)

Fig. 5: Intuition about why we define the overlap rule to be RA-overlap rule

– (x, y) of length l are detected to be extracted from the same genomic location if and only if the distance
between whole segments is < ↵ · l and both of its ending segments(of length l

iid

) also have distance
< ↵ · l

iid

.

(x, y) is said to be of overlap W under the RA-rule if length-W su�x of x and length-W prefix of y are
detected to be extracted from the same genomic location under the RA-rule.

If we use Greedy Algorithm (Alg 1) to merge reads greedily with this overlap rule (RA-rule), the infor-
mation requirement is shown in Prop 1 with the plot in Fig 1b. The key requirement for Greedy Algorithm
to succeed is that every repeats (both the repeat interior and short extension to the random flanking region)
need to be spanned by some reads. If we use the RA-rule to detect overlap of noisy reads, the short extension
only need to be of length � l

iid

for reliable reconstruction.
Since, l

iid

is of order of tens but `approx
simple

is of order of thousands, the e↵ect of noise on critical read length
requirement is 2 order of magnitudes less than the requirement posed by the long repeats. This gives some
intuition about why noise does not pay such a big role in terms of information requirement and why we can
reduce the critical read length requirement close to `

approx

simple

. The detail proof of Prop 1 is given in Appendix.

Algorithm 1 Greedy Algorithm
Initialize contigs to be reads
for W = L to l

iid

do

if any two contigs x,y are of overlap W under RA-rule then

merge x, y into one contig.
end

end

Proposition 1. With l

iid

= l

iid

(p, ✏

3

, G), if

L > `

approx

simple

+ 2l
iid

, N > max(
G

L� `

approx

simple

� 2l
iid

ln
3

✏

,

G

(L� 2l
iid

)
ln

N

✏/3
)

then, Greedy Algorithm(Alg 1) is ✏�feasible.

4.3 Multibridging Algorithm

The critical read length requirement of Greedy Algorithm is bottle necked by `

approx

simple

because it requires all
repeats to be spanned by reads. However, [15] uses DeBruijn graph to utilize the global structure of the
genome to resolve repeats even when the reads cannot span all the repeats. By utilizing DeBruijn graph in
the noisy reads setting, and by making use of the fact that a correctly assembled genome should correspond
to a traversal of all the edges exactly once, we can resolve the longest approximate simple repeat with read
length `

approx

crit

+2 · l
iid

< L < `

approx

simple

. The algorithm is summarized in Alg 2 with the performance guarantee
given in Prop 2. The plot is in Fig 1b. We note that Alg 2 can be seen as a noisy reads generalization of
multibridging algorithm for perfect noiseless reads in [1].

Description and its performance

Proposition 2. With l

iid

= l

iid

(p, ✏

3

, G), if

L > `

approx

crit

+ 2l
iid

, N > max(
G ln 3

✏

L� `

approx

crit

� 2l
iid

,

G

(L� 2l
iid

)
ln

N

✏/3

then, Multibridging Algorithm(Alg 2) is ✏�feasible.

Algorithm 2 Multibridging Algorithm
1. Choose K to be `

approx

crit

+ 2l
iid

and extract K-mers from reads.
2. Cluster K-mers based on the RA-rule.
3. Form uncondensed De Bruijn graph G

De�Bruijn

= (V,E) with the following rule:
– a) K-mers clusters as node set V .
– b) (u, v) = e 2 E if and only if there exists K-mers u

1

2 u and v

1

2 v such that u

1

,v
1

are consecutive K-mers in
some reads.

4. Join the disconnected components of G
De�Bruijn

together by the following rule:
for W = K � 1 to l

iid

do

for each node x which has either no predecessors / successors in G

De�Bruijn

do

a) Find the predecessor/successor y for x from all possible K-mers clusters such that overlap length(using
any representative K-mers in that cluster) between x and y is W under RA-rule.
b) Add dummy nodes in the De Bruijn graph to link x with y and update the graph to G

De�Bruijn

end

end

5. Condense the graph G

De�Bruijn

to form G

string

with the following rule:
– a) Initialize G

string

to be G

De�Bruijn

with node labels of each node being its cluster group index.
– b) while 9successive nodes u! v such that out� degree(u) = 1and in� degree(v) = 1 do

bi) Merge u and v to form a new node w

bii) Update the node label of w to be the concatenation of node labels of u and v

end

6. Clear Branches of G
string

:
for each node u in the condensed graph G

string

do

if out � degree(u) > 1 and that all the successive paths are of the same length(measured by the number of node
labels) and then joining back to node v and the path length < l

iid

then

we merge the paths into a single path from u to v .
end

end

7. Condense graph G

string

8. Find the genome :
– a) Find an Euler Cycle/Path in G

string

and output the concatenation of the node labels to form a string x

labels

.
– b) Using x

labels

and look up the associated K-mers to form the final recovered genome x̂

G

.

Detail Proof is given in the Appendix. Here, we provide a high level highlight of why Multibridging
algorithm can achieve what is claimed.

[Step1] We set a large K value to make sure the K-mers overlapping the longest approximate interleaved
repeat and longest approximate triple repeat can be separated as distinct clusters.

