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ABSTRACT
In the knowledge-tracing model, error metrics are used to
guide parameter estimation towards values that accurately
represent students’ dynamic cognitive state. We compare
several metrics, including log likelihood (LL), root mean
squared error (RMSE), and area under the receiver oper-
ating characteristic curve (AUC), to evaluate which metric
is most suited for this purpose. LL is commonly used as an
error metric in Expectation Maximization (EM) to perform
parameter estimation. RMSE and AUC have been suggested
but have not been explored in depth. In order to examine
the effectiveness of using each metric, we measure the cor-
relations between the values calculated by each and the dis-
tances from the corresponding points to the ground truth.
Additionally, we examine how each metric compares to the
others. Our findings show that RMSE is significantly better
than LL and AUC. With more knowledge of effective error
metrics for estimating parameters in the knowledge-tracing
model, we hope that better parameter searching algorithms
can be created.

1. INTRODUCTION
Knowledge tracing, popularized by Corbett and Anderson is
a well-known method for modeling student knowledge [6]. It
has been used by many intelligent tutoring systems to pre-
dict students’ performance and determine if students have
mastered a particular skill.

Knowledge tracing uses four model parameters: prior, learn,
guess, and slip. The prior parameter is the initial probability
that students know the skill a priori. The learn parameter is
the probability that students’ knowledge state will transition
from unlearned to learned after interacting with each ques-
tion. The guess parameter is the probability that students
get a correct answer when they do not know the associated
skill, and the slip parameter is the probability that students
make a mistake when they know the associated skill. The
primary goal of knowledge tracing is to infer latent knowl-
edge, which is unobservable. Thus, we check the accuracy of
knowledge predictions by inspecting how well the model pre-
dicts students’ performance; we pick the knowledge tracing
parameters that best predict performance.
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There are several methods to estimate the model param-
eters. In Bayesian Knowledge Tracing (BKT), the model
can be fit to student performance data by using either a
method which finds a best goodness-of-fit measure (e.g. sum
of square errors, mean absolute error, RMSE, and AUC,
etc.), or a method which finds maximum likelihood. For the
goodness-of-fit measures method, grid search/brute force [1]
is used to find the set of parameters minimizing errors. On
the other hand, Expectation Maximization [5, 9] is often
used to choose parameters maximizing the LL fit to the
data. Many studies have compared different modeling ap-
proaches [1, 2, 7, 13]. However, the findings are varied across
the studies, and it has still been unclear which method is the
best at predicting student performance [3].

When learning model parameters, one of the essential ele-
ments is the error metric that is used. Choice of a type of
error metric is crucial because the error metric takes a role
of guiding the estimation method to the best parameters.
Pardos and Yudelson compares different error metrics to in-
vestigate which one has the most accuracy of estimating the
moment of learning [11]. Our work extends this compari-
son by looking closer into the relationship between the three
popular error metrics: LL, RMSE, and AUC, and partic-
ularly elucidating the relationship to one another closer to
the ground truth point.

Likelihood of a set of parameters is the probability of the ob-
served student outcome given those parameter values. We
use the logarithm of likelihood when maximizing its value.
RMSE is a commonly used measure of the differences be-
tween the predicted values by a model and the true observed
values. It is defined as the square root of the mean squared
error. AUC is another frequently employed measure to as-
sess the accuracy of predictive distribution models. It is
defined as the area under the receiver operating character-
istic (ROC) curve, and a greater value of AUC indicates a
more accurate prediction.

With the simulated data, we examine the relationship be-
tween the values calculated by the three metrics and the
ground truth parameters using grid search over the entire
parameter space. Section 2 describes our data generation
procedure. In section 3, we compare the error metrics graph-
ically and numerically. In section 4, we examine heat maps
of distributions of LL, RMSE, and AUC values. Next, in
section 5, we compare LL and RMSE in depth using scatter
plots of LL values and RMSE values with colors indicating
distances from the ground truth. We conclude in section 6.



