
Scalable Automated Model Search

Evan Sparks

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-122

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-122.html

May 20, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Thanks to Ameet Talwalkar, Michael Franklin, Michael Jordan, and Tim
Kraska who all contributed to this work.

Scalable Automated Model Search

by Evan R. Sparks

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University of Cal-

ifornia at Berkeley, in partial satisfaction of the requirements for the degree of Master of Science,

Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Michael J. Franklin

Research Advisor

Date

* * * * * *

Benjamin Recht

Second Reader

May 14, 2014

Scalable Automated Model Search

⇤

Evan R. Sparks

Computer Science Division

UC Berkeley

sparks@cs.berkeley.edu

ABSTRACT
Model search is a crucial component of data analytics pipelines,
and this laborious process of choosing an appropriate learning al-
gorithm and tuning its parameters remains a major obstacle in the
widespread adoption of machine learning techniques. Recent ef-
forts aiming to automate this process have assumed model train-
ing itself to be a black-box, thus limiting the effectiveness of such
approaches on large-scale problems. In this work, we build upon
these recent efforts. By inspecting the inner workings of model
training and framing model search as bandit-like resource alloca-
tion problem, we present an integrated distributed system for model
search that targets large-scale learning applications. We study the
impact of our approach on a variety of datasets and demonstrate
that our system, named GHOSTFACE, solves the model search prob-
lem with comparable accuracy as basic strategies but an order of
magnitude faster. We further demonstrate that GHOSTFACE can
scale to models trained on terabytes of data across hundreds of ma-
chines.

Categories and Subject Descriptors
Big Data [Distributed Computing]: Large scale optimization

1. INTRODUCTION
Modern scientific and technological datasets are rapidly growing

in size and complexity, and this wealth of data holds the promise
for a variety of transformational applications. Machine learning
(ML) and related fields are seemingly poised to deliver on this
promise, having proposed and rigorously evaluated a wide range of
data processing techniques over the past several decades. However,
the challenge in effectively deploying these techniques in practice,
and in particular at scale, remains a major bottleneck to the wider
adoption of these statistical methods.

In this work, we explore the model search problem in a dis-
tributed learning environment. Specifically, how to best choose be-
tween model families for supervised learning problems and config-
ure the hyperparameters for these algorithms automatically to mod-
els with high accuracy very quickly. This process of model family
selection and hyperparameter tuning remains a largely ad-hoc task
for ML experts, and a herculean undertaking for non-experts. In the
best cases, tedious and often non-reproducible efforts are required
to produce reasonable models, while in the worst cases, inaccurate
or even faulty models, c.f., [23] are generated.

Recently there have been attempts to automate the process of
model search, e.g., [38, 35, 14, 13]. These techniques show clear
improvements over naive grid search. However, these techniques
⇤The majority of this work is under submission and appears under
the title “Automating Model Search at Scale”.

essentially ignore implementation details of the models being tuned,
and instead assume that algorithm training is a black box. Specifi-
cally, model training is seen as an opaque, expensive function call,
into which hyperparameter configurations are input, and an assess-
ment of model performance is output. Such an approach limits the
types of strategies available to automate and speed up the model
search process. This assumption is particularly limiting in the dis-
tributed setting, where model training follows a similar access pat-
tern for a wide range of learning algorithms.

In this paper, we take an integrated approach to the model search
problem for large-scale distributed machine learning. Our strategy
builds upon recent developments in model search by incorporating
knowledge about the access patterns of model training and relat-
ing the subsequent model search problem to a multi-armed bandit
resource allocation problem. Our system, which we call GHOST-
FACE, is part of MLbase [26] and takes advantage of MLI [37], a
new programming abstraction that simplifies the development of
distributed ML algorithms. MLI partially unifies the implementa-
tion of ML algorithms, which allows GHOSTFACE to inspect them
with respect to the physical process and order in which the al-
gorithms access data (their access patterns) and their incremental
progress (i.e., model performance after some number of iterations).
This in turn enables unique optimizations in two ways: First, the
data access by various algorithm instances can be combined, and
second, cluster resources can be better allocated by providing more
(less) resources to promising (poorly-performing) model configu-
rations.

In summary, this paper makes the following contributions to the
automation of model search at scale:

• We show how an integrated architecture can be leveraged to
combine access patterns and thus increase data and instruc-
tion cache locality for parallel model training.

• We describe how search techniques can be combined with
physical optimization and early stopping strategies.

• We describe the architecture of GHOSTFACE and how it works
with MLbase to make ML easier for end users.

• We present our experimental results on various data sets,
which show convergence to that is an order of magnitude
faster than simple model search strategies while achieving
comparable model accuracy.

2. RELATED WORK
Most related to GHOSTFACE is Auto-Weka [38]. As the name

suggests, Auto-Weka aims to automate the use of Weka [10] by ap-
plying recent derivative-free optimization algorithms, in particular

Sequential Model-based Algorithm Configuration (SMAC) [24], to
the model search problem. In fact, their proposed algorithm is one
of the many optimization algorithms we use as part of GHOST-
FACE. However, in contrast to GHOSTFACE, Auto-Weka focuses
on single node performance and does not optimize the parallel ex-
ecution of algorithms. Moreover, Auto-Weka treats algorithms as
black boxes to be executed and observed, while our system takes
advantage of knowledge of algorithm execution from both a statis-
tical and physical perspective.

In addition to SMAC, other algorithms have been recently been
proposed. In Bergstra et. al. [14], the effectiveness of random
search for hyper-parameter tuning is established, while Bergstra et.
al.[13] proposes a search method based on refinement on initially
random search that is refined with new information, called Tree-
structured Parzen Estimation (TPE). We make use of both meth-
ods in our system. Snoek et. al. [35] explore the use of Gaus-
sian Processes for the model search problem, and propose a vari-
ety of search algorithms, including an algorithm that accounts for
improvement per time-unit, and another extension targeting paral-
lel implementations in which several new model configurations are
proposed at each iteration. However, model training is nonetheless
considered as black-box, and moreover, we found that their algo-
rithms, collectively called Spearmint, often run for several minutes
per iteration as the number of samples increases, which is too long
to be practical in many scenarios.

In contrast to these recent works, the field of derivative free op-
timization has a long history of optimizing functions for which
derivatives cannot be computed [18]. Our evaluation of these al-
gorithms on the model search problem suggest that they are not
well-suited for this task, potentially due to the lack of smoothness
of the (unknown) model search function that we are optimizing.