[Step2] Clustering is done using the RA-rule because of the existence of long repeats.
[Step3] K-mer cluster corresponds to an equivalence class and this generalizes the notion of a single K-mer

in noiseless case.
[Step4] Because of large K, the graph can be disconnected due to insu�cient coverage. In order to reduce

the coverage constraint, we connect the clusters greedily.
[Step5, 7] These two steps basically simplify the graph.
[Step6] Due to some residuals wrong merges in clustering near the boundary of the longest approximate

simple repeat, we fix it by branch clearing.
[Step8] Since correct genome correspond to an Euler path in the condensed graph, we tranverse the graph

to get that back.

Computational complexity improvement For the above algorithms, the most computational expensive
step is clustering of K-mers/reads. This involves pairwise comparison of K-mers/reads and roughly run in
⇥̃(N2) if done in the naive way. In noiseless setting, one can easily do a lexicographical sort to identify
identical K-mers and run in ⇥̃(N) . However, in the noisy setting, directly and only doing sorting once is
not possible to cluster most of the K-mers. Here one can utilize the fact that the read length/K is long. One
can use a short segment of the K-mers to do sorting and then cluster some K-mers together based on the
sorting results. We then use another disjoint segment of the K-mers to perform the same operations. This
is repeated for di↵erent disjoint small segments of the K-mers. For each round of sorting, we can cluster
together a number of K-mers e�ciently in ⇥̃(N) . The accuracy can be boosted up by combining the sorting

results from di↵erent rounds using disjoint set data structure that support union and find operations. We
note that this computational trick is of the same spirit as locality sensitivity hashing.

4.4 X-phased Multibridging

(a) Consensus Step (b) Bridge Extension Step

Fig. 6: Illustration of how to use SNPs to extend reads across repeats

An illustration of X-phased Multibridging Let us start by looking at the example in Fig 6. Here we
have an approximate interleaved repeat having 2 SNPs in the middle but the read length `

exact

interleaved

< L

and L < `

approx

interleaved

. If we apply Multibridging to it, we will have two X-nodes(node such that in-degree and
out-degree are both > 1) . One X-node corresponds to the longest approximate simple repeat and the other
corresponds to the longest approximate interleaved repeat . The algorithm ends up finding two distinct Euler
cycle and we do not know which one corresponds to the real genome. In order to resolve such situation, we
need to use the SNPs within the longest approximate interleaved repeat to resolve that repeat(i.e. decide
how W,W

0 and Y, Y

0 are linked in Fig 6).
First, we use all the reads from both copies to find out where the SNPs are located. Specifically, let D be

the set of reads around the repeat region, and the ground truth genome segments being ŝ

1

and ŝ

2

. Without
loss of generality, ŝ

1

(0) = W and ŝ

2

(0) = W

0. For each base 1  i  `

approx

interleaved

, we do the following consensus,
which can be easily implemented by counting the frequency of occurence of each alphabet overlapping at
location i .

max
S⇢{A,C,G,T}2

,|S|2

P({ŝ
1

(i), ŝ
2

(i)} = S | D) (1)

Second, we use those reads that span the SNPs or random flanking region, to help us decide how to
extend across the repeat. We let � be the possible configuration at location SNP

1

to SNP

n

interleaved

and
flanking region (e.g. � = (AAAY,CCCY

0)) .We do the following maximum likelihood to determine the final
sequence and extend across the approximate repeat, with �̂ being the estimator. Note that size of the feasible
set is 2ninterleaved

+1.

max
�

P(�̂ = � | D, {ŝ
1

(i), ŝ
2

(i)}`
approx

interleaved

i=1

) (2)

In practice, for computational reason, that maximum likelihood can be approximated accurately even if
it is replaced by a simple counting as illustrated in Fig 6 which we call count-to-extend algorithm(countAlg).
It uses the raw reads to establish majority vote on how one should extend to the next SNPs using only the
reads that span the SNPs. Summary of the algorithm is shown in Alg 3.

Performance Before getting into the detail analysis, let us have an intuitive understanding about why
X-phased Multibridging can resolve repeats accurately. Since coverage is normally > 20X, we note that we
have high precision in finding SNP location because we use all the reads overlapping at each base. As for the

Algorithm 3 X-phased Multibridging
1. Perform Step 1 to Step 7 of MultiBridging as in Alg 2
2. For every X-node x 2 G

string

– a) Align all the reads to the repeat region x

– b) Consensus to find location of SNPs by solving Eq (1)
– c) If possible, resolve repeat by either countAlg or by solving Eq (2) to phase the approximate repeat

3. Perform Step 8 of MultiBridging as in Alg 2

bridge extension step, with the following Lemma 1, we note that the error probability is also decently small
if we have several such spanning reads and moderate read error probability even merely with the countAlg.

Lemma 1. Let P
k

˜ Binomial(k,q) , which model k reads spanning 2 SNPs and with probability q of making
an error in deciding the linkage of SNPs. Then, the failure probability of majority vote , with k = 2m+ 1

P

fail

2m+1

= P(P
2m+1

 m) 
2m+1

C

m

· pm+1

We now analyze the error probability of Step 2 in Alg. 3(i.e. the repeat phasing step). Let E be the error event.
✏

1

be the error probability for the consensus step. ✏
2

be the error probability for the bridge extension step
given k reads spanning each consecutive SNPs within the approximate repeat. And �

cov

be the probability
for having k reads spanning each consecutive SNPs within the approximate repeat.