2. DATASETS
To assess whether LL, RMSE, or AUC is the best error met-
ric to use in parameter searching for the BKT model, we
needed datasets with known parameter values in order to
compare these with the parameter values predicted by using
different error metrics. In this paper, we evaluate the er-
ror metrics on the basic BKT model with four parameters:
prior, learn, guess, and slip. To synthesize a dataset, we ran
a simulation to generate student responses based on prede-
fined known ground truth parameter values similar to data
generation in [10]. We constructed a KT model using func-
tions from MATLAB’s Bayes Net Toolbox [8]. Each dataset
contains data points of N students answering M questions.
Each data point indicates whether the student’s answer to
the question is correct or not.

We generated 26 datasets with diverse parameter values. 15
datasets contain data for 3,000 students, and 11 datasets
contain data for 30,000 students. 19 of the datasets have
responses for five questions per student, and 7 of them have
responses for ten. Figure 1 shows the distribution of prior,
learn, guess, and slip parameter values in our datasets. Most
of our datasets have low guess (guess ≤ 0.5) which is true
in most tutoring systems. However, some problem sets such
as exercises in the Reading Tutor have high guess [4], so we
generated some datasets with high guess as well.

Property True False
prior ≤ 0.5 16 10
learn ≤ 0.5 19 7
guess ≤ 0.5 17 9
slip ≤ 0.5 15 11

Figure 1: Distribution of datasets’ parameter values.
True and False mean number of datasets that have
and do not have the specified property respectively.

3. CORRELATIONS TO THE GROUND
TRUTH

In this section, we evaluate the accuracy of LL, RMSE, and
AUC by analyzing the correlations between the values cal-
culated by the different error metrics and the distances from
the corresponding points to the ground truth.

3.1 Methodology
For each dataset, we evaluated LL, RMSE, and AUC values
on all points over the entire prior/learn/guess/slip parame-
ter space with a 0.05 interval. Each point P is defined as

P = (P1, P2, P3, P4) = (prior, learn, guess, slip)

On each point P , we used the MLE-hmm library [12] to cal-
culate students’ predicted responses (probability that stu-
dents will answer questions correctly). We then used these
predicted responses with the actual responses to calculate
LL, RMSE, and AUC for all points.

To determine which error metric is the best for this purpose,
we looked at the correlations between LL, RMSE, AUC val-
ues and the euclidian distances from the points to the ground

truth. The distance from point P to the ground truth R is:

d(P,R) =

√√√√ 4∑
i=1

(Pi −Ri)2

We plotted LL values vs distances, -RMSE values vs dis-
tances, and AUC values vs distances. Note that we used
-RMSE instead of RMSE to standardize our convention across
different error metrics. With this change, for all error met-
rics, higher error metric values indicate smaller error (closer
to the ground truth). In addition to visualizing the re-
sults, we calculated (1) correlation between LL values and
logarithm of distances, called LL correlation, (2) correla-
tion between logarithm of -RMSE values and logarithm of
distances, called RMSE correlation, and (3) correlation be-
tween logarithm of AUC values and logarithm of distances,
called AUC correlation. We applied logarithm to all error
metrics other than LL in order to compare everything in the
same scale as LL. We will refer to correlations of logarithm
simply as correlations.

Finally, we tested whether the correlation between the values
calculated by any particular error metric and the distances
is significantly stronger than the others’. We tested this by
running one-tailed paired t-tests on (1) LL correlations vs
RMSE correlations, (2) LL correlations vs AUC correlations,
and (3) RMSE correlations vs AUC correlations on all 26
datasets.

3.2 Results
In order to determine the accuracy of the error metrics, we
plotted values calculated by each error metric against dis-
tances from the ground truth in order. Figure 2 shows the
graphs of dataset 2, which contains 3,000 students answer-
ing 5 questions. These graphs were generated with prior
= 0.2, learn = 0.444, guess = 0.321, and slip = 0.123. As
shown in the figure, both LL and -RMSE show a general
pattern of being larger when the distance from the ground
truth is lower. This pattern is common in all datasets. This
indicates LL and RMSE as fairly good measures of distances
from the ground truth. In the case of AUC, we were not able
to discern any observable relation between distances from
the ground truth and AUC values. In certain cases, AUC
exhibited a similar pattern to that of RMSE and LL, but
the appearance of this pattern was extremely inconsistent.