In terms of system-level optimization, both Kumar et. al. [27]
and Canny et. al. [16] discuss batching as an optimization for
speeding up machine learning systems. However, [27] discusses
this technique in the context of automatic feature selection, an im-
portant problem but distinct from model search, while [16] explores
this technique in the context of parameter exploration and model
tuning, as well as ensemble methods and cross validation. We ex-
plore the impact of batching in a distributed setting at greater depth
in this work, and present a novel application of this technique to the
model search problem.

There are also several proprietary and open-source systems pro-
viding machine learning functionality with varying degrees of au-
tomation. Google Predict [4] is Google’s proprietary web-service
for prediction problems with some degree of automation, yet it re-
stricts the maximum training data-size to 250MB and the internals
of the system are largely unknown. Weka [10] and Mahout [2] are
two notable open-source ML libraries, and in theory our proposed
methods could work with them. In practice though, such integra-
tion would require some API restructuring, for example, to expose
the access patterns of the algorithms available in these systems to
GHOSTFACE. Similarly, there has been a lot of work on distributed
run-times for ML such as Vowpal Wabbit [3], SystemML [22] and
Hyracks [15]. GHOSTFACE is designed explicitly for model search
and hyperparameter tuning at scale, while these systems focus on
scalably training single models.

Finally, we note that GHOSTFACE is part of MLbase [26], a novel
system to simplify the use of machine learning. MLbase, and hence
GHOSTFACE, is built upon Apache Spark, a cluster compute sys-
tem designed for iterative computing [39]. Further, GHOSTFACE
leverages the low-level ML functionality in MLlib [21] (the lowest
layer of MLbase that also serves as Spark’s default ML library) and
the MLI API [37].

3. OPTIMIZING LARGE SCALE MODEL
SEARCH

One conventional approach to model search or hyperparameter
tuning is sequential grid search. A space is defined over algorithm
hyperparameters, and points are selected iteratively from a grid
across these hyperparameters and model fitness at each of these
points is evaluated iteratively.

This approach has several obvious drawbacks. First, no informa-
tion about the results of previous iteration is incorporated into later
search. Second, the curse of dimensionality limits the usefulness
of this method in high dimensional hyperparameter spaces. Third,
grid points may not represent a good approximation of global min-
ima - true global minima may be hidden between grid points, par-
ticularly in the case of a very coarse grid. Still, it may be the most
frequently used search method for hyperparameter tuning in prac-
tice, despite the existence of more effective search methods.

Although these more effective methods – most recently, Bayesian
in variety – provide much better search performance than grid search,
as we will see, they do not take into account the full picture of
model search.

3.1 Background and Goals
Before presenting the optimizations that are key to achieving

high performance in the model search problem, we first describe
our problem setting and assumptions. Specifically, we are oper-
ating in a scenario where individual models are of dimensionality
d, which is typically significantly less than the total number of ex-
ample data points N . In this scenario, we are focusing on search-
ing across a relatively small number of model families, f 2 F ,
each with a relatively small number of hyperparameters, � 2 ⇤.
Moreover, we restrict our study to model families that are trained
via a particular access pattern, namely multiple sequential scans
of the training data. In particular, we focus in this paper on two
model families: linear Support Vector Machines (SVM) and lo-
gistic regression, both trained via gradient descent. However, it
is worth noting that the access pattern we consider encompasses a
wide range of learning algorithms, especially in the large-scale dis-
tributed setting. For instance, efficient distributed implementations
of linear regression [21], tree based models [32], Naive Bayes clas-
sifiers [21], and k-means clustering [21] all follow this same access
pattern.

Our system is built on Apache Spark [39], and we are targeting
algorithms that run on tens to thousands of nodes on commodity
computing clusters, and datasets that fit comfortably into cluster
memory - on the order of tens of gigabytes to terabytes. Training
of a model to convergence on such a cluster is expected to require
tens to hundreds of passes through the training data, and take on the
order of minutes. Moreover, with a terabyte dataset, performing
a naive model search using sequential grid search involving just
128 model configurations would take nearly a week, even given a
compute cluster of 128 nodes. Hence, in this regime naive model
search is tremendously costly, and our goal is to minimize total
resource consumption as part of the model search process.

Existing algorithms for model search have considered model train-
ing to be a black box. The goal of these algorithms is to find model
configurations with good statistical performance, which is usually
measured in terms of validation error for classification models or
validation RMSE for regression models. By observing that model
training is not purely a black box and making some mild assump-
tions about how models are trained and what can be observed of
their training, we validate and combine state of the art model search
methods with additional techniques to reduce total runtime and to-
tal cost.

We reduce the resources required through three basic techniques:
1) batching model training to improve resource utilization, 2) bet-
ter search methods, and 3) bandit-like resource allocation to focus
our resources on promising model configurations. Together, these
optimizations lead to a system that is an order of magnitude faster
than one based on a sequential grid search approach.

3.2 Batching
As noted by others, e.g., [27, 16] batching is a natural system

optimization in the context machine learning, with applications for
cross validation and ensembling. In the context of model search, we
note that the access pattern of gradient descent based algorithms is
identical with respect to the input dataset. Specifically, each algo-
rithm takes multiple passes over the input data and updates some
intermediate state (model weights) during each pass. As a result,
it is possible batch together the training of multiple models. In a
distributed environment, this has several advantages:

1. Amortized network latency across several models at once.

2. Amortized task launching overhead across several models at
once.

3. Better CPU utilization by reducing wasted cycles.

Ultimately, these three advantages lead to a significant increase in
aggregate throughput in terms of models trained per hour. For a
typical distributed system, a model update requires at least two net-
work round-trips to complete. One to launch a task on each worker
node, and one to report the results of the task back to the master.
By amortizing this cost across multiple models, we reduce total
overhead due to network latency substantially.

In the context of a distributed machine learning system like GHOST-
FACE, which runs on Spark, recent work [31] indicates that the
startup time for a given task in Spark is roughly 5ms. By batch-
ing our updates into larger tasks, we are able to reduce the aggre-
gate overhead of launching new tasks substantially. For example,
if we have a batch size of 10 models, the average task overhead
per model iteration drops to 0.5ms. Over the course of hundreds of
iterations for hundreds of models, the savings can be substantial.
This possibly comes at the expense of introducing stragglers to our
jobs, but on balance we see faster throughput through batching.