P(E)  ✏

1

+ ✏

2

+ �

cov

(3)

By calibrating bounds for ✏
1

and ✏

2

, we can have a numerical sense about the accuracy of this algorithm.
For Table 1, we have a length G= 5M size genome, having an approximate repeat length of 5000bp and
with 2 SNPs within the repeat, partitioning the repeat into three equally spaced segments. In Table 1a, we
simulated 100 rounds per data row and take the average error as the probability of having any base being
incorrectly identified as SNPs/incorrectly not identified as SNPs in the majority vote , and we use ✏

1

to
denote that. We have used an estimated SNP rate of 0.01 as the input for the consensus algorithm to use
as the prior distribution guess. In Table 1b, we have computed the upper bound for the error probability
provided by Lemma 1. Since we have 3 segments within the approximate repeat, we use the following bound
to evaluate ✏

2

= 3 · (2p)k+1 ·
2k+1

C

k

with k being the number of reads spanning the any two SNPs. As
we can see from Table 1, when p = 0.01, having as low as 20X coverage and k = 3 bridging reads, we can
already have small enough error of < 1%. So, we use k = 3 and use it to find the corresponding coverage
requirement to have small �

cov

. This coverage constraint for X-phased Multibridging is also the bottleneck
constraint we plotted in Fig 1b as shown before. The feasibility curve for X-phased Multibridging shown in
Fig 1b is the condition to have 3 bridging reads spanning the longest exact interleaved repeat.

p l

approx Coverage (NL/G) ✏

1

0.01 5000 20 0.00
0.01 5000 40 0.00
0.01 5000 60 0.00
0.1 5000 20 0.16
0.1 5000 40 0.00
0.1 5000 60 0.00

(a) Calibration for ✏
1

p Number of bridging reads k Upper bound for ✏
2

0.01 1 0.060
0.01 3 0.0036
0.01 5 0.00024
0.1 11 0.089
0.1 21 0.022
0.1 31 0.0059

(b) Calibration for ✏
2

Table 1: Calibration of error probability made by X-phased Multibridging

5 Simulation of the prototype assembler

With ideas presented before, we implement a prototype assembler that can automate genome finishing for
reads corrupted by substitution noise. In particular, we test it on a simple synthetic case with substitution
noise corrupted reads sampled from randomly generated genome with randomly thrown long repeats. This
serves as a proof-of-concept that we can perform genome finishing with critical read length requirement close

to `

exact

crit

. The plot is shown in Fig 7. We also apply this prototype assembler to sequence several genomes to
finishing quality, with substitution noise corrupted reads sampled from the genome ground truth downloaded
from NCBI. The assembly results are shown in Table 2 and the dot plot of the recovered genome against
the genome ground truth is shown in Appendix. The detail design of the prototype assembler is presented
in the Appendix and source code and data set can be found in [9].

Index Species G p

NL

G

L `

approx

simple

`

approx

crit

`

exact

crit

% match Ncontig N

N

noiseless

L

`

exact

crit

1 a 1440371 1.5% 37.36 X 930 1817 803 770 100.00 1 1.57 1.21
2 a 1440371 1.5% 33.14 X 970 1817 803 770 99.95 1 1.67 1.26
3 a 1440371 1.5% 29.60 X 1000 1817 803 770 99.99 1 1.66 1.30
4 b 1589953 1.5% 40.82 X 2440 4183 2155 2122 100.00 1 1.30 1.15
5 b 1589953 1.5% 21.31 X 2752 4183 2155 2122 99.99 1 1.19 1.30
6 b 1589953 1.5% 20.66 X 2900 4183 2155 2122 99.99 1 1.35 1.37
7 c 1772693 1.5% 30.03 X 3950 5018 3234 3218 99.96 1 1.36 1.23
8 c 1772693 1.5% 21.96 X 4279 5018 3234 3218 99.97 1 1.33 1.33
9 c 1772693 1.5% 17.03 X 4700 5018 3234 3218 100.00 1 1.31 1.46
10 d 1006701 1.5% 35.23 X 6867 15836 10518 5494 99.05 1 1.72 1.25
11 d 1006701 1.5% 19.88 X 7500 15836 10518 5494 97.86 1 1.30 1.37
12 d 1006701 1.5% 17.69 X 9000 15836 10518 5494 98.10 1 1.68 1.64

Table 2: Assembly of several genomes ((a) Prochlorococcus marinus (b) Helicobacter pylori (c)
Methanococcus maripaludis (d) Mycoplasma agalactiae) with `

exact

crit

= max(`exact
interleaved

, `

exact

triple

) , `

approx

crit

=
max(`approx

interleaved

, `

approx

triple

) and N

noiseless

is the lower bound on number of reads in the noiseless case for
1� ✏ = 95% confidence recovery

Fig. 7: Simulation of the assembly on randomly gener-
ated genome

(a) Form K-mer Clusters (b) Abnormality in (indel)
DeBruijn Graph

Fig. 8: Treatment of read corrupted by indel

6 Extension to handle insertion/deletion noise

We also implement an extension of the prototype assembler to handle indel noise. We remark that one non-
trivial generalization is the way that we form the noisy De-Bruijn graph for K-mer clusters. In particular,
we first compute the pairwise overlap alignment among reads, then we use the overlap alignment to group
K-mers into clusters. Subsequently, we link successive cluster of K-mers together as we do in Alg 2. An
illustration is shown in Fig 8a. However, due to the noise being indel in nature, the edges in the noisy De
Bruijn graph may point in the wrong direction as shown in Fig 8b. In order to handle this, we traverse the
graph and remove such abnormality when they are detected.

We further test it on synthetic reads sampled from real genomes and synthetic genomes. Simulation
results are summarized in Table 3 where p

i

, p

d

are insertion probability and deletion probability and rate is
the number of successful reconstruction(i.e.simulation rounds that show mismatch < 5%) divided by total
number of simulation rounds.