The correlations we calculated between the error metrics
and the distances from the ground truth support the find-
ings from our visual representation. Both suggest RMSE
as the best indicator. The average LL correlation, RMSE
correlation, and AUC correlation were 0.4419, 0.4827, and
0.3983 respectively. We define that an error metric A is bet-
ter than B if the correlation between values calculated by
an error metric A and the distances to the ground truth are
higher than that of B. Figure 3 shows the results of correla-
tion comparison of the three metrics. It appears that RMSE
was consistently better than LL on all 26 datasets. However,
RMSE or LL correlations are not always higher than AUC
correlations—RMSE is better than AUC on 18 out of 26
datasets, and LL is better than AUC on 15 datasets.

Nevertheless, the result from the one-tailed paired t-test
shown in Figure 4 reveal that RMSE is better, on average,



Figure 2: Values calculated by different error metrics vs distances to the ground truth

Comparison Number of datasets Total

RMSE vs LL
RMSE > LL 26

26
RMSE < LL 0

RMSE vs AUC
RMSE > AUC 18

26
RMSE < AUC 8

LL vs AUC
LL > AUC 15

26
LL < AUC 11

Figure 3: Correlation comparisons of error metrics

Comparision ∆ of correlations t p-value
RMSE > LL 0.0408 8.9900 << 0.0001
RMSE > AUC 0.0844 2.7583 0.0054
LL > AUC 0.0436 1.4511 0.0796

Figure 4: T-test statistics of RMSE correlation > LL
correlation, RMSE correlation > AUC correlation,
and LL correlation > AUC correlation

than both LL and AUC. This difference is statistically sig-
nificant. Also, LL is better than AUC on average but the
difference is not statistically significant.

4. DISTRIBUTIONS OF VALUES
In this section, we examine further why RMSE seemed to
be better than LL and AUC by looking at the distributions
of LL, RMSE, and AUC values over the range of parameters
represented by our datasets.

4.1 Methodology
We visualized the values of LL, -RMSE, and AUC of all
points over the 2 dimensional guess/slip space with a 0.02
interval. We fixed prior and learn parameter values to the
actual ground truth values. We created heat maps of LL,
-RMSE, and AUC. Using the guess and slip parameters as
the axes, we visualize LL, -RMSE, and AUC values by color.
The colors range from dark red to dark blue corresponding
to the values ranging from low to high. The range of colors
is shown in Figure 5(d).

4.2 Results
Figure 5 shows the heat maps of LL, -RMSE, and AUC on
the same dataset used in the previous section. The white dot
in each graph represents the location of the ground truth.

In all heat maps, the white dot (ground truth) is located in
the darkest blue region (the area with the highest values for
each metric). The heat maps of LL and -RMSE are fairly
similar, while the heat map of AUC is very different from
the other two. The heat maps of LL and -RMSE have a
very concentrated region of high LL and -RMSE values (the
darkest blue region), while the high AUC values region is
very spread out. This pattern is consistent throughout all
datasets. Hence, we conclude that AUC is a fairly poor
indicator for how close parameters are to the ground truth.

The heat maps also provide further support to using RMSE
instead of LL. If we follow the gradient from the lowest value
to the highest value in the LL heat map, the gradient is very
high at the beginning (far from the ground truth) and is
very low at the end (close to the ground truth). Whereas
in the -RMSE heat map, the change in the gradient is low.
Additionally, notice that the darkest blue region in -RMSE
heat map is smaller than that in LL heat map. This suggests
that we may be able to refine the proximity of the ground
truth better with RMSE.

Because AUC proved to be a poor indicator of the distance
to the ground truth, we excluded it as a metric for the re-
mainder of the comparisons.

5. DIRECT COMPARISON: LL AND RMSE
After looking at the correlations between distances from the
ground truth and the values calculated by the various error
metrics, and the distribution of the values calculated by each
metric, we further compare LL and RMSE to investigate
RMSE’s apparent outperformance of LL.

5.1 Methodology
We plotted LL values and RMSE values of all points against
each other in order to observe the behavior of the two metrics



(a) LL Heatmap

(b) -RMSE Heatmap

(c) AUC Heatmap

(d) Range of colors.