Finally, modern x86 machines have been shown to have proces-
sor cores which significantly outperform their ability to read data
from main memory [29]. In particular, on a typical x86 machine,
the hardware is capable of reading 0.6B doubles/sec from main
memory, while the hardware is capable of executing 15B FLOPS in
the same amount of time [28]. This imbalance provides an opportu-
nity for optimization by reducing unused resources, i.e., wasted cy-
cles. By performing more computation for every double read from
memory, we can reduce this resource gap. A typical gradient up-
date in a sufficiently large model takes 2-4 FLOPs per feature read
from memory – one multiply and one addition, plus some constant
time for subtracting off the observation and performing a transfor-
mation. If models are small enough to fit in the CPU’s cache lines,
then we should expect to see a roughly 7-10x speedup in execution
time by batching multiple models together. While we fall short of
this theoretical limit in our evaluation of this optimization, it still
provides a up to a 5x improvement on our synthetic evaluations and
a 1.6x improvement on our larger scale experiment in which model
complexity is on the order of 10, 000 parameters.

3.3 Better Search
We have validated existing methods of hyperparameter search

for use in our scenario. We compare traditional methods with more

recent methods in hyperparameter search, and present the results in
Section 5. Our experiments confirm that two recent hyperparam-
eter tuning algorithms – TPE and SMAC – provide better conver-
gence properties than traditional methods, though surprisingly only
slightly better than random search.

3.3.1 Traditional Methods
We explored a number of traditional methods for derivative-free

optimization, including grid search, random search, Powell’s method
[34], and the Nelder-Mead method [30]. Our baseline method is
grid search, whereby grid points are chosen from a uniform distri-
bution or loguniform distribution from a grid of all hyperparameters
for a given model.

Random search selects points at random from the same distri-
butions as grid search. For the sake of comparability, we use the
same number of random points as grid points in all of our exper-
iments. We note here that random search works surprisingly well
compared to the more advanced methods we studied. This has also
been noted and studied by others [14].

Powell’s method can be seen as a derivative free analog to coor-
dinate descent. Given a starting point, each dimension in the hy-
perparameter space is searched for a local minimum. The vectors
pointing to these local minima are summed and added to the start-
ing point. The algorithm proceeds iteratively from this new point
until convergence is reached or some maximum number of function
evaluations have been made.

The Nelder-Mead method repeatedly samples from a polytope
with K+1 vertices in K dimensions on the hyperparameter space.
This polytope is used to approximate a gradient, and the algorithm
chooses a new point to sample opposite the direction of the gradient
and proceeds with a new polytope formed with this new point.

Both Powell’s the Nelder-Mead method expect unconstrained
search spaces, but function evaluations can be modified to severely
penalize exploring out of the search space. However, both methods
require some degree of smoothness in the hyperaparamter space
to work well, and can easily get stuck in local minima. Addition-
ally, neither method lends itself well to categorical hyperparame-
ters, since the function space is modeled as continuous. For these
reasons, we are unsurprised that they are inappropriate methods to
use in the model search problem where we are optimizing over an
unknown function that is likely non-smooth and not convex.

3.3.2 TPE
Tree-based Parzen Estimators, first presented in [13], begin with

a random search, and then probabilistically sample from points
with more promising minima. More formally, TPE models p(�|c)
based on:

p(�|c) =
⇢

l(�) if c < c⇤
g(�) if c � c⇤ ,

where c* represents the point at the � quantile of points sampled
so far, and l(�) and g(�) represent density estimates of the hyper-
parameters below and above the c⇤ threshold, respectively. The al-
gorithm considers new candidates at random, and among these ran-
dom candidates, selects the one with the lowest value of g(�)/l(�),
or, intuitively, the point most likely to be in the “good” region.

3.3.3 SMAC
The SMAC algorithm works by building a Random Forest model

from observed hyperparameter results. The algorithm first uses
Random Forests to estimate p(c|�), which models the dependence
of the loss function c on the model hyper-parameters �. By uti-
lizing the Random Forests to obtain an estimate of both mean and

variance for points in the hyperparameter space, they are able to
find areas of highest expected improvement, as in more traditional
Gaussian methods. Importantly, the authors of [38] point out that
this model can capture complex and conditional hyperparameters,
and SMAC was recently used for model search as part of of Auto-
Weka.

3.3.4 GP Methods
[35] have proposed a Bayesian method for hyperparameter op-

timization based on Gaussian Processes. Their choice of kernel
under this model allows for closed form solutions to expected im-
provement at each model iteration. Additionally, they present an
optimization which speeds up operation of this algorithm on multi-
core machines. Evaluation of their acquisition function is cubic in
the number of models trained, and candidate models may take min-
utes to be proposed after a few hundred models have been trained.
Additionally, there is an exponential initialization phase at the be-
ginning of model training which can be quite expensive to compute
as the hyperparameter space grows.1

3.4 Bandit-like Resource Allocation
We observe that not all models are created equal. In the context

of model search, only one model will converge to the “best” answer.
Many of the remaining models perform drastically worse than this
best model, and under certain assumptions, allocating resources
among different model configurations can be naturally framed as
a multi-armed bandit problem.

Given a fixed set of k model configurations to evaluate, where
k is the product of distinct model families and the number of hy-
perparameter configurations considered for each family, the model
search problem can naturally be cast as a repeated game with a fixed
number of rounds T . At each round we perform a single iteration
of a particular model configuration, and return a score (or reward)
indicating the quality of the updated model, e.g., validation error.
In such a settings, multi-armed bandit algorithms can be used to de-
termine a scheduling policy to efficiently allocate resources across
the k model configurations. Typically, these algorithms keep a run-
ning score for each of the k arms, and at each iteration choosing an
arm as a function of the current scores.

However, our setting differs from this standard setting in two
crucial ways. First, several of our search algorithms select model
configurations to evaluate in an iterative fashion, so we do not have
advanced access to a fixed set of k model configurations. Second,
in addition to efficiently allocating resources, we aim to return a
reasonable result to a user as quickly as possible, and hence there
is a benefit to finish training promising model configurations once
they have been identified.