Type G p

i

p

d

NL

G

L `

approx

simple

`

approx

crit

`

exact

crit

N

N

noiseless

L

`

exact

crit

Rate

Synthetic 50000 1.5% 1.5% 23.0 X 200 500 200 100 2.25 2 28/30
Synthetic 50000 1.5% 1.5% 24.1 X 180 500 200 100 2.33 1.8 27/30

a 1440371 1.5% 1.5% 28.53 X 1000 1817 803 770 1.60 1.30 1/1
b 1589953 1.5% 1.5% 20.66 X 2900 4183 2155 2122 1.35 1.37 1/1

Table 3: Simulation Results for indel error treatment(Synthetic: randomly generated to fit the repeat statis-
tics ; (a) : Prochlorococcus marinus ; (b): Helicobacter pylori)

References

1. Guy Bresler, Ma’ayan Bresler, and David Tse. Optimal assembly for high throughput shotgun sequencing. BMC
Bioinformatics, 2013.

2. Zhirong Bao and Sean R Eddy. Automated de novo identification of repeat sequence families in sequenced
genomes. Genome Research, 12(8):1269–1276, 2002.

3. Chen-Shan Chin, David H Alexander, Patrick Marks, Aaron A Klammer, James Drake, Cheryl Heiner, Alicia
Clum, Alex Copeland, John Huddleston, Evan E Eichler, et al. Nonhybrid, finished microbial genome assemblies
from long-read smrt sequencing data. Nature methods, 2013.

4. Sante Gnerre, Iain MacCallum, Dariusz Przybylski, Filipe J Ribeiro, Joshua N Burton, Bruce J Walker, Ted
Sharpe, Giles Hall, Terrance P Shea, Sean Sykes, et al. High-quality draft assemblies of mammalian genomes
from massively parallel sequence data. Proceedings of the National Academy of Sciences, 108(4):1513–1518, 2011.

5. David Gordon, Chris Abajian, and Phil Green. Consed: a graphical tool for sequence finishing. Genome research,
8(3):195–202, 1998.

6. Asif Khalak, Ka Kit Lam, Greg Concepcion, and David Tse. Conditions on finishable read sets for automated
de novo genome sequencing. Sequencing, Finishing and Analysis in the Future, May, 2013.

7. Sergey Koren, Gregory P Harhay, Timothy PL Smith, James L Bono, Dayna M Harhay, D Scott Mcvey, Diana
Radune, Nicholas H Bergman, and Adam M Phillippy. Reducing assembly complexity of microbial genomes with
single-molecule sequencing. arXiv preprint arXiv:1304.3752, 2013.

8. Sergey Koren, Michael C Schatz, Brian P Walenz, Je↵rey Martin, Jason T Howard, Ganeshkumar Ganapathy,
Zhong Wang, David A Rasko, W Richard McCombie, Erich D Jarvis, et al. Hybrid error correction and de novo
assembly of single-molecule sequencing reads. Nature biotechnology, 30(7):693–700, 2012.

9. Ka-Kit Lam, Asif Khalak, and David Tse. www.eecs.berkeley.edu/ ˜kakitone.
10. Eric S Lander and Michael S Waterman. Genomic mapping by fingerprinting random clones: a mathematical

analysis. Genomics, 2(3):231–239, 1988.
11. Elaine Mardis, John McPherson, Robert Martienssen, Richard K Wilson, and W Richard McCombie. What is

finished, and why does it matter. Genome research, 12(5):669–671, 2002.
12. Duccio Medini, Davide Serruto, Julian Parkhill, David A Relman, Claudio Donati, Richard Moxon, Stanley

Falkow, and Rino Rappuoli. Microbiology in the post-genomic era. Nature Reviews Microbiology, 6(6):419–430,
2008.

13. Abolfazl Motahari, Kannan Ramchandran, David Tse, and Nan Ma. Optimal dna shotgun sequencing: Noisy
reads are as good as noiseless reads. Proceedings of the 2013 IEEE International Symposium on Information
Theory, Istanbul, Turkey, July 7-12, 2013, 2013.

14. Giuseppe Narzisi and Bud Mishra. Comparing de novo genome assembly: The long and short of it. PLoS ONE,
6(4):e19175, 04 2011.

15. Pavel A Pevzner, Haixu Tang, and Michael S Waterman. An eulerian path approach to dna fragment assembly.
Proceedings of the National Academy of Sciences, 98(17):9748–9753, 2001.

16. Mihai Pop. Genome assembly reborn: recent computational challenges. Briefings in bioinformatics, 10(4):354–366,
2009.

17. DNA SEQUENCING. A plan to capture human diversity in 1000 genomes. Science, 21:1842, 2007.
18. Claude E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27:379–423,

623–656, July, October 1948.
19. Jared T Simpson and Richard Durbin. E�cient de novo assembly of large genomes using compressed data

structures. Genome Research, 22(3):549–556, 2012.
20. Peter J Turnbaugh, Ruth E Ley, Micah Hamady, Claire M Fraser-Liggett, Rob Knight, and Je↵rey I Gordon.

The human microbiome project. Nature, 449(7164):804–810, 2007.
21. Esko Ukkonen. Approximate string-matching with q-grams and maximal matches. Theoretical computer science,

92(1):191–211, 1992.
22. Daniel R Zerbino and Ewan Birney. Velvet: algorithms for de novo short read assembly using de bruijn graphs.