Figure 5: LL, -RMSE, and AUC values when fixing
prior and learn parameter values and varying guess
and slip parameter values. Red represents low val-
ues, while blue represents high values. The white
dots represent the ground truth.

in detail. We then labeled each data point by its distance
to the ground truth with a color. The range of colors is the
same as used for the heat maps.

5.2 Results
In our graphical comparison of LL and RMSE, we were able
to observe a general pattern for the distribution of data
points. Figure 6 shows the LL vs -RMSE graphs from 3
different datasets. The graphical results from these three
were the most representative of our overall datasets. As
expected, LL values and RMSE values correlate logarithmi-
cally. In addition to the main logarithmic curve, there is an
additional curve, which we will refer to as the hook, which
exists for a portion of the graph. The length of the hook
varies from dataset to dataset, ranging from being almost
unobservable to existing for the entirety of the graph. The
hook converges with the main curve when the -RMSE and
LL values are both sufficiently high— the points are very

(a) Pattern 1 from dataset 25 when prior = 0.564,
learn = 0.8, guess = 0.35 , and slip = 0.4.

(b) Pattern 2 from dataset 17 when prior = 0.245,
learn = 0.385, guess = 0.012, and slip = 0.001.

(c) Pattern 3 from dataset 22 when prior = 0.3,
learn = 0.35, guess = 0.75, and slip = 0.5.

Figure 6: LL vs -RMSE.



close to the ground truth. Before the convergence, a set of
parameters with an RMSE value may have multiple LL val-
ues and vice versa. The 3 different graphs in Figure 6 show
different types of hooks.

Figure 6(a) represents the most common pattern among all
datasets. For a portion of the graph before the convergence,
when we look at a fixed LL value with varied RMSE val-
ues, most points in the hook have higher -RMSE values and
are closer to the ground truth than do the points in the
main curve. This pattern further supports our argument
that RMSE values and distances to the ground truth corre-
late strongly. However, when we look at a fixed RMSE value
with varied LL values, the points in certain parts of the hook
have lower LL values but are closer to the ground truth than
do the points in the main curve. The result shows that in
the divergent area, LL values and distances do not corre-
late. This evidence explains why the RMSE correlations are
higher than the LL correlations as seen in the previous sec-
tion. As both the curve and the hook converge, we can infer
that after this point, both RMSE and LL will give similar
estimates of the ground truth. However, for a portion of
the graph before this point, RMSE is a better predictor of
ground truth values.

Figure 6(b) displays the pattern in which the hook is almost
aligned with the main curve. In this pattern, when we fix an
RMSE value, LL values only vary slightly, and vice versa.
Hence, both LL and RMSE seem to give similar estimates
of the ground truth in this case.

The last pattern, shown in Figure 6(c), is characterized by
points close to the ground truth appearing between the main
curve and the hook. More specifically, these points are closer
to the ground truth than the surrounding points on the main
curve and the hook. Neither LL nor RMSE seem to produce
an optimal representation in this case. This demonstrates
that RMSE may not always be the best measure of ground
truth. Further investigation is necessary to distinguish what
causes this shape and how to find the best parameter values
in this type of situation.

6. CONCLUSION
In our comparison of LL, RMSE, and AUC as metrics for
evaluating the closeness of estimated parameters to the true
parameters in the knowledge tracing model, we discovered
that RMSE serves as the strongest indicator. RMSE has
a significantly higher correlation to the distance from the
ground truth on average than both LL and AUC. Addi-
tionally, AUC appears to be a poor metric for fitting BKT
parameters, similar to the finding in[11]. Our detailed com-
parison of LL and RMSE revealed that when the estimated
parameter value is not very close to the ground truth, RMSE
is the best indicator of distance to the ground truth. We
would recommend further studies to examine which error
metrics are best to use for the region after the hook and main
curve converge. The effectiveness of teaching systems with-
out human supervision relies on the ability of the systems to
predict the implicit knowledge states of students. We hope
that our work can help advance the parameter learning algo-
rithms used in the knowledge tracing model, which in turn
can make these teaching systems more effective.
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