We thus propose a bandit-like heuristic that takes into account
our problem-specific constraints while allocating resources. Our
heuristic preemptively prunes models that fail to show promise of
converging. Specifically, for each model we initially allocate a
fixed number of iterations, and based on its quality we decide whether
to train the model to completion. In our experiments, our initial al-
location is 10 iterations (or passes through the data), and a model’s
quality is assessed by comparing its validation error with the small-

1In preparation for this paper, we contacted the authors about some
deficiencies of their model in terms of computational and statisti-
cal performance, and they redirected us to very recent work [36]
which can help these models achieve better statistical performance,
potentially reducing the need for hundreds of function evaluations
in low dimensional hyperparameter space. However, the code as-
sociated with this work was not available in time to be evaluated in
this submission.

Driver

Searcher

Search SpaceSearch Results

Executor

Configurations

Search
RoutinesConfiguration

Results

Trained Models

Configuration
Proposals

Figure 1: The Driver is responsible for defining a search space over
which models are to be trained. The Searcher deterimines which
configurations to try and, based on the results which ones to try
next. It may interact with external search routines to accomplish
this. The Executor is responsible for evaluating model configura-
tions and reporting results - it may evaluate a particular configura-
tion over a cluster of machines.

est validation error we have already seen with previous model con-
figurations trained on 10 iterations.

4. ARCHITECTURE
GHOSTFACE is built on top of Apache Spark and MLI. These

systems have been designed to support high performance iterative
MapReduce algorithms on working sets that fit into cluster mem-
ory, and simplified development of machine learning algorithms,
respectively. It has been shown that these systems can outperform
conventional MapReduce-based systems for machine learning like
[2], often by an order of magnitude. We leverage features of both
systems in our design and experiments. Since both Spark and MLI
are written in Scala, we chose to write GHOSTFACE in Scala as well
to leverage tight integration with the existing systems and libraries
available in the JVM ecosystem. Our system is a component of
MLbase [26], and an important component of MLbase is the ML-
base Optimizer, designed to automate the process of constructing
and refining machine learning pipelines. GHOSTFACE represents a
first effort at building such an optimizer and is a central component
to the design of this system.

The architecture of GHOSTFACE consists of three abstract enti-
ties: A Driver, one or more Searchers, and zero or more Executors.
These entities are implemented as akka Actors, which enables a
concurrent programming model that supports asynchronous com-
munication between these entities. A graphical depiction of these
entities is shown in Figure 1 and a summary of the protocol be-
tween these entities is captured in Figure 2. Additionally, mod-
els are trained in a parallel dataflow system, whose computational
model – iterative MapReduce – lends itself well to expressing a
large class of machine learning algorithms. The responsibilities of
each entity are described below.

4.1 Driver
The driver is the main entry point for a GHOSTFACE model search.

The Driver’s primary responsibilities include instantiating one or

more Searchers and collecting results from the search process. End
users typically interact with the system through the Driver, which
is instantiated with a dataset, a search space which describes the
space of model configurations to explore, and information about
how to configure the searcher and what type of searcher to instan-
tiate (e.g. Grid, Random, TPE). The driver communicates asyn-
chronously with the searcher and collects newly trained models as
they become available. It can also be polled by user programs for
new information about search progress and models that have been
trained.

4.2 Searcher
A Searcher is responsible for instantiating Executors, deciding

on model configurations for evaluation, farming that work out to its
Executors, and relaying results back to the Driver. Importantly, we
also centralize the logical and physical optimizations in the imple-
mentation of the searcher. Namely, it is the searcher’s job to figure
out how best to implement batching (by sending jobs to a Batch Ex-
ecutor), resource allocation (by evaluating results from Executors
before letting work continue), and to implement the search method
it is responsible for.

The architecture is such that we may use external libraries or
service calls to implement the searching logic. For example, in
implementing a TPE based searcher, the TPESearcher code makes
external service calls to a web service that is simply a thin wrapper
around the existing Hyperopt library [5].

By implementing a few concrete methods for suggesting points
in the hyperparameter space and ingesting new results, our system
allows easy addition of new algorithms for hyperparameter opti-
mization as they become available. Additionally, new algorithms
will benefit from the systems level optimizations made for all algo-
rithms.

4.3 Executor
A Executor in GHOSTFACE is an abstract entity capable of eval-

uating model configurations. A GHOSTFACE Executor may launch
jobs that are executed on hundreds of nodes. In practice, our execu-
tors usually have a handle to an entire cluster, which allows them
to execute their jobs in a data parallel fashion. As such, we are of-
ten in a situation where only a single Executor needs to be created.
While this detail need not be evident to the searchers, in the case
of batching, for example, the type of Executor (that is, a Batch Ex-
ecutor vs. a Sequential Executor) can play a role in how tasks are
allocated to it.

4.4 Hybrid Parallel Dataflow and Asynchronous
Control for Model Search

In basing our system on Spark, we are explicitly employing a
parallel dataflow engine to train our models. At the same time, all
of the hyperparameter tuning happens in an asynchronous fashion
with Actors handing out jobs and receiving results asynchronously.
As such, our system can be viewed as a hybrid of a traditional BSP
computation environment with an asynchronous control plane. By
employing this approach, we are able to isolate the portions of our
system that need to be high performance, fault tolerant, and data
parallel from those that need to be asynchronous and reactive, lead-
ing to a system that achieves both goals.

5. EVALUATION
We evaluated GHOSTFACE in two ways. First, we validated our

ideas about model search and preemptive pruning on five represen-
tative datasets across a variable number of function evaluations. In
particular, we used these results to motivate which hyperparameter

search strategy to incorporate into a larger system. We also used a
small scale infrastructure to experiment with hyperparameter tun-
ing in slightly higher dimensions and refine our preemptive pruning
heuristic. Once these ideas were validated, we implemented them
in a large scale system, designed with end-to-end performance in
mind and better suited for a cluster environment. Next, we evalu-
ated this approach on very large scale data problems, at cluster sizes
ranging from 16 to 128 nodes and datasets ranging from 40GB
to over 1TB in size. These numbers represent actual features the
model was trained on, not the raw data from which these features
were derived - that is, these numbers are the dataset size that the
model was trained on - not some pre-aggregated dataset.

Before training, we split our base datasets into 70% training,
20% validation, and 10% testing. In all cases, models are fit to
minimize classification error on the training set, while hyperparam-
eter selection occurs based on classification error on the validation
set (validation error). Since the hyperparameter tuning algorithms
only have access to validation error, we report those numbers here,
but test error was similar. GHOSTFACE is capable of optimizing
arbitrary performance metrics as long as they can be computed
mid-flight, and should naturally extend to other supervised learning
scenarios such as multinomial classification problems or regression
problems.