Genome research, 18(5):821–829, 2008.

A Appendix : Proof on Performance Guarantee

Here we use the short hand of l
repeat

, l
interleaved

and l

triple

to represent the corresponding approximate
repeat length of longest simple, interleaved, triple repeat respectively.

A.1 Greedy Algorithm

Let us define a ✓� neighborhood of the repeat specified by x[a : b] and x[c : d] to be the genomic location of
repeat which are x[a� ✓ : b+ ✓] and x[c� ✓ : d+ ✓] .

We say a repeat is ✓�bridged if there exists a read that cover the ✓-neighborhood of at least one copy of
the repeat. For simplicity of arguments, we assume l

repeat

>> max(l
intereleave

, l

triple

).

Lemma 2. We first note the following su�cient conditions for Noisy Greedy to succeed.

1. Merging at stages from L to l

iid

(p, ✏, G) are merging successive reads
2. Every successive reads have overlap with length at least l

iid

(p, ✏

3

, G)

Theorem 1. Under the generative model on genome, with l

iid

= l

iid

(p, ✏

3

, G), ↵ = ↵(p, ✏

3

, G) ,if

L > l

repeat

+ 2 · l
iid

G > N > max(
G ln 3

✏

L� l

repeat

� 2 · l
iid

,

G · ln N

✏/3

L� l

iid

)

, then P(SC)  ✏.

Proof. In order to prove that claim, let us break down into several subparts
Let E

1

be the event that condition 1 in Lemma (2) is not satisfied. E
2

be the event that condition 2 in
Lemma (2) is not satisfied. E

3

be the event that the long/interleave/triple repeat is not l
iid

�bridged.
Now we claim that with the chose (N,L) in the range,
1. P(E

1

)  ✏

3

2. P(E
3

)  ✏

3

3. P(E
2

| EC

1

\ E

C

3

)  ✏

3

We first see how we can use these to obtain the desired claim and proceed to prove each of the above
sub-claims.

P(SC) =P(E
1

) + P(E
2

\ E

C

1

)

=P(E
1

) + P(E
2

\ E

C

1

\ E

C

3

) + P(E
2

\ E

C

1

\ E

3

)

P(E
1

) + P(E
2

| EC

1

\ E

C

3

) + P(E
3

)

 ✏

3
+

✏

3
+

✏

3
=✏

Now, we proceed to prove each of the sub-claims.

1. With N >

G·ln N

✏/3

L�l

iid

, we have,

P(E
1

) N exp(�N

G

(L� l

iid

))

 ✏

3

2. With N >

G·ln 3

✏

L�l

repeat

�2·l
iid

we have,

P(E
3

)  exp(�N

G

(L� 2l
iid

� l

repeat

))

 ✏

3

3. With the choice of l
iid

= l

iid

(p, ✏

3

, G), we have,

P(E
2

| EC

1

\ E

C

3

) N

2 · exp(�l

iid

D(↵||3
4
))

+ 2N exp(�l

iid

D(↵||⌘))

G

2 · exp(�l

iid

D(↵||3
4
))

+ 2G exp(�l

iid

D(↵||⌘))

 ✏

3

Here we use the fact that there are indeed 4 types of overlap as in Fig 9. And given the bridging condition,
we are only left with 2 types, namely, both ending segments outside/exactly one ending segment outside the
longest repeat repeat region.

Fig. 9: Overlap Type

A.2 Simple De Bruijn Algorithm

Before continuing proving the performance of Multibridging Algorithm, it is instructive to analyze the
following Simple De Bruijn Algorithm (Alg 4) because this is closely related to the Multibridging algorithm.

Algorithm 4 Noisy Simple DeBruijn
0. Choose K to be max(l

interleave

, l

triple

)
1. Extract Kmers from reads
2. Clusters Kmers
3. Form Kmer Graphs
4. Condense the graph
5. Clear Branches
6. Condense graph
7. Find Euler Cycle

Here we first define several genomic region of interest which we will refer to in the proofs below.
a) S

0

= set of K-mers that are completely inside l

iid

� neighborhood of the longest repeat
b) S

1

= set of K-mers that are completely inside the longest repeat
c) S

2

= S

0

\S
1

Lemma 3. Here we provide several deterministic conditions that guarantee the success of the algorithm.
1. Successive reads overlap with length at least K
2 K-mers are almost correctly clustered, that is,
a) K-mers from the same genomic location but not merged
b) x not in S

0

s.t. x get clustered with wrong K-mers
c) x in S

0

s.t.x get clustered with elements other than its own cluster/mirror cluster(mirror cluster is
defined to be the cluster for the other copy of the repeat)

3) Repeat at both circle are at least 2 · l
iid

separated(the interleaving segments between the repeat di↵er
with at least 2l

iid

in length)

Proof. We note that every length K segments x 62 S

0

, they are represented as a distinct node in the K-mer
graph because of the length K that we pick and the condition that successive reads overlap at least K bases.
Moreover, for K-mers x 2 S

1

, they are condensed into the repeat as ’X’ in Fig 10a. However, for the K-mers
x 2 S

2

, they have chances not to merge properly, thus they form into the branches surrounding ’X’ in Fig 10a.
Because of condition 3, branch clearing will not eliminate the ’A’ or ’C’ in Fig 10a, further after condensing,
we get the desired K-mer graph as in Fig 10b and this can be successfully read by a Eulerian Walk.