By using a state of the art search method, employing batching,
and preemptively terminating non-promising models, we are able
to see a 7x increase in raw throughput of the system in terms of
models trained per unit time, while seeing an effective 19x speedup
in terms of convergence to a reasonable model configuration versus
the conventional approach.

5.1 Platform Configuration
We tested GHOSTFACE on Linux machines running under Ama-

zon EC2, instance type m2.4xlarge, while the smaller scale ex-
periments were performed on a single machine. These machines
were configured with Redhat Enterprise Linux, version 1.9 of the
Anaconda python distribution from Continuum Analytics[1], and
Apache Spark 0.8.1. Additionally, we made use of Hadoop 1.0.4
configured on local disks as our data store for the large scale exper-
iments. Finally, we use MLI as of commit 3e164a2d8c as a basis
for GHOSTFACE.

5.2 Small Scale Experiments
We validated our ideas about model training on a series of small

datasets with well-formed binary classification problems embed-
ded in them. These datasets come from the UCI Machine Learning
Repository [11]. The model search task involved tuning four hy-
perparameters - learning rate, L1 regularization parameter, size of
a random projection matrix, and noise associated with the random
feature matrix. The random features are constructed according to
the procedure outlined in [7]. These last two parameters illustrate
that these techniques apply to feature selection as well as model
hyperparameters, but more importantly illustrate that 4 or 5 dimen-
sional hyperparameter space is reasonable to search given a budget
of a few hundred model trainings. To accomodate for the linear
scaleup that comes with adding random features, we down sam-
ple the number of data points for each model training by the same
proportion, leaving a learning problem that is equivalent in terms
of computational resources required to train given our fixed itera-
tion budget. We note that Snoek et. al. [35] introduce a method
of selecting new hyperparameter configurations based on expected
improvement per second, which would obviate the need for this ad-
justment, but because such a metric is not universally available we
omit it here.

Message Result Meaning
RunSearch(space: SearchSpace, data: Table) Begin Search Process
TopModel() Model Return best model after search.
AllBuilt() Boolean Is search process finished?
ModelsBuilt() Int How many models have been built?
Models() Seq[Model] Return all models that have been built.

(a) Driver/Searcher Protocol
Message Result Meaning
BuildModel(config: ModelConfig) Add model with this configuration to work queue.
DoWork() Begin consuming work queue.
StopWork() Stop consuming work queue.
QueueSize() Int How big is your work queue?

(b) Searcher/Executor Protocol
Message Meaning
ModelBuilt(model: Model) A model has been built with a particular configuration and error.
WorkDone() My work queue is empty.

(c) Executor/Searcher Protocol
Figure 2: Summary of protocol between Driver, Searcher, and Executor.

Our ranges for these hyperparameters were learning rate 2 (10�3, 101),
regularization 2 (10�4, 102), projection size 2 (1 ⇥ d, 10 ⇥ d),
and noise 2 (10�4, 102). For these experiments model family was
fixed to linear SVM, however we should note that the random fea-
tures introduce nonlinearity into the models.

A prototype built to run these experiments was constructed in
Python, using the scikit.learn [33] library and numpy [6].

5.2.1 Search
We evaluated seven search methods: grid search, random search,

Powell’s method, the Nelder-Mead method, SMAC, TPE, and a
Gaussian Process-based optimization method. We implemented
random and grid search directly, and used implementations of Pow-
ell’s method and the Nelder-Mead method from scipy [25]. For the
other three methods, we used off-the-shelf software from the in-
ventors of those methods, graciously made available to us freely
online [5][9][8].

Results of the search experiments are presented in Figure 3. Each
dataset was run through each search method with a varying number
of function calls, chosen to align well with a regular grid of n4

points where we vary n from 2 to 5. Of course, this restriction on
a regular grid is only necessary for grid search, but we wanted to
make sure that the experiments were comparable.

With this experiment, we are looking for methods that converge
to good models in as few function calls as possible. We note that of
all methods tried, TPE and SMAC tend to achieve this criteria best,
but random search is not far behind. That said, given the expense
of running many experiments, and the principled nature of TPE and
SMAC, we decided it was best to integrate one of these state of the
art methods into GHOSTFACE for the larger scale experiments.

We chose to integrate TPE into the larger experiments because it
seemed to perform slightly better than SMAC on some experiments
and because it was fairly easy to wrap in a simple web service and
query for new points to try, while integrating with SMAC would
have been a bit more onerous. That said, our architecture fully
supports additional search methods, and we expect to see additional
methods implemented over time.

5.2.2 Preemptive Pruning
We evaluated our preemptive pruning heuristic on the same datasets

with random search and 625 total function evaluations. The key
question to answer here was whether we could terminate poorly

Figure 4: Here we show the effects of preemptive pruning on
trained model performance. Model search completes in an average
of 83% fewer passes over the training data than without preemptive
pruning. Validation error is nearly indistinguishable vs. the case
where we do not preemptively terminate model training.

performing models early in the training process without signifi-
cantly affecting overall training error. In Figure 4 we illustrate the
affect that early stopping has on number of total epochs (that is,
passes over the dataset), which is a good proxy for speed of train-
ing, as well as validation error. We note a mean 86% decrease in
total epochs across these five datasets, and note that validation error
only gets slightly worse. On average, this method achieves 93% re-
duction in model error vs. not stopping early when compared with
validation error of a simple baseline model.

Models were allocated 100 iterations to converge on the correct
answer. After the first 10 iterations, models that were not within
5% classification error of the best model trained so far (after 10
iterations), were preemptively terminated. As a result, a large per-
centage of models which show little or no promise of converging to
a reasonable validation error are eliminated.

As mentioned previously, we consider this heuristic a special
case of a bandit algorithm where resources are explicitly allocated
toward models that are progressing acceptably and not at all toward
models that have not progressed acceptably or models that have ex-
ceeded their maximum number of iterations.

GRID NELDER_MEAD POWELL RANDOM SMAC SPEARMINT TPE

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

australian
breast

diabetes
fourclass

splice

16 81 256 625 16 81 256 625 16 81 256 625 16 81 256 625 16 81 256 625 16 81 256 625 16 81 256 625
Method and Maximum Calls

D
at

as
et

 a
nd

 V
al

id
at

io
n

Er
ro

r

Maximum Calls
16
81
256
625

Comparison of Search Methods Across Learning Problems

Figure 3: Search methods were compared across several datasets with a variable number of function evaluations. Classification error on a
validation dataset is shown for each combination. TPE and SMAC provide state of the art results, while random search performs best of the
classic methods.

5.3 Batching
We evaluated the effectiveness of batching at small scale using a

synthetic dataset of 1, 000, 000 data points in various dimensional-
ity. We trained these models on a 16-node cluster of m2.4xlarge
nodes on Amazon EC2, running Spark 0.8.1. We trained a linear
SVM on these data points via gradient descent with no batching
(batch size = 1) and batching up to 100 models at once. In Fig-
ure 5 we show the total throughput of the system in terms of models
trained per hour varying the batch size and the model complexity.
For small models, we see the total number of models per hour can
increase by up to a factor of 6 for large batch sizes. As models
grow in complexity, the effectiveness of batching deteriorates but
remains significant. The downside to batching in the context of
model search is that you may gain information by running models
sequentially that could inform subsequent models that is not incor-
porated in later runs. By fixing our batch size to a relatively small
constant (10) we are able to balance this tradeoff. Chen, et. al. [17]
demonstrate that encouraging model diversity in this type of batch-
ing setting can be important, but we do not incorporate this insight
in GHOSTFACE yet.

5.4 Large Scale Experiments
Our large scale experiments involve a Scala code base built ac-

cording to the principles laid out in Section 4. Here, we ran ex-
periments on 16 and 128 machines. Our dataset of reference is

Batch Size
D 100 500 1000 10000

1 136.80 114.71 98.14 22.18
2 260.64 171.79 147.79 30.59
5 554.32 290.46 189.87 30.19

10 726.77 390.04 232.23 25.31

(a) Models trained per hour for varying batch sizes and model
complexity.

Batch Size
D 100 500 1000 10000

1 1.00 1.00 1.00 1.00
2 1.91 1.50 1.51 1.38
5 4.05 2.53 1.93 1.36

10 5.31 3.40 2.37 1.14

(b) Speedup factor vs baseline for varying batch size and model
complexity.
Figure 5: Effect of batching is examined on 16 nodes with a syn-
thetic dataset. Speedups diminish but remain significant as models
increase in complexity.

pre-featurized version of the ImageNet Large Scale Visual Recog-
nition Challenge 2010 (ILSVRC2010) dataset [12], featurized us-
ing a procedure attributed to [19]. This process yields a dataset
with 160, 000 features and approximately 1, 200, 000 examples, or
1.5 TB of raw image features. In our 16-node experiments we down
sample to the first 16, 000 of these features and use 20% of the base
dataset for model training, which is approximately 30GB of data.
In the 128-node experiments we train on the entire dataset. We ex-
plore 3 hyperparameters here - learning rate and L1 Regularization
parameter matching the above experiments, with an additional pa-
rameter for which classifier we train - SVM or Logistic Regression.
We allot a budget of 128 model fittings to the problem.

We search for a binary classification model that discriminates
plants from non-plants given these image features. The images are
generally in 1000 base classes, but these classes form a hierarchy
and thus can be mapped into plant vs. non-plant categories. Base-
line accuracy for this modeling task is 14.2%, which is a bit more
skewed than the previous examples. Our goal is to reduce valida-
tion error as much as possible, but our experience with this particu-
lar dataset has put a lower bound on validation error to around 8%
accuracy with linear classification models.

5.4.1 Optimization Effects
In Figure 6 we can see the effects of batching and preemptive

pruning on the model training process. Specifically, given that
we want to evaluate the fitness of 128 models, it takes nearly 13
hours to fit all 128 models on the 30GB dataset of data on the 16
node cluster. By comparison, with the preemptive pruning rule and
batching turned on, the system takes just two hours to train a ran-
dom search model to completion and a bit longer to train a TPE
model to completion, a 6.3x speedup in the case of random search
and a 4.2x speedup in the case of TPE. TPE takes slightly longer
because it does a good job of picking points that do not need to
be terminated preemptively. That is, more of the models that TPE
selects are trained to completion than random search. Accordingly,
TPE arrives at a better model than random search given the same
training budget.

Turning our attention to model convergence illustrated in Fig-
ure 7, we can see that TPE converges to a good answer much faster
than random or grid search and even better than random search,
as we expected given the results of our smaller scale experiments.
Specifically, TPE gets within 10% of the lowest error achieved after
just 40 minutes. By contrast, the conventional approach with grid
search and no optimization takes 4 hours and 41 minutes - thus,
given this particular problem, better search, preemptive pruning,
and batching yield a total speedup of 7x. Moreover, in practice, we
would typically allow grid search to run to completion, because we
have no expectation that grid search has found a reasonable answer
partway through execution. Thus, if we compare the time that grid
search takes to execute according to the conventional approach to
the time it takes TPE to get to a reasonable answer, we compare 13
hours to 40 minutes, a 19x speedup.

5.5 Scalability
We now demonstrate GHOSTFACE’s ability to scale to massive

dataset sizes. Because we employ data-parallel versions of our
learning algorithms, achieving horizontal scalability with additional
compute resources is trivial. GHOSTFACE scales to a 1.5TB dataset
that is 10-times more complicated with respect to model space eas-
ily. For these experiments, we ran with the same parameter search
1Note that grid search at middle of Figure 6 did not finish, but we
expect it would have received a similar improvement from preemp-
tive pruning. We will have these results shortly.

●●●●●●●●●●●●●●●●

●●●●

●●●●

●●●●

●●●●
●●●●●●●●●

●●●

●●

●●●●●●●

●●●●●●●●●
●●●●●●●

●●●

●●

●●●●●●●●●●●●●●●●●●●

●●●

●
●●●●

●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.25

0.50

0.75

0 200 400 600 800
Time elapsed (m)

Be
st

 V
al

id
at

io
n

Er
ro

r S
ee

n
So

 F
ar

Search Method
●

●

●

Grid − Unoptimized
Random − Optimized
TPE − Optimized

Model Convergence Over Time

Figure 7: We compare the effect of various optimization methods
on model convergence. We compare unoptimized grid search with
fully optimized TPE search and Random search and see that TPE
converges most quickly.

settings as the smaller dataset but this time with a fixed budget of
40 function evaluations. It should be noted that with this level of
complexity in models, the batching optimization is likely not help-
ing much due to the complexity of the models, but early stopping
and better search certainly do. Our results are illustrated in Fig-
ure 8. Using the fully optimized TPE based search method, we
are able to search this space in 13 hours, and the method is able to
achieve a validation error of 8.2% for this dataset with 11 hours of
processing.