(a) Before branch clearing

(b) After
branch
clearing

Fig. 10: Branch clearing

Theorem 2. If G >

6

✏l

iid

, G � N � G·ln 3N

✏

L�max(l

int

,l

triple

)�2l

iid

, with l

iid

= l

iid

(p, ✏

3

, G) ↵ = ↵(p, ✏

3

, G), then

,P(SC)  ✏

Proof. We first note that in order to obtain a bound on the error probability, we only need to separately
bound the probability that each of the conditions in Lemma 3 fail,which are  ✏

3

each. Thus, combining, we
get, P(SC)  ✏.

A.3 Multibridging Algorithm

An illustration of noisy multibridging algorithm is shown in Fig (11).

Fig. 11: An illustration of the Noisy Multi Bridging

Lemma 4. Here are the deterministic conditions for the algorithm to succeed.

1) Every successive reads overlap at least l
iid

(p, ✏

3

, G)
2) K-mers are almost correctly clustered, that is,

a) K-mers from the same genomic location but not merged
b) x not in S

0

s.t. x get clustered with wrong K-mers
c) x in S

0

s.t. x get clustered with elements other than its own cluster/mirror cluster
3) Repeat at both circle are at least 2 · l

iid

separated

4) When finding successors/predecessors, they are the real successors and predecessors

Proof. Along the same lines as the proof in Lemma (3), we only note that in this algorithm, we have an
extra step of finding predecessor/successors. Moreover, the overlap here is significantly reduced to only l

iid

instead of K in the Noisy Simple De Bruijn case.

Theorem 3. With G >

6

✏l

iid

,G � N � max(G

L�2l

iid

ln N

✏/3

,

G ln

3

✏

L�max(l

triple

,l

interleave

)�2l

iid

) ,with l

iid

= l

iid

(p, ✏

3

, G)

↵ = ↵(p, ✏

3

, G) , then P(SC)  ✏.

Proof. Here we note that with the given coverage, bridging conditions of the interleave repeat and the triple
repeat are satisfied. And when this is true, then Condition 4 in Lemma 4 is true with high probability.
Following the arguments in Theorem 2, we get desired.

B Appendix: Design and additional algorithmic components for the prototype

assembler

B.1 Pipeline of the prototype assembler

The pipeline of the prototype assembler is shown in Fig 12. With a ground truth genome as input, the output
is the performance of the whole pipeline by giving the mismatch rate.

Fig. 12: Pipeline of the prototype assembler

Algorithm 5 Enhanced Multibridging Algorithm
Resolution of repeats:
0. Intially the weight of the edge are set to be 1.
1. While there is a X-node v :
a) For each edge (p

i

,v) with weight a

p

i

,v

, create a new node u

i

=p

i

!
v and an edge (p

i

, u

i

) with weight 1 + a

p

i

v

.
Similarly , for each edge (v,q

j

), create a new node w

j

= v

!q

j and an edge (w
j

, q
j

)
b) If v has a self-loop (v, v) with weight a

v,v

, add an edge (v!v

,

v!
v) with weight a

v,v

+ 2
c) Remove node v and all incident edges
d) For each pair of u

i

, w
j

adjacent in a read(extending to at least length of l
iid

on both sides of the X-node), add
edge (u

i

, w

j

). If exactly on each of the u

i

and w

j

nodes have no added edge, add the edge.
e) Condense the graph

B.2 A more robust branch clearing step

Since we employ a speed up step in the clustering and there may be K-mers that are not completely clustered
correctly in the clustering step of Multibridging algorithm. Regarding that, we need to have a more robust
branch clearing step. In particular, we first classfy nodes as “big” or “small” nodes based on the size of the
nodes in the sequence graph. The key idea is to merge the small nodes together while keeping the big nodes
unchanged. Starting from each big nodes, we tranverse the graph to detect all the small nodes that link the
current big node to other big nodes. Then, we classify the small nodes into levels(depending on its distance
from the current big node). After that, the small nodes in the same level are merged. Finally, we note that
we keep the reachability among each big nodes.

B.3 Enhanced Multibridging that can resolve middle range repeats

We note that the ideas presented here can also be found in the prior work on the treatment of noiseles
sreads. It is stated here for completeness. In the noisy setting, instead of considering the alphabet set to be
⌃ = {A,C,G, T}, one can consider the alphabet set as the cluster index of the K-mers.

C Appendix: Treatment of indel noise

C.1 Formation of K-mer DeBruijn graph for indel corrupted reads

In order to form K-mer DeBruijn graph for indel corrupted reads, we first need to have a clear notion of
K-mers. We define K-mers to be the length K segments in the genome ground truth (as opposed to the usual

definition from the reads). Although we mostly work on the reads themselves, the definition of the Kmers
are based on the ground truth. In order to successfully cluster K-mers , we need to do the following steps.

1. We first compute the pairwise alignement of the reads.
2. Based on the pairwise alignment, for each length K-segments, we know which should be aligned to

which. We then group them together using the alignment result.
3. Finally, we end up with the length K segments from the reads clustering together, and now we use it as

an operational way to identify the Kmers since each cluster will naturally correspond to a K-mers originated
from the genome groundtruth(though there are a few discrepancy, mostly this is correct).

4. After we identify the K-mers clusters, we add an edge between them if there exists a read such that
there are two consecutive Kmers originate from it.