6. FUTURE WORK
We note that these optimizations are just the tip of the iceberg in

solving this problem faster. Advanced model training methods such
as L-BFGS and ADAGRAD can speed convergence of individual
models by requiring fewer passes over the training data [20].

More precise heuristics for preemptive pruning and better mod-
eling of these heuristics may allow for better pruning of the search
space mid-flight.

Search methods which take into account that multiple model
configurations are being sampled may improve convergence rates [17].

Additionally, this method of multi-model training naturally lends
itself to the construction of ensemble models at training time - ef-
fectively for free. However, there may be better search strategies
for ensemble methods that encourage heterogeneity among ensem-
ble methods, which we do not consider here.

6.1 Pipelines
The long term goal of this work is to provide a platform for the

automatic construction and tuning of end-to-end machine learning
pipelines. Here we describe how the model search procedure de-
scribed above can be extended to the problem of pipeline construc-
tion, explore some potential pitfalls, and describe some preliminary
thoughts about how these might be addressed.

6.1.1 Pipeline Structure
Real world machine learning pipelines can be viewed as data

flow graphs with two related but separate components. The first
component ingests and processes training data, performs feature
extraction, and trains a statistical model. The second component

●●●●●●●● ●●●●●● ●●●●● ●●●●

●●●●

●● ●● ●

0.25

0.50

0.75

5 10
Time elapsed (h)

Be
st

 V
al

id
at

io
n

Er
ro

r S
ee

n
So

 F
ar

Convergence of Model Accuracy on 1.5TB Dataset

Figure 8: Training a model with a budget of 32 function evaluations
on a 1.2m ⇥ 160k dataset takes 13 hours on a 128-node cluster with
GHOSTFACE.

uses this model to make predictions on live data - possibly updat-
ing the model in the process. While these descriptions are simple,
the internals of these components can be arbitrarily complex. For
example, feature extraction, a common task, may be comprised of
several steps - some of which are domain specific and others more
general.

6.1.2 Pipeline Operators
While we can view machine learning pipelines as arbitrary data

flow graphs that satisfy the above specification, in practice, ma-
chine learning pipelines consist of a set of fairly standard com-
ponents - many of which are amenable to efficient execution in a
distributed data flow environment. For concreteness, we enumer-
ate some such operators which may be chained together to form a
complete machine learning pipeline.

Domain Specific Operators are operators used to take data from
a particular data domain (e.g. text, images, speech) and transform
it into a form that is more amenable to use in a machine learning
algorithm. Often these techniques have been developed by domain
experts in the field over the course of years of research, and they
may not be useful for other types of pipelines. The simplest ex-
ample of a domain-specific operator would be a data loader - for

●●●●●●●●
●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●

●●●●●
●●●

●●●●●●
●●●

●●●
●●●

●●●
●●●

●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●

●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●

●●●
●●●
●●●
● ●●●

●●●
●●●
●●●

● ●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●● ●●●

●●●
●●●
●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
● ●●●

●●●
●●●
●●●
●●●

● ●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
● ●● ●●●

●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●● ●●●

●●●
●●●
●

0

50

100

0

50

100

0

50

100

Early: 0
Early: 1

Early: 1
Batch.Size: 1

Batch.Size: 1
Batch.Size: 10

0 200 400 600 800
Time elapsed (m)

N
um

be
r o

f M
od

el
s

Tr
ai

ne
d

by
 O

pt
im

iz
at

io
n

Le
ve

l

Search Method
●

●

●

Grid
Random
TPE

Models Trained Over Time

Figure 6: We compare the effect of various optimization methods on time to completion of a 128 model budget. Top: unoptimized. Middle:
preemptive pruning turned on. Bottom: preemptive pruning and batching. Each optimization buys us nearly a factor of two in raw throughput.

text data we might need to parse XML into a document tree, while
for image data we may need to load data from a compressed binary
form on disk to a 3-dimensional array of pixels. More advanced op-
erators in this space might include convolutions and edge detectors
for images and speech, and tokenizers for text.

General Purpose Operators can be used once data has been
loaded and domain-specific transformations have been applied. These
general purpose transformations give data physical or statistical
properties that are amenable for ingestion to a learning operator.
Vectorization, one-hot-encoding, and normalization are all exam-
ples of general purpose operators that might need to be applied to
such data. More sophisticated methods such as fourier transforms,
random feature projection, ZCA whitening, and forms of dimen-
sionality reduction also fall into this class of operators.

Learning Operators may be used to train a statistical model
capable of performing inference over the featurized data - e.g. to
classify an image or recommend a product to an end user. These
primitives include algorithms for classification, regression, cluster-
ing and collaborative filtering. We note that these primitives can ex-
ist just about anywhere in a machine learning pipeline. For example
- we might use K-Means clustering to learn convolution filters for
image recognition, before training a linear model on the convolved
data. Additionally, the data flow architecture is highly amenable
to training ensemble models - instead featurized data flowing into
a single training node, it can flow into many training nodes whose
predictions can later be averaged by a later node.

6.1.3 Putting It All Together
We point out that given a learning pipeline, the pipeline itself

has several hyperparameters to tune in addition to the model train-
ing hyperparameters before it can be used effectively. For example
- how many convolutions need to be applied to an image for the
purposes of image classification, how many principal components
should we reduce to in the case of dimensionality reduction, how
many random features should be produced. For a sufficiently com-
plicated (and realistic) pipeline, we can easily end up with tens of
hyperparameters, and we believe that while several of the methods
in this paper may apply to this setting, optimizing over this many
hyperparameters for learning problems is not a well explored space.

The very structure of the pipeline itself can also be viewed as
a hyperparameter. While fully automating the construction of the
data flow graph is likely beyond practical possibility, there may be
hints we can take from the data and the user’s problem that will
automate much of the model construction. For example - we can
eliminate domain specific operators at the beginning of our training
pipeline that are irrelevant to the training domain. Further possibil-
ities include finding “acceptable” configurations for early stages of
the pipeline, fixing them, and determining later stages given these
fixed choices. This heuristic may prevent finding the globally opti-
mal pipeline structure, but may allow us to construct a pipeline that
is good enough much more quickly.