Graph surgery to clear abnormality of the noisy DeBruijn graph Due to indel noise and runs of
the same alphabet, the way that we form K-mers graph may need to abnormality of the graph. We thus
perform a graph tranversal and identify the abnormality that are of short length(i.e. resulted from noise but
not the genome structure). After that, we remove such abnormality. This step also involves transitive edge
reduction and removal of small self loops.

C.2 X-phased step tailored for indel noise type

Generalization to handle Indel Error When dealing with indel noise, the neighborhood of reads can
also a↵ect consensus of the base. There we have to do sequence alignment in order to find the appropriate
posterior probability in order to do a maximum likelihood estimate of whether a particular given genomic
location is a SNP or not. In order to do that, we formulate the problem as a ML problem as follows.

max
T2⌦

⇧

i2S

P (R
i

| T), P

err

= P

opt

(4)

max
T2⌦

0
⇧

i2S

P (R
i

| T), P

err

= P

opt

+ �

1

(5)

max
T2⌦

0
⇧

i2S

0
P (R

i

| T), P

err

= P

opt

+ �

1

(6)

max
T2⌦

0
⇧

(j,k)

⇧

i2S

0
jk

P (R
i

| T j+k

j

), P

err

= P

opt

+ �

1

(7)

max
T2⌦

0
⇧

(j,j+1)

⇧

i2S

0
j,j+1

P (R
i

| T j+1

j

), P
err

= P

opt

+ �

1

+ �

2

(8)

Here we also discuss about the places that we take approximation to enhance the computational e�ciency
in the steps of the previous reduction. From (1) to (2), we use some heuristics to find out the possible location
of SNPs within the whole repeat in which disagreement is observed after several rounds of error correction.
From (2) to (3), we remove all the reads that only span one single SNPs and it has no e↵ect on the error
of the detection problem that we are trying to solve. From (3) to (4), we further partition the reads into
group in which S

0
jk

is the set of reads that only span the SNPs j to j+k. Doing this can decompose the ML
problem into smaller subproblems with no e↵ect on the accuracy. Finally, in practice, we take a first order
approximation of (4) to (5) by only onsidering two SNPs for each subproblem.

As for each of the marginal probability distribution, the best way is to run Sum-Product algorithm to
compute in a dynamic programming fashion similar to S-W alignment. But as pointed out in Quiver, this
steps can be significanly speeded up using a Viterbi approximation and this is also what we implemented in
the simulation code.

Simulation study We simulated on both synthetic and real data set with indel noise and on a double
stranded DNA. In the simulation, we assume that the reads from the neighborhood of a repeat is given and
our goal is to decide how to extend the reads to span the repeat copies into the flanking region correctly.
The correctness is evaluated based on whether they can correctly extend the correct reads into the flanking
region.

Repeat Type C

s

L

s

C

l

L

l

p

del

p

ins

G Homology l

approx

l

exact Success %

Randomly generated 50X 100 50X 240 10% 10% 10000 0.67% 300 150 99%
A repeat of Ecoli-K12 – – 80X 3000 10% 10% 4646332 0.48% 5182 1507 89%

A repeat of Bacillus anthracis – – 80X 3500 10% 10% 5227293 0.23% 4778 2305 85%
A repeat of Meiothermus ruber – – 80X 750 10% 10% 3097457 1.40% 1217 257 94%

Table 4: Simulation results on long contig creator(C
s

, L

s

are coverage and readlength for short reads. C
l

, L

l

are coverage and readlength for long reads .p
del

, p

ins

are the probability of insertion and deletion. G is the
length of the genome. Homology is the number of SNPs divided by the length of the approximate repeat.
l

approx

, l

exact are the length of the approximate and exact repeat being studied. Success % is the percentage
of success in 100 rounds)

C.3 Edit distance metric calibration

We also do a study on whether we can use alignment score to di↵erentiate segments from being extracted
from the same genomic location or not. In Fig 13, the upper curve is the score for segment extracted from the
same genomic location while the bottom curve is for completely iid randomly(irrelevant) generated segment.
And we simulate it for 100 times at each length and the bar indicate 1 standard deviation from the mean.

Fig. 13: A calibration for similarity score using global alignment computation.

C.4 Tolerance in the Multibridging step

We note that due to the indel noise and the graph surgery that we perform, an X-node of the graph may be
p times longer than the usual size of the approximate repeat, thus we should have a corresponding higher
tolerance to use the reads to bridge across the repeats.

C.5 Computation speed up of alignment step

The key bottle neck in computation speed of the indel extension is on the pairwise alignment of the reads,
which can be speeded up using the ideas in BLAST. We use sorting to identify exact matching fingerprint
that identify the starting and ending location of the segment that need to be aligned with. After that, we
do a local search instead of the whole dynamic programming search.

D Appendix of the dot plot of finished genomes

(a) Index 1 (b) Index 2 (c) Index 3

(d) Index 4 (e) Index 5 (f) Index 6

(g) Index 7 (h) Index 8 (i) Index 9

(j) Index 10 (k) Index 11 (l) Index 12

Fig. 14: Dot plot of recovered genomes against ground truth(according to index in Table 2)

E Appendix : Evidence behind model

E.1 Approximate Repeat

We let the underlying genome be x and use the short hand that x[a : b] be the a

th to (b� 1)th entries of x.
Let v

1

= x[s
1

: s
1

+ l] and v

2

= x[s
2

: s
2

+ l] be two length l substrings of the genome with starting
positions at s

1

and s

2

respectively. We call v
1

and v

2

be an approximate repeat of length l if
d(x[s

1

�W : s
1

], x[s
2

�W : s
2

]) � 0.7W
d(x[s

1

+ l : s
1

+ l +W], x[s
2

: s
2

+ l +W]) � 0.7W
d(x[s

1

�W + k : s
1

+ k], x[s
2

�W + k : s
2

+ k]) < 0.7W for all 0 < k < l

To understand approximate repeat better, we plot the Hamming distance for consecutive disjoint window
of length 10 as shown in Fig 15 .