7. CONCLUSION
We have demonstrated that by combining fast hyperparameter

tuning methods, batching techniques, and a preemptive pruning
heuristic, we can deliver a system capable of automating model
search on very expensive models trained on very large datasets that
is an order of magnitude faster than the conventional approach.
GHOSTFACE is a component of the MLbase project, and will serve
as a foundation for the automated construction of end-to-end pipelines
for machine learning.

8. ACKNOWLEDGEMENTS

This research is supported in part by NSF CISE Expeditions
award CCF-1139158 and DARPA XData Award FA8750-12-2-0331,
and gifts from Amazon Web Services, Google, SAP, Apple, Inc.,
Cisco, Clearstory Data, Cloudera, Ericsson, Facebook, GameOn-
Talis, General Electric, Hortonworks, Huawei, Intel, Microsoft,
NetApp, Oracle, Samsung, Splunk, VMware, WANdisco and Ya-
hoo!.

Thanks to Trevor Darrell, Yangqing Jia, and Sergey Karayev
who provided featurized imagenet deta, and Ben Recht who pro-
vided valuable ideas about derivative-free optimization and feed-
back. Special thanks to Ameet Talwalkar, Michael Franklin, Michael
Jordan, and Tim Kraska who were collaborators on this work.

9. REFERENCES
[1] Anaconda python distribution.

http://docs.continuum.io/anaconda/.
[2] Apache mahout. http://mahout.apache.org/.
[3] Cluster parallel learning. [with vowpal wabbit].

https://github.com/JohnLangford/vowpal_

wabbit/wiki/Cluster_parallel.pdf.
[4] Google Prediction API. https:

//developers.google.com/prediction/.
[5] Hyperopt: Distributed asynchronous hyperparameter

optimization in python.
http://hyperopt.github.io/hyperopt/.

[6] Numpy. http://www.numpy.org/.
[7] Random features for large scale machine learning.

http://www.keysduplicated.com/~ali/

random-features/.
[8] Smac: Sequential model-based algorithm configuration.

http:

//www.cs.ubc.ca/labs/beta/Projects/SMAC/.
[9] Spearmint (bayesian optimization). http://people.

seas.harvard.edu/~jsnoek/software.html.
[10] Weka.

http://www.cs.waikato.ac.nz/ml/weka/.
[11] K. Bache and M. Lichman. UCI machine learning repository,

2013.
[12] A. Berg, J. Deng, and F.-F. Li. Imagenet large scale visual

recognition challenge 2010 (ilsvrc2010). http://www.
image-net.org/challenges/LSVRC/2010/, 2010.

[13] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms
for hyper-parameter optimization. 2011.

[14] J. Bergstra and Y. Bengio. Random search for
hyper-parameter optimization. The Journal of Machine
Learning Research, 13:281–305, 2012.

[15] V. R. Borkar et al. Hyracks: A flexible and extensible
foundation for data-intensive computing. In ICDE, 2011.

[16] J. Canny and H. Zhao. Big data analytics with small
footprint: squaring the cloud. . . . conference on Knowledge
discovery and data mining, 2013.

[17] Y. Chen and A. Krause. Near-optimal batch mode active
learning and adaptive submodular optimization. pages
160–168, 2013.

[18] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction
to Derivative-free Optimization. SIAM, 2009.

[19] J. Deng, J. Krause, A. C. Berg, and L. Fei-Fei. Hedging your
bets: Optimizing accuracy-specificity trade-offs in large
scale visual recognition. pages 3450–3457, 2012.

[20] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient

methods for online learning and stochastic optimization. The
Journal of Machine Learning Research, 12:2121–2159,
2011.

[21] M. Franklin et al. Mllib: A distributed machine learning
library. In NIPS Machine Learning Open Source Software,
2013.

[22] A. Ghoting et al. Systemml: Declarative machine learning on
mapreduce. In ICDE, pages 231–242, 2011.

[23] E. Hurwitz and T. Marwala. Common mistakes when
applying computational intelligence and machine learning to
stock market modelling. CoRR, abs/1208.4429, 2012.

[24] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential
model-based optimization for general algorithm
configuration. pages 507–523, 2011.

[25] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source
scientific tools for Python, 2001–.

[26] T. Kraska, A. Talwalkar, J. Duchi, R. Griffith, M. Franklin,
and M. Jordan. Mlbase: A distributed machine-learning
system. In CIDR, 2013.

[27] A. Kumar, P. Konda, and C. Ré. COLUMBUS: Feature
Selection on Data Analytics Systems. algorithms, 2013.

[28] J. D. McCalpin. Stream: Sustainable memory bandwidth in
high performance computers. Technical report, University of
Virginia, Charlottesville, Virginia, 1991-2007. A continually
updated technical report. http://www.cs.virginia.edu/stream/.

[29] J. D. McCalpin. Memory bandwidth and machine balance in
current high performance computers. IEEE Computer
Society Technical Committee on Computer Architecture
(TCCA) Newsletter, pages 19–25, Dec. 1995.

[30] J. A. Nelder and R. Mead. A simplex method for function
minimization. The computer journal, 7(4):308–313, 1965.

[31] K. Ousterhout, A. Panda, J. Rosen, S. Venkataraman, R. Xin,
S. Ratnasamy, S. Shenker, and I. Stoica. The case for tiny
tasks in compute clusters.

[32] B. Panda, J. S. Herbach, S. Basu, and R. J. Bayardo. Planet:
massively parallel learning of tree ensembles with
mapreduce. Proceedings of the VLDB Endowment,
2(2):1426–1437, 2009.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[34] M. J. Powell. An efficient method for finding the minimum
of a function of several variables without calculating
derivatives. The computer journal, 7(2):155–162, 1964.

[35] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian
Optimization of Machine Learning Algorithms. arXiv.org,
June 2012.

[36] J. Snoek, K. Swersky, R. S. Zemel, and R. P. Adams. Input
warping for bayesian optimization of non-stationary
functions, 2014.

[37] E. R. Sparks, A. Talwalkar, V. Smith, J. Kottalam, X. Pan,
J. E. Gonzalez, M. J. Franklin, M. I. Jordan, and T. Kraska.
Mli: An api for distributed machine learning. In ICDM,
pages 1187–1192, 2013.

[38] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown.
Auto-WEKA: Combined Selection and Hyperparameter
Optimization of Classification Algorithms. In KDD ’13:
Proceedings of the 19th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages
1–9. ACM Request Permissions, Aug. 2013.

[39] M. Zaharia et al. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing.
In NSDI, 2012.