E.2 Classification of approximate repeat

While repeats are studied in the literature[2], they are not investigated by looking at the ground truth. This
is partially due to the insu�ciency of data in the early days of genome assembly development. Therefore,
based on the ground truth genome, we define several quantities that allow us to classify approximate repeat
and understand the approximate repeat spectrum of genome. Here we define stretch and mutation rate.
Stretch is defined to be the ratio of the length (l⇤) of the longest exact repeat within an approximate repeat
divided by the length (l

approx

) of the approximate repeat. Mutation rate is defined to be number of mutation
within approximate repeat divided by (l

approx

�l

⇤). An illustration is shown in Fig 15.

Fig. 15: Example of how to define stretch and mutation rate

Moreover, we do a scatter plot to classify the approximate repeats(approximate repeat having exact
repeat length within top 20) and we have a plot of approximate repeat spectrum as in Fig 16.

From the plots in Fig 16, we classify approximate repeat as homologous repeat if the stretch is bigger
than 1.25 and as non-homologous repeat if the stretch is less than 1.25.

For the scatter plot, every approximate repeat is a dot there with x coordinate and y coordinate being
mutation rate and stretch respectively. And the color represents the length of that approximate repeat. For
the approximate repeat spectrum plot, the red bar represent non-homogeneous repeat while the blue bar
represent homologous repeat. The green dotted line indicates the length of the longest repeat.

We focus on genomes when the non-homologous repeat dominates, namely the longest interleave and the
longest triple repeats are non-homologous because the stretch is relatively short which can be captured by our
generative model. We do not distinguish between the length of approximate or exact repeat are considered
to be the same and we do not distinguish between the two in the discussion because of the small stretch.

Fig. 16: Classification of approximate repeats and approximate repeat spectrum. The upper plot is scatter
plot to classify approximate repeat. The lower plot is the approximate repeat spectrum

E.3 Stopping criterion for defining approximate repeat by MLE estimate

Parametric model Let L
k

be the number of bases between the (k� 1)th and the k

th SNPs starting from
the right end-point of a repeat.

We consider the following probabilistic model for the L
k

. {L
k

}n
k=1

is taken as an independent sequence of
geometrically distributed random variables with parameter ⇥ = {p

1

, p

2

, r} defined as follows.

L

k

⇠
(
Geo(p

1

) if 1  k  r

Geo(p
2

) if r < k  n

MLE estimate of parameters We now would like to estimate ⇥ given the observation of {L̂
k

}n
k=1

by

maximum likelihood estimation. Consider the log-likelihood function L(⇥) = logP({L̂
k

}n
k=1

| ⇥).

L(⇥) = logP({L̂
k

}n
k=1

| ⇥) (9)

= log{[⇧r

k=1

(1� p

1

)
ˆ

L

k

p

1

] · [⇧n

k=r+1

(1� p

2

)
ˆ

L

k

p

2

]} (10)

= r log p
1

+ [
rX

k=1

L̂

k

] · log(1� p

1

) + (n� r) · log p
2

+ [
nX

k=r+1

L̂

k

] · log(1� p

2

) (11)

And we want to find ⇥̂ = argmax
⇥

L(⇥).
Observe that , if we fix 1  r  n, then the optimal p̂

1

and p̂

2

can be readily obtained by taking derivative
on L(⇥) with respect to p

1

and p

2

, specifically,

p̂

1

=
1

1 +
P

r

k=1

ˆ

L

k

r

(12)

p̂

2

=
1

1 +
P

n

k=r+1

ˆ

L

k

n�r

(13)

⇥̂ can then be obtained by running over all integral 1  r  n and use the corresponding optimal p̂
1

and
p̂

2

to obtain the L(⇥) ,and finally we use the r that gives the highest value of L(⇥) as the MLE estimate
given the observation.

Linear time algorithm to estimate the stopping criterion Moreover, this can be done by the following
algorithm Algo 6, which run in linear time ⇥(n) with respect to the number of observations n.

A sample plot is of who we can use the critierion to accurately define the ending of approximate repeat
is shown in Fig 17.

Algorithm 6 Linear time algorithm to estimate the stopping criterion
1.
a)C

0

 0
b) for r = 1 to n
C

r

 C

r

+ L̂

r

2.
a)D

0

 C

n

b)for r = 1 to n
D

r

 C

n

� L̂

r

3. for r = 1 to n
p̂

(r)

1

 1

1+

C

r

r

p̂

(r)

2

 1

1+

D

r

n�r

⇥

r

 (r, p̂(r)
1

, p̂

(r)

2

)
X

r

 L(⇥
r

)
4. find maximum among {X

r

}n
r=1

, and the corresponding ⇥

r

is the MLE estimate.
5. (Di↵erentiate between homologous and non-homologous repeat)

If the optimal p̂(r)
1

, p̂

(r)

2

are too close (i.e. p̂(r)
1

> 0.2), then claim r = 1; else, claim r̂ = r.

Fig. 17: An example plot that define the stopping point of approximate repeat by Algorithm 6

